WO2018016241A1 - Ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device Download PDF

Info

Publication number
WO2018016241A1
WO2018016241A1 PCT/JP2017/022083 JP2017022083W WO2018016241A1 WO 2018016241 A1 WO2018016241 A1 WO 2018016241A1 JP 2017022083 W JP2017022083 W JP 2017022083W WO 2018016241 A1 WO2018016241 A1 WO 2018016241A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
level
ultrasonic diagnostic
adjustment
Prior art date
Application number
PCT/JP2017/022083
Other languages
French (fr)
Japanese (ja)
Inventor
諭 田中
智子 竹中
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018016241A1 publication Critical patent/WO2018016241A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and more particularly to adjustment of a biological signal processing circuit.
  • the ultrasonic diagnostic apparatus is a medical apparatus that forms an ultrasonic image based on a reception signal obtained by transmitting / receiving ultrasonic waves to / from a living body.
  • an electrocardiogram (Signal) is sent from an electrocardiogram monitor (electrocardiograph) to the ultrasonic diagnostic apparatus.
  • An electrocardiographic signal is displayed as a waveform along with a tomographic image of the heart on the display of the ultrasonic diagnostic apparatus.
  • a biological signal other than the electrocardiogram signal for example, a pulse wave signal (Pulse Wave Signal), a heart sound signal (Phonocardiogram Signal), or the like may be measured.
  • an ultrasonic diagnostic apparatus is provided with an input port for receiving a biological signal, and a biological signal input from the input port is sent to a host controller via a biological signal processing circuit.
  • the biological signal processing circuit usually includes an amplification circuit that amplifies an analog signal as a biological signal, a level adjustment circuit (offset adjustment circuit) that adjusts a DC level (offset) of the analog signal input to the amplification circuit, and an amplification circuit.
  • a conversion circuit for converting the analog signal into a digital signal The digital signal is sent to the host controller.
  • the level adjustment circuit is for adjusting the DC level (offset) of the analog signal input thereto to the input reference level of the amplifier circuit (generally a level at which the amplification factor becomes zero). If the DC level is deviated from the input reference level, the DC level of the biological signal moves when the gain in the amplifier circuit is varied. As a result, the waveform of the biological signal moves up and down on the screen. End up. If the DC level of the input signal matches the input reference level, such a problem does not occur. In the conventional ultrasonic diagnostic apparatus, when an electrocardiogram monitor is connected, the offset adjustment is manually performed while observing the biological signal waveform displayed on the screen, and then the gain is adjusted. After such adjustment, an ultrasound diagnosis was performed.
  • Patent Document 1 describes an ultrasonic diagnostic apparatus that displays an electrocardiographic waveform together with an ultrasonic image. When the electrocardiogram waveform is displayed, the amplitude is automatically adjusted.
  • Patent Document 2 also describes an ultrasonic diagnostic apparatus that automatically adjusts the amplitude of an electrocardiographic waveform. However, Patent Documents 1 and 2 do not describe automatic adjustment of the DC level.
  • Patent Document 3 describes an optical disk reproducing apparatus.
  • the apparatus includes a circuit that automatically adjusts the level of the optical pickup signal and a circuit that automatically adjusts the gain of the optical pickup signal after the level adjustment.
  • the optical pickup signal is not a signal displayed as a waveform on the screen. In the first place, the optical pickup signal is very different from the biological signal in terms of signal characteristics.
  • An object of the present invention is to reduce or eliminate the burden on the user in adjusting the biological signal processing circuit.
  • an object of the present invention is to naturally optimize the DC level of the biological signal and the amplitude of the biological signal.
  • the biological signal processing circuit can be easily adjusted.
  • the ultrasonic diagnostic apparatus is provided between an input port to which a biological signal measuring device is connected, an amplification circuit that amplifies an analog signal from the input port, and the input port and the amplification circuit.
  • a level adjustment circuit that adjusts a DC level of an analog signal input to the amplifier circuit; a conversion circuit that converts the analog signal output from the amplifier circuit into a digital signal; and when the adjustment mode is executed, based on the digital signal
  • a control circuit for adjusting the DC level of the analog signal after level adjustment to the input reference level of the amplifier circuit by controlling the operation of the level adjustment circuit.
  • the control circuit feedback-controls the DC level (offset) of the analog signal input to the amplifier circuit based on the digital signal.
  • the DC level of the analog signal input to the amplifier circuit is adapted to the input reference level in the amplifier circuit.
  • the input reference level is desirably a level at which the gain (amplification factor) becomes zero. Since the digital signal sent to the host controller is referenced, accurate adjustment can be performed.
  • the polarity of the biological signal may be determined and controlled accordingly.
  • the control circuit obtains a representative amplitude value from one or a plurality of waveform flat sections in the digital signal, and controls the operation of the level adjustment circuit based on the representative amplitude value. Since the DC level can be regarded as a level within the waveform flat section, a representative amplitude value (for example, an average value) is obtained from the waveform flat portion. One sampling may be performed for each waveform flat section, or a plurality of samplings may be performed.
  • control circuit adjusts the gain of the amplifier circuit after adjusting the DC level to the input reference level. Thereby, gain adjustment can be performed correctly.
  • the conversion circuit is a first conversion circuit that converts an analog signal output from the amplifier circuit into a first digital signal
  • the ultrasonic diagnostic apparatus further includes an analog signal output from the amplifier circuit.
  • An extraction circuit that extracts a signal component for generating a synchronization signal from a signal, a second conversion circuit that converts the signal component for generating a synchronization signal into a second digital signal, and a peak value indicated by the second digital signal as a threshold value
  • a synchronization signal generation circuit that generates a synchronization signal by comparing, and the control circuit in the amplifier circuit so that a peak value indicated by the second digital signal exceeds the threshold value when the adjustment mode is executed. Adjust the gain.
  • the DC level is adjusted based on the first digital signal output from the first conversion circuit, and the gain is adjusted based on the second digital signal output from the second conversion circuit.
  • Each peak value constituting the second digital signal is compared with a threshold value, thereby generating a synchronization signal.
  • the gain is adjusted to reach a target value higher than the threshold value so that the peak value exceeds the threshold value. Thereby, a synchronizing signal can be generated appropriately.
  • the adjustment mode is executed in a state where a signal source that provides a dummy signal to the biological signal measurement device is included and the dummy signal is supplied to the biological signal measurement device.
  • a biological signal is acquired from a living body for adjustment of the biological signal processing circuit, problems such as giving a burden to the person arise. If a signal source is used, such a burden does not occur.
  • electrodes and the like are actually installed on the subject, and a biological signal is acquired.
  • a set value set of level and gain may be stored for each biological signal measuring device, and when any one of the biological signal measuring devices is connected, the corresponding set value set may be read and set.
  • an ultrasonic diagnostic apparatus includes a probe that transmits and receives ultrasonic waves, and an apparatus main body to which the probe is connected and forms an ultrasonic image based on a reception signal from the probe, and the apparatus main body Includes the input port, the amplifier circuit, the level adjustment circuit, the conversion circuit, and the control circuit.
  • FIG. 1 is a block diagram showing an embodiment of an ultrasonic diagnostic apparatus according to the present invention. It is a figure which shows the 1st structural example of a biological signal processing circuit. It is a figure for demonstrating level adjustment and gain adjustment. It is a figure for demonstrating the calculation method of DC level average value. It is a figure for demonstrating the calculation method of a peak average value. It is a flowchart which shows the operation example of a circuit adjustment part. It is a block diagram which shows the ultrasonic diagnosing device which concerns on other embodiment. It is a figure for demonstrating adjustment by a dummy signal. It is a figure which shows the 2nd structural example of a biological signal processing circuit.
  • FIG. 1 shows an embodiment of an ultrasonic diagnostic apparatus according to the present invention.
  • An ultrasonic diagnostic apparatus is a medical apparatus installed in a medical institution or the like.
  • the ultrasonic diagnostic apparatus includes an apparatus main body 10 and a probe 12.
  • the probe 12 has a 1D array transducer, and an ultrasonic beam is formed by the 1D array transducer.
  • the ultrasonic beam is electronically scanned.
  • an electronic scanning method an electronic linear scanning method, an electronic sector scanning method, and the like are known.
  • a 2D array transducer may be provided instead of the 1D array vibration.
  • the apparatus main body 10 is provided with a main body side connector 16, and a probe side connector is connected to the main body side connector 16.
  • the apparatus body 10 is provided with an input terminal (input port) 38 for receiving a biological signal.
  • an electrocardiogram monitor 37 is connected to the input terminal 38.
  • the electrocardiogram monitor 37 is a kind of biological signal measuring device.
  • the electrocardiogram monitor 37 generates an electrocardiogram signal from a voltage induced between a plurality of electrodes attached to the subject 14.
  • the transmission / reception unit 18 is an electronic circuit that functions as a transmission beam former and a reception beam former. At the time of transmission, a plurality of transmission signals are supplied in parallel from the transmission / reception unit 18 to the array transducer. As a result, a transmission beam is formed by the action of the array transducer. At the time of reception, when a reflected wave from the living body is received by the array transducer, a plurality of received signals are output from the array transducer to the transmission / reception unit 18 in parallel. The transmission / reception unit 18 performs phasing addition of a plurality of reception signals, thereby generating beam data corresponding to the reception beam.
  • the beam data processing unit 20 has a known circuit configuration such as a detection circuit and a logarithmic conversion circuit, and sequentially processes input beam data.
  • the image forming unit 22 generates display frame data by coordinate conversion, interpolation processing, and the like based on a plurality of beam data (received frame data) arranged in the electronic scanning direction.
  • the display frame data constitutes a tomographic image.
  • the image data is sent to the display device 26 via the display processing unit 24, and a tomographic image is displayed on the display device 26. Other ultrasound images may be displayed.
  • the display 26 is configured by an LCD, an organic EL device, or the like.
  • the biological signal processing circuit 40 is a circuit that processes an analog signal (biological signal) input via the input terminal 38. Specifically, an electronic circuit that amplifies the analog signal and converts it into a digital signal. It is. Prior to amplification, the DC level of the analog signal is adjusted.
  • the biological signal processing circuit 40 has two processing systems in the present embodiment, and thereby, a first digital signal representing a biological signal waveform and a second digital signal representing an extracted R wave component are included. Has been generated. Those signals are output to the host controller 30.
  • the host controller 30 functions as a control circuit.
  • the host controller is configured by a CPU and an operation program.
