WO2018016306A1 - Resin composition and film formed of said resin composition - Google Patents

Resin composition and film formed of said resin composition Download PDF

Info

Publication number
WO2018016306A1
WO2018016306A1 PCT/JP2017/024299 JP2017024299W WO2018016306A1 WO 2018016306 A1 WO2018016306 A1 WO 2018016306A1 JP 2017024299 W JP2017024299 W JP 2017024299W WO 2018016306 A1 WO2018016306 A1 WO 2018016306A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer unit
mass
resin composition
hour
polymerization
Prior art date
Application number
PCT/JP2017/024299
Other languages
French (fr)
Japanese (ja)
Inventor
真典 松本
哲央 野口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020197004812A priority Critical patent/KR102261383B1/en
Priority to CN201780045521.0A priority patent/CN109476899B/en
Priority to JP2018528473A priority patent/JP6890126B2/en
Publication of WO2018016306A1 publication Critical patent/WO2018016306A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a resin composition that hardly causes birefringence and is excellent in heat resistance, film strength, and thermal stability, and a film made of the resin composition.
  • Transparent resins are used in various applications such as home appliance parts, food containers, and miscellaneous goods.
  • optical components such as retardation films, polarizer protective films, antireflection films, diffusion plates, and light guide plates in liquid crystal display devices are frequently used in terms of lightness, productivity, and cost.
  • the liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter and the like are sandwiched between glass plates and two polarizing plates provided on both sides thereof, and the surfaces are protected on both surfaces of the polarizing plate. For this reason, a polarizer protective film made of a TAC (triacetyl cellulose) film is used.
  • TAC triacetyl cellulose
  • a polarizer protective film is required to have no birefringence in order to achieve uniformity in a wide viewing angle range of a liquid crystal display, but since a TAC film has a slight birefringence, incident light in an oblique direction is required. However, there is a problem that birefringence occurs. In addition, since the birefringence distribution is generated due to the bias of the external stress accompanying the enlargement of the display and there is a problem that the contrast is lowered, the polarizer protective film is required to hardly change the birefringence due to the external stress. .
  • Patent Document 1 a copolymer resin obtained by copolymerizing methyl methacrylate, maleic anhydride, and styrene is known (for example, Patent Document 1). Further, as resins having low birefringence, glutarimide resins (for example, Patent Document 2) and copolymer resins obtained by copolymerizing methyl methacrylate, N-phenylmaleimide, and N-cyclohexylmaleimide are known. (For example, patent document 3).
  • Patent Document 1 Although the resin described in Patent Document 1 is excellent in heat resistance and transparency, a resin design for increasing birefringence after film formation has been made, and thus its use has been limited. Although the resins described in Patent Documents 2 and 3 have excellent optical properties, the film strength after molding is not sufficient, and therefore, their uses are limited.
  • An object of the present invention is to provide a resin composition that hardly causes birefringence and is excellent in heat resistance, film strength, and thermal stability, and a film made of the resin composition.
  • the gist of the present invention is as follows.
  • a resin composition comprising 4 to 14% by mass of conjugated diene monomer units (D) and 4 to 25% by mass, wherein the absolute value of the value of (Formula 1) is 0.005 or less.
  • Copolymer (I) 20 comprising an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), and an unsaturated dicarboxylic anhydride monomer unit (C) 80 parts by mass of polymer (II) composed of (meth) acrylic acid ester monomer unit (B) and 0 to 60 parts by mass of polymer composed of conjugated diene monomer unit (D).
  • the graft copolymer (III) formed by grafting a copolymer comprising a monomer unit (A) and a (meth) acrylic acid ester monomer unit (B), comprising 5 to 60 parts by mass, according to (1) Resin composition.
  • (3) Copolymer (I) is aromatic vinyl monomer unit (A) 20 to 80% by mass, (meth) acrylic acid ester monomer unit (B) 5 to 70% by mass, unsaturated dicarboxylic acid
  • the resin composition according to (2) which is a copolymer composed of 10 to 25% by mass of an anhydride monomer unit (C).
  • aromatic vinyl monomer unit (A) examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, and ethylstyrene. , Units derived from styrene monomers such as p-tert-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene, and the like. Of these, styrene units are preferred. These aromatic vinyl monomer units (A) may be one kind or a combination of two or more kinds.
  • Examples of the (meth) acrylic acid ester monomer unit (B) that can be used in the resin composition of the present invention include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, Derived from methacrylic acid ester monomers such as bornyl methacrylate, and acrylate monomer such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate Units are listed. Among these, a methyl methacrylate unit is preferable.
  • These (meth) acrylic acid ester monomer units (B) may be one kind or a combination of two or more kinds.
  • Examples of unsaturated dicarboxylic acid anhydride monomer units (C) that can be used in the resin composition of the present invention include maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, and aconitic acid anhydride. Examples thereof include units derived from product monomers. Among these, maleic anhydride units are preferable.
  • the unsaturated dicarboxylic acid anhydride monomer unit (C) may be one type or a combination of two or more types.
  • conjugated diene monomer unit (D) examples include 1,3-butadiene (butadiene), 2-methyl-1,3-butadiene (isoprene), and 2,3-dimethyl. Examples thereof include units derived from monomers having a conjugated double bond such as -1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 2-methylpentadiene. Of these, butadiene units are preferred.
  • These conjugated diene monomer units (D) may be one kind or a combination of two or more kinds.
  • the resin composition of the present invention comprises an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), an unsaturated dicarboxylic acid anhydride monomer unit (C), and a conjugated diene.
  • Other vinyl monomer units other than the monomer unit (D) may be included in the resin composition as long as the effects of the invention are not inhibited, and the amount is preferably 5% by mass or less.
  • vinyl monomer units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N-ethylmaleimide, N N-alkylmaleimide monomers such as N-butylmaleimide and N-cyclohexylmaleimide; N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide and N-chlorophenylmaleimide; Examples are derived units.
  • vinyl cyanide monomers such as acrylonitrile and methacrylonitrile
  • vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid
  • N-methylmaleimide, N-ethylmaleimide, N N-alkylmaleimide monomers such as N-butylmaleimide and N-cyclohexylmaleimide
  • N-arylmaleimide monomers such as N-phenyl
  • the other vinyl monomer unit contained in the resin composition may be a combination of two or more types.
  • the constituent units of the resin composition of the present invention are aromatic vinyl monomer units (A) 17 to 31% by mass, (meth) acrylic acid ester monomer units (B) 38 to 63% by mass, unsaturated dicarboxylic acid. It is preferable that the anhydride monomer unit (C) is 4 to 14% by mass and the conjugated diene monomer unit (D) is 4 to 25% by mass, more preferably the aromatic vinyl monomer unit (A) 18 to 25% by mass, (meth) acrylic acid ester monomer unit (B) 45-60% by mass, unsaturated dicarboxylic acid anhydride monomer unit (C) 4-12% by mass, conjugated diene monomer unit (D ) 10 to 20% by mass.
  • the aromatic vinyl monomer unit (A) used in the resin composition is 17% by mass or more, birefringence hardly occurs and a resin composition with good transparency can be obtained, and if it is 18% by mass or more. Further, it is preferable because birefringence hardly occurs and a resin composition having good transparency can be obtained. If the aromatic vinyl monomer unit (A) is 31% by mass or less, a birefringence hardly occurs and a resin composition having good heat resistance is obtained, and if it is 25% by mass or less, birefringence further occurs. It is preferable because it is difficult to obtain a resin composition having good heat resistance.
  • the (meth) acrylic acid ester monomer unit (B) used in the resin composition is 38% by mass or more, birefringence hardly occurs and a resin composition having good heat resistance is obtained, and 45% by mass or more. If so, birefringence is less likely to occur, and a resin composition having good heat resistance is obtained, which is preferable. If the (meth) acrylic acid ester monomer unit (B) is 63% by mass or less, a resin composition in which birefringence is unlikely to be obtained is obtained. This is preferable because a product is obtained.
  • the unsaturated dicarboxylic acid anhydride monomer unit (C) used in the resin composition is 4% by mass or more, a resin composition having good heat resistance can be obtained. If the unsaturated dicarboxylic acid anhydride monomer unit (C) is 14% by mass or less, birefringence hardly occurs and a resin composition having good thermal stability can be obtained. Birefringence is unlikely to occur, and a resin composition with good thermal stability is obtained, which is preferable.
  • the conjugated diene monomer unit (D) used in the resin composition is 4% by mass or more, birefringence hardly occurs and a resin composition having good film strength is obtained, and if it is 10% by mass or more, Furthermore, birefringence hardly occurs, and a resin composition having good film strength is obtained, which is preferable. If the conjugated diene monomer unit (D) is 25% by mass or less, birefringence hardly occurs and a resin composition having good heat resistance is obtained, and if it is 20% by mass or less, birefringence hardly occurs, This is preferable because a resin composition having good heat resistance can be obtained.
  • the resin composition of the present invention preferably has an absolute value of (Equation 1) of 0.005 or less.
  • the resin composition of the present invention comprises an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), an unsaturated dicarboxylic acid anhydride monomer unit (C), and a conjugated diene monomer. Since each component of the body unit (D) cancels birefringence with each other and the absolute value of the value of (Formula 1) decreases, a resin composition that is less likely to cause birefringence is obtained, which is preferable. If the absolute value of the value of (Expression 1) is 0.003 or less, a resin composition that is less likely to cause birefringence is obtained, and if the absolute value of (Expression 1) is 0.001 or less, it is preferable. Further, it is preferable because a resin composition in which birefringence hardly occurs is obtained.
  • the resin composition of the present invention is a copolymer comprising an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), and an unsaturated dicarboxylic acid anhydride monomer unit (C).
  • the polymer (II) comprising 20 to 80 parts by mass of the compound (I) and 0 to 60 parts by mass of the polymer (II) comprising the (meth) acrylate monomer unit (B) comprises the conjugated diene monomer unit (D).
  • a graft copolymer (III) obtained by grafting a copolymer comprising an aromatic vinyl monomer unit (A) and a (meth) acrylate monomer unit (B) onto the polymer More preferably, the copolymer (I) is 20 to 40 parts by mass, the polymer (II) is 25 to 50 parts by mass, and the graft copolymer (III) is 10 to 45 parts by mass.
  • the copolymer (I) used in the resin composition is 20 parts by mass or more, a resin composition having good heat resistance is obtained, which is preferable. If the copolymer (I) is 80 parts by mass or less, a resin composition having good thermal stability is obtained, and if it is 40 parts by mass or less, a resin composition having even better thermal stability is obtained. This is preferable.
  • the polymer (II) used in the resin composition is 0 part by mass or more, birefringence hardly occurs and a resin composition having good thermal stability can be obtained. Is preferable since a resin composition having good thermal stability is obtained. If the polymer (II) is 60 parts by mass or less, a resin composition in which birefringence hardly occurs is obtained, and if it is 50 parts by mass or less, a resin composition in which birefringence hardly occurs is obtained.
  • the graft copolymer (III) used in the resin composition is 5 parts by mass or more, birefringence hardly occurs and a resin composition having good film strength is obtained. It is preferable because a resin composition that hardly causes refraction and has good film strength can be obtained. If the graft copolymer (III) is 60 parts by mass or less, a birefringence hardly occurs and a resin composition having good heat resistance and thermal stability is obtained. If the graft copolymer (III) is 45 parts by mass or less, birefringence is further increased. This is preferable because a resin composition that does not easily occur and has good heat resistance and thermal stability can be obtained.
  • the refractive index of each of the copolymer (I), the polymer (II), and the graft copolymer (III) with respect to each d-line at 23 ° C. is n1, n2, and n3.
  • the mass ratios of I), polymer (II), and graft copolymer (III) are w1, w2, and w3, the absolute value of the value of (Formula 2) is preferably 0.005 or less.
  • each component of the copolymer (I), the polymer (II), and the graft copolymer (III) there is no particular limitation on the mixing order of each component of the copolymer (I), the polymer (II), and the graft copolymer (III).
  • a method in which all components are mixed simultaneously two components are mixed in advance. After leaving, there may be mentioned a method of mixing with another component. Such mixing can be performed by a conventionally known method.
  • each component of the copolymer (I), the polymer (II), and the graft copolymer (III) is mixed using a single or biaxial melt extruder.
  • various additives can be added and melt-mixed.
  • the copolymer (I) and the polymer (II) are mixed in advance using a uniaxial or biaxial melt extruder and then uniaxial again.
  • the graft copolymer (III) can be melt-mixed using a biaxial melt extruder.
  • various additives can be added and melt mixed.
  • aromatic vinyl monomer unit (A) examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, and ethylstyrene. , Units derived from styrene monomers such as p-tert-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene, and the like. Of these, styrene units are preferred. These aromatic vinyl monomer units (A) may be one kind or a combination of two or more kinds.
  • Examples of the (meth) acrylate monomer unit (B) that can be used for the copolymer (I) include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, Derived from methacrylic acid ester monomers such as bornyl methacrylate, and acrylate monomer such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate Units are listed. Among these, a methyl methacrylate unit is preferable.
  • These (meth) acrylic acid ester monomer units (B) may be one kind or a combination of two or more kinds.
  • Examples of unsaturated dicarboxylic acid anhydride monomer units (C) that can be used in the copolymer (I) include maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, aconitic acid anhydride and the like. Examples thereof include units derived from product monomers. Among these, maleic anhydride units are preferable.
  • the unsaturated dicarboxylic acid anhydride monomer unit (C) may be one type or a combination of two or more types.
  • Copolymer (I) is an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), and an unsaturated dicarboxylic anhydride monomer unit (C), Other copolymerizable vinyl monomer units may be included in the copolymer as long as the effects of the invention are not impaired, and the amount is preferably 5% by mass or less.
  • copolymerizable vinyl monomer units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N- N-alkylmaleimide monomers such as ethylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide, N-chlorophenylmaleimide, etc. Examples include units derived from monomers. Another copolymerizable vinyl monomer unit may be used in combination of two or more.
  • the constituent unit of the copolymer (I) is 20 to 80% by mass of the aromatic vinyl monomer unit (A), 5 to 70% by mass of the (meth) acrylate monomer unit (B), and unsaturated dicarboxylic acid.
  • Anhydride monomer unit (C) is 10 to 25% by mass, preferably aromatic vinyl monomer unit (A) 45 to 70% by mass, (meth) acrylate monomer unit (B) 7 to 40% by mass and 10 to 23% by mass of unsaturated dicarboxylic acid anhydride monomer unit (C).
  • the constituent unit of the copolymer is an analytical value measured by a predetermined analysis method. In fact, a distribution exists in the constituent unit (hereinafter, this distribution is referred to as a composition distribution). This shows the average value of the distribution.
  • the thermal stability is improved, and the resin composition has a good appearance when molded. If a molded body is obtained and the content is 45% by mass or more, the thermal stability is further improved, and when the resin composition is molded, a molded body having a better appearance can be obtained. If the aromatic vinyl monomer unit (A) is 80% by mass or less, the compatibility with the polymer (II) is improved, the transparency of the resin composition is improved, and if it is 70% by mass or less, Furthermore, the compatibility with the polymer (II) is improved, and the transparency of the resin composition is improved, which is preferable.
  • the compatibility with the polymer (II) is improved, and the transparency of the resin composition is improved.
  • the content is 7% by mass or more, the compatibility with the polymer (II) is further improved, and the transparency of the resin composition is further improved, which is preferable.
  • the (meth) acrylic acid ester monomer unit (B) is 70% by mass or less, the thermal stability is improved, and a molded article having a good appearance can be obtained when the resin composition is molded. If it is 40% by mass or less, the thermal stability is further improved, and when the resin composition is molded, a molded article having a better appearance can be obtained.
  • the unsaturated dicarboxylic acid anhydride monomer unit (C) used in the copolymer (I) is 10% by mass or more, the heat resistance is good and the compatibility with the polymer (II) is improved. Since the transparency of a resin composition becomes favorable, it is preferable. If the unsaturated dicarboxylic acid anhydride monomer unit (C) is 25% by mass or less, the thermal stability is improved, and a molded article having a good appearance can be obtained when the resin composition is molded. In addition, the compatibility with the polymer (II) is improved, the transparency of the resin composition is improved, and if it is 23% by mass or less, the thermal stability is further improved and the resin composition is molded. Is preferable because a molded article having a good appearance can be obtained, compatibility with the polymer (II) is improved, and transparency of the resin composition is improved.
  • the haze of an optical path length of 10 mm in a 12% by mass chloroform solution of copolymer (I) measured based on JIS K-7136 is preferably 2% or less. If the haze is 2% or less, the composition distribution of the copolymer (I) becomes small, and the composition has a lot of unsaturated dicarboxylic anhydride monomer units (C) incompatible with the polymer (II). However, since it is very small, compatibility with the polymer (II) is maintained, and the transparency of the resin composition is improved, which is preferable.
  • the haze degree (made by Toyo Seiki Co., Ltd.) was filled with the solution which adjusted the copolymer so that it might become 12 mass% in chloroform in the quartz square cell for optical path length 10mm measurement according to JISK-7136. It is a measured value measured using haze guard II).
  • the polymerization mode of the copolymer (I) is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but solution polymerization is more preferable.
  • the solvent used in the solution polymerization is preferably non-polymerizable from the viewpoint that a by-product is difficult to produce and that there are few adverse effects.
  • the type of the solvent is not particularly limited.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, ethers such as tetrahydrofuran, 1,4-dioxane, toluene, ethylbenzene, xylene, chlorobenzene Aromatic hydrocarbons, etc. are mentioned, but methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of the solubility of the monomer and copolymer and the ease of solvent recovery.
  • the amount of the solvent added is preferably 10 to 100 parts by mass, and more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the copolymer to be obtained. If it is 10 parts by mass or more, it is suitable for controlling the reaction rate and the polymerization solution viscosity, and if it is 100 parts by mass or less, it is suitable for obtaining a desired weight average molecular weight (Mw).
  • the polymerization process may be any of a batch polymerization method, a semi-batch polymerization method, and a continuous polymerization method, but the batch polymerization method is suitable for obtaining a desired molecular weight range and transparency.
  • the polymerization method is not particularly limited, but is preferably a radical polymerization method from the viewpoint that it can be produced with high productivity by a simple process.
  • the polymerization initiator is not particularly limited.
  • Known organic compounds such as isopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyacetate, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate
  • Known azo compounds such as peroxides, azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, and the like can be used. Two or more of these
  • the method for adjusting the molecular weight can be adjusted by the addition amount of the solvent and the addition amount of the chain transfer agent in addition to the adjustment of the polymerization temperature, the polymerization time, and the addition amount of the polymerization initiator.
  • the chain transfer agent is not particularly limited.
  • a known chain transfer agent such as n-dodecyl mercaptan, t-dodecyl mercaptan or 2,4-diphenyl-4-methyl-1-pentene is used. Can do.
  • the polymerization solution is optionally provided with a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound,
  • a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound
  • Additives such as lubricants, plasticizers, colorants, antistatic agents and mineral oils may be added. The addition amount is preferably less than 0.2 parts by mass with respect to 100 parts by mass of all monomer units. These additives may be used alone or in combination of two or more.
  • the method for recovering the copolymer (I) from the polymerization solution is not particularly limited, and a known devolatilization technique can be used.
  • a method of continuously feeding the polymerization liquid to a twin-screw devolatilizing extruder using a gear pump and devolatilizing a polymerization solvent, an unreacted monomer and the like can be mentioned.
  • the devolatilizing component including the polymerization solvent, unreacted monomer, etc. is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in a distillation tower. .
  • Examples of the (meth) acrylate monomer unit (B) that can be used for the polymer (II) include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, Units derived from methacrylic acid ester monomers such as nyl methacrylate and acrylic acid acrylate monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate Is mentioned. Among these, a methyl methacrylate unit is preferable.
  • These (meth) acrylic acid ester monomer units (B) may be one kind or a combination of two or more kinds.
  • the polymer (II) contains other copolymerizable vinyl monomer units other than the (meth) acrylic acid ester monomer unit (B) in the copolymer as long as the effects of the invention are not inhibited. However, it is preferably 5% by mass or less.
  • Other copolymerizable vinyl monomer units include aromatic vinyl monomers such as styrene, vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, and vinyl carboxylic acid units such as acrylic acid and methacrylic acid.
  • Examples include units derived from monomers such as N-arylmaleimide monomers.
  • Another copolymerizable vinyl monomer unit may be used in combination of two or more.
  • the polymerization mode of the polymer (II) is not particularly limited.
  • it can be produced by a known method such as bulk polymerization, solution polymerization, suspension polymerization, bulk-suspension polymerization, emulsion polymerization, etc., but has few impurities and good hue.
  • Bulk polymer or solution polymerization is preferable because a stable polymer (II) is obtained.
  • the polymerization process of the polymer (II) may be any of batch polymerization, semi-batch polymerization, and continuous polymerization, but continuous polymerization is preferred from the viewpoint of productivity.
  • the reactor When adopting continuous polymerization as the polymerization mode of the polymer (II), the reactor is composed of a fully mixed reactor (CSTR) and a piston flow reactor (PFR) connected in series in this order. Is preferred.
  • the CSTR and PFR can be connected as one or more according to the purpose, but the number of CSTRs is preferably 1 to 2, and more preferably 1. .
  • the number of PFRs is preferably 1 to 3, more preferably 1.
  • the solvent to be used is not particularly limited, but from the viewpoint of availability, solubility, etc., for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone Ketones such as tetrahydrofuran, ethers such as 1,4 dioxane, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, chlorobenzene, N, N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, etc.
  • acetone methyl ethyl ketone
  • methyl isobutyl ketone acetophenone Ketones
  • ethers such as 1,4 dioxane
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, chlorobenzene, N, N-dimethylformamide, dimethyl
  • solvents there are solvents, and among them, toluene and ethylbenzene are preferable from the viewpoint of solubility of the polymer (II) in the solvent.
  • the amount of these solvents to be added is not particularly limited, but is preferably in the range of 1 to 30 parts by mass with respect to 100 parts by mass of the total amount of monomer compounds, and is in the range of 5 to 25 parts by mass. Is more preferable.
  • the polymerization method of the polymer (II) is not particularly limited, but radical polymerization is preferred from the viewpoint that it can be produced with high productivity by a simple process, and any radical polymerization initiator can be used.
  • the radical polymerization initiator used for the polymerization of the polymer (II) is not particularly limited.
  • a known peroxide such as an azo compound, an organic peroxide, an inorganic peroxide, or hydrogen peroxide is used. can do.
  • azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, benzoyl peroxide, t-butyl peroxybenzoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexanoate It is preferable to employ organic peroxides such as di-t-butyl peroxide, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate.
  • the radical polymerization initiator may be used alone or in combination of two or more. From the viewpoint of polymerization reaction rate and polymerization rate control, those conventionally used in the production of conventional styrene resins are preferred, and specifically, azo compounds and organic solvents having a 10-hour half-life temperature of 70 to 120 ° C. It is preferable to use an oxide.
  • the amount of the radical polymerization initiator used is not particularly limited, but is preferably 0.001 to 0.1 parts by mass, and particularly 0.002 to 0.1 parts by mass based on 100 parts by mass of the total amount of monomer compounds. It is more preferable to use 03 parts by mass.
  • the amount of the radical polymerization initiator used is 0.001 part by mass or 0.002 parts by mass or more with respect to 100 parts by mass of the total amount of the monomer compounds, a sufficient polymerization rate can be obtained, and thus good productivity. Can be maintained. If the amount of the radical polymerization initiator used is 0.1 parts by mass or 0.03 parts by mass or less with respect to 100 parts by mass of the total amount of monomer compounds, the polymerization rate can be suppressed and the reaction control becomes easy. The molecular weight of the polymer (II) can be easily controlled.
  • Any chain transfer agent may be used for the polymerization of the polymer (II).
  • the chain transfer agent to be used is not particularly limited, but specific examples include n-dodecyl mercaptan, t-dodecyl mercaptan, and 2,4-diphenyl-4-yl from the viewpoint of easy availability and ease of molecular weight control. Chain transfer agents such as methyl-1-pentene can be used. In addition, about a chain transfer agent, you may use independently, but you may use 2 or more types together.
  • the amount of the chain transfer agent used is not particularly limited as long as the target molecular weight of the polymer (II) is obtained, but is 0.05 to 2.0 mass with respect to 100 mass parts of the total amount of monomer compounds. In particular, it is preferable to use 0.2 to 0.8 parts by mass with respect to 100 parts by mass of the total amount of monomer compounds. If the usage-amount of a chain transfer agent is 0.0-5 mass parts or more and 2.0 mass parts or less, the target molecular weight of a (meth) acrylic acid ester type copolymer (B) can be obtained easily.
  • the polymerization temperature of the polymer (II) is not particularly limited, but when continuous polymerization is employed, the reaction temperature in CSTR is preferably 110 ° C. to 160 ° C., and particularly within the range of 120 ° C. to 140 ° C. Is more preferable. Further, the reaction temperature in PFR is preferably 120 ° C. to 170 ° C., more preferably 130 ° C. to 150 ° C. In this way, it is possible to obtain a polymer (II) that is easy to control and has a uniform composition.
  • the method for removing volatile components such as the solvent and unreacted monomer used for the polymerization of the polymer (II) is not particularly limited, and a known method can be used. Among them, a method using a devolatilization tank is used. preferable.
  • the temperature of the molten resin is preferably maintained at 260 ° C. or lower, and more preferably 240 ° C. or lower. If the resin temperature is suppressed to 260 ° C. or 240 ° C. or lower, depolymerization due to thermal degradation of the polymer (II) can be suppressed, and a polymer (II) having an excellent hue can be obtained.
  • the adjustment method of resin temperature it can carry out by the temperature adjustment of a devolatilization tank.
  • Any radical scavenger may be used for the purpose of preventing thermal deterioration during processing of the polymer (II) and maintaining a good hue.
  • the radical scavenger is not particularly limited, and examples thereof include antioxidants such as phenol compounds, organic phosphorus compounds, organic sulfur compounds, and amine compounds. These radical scavengers may be used alone or in combination of two or more. These radical scavengers receive a significant thermal history in the process of devolatilizing the volatile components in the styrene-maleimide copolymer with a vent type screw extruder, so that the function as a radical scavenger is maintained. In particular, a compound having heat resistance and heat stability is preferred.
  • a radical scavenger having a 1% heat loss temperature exceeding 300 ° C. is even more preferable.
  • the radical scavenger is preferably added to the polymerization product after polymerization. If added before or during polymerization, the polymerization rate may decrease.
  • conjugated diene monomer unit (D) examples include 1,3-butadiene (butadiene), 2-methyl-1,3-butadiene (isoprene), and 2,3-dimethyl. Examples thereof include units derived from monomers having a conjugated double bond such as -1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 2-methylpentadiene. Of these, butadiene units are preferred.
  • These conjugated diene monomer units (D) may be one kind or a combination of two or more kinds.
  • Aromatic vinyl monomer units (A) that can be used in the graft copolymer (III) include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethyl Examples thereof include units derived from styrene monomers such as styrene, p-tert-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene. Of these, styrene units are preferred. These aromatic vinyl monomer units (A) may be one kind or a combination of two or more kinds.
  • Examples of the (meth) acrylate monomer unit (B) that can be used for the graft copolymer (III) include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, Derived from methacrylic acid ester monomers such as isobornyl methacrylate and acrylic acid acrylate monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate The unit to do is mentioned. Among these, a methyl methacrylate unit is preferable.
  • These (meth) acrylic acid ester monomer units (B) may be one kind or a combination of two or more kinds.
  • the graft copolymer (III) is a copolymer other than the conjugated diene monomer unit (D), the aromatic vinyl monomer unit (A), and the (meth) acrylate monomer unit (B).
  • Polymerizable vinyl monomer units may be included in the copolymer as long as the effects of the invention are not impaired, and the amount is preferably 5% by mass or less.
  • copolymerizable vinyl monomer units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N- N-alkylmaleimide monomers such as ethylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide, N-chlorophenylmaleimide, etc. Examples include units derived from monomers. Another copolymerizable vinyl monomer unit may be used in combination of two or more.
  • the graft copolymer (III) comprises a diene rubbery polymer composed of a conjugated diene monomer unit (D), an aromatic vinyl monomer unit (A), a (meth) acrylate monomer unit (B ) And a copolymer having a branched structure. Furthermore, the graft copolymer (III) includes, as a by-product during graft polymerization, an aromatic vinyl monomer unit (A) that is not grafted to the diene rubber-like polymer, and a (meth) acrylic acid ester monomer. The copolymer which consists of a unit (B) is included. Graft copolymer (III) polymerizes aromatic vinyl monomer unit (A) and (meth) acrylic acid ester monomer unit (B) by a known method in the presence of a diene rubber-like polymer. Can be obtained.