  • the host controller 30 controls the operation of each component in the apparatus main body 10.
  • the host controller 30 processes two digital signals output from the biological signal processing circuit 40.
  • the host controller 30 performs feedback adjustment of the operation of the biological signal processing circuit 40.
  • a normal mode for processing a biological signal is executed.
  • the host controller 30 Based on the first digital signal, the host controller 30 generates a waveform image to be combined with the ultrasonic image in order to display the waveform of the biological signal on the screen of the display unit 26.
  • the host controller 30 also generates an R wave synchronization signal based on the second digital signal (R wave extraction signal).
  • the function is represented as a synchronization signal generator 34.
  • the R wave synchronization signal is used when an operation synchronized with the heartbeat is performed.
  • the host controller 30 adjusts the operation of the biological signal processing circuit 40 when the adjustment mode is executed.
  • This function is expressed as a circuit adjustment unit 32.
  • the circuit adjustment unit 32 has a level (offset) automatic adjustment function and a gain (amplification factor) automatic adjustment function.
  • the circuit adjustment unit 32 includes a storage unit 36 that stores a set value set after adjustment.
  • the storage unit 36 may be provided outside the host controller 30.
  • a biological signal obtained from the subject (subject) 14 may be used, but an abnormality may be included in the biological signal (appropriate adjustment cannot be performed). Therefore, it is desirable to optimize the operation of the biological signal processing circuit 40 based on the biological signal obtained from the healthy person, instead of the subject. If the adjustment is completed in advance for each biological signal measuring device and the result is stored, the operation of the biological signal processing circuit 40 can be quickly optimized using the corresponding result when the biological signal measuring device is connected. . That is, a set value set consisting of a set value when an optimum level is obtained and a set value when an optimum gain is obtained is stored on the storage unit 36 for each biological signal measuring device.
  • the type when the biological signal measuring device is connected, the type may be recognized, the set value set corresponding to the type may be read, and these may be actually set.
  • a signal source in place of the subject 14 may be prepared in the apparatus main body 10 or outside. This will be described later with reference to FIG.
  • FIG. 2 shows a first configuration example of the biological signal processing circuit 40.
  • An analog signal 52 is input to the level adjustment circuit 42. It is a biological signal, and in this embodiment is an electrocardiogram signal output from an electrocardiogram monitor.
  • the level adjustment circuit 42 functions as a level shifter for adjusting the DC level (offset level) of the analog signal 54 input to the subsequent amplification circuit 44 to the amplification factor zero level at the input of the amplification circuit 44.
  • a level control signal 64 is output from the host controller, and the value of the potentiometer (digital potentiometer) 42a in the level adjustment circuit 42 is variably set by the level control signal 64. As a result, the DC level is manipulated.
  • the amplification circuit 44 is a circuit that amplifies the input analog signal 54.
  • the amplifier circuit 44 amplifies both positive and negative polarities. If the DC level of the analog signal 54 matches the zero gain level (input reference level) on the input side, even if the gain, that is, the gain, is varied, the amplified signal output from the amplifier circuit 44 is amplified. The DC level in the analog signal does not move up and down.
  • the amplification factor zero level is set to the intermediate level of the input side opening (Input Range) of the ADC 46 in the subsequent stage.
  • the amplification circuit 44 includes a potentiometer (digital potentiometer) 44a. When the adjustment mode is executed, gain adjustment is executed after level adjustment.
  • an amplification control signal 66 is output from the host controller.
  • the value of the potentiometer 44a is variably set by the amplification control signal 66.
  • the amplification factor is determined so that the amplitude of the R wave extraction signal 62 that is the second digital signal is appropriate.
  • the ADC 46 is a conversion circuit that converts the analog signal 56 into the first digital signal 60.
  • the level adjustment and the gain adjustment are performed as described above so that the DC level and gain of the analog signal input thereto are appropriate for the input side opening of the ADC 46.
  • the BPF (band pass filter) 48 is a filter that extracts an R wave component in the electrocardiogram signal.
  • the extracted component is sent to the ADC 50 and converted into an R-wave extraction signal 62 as a second digital signal.
  • the host controller Based on the R-wave extraction signal 62, the host controller generates an R-wave synchronization signal.
  • the digital signal 60 as the first digital signal is referred to at the time of level adjustment
  • the R wave extraction signal 62 as the second digital signal is referred to at the time of gain adjustment.
  • the R wave synchronization signal may be directly generated based on the digital signal 46 without the BPF 48 and the ADC 50.
  • a DAC may be provided instead of each of the potentiometers 42a and 44a. Adjustments may be made with other configurations.
  • FIG. 3 shows an electrocardiogram signal 68 before adjustment and an electrocardiogram signal 74 after adjustment.
  • the horizontal axis is the time axis, and the vertical axis indicates the input side voltage of the amplifier circuit.
  • the voltage range 76 is between 0 and 3.3V, and its intermediate level is 1.65V.
  • the intermediate level is a reference level 75 at which the amplification factor is zero.
  • level adjustment indicated by reference numeral 70 is performed on the electrocardiogram signal 68 before adjustment. That is, the DC level of the electrocardiogram signal 68 is adjusted to the reference level 75. As a result, the DC level does not change even if the gain is changed. Subsequently, the gain is adjusted, and the amplitude of the electrocardiogram signal is optimized as indicated by reference numeral 72. Specifically, the gain is adjusted so that the peak value in the R wave extraction signal exceeds the threshold value, and more specifically, the peak value reaches the target value above the threshold value. As a result of the adjustment, an electrocardiogram signal 74 is obtained. After the adjustment is completed, an ultrasonic diagnosis (inspection mode) is performed.
  • FIG. 4 shows an example of the level adjustment method. This process is executed by the host controller.
  • a time window having a predetermined time T1 (for example, 1.5 sec) is sequentially set for the electrocardiogram waveform (first digital signal) 68 before the adjustment is completed, and a plurality of sections 78 are set in each time window. .
  • the time length of each section 78 is ⁇ T (for example, 100 msec).
  • ⁇ T for example, 100 msec
  • Reference numeral 80 indicates a determination result for each section 78. OK or NG determination is made for each section.
  • a DC level average value 82 is calculated as a representative value to be referred to in feedback control based on one or a plurality of sections in which OK is determined. For example, the voltage is sampled at one or a plurality of points for each section in which OK is determined, and the DC level average value 82 is calculated based on the plurality of sampled voltages.
  • the DC level based only on the portion where flatness is recognized, that is, ignoring the waveform change portion.
  • Other methods for example, a smoothing method and a filter method
  • the polarity of the biological signal may be reversed, it is desirable to adopt a method that can cope with such a case.
  • FIG. 5 shows an example of the gain adjustment method. This process is also executed by the host controller.
  • the R wave extraction signal (second digital signal) 84 after the level adjustment has a plurality of peaks (or peak rows) 86 corresponding to the R wave.
  • the horizontal axis is the time axis, and the vertical axis indicates the digital peak value (absolute value).
  • a time window having a certain time is sequentially set for the R wave extraction signal 84. Within each time window, peak values (absolute values) of a plurality of peaks are referred to, and a peak average value 94 is calculated based on them.
  • the gain is adjusted so that the peak average value 94 reaches the target value 90 that is higher than the threshold value 88, or so as to match (see reference numeral 92).
  • gain adjustment is performed based on the second digital signal that is the R-wave extraction signal, but gain adjustment can also be performed based on the first digital signal.
  • FIG. 6 shows a flowchart of an example of the operation of the host controller when executing the adjustment mode.
  • an average value (current DC level) of the flat portion in the first digital signal is calculated.
  • S12 it is determined whether or not the average value is within an allowable range as viewed from the reference level. If it is out of the allowable range, the level is changed by one step in S14, and the processes after S10 are executed. If it is determined in S12 that it is within the allowable range, a peak value (average value) is calculated based on the second digital signal in S16, and in S20, the peak value is within the allowable range based on the target value. It is determined whether or not. If it is outside the allowable range, the gain is changed by one step in S18, and the processes after S16 are repeatedly executed. In S20, if the peak value is within the allowable range, this process is terminated.
  • FIG. 7 shows a second configuration example of the ultrasonic diagnostic apparatus.
  • a pulse signal generator (signal source) 96 is provided in the apparatus main body 10.
  • the plurality of electrodes of the electrocardiogram monitor 37 are not attached to the subject 14, and weak dummy (simulated) signals from the pulse signal generator 96 are given to the plurality of electrodes.
  • the pseudo electrocardiogram signal output from the electrocardiogram monitor is given to the biological signal processing circuit 40, and its operation is adjusted. It is desirable to generate the pulse signal so that the pseudo ECG signal is as close as possible to the ECG signal of a healthy person.
  • the peak value of the pulse simulating the R wave is, for example, several mV.
  • FIG. 8 shows a pseudo electrocardiogram signal 98 before adjustment and a pseudo electrocardiogram signal 104 after adjustment.
  • the horizontal axis is the time axis, and the vertical axis indicates the voltage of the signal input to the amplifier circuit.
  • the pseudo electrocardiogram signal 98 has a plurality of pulses 100 and 102 simulating R waves. As indicated at 106, the DC level is first optimized and then the gain is optimized. Since the pulse form and generation time are known, sampling may be performed using the pulse form and generation time.
  • the start timing is 20 msec after the rising point of each pulse 100 and 1102, and the next pulse is generated from there.
  • a plurality of voltages may be sampled in the period immediately before the rise, and the DC level average value may be calculated based on these voltages.
  • the sampling time may be determined by using the fact that the pulse generation time is known.
  • FIG. 9 shows a second configuration example of the biological signal processing circuit.
  • the BPF 48 and the ADC 50 shown in FIG. 2 are not included. Otherwise, the configuration is the same as that shown in FIG. That is, this second configuration example does not perform R wave component extraction. Instead, an R wave synchronization signal is generated based on the digital signal 60 in the host controller. Since such a configuration is simple, advantages such as cost reduction can be obtained.
  • the burden on the user can be reduced or eliminated in the adjustment of the biological signal processing circuit.
  • the DC level of the biological signal and the amplitude of the biological signal can be optimized naturally.
  • other biological signals may be processed instead of the electrocardiographic signals.
  • signals include heart sound signals and pulse wave signals. If it is a biological signal including a component representing a heartbeat, a synchronization signal corresponding to the R-wave synchronization signal can be generated therefrom. Even for a biological signal that does not contain such a component (for example, a respiratory signal), it is possible to reduce the burden on the user by automating at least the former in level adjustment and gain adjustment, and preferably by automating both.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