  • Diene rubbery polymers that can be used for the graft copolymer (III) are conjugated diene rubbers such as polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, polyisoprene, and styrene-isoprene copolymer. And hydrogenated products thereof, which can be used alone or in combination of two or more. Among these, polybutadiene is preferable.
  • the polymerization mode of the graft copolymer (III) is not particularly limited, but known methods such as bulk polymerization, solution polymerization, suspension polymerization, bulk-suspension polymerization, emulsion polymerization and the like can be employed. Of these, the emulsion polymerization method is preferred.
  • the polymerization method of the graft copolymer (III) is not particularly limited, but radical polymerization is preferred from the viewpoint that it can be produced with high productivity by a simple process, and any radical polymerization initiator is used. it can
  • radical initiators used in the graft copolymer (III) azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, t-butylperoxybenzoate, t-butylperoxy- Organic peroxides such as 2-ethylhexanoate, di-t-butyl peroxide, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate, hydrogen peroxide, persulfuric acid Inorganic peroxides such as potassium and ammonium persulfate can be used.
  • azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, t-butylperoxybenzoate, t-butylperoxy- Organic peroxides such as 2-ethylhexanoate, di-t-buty
  • inorganic peroxides and organic peroxides it is preferable to use inorganic peroxides and organic peroxides. Ferrous sulfate and the like together with inorganic peroxides and organic peroxides. It is more preferable to use a redox initiator in combination with a reducing agent.
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • the amount of the radical polymerization initiator used is not particularly limited, but it is preferably 0.1 to 0.5 parts by weight, particularly 0.5 to 3 parts per 100 parts by weight of the total amount of monomer compounds. It is more preferable to use 5 parts by mass.
  • the amount of the radical polymerization initiator used is the total amount of the diene rubber-like polymer and the monomer compound composed of the aromatic vinyl monomer unit (A) and the (meth) acrylate monomer unit (B). If it is 0.1 mass part or more with respect to 100 mass parts, since sufficient polymerization rate is obtained, favorable productivity can be maintained. When the amount of the radical polymerization initiator used is 3.5 parts by mass or less with respect to 100 parts by mass of the total amount of monomer compounds, the polymerization rate can be suppressed and the reaction control becomes easy.
  • An arbitrary chain transfer agent may be used for the polymerization of the graft copolymer (III).
  • the chain transfer agent to be used is not particularly limited, but specific examples include n-dodecyl mercaptan, t-dodecyl mercaptan, and 2,4-diphenyl-4-yl from the viewpoint of easy availability and ease of molecular weight control. Chain transfer agents such as methyl-1-pentene can be used.
  • the chain transfer agent may be used alone or in combination of two or more.
  • the polymerization temperature of the graft copolymer (III) is not particularly limited, but the reaction temperature when employing emulsion polymerization is 50 ° C. or higher from the viewpoint of increasing the polymerization reaction rate and maintaining good productivity. It is preferable that the temperature is 55 ° C. or higher. Further, from the viewpoint of reducing the amount of coagulum or deposits generated in the polymerization can and maintaining good productivity, it is preferably 98 ° C. or less, and particularly preferably 90 ° C. or less.
  • a stabilizer, a plasticizer, a lubricant, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, and the like may be blended in the resin composition as long as the effects of the present invention are not impaired.
  • the resin composition of the present invention has a 2 mm-thick total light transmittance measured based on ASTM D1003 of 88% or more, preferably 89% or more, and more preferably 90% or more. If the total light transmittance of 2 mm thickness is 88% or more, it has excellent transparency even after molding.
  • the total light transmittance is a mirror surface of 90 mm in length, 55 mm in width, and 2 mm in thickness formed using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.) under molding conditions of a cylinder temperature of 230 ° C. and a mold temperature of 40 ° C. It is a measured value measured on a plate using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with ASTM D1003.
  • the in-plane retardation (Re) calculated by (Equation 3) is preferably 30 nm or less, more preferably 20 nm or less, even more preferably 100 ⁇ m.
  • Is 10 nm or less, and the thickness retardation (Rth) calculated by (Equation 4) is preferably 20 nm or less in terms of 100 ⁇ m, more preferably 10 nm or less, and even more preferably 5 nm or less.
  • the in-plane retardation (Re) is 30 nm or less and the thickness retardation (Rth) is 20 nm or less, problems such as a decrease in contrast of the liquid crystal display device do not occur when the film is used as a polarizing plate of the liquid crystal display device. Is preferred.
  • nx, ny, and nz are when the direction in which the in-plane refractive index is maximized is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis. Is the refractive index in the axial direction, and d is the film thickness.
  • the film production method is not particularly limited, and a known molding method such as a melt extrusion film molding method or a solution fluent molding method can be used.
  • a known molding method such as a melt extrusion film molding method or a solution fluent molding method can be used.
  • a method using a flexible roll capable of elastic deformation there is a method using a flexible roll capable of elastic deformation.
  • an unstretched film can also be used, the stretched film which extended
  • the film stretching method is not particularly limited. Examples of the uniaxial stretching include a roll stretching method, a tenter stretching method, a free-width uniaxial stretching method, and a biaxial stretching.
  • a stretched film can be obtained by a stretching method or a biaxial stretching method by tubular stretching.
  • the absolute value of the photoelastic coefficient of the resin composition of the present invention is preferably 5.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 3.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and further preferably 1 0.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 . If the photoelastic coefficient is sufficiently small, the change in birefringence due to external force is small, and birefringence due to residual stress during molding is less likely to occur. When used for a plate, it is preferable because uneven birefringence, contrast at the periphery of the display screen, and light leakage do not occur.
  • the photoelastic coefficient can be obtained by measuring the in-plane retardation (Re) of the film using a phase difference measuring device in a state where tensile stress is applied to the film.
  • the photoelastic coefficient C dRe (f) / df ⁇ w Therefore, it can be calculated by obtaining the slope of the in-plane phase difference (Re) value with respect to the load applied to the test piece.
  • KOBRA-WR manufactured by Oji Scientific Co., Ltd. was used as the phase difference measuring apparatus, and stress was applied with a digital force gauge Z2S-DPU-50N manufactured by Imada.
  • the method for adjusting the photoelastic coefficient of the resin composition of the present invention is not particularly limited, but can be adjusted by the composition ratio.
  • the photoelastic coefficient of the resin composition can be positively or negatively contributed. Therefore, by adjusting these compositions as appropriate, the photoelastic coefficient can be offset and the absolute value thereof can be reduced.
  • styrene and butadiene that make a positive contribution to the photoelastic coefficient
  • methyl methacrylate and maleic anhydride that make a negative contribution can be used to offset the photoelastic coefficient and reduce its absolute value.
  • a 50-liter autoclave equipped with a stirrer was charged with 1.76 kg of a 25% maleic anhydride solution, 11.8 kg of styrene, 3.8 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase portion was filled with nitrogen gas.
  • the temperature was raised to 90 ° C. over 40 minutes with stirring. While maintaining the temperature at 90 ° C. after the temperature rise, a 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added.
  • the 25% maleic anhydride solution was 1.98 kg / hour from the start of the addition until the 4th hour, 1.58 kg / hour from the 4th hour to the 7th hour, and 0. 0 from the 7th hour to the 10th hour.
  • the addition rate was changed stepwise so that the addition rate was 0.26 kg / hour from 79 hours / hour to 10 hours to 13 hours, and a total of 15.81 kg was added.
  • the 2% t-butylperoxy-2-ethylhexanoate solution was dispensed at a rate of 0.12 kg / hour from the start of the addition until the 7th hour and 0.19 kg / hour from the 7th to the 13th hour.
  • the addition speed was changed stepwise so that 1.98 kg in total was added.
  • the polymerization temperature is maintained at 90 ° C. until 7 hours from the start of the addition, and then heated up to 114 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 114 ° C. for 1 hour for polymerization.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (I-1) was obtained.
  • the obtained copolymer (I-1) was subjected to composition analysis by C-13 NMR method.
  • the haze of an optical path length of 10 mm in a 12% by mass chloroform solution was measured using a meter (Hazeguard II manufactured by Toyo Seiki Co., Ltd.).
  • a mirror plate with a length of 90 mm, a width of 55 mm, and a thickness of 2 mm is injection-molded under the molding conditions of a cylinder temperature of 230 ° C and a mold temperature of 40 ° C.
  • the total light transmittance of 2 mm thickness was measured using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.).
  • a molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd.
  • Table 1 shows the composition analysis result, the molecular weight measurement result, the total light transmittance transmittance measurement result, and the refractive index measurement result of the 2 mm-thick specular plate of the copolymer (I-1).
  • a 25% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added.
  • the 25% maleic anhydride solution is 1.98 kg / hour from the 4th hour to the start of the addition, 1.58 kg / hour from the 4th to the 7th hour, and 0.79 kg from the 7th to the 10th hour.
  • the addition speed was changed stepwise so that the addition speed was 0.26 kg / hour from the 10th hour to the 13th hour, and a total of 15.81 kg was added.
  • the 2% t-butylperoxy-2-ethylhexanonate solution has a rate of addition of 0.18 kg / hour from the start of the addition until the 7th hour and 0.29 kg / hour from the 7th to the 13th hour. Then, the addition speed was changed stepwise so that a total of 3.0 kg was added.
  • the polymerization temperature is maintained at 96 ° C. until 7 hours from the start of the addition, and then heated up to 120 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 120 ° C. for 1 hour for polymerization. Was terminated.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (I-2) was obtained.
  • composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm thick mirror plate, and refractive index as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
  • Example of production of I-3> A 10% maleic anhydride solution dissolved in methyl isobutyl ketone so that the concentration of maleic anhydride was 10% by mass was prepared in advance and used for polymerization.
  • a 2% t-butylperoxy-2-ethylhexanonate solution was prepared in the same manner as in the preparation example of (I-1) and used for polymerization.
  • a 50-liter autoclave equipped with a stirrer was charged with 2.4 kg of a 10% maleic anhydride solution, 9.6 kg of styrene, 8.0 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas.
  • the 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.09 kg / hr from the start of the addition to the seventh hour and 0.15 kg / hour from the seventh to the thirteenth hour.
  • the addition speed was changed stepwise so that 1.53 kg was added in total.
  • the polymerization temperature is maintained at 88 ° C. until 7 hours from the start of the addition, and then heated up to 118 ° C. over 6 hours at a temperature increase rate of 5 ° C./hour, and further maintained at 118 ° C. for 1 hour for polymerization. Was terminated.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (I-3) was obtained.
  • composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
  • Example of production of I-4> A 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as in the preparation example of (I-1) and used for polymerization.
  • a 50-liter autoclave equipped with a stirrer was charged with 1.92 kg of a 25% maleic anhydride solution, 2.0 kg of styrene, 8.2 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, it heated up to 88 degreeC over 40 minutes, stirring.
  • Styrene, 25% maleic acid-free aqueous solution and 2% t-butylperoxy-2-ethylhexanoate solution were successively added while maintaining 88 ° C. after the temperature rise.
  • Styrene was added at a rate of 0.45 kg / hour from the start of the addition until 11 hours, and a total of 4.95 kg was added.
  • the 25% maleic anhydride solution is 2.59 kg / hr from the 4th hour to the start of the addition, 1.73 kg / hr from the 4th to the 7th hour, and 0.4 kg from the 7th to the 10th hour.
  • the addition speed was changed stepwise so that the addition speed was 0.17 kg / hour from the 10th hour to the 13th hour, and a total of 17.26 kg was added.
  • the 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.06 kg / hour from the start of the addition to the 7th hour and 0.1 kg / hour from the 7th to the 13th hour.
  • the addition speed was changed stepwise so that a total of 1.02 kg was added.
  • the polymerization temperature is maintained at 88 ° C. until 7 hours from the start of the addition, and then heated up to 118 ° C. over 6 hours at a temperature increase rate of 5 ° C./hour, and further maintained at 118 ° C.
  • the 2% t-butylperoxy-2-ethylhexanonate solution has a rate of addition of 0.18 kg / hour from the start of the addition until the 7th hour and 0.29 kg / hour from the 7th to the 13th hour. Then, the addition speed was changed stepwise so that a total of 3.0 kg was added.
  • the polymerization temperature is maintained at 96 ° C. until 7 hours from the start of the addition, and then heated up to 120 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 120 ° C. for 1 hour for polymerization. Was terminated.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (I-5) was obtained.
  • composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
  • Example of production of I-6> 10% maleic anhydride solution was prepared in the same manner as in the production example of (I-3), and 2% t-butylperoxy-2-ethylhexanonate solution was prepared in the same manner as in the production example of (I-1). And used for polymerization.
  • a 50 liter autoclave equipped with a stirrer was charged with 2.0 kg of a 10% maleic anhydride solution, 1.2 kg of styrene, 13.8 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, it heated up to 88 degreeC over 40 minutes, stirring.
  • Styrene, 10% maleic acid-free aqueous solution, and 2% t-butylperoxy-2-ethylhexanoate solution were successively added while maintaining 88 ° C. after the temperature rise.
  • Styrene was added at an addition rate of 0.27 kg / hour from the start of addition for 11 hours, and a total of 2.97 kg was added.
  • the 10% maleic anhydride solution is 2.7 kg / hr from the 4th hour to the start of the addition, 1.8 kg / hr from the 4th to the 7th hour, and 0.42 kg from the 7th to the 10th hour.
  • the addition rate was changed stepwise so that the addition rate was 0.18 kg / hour from 10 hours to 13 hours / hour, and a total of 18.0 kg was added.
  • the 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.06 kg / hour from the start of the addition to the 7th hour and 0.1 kg / hour from the 7th to the 13th hour.
  • the addition speed was changed stepwise so that a total of 1.02 kg was added.
  • the polymerization temperature is maintained at 88 ° C. until 7 hours from the start of the addition, and then heated up to 118 ° C. over 6 hours at a temperature increase rate of 5 ° C./hour, and further maintained at 118 ° C.
  • a 25% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added.
  • the 25% maleic anhydride solution is 2.16 kg / hr from the 4th hour to the start of the addition, 1.73 kg / hr from the 4th to the 7th hour, and 0.86 kg from the 7th to the 10th hour. / Hour, the addition speed was changed stepwise so that the addition speed was 0.29 kg / hour from the 10th hour to the 13th hour, and a total of 17.28 kg was added.
  • the 2% t-butylperoxy-2-ethylhexanonate solution has a rate of addition of 0.21 kg / hour from the start of the addition to 7 hours and 0.34 kg / hour from the 7th to 13th hours.
  • the addition speed was changed stepwise so that a total of 3.51 kg was added.
  • the polymerization temperature is maintained at 96 ° C. until 7 hours from the start of the addition, and then heated up to 120 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 120 ° C. for 1 hour for polymerization. Was terminated.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (I-7) was obtained. With respect to the obtained copolymer (I-7), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index were the same as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
  • Example of production of I-8> A 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as in the preparation example of (I-1) and used for polymerization.
  • a 50-liter autoclave equipped with a stirrer was charged with 2.24 kg of a 25% maleic anhydride solution, 13.4 kg of styrene, 10.0 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, it heated up to 94 degreeC over 40 minutes, stirring. While maintaining the temperature at 94 ° C.
  • a 25% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added.
  • the 25% maleic anhydride solution is 2.52 kg / hour from the 4th hour to the start of the addition, 2.02 kg / hour from the 4th to the 7th hour, and 1.01 kg from the 7th to the 10th hour.
  • the addition rate was changed stepwise so that the addition rate was 0.34 kg / hour from 10 hours to 13 hours / hour, and a total of 20.19 kg was added.
  • the 2% t-butylperoxy-2-ethylhexanonate solution has a rate of addition of 0.18 kg / hour from the start of the addition until the 7th hour and 0.29 kg / hour from the 7th to the 13th hour. Then, the addition speed was changed stepwise so that a total of 3.0 kg was added.
  • the polymerization temperature is maintained at 94 ° C. for 7 hours from the start of the addition, and then heated to 118 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 118 ° C. for 1 hour for polymerization. Was terminated.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (I-8) was obtained.
  • composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index were the same as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
  • a 10% maleic acid non-aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added.
  • the 10% maleic anhydride solution is 1.62 kg / hr from the 4th hour to the start of the addition, 1.2 kg / hr from the 4th to the 7th hour, and 0.96 kg from the 7th to the 10th hour.
  • the addition rate was changed stepwise so that the addition rate was 0.48 kg / hour from 10th to 13th hour / hour, and a total of 14.4 kg was added.
  • the 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.3 kg / hour from the start of the addition to 7 hours and 0.48 kg / hour from the 7th hour to the 13th hour.
  • the addition speed was changed stepwise so that 4.98 kg in total was added.
  • the polymerization temperature is maintained at 96 ° C. until 7 hours from the start of the addition, and then heated up to 120 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 120 ° C. for 1 hour for polymerization. Was terminated.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (I-9) was obtained.
  • composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index were the same as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
  • Styrene, 10% maleic acid-free aqueous solution, and 2% t-butylperoxy-2-ethylhexanoate solution were successively added while maintaining 88 ° C. after the temperature rise.
  • Styrene was added at an addition rate of 0.18 kg / hour from the start of addition to 11 hours, and a total of 1.98 kg was added.
  • the 10% maleic anhydride solution is 2.16 kg / hour from the 4th hour to the start of the addition, 1.44 kg / hour from the 4th to the 7th hour, and 0.34 kg from the 7th to the 10th hour.
  • the addition rate was changed stepwise so that the addition rate was 0.14 kg / hour from 10 hours to 13 hours / hour, and a total of 14.4 kg was added.
  • the 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.06 kg / hour from the start of the addition to the 7th hour and 0.1 kg / hour from the 7th to the 13th hour.
  • the addition speed was changed stepwise so that a total of 1.02 kg was added.
  • the polymerization temperature is maintained at 88 ° C. until 7 hours from the start of the addition, and then heated up to 118 ° C. over 6 hours at a temperature increase rate of 5 ° C./hour, and further maintained at 118 ° C. for 1 hour for polymerization. Was terminated.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (I-10) was obtained.
  • composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index were the same as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
  • 1,1-bis (t-butylperoxy) -cyclohexane Perhexa C manufactured by NOF Corporation 0 with respect to a mixed solution composed of 98 parts by weight of methyl methacrylate, 2 parts by weight of ethyl acrylate, and 18 parts by weight of ethylbenzene .02 parts by mass, 0.3 parts by mass of n-dodecyl mercaptan (thiocalcol 20 manufactured by Kao Corporation), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (Ciba Specialty Chemicals) 0.1 parts by mass of IRGANOX 1076) manufactured as a raw material solution was mixed.
  • n-dodecyl mercaptan thiocalcol 20 manufactured by Kao Corporation
  • octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate Cib
  • This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 6 kg per hour.
  • the stirring number of the complete mixing type reactor was 200 rpm.
  • the reaction liquid was continuously withdrawn from the complete mixing type reactor and introduced into a column type plug flow type reactor adjusted so as to have a gradient of 130 ° C. to 150 ° C. in the flow direction. While this reaction solution was heated with a preheater, it was introduced into a devolatilization tank controlled at a temperature of 240 ° C. and a pressure of 1.0 kPa to remove volatile components such as unreacted monomers.
  • This resin liquid was extracted with a gear pump and extruded into a strand shape to obtain pellet form (II-1).
  • the obtained polymer (II-1) was pyrolyzed at a furnace temperature of 450 ° C., and the decomposition gas was quantified by a gas chromatography method for composition analysis.
  • PS standard polystyrene
  • the calibration curve was prepared and the weight average molecular weight (Mw) was measured under the conditions of a temperature of 40 ° C. and a concentration of 2% by mass.
  • a mirror plate with a length of 90 mm, a width of 55 mm, and a thickness of 2 mm is injection molded under molding conditions of a cylinder temperature of 230 ° C. and a mold temperature of 40 ° C., and conforms to ASTM D1003
  • the total light transmittance of 2 mm thickness was measured using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.).
  • a molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd.
  • Table 2 shows the composition analysis result, molecular weight measurement result, total light transmittance transmittance measurement result, and refractive index measurement result of the 2 mm-thick specular plate of the polymer (II-1).
  • the obtained polybutadiene rubber latex was weighed in an amount of 36 kg in terms of solid content, charged in an autoclave having a volume of 200 liters, added with 80 kg of pure water, and heated to 50 ° C. in a nitrogen stream while stirring.
  • aqueous solution prepared by dissolving 1.5 g of ferrous sulfate, 3 g of sodium ethylenediaminetetraacetate and 100 g of Rongalite in 2 kg of pure water, and a mixture comprising 5.7 kg of styrene, 18.3 kg of methyl methacrylate and 54 g of t-dodecyl mercaptan;
  • a solution obtained by dispersing 108 g of diisopropylbenzene hydroperoxide in 8 kg of 5% aqueous potassium oleate solution was continuously added separately over 5 hours.
  • the temperature was raised to 70 ° C., and 27 g of diisopropylbenzene hydroperoxide was further added, and the mixture was allowed to stand for 2 hours to complete the polymerization to obtain a graft copolymer latex.
  • An antioxidant is added to the obtained graft copolymer latex, the solid content is diluted to 15% by mass with pure water, the temperature is raised to 60 ° C., dilute sulfuric acid is added while stirring vigorously, and the slurry is precipitated. Then, the mixture was further solidified by raising the temperature to 90 ° C., dehydrated, washed with water and dried to obtain a powdered graft copolymer (III-1).
  • the obtained (III-1) was dissolved in chloroform, iodine monochloride was added to react the double bond in polybutadiene, potassium iodide was added to change the remaining iodine monochloride to iodine, and thiol was added.
  • the amount of polybutadiene in D-1 was measured by back titration with sodium sulfate.
  • the polymer was thermally decomposed at a furnace temperature of 450 ° C., the decomposition gas was quantified by gas chromatography, the composition ratio of methyl methacrylate / styrene was measured, and the amount of polybutadiene and the composition ratio of methyl methacrylate / styrene (III-1 ) was calculated. Further, a molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd. Table 3 shows the composition analysis results and refractive index measurement results of (III-1).
  • D-M2 Abbe refractometer
  • the obtained polybutadiene rubber latex was weighed in an amount of 36 kg in terms of solid content, charged in an autoclave having a volume of 200 liters, added with 80 kg of pure water, and heated to 50 ° C. in a nitrogen stream while stirring.
  • aqueous solution prepared by dissolving 1.5 g of ferrous sulfate, 3 g of sodium ethylenediaminetetraacetate and 100 g of Rongalite in 2 kg of pure water, and a mixture of 7.7 kg of styrene, 16.3 kg of methyl methacrylate, and 54 g of t-dodecyl mercaptan;
  • a solution obtained by dispersing 108 g of diisopropylbenzene hydroperoxide in 8 kg of 5% aqueous potassium oleate solution was continuously added separately over 5 hours.
  • the temperature was raised to 70 ° C., and 27 g of diisopropylbenzene hydroperoxide was further added, and the mixture was allowed to stand for 2 hours to complete the polymerization to obtain a graft copolymer latex.
  • An antioxidant is added to the obtained graft copolymer latex, the solid content is diluted to 15% by mass with pure water, the temperature is raised to 60 ° C., dilute sulfuric acid is added while stirring vigorously, and the slurry is precipitated. Then, the temperature was raised to 90 ° C. for solidification, dehydration, washing with water, and drying to obtain a powdered graft copolymer (III-2).
  • the obtained (III-2) was dissolved in chloroform, iodine monochloride was added to react the double bond in polybutadiene, potassium iodide was added to change the remaining iodine monochloride into iodine, and thiol was added.
  • the amount of polybutadiene in D-1 was measured by back titration with sodium sulfate.
  • the polymer was thermally decomposed at a furnace temperature of 450 ° C., the decomposition gas was quantified by gas chromatography, the composition ratio of methyl methacrylate / styrene was measured, and the amount of polybutadiene and the composition ratio of methyl methacrylate / styrene were determined from (III-2 ) Was calculated. Further, a molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd. Table 3 shows the composition analysis results and refractive index measurement results of (III-2).
  • D-M2 Abbe refractometer
  • the obtained polybutadiene rubber latex was weighed in an amount of 36 kg in terms of solid content, charged in an autoclave having a volume of 200 liters, added with 80 kg of pure water, and heated to 50 ° C. in a nitrogen stream while stirring.
  • aqueous solution prepared by dissolving 1.5 g of ferrous sulfate, 3 g of sodium ethylenediaminetetraacetate and 100 g of Rongalite in 2 kg of pure water, and a mixture consisting of 10.1 kg of styrene, 13.9 kg of methyl methacrylate and 54 g of t-dodecyl mercaptan;
  • a solution obtained by dispersing 108 g of diisopropylbenzene hydroperoxide in 8 kg of 5% aqueous potassium oleate solution was continuously added separately over 5 hours.
  • the temperature was raised to 70 ° C., and 27 g of diisopropylbenzene hydroperoxide was further added, and the mixture was allowed to stand for 2 hours to complete the polymerization to obtain a graft copolymer latex.
  • An antioxidant is added to the obtained graft copolymer latex, the solid content is diluted to 15% by mass with pure water, the temperature is raised to 60 ° C., dilute sulfuric acid is added while stirring vigorously, and the slurry is precipitated. Then, the temperature was raised to 90 ° C. to solidify, followed by dehydration, washing with water and drying to obtain a powdered graft copolymer (III-3).
  • the obtained (III-3) was dissolved in chloroform, iodine monochloride was added to react the double bond in polybutadiene, potassium iodide was added to change the remaining iodine monochloride to iodine, and thiol was added.
  • the amount of polybutadiene in D-1 was measured by back titration with sodium sulfate.
  • the polymer was thermally decomposed at a furnace temperature of 450 ° C., the decomposition gas was quantified by gas chromatography, the composition ratio of methyl methacrylate / styrene was measured, and the amount of polybutadiene and the composition ratio of methyl methacrylate / styrene were determined from (III-3 ) Was calculated. Further, a molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd. Table 3 shows the composition analysis results and refractive index measurement results of (III-3).
  • D-M2 Abbe refractometer
  • Copolymers (I) (I-1) to (I-10), polymers (II) (II-1), and graft copolymers (III) (III-1) to (III-3) was mixed in the proportions (mass%) shown in Tables 4 to 5, and then melt kneaded at a cylinder temperature of 240 ° C. using a twin screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.). And pelletized to obtain a resin composition.
  • the composition of the resin composition was calculated from the composition and blending ratio of each component of the copolymer (I), the polymer (II), and the graft copolymer (III). The following evaluation was performed on this resin composition. The evaluation results are shown in Tables 4-5.
  • the sheet-like molten resin obtained by extrusion at 260 ° C. using a 40 mm ⁇ single-screw extruder and a 300 mm wide T-die is pressed with a flexible roll, and then cooled.
  • the film was cooled with a roll to obtain an unstretched film having a width of 250 mm and a thickness of 100 ⁇ 5 ⁇ m.
  • Total light transmittance and Haze cloudiness
  • ISO-50EPN injection molding machine
  • a test piece having a length of 90 mm, a width of 55 mm, and a thickness of 2 mm molded under the molding conditions of a cylinder temperature of 230 ° C. and a mold temperature of 40 ° C. was obtained.
  • the test piece was measured according to ASTM D1003 using a haze meter (NDH-1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.) using total light transmittance and Haze.
  • the Vicat softening point was measured according to JIS K7206 using 50 specimens (load 50 N, temperature increase rate 50 ° C./hour) with a test piece of 10 mm ⁇ 10 mm and a thickness of 4 mm.
  • the measuring machine used the Toyo Seiki Seisakusho HDT & VSPT test apparatus.
  • a Vicat softening point of 110 ° C. or higher was regarded as acceptable.
  • Folding strength The folding strength of the film was measured using an unstretched film under the following conditions. Folding strength of 100 times or more was accepted.
  • Specimen width 15mm
  • Thermal stability Using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.), 50 samples of a cylindrical molded product having a diameter of 30 mm and a height of 50 mm were produced under the molding conditions of a cylinder temperature of 250 ° C. and a mold temperature of 60 ° C.
  • the thermal stability of the resin composition was evaluated by counting the number of samples in which appearance defects due to thermal decomposition such as silver, gas burn, coloring, and bubbles were visually observed. The evaluation criteria are as follows.
  • The number of appearance defect samples is 1-4.
  • The number of appearance defect samples is 5-9.
  • The number of appearance defect samples is 10 or more.
  • copolymers (I) (I-1) to (I-8) of the present invention, the polymer (II) (II-1), and the graft copolymer (III) (III-1) to (III) All the resin compositions formed by blending (III-3) were less susceptible to birefringence and were excellent in heat resistance, film strength, and thermal stability. Comparative Examples 1 and 2 in which (Formula 1) did not fall within the scope of the present invention had a large birefringence. Comparative Example 3 in which (Formula 1) and the conjugated diene monomer unit were less than the scope of the present invention had high birefringence and poor film strength.
  • the present invention it is possible to provide a resin composition that hardly causes birefringence and has excellent heat resistance, film strength, and thermal stability, and a film made of the resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are: a resin composition which is not susceptible to the occurrence of birefringence, while having excellent heat resistance, film strength and thermal stability; and a film which is formed of this resin composition. The present invention provides a resin composition which is composed of 17-31% by mass of an aromatic vinyl monomer unit (A), 38-63% by mass of a (meth)acrylic acid ester monomer unit (B), 4-14% by mass of an unsaturated dicarboxylic acid anhydride monomer unit (C) and 4-25% by mass of a conjugated diene monomer unit (D), and wherein the absolute value of formula 1 is 0.005 or less. In formula 1, [A], [B], [C] and [D] respectively represent the mass ratios of the aromatic vinyl monomer unit (A), the (meth)acrylic acid ester monomer unit (B), the unsaturated dicarboxylic acid anhydride monomer unit (C) and the conjugated diene monomer unit (D) in the resin composition; and [A] + [B] + [C] + [D] = 1. Formula 1 -0.10 × [A] - 0.004 × [B] + 0.10 × [C] + 0.09 × [D]

Description

樹脂組成物、及びその樹脂組成物からなるフィルムResin composition and film comprising the resin composition
 本発明は、複屈折が生じにくく、耐熱性、フィルム強度、熱安定性に優れた樹脂組成物、及びその樹脂組成物からなるフィルムに関する。 The present invention relates to a resin composition that hardly causes birefringence and is excellent in heat resistance, film strength, and thermal stability, and a film made of the resin composition.
透明樹脂は、家電製品の部品や、食品容器、雑貨等様々な用途に用いられている。近年では、液晶表示装置における、位相差フィルム、偏光子保護フィルム、反射防止フィルム、拡散板、導光板などの光学部品として、軽量性や生産性、コストの面から多用される状況にある。 Transparent resins are used in various applications such as home appliance parts, food containers, and miscellaneous goods. In recent years, optical components such as retardation films, polarizer protective films, antireflection films, diffusion plates, and light guide plates in liquid crystal display devices are frequently used in terms of lightness, productivity, and cost.
液晶表示装置は、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ液晶セルとその両側に設けられた2枚の偏光板で構成されており、偏光板の両面には表面を保護するためTAC(トリアセチルセルロース)フィルムからなる偏光子保護フィルムが用いられている。 The liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter and the like are sandwiched between glass plates and two polarizing plates provided on both sides thereof, and the surfaces are protected on both surfaces of the polarizing plate. For this reason, a polarizer protective film made of a TAC (triacetyl cellulose) film is used.
偏光子保護フィルムは液晶表示の広い視野角範囲での均一性を達成するために複屈折がないことが求められるが、TACフィルムは僅かに複屈折を有しているため、斜め方向の入射光に対して複屈折が生じてしまう課題がある。また、ディスプレイの大型化に伴う外部応力の偏りにより複屈折分布が生じてしまい、コントラスト低下してしまう問題があるため、偏光子保護フィルムには外部応力による複屈折変化がしにくいことが求められる。 A polarizer protective film is required to have no birefringence in order to achieve uniformity in a wide viewing angle range of a liquid crystal display, but since a TAC film has a slight birefringence, incident light in an oblique direction is required. However, there is a problem that birefringence occurs. In addition, since the birefringence distribution is generated due to the bias of the external stress accompanying the enlargement of the display and there is a problem that the contrast is lowered, the polarizer protective film is required to hardly change the birefringence due to the external stress. .
光学フィルム用樹脂として、メチルメタクリレートと、無水マレイン酸と、スチレンとを共重合させて得られる共重合樹脂が知られている(例えば、特許文献1)。また、複屈折が小さい樹脂としてグルタルイミド系樹脂(例えば、特許文献2)やメチルメタクリレートと、N‐フェニルマレイミドと、N‐シクロヘキシルマレイミドとを共重合させて得られる共重合樹脂が知られている(例えば、特許文献3)。 As an optical film resin, a copolymer resin obtained by copolymerizing methyl methacrylate, maleic anhydride, and styrene is known (for example, Patent Document 1). Further, as resins having low birefringence, glutarimide resins (for example, Patent Document 2) and copolymer resins obtained by copolymerizing methyl methacrylate, N-phenylmaleimide, and N-cyclohexylmaleimide are known. (For example, patent document 3).
WO2014/021264WO2014 / 021264 特開2006-337493号公報JP 2006-337493 A 特開2013-109285号公報JP 2013-109285 A
 特許文献1に記載の樹脂は、耐熱性および透明性が優れているものの、フィルム成形後の複屈折が大きくするための樹脂設計がなされており、そのため用途が限定されていた。特許文献2および3に記載の樹脂は、光学特性は優れているものの、成形後のフィルム強度が十分でなく、そのために用途が限定されていた。 Although the resin described in Patent Document 1 is excellent in heat resistance and transparency, a resin design for increasing birefringence after film formation has been made, and thus its use has been limited. Although the resins described in Patent Documents 2 and 3 have excellent optical properties, the film strength after molding is not sufficient, and therefore, their uses are limited.
 本発明の目的は、複屈折が生じにくく、耐熱性、フィルム強度、熱安定性に優れた樹脂組成物、及びその樹脂組成物からなるフィルムを提供するものである。 An object of the present invention is to provide a resin composition that hardly causes birefringence and is excellent in heat resistance, film strength, and thermal stability, and a film made of the resin composition.
本発明は、以下を要旨とするものである。
(1)芳香族ビニル単量体単位(A)17~31質量%、(メタ)アクリル酸エステル単量体単位(B)38~63質量%、不飽和ジカルボン酸無水物単量体単位(C)4~14質量%、共役ジエン単量体単位(D)4~25質量%からなり、(式1)の値の絶対値が0.005以下である樹脂組成物。但し、(式1)中の[A]、[B]、[C]、[D]は、順に、芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、不飽和ジカルボン酸無水物単量体単位(C)、共役ジエン単量体単位(D)の樹脂組成物中における質量比を表し、[A]+[B]+[C]+[D]=1とする。
(式1)  -0.10×[A]-0.004×[B]+0.10×[C]+0.09×[D]
(2)芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、不飽和ジカルボン酸無水物単量体単位(C)からなる共重合体(I)20~80質量部、(メタ)アクリル酸エステル単量体単位(B)からなる重合体(II)0~60質量部と、共役ジエン単量体単位(D)からなる重合体に芳香族ビニル単量体単位(A)と(メタ)アクリル酸エステル単量体単位(B)からなる共重合体がグラフトしてなるグラフト共重合体(III)5~60質量部からなる(1)に記載の樹脂組成物。
(3)共重合体(I)が、芳香族ビニル単量体単位(A)20~80質量%、(メタ)アクリル酸エステル単量体単位(B)5~70質量%、不飽和ジカルボン酸無水物単量体単位(C)10~25質量%からなる共重合体である(2)に記載の樹脂組成物。
(4)共重合体(I)が、12質量%クロロホルム溶液における光路長10mmの曇り度が2%以下である(2)又は(3)に記載の樹脂組成物。
(5)ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上である(1)~(4)のいずれかに記載の樹脂組成物。
(6)(1)~(5)のいずれかに記載の樹脂組成物からなるフィルム。
(7)偏光子保護フィルム用である(6)に記載のフィルム。
The gist of the present invention is as follows.
(1) Aromatic vinyl monomer unit (A) 17 to 31% by mass, (meth) acrylic acid ester monomer unit (B) 38 to 63% by mass, unsaturated dicarboxylic acid anhydride monomer unit (C A resin composition comprising 4 to 14% by mass of conjugated diene monomer units (D) and 4 to 25% by mass, wherein the absolute value of the value of (Formula 1) is 0.005 or less. However, [A], [B], [C], and [D] in (Formula 1) are, in order, an aromatic vinyl monomer unit (A) and a (meth) acrylic acid ester monomer unit (B ), An unsaturated dicarboxylic acid anhydride monomer unit (C), and a conjugated diene monomer unit (D) in a resin composition, [A] + [B] + [C] + [D ] = 1.
(Formula 1) −0.10 × [A] −0.004 × [B] + 0.10 × [C] + 0.09 × [D]
(2) Copolymer (I) 20 comprising an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), and an unsaturated dicarboxylic anhydride monomer unit (C) 80 parts by mass of polymer (II) composed of (meth) acrylic acid ester monomer unit (B) and 0 to 60 parts by mass of polymer composed of conjugated diene monomer unit (D). The graft copolymer (III) formed by grafting a copolymer comprising a monomer unit (A) and a (meth) acrylic acid ester monomer unit (B), comprising 5 to 60 parts by mass, according to (1) Resin composition.
(3) Copolymer (I) is aromatic vinyl monomer unit (A) 20 to 80% by mass, (meth) acrylic acid ester monomer unit (B) 5 to 70% by mass, unsaturated dicarboxylic acid The resin composition according to (2), which is a copolymer composed of 10 to 25% by mass of an anhydride monomer unit (C).
(4) The resin composition according to (2) or (3), wherein the copolymer (I) has a haze of 2 mm or less at an optical path length of 10 mm in a 12% by mass chloroform solution.
(5) The resin composition according to any one of (1) to (4), wherein the total light transmittance with a thickness of 2 mm measured based on ASTM D1003 is 88% or more.
(6) A film comprising the resin composition according to any one of (1) to (5).
(7) The film according to (6), which is for a polarizer protective film.
本発明により、複屈折が生じにくく、耐熱性、フィルム強度、熱安定性に優れた樹脂組成物、及びその樹脂組成物からなるフィルムを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a resin composition that hardly causes birefringence and has excellent heat resistance, film strength, and thermal stability, and a film made of the resin composition.
<用語の説明>
本願明細書において、「~」という記号は「以上」及び「以下」を意味し、例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
<Explanation of terms>
In this specification, the symbol “to” means “above” and “below”, for example, the description “A to B” means more than A and less than B.
以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明の樹脂組成物に用いることのできる芳香族ビニル単量体単位(A)としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレンなどの各スチレン系単量体に由来する単位が挙げられる。これらの中でも好ましくはスチレン単位である。これら芳香族ビニル単量体単位(A)は、1種類でもよく、2種類以上の併用であってもよい。 Examples of the aromatic vinyl monomer unit (A) that can be used in the resin composition of the present invention include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, and ethylstyrene. , Units derived from styrene monomers such as p-tert-butylstyrene, α-methylstyrene, α-methyl-p-methylstyrene, and the like. Of these, styrene units are preferred. These aromatic vinyl monomer units (A) may be one kind or a combination of two or more kinds.
本発明の樹脂組成物に用いることのできる(メタ)アクリル酸エステル単量体単位(B)としては、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレートなどの各メタクリル酸エステル単量体、およびメチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレートなどの各アクリル酸エステル単量体に由来する単位が挙げられる。これらの中でも好ましくはメチルメタクリレート単位である。これら(メタ)アクリル酸エステル単量体単位(B)は、1種類でもよく、2種類以上の併用であってもよい。 Examples of the (meth) acrylic acid ester monomer unit (B) that can be used in the resin composition of the present invention include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, Derived from methacrylic acid ester monomers such as bornyl methacrylate, and acrylate monomer such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate Units are listed. Among these, a methyl methacrylate unit is preferable. These (meth) acrylic acid ester monomer units (B) may be one kind or a combination of two or more kinds.
本発明の樹脂組成物に用いることのできる不飽和ジカルボン酸無水物単量体単位(C)としては、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物などの各無水物単量体に由来する単位が挙げられる。これらの中でも好ましくはマレイン酸無水物単位である。不飽和ジカルボン酸無水物単量体単位(C)は、1種でもよく、2種類以上の併用であってもよい。 Examples of unsaturated dicarboxylic acid anhydride monomer units (C) that can be used in the resin composition of the present invention include maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, and aconitic acid anhydride. Examples thereof include units derived from product monomers. Among these, maleic anhydride units are preferable. The unsaturated dicarboxylic acid anhydride monomer unit (C) may be one type or a combination of two or more types.
 本発明の樹脂組成物に用いることのできる共役ジエン単量体単位(D)としては、1,3-ブタジエン(ブタジエン)、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、2-メチルペンタジエンなどの共役二重結合を有する単量体に由来する単位が挙げられる。これらの中でも好ましくはブタジエン単位である。これら共役ジエン単量体単位(D)は1種類でもよく、2種類以上の併用であってもよい。 Examples of the conjugated diene monomer unit (D) that can be used in the resin composition of the present invention include 1,3-butadiene (butadiene), 2-methyl-1,3-butadiene (isoprene), and 2,3-dimethyl. Examples thereof include units derived from monomers having a conjugated double bond such as -1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 2-methylpentadiene. Of these, butadiene units are preferred. These conjugated diene monomer units (D) may be one kind or a combination of two or more kinds.
本発明の樹脂組成物は、芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、不飽和ジカルボン酸無水物単量体単位(C)、および共役ジエン単量体単位(D)以外の、その他のビニル単量体の単位を発明の効果を阻害しない範囲で樹脂組成物中に含んでもよく、好ましくは5質量%以下である。その他のビニル単量体の単位としては、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミドなどのN-アルキルマレイミド単量体、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-クロルフェニルマレイミドなどのN-アリールマレイミド単量体などの各単量体に由来する単位が挙げられる。芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、不飽和ジカルボン酸無水物単量体単位(C)、および共役ジエン単量体単位(D)以外の、樹脂組成物に含まれるその他のビニル単量体の単位は、2種類以上の併用であってもよい。 The resin composition of the present invention comprises an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), an unsaturated dicarboxylic acid anhydride monomer unit (C), and a conjugated diene. Other vinyl monomer units other than the monomer unit (D) may be included in the resin composition as long as the effects of the invention are not inhibited, and the amount is preferably 5% by mass or less. Other vinyl monomer units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N-ethylmaleimide, N N-alkylmaleimide monomers such as N-butylmaleimide and N-cyclohexylmaleimide; N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide and N-chlorophenylmaleimide; Examples are derived units. Other than aromatic vinyl monomer unit (A), (meth) acrylic acid ester monomer unit (B), unsaturated dicarboxylic acid anhydride monomer unit (C), and conjugated diene monomer unit (D) The other vinyl monomer unit contained in the resin composition may be a combination of two or more types.
本発明の樹脂組成物の構成単位は、芳香族ビニル単量体単位(A)17~31質量%、(メタ)アクリル酸エステル単量体単位(B)38~63質量%、不飽和ジカルボン酸無水物単量体単位(C)4~14質量%、共役ジエン単量体単位(D)4~25質量%であることが好ましく、より好ましくは芳香族ビニル単量体単位(A)18~25質量%、(メタ)アクリル酸エステル単量体単位(B)45~60質量%、不飽和ジカルボン酸無水物単量体単位(C)4~12質量%、共役ジエン単量体単位(D)10~20質量%である。 The constituent units of the resin composition of the present invention are aromatic vinyl monomer units (A) 17 to 31% by mass, (meth) acrylic acid ester monomer units (B) 38 to 63% by mass, unsaturated dicarboxylic acid. It is preferable that the anhydride monomer unit (C) is 4 to 14% by mass and the conjugated diene monomer unit (D) is 4 to 25% by mass, more preferably the aromatic vinyl monomer unit (A) 18 to 25% by mass, (meth) acrylic acid ester monomer unit (B) 45-60% by mass, unsaturated dicarboxylic acid anhydride monomer unit (C) 4-12% by mass, conjugated diene monomer unit (D ) 10 to 20% by mass.
樹脂組成物に用いられる芳香族ビニル単量体単位(A)が17質量%以上であれば、複屈折が生じにくく、透明性が良好な樹脂組成物が得られ、18質量%以上であれば、さらに複屈折が生じにくく、透明性が良好な樹脂組成物が得られるので好ましい。芳香族ビニル単量体単位(A)が31質量%以下であれば、複屈折が生じにくく、耐熱性が良好な樹脂組成物が得られ、25質量%以下であれば、さらに複屈折が生じにくく、耐熱性が良好な樹脂組成物が得られるので好ましい。 If the aromatic vinyl monomer unit (A) used in the resin composition is 17% by mass or more, birefringence hardly occurs and a resin composition with good transparency can be obtained, and if it is 18% by mass or more. Further, it is preferable because birefringence hardly occurs and a resin composition having good transparency can be obtained. If the aromatic vinyl monomer unit (A) is 31% by mass or less, a birefringence hardly occurs and a resin composition having good heat resistance is obtained, and if it is 25% by mass or less, birefringence further occurs. It is preferable because it is difficult to obtain a resin composition having good heat resistance.
樹脂組成物に用いられる(メタ)アクリル酸エステル単量体単位(B)が38質量%以上であれば、複屈折が生じにくく、耐熱性が良好な樹脂組成物が得られ、45質量%以上であれば、さらに複屈折が生じにくく、耐熱性が良好な樹脂組成物が得られるので好ましい。(メタ)アクリル酸エステル単量体単位(B)が63質量%以下であれば、複屈折が生じにくい樹脂組成物が得られ、60質量%以下であれば、さらに複屈折が生じにくい樹脂組成物が得られるので好ましい。 If the (meth) acrylic acid ester monomer unit (B) used in the resin composition is 38% by mass or more, birefringence hardly occurs and a resin composition having good heat resistance is obtained, and 45% by mass or more. If so, birefringence is less likely to occur, and a resin composition having good heat resistance is obtained, which is preferable. If the (meth) acrylic acid ester monomer unit (B) is 63% by mass or less, a resin composition in which birefringence is unlikely to be obtained is obtained. This is preferable because a product is obtained.
 樹脂組成物に用いられる不飽和ジカルボン酸無水物単量体単位(C)が4質量%以上あれば、耐熱性が良好な樹脂組成物が得られるので好ましい。不飽和ジカルボン酸無水物単量体単位(C)が14質量%以下であれば、複屈折が生じにくく、熱安定性が良好な樹脂組成物が得られ、12質量%以下であれば、さらに複屈折が生じにくく、熱安定性が良好な樹脂組成物が得られるので好ましい If the unsaturated dicarboxylic acid anhydride monomer unit (C) used in the resin composition is 4% by mass or more, a resin composition having good heat resistance can be obtained. If the unsaturated dicarboxylic acid anhydride monomer unit (C) is 14% by mass or less, birefringence hardly occurs and a resin composition having good thermal stability can be obtained. Birefringence is unlikely to occur, and a resin composition with good thermal stability is obtained, which is preferable.
 樹脂組成物に用いられる共役ジエン単量体単位(D)が4質量%以上であれば、複屈折が生じにくく、フィルム強度が良好な樹脂組成物が得られ、10質量%以上であれば、さらに複屈折が生じにくく、フィルム強度が良好な樹脂組成物が得られるので好ましい。共役ジエン単量単位(D)が25質量%以下であれば、複屈折が生じにくく、耐熱性が良好な樹脂組成物が得られ、20質量%以下であれば、さらに複屈折が生じにくく、耐熱性が良好な樹脂組成物が得られるので好ましい。 If the conjugated diene monomer unit (D) used in the resin composition is 4% by mass or more, birefringence hardly occurs and a resin composition having good film strength is obtained, and if it is 10% by mass or more, Furthermore, birefringence hardly occurs, and a resin composition having good film strength is obtained, which is preferable. If the conjugated diene monomer unit (D) is 25% by mass or less, birefringence hardly occurs and a resin composition having good heat resistance is obtained, and if it is 20% by mass or less, birefringence hardly occurs, This is preferable because a resin composition having good heat resistance can be obtained.
本発明の樹脂組成物は(式1)の値の絶対値が0.005以下であることが好ましい。但し、(式1)中の[A]、[B]、[C]、[D]は、順に、芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、不飽和ジカルボン酸無水物単量体単位(C)、共役ジエン単量体単位(D)の樹脂組成物中における質量比を表し、[A]+[B]+[C]+[D]=1とする。
(式1)  -0.10×[A]-0.004×[B]+0.10×[C]+0.09×[D]
The resin composition of the present invention preferably has an absolute value of (Equation 1) of 0.005 or less. However, [A], [B], [C], and [D] in (Formula 1) are, in order, an aromatic vinyl monomer unit (A) and a (meth) acrylic acid ester monomer unit (B ), An unsaturated dicarboxylic acid anhydride monomer unit (C), and a conjugated diene monomer unit (D) in a resin composition, [A] + [B] + [C] + [D ] = 1.
(Formula 1) −0.10 × [A] −0.004 × [B] + 0.10 × [C] + 0.09 × [D]
本発明の樹脂組成物は芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、不飽和ジカルボン酸無水物単量体単位(C)および共役ジエン単量体単位(D)の各成分で複屈折を互いに打ち消しあい、(式1)の値の絶対値が小さくなるほど複屈折が生じにくい樹脂組成物が得られるので好ましい。(式1)の値の絶対値が0.003以下であれば、より複屈折が生じにくい樹脂組成物が得られるので好ましく、(式1)の値の絶対値が0.001以下であれば、さらに複屈折が生じにくい樹脂組成物が得られるので好ましい。 The resin composition of the present invention comprises an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), an unsaturated dicarboxylic acid anhydride monomer unit (C), and a conjugated diene monomer. Since each component of the body unit (D) cancels birefringence with each other and the absolute value of the value of (Formula 1) decreases, a resin composition that is less likely to cause birefringence is obtained, which is preferable. If the absolute value of the value of (Expression 1) is 0.003 or less, a resin composition that is less likely to cause birefringence is obtained, and if the absolute value of (Expression 1) is 0.001 or less, it is preferable. Further, it is preferable because a resin composition in which birefringence hardly occurs is obtained.
本発明の樹脂組成物は、芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、不飽和ジカルボン酸無水物単量体単位(C)からなる共重合体(I)が20~80質量部、(メタ)アクリル酸エステル単量体単位(B)からなる重合体(II)が0~60質量部と、共役ジエン単量体単位(D)からなる重合体に芳香族ビニル単量体単位(A)と(メタ)アクリル酸エステル単量体単位(B)からなる共重合体がグラフトしてなるグラフト共重合体(III)が5~60質量部からなることが好ましく、より好ましくは共重合体(I)が20~40質量部、重合体(II)が25~50質量部、グラフト共重合体(III)が10~45質量部である。 The resin composition of the present invention is a copolymer comprising an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), and an unsaturated dicarboxylic acid anhydride monomer unit (C). The polymer (II) comprising 20 to 80 parts by mass of the compound (I) and 0 to 60 parts by mass of the polymer (II) comprising the (meth) acrylate monomer unit (B) comprises the conjugated diene monomer unit (D). 5 to 60 parts by mass of a graft copolymer (III) obtained by grafting a copolymer comprising an aromatic vinyl monomer unit (A) and a (meth) acrylate monomer unit (B) onto the polymer More preferably, the copolymer (I) is 20 to 40 parts by mass, the polymer (II) is 25 to 50 parts by mass, and the graft copolymer (III) is 10 to 45 parts by mass.
 樹脂組成物に用いられる共重合体(I)が20質量部以上であれば、耐熱性が良好な樹脂組成物が得られるので好ましい。共重合体(I)が80質量部以下であれば、熱安定性が良好な樹脂組成物が得られるので好ましく、40質量部以下であれば、さらに熱安定性が良好な樹脂組成物が得られるので好ましい。 If the copolymer (I) used in the resin composition is 20 parts by mass or more, a resin composition having good heat resistance is obtained, which is preferable. If the copolymer (I) is 80 parts by mass or less, a resin composition having good thermal stability is obtained, and if it is 40 parts by mass or less, a resin composition having even better thermal stability is obtained. This is preferable.
 樹脂組成物に用いられる重合体(II)が0質量部以上であれば、複屈折が生じにくく、熱安定性が良好な樹脂組成物が得られ、25質量部以上であれば、さらに複屈折が生じにくく、熱安定性が良好な樹脂組成物が得られるので好ましい。重合体(II)が60質量部以下であれば、複屈折が生じにくい樹脂組成物が得られ、50質量部以下であれば、さらに複屈折が生じにくい樹脂組成物が得られるので好ましい。 If the polymer (II) used in the resin composition is 0 part by mass or more, birefringence hardly occurs and a resin composition having good thermal stability can be obtained. Is preferable since a resin composition having good thermal stability is obtained. If the polymer (II) is 60 parts by mass or less, a resin composition in which birefringence hardly occurs is obtained, and if it is 50 parts by mass or less, a resin composition in which birefringence hardly occurs is obtained.
 樹脂組成物に用いられるグラフト共重合体(III)が5質量部以上であれば、複屈折が生じにくく、フィルム強度が良好な樹脂組成物が得られ、10質量部以上であれば、さらに複屈折が生じにくく、フィルム強度が良好な樹脂組成物が得られるので好ましい。グラフト共重合体(III)が60質量部以下であれば、複屈折が生じにくく、耐熱性および熱安定性が良好な樹脂組成物が得られ、45質量部以下であれば、さらに複屈折が生じにくく、耐熱性および熱安定性が良好な樹脂組成物が得られるので好ましい。 If the graft copolymer (III) used in the resin composition is 5 parts by mass or more, birefringence hardly occurs and a resin composition having good film strength is obtained. It is preferable because a resin composition that hardly causes refraction and has good film strength can be obtained. If the graft copolymer (III) is 60 parts by mass or less, a birefringence hardly occurs and a resin composition having good heat resistance and thermal stability is obtained. If the graft copolymer (III) is 45 parts by mass or less, birefringence is further increased. This is preferable because a resin composition that does not easily occur and has good heat resistance and thermal stability can be obtained.
本発明の樹脂組成物は共重合体(I)、重合体(II)、グラフト共重合体(III)の23℃におけるそれぞれのd線に対する屈折率をn1、n2、n3とし、共重合体(I)、重合体(II)、グラフト共重合体(III)のそれぞれの質量比をw1、w2、w3とすると、(式2)の値の絶対値が0.005以下であることが好ましい。
(式2) n1×w1/(w1+w2)+n2×w2/(w1+w2)-n3
(式2)の値の絶対値が0.005以下であれば透明性良好な樹脂組成物が得られるので好ましく、より好ましくは0.003以下、さらに好ましくは0.001以下である。共重合体(I)と重合体(II)は相溶系であるため、共重合体(I)と重合体(II)を混合したものは透明になり、共重合体(I)と重合体(II)を混合したものとグラフト共重合体(III)の屈折率差を小さくするとこで透明性を維持することができる。
In the resin composition of the present invention, the refractive index of each of the copolymer (I), the polymer (II), and the graft copolymer (III) with respect to each d-line at 23 ° C. is n1, n2, and n3. When the mass ratios of I), polymer (II), and graft copolymer (III) are w1, w2, and w3, the absolute value of the value of (Formula 2) is preferably 0.005 or less.
(Formula 2) n1 × w1 / (w1 + w2) + n2 × w2 / (w1 + w2) −n3
If the absolute value of the value of (Formula 2) is 0.005 or less, a resin composition with good transparency can be obtained, more preferably 0.003 or less, and still more preferably 0.001 or less. Since the copolymer (I) and the polymer (II) are compatible, the mixture of the copolymer (I) and the polymer (II) becomes transparent, and the copolymer (I) and the polymer ( Transparency can be maintained by reducing the difference in refractive index between the mixture of II) and the graft copolymer (III).
 共重合体(I)、重合体(II)、グラフト共重合体(III)の各成分の混合順序について、特に制限はないが、例えば全てを同時に混合する方法、二種の成分を予め混合しておいた後、他の一成分と混合する方法等が挙げられる。なお、こうした混合は従来公知の方法で実施可能である。 There is no particular limitation on the mixing order of each component of the copolymer (I), the polymer (II), and the graft copolymer (III). For example, a method in which all components are mixed simultaneously, two components are mixed in advance. After leaving, there may be mentioned a method of mixing with another component. Such mixing can be performed by a conventionally known method.
 全ての成分を同時に混合する方法としては、例えば、単軸または二軸の溶融押出機を用いて、共重合体(I)、重合体(II)、グラフト共重合体(III)の各成分を及び各種添加剤を添加して溶融混合することができる。他の一成分と混合する方法としては、例えば、共重合体(I)と重合体(II)を単軸または二軸の溶融押出機を用いて、あらかじめ混合しておいた後、再び単軸または二軸の溶融押出機を用いて、グラフト共重合体(III)とを溶融混合することができる。この場合も、各種添加剤を添加して溶融混合することができる。 As a method for mixing all the components at the same time, for example, each component of the copolymer (I), the polymer (II), and the graft copolymer (III) is mixed using a single or biaxial melt extruder. And various additives can be added and melt-mixed. As a method of mixing with one other component, for example, the copolymer (I) and the polymer (II) are mixed in advance using a uniaxial or biaxial melt extruder and then uniaxial again. Alternatively, the graft copolymer (III) can be melt-mixed using a biaxial melt extruder. Also in this case, various additives can be added and melt mixed.
共重合体(I)に用いることのできる芳香族ビニル単量体単位(A)としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレンなどの各スチレン系単量体に由来する単位が挙げられる。これらの中でも好ましくはスチレン単位である。これら芳香族ビニル単量体単位(A)は、1種類でもよく、2種類以上の併用であってもよい。 Examples of the aromatic vinyl monomer unit (A) that can be used in the copolymer (I) include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, and ethylstyrene. , Units derived from styrene monomers such as p-tert-butylstyrene, α-methylstyrene, α-methyl-p-methylstyrene, and the like. Of these, styrene units are preferred. These aromatic vinyl monomer units (A) may be one kind or a combination of two or more kinds.
共重合体(I)に用いることのできる(メタ)アクリル酸エステル単量体単位(B)としては、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレートなどの各メタクリル酸エステル単量体、およびメチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレートなどの各アクリル酸エステル単量体に由来する単位が挙げられる。これらの中でも好ましくはメチルメタクリレート単位である。これら(メタ)アクリル酸エステル単量体単位(B)は、1種類でもよく、2種類以上の併用であってもよい。 Examples of the (meth) acrylate monomer unit (B) that can be used for the copolymer (I) include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, Derived from methacrylic acid ester monomers such as bornyl methacrylate, and acrylate monomer such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate Units are listed. Among these, a methyl methacrylate unit is preferable. These (meth) acrylic acid ester monomer units (B) may be one kind or a combination of two or more kinds.
共重合体(I)に用いることのできる不飽和ジカルボン酸無水物単量体単位(C)としては、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物などの各無水物単量体に由来する単位が挙げられる。これらの中でも好ましくはマレイン酸無水物単位である。不飽和ジカルボン酸無水物単量体単位(C)は、1種でもよく、2種類以上の併用であってもよい。 Examples of unsaturated dicarboxylic acid anhydride monomer units (C) that can be used in the copolymer (I) include maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, aconitic acid anhydride and the like. Examples thereof include units derived from product monomers. Among these, maleic anhydride units are preferable. The unsaturated dicarboxylic acid anhydride monomer unit (C) may be one type or a combination of two or more types.
共重合体(I)は、芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、および不飽和ジカルボン酸無水物単量体単位(C)以外の、その他の共重合可能なビニル単量体の単位を共重合体中に発明の効果を阻害しない範囲で含んでもよく、好ましくは5質量%以下である。その他の共重合可能なビニル単量体の単位としては、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミドなどのN-アルキルマレイミド単量体、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-クロルフェニルマレイミドなどのN-アリールマレイミド単量体などの各単量体に由来する単位が挙げられる。その他の共重合可能なビニル単量体の単位は、2種類以上の併用であってもよい。 Copolymer (I) is an aromatic vinyl monomer unit (A), a (meth) acrylic acid ester monomer unit (B), and an unsaturated dicarboxylic anhydride monomer unit (C), Other copolymerizable vinyl monomer units may be included in the copolymer as long as the effects of the invention are not impaired, and the amount is preferably 5% by mass or less. Other copolymerizable vinyl monomer units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N- N-alkylmaleimide monomers such as ethylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide, N-chlorophenylmaleimide, etc. Examples include units derived from monomers. Another copolymerizable vinyl monomer unit may be used in combination of two or more.
共重合体(I)の構成単位は、芳香族ビニル単量体単位(A)20~80質量%、(メタ)アクリル酸エステル単量体単位(B)5~70質量%、不飽和ジカルボン酸無水物単量体単位(C)10~25質量%であり、好ましくは芳香族ビニル単量体単位(A)45~70質量%、(メタ)アクリル酸エステル単量体単位(B)7~40質量%、不飽和ジカルボン酸無水物単量体単位(C)10~23質量%である。なお、共重合体の構成単位とは所定の分析方法により測定された分析値であり、実際には構成単位には分布が存在しており(以下、この分布を組成分布とよぶ)、その組成分布の平均値を表したものである。 The constituent unit of the copolymer (I) is 20 to 80% by mass of the aromatic vinyl monomer unit (A), 5 to 70% by mass of the (meth) acrylate monomer unit (B), and unsaturated dicarboxylic acid. Anhydride monomer unit (C) is 10 to 25% by mass, preferably aromatic vinyl monomer unit (A) 45 to 70% by mass, (meth) acrylate monomer unit (B) 7 to 40% by mass and 10 to 23% by mass of unsaturated dicarboxylic acid anhydride monomer unit (C). The constituent unit of the copolymer is an analytical value measured by a predetermined analysis method. In fact, a distribution exists in the constituent unit (hereinafter, this distribution is referred to as a composition distribution). This shows the average value of the distribution.
 共重合体(I)に用いられる芳香族ビニル単量体単位(A)が20質量%以上であれば、熱安定性が向上し、樹脂組成物を成形加工した際には良好な外観を有する成形体が得られ、45質量%以上であれば、さらに熱安定性が向上し、樹脂組成物を成形加工した際には、さらに良好な外観を有する成形体が得られるので好ましい。芳香族ビニル単量体単位(A)が80質量%以下であれば、重合体(II)との相溶性が向上し、樹脂組成物の透明性が良好となり、70質量%以下であれば、さらに重合体(II)との相溶性が向上し、樹脂組成物の透明性が良好となるので好ましい。 When the aromatic vinyl monomer unit (A) used in the copolymer (I) is 20% by mass or more, the thermal stability is improved, and the resin composition has a good appearance when molded. If a molded body is obtained and the content is 45% by mass or more, the thermal stability is further improved, and when the resin composition is molded, a molded body having a better appearance can be obtained. If the aromatic vinyl monomer unit (A) is 80% by mass or less, the compatibility with the polymer (II) is improved, the transparency of the resin composition is improved, and if it is 70% by mass or less, Furthermore, the compatibility with the polymer (II) is improved, and the transparency of the resin composition is improved, which is preferable.
 共重合体(I)に用いられる(メタ)アクリル酸エステル単量体単位(B)が5質量%以上であれば、重合体(II)との相溶性が向上し、樹脂組成物の透明性が良好となり、7質量%以上であれば、さらに重合体(II)との相溶性が向上し、樹脂組成物の透明性がさらに良好となるので好ましい。(メタ)アクリル酸エステル単量体単位(B)が70質量%以下であれば、熱安定性が向上し、樹脂組成物を成形加工した際には、良好な外観を有する成形体が得られ、40質量%以下であれば、さらに熱安定性が向上し、樹脂組成物を成形加工した際には、さらに良好な外観を有する成形体が得られるので好ましい。 If the (meth) acrylate monomer unit (B) used in the copolymer (I) is 5% by mass or more, the compatibility with the polymer (II) is improved, and the transparency of the resin composition is improved. When the content is 7% by mass or more, the compatibility with the polymer (II) is further improved, and the transparency of the resin composition is further improved, which is preferable. When the (meth) acrylic acid ester monomer unit (B) is 70% by mass or less, the thermal stability is improved, and a molded article having a good appearance can be obtained when the resin composition is molded. If it is 40% by mass or less, the thermal stability is further improved, and when the resin composition is molded, a molded article having a better appearance can be obtained.