In the present invention, a biosignal processing circuit includes a level adjustment circuit, an amplifier circuit, conversion circuits (ADCs), etc. In feedback control performed by the level adjustment circuit, the DC level of an analog signal to be inputted to the amplifier circuit is automatically adjusted to an input reference level of the amplifier circuit. Then, the gain of the amplifier circuit is adjusted such that a synchronization signal is properly generated.

Description

超音波診断装置Ultrasonic diagnostic equipment
 本発明は超音波診断装置に関し、特に生体信号処理回路の調整に関する。 The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to adjustment of a biological signal processing circuit.
 超音波診断装置は、生体に対する超音波の送受波により得られた受信信号に基づいて超音波画像を形成する医療装置である。例えば、心臓の超音波診断では、心電モニタ(心電計)から超音波診断装置へ心電信号(Electrocardiogram Signal)が送られる。超音波診断装置の表示器には、心臓の断層画像と共に心電信号が波形として表示される。心電信号以外の生体信号、例えば脈波信号(Pulse Wave Signal)、心音信号(Phonocardiogram Signal)等が計測されることもある。 The ultrasonic diagnostic apparatus is a medical apparatus that forms an ultrasonic image based on a reception signal obtained by transmitting / receiving ultrasonic waves to / from a living body. For example, in an ultrasonic diagnosis of the heart, an electrocardiogram (Signal) is sent from an electrocardiogram monitor (electrocardiograph) to the ultrasonic diagnostic apparatus. An electrocardiographic signal is displayed as a waveform along with a tomographic image of the heart on the display of the ultrasonic diagnostic apparatus. A biological signal other than the electrocardiogram signal, for example, a pulse wave signal (Pulse Wave Signal), a heart sound signal (Phonocardiogram Signal), or the like may be measured.
 一般に、超音波診断装置には、生体信号を受け入れる入力ポートが設けられており、その入力ポートから入力された生体信号が生体信号処理回路を経てホストコントローラへ送られる。生体信号処理回路は、通常、生体信号としてのアナログ信号を増幅する増幅回路、その増幅回路に入力されるアナログ信号のDCレベル(オフセット)を調整するレベル調整回路(オフセット調整回路)、増幅回路からのアナログ信号をデジタル信号に変換する変換回路、等を有している。そのデジタル信号がホストコントローラへ送られる。 Generally, an ultrasonic diagnostic apparatus is provided with an input port for receiving a biological signal, and a biological signal input from the input port is sent to a host controller via a biological signal processing circuit. The biological signal processing circuit usually includes an amplification circuit that amplifies an analog signal as a biological signal, a level adjustment circuit (offset adjustment circuit) that adjusts a DC level (offset) of the analog signal input to the amplification circuit, and an amplification circuit. A conversion circuit for converting the analog signal into a digital signal. The digital signal is sent to the host controller.
 レベル調整回路は、増幅回路の入力基準レベル(一般に増幅率ゼロとなるレベル)に対して、それに入力されるアナログ信号のDCレベル(オフセット)を合わせるためのものである。入力基準レベルに対してDCレベルがずれていると、増幅回路における利得を可変した場合に、生体信号のDCレベルが動いてしまい、結果として、画面上において生体信号の波形が上下方向に運動してしまう。入力基準レベルに対して入力信号のDCレベルが一致していれば、そのような問題は生じない。従来の超音波診断装置においては、心電モニタの接続時等において、画面表示される生体信号波形を観察しながら、マニュアルでオフセット調整がなされ、その上で利得調整がなされていた。そのような調整後、超音波診断が実施されていた。 The level adjustment circuit is for adjusting the DC level (offset) of the analog signal input thereto to the input reference level of the amplifier circuit (generally a level at which the amplification factor becomes zero). If the DC level is deviated from the input reference level, the DC level of the biological signal moves when the gain in the amplifier circuit is varied. As a result, the waveform of the biological signal moves up and down on the screen. End up. If the DC level of the input signal matches the input reference level, such a problem does not occur. In the conventional ultrasonic diagnostic apparatus, when an electrocardiogram monitor is connected, the offset adjustment is manually performed while observing the biological signal waveform displayed on the screen, and then the gain is adjusted. After such adjustment, an ultrasound diagnosis was performed.
 特許文献1には、超音波画像と共に心電波形を表示する超音波診断装置が記載されている。心電波形の表示に際してはその振幅の大きさが自動調整されている。特許文献2にも心電波形の振幅を自動調整する超音波診断装置が記載されている。しかし、特許文献1,2にはDCレベルの自動調整についてまでは記載されていない。 Patent Document 1 describes an ultrasonic diagnostic apparatus that displays an electrocardiographic waveform together with an ultrasonic image. When the electrocardiogram waveform is displayed, the amplitude is automatically adjusted. Patent Document 2 also describes an ultrasonic diagnostic apparatus that automatically adjusts the amplitude of an electrocardiographic waveform. However, Patent Documents 1 and 2 do not describe automatic adjustment of the DC level.
 なお、特許文献3には、光ディスク再生装置が記載されている。同装置は、光ピックアップ信号のレベルを自動調整する回路と、レベル調整後の光ピックアップ信号のゲインを自動調整する回路と、を備えている。光ピックアップ信号は画面上に波形として表示される信号ではない。そもそも光ピックアップ信号は信号性質上、生体信号とは大きく異なるものである。 Note that Patent Document 3 describes an optical disk reproducing apparatus. The apparatus includes a circuit that automatically adjusts the level of the optical pickup signal and a circuit that automatically adjusts the gain of the optical pickup signal after the level adjustment. The optical pickup signal is not a signal displayed as a waveform on the screen. In the first place, the optical pickup signal is very different from the biological signal in terms of signal characteristics.
特開2000-210228号公報JP 2000-210228 A 特開2001-104306号公報JP 2001-104306 A 特開2005- 92999号公報JP 2005-92999 A
 超音波診断装置において、超音波画像と共に生体信号を表示するためには、それに先立って、入力信号のDCレベルを調整(オフセット調整)する必要があるが、その作業をすべてマニュアルで行う場合、ユーザーに大きな負担がかかる。マニュアル調整によると、諸状況に適合した調整結果を必ずしも得られないという問題がある。利得又は増幅度の調整においても同様の問題を指摘できる。 In order to display a biological signal together with an ultrasonic image in an ultrasonic diagnostic apparatus, it is necessary to adjust (offset adjustment) the DC level of the input signal prior to that. Is a heavy burden. According to manual adjustment, there is a problem that adjustment results suitable for various situations cannot always be obtained. A similar problem can be pointed out in the adjustment of gain or amplification.
 本発明の目的は、生体信号処理回路の調整においてユーザーの負担を軽減又は解消することにある。あるいは、本発明の目的は、生体信号のDCレベル及び生体信号の振幅が自然に最適化されるようにすることにある。あるいは、生体信号処理回路の調整を簡便に行えるようにすることにある。 An object of the present invention is to reduce or eliminate the burden on the user in adjusting the biological signal processing circuit. Alternatively, an object of the present invention is to naturally optimize the DC level of the biological signal and the amplitude of the biological signal. Alternatively, the biological signal processing circuit can be easily adjusted.
 実施形態に係る超音波診断装置は、生体信号測定装置が接続される入力ポートと、前記入力ポートからのアナログ信号を増幅する増幅回路と、前記入力ポートと前記増幅回路との間に設けられ、前記増幅回路へ入力されるアナログ信号のDCレベルを調整するレベル調整回路と、前記増幅回路から出力されたアナログ信号をデジタル信号に変換する変換回路と、調整モード実行時において、前記デジタル信号に基づいて前記レベル調整回路の動作を制御することにより、前記レベル調整後のアナログ信号のDCレベルを前記増幅回路の入力基準レベルに合わせる制御回路と、を含む。 The ultrasonic diagnostic apparatus according to the embodiment is provided between an input port to which a biological signal measuring device is connected, an amplification circuit that amplifies an analog signal from the input port, and the input port and the amplification circuit. A level adjustment circuit that adjusts a DC level of an analog signal input to the amplifier circuit; a conversion circuit that converts the analog signal output from the amplifier circuit into a digital signal; and when the adjustment mode is executed, based on the digital signal And a control circuit for adjusting the DC level of the analog signal after level adjustment to the input reference level of the amplifier circuit by controlling the operation of the level adjustment circuit.
 上記構成によれば、制御回路が、デジタル信号に基づいて、増幅回路へ入力されるアナログ信号のDCレベル(オフセット)をフィードバック制御する。具体的には、増幅回路における入力基準レベルに対して、増幅回路に入力されるアナログ信号のDCレベルが適合される。入力基準レベルは、望ましくは、利得(増幅率)がゼロとなるレベルである。ホストコントローラに送られるデジタル信号を参照しているので、正確な調整を行える。生体信号の極性を判定し、それに応じて制御するようにしてもよい。 According to the above configuration, the control circuit feedback-controls the DC level (offset) of the analog signal input to the amplifier circuit based on the digital signal. Specifically, the DC level of the analog signal input to the amplifier circuit is adapted to the input reference level in the amplifier circuit. The input reference level is desirably a level at which the gain (amplification factor) becomes zero. Since the digital signal sent to the host controller is referenced, accurate adjustment can be performed. The polarity of the biological signal may be determined and controlled accordingly.
 実施形態において、前記制御回路は、前記デジタル信号中の1又は複数の波形平坦区間から代表振幅値を求め、その代表振幅値に基づいて前記レベル調整回路の動作を制御する。DCレベルは波形平坦区間内のレベルであるとみなせるので、波形平坦部分から代表振幅値(例えば平均値)を求めるものである。波形平坦区間ごとに1つのサンプリングが行われてもよいし、複数のサンプリングが行われてもよい。 In the embodiment, the control circuit obtains a representative amplitude value from one or a plurality of waveform flat sections in the digital signal, and controls the operation of the level adjustment circuit based on the representative amplitude value. Since the DC level can be regarded as a level within the waveform flat section, a representative amplitude value (for example, an average value) is obtained from the waveform flat portion. One sampling may be performed for each waveform flat section, or a plurality of samplings may be performed.
 実施形態において、前記制御回路は、前記DCレベルを前記入力基準レベルに合わせた後に前記増幅回路の利得を調整する。これにより利得調整を正しく行える。 In the embodiment, the control circuit adjusts the gain of the amplifier circuit after adjusting the DC level to the input reference level. Thereby, gain adjustment can be performed correctly.