共重合体(I)に用いられる不飽和ジカルボン酸無水物単量体単位(C)が10質量%以上であれば、耐熱性が良好で、重合体(II)との相溶性が向上し、樹脂組成物の透明性が良好となるので好ましい。不飽和ジカルボン酸無水物単量体単位(C)が25質量%以下であれば、熱安定性が向上し、樹脂組成物を成形加工した際には、良好な外観を有する成形体が得られ、かつ重合体(II)との相溶性が向上し、樹脂組成物の透明性が良好となり、23質量%以下であれば、さらに熱安定性が向上し、樹脂組成物を成形加工した際には、良好な外観を有する成形体が得られ、かつ重合体(II)との相溶性が向上し、樹脂組成物の透明性が良好となるので好ましい。 If the unsaturated dicarboxylic acid anhydride monomer unit (C) used in the copolymer (I) is 10% by mass or more, the heat resistance is good and the compatibility with the polymer (II) is improved. Since the transparency of a resin composition becomes favorable, it is preferable. If the unsaturated dicarboxylic acid anhydride monomer unit (C) is 25% by mass or less, the thermal stability is improved, and a molded article having a good appearance can be obtained when the resin composition is molded. In addition, the compatibility with the polymer (II) is improved, the transparency of the resin composition is improved, and if it is 23% by mass or less, the thermal stability is further improved and the resin composition is molded. Is preferable because a molded article having a good appearance can be obtained, compatibility with the polymer (II) is improved, and transparency of the resin composition is improved.
JIS K-7136に基づき測定した共重合体(I)の12質量%クロロホルム溶液における光路長10mmの曇り度が2%以下であることが好ましい。曇り度が2%以下であれば共重合体(I)の組成分布の小さくなり、重合体(II)と非相溶な不飽和ジカルボン酸無水物単量体単位(C)の多い組成のものが、極めて少ないため、重合体(II)との相溶性を維持し、樹脂組成物の透明性が良好になるので好ましい。なお、曇り度は共重合体をクロロホルムに12質量%となるように調整した溶液を光路長10mm測定用の石英角セルに充填し、JIS K-7136に準拠し、ヘーズメーター(東洋精機社製ヘイズガードII)を用いて測定した測定値である。 The haze of an optical path length of 10 mm in a 12% by mass chloroform solution of copolymer (I) measured based on JIS K-7136 is preferably 2% or less. If the haze is 2% or less, the composition distribution of the copolymer (I) becomes small, and the composition has a lot of unsaturated dicarboxylic anhydride monomer units (C) incompatible with the polymer (II). However, since it is very small, compatibility with the polymer (II) is maintained, and the transparency of the resin composition is improved, which is preferable. In addition, the haze degree (made by Toyo Seiki Co., Ltd.) was filled with the solution which adjusted the copolymer so that it might become 12 mass% in chloroform in the quartz square cell for optical path length 10mm measurement according to JISK-7136. It is a measured value measured using haze guard II).
共重合体(I)の重合様式においては特に限定はなく、溶液重合、塊状重合等公知の方法で製造できるが、溶液重合がより好ましい。溶液重合で用いる溶剤は、副生成物が出来難く、悪影響が少ないという観点から非重合性であることが好ましい。溶剤の種類としては、特に限定されるものではないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1、4-ジオキサン等のエーテル類、トルエン、エチルベンゼン、キシレン、クロロベンゼン等の芳香族炭化水素などが挙げられるが、単量体や共重合体の溶解度、溶剤回収のし易さの観点から、メチルエチルケトン、メチルイソブチルケトンが好ましい。溶剤の添加量は、得られる共重合体量100質量部に対して、10~100質量部が好ましく、さらに好ましくは30~80質量部である。10質量部以上であれば、反応速度および重合液粘度を制御する上で好適であり、100質量部以下であれば、所望の重量平均分子量(Mw)を得る上で好適である。 The polymerization mode of the copolymer (I) is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but solution polymerization is more preferable. The solvent used in the solution polymerization is preferably non-polymerizable from the viewpoint that a by-product is difficult to produce and that there are few adverse effects. The type of the solvent is not particularly limited. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, ethers such as tetrahydrofuran, 1,4-dioxane, toluene, ethylbenzene, xylene, chlorobenzene Aromatic hydrocarbons, etc. are mentioned, but methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of the solubility of the monomer and copolymer and the ease of solvent recovery. The amount of the solvent added is preferably 10 to 100 parts by mass, and more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the copolymer to be obtained. If it is 10 parts by mass or more, it is suitable for controlling the reaction rate and the polymerization solution viscosity, and if it is 100 parts by mass or less, it is suitable for obtaining a desired weight average molecular weight (Mw).
重合プロセスは回分式重合法、半回分式重合法、連続重合法のいずれの方式であっても差し支えないが、所望の分子量範囲と透明性を得る上で回分式重合法が好適である。 The polymerization process may be any of a batch polymerization method, a semi-batch polymerization method, and a continuous polymerization method, but the batch polymerization method is suitable for obtaining a desired molecular weight range and transparency.
重合方法は特に限定されないが、簡潔プロセスによって生産性良く製造することが可能であるという観点から、好ましくはラジカル重合法である。重合開始剤としては特に限定されるものではないが、例えばジベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシアセテート、ジクミルパーオキサイド、エチル-3,3-ジ-(t-ブチルパーオキシ)ブチレート等の公知の有機過酸化物やアゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等の公知のアゾ化合物を用いることができる。これらの重合開始剤は2種以上を併用することも出来る。これらの中でも10時間半減期温度が、70~110℃である有機過酸化物を用いるのが好ましい。 The polymerization method is not particularly limited, but is preferably a radical polymerization method from the viewpoint that it can be produced with high productivity by a simple process. The polymerization initiator is not particularly limited. For example, dibenzoyl peroxide, t-butylperoxybenzoate, 1,1-bis (t-butylperoxy) -2-methylcyclohexane, t-butylperoxy Known organic compounds such as isopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyacetate, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate Known azo compounds such as peroxides, azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, and the like can be used. Two or more of these polymerization initiators can be used in combination. Of these, organic peroxides having a 10-hour half-life temperature of 70 to 110 ° C. are preferably used.
透明性良好な共重合体(I)を得るためには、組成分布が小さくなるようにコントロールしながら重合しなければならず、とりわけ重合体(II)に非相溶性な不飽和ジカルボン酸無水物単量体単位(C)の多い組成のものが極めて少なくなるように重合することが要求される。芳香族ビニル単量体と不飽和ジカルボン酸無水物単量体とが強い交互共重合性を有することから、芳香族ビニル単量体と(メタ)アクリル酸エステル単量体の重合速度に対応するように不飽和ジカルボン酸無水物単量体及び/または芳香族ビニル単量体を連続的に分添し、かつ分添流量も重合速度に合わせて適宜調整する方法が好適である。重合温度、重合時間、および重合開始剤添加量を適宜調整しながら重合速度をコントロールすると、より精密に共重合体の組成分布を小さく出来るので好適である。 In order to obtain a copolymer (I) with good transparency, it must be polymerized while controlling the composition distribution to be small, and in particular, an unsaturated dicarboxylic acid anhydride that is incompatible with the polymer (II). Polymerization is required so that the composition having a large amount of monomer units (C) is extremely small. Since the aromatic vinyl monomer and unsaturated dicarboxylic acid anhydride monomer have strong alternating copolymerization, it corresponds to the polymerization rate of the aromatic vinyl monomer and the (meth) acrylate monomer. Thus, a method in which an unsaturated dicarboxylic acid anhydride monomer and / or an aromatic vinyl monomer is continuously added, and the addition flow rate is also suitably adjusted in accordance with the polymerization rate. It is preferable to control the polymerization rate while appropriately adjusting the polymerization temperature, the polymerization time, and the addition amount of the polymerization initiator because the composition distribution of the copolymer can be reduced more precisely.
さらに、分子量を調節する方法については、重合温度、重合時間、および重合開始剤添加量の調整に加えて、溶剤添加量および連鎖移動剤添加量で調整することが出来る。連鎖移動剤としては、特に限定されるものではないが、例えば、n-ドデシルメルカプタン、t-ドデシルメルカプタンや2,4-ジフェニル-4-メチル-1-ペンテン等の公知の連鎖移動剤を用いることができる。 Further, the method for adjusting the molecular weight can be adjusted by the addition amount of the solvent and the addition amount of the chain transfer agent in addition to the adjustment of the polymerization temperature, the polymerization time, and the addition amount of the polymerization initiator. The chain transfer agent is not particularly limited. For example, a known chain transfer agent such as n-dodecyl mercaptan, t-dodecyl mercaptan or 2,4-diphenyl-4-methyl-1-pentene is used. Can do.
重合終了後、重合液には必要に応じて、ヒンダードフェノール系化合物、ラクトン系化合物、リン系化合物、イオウ系化合物などの耐熱安定剤、ヒンダードアミン系化合物、ベンゾトリアゾール系化合物等の耐光安定剤、滑剤や可塑剤、着色剤、帯電防止剤、鉱油等の添加剤を加えても構わない。その添加量は全単量体単位100質量部に対して0.2質量部未満であることが好ましい。これらの添加剤は単独で用いても、2種類以上を併用しても構わない。 After the polymerization is completed, the polymerization solution is optionally provided with a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound, Additives such as lubricants, plasticizers, colorants, antistatic agents and mineral oils may be added. The addition amount is preferably less than 0.2 parts by mass with respect to 100 parts by mass of all monomer units. These additives may be used alone or in combination of two or more.
重合液から共重合体(I)を回収する方法については、特に限定はなく、公知の脱揮技術を用いることが出来る。例えば、重合液を二軸脱揮押出機にギヤーポンプを用いて連続的にフィードし、重合溶剤や未反応モノマー等を脱揮処理する方法が挙げられる。なお、重合溶剤や未反応モノマー等を含む脱揮成分は、コンデンサー等を用いて凝縮させて回収し、凝縮液を蒸留塔にて精製することで、重合溶剤は再利用することが可能である。 The method for recovering the copolymer (I) from the polymerization solution is not particularly limited, and a known devolatilization technique can be used. For example, a method of continuously feeding the polymerization liquid to a twin-screw devolatilizing extruder using a gear pump and devolatilizing a polymerization solvent, an unreacted monomer and the like can be mentioned. The devolatilizing component including the polymerization solvent, unreacted monomer, etc. is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in a distillation tower. .
重合体(II)に用いることのできる(メタ)アクリル酸エステル単量体単位(B)としては、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレートなどの各メタクリル酸エステル単量体、およびメチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレートなどの各アクリル酸エステル単量体に由来する単位が挙げられる。これらの中でも好ましくはメチルメタクリレート単位である。これら(メタ)アクリル酸エステル単量体単位(B)は、1種類でもよく、2種類以上の併用であってもよい。 Examples of the (meth) acrylate monomer unit (B) that can be used for the polymer (II) include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, Units derived from methacrylic acid ester monomers such as nyl methacrylate and acrylic acid acrylate monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate Is mentioned. Among these, a methyl methacrylate unit is preferable. These (meth) acrylic acid ester monomer units (B) may be one kind or a combination of two or more kinds.
重合体(II)は、(メタ)アクリル酸エステル単量体単位(B)以外の、その他の共重合可能なビニル単量体の単位を共重合体中に発明の効果を阻害しない範囲で含んでもよく、好ましくは5質量%以下である。その他の共重合可能なビニル単量体の単位としては、スチレンなどの芳香族ビニル単量体、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミドなどのN-アルキルマレイミド単量体、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-クロルフェニルマレイミドなどのN-アリールマレイミド単量体などの各単量体に由来する単位が挙げられる。その他の共重合可能なビニル単量体の単位は、2種類以上の併用であってもよい。 The polymer (II) contains other copolymerizable vinyl monomer units other than the (meth) acrylic acid ester monomer unit (B) in the copolymer as long as the effects of the invention are not inhibited. However, it is preferably 5% by mass or less. Other copolymerizable vinyl monomer units include aromatic vinyl monomers such as styrene, vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, and vinyl carboxylic acid units such as acrylic acid and methacrylic acid. N-methylmaleimide, N-ethylmaleimide, N-butylmaleimide, N-alkylmaleimide monomers such as N-cyclohexylmaleimide, N-phenylmaleimide, N-methylphenylmaleimide, N-chlorophenylmaleimide, etc. Examples include units derived from monomers such as N-arylmaleimide monomers. Another copolymerizable vinyl monomer unit may be used in combination of two or more.
 重合体(II)の重合様式においては特に限定はなく、例えば、塊状重合、溶液重合、懸濁重合、塊状-懸濁重合、乳化重合等公知の方法で製造できるが、不純物が少なく、色相良好な重合体(II)が得られるため、塊状重合または溶液重合が好ましい。さらに、重合体(II)の重合プロセスは回分式重合、半回分式重合、連続重合のいずれの方式であっても差し支えないが、生産性の観点から、連続重合が好ましい。 The polymerization mode of the polymer (II) is not particularly limited. For example, it can be produced by a known method such as bulk polymerization, solution polymerization, suspension polymerization, bulk-suspension polymerization, emulsion polymerization, etc., but has few impurities and good hue. Bulk polymer or solution polymerization is preferable because a stable polymer (II) is obtained. Furthermore, the polymerization process of the polymer (II) may be any of batch polymerization, semi-batch polymerization, and continuous polymerization, but continuous polymerization is preferred from the viewpoint of productivity.
 重合体(II)の重合様式として、連続重合を採用する場合、反応器の構成は、完全混合型反応器(CSTR)とピストンフロー型反応器(PFR)がこの順に直列に連結されている構成が好ましい。なお、CSTR、PFRは目的に応じて各々1個または複数個としてこれらを連結することも可能であるが、CSTRの個数は好ましくは1~2個であり、特に1個であることがさらに好ましい。PFRの個数は好ましくは1~3個であり、特に1個であることがさらに好ましい。 When adopting continuous polymerization as the polymerization mode of the polymer (II), the reactor is composed of a fully mixed reactor (CSTR) and a piston flow reactor (PFR) connected in series in this order. Is preferred. The CSTR and PFR can be connected as one or more according to the purpose, but the number of CSTRs is preferably 1 to 2, and more preferably 1. . The number of PFRs is preferably 1 to 3, more preferably 1.
 重合体(II)の重合様式として、溶液重合を採用した場合、用いる溶剤については、特に制限はないが、入手容易性、溶解性などの観点から、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1,4ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン、エチルベンゼン、クロロベンゼン等の芳香族炭化水素、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2ピロリドン等の溶剤があり、その中でも重合体(II)の溶剤への溶解性の観点からトルエン、エチルベンゼンが好ましい。これらの溶剤の添加量についても、特に制限はないが、単量体化合物の総量100質量部に対して1~30質量部の範囲にあることが好ましく、5~25質量部の範囲にあることがさらに好ましい。 When solution polymerization is adopted as the polymerization mode of the polymer (II), the solvent to be used is not particularly limited, but from the viewpoint of availability, solubility, etc., for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone Ketones such as tetrahydrofuran, ethers such as 1,4 dioxane, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, chlorobenzene, N, N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, etc. There are solvents, and among them, toluene and ethylbenzene are preferable from the viewpoint of solubility of the polymer (II) in the solvent. The amount of these solvents to be added is not particularly limited, but is preferably in the range of 1 to 30 parts by mass with respect to 100 parts by mass of the total amount of monomer compounds, and is in the range of 5 to 25 parts by mass. Is more preferable.
 重合体(II)の重合方法については、特に制限はないが、簡潔なプロセスによって生産性よく製造することが可能であるという観点から、ラジカル重合が好ましく、任意のラジカル重合開始剤を使用できる。 The polymerization method of the polymer (II) is not particularly limited, but radical polymerization is preferred from the viewpoint that it can be produced with high productivity by a simple process, and any radical polymerization initiator can be used.
重合体(II)の重合に使用するラジカル重合開始剤については、特に制限はないが、例えば、アゾ化合物、有機過酸化物、無機過酸化物、過酸化水素などの公知の過酸化物を採用することができる。その中でも、反応制御の容易さと入手容易性の観点から、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等のアゾ化合物、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、エチル-3,3-ジ-(t-ブチルパーオキシ)ブチレート等の有機過酸化物を採用することが好ましい。 The radical polymerization initiator used for the polymerization of the polymer (II) is not particularly limited. For example, a known peroxide such as an azo compound, an organic peroxide, an inorganic peroxide, or hydrogen peroxide is used. can do. Among them, from the viewpoint of easy reaction control and availability, azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, benzoyl peroxide, t-butyl peroxybenzoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexanoate It is preferable to employ organic peroxides such as di-t-butyl peroxide, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate.
重合体(II)の重合には、ラジカル重合開始剤は、単独で用いてもよいが、2種以上を併用してもよい。重合の反応速度や重合率制御の観点からは、従来のスチレン系樹脂の製造において常用されているものが好ましく、具体的には10時間半減期温度が70~120℃であるアゾ化合物や有機過酸化物を用いるのが好ましい。 In polymerizing the polymer (II), the radical polymerization initiator may be used alone or in combination of two or more. From the viewpoint of polymerization reaction rate and polymerization rate control, those conventionally used in the production of conventional styrene resins are preferred, and specifically, azo compounds and organic solvents having a 10-hour half-life temperature of 70 to 120 ° C. It is preferable to use an oxide.
ラジカル重合開始剤の使用量については、特に制限はされないが、単量体化合物の総量100質量部に対して0.001~0.1質量部使用することが好ましく、特に0.002~0.03質量部使用することがさらに好ましい。 The amount of the radical polymerization initiator used is not particularly limited, but is preferably 0.001 to 0.1 parts by mass, and particularly 0.002 to 0.1 parts by mass based on 100 parts by mass of the total amount of monomer compounds. It is more preferable to use 03 parts by mass.
ラジカル重合開始剤の使用量が、単量体化合物の総量100質量部に対して0.001質量部または0.002質量部以上であれば、十分な重合速度が得られるため、良好な生産性を維持することが出来る。ラジカル重合開始剤の使用量が、単量体化合物の総量100質量部に対して0.1質量部または0.03質量部以下であれば、重合速度が抑制でき、反応制御が容易になるため、重合体(II)の分子量制御を容易とすることが出来る。 If the amount of the radical polymerization initiator used is 0.001 part by mass or 0.002 parts by mass or more with respect to 100 parts by mass of the total amount of the monomer compounds, a sufficient polymerization rate can be obtained, and thus good productivity. Can be maintained. If the amount of the radical polymerization initiator used is 0.1 parts by mass or 0.03 parts by mass or less with respect to 100 parts by mass of the total amount of monomer compounds, the polymerization rate can be suppressed and the reaction control becomes easy. The molecular weight of the polymer (II) can be easily controlled.
重合体(II)の重合には、任意の連鎖移動剤を使用しても良い。使用する連鎖移動剤に特に制限は無いが、入手容易性、分子量制御のし易さなどの観点から、具体的には、n-ドデシルメルカプタン、t-ドデシルメルカプタンや2,4-ジフェニル-4-メチル-1-ペンテン等の連鎖移動剤を用いることができる。なお、連鎖移動剤については、単独で用いてもよいが、二種以上を併用してもよい。 Any chain transfer agent may be used for the polymerization of the polymer (II). The chain transfer agent to be used is not particularly limited, but specific examples include n-dodecyl mercaptan, t-dodecyl mercaptan, and 2,4-diphenyl-4-yl from the viewpoint of easy availability and ease of molecular weight control. Chain transfer agents such as methyl-1-pentene can be used. In addition, about a chain transfer agent, you may use independently, but you may use 2 or more types together.
連鎖移動剤の使用量は、重合体(II)の目標分子量が得られる範囲であれば、特に制限は無いが、単量体化合物の総量100質量部に対して0.05~2.0質量部使用することが好ましく、特に単量体化合物の総量100質量部に対して0.2~0.8質量部使用することがさらに好ましい。連鎖移動剤の使用量が0.0__5質量部以上かつ2.0質量部以下であれば、(メタ)アクリル酸エステル系共重合体(B)の目標分子量を容易に得ることができる。 The amount of the chain transfer agent used is not particularly limited as long as the target molecular weight of the polymer (II) is obtained, but is 0.05 to 2.0 mass with respect to 100 mass parts of the total amount of monomer compounds. In particular, it is preferable to use 0.2 to 0.8 parts by mass with respect to 100 parts by mass of the total amount of monomer compounds. If the usage-amount of a chain transfer agent is 0.0-5 mass parts or more and 2.0 mass parts or less, the target molecular weight of a (meth) acrylic acid ester type copolymer (B) can be obtained easily.
重合体(II)の重合温度については、特に制限はないが、連続重合を採用する場合、CSTRでの反応温度は、110℃~160℃は好ましく、特に120℃~140℃の範囲にあることがさらに好ましい。また、PFRでの反応温度は、120℃~170℃が好ましく、特に130℃~150℃の範囲にあることがさらに好ましい。このようにすれば、反応制御が容易であり、かつ、組成が均一な重合体(II)を得ることができる。 The polymerization temperature of the polymer (II) is not particularly limited, but when continuous polymerization is employed, the reaction temperature in CSTR is preferably 110 ° C. to 160 ° C., and particularly within the range of 120 ° C. to 140 ° C. Is more preferable. Further, the reaction temperature in PFR is preferably 120 ° C. to 170 ° C., more preferably 130 ° C. to 150 ° C. In this way, it is possible to obtain a polymer (II) that is easy to control and has a uniform composition.
重合体(II)の重合に用いた溶剤や未反応の単量体などの揮発成分を取り除く方法については、特に限定はなく公知の方法を用いることが出来るが、中でも脱揮槽を用いる方法が好ましい。脱揮槽を用いる場合、溶融樹脂の温度は260℃以下に保たれることが好ましく、特に、240℃以下に保たれることがさらに好ましい。樹脂温度が260℃または240℃以下に抑えられれば重合体(II)の熱劣化による解重合を抑制する事ができ、色相に優れた重合体(II)が得られる。なお、樹脂温度の調整方法については、脱揮槽の温度調整により行うことが出来る。 The method for removing volatile components such as the solvent and unreacted monomer used for the polymerization of the polymer (II) is not particularly limited, and a known method can be used. Among them, a method using a devolatilization tank is used. preferable. When using a devolatilization tank, the temperature of the molten resin is preferably maintained at 260 ° C. or lower, and more preferably 240 ° C. or lower. If the resin temperature is suppressed to 260 ° C. or 240 ° C. or lower, depolymerization due to thermal degradation of the polymer (II) can be suppressed, and a polymer (II) having an excellent hue can be obtained. In addition, about the adjustment method of resin temperature, it can carry out by the temperature adjustment of a devolatilization tank.
重合体(II)の加工時の熱劣化を防ぎ、良好な色相を維持する目的で、任意のラジカル捕捉剤を用いてもよい。ラジカル捕捉剤は特に限定されるものではないが、フェノール系化合物、有機リン系化合物、有機硫黄系化合物、アミン系化合物等の酸化防止剤が挙げられる。これらのラジカル捕捉剤は単独で用いても良く、2種類以上を併用して用いても良い。これらのラジカル捕捉剤は、ベントタイプスクリュー式押出機でスチレン-マレイミド系共重合体中の揮発性成分を脱揮する工程で著しい熱履歴を受ける事から、ラジカル捕捉剤としての機能を維持するためには耐熱性や熱安定性を有する化合物が特に好ましい。例えば、1%加熱減量温度が300℃を超えるラジカル捕捉剤がさらにいっそう好ましい。ラジカル捕捉剤は、重合後の重合生成物に対して添加する事が好ましい。重合前あるいは重合中に添加すると、重合速度が低下する場合がある。 Any radical scavenger may be used for the purpose of preventing thermal deterioration during processing of the polymer (II) and maintaining a good hue. The radical scavenger is not particularly limited, and examples thereof include antioxidants such as phenol compounds, organic phosphorus compounds, organic sulfur compounds, and amine compounds. These radical scavengers may be used alone or in combination of two or more. These radical scavengers receive a significant thermal history in the process of devolatilizing the volatile components in the styrene-maleimide copolymer with a vent type screw extruder, so that the function as a radical scavenger is maintained. In particular, a compound having heat resistance and heat stability is preferred. For example, a radical scavenger having a 1% heat loss temperature exceeding 300 ° C. is even more preferable. The radical scavenger is preferably added to the polymerization product after polymerization. If added before or during polymerization, the polymerization rate may decrease.
 本発明の樹脂組成物に用いることのできる共役ジエン単量体単位(D)としては、1,3-ブタジエン(ブタジエン)、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、2-メチルペンタジエンなどの共役二重結合を有する単量体に由来する単位が挙げられる。これらの中でも好ましくはブタジエン単位である。これら共役ジエン単量体単位(D)は1種類でもよく、2種類以上の併用であってもよい。 Examples of the conjugated diene monomer unit (D) that can be used in the resin composition of the present invention include 1,3-butadiene (butadiene), 2-methyl-1,3-butadiene (isoprene), and 2,3-dimethyl. Examples thereof include units derived from monomers having a conjugated double bond such as -1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 2-methylpentadiene. Of these, butadiene units are preferred. These conjugated diene monomer units (D) may be one kind or a combination of two or more kinds.
グラフト共重合体(III)に用いることのできる芳香族ビニル単量体単位(A)としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレンなどの各スチレン系単量体に由来する単位が挙げられる。これらの中でも好ましくはスチレン単位である。これら芳香族ビニル単量体単位(A)は、1種類でもよく、2種類以上の併用であってもよい。 Aromatic vinyl monomer units (A) that can be used in the graft copolymer (III) include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethyl Examples thereof include units derived from styrene monomers such as styrene, p-tert-butylstyrene, α-methylstyrene, α-methyl-p-methylstyrene. Of these, styrene units are preferred. These aromatic vinyl monomer units (A) may be one kind or a combination of two or more kinds.
グラフト共重合体(III)に用いることのできる(メタ)アクリル酸エステル単量体単位(B)としては、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレートなどの各メタクリル酸エステル単量体、およびメチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレートなどの各アクリル酸エステル単量体に由来する単位が挙げられる。これらの中でも好ましくはメチルメタクリレート単位である。これら(メタ)アクリル酸エステル単量体単位(B)は、1種類でもよく、2種類以上の併用であってもよい。 Examples of the (meth) acrylate monomer unit (B) that can be used for the graft copolymer (III) include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, Derived from methacrylic acid ester monomers such as isobornyl methacrylate and acrylic acid acrylate monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate The unit to do is mentioned. Among these, a methyl methacrylate unit is preferable. These (meth) acrylic acid ester monomer units (B) may be one kind or a combination of two or more kinds.
 グラフト共重合体(III)は、共役ジエン単量体単位(D)、芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、以外の、その他の共重合可能なビニル単量体の単位を共重合体中に発明の効果を阻害しない範囲で含んでもよく、好ましくは5質量%以下である。その他の共重合可能なビニル単量体の単位としては、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミドなどのN-アルキルマレイミド単量体、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-クロルフェニルマレイミドなどのN-アリールマレイミド単量体などの各単量体に由来する単位が挙げられる。その他の共重合可能なビニル単量体の単位は、2種類以上の併用であってもよい。 The graft copolymer (III) is a copolymer other than the conjugated diene monomer unit (D), the aromatic vinyl monomer unit (A), and the (meth) acrylate monomer unit (B). Polymerizable vinyl monomer units may be included in the copolymer as long as the effects of the invention are not impaired, and the amount is preferably 5% by mass or less. Other copolymerizable vinyl monomer units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N- N-alkylmaleimide monomers such as ethylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide, N-chlorophenylmaleimide, etc. Examples include units derived from monomers. Another copolymerizable vinyl monomer unit may be used in combination of two or more.
グラフト共重合体(III)は、共役ジエン単量体単位(D)からなるジエン系ゴム状重合体に芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)からなる共重合体が結合した、枝分かれ構造を含む共重合体である。さらに、グラフト共重合体(III)には、グラフト重合時に副生する、ジエン系ゴム状重合体にグラフトしていない芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)からなる共重合体を含む。グラフト共重合体(III)は、ジエン系ゴム状重合体の存在下、芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)を公知の方法により重合することで得られる。 The graft copolymer (III) comprises a diene rubbery polymer composed of a conjugated diene monomer unit (D), an aromatic vinyl monomer unit (A), a (meth) acrylate monomer unit (B ) And a copolymer having a branched structure. Furthermore, the graft copolymer (III) includes, as a by-product during graft polymerization, an aromatic vinyl monomer unit (A) that is not grafted to the diene rubber-like polymer, and a (meth) acrylic acid ester monomer. The copolymer which consists of a unit (B) is included. Graft copolymer (III) polymerizes aromatic vinyl monomer unit (A) and (meth) acrylic acid ester monomer unit (B) by a known method in the presence of a diene rubber-like polymer. Can be obtained.
グラフト共重合体(III)に用いることのできるジエン系ゴム状重合体はポリブタジエン、ブタジエン‐スチレン共重合体、ブタジエン‐アクリロニトリル共重合体、ポリイソプレン、スチレン‐イソプレン共重合体等の共役ジエン系ゴム、およびこれらの水素添加物が挙げられ、これらは単独もしくは二種類以上を組み合わせて使用することができる。これらの中でも好ましくはポリブタジエンである。 Diene rubbery polymers that can be used for the graft copolymer (III) are conjugated diene rubbers such as polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, polyisoprene, and styrene-isoprene copolymer. And hydrogenated products thereof, which can be used alone or in combination of two or more. Among these, polybutadiene is preferable.
グラフト共重合体(III)の重合様式については、特に制限はないが、例えば塊状重合、溶液重合、懸濁重合、塊状-懸濁重合、乳化重合等などの公知の方法を採用することができるが、その中でも乳化重合法が好ましい。 The polymerization mode of the graft copolymer (III) is not particularly limited, but known methods such as bulk polymerization, solution polymerization, suspension polymerization, bulk-suspension polymerization, emulsion polymerization and the like can be employed. Of these, the emulsion polymerization method is preferred.
グラフト共重合体(III)の重合方法については、特に制限はないが、簡潔なプロセスによって生産性よく製造することが可能であるという観点から、ラジカル重合が好ましく、任意のラジカル重合開始剤を使用できる The polymerization method of the graft copolymer (III) is not particularly limited, but radical polymerization is preferred from the viewpoint that it can be produced with high productivity by a simple process, and any radical polymerization initiator is used. it can
グラフト共重合体(III)で使用するラジカル開始剤として、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル等のアゾ化合物や、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、エチル-3,3-ジ-(t-ブチルパーオキシ)ブチレート等の有機過酸化物あるいは、過酸化水素、過硫酸カリウム、過硫酸アンモニウム等の無機過酸化物を用いることができるが、その中でも、無機過酸化物、有機過酸化物を用いる事が好ましく、無機過酸化物、有機過酸化物とともに硫酸第一鉄などの還元剤を組み合わせたレドックス系開始剤を用いることがさらに好ましい。なお、グラフト共重合体(III)の重合には、ラジカル重合開始剤は単独で用いてもよいが、2種以上を併用しても差し支えない。 As radical initiators used in the graft copolymer (III), azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, t-butylperoxybenzoate, t-butylperoxy- Organic peroxides such as 2-ethylhexanoate, di-t-butyl peroxide, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate, hydrogen peroxide, persulfuric acid Inorganic peroxides such as potassium and ammonium persulfate can be used. Among them, it is preferable to use inorganic peroxides and organic peroxides. Ferrous sulfate and the like together with inorganic peroxides and organic peroxides. It is more preferable to use a redox initiator in combination with a reducing agent. In the polymerization of the graft copolymer (III), the radical polymerization initiator may be used alone or in combination of two or more.
ラジカル重合開始剤の使用量については、特に制限はないが、単量体化合物の総量100質量部に対して0.1~0.5質量部使用することが好ましく、特に0.5~3.5質量部使用することがさらに好ましい。 The amount of the radical polymerization initiator used is not particularly limited, but it is preferably 0.1 to 0.5 parts by weight, particularly 0.5 to 3 parts per 100 parts by weight of the total amount of monomer compounds. It is more preferable to use 5 parts by mass.
ラジカル重合開始剤の使用量が、ジエン系ゴム状重合体および、芳香族ビニル系単量体単位(A)と(メタ)アクリル酸エステル単量体単位(B)からなる単量体化合物の総量100質量部に対して0.1質量部以上であれば、十分な重合速度が得られるため、良好な生産性を維持することが出来る。ラジカル重合開始剤の使用量が、単量体化合物の総量100質量部に対して3.5質量部以下であれば、重合速度が抑制でき、反応制御が容易になる。 The amount of the radical polymerization initiator used is the total amount of the diene rubber-like polymer and the monomer compound composed of the aromatic vinyl monomer unit (A) and the (meth) acrylate monomer unit (B). If it is 0.1 mass part or more with respect to 100 mass parts, since sufficient polymerization rate is obtained, favorable productivity can be maintained. When the amount of the radical polymerization initiator used is 3.5 parts by mass or less with respect to 100 parts by mass of the total amount of monomer compounds, the polymerization rate can be suppressed and the reaction control becomes easy.
グラフト共重合体(III)の重合には、任意の連鎖移動剤を使用しても良い。使用する連鎖移動剤に特に制限は無いが、入手容易性、分子量制御のし易さなどの観点から、具体的には、n-ドデシルメルカプタン、t-ドデシルメルカプタンや2,4-ジフェニル-4-メチル-1-ペンテン等の連鎖移動剤を用いることができる。連鎖移動剤は単独で用いてもよいが、2種以上を併用してもよい。 An arbitrary chain transfer agent may be used for the polymerization of the graft copolymer (III). The chain transfer agent to be used is not particularly limited, but specific examples include n-dodecyl mercaptan, t-dodecyl mercaptan, and 2,4-diphenyl-4-yl from the viewpoint of easy availability and ease of molecular weight control. Chain transfer agents such as methyl-1-pentene can be used. The chain transfer agent may be used alone or in combination of two or more.
グラフト共重合体(III)の重合温度については、特に制限はないが、乳化重合を採用する場合の反応温度は、重合反応速度を高め、良好な生産性を維持する観点から、50℃以上であることが好ましく、55℃以上であることが特に好ましい。また、重合缶内の凝固物或いは付着物の発生量を少なくし、良好な生産性を維持する観点から、98℃以下である事が好ましく、90℃以下であることが特に好ましい。 The polymerization temperature of the graft copolymer (III) is not particularly limited, but the reaction temperature when employing emulsion polymerization is 50 ° C. or higher from the viewpoint of increasing the polymerization reaction rate and maintaining good productivity. It is preferable that the temperature is 55 ° C. or higher. Further, from the viewpoint of reducing the amount of coagulum or deposits generated in the polymerization can and maintaining good productivity, it is preferably 98 ° C. or less, and particularly preferably 90 ° C. or less.
樹脂組成物には本発明の効果を阻害しない範囲で安定剤や可塑剤、滑剤、酸化防止剤、紫外線吸収剤、光安定剤、着色剤などを配合してもよい。 A stabilizer, a plasticizer, a lubricant, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, and the like may be blended in the resin composition as long as the effects of the present invention are not impaired.
本発明の樹脂組成物は、ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上であり、好ましくは89%以上であり、さらに好ましくは90%以上である。2mm厚みの全光線透過率が88%以上であれば成形後も優れた透明性を有する。なお、全光線透過率は射出成形機(東芝機械社製IS-50EPN)を用いて、シリンダー温度230℃、金型温度40℃の成形条件で成形された縦90mm、横55mm、厚み2mmの鏡面プレートを、ASTM D1003に準拠し、ヘーズメーター(日本電色工業社製NDH-1001DP型)を用いて測定した測定値である。 The resin composition of the present invention has a 2 mm-thick total light transmittance measured based on ASTM D1003 of 88% or more, preferably 89% or more, and more preferably 90% or more. If the total light transmittance of 2 mm thickness is 88% or more, it has excellent transparency even after molding. The total light transmittance is a mirror surface of 90 mm in length, 55 mm in width, and 2 mm in thickness formed using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.) under molding conditions of a cylinder temperature of 230 ° C. and a mold temperature of 40 ° C. It is a measured value measured on a plate using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with ASTM D1003.
 本発明の樹脂組成物を偏光子保護フィルムとして用いる場合は(式3)により算出される面内位相差(Re)が100μm換算で30nm以下であることが好ましく、より好ましくは20nm以下、さらに好ましくは10nm以下であり、(式4)により算出される厚み位相差(Rth)が100μm換算で20nm以下であることが好ましく、より好ましくは10nm以下、さらに好ましくは5nm以下である。面内位相差(Re)が30nm以下、厚み位相差(Rth)が20nm以下であれば、フィルムを液晶表示装置の偏光板に用いた場合、液晶表示装置のコントラスト低下などの問題が発生しないため好適である。
  (式3) Re=(nx-ny)×d
  (式4) Rth={(nx+ny)÷2-nz}×d
 なお、上記式中において、nx、ny、およびnzは、それぞれ面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸としたときのそれぞれの軸方向の屈折率であり、dはフィルム厚さである。
When the resin composition of the present invention is used as a polarizer protective film, the in-plane retardation (Re) calculated by (Equation 3) is preferably 30 nm or less, more preferably 20 nm or less, even more preferably 100 μm. Is 10 nm or less, and the thickness retardation (Rth) calculated by (Equation 4) is preferably 20 nm or less in terms of 100 μm, more preferably 10 nm or less, and even more preferably 5 nm or less. If the in-plane retardation (Re) is 30 nm or less and the thickness retardation (Rth) is 20 nm or less, problems such as a decrease in contrast of the liquid crystal display device do not occur when the film is used as a polarizing plate of the liquid crystal display device. Is preferred.
(Expression 3) Re = (nx−ny) × d
(Expression 4) Rth = {(nx + ny) ÷ 2-nz} × d
In the above formula, nx, ny, and nz are when the direction in which the in-plane refractive index is maximized is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis. Is the refractive index in the axial direction, and d is the film thickness.
 フィルムの製造方法に特に制限はなく、溶融押出フィルム成形法や溶液流涎成形法などの公知の成形加工法を用いることが出来る。複屈折の小さなフィルムを得る一例として、弾性変形可能なフレキシブルロールを使用する方法が挙げられる。また、未延伸フィルムを用いることも出来るが、フィルム強度を高めるためにフィルムを延伸した延伸フィルムを用いることも出来る。フィルムの延伸方法に特に制限はなく、一軸延伸としては、例えば、ロール延伸法、テンター延伸法、自由幅一軸延伸法、二軸延伸としては、例えば、ロール延伸とテンター延伸の組み合わせによる逐次二軸延伸法、チューブラー延伸による二軸延伸法により延伸フィルムを得ることができる。 The film production method is not particularly limited, and a known molding method such as a melt extrusion film molding method or a solution fluent molding method can be used. As an example of obtaining a film having a small birefringence, there is a method using a flexible roll capable of elastic deformation. Moreover, although an unstretched film can also be used, the stretched film which extended | stretched the film in order to raise film strength can also be used. The film stretching method is not particularly limited. Examples of the uniaxial stretching include a roll stretching method, a tenter stretching method, a free-width uniaxial stretching method, and a biaxial stretching. A stretched film can be obtained by a stretching method or a biaxial stretching method by tubular stretching.
 本発明の樹脂組成物の光弾性係数の絶対値は5.0×10-12Pa-1以下であることが好ましく、より好ましくは3.0×10-12Pa-1以下、さらに好ましくは1.0×10-12Pa-1である。光弾性係数が十分に小さいと、外力による複屈折変化が小さくなり、また、成形時の残存応力による複屈折を生じにくいため、成形体内での複屈折分布が小さくなるため、液晶表示装置の偏光板に用いた場合、複屈折ムラが発生したり、表示画面周辺部のコントラストが低下したり、光漏れが発生したりすることがないため好ましい。 The absolute value of the photoelastic coefficient of the resin composition of the present invention is preferably 5.0 × 10 −12 Pa −1 or less, more preferably 3.0 × 10 −12 Pa −1 or less, and further preferably 1 0.0 × 10 −12 Pa −1 . If the photoelastic coefficient is sufficiently small, the change in birefringence due to external force is small, and birefringence due to residual stress during molding is less likely to occur. When used for a plate, it is preferable because uneven birefringence, contrast at the periphery of the display screen, and light leakage do not occur.
光弾性係数は、フィルムに引張応力をかけた状態で、位相差測定装置を用いて、フィルムの面内位相差(Re)を測定することによって求めることができる。荷重fが加わった状態での面内位相差(Re)をRe(f)、試験片幅をwとすると、光弾性係数Cは
C=dRe(f)/df×w
となるので、試験片に加えた荷重に対する面内位相差(Re)の値の傾きを求めることで算出できる。なお、本発明では、位相差測定装置は王子計測社製KOBRA-WRを使用し、応力は、イマダ社製、デジタルフォースゲージZ2S-DPU-50Nにて加えた。
The photoelastic coefficient can be obtained by measuring the in-plane retardation (Re) of the film using a phase difference measuring device in a state where tensile stress is applied to the film. When the in-plane phase difference (Re) with the load f applied is Re (f) and the specimen width is w, the photoelastic coefficient C is C = dRe (f) / df × w
Therefore, it can be calculated by obtaining the slope of the in-plane phase difference (Re) value with respect to the load applied to the test piece. In the present invention, KOBRA-WR manufactured by Oji Scientific Co., Ltd. was used as the phase difference measuring apparatus, and stress was applied with a digital force gauge Z2S-DPU-50N manufactured by Imada.
 本発明の樹脂組成物の光弾性係数の調節方法については特に制限はないが、組成比により調節でき、単量体の種類によって、樹脂組成物の光弾性係数として正の寄与をするものと負の寄与をするものとがあるので、これらの組成を適宜調節することで、光弾性係数を相殺してその絶対値を小さくすることができる。例えば、光弾性係数に正の寄与をするスチレン、ブタジエンと、負の寄与をするメチルメタクリレート、無水マレイン酸とを用いて光弾性係数を相殺してその絶対値を小さくすることができる。 The method for adjusting the photoelastic coefficient of the resin composition of the present invention is not particularly limited, but can be adjusted by the composition ratio. Depending on the type of monomer, the photoelastic coefficient of the resin composition can be positively or negatively contributed. Therefore, by adjusting these compositions as appropriate, the photoelastic coefficient can be offset and the absolute value thereof can be reduced. For example, styrene and butadiene that make a positive contribution to the photoelastic coefficient, and methyl methacrylate and maleic anhydride that make a negative contribution can be used to offset the photoelastic coefficient and reduce its absolute value.
(イ)共重合体(I)の製造
<I-1の製造例>
マレイン酸無水物が25質量%濃度となるようにメチルイソブチルケトンに溶解させた20%マレイン酸無水物溶液と、t-ブチルパーオキシ-2-エチルヘキサノエートが2質量%となるようにメチルイソブチルケトンに希釈した2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを事前に調製し、重合に使用した。
撹拌機を備えた50リットルのオートクレーブ中に、25%マレイン酸無水物溶液1.76kg、スチレン11.8kg、メチルメタクレリレート3.8kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて90℃まで昇温した。昇温後90℃を保持しながら、25%マレイン酸無水物溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。25%マレイン酸無水物溶液は、分添開始から4時間目までが1.98kg/時、4時間目から7時間目までが1.58kg/時、7時間目から10時間目までが0.79kg/時、10時間目から13時間目までが0.26kg/時の分添速度となるように段階的に分添速度を変え、合計で15.81kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、分添開始から7時間目までが0.12kg/時、7時間目から13時間目までが0.19kg/時の分添速度となるように段階的に分添速度を変え、合計で1.98kg添加した。重合温度は、分添開始から7時間目までは90℃を保持し、その後4℃/時の昇温速度で6時間かけて114℃まで昇温し、さらに114℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-1)を得た。得られた共重合体(I-1)をC-13NMR法により組成分析を行った。SYSTEM-21 Shodex(昭和電工社製)にてPL gel MIXED-Bを3本直列したカラム、示差屈折率の検出器を用いて、溶媒にテトラヒドロフランを使用し、標準ポリスチレン(PS)(PL社製)にて検量線を作製し、温度40℃、濃度2質量%の条件で重量平均分子量(Mw)を測定した。得られた共重合体(I-1)をクロロホルムに溶解して12質量%クロロホルム溶液を作成し、光路長10mm測定用の石英角セルに充填した後、JIS K-7136に準拠して、ヘーズメーター(東洋精機社製ヘイズガードII)を用いて12質量%クロロホルム溶液における光路長10mmの曇り度を測定した。射出成形機(東芝機械社製IS-50EPN)を用いて、シリンダー温度230℃、金型温度40℃の成形条件で縦90mm、横55mm、厚み2mmの鏡面プレートを射出成形し、ASTM D1003に準拠し、ヘーズメーター(日本電色工業社製NDH-1001DP型)を用いて2mm厚みの全光線透過率を測定した。プレス成形にて厚み2mmの成形体を作製し、アタゴ社製アッベ式屈折率計(DR-M2)を用いて屈折率を測定した。共重合体(I-1)の組成分析結果、分子量測定結果、2mm厚み鏡面プレートの全光線透過率透過率測定結果、および屈折率測定結果を表1に示す。
(A) Production of copolymer (I) <Production example of I-1>
20% maleic anhydride solution dissolved in methyl isobutyl ketone so that the maleic anhydride has a concentration of 25% by mass and methyl so that t-butylperoxy-2-ethylhexanoate becomes 2% by mass. A 2% t-butyl peroxy-2-ethylhexanoate solution diluted in isobutyl ketone was prepared in advance and used for the polymerization.
A 50-liter autoclave equipped with a stirrer was charged with 1.76 kg of a 25% maleic anhydride solution, 11.8 kg of styrene, 3.8 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase portion was filled with nitrogen gas. The temperature was raised to 90 ° C. over 40 minutes with stirring. While maintaining the temperature at 90 ° C. after the temperature rise, a 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added. The 25% maleic anhydride solution was 1.98 kg / hour from the start of the addition until the 4th hour, 1.58 kg / hour from the 4th hour to the 7th hour, and 0. 0 from the 7th hour to the 10th hour. The addition rate was changed stepwise so that the addition rate was 0.26 kg / hour from 79 hours / hour to 10 hours to 13 hours, and a total of 15.81 kg was added. The 2% t-butylperoxy-2-ethylhexanoate solution was dispensed at a rate of 0.12 kg / hour from the start of the addition until the 7th hour and 0.19 kg / hour from the 7th to the 13th hour. The addition speed was changed stepwise so that 1.98 kg in total was added. The polymerization temperature is maintained at 90 ° C. until 7 hours from the start of the addition, and then heated up to 114 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 114 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-1) was obtained. The obtained copolymer (I-1) was subjected to composition analysis by C-13 NMR method. Three columns of PL gel MIXED-B in SYSTEM-21 Shodex (manufactured by Showa Denko KK), a differential refractive index detector, tetrahydrofuran as a solvent, standard polystyrene (PS) (manufactured by PL) The calibration curve was prepared and the weight average molecular weight (Mw) was measured under the conditions of a temperature of 40 ° C. and a concentration of 2% by mass. The obtained copolymer (I-1) was dissolved in chloroform to prepare a 12% by mass chloroform solution, filled in a quartz square cell for measuring an optical path length of 10 mm, and then subjected to haze according to JIS K-7136. The haze of an optical path length of 10 mm in a 12% by mass chloroform solution was measured using a meter (Hazeguard II manufactured by Toyo Seiki Co., Ltd.). Using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.), a mirror plate with a length of 90 mm, a width of 55 mm, and a thickness of 2 mm is injection-molded under the molding conditions of a cylinder temperature of 230 ° C and a mold temperature of 40 ° C. Then, the total light transmittance of 2 mm thickness was measured using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.). A molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd. Table 1 shows the composition analysis result, the molecular weight measurement result, the total light transmittance transmittance measurement result, and the refractive index measurement result of the 2 mm-thick specular plate of the copolymer (I-1).
<I-2の製造例>
25%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(I-1)の製造例と同様に調整し、重合に使用した。
攪拌機を備えた50リットルのオートクレーブ中に、25%マレイン酸無水物溶液1.76kg、スチレン14kg、メチルメタクリレート1.6kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて96℃まで昇温した。昇温後96℃を保持しながら、25%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。25%マレイン酸無水物溶液は、分添開始4時間目までが1.98kg/時、4時間目から7時間目までが1.58kg/時、7時間目から10時間目までが0.79kg/時、10時間目から13時間目までが0.26kg/時の分添速度となるように段階的に分添速度を変え、合計で15.81kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.18kg/時、7時間目から13時間目までが0.29kg/時の分添速度となるように段階的に分添速度を変え、合計で3.0kg添加した。重合温度は、分添開始から7時間目までは96℃を保持し、その後4℃/時の昇温速度で6時間かけて120℃まで昇温し、さらに120℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-2)を得た。得られた共重合体(I-2)について、(I-1)と同様に組成分析、分子量、12質量%クロロホルム溶液における曇り度測定結果、2mm厚み鏡面プレートの全光線透過率、および屈折率測定結果を測定した。測定結果を表1に示す。
<Example of production of I-2>
A 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as in the preparation example of (I-1) and used for polymerization.
A 50 liter autoclave equipped with a stirrer was charged with 1.76 kg of a 25% maleic anhydride solution, 14 kg of styrene, 1.6 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. The temperature was raised to 96 ° C. over 40 minutes with stirring. While maintaining the temperature at 96 ° C. after the temperature rise, a 25% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added. The 25% maleic anhydride solution is 1.98 kg / hour from the 4th hour to the start of the addition, 1.58 kg / hour from the 4th to the 7th hour, and 0.79 kg from the 7th to the 10th hour. / Hour, the addition speed was changed stepwise so that the addition speed was 0.26 kg / hour from the 10th hour to the 13th hour, and a total of 15.81 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution has a rate of addition of 0.18 kg / hour from the start of the addition until the 7th hour and 0.29 kg / hour from the 7th to the 13th hour. Then, the addition speed was changed stepwise so that a total of 3.0 kg was added. The polymerization temperature is maintained at 96 ° C. until 7 hours from the start of the addition, and then heated up to 120 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 120 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-2) was obtained. For the obtained copolymer (I-2), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm thick mirror plate, and refractive index as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
<I-3の製造例>
マレイン酸無水物が10質量%濃度となるようにメチルイソブチルケトンに溶解させた10%マレイン酸無水物溶液を事前に調製し、重合に使用した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(I-1)の製造例と同様に調整し、重合に使用した。
攪拌機を備えた50リットルのオートクレーブ中に、10%マレイン酸無水物溶液2.4kg、スチレン9.6kg、メチルメタクリレート8.0kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、10%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。10%マレイン酸無水物溶液は、分添開始4時間目までが2.43kg/時、4時間目から7時間目までが2.31kg/時、7時間目から10時間目までが1.3kg/時、10時間目から13時間目までが0.36kg/時の分添速度となるように段階的に分添速度を変え、合計で21.63kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.09kg/時、7時間目から13時間目までが0.15kg/時の分添速度となるように段階的に分添速度を変え、合計で1.53kg添加した。重合温度は、分添開始から7時間目までは88℃を保持し、その後5℃/時の昇温速度で6時間かけて118℃まで昇温し、さらに118℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-3)を得た。得られた共重合体(I-3)について、(I-1)と同様に組成分析、分子量、12質量%クロロホルム溶液における曇り度測定結果、2mm厚み鏡面プレートの全光線透過率、および屈折率測定結果を測定した。測定結果を表1に示す。
<Example of production of I-3>
A 10% maleic anhydride solution dissolved in methyl isobutyl ketone so that the concentration of maleic anhydride was 10% by mass was prepared in advance and used for polymerization. A 2% t-butylperoxy-2-ethylhexanonate solution was prepared in the same manner as in the preparation example of (I-1) and used for polymerization.
A 50-liter autoclave equipped with a stirrer was charged with 2.4 kg of a 10% maleic anhydride solution, 9.6 kg of styrene, 8.0 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, it heated up to 88 degreeC over 40 minutes, stirring. While maintaining the temperature at 88 ° C. after the temperature rise, a 10% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were successively added. The 10% maleic anhydride solution was 2.43 kg / hr from the 4th hour to the start of the addition, 2.31 kg / hr from the 4th to the 7th hour, and 1.3 kg from the 7th to the 10th hour. The addition rate was changed stepwise so that the addition rate was 0.36 kg / hour from 10 hours to 13 hours / hour, and a total of 21.63 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.09 kg / hr from the start of the addition to the seventh hour and 0.15 kg / hour from the seventh to the thirteenth hour. The addition speed was changed stepwise so that 1.53 kg was added in total. The polymerization temperature is maintained at 88 ° C. until 7 hours from the start of the addition, and then heated up to 118 ° C. over 6 hours at a temperature increase rate of 5 ° C./hour, and further maintained at 118 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-3) was obtained. For the obtained copolymer (I-3), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
<I-4の製造例>
25%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(I-1)の製造例と同様に調整し、重合に使用した。
攪拌機を備えた50リットルのオートクレーブ中に、25%マレイン酸無水物溶液1.92kg、スチレン2.0kg、メチルメタクリレート8.2kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、スチレンと、25%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。スチレンは、分添開始から11時間目まで0.45kg/時の分添速度で分添し、合計で4.95kg添加した。25%マレイン酸無水物溶液は、分添開始4時間目までが2.59kg/時、4時間目から7時間目までが1.73kg/時、7時間目から10時間目までが0.4kg/時、10時間目から13時間目までが0.17kg/時の分添速度となるように段階的に分添速度を変え、合計で17.26kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.06kg/時、7時間目から13時間目までが0.1kg/時の分添速度となるように段階的に分添速度を変え、合計で1.02kg添加した。重合温度は、分添開始から7時間目までは88℃を保持し、その後5℃/時の昇温速度で6時間かけて118℃まで昇温し、さらに118℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-4)を得た。得られた共重合体(I-4)について、(I-1)と同様に組成分析、分子量、12質量%クロロホルム溶液における曇り度測定結果、2mm厚み鏡面プレートの全光線透過率、および屈折率測定結果を測定した。測定結果を表1に示す。
<Example of production of I-4>
A 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as in the preparation example of (I-1) and used for polymerization.
A 50-liter autoclave equipped with a stirrer was charged with 1.92 kg of a 25% maleic anhydride solution, 2.0 kg of styrene, 8.2 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, it heated up to 88 degreeC over 40 minutes, stirring. Styrene, 25% maleic acid-free aqueous solution and 2% t-butylperoxy-2-ethylhexanoate solution were successively added while maintaining 88 ° C. after the temperature rise. Styrene was added at a rate of 0.45 kg / hour from the start of the addition until 11 hours, and a total of 4.95 kg was added. The 25% maleic anhydride solution is 2.59 kg / hr from the 4th hour to the start of the addition, 1.73 kg / hr from the 4th to the 7th hour, and 0.4 kg from the 7th to the 10th hour. / Hour, the addition speed was changed stepwise so that the addition speed was 0.17 kg / hour from the 10th hour to the 13th hour, and a total of 17.26 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.06 kg / hour from the start of the addition to the 7th hour and 0.1 kg / hour from the 7th to the 13th hour. The addition speed was changed stepwise so that a total of 1.02 kg was added. The polymerization temperature is maintained at 88 ° C. until 7 hours from the start of the addition, and then heated up to 118 ° C. over 6 hours at a temperature increase rate of 5 ° C./hour, and further maintained at 118 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-4) was obtained. With respect to the obtained copolymer (I-4), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index in the same manner as (I-1) The measurement result was measured. The measurement results are shown in Table 1.
<I-5の製造例>
マレイン酸無水物が20質量%濃度となるようにメチルイソブチルケトンに溶解させた20%マレイン酸無水物溶液を事前に調製し、重合に使用した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(I-1)の製造例と同様に調整し、重合に使用した。
攪拌機を備えた50リットルのオートクレーブ中に、20%マレイン酸無水物溶液1.7kg、スチレン15.6kg、メチルメタクリレート1.0kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて96℃まで昇温した。昇温後96℃を保持しながら、20%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。20%マレイン酸無水物溶液は、分添開始4時間目までが1.91kg/時、4時間目から7時間目までが1.53kg/時、7時間目から10時間目までが0.77kg/時、10時間目から13時間目までが0.26kg/時の分添速度となるように段階的に分添速度を変え、合計で15.32kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.18kg/時、7時間目から13時間目までが0.29kg/時の分添速度となるように段階的に分添速度を変え、合計で3.0kg添加した。重合温度は、分添開始から7時間目までは96℃を保持し、その後4℃/時の昇温速度で6時間かけて120℃まで昇温し、さらに120℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-5)を得た。得られた共重合体(I-5)について、(I-1)と同様に組成分析、分子量、12質量%クロロホルム溶液における曇り度測定結果、2mm厚み鏡面プレートの全光線透過率、および屈折率測定結果を測定した。測定結果を表1に示す。
<Production example of I-5>
A 20% maleic anhydride solution dissolved in methyl isobutyl ketone so that the maleic anhydride concentration was 20% by mass was prepared in advance and used for polymerization. A 2% t-butylperoxy-2-ethylhexanonate solution was prepared in the same manner as in the preparation example of (I-1) and used for polymerization.
A 50 liter autoclave equipped with a stirrer was charged with 1.7 kg of a 20% maleic anhydride solution, 15.6 kg of styrene, 1.0 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, it heated up to 96 degreeC over 40 minutes, stirring. While maintaining the temperature at 96 ° C. after the temperature rise, a 20% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added. The 20% maleic anhydride solution is 1.91 kg / hr from the 4th hour to the start of the addition, 1.53 kg / hr from the 4th to the 7th hour, and 0.77 kg from the 7th to the 10th hour. / Hour, the addition speed was changed stepwise so that the addition speed was 0.26 kg / hour from the 10th hour to the 13th hour, and a total of 15.32 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution has a rate of addition of 0.18 kg / hour from the start of the addition until the 7th hour and 0.29 kg / hour from the 7th to the 13th hour. Then, the addition speed was changed stepwise so that a total of 3.0 kg was added. The polymerization temperature is maintained at 96 ° C. until 7 hours from the start of the addition, and then heated up to 120 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 120 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-5) was obtained. With respect to the obtained copolymer (I-5), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
<I-6の製造例>
10%マレイン酸無水物溶液は(I-3)の製造例と同様に調整し、2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(I-1)の製造例と同様に調整し、重合に使用した。
攪拌機を備えた50リットルのオートクレーブ中に、10%マレイン酸無水物溶液2.0kg、スチレン1.2kg、メチルメタクリレート13.8kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、スチレンと、10%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。スチレンは、分添開始から11時間目まで0.27kg/時の分添速度で分添し、合計で2.97kg添加した。10%マレイン酸無水物溶液は、分添開始4時間目までが2.7kg/時、4時間目から7時間目までが1.8kg/時、7時間目から10時間目までが0.42kg/時、10時間目から13時間目までが0.18kg/時の分添速度となるように段階的に分添速度を変え、合計で18.0kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.06kg/時、7時間目から13時間目までが0.1kg/時の分添速度となるように段階的に分添速度を変え、合計で1.02kg添加した。重合温度は、分添開始から7時間目までは88℃を保持し、その後5℃/時の昇温速度で6時間かけて118℃まで昇温し、さらに118℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-6)を得た。得られた共重合体(I-6)について、(I-1)と同様に組成分析、分子量、12質量%クロロホルム溶液における曇り度測定結果、2mm厚み鏡面プレートの全光線透過率、および屈折率測定結果を測定した。測定結果を表1に示す。
<Example of production of I-6>
10% maleic anhydride solution was prepared in the same manner as in the production example of (I-3), and 2% t-butylperoxy-2-ethylhexanonate solution was prepared in the same manner as in the production example of (I-1). And used for polymerization.
A 50 liter autoclave equipped with a stirrer was charged with 2.0 kg of a 10% maleic anhydride solution, 1.2 kg of styrene, 13.8 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, it heated up to 88 degreeC over 40 minutes, stirring. Styrene, 10% maleic acid-free aqueous solution, and 2% t-butylperoxy-2-ethylhexanoate solution were successively added while maintaining 88 ° C. after the temperature rise. Styrene was added at an addition rate of 0.27 kg / hour from the start of addition for 11 hours, and a total of 2.97 kg was added. The 10% maleic anhydride solution is 2.7 kg / hr from the 4th hour to the start of the addition, 1.8 kg / hr from the 4th to the 7th hour, and 0.42 kg from the 7th to the 10th hour. The addition rate was changed stepwise so that the addition rate was 0.18 kg / hour from 10 hours to 13 hours / hour, and a total of 18.0 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.06 kg / hour from the start of the addition to the 7th hour and 0.1 kg / hour from the 7th to the 13th hour. The addition speed was changed stepwise so that a total of 1.02 kg was added. The polymerization temperature is maintained at 88 ° C. until 7 hours from the start of the addition, and then heated up to 118 ° C. over 6 hours at a temperature increase rate of 5 ° C./hour, and further maintained at 118 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-6) was obtained. With respect to the obtained copolymer (I-6), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index in the same manner as (I-1) The measurement result was measured. The measurement results are shown in Table 1.
<I-7の製造例>
25%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(I-1)の製造例と同様に調整し、重合に使用した。
攪拌機を備えた50リットルのオートクレーブ中に、25%マレイン酸無水物溶液1.92kg、スチレン14.0kg、メチルメタクリレート1.2kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて96℃まで昇温した。昇温後96℃を保持しながら、25%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。25%マレイン酸無水物溶液は、分添開始4時間目までが2.16kg/時、4時間目から7時間目までが1.73kg/時、7時間目から10時間目までが0.86kg/時、10時間目から13時間目までが0.29kg/時の分添速度となるように段階的に分添速度を変え、合計で17.28kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.21kg/時、7時間目から13時間目までが0.34kg/時の分添速度となるように段階的に分添速度を変え、合計で3.51kg添加した。重合温度は、分添開始から7時間目までは96℃を保持し、その後4℃/時の昇温速度で6時間かけて120℃まで昇温し、さらに120℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-7)を得た。得られた共重合体(I-7)について、(I-1)と同様に組成分析、分子量、12質量%クロロホルム溶液における曇り度測定結果、2mm厚み鏡面プレートの全光線透過率、および屈折率測定結果を測定した。測定結果を表1に示す。
<Production example of I-7>
A 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as in the preparation example of (I-1) and used for polymerization.
A 50-liter autoclave equipped with a stirrer was charged with 1.92 kg of a 25% maleic anhydride solution, 14.0 kg of styrene, 1.2 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, it heated up to 96 degreeC over 40 minutes, stirring. While maintaining the temperature at 96 ° C. after the temperature rise, a 25% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added. The 25% maleic anhydride solution is 2.16 kg / hr from the 4th hour to the start of the addition, 1.73 kg / hr from the 4th to the 7th hour, and 0.86 kg from the 7th to the 10th hour. / Hour, the addition speed was changed stepwise so that the addition speed was 0.29 kg / hour from the 10th hour to the 13th hour, and a total of 17.28 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution has a rate of addition of 0.21 kg / hour from the start of the addition to 7 hours and 0.34 kg / hour from the 7th to 13th hours. The addition speed was changed stepwise so that a total of 3.51 kg was added. The polymerization temperature is maintained at 96 ° C. until 7 hours from the start of the addition, and then heated up to 120 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 120 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-7) was obtained. With respect to the obtained copolymer (I-7), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index were the same as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
<I-8の製造例>
25%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(I-1)の製造例と同様に調整し、重合に使用した。
攪拌機を備えた50リットルのオートクレーブ中に、25%マレイン酸無水物溶液2.24kg、スチレン13.4kg、メチルメタクリレート10.0kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて94℃まで昇温した。昇温後94℃を保持しながら、25%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。25%マレイン酸無水物溶液は、分添開始4時間目までが2.52kg/時、4時間目から7時間目までが2.02kg/時、7時間目から10時間目までが1.01kg/時、10時間目から13時間目までが0.34kg/時の分添速度となるように段階的に分添速度を変え、合計で20.19kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.18kg/時、7時間目から13時間目までが0.29kg/時の分添速度となるように段階的に分添速度を変え、合計で3.0kg添加した。重合温度は、分添開始から7時間目までは94℃を保持し、その後4℃/時の昇温速度で6時間かけて118℃まで昇温し、さらに118℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-8)を得た。得られた共重合体(I-8)について、(I-1)と同様に組成分析、分子量、12質量%クロロホルム溶液における曇り度測定結果、2mm厚み鏡面プレートの全光線透過率、および屈折率測定結果を測定した。測定結果を表1に示す。
<Example of production of I-8>
A 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as in the preparation example of (I-1) and used for polymerization.