 実施形態において、前記変換回路は、前記増幅回路から出力されたアナログ信号を第1デジタル信号に変換する第1変換回路であり、当該超音波診断装置は、更に、前記増幅回路から出力されたアナログ信号から同期信号生成用の信号成分を抽出する抽出回路と、前記同期信号生成用の信号成分を第2デジタル信号に変換する第2変換回路と、前記第2デジタル信号が示す波高値を閾値と比較することにより同期信号を生成する同期信号生成回路と、を含み、前記制御回路は、前記調整モード実行時において、前記第2デジタル信号が示す波高値が前記閾値を超えるように前記増幅回路における利得を調整する。 In the embodiment, the conversion circuit is a first conversion circuit that converts an analog signal output from the amplifier circuit into a first digital signal, and the ultrasonic diagnostic apparatus further includes an analog signal output from the amplifier circuit. An extraction circuit that extracts a signal component for generating a synchronization signal from a signal, a second conversion circuit that converts the signal component for generating a synchronization signal into a second digital signal, and a peak value indicated by the second digital signal as a threshold value A synchronization signal generation circuit that generates a synchronization signal by comparing, and the control circuit in the amplifier circuit so that a peak value indicated by the second digital signal exceeds the threshold value when the adjustment mode is executed. Adjust the gain.
 上記構成によれば、第1変換回路から出力された第1デジタル信号に基づいてDCレベルが調整され、第2変換回路から出力された第2デジタル信号に基づいて利得が調整される。第2デジタル信号を構成する各波高値は閾値と比較されて、これにより同期信号が生成される。ピーク波高値が閾値を超えるように、望ましくは、閾値よりも高い目標値に達するように、利得が調整される。これにより同期信号を適切に生成できる。 According to the above configuration, the DC level is adjusted based on the first digital signal output from the first conversion circuit, and the gain is adjusted based on the second digital signal output from the second conversion circuit. Each peak value constituting the second digital signal is compared with a threshold value, thereby generating a synchronization signal. The gain is adjusted to reach a target value higher than the threshold value so that the peak value exceeds the threshold value. Thereby, a synchronizing signal can be generated appropriately.
 実施形態において、前記生体信号測定装置に対してダミー信号を与える信号源を含み、前記生体信号測定装置に対して前記ダミー信号を与えた状態において前記調整モードが実行される。生体信号処理回路の調整のために、生体から生体信号を取得すると、同人に負担を与えてしまう等の問題が生じる。信号源を利用すれば、そのような負担が生じない。調整モードの実行後に、実際に被検者に電極等が設置されて、生体信号が取得される。 In an embodiment, the adjustment mode is executed in a state where a signal source that provides a dummy signal to the biological signal measurement device is included and the dummy signal is supplied to the biological signal measurement device. When a biological signal is acquired from a living body for adjustment of the biological signal processing circuit, problems such as giving a burden to the person arise. If a signal source is used, such a burden does not occur. After execution of the adjustment mode, electrodes and the like are actually installed on the subject, and a biological signal is acquired.
 レベル及び利得の設定値セットを生体信号測定装置ごとに記憶しておき、いずれかの生体信号測定装置が接続された時点で、それに対応する設定値セットを読み出してセットするようにしてもよい。 A set value set of level and gain may be stored for each biological signal measuring device, and when any one of the biological signal measuring devices is connected, the corresponding set value set may be read and set.
 実施形態において、超音波診断装置は、超音波を送受波するプローブと、前記プローブが接続され、前記プローブからの受信信号に基づいて超音波画像を形成する装置本体と、を含み、前記装置本体は、前記入力ポート、前記増幅回路、前記レベル調整回路、前記変換回路及び前記制御回路を有する。 In an embodiment, an ultrasonic diagnostic apparatus includes a probe that transmits and receives ultrasonic waves, and an apparatus main body to which the probe is connected and forms an ultrasonic image based on a reception signal from the probe, and the apparatus main body Includes the input port, the amplifier circuit, the level adjustment circuit, the conversion circuit, and the control circuit.
本発明に係る超音波診断装置の実施形態を示すブロック図である。1 is a block diagram showing an embodiment of an ultrasonic diagnostic apparatus according to the present invention. 生体信号処理回路の第1構成例を示す図である。It is a figure which shows the 1st structural example of a biological signal processing circuit. レベル調整及び利得調整を説明するための図である。It is a figure for demonstrating level adjustment and gain adjustment. DCレベル平均値の演算方法を説明するための図である。It is a figure for demonstrating the calculation method of DC level average value. ピーク平均値の演算方法を説明するための図である。It is a figure for demonstrating the calculation method of a peak average value. 回路調整部の動作例を示すフローチャートである。It is a flowchart which shows the operation example of a circuit adjustment part. 他の実施形態に係る超音波診断装置を示すブロック図である。It is a block diagram which shows the ultrasonic diagnosing device which concerns on other embodiment. ダミー信号による調整を説明するための図である。It is a figure for demonstrating adjustment by a dummy signal. 生体信号処理回路の第2構成例を示す図である。It is a figure which shows the 2nd structural example of a biological signal processing circuit.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1には、本発明に係る超音波診断装置の実施形態が示されている。超音波診断装置は、医療機関等に設置される医療装置である。 FIG. 1 shows an embodiment of an ultrasonic diagnostic apparatus according to the present invention. An ultrasonic diagnostic apparatus is a medical apparatus installed in a medical institution or the like.
 図1において、超音波診断装置は、装置本体10とプローブ12とを含む。プローブ12は、1Dアレイ振動子を有し、その1Dアレイ振動子によって超音波ビームが形成される。その超音波ビームは電子走査される。電子走査方式として、電子リニア走査方式、電子セクタ走査方式等が知られている。1Dアレイ振動に代えて2Dアレイ振動子を設けてもよい。装置本体10には本体側コネクタ16が設けられており、その本体側コネクタ16に対してプローブ側コネクタが接続される。 1, the ultrasonic diagnostic apparatus includes an apparatus main body 10 and a probe 12. The probe 12 has a 1D array transducer, and an ultrasonic beam is formed by the 1D array transducer. The ultrasonic beam is electronically scanned. As an electronic scanning method, an electronic linear scanning method, an electronic sector scanning method, and the like are known. A 2D array transducer may be provided instead of the 1D array vibration. The apparatus main body 10 is provided with a main body side connector 16, and a probe side connector is connected to the main body side connector 16.
 装置本体10には、生体信号を受け入れる入力端子(入力ポート)38が設けられている。入力端子38には、図示の例では、心電モニタ37が接続されている。心電モニタ37は、生体信号測定装置の一種である。心電モニタ37は、被検体14に対して装着された複数の電極の間に誘起される電圧から心電信号を生成する。 The apparatus body 10 is provided with an input terminal (input port) 38 for receiving a biological signal. In the illustrated example, an electrocardiogram monitor 37 is connected to the input terminal 38. The electrocardiogram monitor 37 is a kind of biological signal measuring device. The electrocardiogram monitor 37 generates an electrocardiogram signal from a voltage induced between a plurality of electrodes attached to the subject 14.
 装置本体10の構成について説明する。送受信部18は、送信ビームフォーマー及び受信ビームフォーマーとして機能する電子回路である。送信時において、送受信部18からアレイ振動子へ複数の送信信号が並列的に供給される。これによりアレイ振動子の作用により送信ビームが形成される。受信時において、生体内からの反射波がアレイ振動子にて受波されると、アレイ振動子から複数の受信信号が並列的に送受信部18へ出力される。送受信部18においては、複数の受信信号を整相加算し、これにより受信ビームに相当するビームデータを生成する。 The configuration of the apparatus body 10 will be described. The transmission / reception unit 18 is an electronic circuit that functions as a transmission beam former and a reception beam former. At the time of transmission, a plurality of transmission signals are supplied in parallel from the transmission / reception unit 18 to the array transducer. As a result, a transmission beam is formed by the action of the array transducer. At the time of reception, when a reflected wave from the living body is received by the array transducer, a plurality of received signals are output from the array transducer to the transmission / reception unit 18 in parallel. The transmission / reception unit 18 performs phasing addition of a plurality of reception signals, thereby generating beam data corresponding to the reception beam.
 ビームデータ処理部20は、検波回路、対数変換回路等の公知の回路構成を有し、入力されるビームデータを順次処理する。画像形成部22は、電子走査方向に並ぶ複数のビームデータ(受信フレームデータ)に基づいて、座標変換、補間処理等により、表示フレームデータを生成する。表示フレームデータは断層画像を構成するものである。その画像データが表示処理部24を介して表示器26へ送られ、表示器26において断層画像が表示される。他の超音波画像が表示されてもよい。表示器26は、LCD、有機ELデバイス等によって構成される。 The beam data processing unit 20 has a known circuit configuration such as a detection circuit and a logarithmic conversion circuit, and sequentially processes input beam data. The image forming unit 22 generates display frame data by coordinate conversion, interpolation processing, and the like based on a plurality of beam data (received frame data) arranged in the electronic scanning direction. The display frame data constitutes a tomographic image. The image data is sent to the display device 26 via the display processing unit 24, and a tomographic image is displayed on the display device 26. Other ultrasound images may be displayed. The display 26 is configured by an LCD, an organic EL device, or the like.
 生体信号処理回路40は、入力端子38を介して入力されたアナログ信号(生体信号)を処理する回路であり、具体的には、アナログ信号を増幅した上でそれをデジタル信号に変換する電子回路である。増幅に先立ってアナログ信号のDCレベルが調整される。生体信号処理回路40は、本実施形態において2つの処理系統を有しており、それらによって、生体信号波形を表す第1デジタル信号と、抽出されたR波成分を表す第2デジタル信号と、が生成されている。それらの信号はホストコントローラ30へ出力されている。 The biological signal processing circuit 40 is a circuit that processes an analog signal (biological signal) input via the input terminal 38. Specifically, an electronic circuit that amplifies the analog signal and converts it into a digital signal. It is. Prior to amplification, the DC level of the analog signal is adjusted. The biological signal processing circuit 40 has two processing systems in the present embodiment, and thereby, a first digital signal representing a biological signal waveform and a second digital signal representing an extracted R wave component are included. Has been generated. Those signals are output to the host controller 30.
 ホストコントローラ30は制御回路として機能する。ホストコントローラは、図示の構成例では、CPU及び動作プログラムによって構成される。ホストコントローラ30は装置本体10内の各構成の動作を制御するものである。また、ホストコントローラ30は、生体信号処理回路40から出力される2つのデジタル信号を処理する。調整モードの実行時において、ホストコントローラ30は、生体信号処理回路40の動作をフィードバック調整する。調整モードの実行後に、生体信号を処理する通常モードが実行される。 The host controller 30 functions as a control circuit. In the illustrated configuration example, the host controller is configured by a CPU and an operation program. The host controller 30 controls the operation of each component in the apparatus main body 10. In addition, the host controller 30 processes two digital signals output from the biological signal processing circuit 40. During execution of the adjustment mode, the host controller 30 performs feedback adjustment of the operation of the biological signal processing circuit 40. After execution of the adjustment mode, a normal mode for processing a biological signal is executed.
 具体的に説明する。ホストコントローラ30は、第1デジタル信号に基づいて、生体信号の波形を表示器26の画面上に表示するために、超音波画像に合成される波形イメージを生成する。また、ホストコントローラ30は、第2デジタル信号(R波抽出信号)に基づいてR波同期信号を生成する。その機能が同期信号生成部34として表されている。R波同期信号は心拍に同期した動作を行う場合に利用される。 Specific explanation. Based on the first digital signal, the host controller 30 generates a waveform image to be combined with the ultrasonic image in order to display the waveform of the biological signal on the screen of the display unit 26. The host controller 30 also generates an R wave synchronization signal based on the second digital signal (R wave extraction signal). The function is represented as a synchronization signal generator 34. The R wave synchronization signal is used when an operation synchronized with the heartbeat is performed.
 本実施形態においては、ホストコントローラ30は、調整モードの実行時において、生体信号処理回路40の動作を調整する。その機能が回路調整部32として表現されている。回路調整部32は、レベル(オフセット)自動調整機能、及び、利得(増幅率)自動調整機能を有する。回路調整部32は、調整後の設定値セットを格納しておく記憶部36を有する。記憶部36がホストコントローラ30の外部に設けられてもよい。 In the present embodiment, the host controller 30 adjusts the operation of the biological signal processing circuit 40 when the adjustment mode is executed. This function is expressed as a circuit adjustment unit 32. The circuit adjustment unit 32 has a level (offset) automatic adjustment function and a gain (amplification factor) automatic adjustment function. The circuit adjustment unit 32 includes a storage unit 36 that stores a set value set after adjustment. The storage unit 36 may be provided outside the host controller 30.
 調整モードの実行時においては、被検体(被検者)14から得られた生体信号を利用してもよいが、その生体信号に異常が含まれることも考えられるので(適切な調整を行えないことも考えられるので)、被検者に代えて健常者を測定対象とし、健常者から得られた生体信号に基づいて生体信号処理回路40の動作を最適化するのが望ましい。生体信号測定装置ごとに事前に調整を完了させ、その結果を記憶しておけば、生体信号測定装置の接続時にそれに対応する結果を利用して生体信号処理回路40の動作を速やかに最適化できる。すなわち、記憶部36上に、生体信号測定装置ごとに、最適なレベルが得られた時点での設定値と最適な利得が得られた時点での設定値とからなる設定値セットを格納しておき、生体信号測定装置が接続された時点で、その種別を認識し、それに対応する設定値セットを読み出し、それらを実際に設定するようにしてもよい。装置本体10の中に又は外部に被検体14に代わる信号源を用意してもよい。これに関しては後に図7を用いて説明する。 At the time of execution of the adjustment mode, a biological signal obtained from the subject (subject) 14 may be used, but an abnormality may be included in the biological signal (appropriate adjustment cannot be performed). Therefore, it is desirable to optimize the operation of the biological signal processing circuit 40 based on the biological signal obtained from the healthy person, instead of the subject. If the adjustment is completed in advance for each biological signal measuring device and the result is stored, the operation of the biological signal processing circuit 40 can be quickly optimized using the corresponding result when the biological signal measuring device is connected. . That is, a set value set consisting of a set value when an optimum level is obtained and a set value when an optimum gain is obtained is stored on the storage unit 36 for each biological signal measuring device. Alternatively, when the biological signal measuring device is connected, the type may be recognized, the set value set corresponding to the type may be read, and these may be actually set. A signal source in place of the subject 14 may be prepared in the apparatus main body 10 or outside. This will be described later with reference to FIG.
 図2には、生体信号処理回路40の第1構成例が示されている。レベル調整回路42にはアナログ信号52が入力されている。それは、生体信号であり、本実施形態では、心電モニタから出力された心電信号である。レベル調整回路42は、後段の増幅回路44に入力されるアナログ信号54のDCレベル(オフセットレベル)を増幅回路44の入力における増幅率ゼロレベルに合わせるためのレベルシフターとして機能する。調整モードの実行時において、ホストコントローラからレベル制御信号64が出力され、そのレベル制御信号64によってレベル調整回路42内のポテンショメータ(デジタルポテンショメータ)42aの値が可変設定される。これによりDCレベルが操作される。 FIG. 2 shows a first configuration example of the biological signal processing circuit 40. An analog signal 52 is input to the level adjustment circuit 42. It is a biological signal, and in this embodiment is an electrocardiogram signal output from an electrocardiogram monitor. The level adjustment circuit 42 functions as a level shifter for adjusting the DC level (offset level) of the analog signal 54 input to the subsequent amplification circuit 44 to the amplification factor zero level at the input of the amplification circuit 44. When the adjustment mode is executed, a level control signal 64 is output from the host controller, and the value of the potentiometer (digital potentiometer) 42a in the level adjustment circuit 42 is variably set by the level control signal 64. As a result, the DC level is manipulated.
 増幅回路44は、入力されるアナログ信号54を増幅する回路である。増幅回路44は、正側及び負側の両方の極性に対して増幅を行うものである。その入力側の増幅率ゼロレベル(入力基準レベル)に対して、アナログ信号54のDCレベルが一致していれば、利得つまり増幅率を可変しても、増幅回路44から出力される増幅後のアナログ信号におけるDCレベルが上下に動くことはない。増幅率ゼロレベルは後段のADC46の入力側間口(Input Range)の中間レベルに合わせられている。増幅回路44はポテンショメータ(デジタルポテンショメータ)44aを有する。調整モードの実行時においては、レベル調整後に利得調整が実行される。その利得調整過程において、ホストコントローラから増幅制御信号66が出力される。その増幅制御信号66によってポテンショメータ44aの値が可変設定される。本実施形態では、第2デジタル信号であるR波抽出信号62の振幅が適正になるように、増幅率が定められる。 The amplification circuit 44 is a circuit that amplifies the input analog signal 54. The amplifier circuit 44 amplifies both positive and negative polarities. If the DC level of the analog signal 54 matches the zero gain level (input reference level) on the input side, even if the gain, that is, the gain, is varied, the amplified signal output from the amplifier circuit 44 is amplified. The DC level in the analog signal does not move up and down. The amplification factor zero level is set to the intermediate level of the input side opening (Input Range) of the ADC 46 in the subsequent stage. The amplification circuit 44 includes a potentiometer (digital potentiometer) 44a. When the adjustment mode is executed, gain adjustment is executed after level adjustment. In the gain adjustment process, an amplification control signal 66 is output from the host controller. The value of the potentiometer 44a is variably set by the amplification control signal 66. In the present embodiment, the amplification factor is determined so that the amplitude of the R wave extraction signal 62 that is the second digital signal is appropriate.
 ADC46は、アナログ信号56を第1デジタル信号60に変換する変換回路である。ADC46の入力側間口に対して、そこに入力されるアナログ信号のDCレベル及び利得が適正になるように、上記のようにレベル調整及び利得調整が実行される。 The ADC 46 is a conversion circuit that converts the analog signal 56 into the first digital signal 60. The level adjustment and the gain adjustment are performed as described above so that the DC level and gain of the analog signal input thereto are appropriate for the input side opening of the ADC 46.
 BPF(バンドパスフィルタ)48は、心電信号中のR波成分を抽出するフィルタである。抽出された成分がADC50に送られ、第2デジタル信号としてのR波抽出信号62に変換される。そのR波抽出信号62に基づいてホストコントローラがR波同期信号を生成する。 The BPF (band pass filter) 48 is a filter that extracts an R wave component in the electrocardiogram signal. The extracted component is sent to the ADC 50 and converted into an R-wave extraction signal 62 as a second digital signal. Based on the R-wave extraction signal 62, the host controller generates an R-wave synchronization signal.
 本実施形態では、レベル調整時においては第1デジタル信号としてのデジタル信号60が参照されており、利得調整時においては第2デジタル信号としてのR波抽出信号62が参照されている。なお、BPF48及びADC50を除外し、デジタル信号46に基づいて直接的にR波同期信号が生成されてもよい。なお、ポテンショメータ42a,44aのそれぞれに代えてDACを設けてもよい。それ以外の構成によって調整を行うようにしてもよい。 In the present embodiment, the digital signal 60 as the first digital signal is referred to at the time of level adjustment, and the R wave extraction signal 62 as the second digital signal is referred to at the time of gain adjustment. Note that the R wave synchronization signal may be directly generated based on the digital signal 46 without the BPF 48 and the ADC 50. A DAC may be provided instead of each of the potentiometers 42a and 44a. Adjustments may be made with other configurations.
 図3には、調整前の心電信号68及び調整後の心電信号74が示されている。横軸は時間軸であり、縦軸は増幅回路の入力側電圧を示している。ここで、電圧レンジ76は0から3.3Vの間であり、その中間レベルが1.65Vである。その中間レベルが増幅率ゼロとなる基準レベル75である。 FIG. 3 shows an electrocardiogram signal 68 before adjustment and an electrocardiogram signal 74 after adjustment. The horizontal axis is the time axis, and the vertical axis indicates the input side voltage of the amplifier circuit. Here, the voltage range 76 is between 0 and 3.3V, and its intermediate level is 1.65V. The intermediate level is a reference level 75 at which the amplification factor is zero.
 調整モードにおいては、まず、調整前の心電信号68に対して符号70で示されるレベル調整が実施される。すなわち、心電信号68のDCレベルが基準レベル75に合わせられる。これにより利得を代えてもDCレベルが変化することがなくなる。続いて、利得が調整され、符号72で示されるように、心電信号の振幅が最適化される。具体的には、R波抽出信号におけるピーク波高値が閾値を超えるように、より具体的にはピーク波高値が閾値よりも上の目標値に到達するように、利得が調整される。調整の結果、心電信号74が得られる。調整完了後、超音波診断(検査モード)が実施される。 In the adjustment mode, first, level adjustment indicated by reference numeral 70 is performed on the electrocardiogram signal 68 before adjustment. That is, the DC level of the electrocardiogram signal 68 is adjusted to the reference level 75. As a result, the DC level does not change even if the gain is changed. Subsequently, the gain is adjusted, and the amplitude of the electrocardiogram signal is optimized as indicated by reference numeral 72. Specifically, the gain is adjusted so that the peak value in the R wave extraction signal exceeds the threshold value, and more specifically, the peak value reaches the target value above the threshold value. As a result of the adjustment, an electrocardiogram signal 74 is obtained. After the adjustment is completed, an ultrasonic diagnosis (inspection mode) is performed.