A 50-liter autoclave equipped with a stirrer was charged with 2.24 kg of a 25% maleic anhydride solution, 13.4 kg of styrene, 10.0 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, it heated up to 94 degreeC over 40 minutes, stirring. While maintaining the temperature at 94 ° C. after the temperature rise, a 25% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added. The 25% maleic anhydride solution is 2.52 kg / hour from the 4th hour to the start of the addition, 2.02 kg / hour from the 4th to the 7th hour, and 1.01 kg from the 7th to the 10th hour. The addition rate was changed stepwise so that the addition rate was 0.34 kg / hour from 10 hours to 13 hours / hour, and a total of 20.19 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution has a rate of addition of 0.18 kg / hour from the start of the addition until the 7th hour and 0.29 kg / hour from the 7th to the 13th hour. Then, the addition speed was changed stepwise so that a total of 3.0 kg was added. The polymerization temperature is maintained at 94 ° C. for 7 hours from the start of the addition, and then heated to 118 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 118 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-8) was obtained. With respect to the obtained copolymer (I-8), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index were the same as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
<I-9の製造例>
10%マレイン酸無水物溶液は(I-3)の製造例と同様に調整し、2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(I-1)の製造例と同様に調整し、重合に使用した。
攪拌機を備えた50リットルのオートクレーブ中に、10%マレイン酸無水物溶液1.6kg、スチレン18.4kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて96℃まで昇温した。昇温後96℃を保持しながら、10%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。10%マレイン酸無水物溶液は、分添開始4時間目までが1.62kg/時、4時間目から7時間目までが1.2kg/時、7時間目から10時間目までが0.96kg/時、10時間目から13時間目までが0.48kg/時の分添速度となるように段階的に分添速度を変え、合計で14.4kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.3kg/時、7時間目から13時間目までが0.48kg/時の分添速度となるように段階的に分添速度を変え、合計で4.98kg添加した。重合温度は、分添開始から7時間目までは96℃を保持し、その後4℃/時の昇温速度で6時間かけて120℃まで昇温し、さらに120℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-9)を得た。得られた共重合体(I-9)について、(I-1)と同様に組成分析、分子量、12質量%クロロホルム溶液における曇り度測定結果、2mm厚み鏡面プレートの全光線透過率、および屈折率測定結果を測定した。測定結果を表1に示す。
<Production example of I-9>
10% maleic anhydride solution was prepared in the same manner as in the production example of (I-3), and 2% t-butylperoxy-2-ethylhexanonate solution was prepared in the same manner as in the production example of (I-1). And used for polymerization.
A 50 liter autoclave equipped with a stirrer was charged with 1.6 kg of a 10% maleic anhydride solution, 18.4 kg of styrene, and 16 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. The temperature was raised to 96 ° C over a period of minutes. While maintaining the temperature at 96 ° C. after the temperature rise, a 10% maleic acid non-aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added. The 10% maleic anhydride solution is 1.62 kg / hr from the 4th hour to the start of the addition, 1.2 kg / hr from the 4th to the 7th hour, and 0.96 kg from the 7th to the 10th hour. The addition rate was changed stepwise so that the addition rate was 0.48 kg / hour from 10th to 13th hour / hour, and a total of 14.4 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.3 kg / hour from the start of the addition to 7 hours and 0.48 kg / hour from the 7th hour to the 13th hour. The addition speed was changed stepwise so that 4.98 kg in total was added. The polymerization temperature is maintained at 96 ° C. until 7 hours from the start of the addition, and then heated up to 120 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 120 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-9) was obtained. With respect to the obtained copolymer (I-9), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index were the same as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
<I-10の製造例>
10%マレイン酸無水物溶液は(I-3)の製造例と同様に調整し、2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(I-1)の製造例と同様に調整し、重合に使用した。
撹拌機を備えた120リットルのオートクレーブ中に、10%マレイン酸無水物溶液1.6kg、スチレン1.8kg、メチルメタクレリレート14.6kg、t-ドデシルメルカプタン16gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、スチレンと、10%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。スチレンは、分添開始から11時間目まで0.18kg/時の分添速度で分添し、合計で1.98kg添加した。10%マレイン酸無水物溶液は、分添開始4時間目までが2.16kg/時、4時間目から7時間目までが1.44kg/時、7時間目から10時間目までが0.34kg/時、10時間目から13時間目までが0.14kg/時の分添速度となるように段階的に分添速度を変え、合計で14.4kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.06kg/時、7時間目から13時間目までが0.1kg/時の分添速度となるように段階的に分添速度を変え、合計で1.02kg添加した。重合温度は、分添開始から7時間目までは88℃を保持し、その後5℃/時の昇温速度で6時間かけて118℃まで昇温し、さらに118℃を1時間保持して重合を終了させた。
重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(I-10)を得た。得られた共重合体(I-10)について、(I-1)と同様に組成分析、分子量、12質量%クロロホルム溶液における曇り度測定結果、2mm厚み鏡面プレートの全光線透過率、および屈折率測定結果を測定した。測定結果を表1に示す。
<Production example of I-10>
10% maleic anhydride solution was prepared in the same manner as in the production example of (I-3), and 2% t-butylperoxy-2-ethylhexanonate solution was prepared in the same manner as in the production example of (I-1). And used for polymerization.
A 120 liter autoclave equipped with a stirrer was charged with 1.6 kg of a 10% maleic anhydride solution, 1.8 kg of styrene, 14.6 kg of methyl methacrylate, and 16 g of t-dodecyl mercaptan, and the gas phase portion was filled with nitrogen gas. The temperature was raised to 88 ° C. over 40 minutes with stirring. Styrene, 10% maleic acid-free aqueous solution, and 2% t-butylperoxy-2-ethylhexanoate solution were successively added while maintaining 88 ° C. after the temperature rise. Styrene was added at an addition rate of 0.18 kg / hour from the start of addition to 11 hours, and a total of 1.98 kg was added. The 10% maleic anhydride solution is 2.16 kg / hour from the 4th hour to the start of the addition, 1.44 kg / hour from the 4th to the 7th hour, and 0.34 kg from the 7th to the 10th hour. The addition rate was changed stepwise so that the addition rate was 0.14 kg / hour from 10 hours to 13 hours / hour, and a total of 14.4 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.06 kg / hour from the start of the addition to the 7th hour and 0.1 kg / hour from the 7th to the 13th hour. The addition speed was changed stepwise so that a total of 1.02 kg was added. The polymerization temperature is maintained at 88 ° C. until 7 hours from the start of the addition, and then heated up to 118 ° C. over 6 hours at a temperature increase rate of 5 ° C./hour, and further maintained at 118 ° C. for 1 hour for polymerization. Was terminated.
The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (I-10) was obtained. With respect to the obtained copolymer (I-10), composition analysis, molecular weight, haze measurement result in 12% by mass chloroform solution, total light transmittance of 2 mm-thick specular plate, and refractive index were the same as in (I-1) The measurement result was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(ロ)重合体(II)の製造
<II-1の製造例>
撹拌機を付した容積20リットルの完全混合型反応器、容積40リットルの塔式プラグフロー型反応器、予熱器を付した脱揮槽を直列に接続して構成した。メチルメタクリレート98質量部、エチルアクリレート2質量部、エチルベンゼン18質量部で構成される混合溶液に対して、さらに1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン(日本油脂社製パーヘキサC)0.02質量部、n-ドデシルメルカプタン(花王社製チオカルコール20)0.3質量部、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(チバ・スペシャリティ・ケミカルズ社製IRGANOX1076)を0.1質量部混合し原料溶液とした。この原料溶液を毎時6kgで温度120℃に制御した完全混合型反応器に導入した。なお、完全混合型反応器の撹拌数は200rpmで実施した。次いで完全混合型反応器より反応液を連続的に抜き出し、流れの方向に向かって温度130℃から150℃の勾配がつくように調整した塔式プラグフロー型反応器に導入した。この反応液を予熱器で加温しながら、温度240℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギヤーポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の(II-1)を得た。得られた重合体(II-1)を炉温度450℃にて熱分解させ、分解ガスをガスクロマトグラフィー法により定量して組成分析を行った。SYSTEM-21 Shodex(昭和電工社製)にてPL gel MIXED-Bを3本直列したカラム、示差屈折率の検出器を用いて、溶媒にテトラヒドロフランを使用し、標準ポリスチレン(PS)(PL社製)にて検量線を作製し、温度40℃、濃度2質量%の条件で重量平均分子量(Mw)を測定した。射出成形機(東芝機械社製IS-50EPN)を用いて、シリンダー温度230℃、金型温度40℃の成形条件で縦90mm、横55mm、厚み2mmの鏡面プレートを射出成形し、ASTM D1003に準拠し、ヘーズメーター(日本電色工業社製NDH-1001DP型)を用いて2mm厚みの全光線透過率を測定した。プレス成形にて厚み2mmの成形体を作製し、アタゴ社製アッベ式屈折率計(DR-M2)を用いて屈折率を測定した。重合体(II-1)の組成分析結果、分子量測定結果、2mm厚み鏡面プレートの全光線透過率透過率測定結果、および屈折率測定結果を表2に示す。
(B) Production of polymer (II) <Production example of II-1>
A 20-liter fully mixed reactor equipped with a stirrer, a 40-liter tower-type plug flow reactor, and a devolatilizer equipped with a preheater were connected in series. 1,1-bis (t-butylperoxy) -cyclohexane (Perhexa C manufactured by NOF Corporation) 0 with respect to a mixed solution composed of 98 parts by weight of methyl methacrylate, 2 parts by weight of ethyl acrylate, and 18 parts by weight of ethylbenzene .02 parts by mass, 0.3 parts by mass of n-dodecyl mercaptan (thiocalcol 20 manufactured by Kao Corporation), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (Ciba Specialty Chemicals) 0.1 parts by mass of IRGANOX 1076) manufactured as a raw material solution was mixed. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 6 kg per hour. In addition, the stirring number of the complete mixing type reactor was 200 rpm. Next, the reaction liquid was continuously withdrawn from the complete mixing type reactor and introduced into a column type plug flow type reactor adjusted so as to have a gradient of 130 ° C. to 150 ° C. in the flow direction. While this reaction solution was heated with a preheater, it was introduced into a devolatilization tank controlled at a temperature of 240 ° C. and a pressure of 1.0 kPa to remove volatile components such as unreacted monomers. This resin liquid was extracted with a gear pump and extruded into a strand shape to obtain pellet form (II-1). The obtained polymer (II-1) was pyrolyzed at a furnace temperature of 450 ° C., and the decomposition gas was quantified by a gas chromatography method for composition analysis. Three columns of PL gel MIXED-B in SYSTEM-21 Shodex (manufactured by Showa Denko KK), a differential refractive index detector, tetrahydrofuran as a solvent, standard polystyrene (PS) (manufactured by PL) The calibration curve was prepared and the weight average molecular weight (Mw) was measured under the conditions of a temperature of 40 ° C. and a concentration of 2% by mass. Using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.), a mirror plate with a length of 90 mm, a width of 55 mm, and a thickness of 2 mm is injection molded under molding conditions of a cylinder temperature of 230 ° C. and a mold temperature of 40 ° C., and conforms to ASTM D1003 Then, the total light transmittance of 2 mm thickness was measured using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.). A molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd. Table 2 shows the composition analysis result, molecular weight measurement result, total light transmittance transmittance measurement result, and refractive index measurement result of the 2 mm-thick specular plate of the polymer (II-1).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(ハ)グラフト共重合体(III)の製造
<III-1の製造例>
 容積200リットルのオートクレーブに純水64kg、オレイン酸カリウム1680g、ロジン酸カリウム160g、炭酸ナトリウム1.2kg、過硫酸カリウム400gを加えて攪拌下で均一に溶解した。次いでブタジエン80kg、t-ドデシルメルカプタン320g、ジビニルベンゼン160gを加え、撹拌しながら60℃で20時間重合し、さらに温度70℃に昇温して10時間放置して重合を完結し、ポリブタジエンゴムラテックスを得た。
 得られたポリブタジエンゴムラテックスを固形分換算で36kg計量して容積200リットルのオートクレーブに仕込み、純水80kgを加え、攪拌しながら窒素気流下で温度50℃に昇温した。ここに硫酸第一鉄1.5g、エチレンジアミンテトラ酢酸ナトリウム3g、ロンガリット100gを純水2kgに溶解した水溶液を加え、スチレン5.7kg、メチルメタクリレート18.3kg、t-ドデシルメルカプタン54gからなる混合物と、ジイソプロピルベンゼンハイドロパーオキサイド108gを5%オレイン酸カリウム水溶液8kgに分散させた溶液とを、別々に5時間かけて連続添加した。添加終了後、温度を70℃に昇温して、さらにジイソプロピルベンゼンハイドロパーオキサイド27g添加した後、2時間放置して重合を完結し、グラフト共重合体ラテックスを得た。
 得られたグラフト共重合体ラテックスに酸化防止剤を加え、純水で固形分を15質量%に希釈した後温度60℃に昇温して激しく攪拌しながら希硫酸を加えて析出を行ってスラリー状態とした後、さらに温度を90℃に昇温して凝固させ、脱水、水洗、乾燥して粉末状のグラフト共重合体(III-1)を得た。得られた(III-1)について、クロロホルムに溶解し、一塩化ヨウ素を加えてポリブタジエン中の2重結合を反応させた後、ヨウ化カリウムを加えて残存する一塩化ヨウ素をヨウ素に変え、チオ硫酸ナトリウムで逆滴定することにより、D-1中のポリブタジエン量を測定した。さらに炉温度450℃にてポリマーを熱分解させ、分解ガスをガスクロマトグラフィー法により定量し、メチルメタクリレート/スチレンの構成比率を測定し、ポリブタジエン量とメチルメタクリレート/スチレンの構成比率から(III-1)の組成を算出した。さらに、プレス成形にて厚み2mmの成形体を作製し、アタゴ社製アッベ式屈折率計(DR-M2)を用いて屈折率を測定した。(III-1)の組成分析結果、および屈折率測定結果を表3に示す。
(C) Production of graft copolymer (III) <Production example of III-1>
To a 200 liter autoclave, 64 kg of pure water, 1680 g of potassium oleate, 160 g of potassium rosinate, 1.2 kg of sodium carbonate, and 400 g of potassium persulfate were added and dissolved uniformly with stirring. Next, 80 kg of butadiene, 320 g of t-dodecyl mercaptan and 160 g of divinylbenzene were added, polymerized at 60 ° C. for 20 hours with stirring, and further heated to 70 ° C. and allowed to stand for 10 hours to complete the polymerization. Obtained.
The obtained polybutadiene rubber latex was weighed in an amount of 36 kg in terms of solid content, charged in an autoclave having a volume of 200 liters, added with 80 kg of pure water, and heated to 50 ° C. in a nitrogen stream while stirring. To this was added an aqueous solution prepared by dissolving 1.5 g of ferrous sulfate, 3 g of sodium ethylenediaminetetraacetate and 100 g of Rongalite in 2 kg of pure water, and a mixture comprising 5.7 kg of styrene, 18.3 kg of methyl methacrylate and 54 g of t-dodecyl mercaptan; A solution obtained by dispersing 108 g of diisopropylbenzene hydroperoxide in 8 kg of 5% aqueous potassium oleate solution was continuously added separately over 5 hours. After the addition was completed, the temperature was raised to 70 ° C., and 27 g of diisopropylbenzene hydroperoxide was further added, and the mixture was allowed to stand for 2 hours to complete the polymerization to obtain a graft copolymer latex.
An antioxidant is added to the obtained graft copolymer latex, the solid content is diluted to 15% by mass with pure water, the temperature is raised to 60 ° C., dilute sulfuric acid is added while stirring vigorously, and the slurry is precipitated. Then, the mixture was further solidified by raising the temperature to 90 ° C., dehydrated, washed with water and dried to obtain a powdered graft copolymer (III-1). The obtained (III-1) was dissolved in chloroform, iodine monochloride was added to react the double bond in polybutadiene, potassium iodide was added to change the remaining iodine monochloride to iodine, and thiol was added. The amount of polybutadiene in D-1 was measured by back titration with sodium sulfate. Further, the polymer was thermally decomposed at a furnace temperature of 450 ° C., the decomposition gas was quantified by gas chromatography, the composition ratio of methyl methacrylate / styrene was measured, and the amount of polybutadiene and the composition ratio of methyl methacrylate / styrene (III-1 ) Was calculated. Further, a molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd. Table 3 shows the composition analysis results and refractive index measurement results of (III-1).
<III-2の製造例>
 容積200リットルのオートクレーブに純水64kg、オレイン酸カリウム1680g、ロジン酸カリウム160g、炭酸ナトリウム1.2kg、過硫酸カリウム400gを加えて攪拌下で均一に溶解した。次いでブタジエン72kg、スチレン8kg、t-ドデシルメルカプタン320g、ジビニルベンゼン300gを加え、撹拌しながら60℃で20時間重合し、さらに温度70℃に昇温して10時間放置して重合を完結し、ポリブタジエンゴムラテックスを得た。
 得られたポリブタジエンゴムラテックスを固形分換算で36kg計量して容積200リットルのオートクレーブに仕込み、純水80kgを加え、攪拌しながら窒素気流下で温度50℃に昇温した。ここに硫酸第一鉄1.5g、エチレンジアミンテトラ酢酸ナトリウム3g、ロンガリット100gを純水2kgに溶解した水溶液を加え、スチレン7.7kg、メチルメタクリレート16.3kg、t-ドデシルメルカプタン54gからなる混合物と、ジイソプロピルベンゼンハイドロパーオキサイド108gを5%オレイン酸カリウム水溶液8kgに分散させた溶液とを、別々に5時間かけて連続添加した。添加終了後、温度を70℃に昇温して、さらにジイソプロピルベンゼンハイドロパーオキサイド27g添加した後、2時間放置して重合を完結し、グラフト共重合体ラテックスを得た。
 得られたグラフト共重合体ラテックスに酸化防止剤を加え、純水で固形分を15質量%に希釈した後温度60℃に昇温して激しく攪拌しながら希硫酸を加えて析出を行ってスラリー状態とした後、さらに温度を90℃に昇温して凝固させ、脱水、水洗、乾燥して粉末状のグラフト共重合体(III-2)を得た。得られた(III-2)について、クロロホルムに溶解し、一塩化ヨウ素を加えてポリブタジエン中の2重結合を反応させた後、ヨウ化カリウムを加えて残存する一塩化ヨウ素をヨウ素に変え、チオ硫酸ナトリウムで逆滴定することにより、D-1中のポリブタジエン量を測定した。さらに炉温度450℃にてポリマーを熱分解させ、分解ガスをガスクロマトグラフィー法により定量し、メチルメタクリレート/スチレンの構成比率を測定し、ポリブタジエン量とメチルメタクリレート/スチレンの構成比率から(III-2)の組成を算出した。さらに、プレス成形にて厚み2mmの成形体を作製し、アタゴ社製アッベ式屈折率計(DR-M2)を用いて屈折率を測定した。(III-2)の組成分析結果、および屈折率測定結果を表3に示す。
<Production example of III-2>
To a 200 liter autoclave, 64 kg of pure water, 1680 g of potassium oleate, 160 g of potassium rosinate, 1.2 kg of sodium carbonate, and 400 g of potassium persulfate were added and dissolved uniformly with stirring. Next, 72 kg of butadiene, 8 kg of styrene, 320 g of t-dodecyl mercaptan, and 300 g of divinylbenzene were added, polymerized at 60 ° C. for 20 hours with stirring, and further heated to 70 ° C. and allowed to stand for 10 hours to complete the polymerization. A rubber latex was obtained.
The obtained polybutadiene rubber latex was weighed in an amount of 36 kg in terms of solid content, charged in an autoclave having a volume of 200 liters, added with 80 kg of pure water, and heated to 50 ° C. in a nitrogen stream while stirring. To this was added an aqueous solution prepared by dissolving 1.5 g of ferrous sulfate, 3 g of sodium ethylenediaminetetraacetate and 100 g of Rongalite in 2 kg of pure water, and a mixture of 7.7 kg of styrene, 16.3 kg of methyl methacrylate, and 54 g of t-dodecyl mercaptan; A solution obtained by dispersing 108 g of diisopropylbenzene hydroperoxide in 8 kg of 5% aqueous potassium oleate solution was continuously added separately over 5 hours. After the addition was completed, the temperature was raised to 70 ° C., and 27 g of diisopropylbenzene hydroperoxide was further added, and the mixture was allowed to stand for 2 hours to complete the polymerization to obtain a graft copolymer latex.
An antioxidant is added to the obtained graft copolymer latex, the solid content is diluted to 15% by mass with pure water, the temperature is raised to 60 ° C., dilute sulfuric acid is added while stirring vigorously, and the slurry is precipitated. Then, the temperature was raised to 90 ° C. for solidification, dehydration, washing with water, and drying to obtain a powdered graft copolymer (III-2). The obtained (III-2) was dissolved in chloroform, iodine monochloride was added to react the double bond in polybutadiene, potassium iodide was added to change the remaining iodine monochloride into iodine, and thiol was added. The amount of polybutadiene in D-1 was measured by back titration with sodium sulfate. Furthermore, the polymer was thermally decomposed at a furnace temperature of 450 ° C., the decomposition gas was quantified by gas chromatography, the composition ratio of methyl methacrylate / styrene was measured, and the amount of polybutadiene and the composition ratio of methyl methacrylate / styrene were determined from (III-2 ) Was calculated. Further, a molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd. Table 3 shows the composition analysis results and refractive index measurement results of (III-2).
<III-3の製造例>
 容積200リットルのオートクレーブに純水64kg、オレイン酸カリウム1680g、ロジン酸カリウム160g、炭酸ナトリウム1.2kg、過硫酸カリウム400gを加えて攪拌下で均一に溶解した。次いでブタジエン60kg、スチレン20kg、t-ドデシルメルカプタン320g、ジビニルベンゼン400gを加え、撹拌しながら60℃で20時間重合し、さらに温度70℃に昇温して10時間放置して重合を完結し、ポリブタジエンゴムラテックスを得た。
 得られたポリブタジエンゴムラテックスを固形分換算で36kg計量して容積200リットルのオートクレーブに仕込み、純水80kgを加え、攪拌しながら窒素気流下で温度50℃に昇温した。ここに硫酸第一鉄1.5g、エチレンジアミンテトラ酢酸ナトリウム3g、ロンガリット100gを純水2kgに溶解した水溶液を加え、スチレン10.1kg、メチルメタクリレート13.9kg、t-ドデシルメルカプタン54gからなる混合物と、ジイソプロピルベンゼンハイドロパーオキサイド108gを5%オレイン酸カリウム水溶液8kgに分散させた溶液とを、別々に5時間かけて連続添加した。添加終了後、温度を70℃に昇温して、さらにジイソプロピルベンゼンハイドロパーオキサイド27g添加した後、2時間放置して重合を完結し、グラフト共重合体ラテックスを得た。
 得られたグラフト共重合体ラテックスに酸化防止剤を加え、純水で固形分を15質量%に希釈した後温度60℃に昇温して激しく攪拌しながら希硫酸を加えて析出を行ってスラリー状態とした後、さらに温度を90℃に昇温して凝固させ、脱水、水洗、乾燥して粉末状のグラフト共重合体(III-3)を得た。得られた(III-3)について、クロロホルムに溶解し、一塩化ヨウ素を加えてポリブタジエン中の2重結合を反応させた後、ヨウ化カリウムを加えて残存する一塩化ヨウ素をヨウ素に変え、チオ硫酸ナトリウムで逆滴定することにより、D-1中のポリブタジエン量を測定した。さらに炉温度450℃にてポリマーを熱分解させ、分解ガスをガスクロマトグラフィー法により定量し、メチルメタクリレート/スチレンの構成比率を測定し、ポリブタジエン量とメチルメタクリレート/スチレンの構成比率から(III-3)の組成を算出した。さらに、プレス成形にて厚み2mmの成形体を作製し、アタゴ社製アッベ式屈折率計(DR-M2)を用いて屈折率を測定した。(III-3)の組成分析結果、および屈折率測定結果を表3に示す。
<Production example of III-3>
To a 200 liter autoclave, 64 kg of pure water, 1680 g of potassium oleate, 160 g of potassium rosinate, 1.2 kg of sodium carbonate, and 400 g of potassium persulfate were added and dissolved uniformly with stirring. Next, 60 kg of butadiene, 20 kg of styrene, 320 g of t-dodecyl mercaptan, and 400 g of divinylbenzene were added, polymerized at 60 ° C. for 20 hours with stirring, and further heated to 70 ° C. and allowed to stand for 10 hours to complete the polymerization. A rubber latex was obtained.
The obtained polybutadiene rubber latex was weighed in an amount of 36 kg in terms of solid content, charged in an autoclave having a volume of 200 liters, added with 80 kg of pure water, and heated to 50 ° C. in a nitrogen stream while stirring. To this was added an aqueous solution prepared by dissolving 1.5 g of ferrous sulfate, 3 g of sodium ethylenediaminetetraacetate and 100 g of Rongalite in 2 kg of pure water, and a mixture consisting of 10.1 kg of styrene, 13.9 kg of methyl methacrylate and 54 g of t-dodecyl mercaptan; A solution obtained by dispersing 108 g of diisopropylbenzene hydroperoxide in 8 kg of 5% aqueous potassium oleate solution was continuously added separately over 5 hours. After the addition was completed, the temperature was raised to 70 ° C., and 27 g of diisopropylbenzene hydroperoxide was further added, and the mixture was allowed to stand for 2 hours to complete the polymerization to obtain a graft copolymer latex.
An antioxidant is added to the obtained graft copolymer latex, the solid content is diluted to 15% by mass with pure water, the temperature is raised to 60 ° C., dilute sulfuric acid is added while stirring vigorously, and the slurry is precipitated. Then, the temperature was raised to 90 ° C. to solidify, followed by dehydration, washing with water and drying to obtain a powdered graft copolymer (III-3). The obtained (III-3) was dissolved in chloroform, iodine monochloride was added to react the double bond in polybutadiene, potassium iodide was added to change the remaining iodine monochloride to iodine, and thiol was added. The amount of polybutadiene in D-1 was measured by back titration with sodium sulfate. Further, the polymer was thermally decomposed at a furnace temperature of 450 ° C., the decomposition gas was quantified by gas chromatography, the composition ratio of methyl methacrylate / styrene was measured, and the amount of polybutadiene and the composition ratio of methyl methacrylate / styrene were determined from (III-3 ) Was calculated. Further, a molded body having a thickness of 2 mm was produced by press molding, and the refractive index was measured using an Abbe refractometer (DR-M2) manufactured by Atago Co., Ltd. Table 3 shows the composition analysis results and refractive index measurement results of (III-3).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例・比較例>
 前記製造例で記した共重合体(I)(I-1)~(I-10)と、重合体(II)(II-1)と、グラフト共重合体(III)(III-1)~(III-3)とを、表4~表5で示した割合(質量%)で混合した後、二軸押出機(東芝機械社製 TEM-35B)にて、シリンダー温度240℃で溶融混練してペレット化して樹脂組成物を得た。
 樹脂組成物の組成は共重合体(I)と、重合体(II)と、グラフト共重合体(III)の各成分の組成と配合割合から算出した。この樹脂組成物について、以下の評価を行った。評価結果を表4~表5に示す。
<Examples and comparative examples>
Copolymers (I) (I-1) to (I-10), polymers (II) (II-1), and graft copolymers (III) (III-1) to (III-3) was mixed in the proportions (mass%) shown in Tables 4 to 5, and then melt kneaded at a cylinder temperature of 240 ° C. using a twin screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.). And pelletized to obtain a resin composition.
The composition of the resin composition was calculated from the composition and blending ratio of each component of the copolymer (I), the polymer (II), and the graft copolymer (III). The following evaluation was performed on this resin composition. The evaluation results are shown in Tables 4-5.
ペレットを70℃で4時間乾燥した後、40mmΦ単軸押出機と300mm幅のTダイとを用いて260℃で押出すことで得られたシート状の溶融樹脂をフレキシブルロールで圧着した後、冷却ロールで冷却し、幅250mm、厚さ100±5μmの未延伸フィルムを得た。 After drying the pellets at 70 ° C. for 4 hours, the sheet-like molten resin obtained by extrusion at 260 ° C. using a 40 mmφ single-screw extruder and a 300 mm wide T-die is pressed with a flexible roll, and then cooled. The film was cooled with a roll to obtain an unstretched film having a width of 250 mm and a thickness of 100 ± 5 μm.
(面内位相差(Re)、厚み位相差(Rth))
未延伸フィルムを縦100mm、横20mmに切断し、一軸延伸装置を用いて以下の条件で自由端一軸延伸を実施した。
チャック間距離:50mm
延伸温度:ビカット軟化点+10℃
余熱時間:5分
延伸速度:12.5mm/分
延伸距離:12.5mm
延伸フィルムの面内位相差(Re)および厚み位相差(Rth)は、以下の装置を用いて、フィルムの複屈折を測定した。
   位相差測定   :王子計測社製 KOBRA-WR
   測定波長    :590nm
(In-plane retardation (Re), thickness retardation (Rth))
The unstretched film was cut into a length of 100 mm and a width of 20 mm, and free end uniaxial stretching was performed using a uniaxial stretching apparatus under the following conditions.
Distance between chucks: 50mm
Drawing temperature: Vicat softening point + 10 ° C
Residual heat time: 5 minutes Stretching speed: 12.5 mm / min Stretching distance: 12.5 mm
For the in-plane retardation (Re) and thickness retardation (Rth) of the stretched film, the birefringence of the film was measured using the following apparatus.
Phase difference measurement: KOBRA-WR manufactured by Oji Scientific Instruments
Measurement wavelength: 590 nm
(光弾性係数)
未延伸フィルムを用いて荷重fが加わった状態での面内位相差(Re)をRe(f)、試験片幅をwとすると、光弾性係数はdRe(f)/df×wとなるので試験片に加えた荷重に対する面内位相差(Re)の値の傾きを求めることで光弾性係数を算出した。
   位相差測定   :王子計測社製 KOBRA-WR
   測定波長    :590nm
   応力測定    :イマダ社製 デジタルフォースゲージZ2S-DPU-50N
(Photoelastic coefficient)
When the in-plane retardation (Re) with a load f applied using an unstretched film is Re (f) and the test piece width is w, the photoelastic coefficient is dRe (f) / df × w. The photoelastic coefficient was calculated by determining the slope of the in-plane retardation (Re) value with respect to the load applied to the test piece.
Phase difference measurement: KOBRA-WR manufactured by Oji Scientific Instruments
Measurement wavelength: 590 nm
Stress measurement: Digital force gauge Z2S-DPU-50N manufactured by Imada
(全光線透過率、およびHaze(曇り度))
 射出成形機(東芝機械社製IS-50EPN)を用いて、シリンダー温度230℃、金型温度40℃の成形条件で成形された縦90mm、横55mm、厚み2mmの試験片を得た。その試験片をASTM D1003に準拠し、ヘーズメーター(日本電色工業社製NDH-1001DP型)を全光線透過率、およびHazeを用いて測定した。
(Total light transmittance and Haze (cloudiness))
Using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.), a test piece having a length of 90 mm, a width of 55 mm, and a thickness of 2 mm molded under the molding conditions of a cylinder temperature of 230 ° C. and a mold temperature of 40 ° C. was obtained. The test piece was measured according to ASTM D1003 using a haze meter (NDH-1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.) using total light transmittance and Haze.
(ビカット軟化点)
ビカット軟化点は、JIS K7206に基づき、50法(荷重50N、昇温速度50℃/時間)で試験片は10mm×10mm、厚さ4mmのものを用いて測定した。なお、測定機は東洋精機製作所社製HDT&VSPT試験装置を使用した。ビカット軟化点が110℃以上のものを合格とした。
(Vicat softening point)
The Vicat softening point was measured according to JIS K7206 using 50 specimens (load 50 N, temperature increase rate 50 ° C./hour) with a test piece of 10 mm × 10 mm and a thickness of 4 mm. In addition, the measuring machine used the Toyo Seiki Seisakusho HDT & VSPT test apparatus. A Vicat softening point of 110 ° C. or higher was regarded as acceptable.
(耐折強度)
 フィルムの耐折強度は未延伸フィルムを用いて、以下の条件で耐折強度を測定した。耐折強度は100回以上のものを合格とした。
装置名:MIT-D FOLDING ENDURANCE TESTER(東洋精機社製)
  荷重(張力):500g重
  折り曲げ速度:175回/分
  折り曲げ角度:左右各45度
  折り曲げ装置先端半径:0.38mm
  試験片幅:15mm
(Folding strength)
The folding strength of the film was measured using an unstretched film under the following conditions. Folding strength of 100 times or more was accepted.
Device name: MIT-D FOLDING ENDURANCE TESTER (Toyo Seiki Co., Ltd.)
Load (tension): 500 g weight Bending speed: 175 times / min Bending angle: 45 degrees each left and right Folding device tip radius: 0.38 mm
Specimen width: 15mm
(熱安定性)
 射出成形機(東芝機械社製IS-50EPN)を用いて、シリンダー温度250℃、金型温度60℃の成形条件で、直径30mm、高さ50mmの円柱状成形品のサンプルを50個作製し、目視にて、シルバー、ガス焼け、着色、気泡などの熱分解由来の外観不良が発生したサンプル数を数えることによって、樹脂組成物の熱安定性評価を行った。評価基準は、以下の通りである。
◎:外観不良のサンプル数が0個
○:外観不良のサンプル数が1~4個
△:外観不良のサンプル数が5~9個
×:外観不良のサンプル数が10個以上
(Thermal stability)
Using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.), 50 samples of a cylindrical molded product having a diameter of 30 mm and a height of 50 mm were produced under the molding conditions of a cylinder temperature of 250 ° C. and a mold temperature of 60 ° C. The thermal stability of the resin composition was evaluated by counting the number of samples in which appearance defects due to thermal decomposition such as silver, gas burn, coloring, and bubbles were visually observed. The evaluation criteria are as follows.
A: The number of appearance defect samples is 0. ○: The number of appearance defect samples is 1-4. Δ: The number of appearance defect samples is 5-9. ×: The number of appearance defect samples is 10 or more.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の共重合体(I)の(I-1)~(I-8)と、重合体(II)の(II-1)と、グラフト共重合体(III)の(III-1)~(III-3)とを配合してなる樹脂組成物はいずれも複屈折が生じにくく、耐熱性、フィルム強度、熱安定性に優れていた。
 (式1)が本発明の範囲に満たない比較例1~比較例2は、複屈折が大きかった。(式1)および共役ジエン単量体単位が本発明の範囲に満たない比較例3は複屈折が大きく、フィルム強度が劣っていた。不飽和カルボン酸無水物単量体単位が本発明の範囲に満たない(I-9)を用いた比較例4は耐熱性が劣っていた。芳香族ビニル単量体単位が本発明の範囲に満たない(I-10)を用いた比較例5は透明性、熱安定性が劣っていた。
The copolymers (I) (I-1) to (I-8) of the present invention, the polymer (II) (II-1), and the graft copolymer (III) (III-1) to (III) All the resin compositions formed by blending (III-3) were less susceptible to birefringence and were excellent in heat resistance, film strength, and thermal stability.
Comparative Examples 1 and 2 in which (Formula 1) did not fall within the scope of the present invention had a large birefringence. Comparative Example 3 in which (Formula 1) and the conjugated diene monomer unit were less than the scope of the present invention had high birefringence and poor film strength. Comparative Example 4 in which the unsaturated carboxylic acid anhydride monomer unit was less than the scope of the present invention (I-9) was inferior in heat resistance. Comparative Example 5 using (I-10) whose aromatic vinyl monomer unit did not fall within the scope of the present invention was inferior in transparency and thermal stability.
本発明によれば、複屈折が生じにくく、耐熱性、フィルム強度、熱安定性に優れた樹脂組成物、およびその樹脂組成物からなるフィルムを提供することができる。 According to the present invention, it is possible to provide a resin composition that hardly causes birefringence and has excellent heat resistance, film strength, and thermal stability, and a film made of the resin composition.