 図4には、レベル調整方法の一例が示されている。この処理はホストコントローラによって実行されるものである。調整完了前の心電波形(第1デジタル信号)68に対して一定時間T1(例えば1.5sec)を有する時間窓が順次設定され、個々の時間窓の中に複数の区間78が設定される。個々の区間78の時間長はΔT(例えば100msec)である。各区間78において、波形の変動幅が所定の振幅幅(例えば±0.1mV)に収まっているのか否かが判定される。符号80は個々の区間78ごとの判定結果を示している。区間ごとにOK又はNGの判定がなされている。OKが判定された1又は複数の区間に基づいて、フィードバック制御で参照する代表値としてDCレベル平均値82が演算される。例えば、OKが判定された区間ごとに、1又は複数のポイントで電圧がサンプリングされ、サンプリングされた複数の電圧に基づいてDCレベル平均値82が演算される。 FIG. 4 shows an example of the level adjustment method. This process is executed by the host controller. A time window having a predetermined time T1 (for example, 1.5 sec) is sequentially set for the electrocardiogram waveform (first digital signal) 68 before the adjustment is completed, and a plurality of sections 78 are set in each time window. . The time length of each section 78 is ΔT (for example, 100 msec). In each section 78, it is determined whether or not the fluctuation width of the waveform falls within a predetermined amplitude width (for example, ± 0.1 mV). Reference numeral 80 indicates a determination result for each section 78. OK or NG determination is made for each section. A DC level average value 82 is calculated as a representative value to be referred to in feedback control based on one or a plurality of sections in which OK is determined. For example, the voltage is sampled at one or a plurality of points for each section in which OK is determined, and the DC level average value 82 is calculated based on the plurality of sampled voltages.
 上記手法によれば、平坦性が認められる部分だけに基づいて、つまり波形変化部分を無視して、DCレベルを特定することが可能である。これ以外の手法(例えば平滑化法、フィルタ法)を利用してもよい。生体信号の極性が反転していることもあるので、そのような場合にも対応できる手法を採用するのが望ましい。 According to the above method, it is possible to specify the DC level based only on the portion where flatness is recognized, that is, ignoring the waveform change portion. Other methods (for example, a smoothing method and a filter method) may be used. Since the polarity of the biological signal may be reversed, it is desirable to adopt a method that can cope with such a case.
 図5には、利得調整方法の一例が示されている。この処理もホストコントローラによって実行されるものである。レベル調整後におけるR波抽出信号(第2デジタル信号)84は、R波に相当する複数のピーク(又はピーク列)86を有する。横軸は時間軸であり、縦軸はデジタル波高値(絶対値)を示している。R波抽出信号84に対して、一定時間(例えば1.5sec)を有する時間窓が順次設定される。個々の時間窓の中において複数のピークの波高値(絶対値)が参照され、それらに基づいてピーク平均値94が演算される。ピーク平均値94が閾値88よりも高い目標値90に到達するように、あるいは、それに合うように、利得が調整される(符号92参照)。 FIG. 5 shows an example of the gain adjustment method. This process is also executed by the host controller. The R wave extraction signal (second digital signal) 84 after the level adjustment has a plurality of peaks (or peak rows) 86 corresponding to the R wave. The horizontal axis is the time axis, and the vertical axis indicates the digital peak value (absolute value). A time window having a certain time (for example, 1.5 sec) is sequentially set for the R wave extraction signal 84. Within each time window, peak values (absolute values) of a plurality of peaks are referred to, and a peak average value 94 is calculated based on them. The gain is adjusted so that the peak average value 94 reaches the target value 90 that is higher than the threshold value 88, or so as to match (see reference numeral 92).
 もちろん、上記手法は例示であり、結果として、波形の振幅を適正化できる限りにおいて、他の手法を利用することが可能である。本実施形態では、R波抽出信号である第2デジタル信号に基づいて利得の調整を行ったが、第1デジタル信号に基づいて利得調整を行うことも可能である。 Of course, the above method is an example, and as a result, other methods can be used as long as the amplitude of the waveform can be optimized. In the present embodiment, gain adjustment is performed based on the second digital signal that is the R-wave extraction signal, but gain adjustment can also be performed based on the first digital signal.
 図6には、調整モードを実行する際におけるホストコントローラの動作例がフローチャートとして示されている。S10では第1デジタル信号における平坦部分の平均値(現在のDCレベル)が演算され、S12において、その平均値が基準レベルから見て許容範囲内にあるか否かが判定される。許容範囲外であればS14においてレベルが1段階変更された上で、S10以降の工程が実行される。S12において許容範囲内であると判定された場合、S16において第2デジタル信号に基づいてピーク値(平均値)が演算され、S20において、ピーク値が、目標値を基準とした許容範囲内にあるか否かが判断される。許容範囲外であればS18において利得が1段階変更された上で、S16以降の工程が繰り返し実行される。S20において、ピーク値が許容範囲内にあれば本処理を終了する。 FIG. 6 shows a flowchart of an example of the operation of the host controller when executing the adjustment mode. In S10, an average value (current DC level) of the flat portion in the first digital signal is calculated. In S12, it is determined whether or not the average value is within an allowable range as viewed from the reference level. If it is out of the allowable range, the level is changed by one step in S14, and the processes after S10 are executed. If it is determined in S12 that it is within the allowable range, a peak value (average value) is calculated based on the second digital signal in S16, and in S20, the peak value is within the allowable range based on the target value. It is determined whether or not. If it is outside the allowable range, the gain is changed by one step in S18, and the processes after S16 are repeatedly executed. In S20, if the peak value is within the allowable range, this process is terminated.
 図7には、超音波診断装置の第2構成例が示されている。図1に示した構成と同様の構成には同一符号を付しその説明を省略する。図7に示す第2構成例では、装置本体10内にパルス信号発生器(信号源)96が設けられている。心電モニタ37が有する複数の電極は被検体14には装着されておらず、複数の電極に対してパルス信号発生器96からの微弱なダミー(模擬)信号が与えられている。心電モニタから出力された疑似心電信号が生体信号処理回路40へ与えられ、その動作が調整される。疑似心電信号が健常者の心電信号にできるだけ近くなるように、パルス信号を生成するのが望ましい。R波を模擬するパルスの波高値は例えば数mVである。 FIG. 7 shows a second configuration example of the ultrasonic diagnostic apparatus. The same components as those shown in FIG. In the second configuration example shown in FIG. 7, a pulse signal generator (signal source) 96 is provided in the apparatus main body 10. The plurality of electrodes of the electrocardiogram monitor 37 are not attached to the subject 14, and weak dummy (simulated) signals from the pulse signal generator 96 are given to the plurality of electrodes. The pseudo electrocardiogram signal output from the electrocardiogram monitor is given to the biological signal processing circuit 40, and its operation is adjusted. It is desirable to generate the pulse signal so that the pseudo ECG signal is as close as possible to the ECG signal of a healthy person. The peak value of the pulse simulating the R wave is, for example, several mV.
 図8には、調整前の疑似心電信号98と、調整後の疑似心電信号104と、が示されている。横軸は時間軸であり、縦軸は増幅回路へ入力される信号の電圧を示している。疑似心電信号98は、R波を模擬した複数のパルス100,102を有している。符号106で示されるようにまずDCレベルが最適化され、その後、利得が最適化される。パルスの形態や発生時刻は既知であるので、それを利用してサンプリングを行うようにしてもよい。例えば、パルス100,102が50msecの周期で生成され、個々のパルス100,102のパルス幅が20msecであれば、各パルス100,1102の立ち上がり点から20msec後をスタートタイミングとして、そこから次のパルスの立ち上がり直前までの期間において複数の電圧をサンプリングし、それらの電圧に基づいてDCレベル平均値を演算するようにしてもよい。また、ピーク平均値の演算でも、パルス発生時刻が既知であることを利用してサンプリング時間を定めてもよい。 FIG. 8 shows a pseudo electrocardiogram signal 98 before adjustment and a pseudo electrocardiogram signal 104 after adjustment. The horizontal axis is the time axis, and the vertical axis indicates the voltage of the signal input to the amplifier circuit. The pseudo electrocardiogram signal 98 has a plurality of pulses 100 and 102 simulating R waves. As indicated at 106, the DC level is first optimized and then the gain is optimized. Since the pulse form and generation time are known, sampling may be performed using the pulse form and generation time. For example, if the pulses 100 and 102 are generated with a period of 50 msec and the pulse width of each of the pulses 100 and 102 is 20 msec, the start timing is 20 msec after the rising point of each pulse 100 and 1102, and the next pulse is generated from there. A plurality of voltages may be sampled in the period immediately before the rise, and the DC level average value may be calculated based on these voltages. In the calculation of the peak average value, the sampling time may be determined by using the fact that the pulse generation time is known.
 図9には、生体信号処理回路の第2構成例が示されている。図2に示した構成と同様の構成には同一符号を付しその説明を省略する。図9に示す第2構成例では、図2に示されていたBPF48及びADC50が含まれていない。それ以外は図2に示した構成と同じである。すなわち、この第2構成例はR波成分抽出を行わないものである。それに代えて、ホストコントローラにおいて、デジタル信号60に基づいてR波同期信号が生成されている。このような構成は簡易なものであるので、コスト低減等の利点を得られる。 FIG. 9 shows a second configuration example of the biological signal processing circuit. The same components as those shown in FIG. In the second configuration example shown in FIG. 9, the BPF 48 and the ADC 50 shown in FIG. 2 are not included. Otherwise, the configuration is the same as that shown in FIG. That is, this second configuration example does not perform R wave component extraction. Instead, an R wave synchronization signal is generated based on the digital signal 60 in the host controller. Since such a configuration is simple, advantages such as cost reduction can be obtained.
 上記実施形態によれば、生体信号処理回路の調整においてユーザーの負担を軽減又は解消できる。また、生体信号のDCレベル及び生体信号の振幅を自然に最適化できる。 According to the above embodiment, the burden on the user can be reduced or eliminated in the adjustment of the biological signal processing circuit. In addition, the DC level of the biological signal and the amplitude of the biological signal can be optimized naturally.
 上記実施形態において、心電信号に代えて、他の生体信号を処理するようにしてもよい。そのような信号として心音信号、脈波信号等があげられる。心拍を表す成分が含まれる生体信号であれば、そこからR波同期信号に相当する同期信号を生成し得る。そのような成分が含まれない生体信号(例えば呼吸信号)であっても、レベル調整及び利得調整の内で少なくとも前者を自動化すれば、望ましくは両者を自動化すれば、ユーザーの負担を軽減できる。 In the above embodiment, other biological signals may be processed instead of the electrocardiographic signals. Examples of such signals include heart sound signals and pulse wave signals. If it is a biological signal including a component representing a heartbeat, a synchronization signal corresponding to the R-wave synchronization signal can be generated therefrom. Even for a biological signal that does not contain such a component (for example, a respiratory signal), it is possible to reduce the burden on the user by automating at least the former in level adjustment and gain adjustment, and preferably by automating both.

Claims (7)

  1.  生体信号測定装置が接続される入力ポートと、
     前記入力ポートからのアナログ信号を増幅する増幅回路と、
     前記入力ポートと前記増幅回路との間に設けられ、前記増幅回路へ入力されるアナログ信号のDCレベルを調整するレベル調整回路と、
     前記増幅回路から出力されたアナログ信号をデジタル信号に変換する変換回路と、
     調整モード実行時において、前記デジタル信号に基づいて前記レベル調整回路の動作を制御することにより、前記レベル調整後のアナログ信号のDCレベルを前記増幅回路の入力基準レベルに合わせる制御回路と、
     を含むことを特徴とする超音波診断装置。
    An input port to which a biological signal measuring device is connected;
    An amplifier circuit for amplifying an analog signal from the input port;
    A level adjustment circuit that is provided between the input port and the amplifier circuit and adjusts a DC level of an analog signal input to the amplifier circuit;
    A conversion circuit for converting an analog signal output from the amplifier circuit into a digital signal;
    A control circuit for adjusting the DC level of the analog signal after the level adjustment to the input reference level of the amplifier circuit by controlling the operation of the level adjustment circuit based on the digital signal at the time of executing the adjustment mode;
    An ultrasonic diagnostic apparatus comprising:
  2.  請求項1記載の装置において、
     前記制御回路は、前記デジタル信号中の1又は複数の波形平坦区間から代表振幅値を求め、その代表振幅値に基づいて前記レベル調整回路の動作を制御する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    The control circuit obtains a representative amplitude value from one or a plurality of waveform flat sections in the digital signal, and controls the operation of the level adjustment circuit based on the representative amplitude value.
    An ultrasonic diagnostic apparatus.
  3.  請求項1記載の装置において、
     前記制御回路は、前記DCレベルを前記入力基準レベルに合わせた後に前記増幅回路の利得を調整する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    The control circuit adjusts the gain of the amplifier circuit after adjusting the DC level to the input reference level.
    An ultrasonic diagnostic apparatus.
  4.  請求項3記載の装置において、
     前記変換回路は、前記増幅回路から出力されたアナログ信号を第1デジタル信号に変換する第1変換回路であり、
     当該超音波診断装置は、更に、
     前記増幅回路から出力されたアナログ信号から同期信号生成用の信号成分を抽出する抽出回路と、
     前記同期信号生成用の信号成分を第2デジタル信号に変換する第2変換回路と、
     前記第2デジタル信号が示す波高値を閾値と比較することにより同期信号を生成する同期信号生成回路と、
     を含み、
     前記制御回路は、前記調整モード実行時において、前記第2デジタル信号が示す波高値が前記閾値を超えるように前記増幅回路における利得を調整する、
     を含むことを特徴とする超音波診断装置。
    The apparatus of claim 3.
    The conversion circuit is a first conversion circuit that converts an analog signal output from the amplifier circuit into a first digital signal;
    The ultrasonic diagnostic apparatus further includes:
    An extraction circuit that extracts a signal component for generating a synchronization signal from the analog signal output from the amplification circuit;
    A second conversion circuit for converting the signal component for generating the synchronization signal into a second digital signal;
    A synchronization signal generating circuit that generates a synchronization signal by comparing a peak value indicated by the second digital signal with a threshold;
    Including
    The control circuit adjusts a gain in the amplifier circuit so that a peak value indicated by the second digital signal exceeds the threshold value when the adjustment mode is executed.
    An ultrasonic diagnostic apparatus comprising:
  5.  請求項1記載の装置において、
     前記生体信号測定装置に対してダミー信号を与える信号源を含み、
     前記生体信号測定装置に対して前記ダミー信号を与えた状態において前記調整モードが実行される、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    A signal source for providing a dummy signal to the biological signal measuring device;
    The adjustment mode is executed in a state where the dummy signal is given to the biological signal measuring device.
    An ultrasonic diagnostic apparatus.
  6.  請求項1記載の装置において、
     当該超音波診断装置は、
     超音波を送受波するプローブと、
     前記プローブが接続され、前記プローブからの受信信号に基づいて超音波画像を形成する装置本体と、
     を含み、
     前記装置本体は、前記入力ポート、前記増幅回路、前記レベル調整回路、前記変換回路及び前記制御回路を有する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    The ultrasonic diagnostic apparatus
    A probe for transmitting and receiving ultrasonic waves;
    An apparatus main body to which the probe is connected and forms an ultrasonic image based on a received signal from the probe;
    Including
    The apparatus main body includes the input port, the amplifier circuit, the level adjustment circuit, the conversion circuit, and the control circuit.
    An ultrasonic diagnostic apparatus.
  7.  請求項1記載の装置において、
     前記生体信号測定装置は心電信号測定装置である、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    The biological signal measuring device is an electrocardiographic signal measuring device,
    An ultrasonic diagnostic apparatus.
PCT/JP2017/022083 2016-07-21 2017-06-15 Ultrasonic diagnostic device WO2018016241A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-143020 2016-07-21
JP2016143020A JP2018011746A (en) 2016-07-21 2016-07-21 Ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
WO2018016241A1 true WO2018016241A1 (en) 2018-01-25