Claims (7)

  1. 芳香族ビニル単量体単位(A)17~31質量%、(メタ)アクリル酸エステル単量体単位(B)38~63質量%、不飽和ジカルボン酸無水物単量体単位(C)4~14質量%、共役ジエン単量体単位(D)4~25質量%からなり、(式1)の値の絶対値が0.005以下である樹脂組成物。但し、(式1)中の[A]、[B]、[C]、[D]は、順に、芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、不飽和ジカルボン酸無水物単量体単位(C)、共役ジエン単量体単位(D)の樹脂組成物中における質量比を表し、[A]+[B]+[C]+[D]=1とする。
    (式1)  -0.10×[A]-0.004×[B]+0.10×[C]+0.09×[D]
    Aromatic vinyl monomer unit (A) 17 to 31% by mass, (meth) acrylic acid ester monomer unit (B) 38 to 63% by mass, unsaturated dicarboxylic acid anhydride monomer unit (C) 4 to A resin composition comprising 14% by mass, 4 to 25% by mass of a conjugated diene monomer unit (D), and an absolute value of the value of (Formula 1) being 0.005 or less. However, [A], [B], [C], and [D] in (Formula 1) are, in order, an aromatic vinyl monomer unit (A) and a (meth) acrylic acid ester monomer unit (B ), An unsaturated dicarboxylic acid anhydride monomer unit (C), and a conjugated diene monomer unit (D) in a resin composition, [A] + [B] + [C] + [D ] = 1.
    (Formula 1) −0.10 × [A] −0.004 × [B] + 0.10 × [C] + 0.09 × [D]
  2. 芳香族ビニル単量体単位(A)、(メタ)アクリル酸エステル単量体単位(B)、不飽和ジカルボン酸無水物単量体単位(C)からなる共重合体(I)20~80質量部、(メタ)アクリル酸エステル単量体単位(B)からなる重合体(II)0~60質量部と、共役ジエン単量体単位(D)からなる重合体に芳香族ビニル単量体単位(A)と(メタ)アクリル酸エステル単量体単位(B)からなる共重合体がグラフトしてなるグラフト共重合体(III)5~60質量部からなる請求項1に記載の樹脂組成物。
    Copolymer (I) composed of aromatic vinyl monomer unit (A), (meth) acrylic acid ester monomer unit (B), and unsaturated dicarboxylic acid anhydride monomer unit (C) 20 to 80 mass Part, polymer (II) composed of (meth) acrylic acid ester monomer unit (B), and polymer composed of conjugated diene monomer unit (D) and aromatic vinyl monomer unit The resin composition according to claim 1, comprising 5 to 60 parts by mass of a graft copolymer (III) obtained by grafting a copolymer comprising (A) and a (meth) acrylic acid ester monomer unit (B). .
  3. 共重合体(I)が、芳香族ビニル単量体単位(A)20~80質量%、(メタ)アクリル酸エステル単量体単位(B)5~70質量%、不飽和ジカルボン酸無水物単量体単位(C)10~25質量%からなる共重合体である請求項2に記載の樹脂組成物。
    Copolymer (I) is an aromatic vinyl monomer unit (A) 20 to 80% by mass, (meth) acrylic acid ester monomer unit (B) 5 to 70% by mass, unsaturated dicarboxylic acid anhydride unit The resin composition according to claim 2, which is a copolymer comprising 10 to 25% by mass of the monomer unit (C).
  4. 共重合体(I)が、12質量%クロロホルム溶液における光路長10mmの曇り度が2%以下である請求項2又は3に記載の樹脂組成物。
    The resin composition according to claim 2 or 3, wherein the copolymer (I) has a haze of 2 mm or less at an optical path length of 10 mm in a 12 mass% chloroform solution.
  5. ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上である請求項1~4のいずれかに記載の樹脂組成物。
    The resin composition according to any one of claims 1 to 4, wherein the total light transmittance with a thickness of 2 mm, measured based on ASTM D1003, is 88% or more.
  6. 請求項1~5のいずれかに記載の樹脂組成物からなるフィルム。
    A film comprising the resin composition according to any one of claims 1 to 5.
  7. 偏光子保護フィルム用である請求項6に記載のフィルム。 The film according to claim 6, which is for a polarizer protective film.
PCT/JP2017/024299 2016-07-22 2017-07-03 Resin composition and film formed of said resin composition WO2018016306A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197004812A KR102261383B1 (en) 2016-07-22 2017-07-03 A resin composition and a film comprising the resin composition
CN201780045521.0A CN109476899B (en) 2016-07-22 2017-07-03 Resin composition and film made of the same
JP2018528473A JP6890126B2 (en) 2016-07-22 2017-07-03 A resin composition and a film composed of the resin composition.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016144424 2016-07-22
JP2016-144424 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016306A1 true WO2018016306A1 (en) 2018-01-25

Family

ID=60992199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024299 WO2018016306A1 (en) 2016-07-22 2017-07-03 Resin composition and film formed of said resin composition

Country Status (5)

Country Link
JP (1) JP6890126B2 (en)
KR (1) KR102261383B1 (en)
CN (1) CN109476899B (en)
TW (1) TWI726126B (en)
WO (1) WO2018016306A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101581A (en) * 2018-12-19 2020-07-02 株式会社日本触媒 Film with suppressed phase difference in thickness direction

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507539A (en) * 2001-10-31 2005-03-17 アルケマ Thermoplastic polymer materials for audio / optical data recording media
JP2009215398A (en) * 2008-03-10 2009-09-24 Mitsubishi Rayon Co Ltd Display device-protecting plate
JP2010007048A (en) * 2008-05-29 2010-01-14 Sanyo Chem Ind Ltd Low birefringent transparent resin composition
JP2010070646A (en) * 2008-09-18 2010-04-02 Asahi Kasei Chemicals Corp Resin composition for use as optical material
JP2010096919A (en) * 2008-10-15 2010-04-30 Asahi Kasei Chemicals Corp Optical film
JP2010539279A (en) * 2007-09-17 2010-12-16 エルジー・ケム・リミテッド Optical film and manufacturing method thereof
JP2011001526A (en) * 2009-06-22 2011-01-06 Asahi Kasei Chemicals Corp Resin composition obtained by heat-stabilizing low-birefringence acrylic copolymer
JP2011510352A (en) * 2008-01-23 2011-03-31 エルジー・ケム・リミテッド Retardation film, method for producing the same, and liquid crystal display device including the same
JP2011116928A (en) * 2009-10-29 2011-06-16 Sanyo Chem Ind Ltd Low birefringent transparent resin composition
JP2012504783A (en) * 2008-10-02 2012-02-23 エルジー・ケム・リミテッド Optical film and manufacturing method thereof
JP2013083943A (en) * 2011-09-28 2013-05-09 Nippon Shokubai Co Ltd Optical film, elliptically polarizing plate, and image display device
JP2013182070A (en) * 2012-02-29 2013-09-12 Techno Polymer Co Ltd Polarizer protective film and polarizing plate
WO2016024553A1 (en) * 2014-08-11 2016-02-18 電気化学工業株式会社 Copolymer suitable for improving heat resistance of methacrylic resin

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686261B2 (en) 2005-05-31 2011-05-25 株式会社カネカ Polarizer protective film, method for producing the same, and polarizing plate using the same
JP5885473B2 (en) * 2011-11-16 2016-03-15 デンカ株式会社 Method for producing transparent rubber-modified styrenic resin composition and method for producing molded article
KR101389671B1 (en) 2012-03-27 2014-04-25 최충원 The tube thermoplastic resin an extruding manufacture machine multiseriate manufactuer tube the warp variation control equipment
KR102050371B1 (en) 2012-07-30 2019-11-29 덴카 주식회사 Copolymer for improving methacrylic resin heat resistance
CN104072923B (en) * 2014-06-18 2017-01-25 金发科技股份有限公司 High-heat-resistant transparent reinforcing material as well as preparation method and application thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507539A (en) * 2001-10-31 2005-03-17 アルケマ Thermoplastic polymer materials for audio / optical data recording media
JP2010539279A (en) * 2007-09-17 2010-12-16 エルジー・ケム・リミテッド Optical film and manufacturing method thereof
JP2011510352A (en) * 2008-01-23 2011-03-31 エルジー・ケム・リミテッド Retardation film, method for producing the same, and liquid crystal display device including the same
JP2009215398A (en) * 2008-03-10 2009-09-24 Mitsubishi Rayon Co Ltd Display device-protecting plate
JP2010007048A (en) * 2008-05-29 2010-01-14 Sanyo Chem Ind Ltd Low birefringent transparent resin composition
JP2010070646A (en) * 2008-09-18 2010-04-02 Asahi Kasei Chemicals Corp Resin composition for use as optical material
JP2012504783A (en) * 2008-10-02 2012-02-23 エルジー・ケム・リミテッド Optical film and manufacturing method thereof
JP2010096919A (en) * 2008-10-15 2010-04-30 Asahi Kasei Chemicals Corp Optical film
JP2011001526A (en) * 2009-06-22 2011-01-06 Asahi Kasei Chemicals Corp Resin composition obtained by heat-stabilizing low-birefringence acrylic copolymer
JP2011116928A (en) * 2009-10-29 2011-06-16 Sanyo Chem Ind Ltd Low birefringent transparent resin composition
JP2013083943A (en) * 2011-09-28 2013-05-09 Nippon Shokubai Co Ltd Optical film, elliptically polarizing plate, and image display device
JP2013182070A (en) * 2012-02-29 2013-09-12 Techno Polymer Co Ltd Polarizer protective film and polarizing plate
WO2016024553A1 (en) * 2014-08-11 2016-02-18 電気化学工業株式会社 Copolymer suitable for improving heat resistance of methacrylic resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101581A (en) * 2018-12-19 2020-07-02 株式会社日本触媒 Film with suppressed phase difference in thickness direction
JP7301534B2 (en) 2018-12-19 2023-07-03 株式会社日本触媒 Optical film with reduced retardation in the thickness direction

Also Published As

Publication number Publication date
KR102261383B1 (en) 2021-06-07
TWI726126B (en) 2021-05-01
JPWO2018016306A1 (en) 2019-05-09
CN109476899A (en) 2019-03-15
KR20190032447A (en) 2019-03-27
CN109476899B (en) 2020-12-22
JP6890126B2 (en) 2021-06-18
TW201829602A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6055832B2 (en) Copolymer for improving heat resistance of methacrylic resin
JP5190564B2 (en) Acrylic thermoplastic resin composition and molded article thereof
JPWO2009031544A1 (en) Thermoplastic copolymer resin and optical molded body thereof
TWI607024B (en) Optical compensation film
US9365713B2 (en) Copolymer for improving heat resistance of aromatic vinyl-vinyl cyanide resin
JP6587620B2 (en) Copolymer suitable for improving heat resistance of methacrylic resin
JP2008050536A (en) Resin composition and optical molded product
JP2012208136A (en) Resin composition for optical molded article and optical molded article thereof
JP6890126B2 (en) A resin composition and a film composed of the resin composition.
JP5010184B2 (en) Optical molded body
JP2008268929A (en) Resin composition for optical element
JP6646445B2 (en) Copolymer for optical film
JP5919611B2 (en) Retardation plate with low photoelastic coefficient
JP4863744B2 (en) Optical molded body
JP6711914B2 (en) Wide viewing angle high contrast optical compensation film
JP2007224130A (en) Optical molded item
WO2016186121A1 (en) Transparent resin composition, and manufacturing method for same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018528473

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004812

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17830826

Country of ref document: EP

Kind code of ref document: A1