Family

ID=60992174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022083 WO2018016241A1 (en) 2016-07-21 2017-06-15 Ultrasonic diagnostic device

Country Status (2)

Country Link
JP (1) JP2018011746A (en)
WO (1) WO2018016241A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116343A (en) * 1979-02-28 1980-09-06 Shimadzu Corp Ultrasoniccwave diagnosis device
JP2000210288A (en) * 1999-01-25 2000-08-02 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2002272739A (en) * 2001-03-21 2002-09-24 Fukuda Denshi Co Ltd Medical equipment
JP2004351022A (en) * 2003-05-30 2004-12-16 Hitachi Medical Corp Ultrasonic diagnostic apparatus and ultrasonic image displaying apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167807B2 (en) * 2007-12-20 2012-05-01 Toshiba Medical Systems Corporation Ultrasonic diagnosis device, ultrasonic image analysis device, and ultrasonic image analysis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116343A (en) * 1979-02-28 1980-09-06 Shimadzu Corp Ultrasoniccwave diagnosis device
JP2000210288A (en) * 1999-01-25 2000-08-02 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2002272739A (en) * 2001-03-21 2002-09-24 Fukuda Denshi Co Ltd Medical equipment
JP2004351022A (en) * 2003-05-30 2004-12-16 Hitachi Medical Corp Ultrasonic diagnostic apparatus and ultrasonic image displaying apparatus

Also Published As

Publication number Publication date
JP2018011746A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US10420530B2 (en) System and method for multipath processing of image signals
JP5166154B2 (en) Ultrasonic diagnostic equipment
JP6419976B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
US20160338670A1 (en) Ultrasound image diagnostic apparatus
EP2781929A2 (en) Ultrasound diagnostic tissue harmonic imaging apparatus with improved drive pulses
WO2020050017A1 (en) Ultrasound diagnosis device and control method for ultrasound diagnosis device
JP2018198856A (en) Ultrasonic diagnostic device and ultrasonic diagnosis support device
CN106691502B (en) Ultrasound system and method for generating elastic images
WO2020075449A1 (en) Ultrasound diagnosis device and ultrasound diagnosis device control method
JP2005000638A (en) Ultrasonic image generating method and ultrasonic image generating program
WO2018016241A1 (en) Ultrasonic diagnostic device
WO2021014926A1 (en) Ultrasonic diagnosis device and control method for ultrasonic diagnosis device
JP2015156907A (en) Ultrasonic diagnostic equipment and ultrasonic probe
JP6349025B2 (en) Portable ultrasonic diagnostic apparatus and power efficiency improvement method therefor
JP5230161B2 (en) Heart machine diagram inspection device
JP2012196390A (en) Ultrasonic diagnostic system
JP5337836B2 (en) Ultrasonic diagnostic apparatus and ultrasonic echo signal processing method
JP6491538B2 (en) Ultrasonic diagnostic equipment
JP2015089454A (en) Ultrasonic diagnostic device
US20170143301A1 (en) Ultrasound observation apparatus
EP2554125A1 (en) Environmental sound velocity acquisition method and device
JP2000210288A (en) Ultrasonic diagnostic apparatus
JP5851345B2 (en) Ultrasonic diagnostic apparatus and data processing method
US20210251606A1 (en) Ultrasonic diagnostic apparatus, operating method of ultrasonic diagnostic apparatus, and storage medium
JP3518910B2 (en) Ultrasound diagnostic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830761

Country of ref document: EP

Kind code of ref document: A1