WO2018016200A1 - Drum for magnetic encoder and absolute encoder provided with said drum - Google Patents
Drum for magnetic encoder and absolute encoder provided with said drum Download PDFInfo
- Publication number
- WO2018016200A1 WO2018016200A1 PCT/JP2017/020563 JP2017020563W WO2018016200A1 WO 2018016200 A1 WO2018016200 A1 WO 2018016200A1 JP 2017020563 W JP2017020563 W JP 2017020563W WO 2018016200 A1 WO2018016200 A1 WO 2018016200A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drum
- magnetic
- encoder
- magnetic layer
- pole
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
Definitions
- the present invention relates to the technical field of magnetic encoders.
- the applicant has been developing a magnetic encoder for a long time, and arranges the magnetic layer arranged on the drum surface used in the magnetic encoder in accordance with a specific code (BCD code) so that the code can be read directly by the eyes.
- BCD code specific code
- magnetism is embedded in the drum of such a magnetic encoder so that the N pole and the S pole are sequentially repeated in the circumferential direction, and measurement is performed by detecting this change in magnetism with a sensor.
- the object of the present invention is to solve such problems and provide a compact and durable drum for a magnetic encoder and an absolute encoder equipped with the drum.
- the present invention is a drum for a magnetic encoder, wherein the magnetic layer arranged on the drum is arranged so that the outer peripheral surface side is all one pole.
- the magnetic layer placed on the drum is “repeated N pole and S pole” as common technical knowledge. Therefore, as a result of changing the idea from the ground up and working on development, by unifying the poles of the magnetic layer arranged on the surface of the drum with one pole (N pole or S pole), it is possible to solve the conventional problems at once. I found it. That is, the magnetic layer is arranged so that the outer side (outer peripheral side, radially outer side) of the drum is all N-pole (or S-pole). As a result, even a magnetic layer having a very weak magnetic force compared to the prior art can be accurately detected by a magnetic sensor. Since the magnetic force of the magnetic layer is small, the physical size of the drum can be reduced. Furthermore, since it is not necessary to provide an extra correction circuit, the risk of failure is greatly reduced, and extremely high durability can be obtained.
- the configuration including the magnetic layer on the drum is not particularly limited, and various methods can be employed.
- a simple configuration in which a double-sided magnetic sheet is attached to the drum can be employed. It is easy to adjust the magnetic force and the like at the stage of the magnetic sheet before sticking, and since the structure is simple, it contributes greatly to the improvement of durability.
- the magnetic layer is formed by using an isotropic magnet with “weak magnetic force”. This is not simply the choice of the optimal material. Conventionally, increasing the magnetic force in order to increase the detection accuracy is a common technical knowledge, and there have been obstacles to the use of “isotropic” magnets with weak magnetic force. In addition to unifying the magnetic layer located on the outer side to only one pole, an isotropic magnet is used to improve the detection system while making the magnetic force “weaker”.
- FIG. 1 is an overall schematic configuration diagram of an absolute encoder according to an example of an embodiment of the present invention. It is a perspective view of the drum for magnetic encoders concerning an example of an embodiment of the present invention.
- FIG. 3 is a layout diagram of a magnetic layer of a magnetic encoder drum according to an example of an embodiment of the present invention. It is the conceptual diagram which looked at the magnetic layer of the drum for magnetic encoders concerning an example of the embodiment of the invention from the axial direction of the drum.
- an absolute encoder 100 includes five drums (first drum 110) having a magnetic layer on a shaft disposed in a metal casing. , Second drum 120, third drum 130, fourth drum 140, and fifth drum 150). Although not shown, each drum 110, 120, 130, 140, 150 is provided with a corresponding magnetic sensor, and the magnetic layer disposed on the surface of each drum is provided by this magnetic sensor. It can be read.
- the first to fifth drums are connected by gears.
- the second drum 120 rotates once
- the third drum 130 rotates once
- the fourth drum 120 rotates.
- the fifth drum 150 is connected by gear engagement so as to rotate once. That is, if one rotation of the first gear 110 is “1”, one rotation of the fifth drum 150 corresponds to “10000”.
- an absolute encoder having 5 drums is described here as an example, the present invention is not limited to this. If necessary, an absolute encoder with less than 5 or 6 or more drums may be used.
- Each drum has four magnetic tracks (a first magnetic track 111, a second magnetic track 112, a third magnetic track 113, and a fourth magnetic track 114) that are divided at substantially equal intervals in the thickness direction of the drum. is doing.
- the first drum 110 will be described as an example with reference to FIG. 2. However, since the configurations of the second to fifth drums are the same, a duplicate description is omitted.
- the four magnetic tracks (first magnetic track 111, second magnetic track 112, third magnetic track 113, and fourth magnetic track 114) have a BCD code (binary decimal notation).
- the magnetic layer M is provided at a different position for each track.
- FIG. 3 is a layout diagram of the magnetic layer M for each magnetic track.
- One round of the drum is divided into 10 areas of 1 to 10, and the magnetic layer M is arranged in each area according to a predetermined rule. As a result, measurement in units of 1/10 rotation of the drum is possible.
- all of these magnetic layers M are configured so that the outer peripheral surface side (radially outer side: surface side) is an N pole (see FIG. 4).
- a double-sided magnetized (isotropic magnet) magnet sheet material is cut into a track width size, and is affixed to the drum surface so that all the N poles are on the outside according to the BCD code.
- the magnetic layer M is disposed so that the outer side is all N poles. Even a magnetic layer having a magnetic force M that is weaker than that of the conventional magnetic layer can be accurately detected by the magnetic sensor. Since the magnetic force of the magnetic layer M can be small, the physical size of the drum can be made small, and the entire absolute encoder can be made small and compact. Further, even if the magnetic force of the magnetic layer M is small, accurate detection can be performed by the magnetic sensor, so that it is not necessary to provide an extra correction circuit. That is, the failure risk can be greatly reduced, and extremely high durability can be obtained.
- the detection amount can be read directly by reading the BCD code (there can be visually read if numbers etc. are written on the drum surface).
- the magnetic layer M is configured such that the outer peripheral surface side (radially outer side) of the drum is all N poles, but may be unified to S poles.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
A magnetic layer of a drum for a magnetic encoder is disposed such that the entire outer circumferential surface side thereof only has one pole (N or S). More specifically, when, for example, a magnetic sheet that is magnetized on both sides is affixed to a drum, the magnetic sheet is affixed such that the entire outer circumferential surface side of the sheet has one pole. As a result, provided are a drum for a compact and extremely durable magnetic encoder and an absolute encoder provided with the drum.
Description
本発明は、磁気式エンコーダの技術分野に関する。
The present invention relates to the technical field of magnetic encoders.
様々な機械要素の動きを回転運動として計測し、それら機械要素の運動量や運動角度等を計測するためのエンコーダは、多くの分野で幅広く利用されている。
∙ Encoders for measuring the movement of various machine elements as rotational movement and measuring the momentum and movement angle of these machine elements are widely used in many fields.
出願人は、以前から磁気式エンコーダの開発を行っており、磁気式エンコーダに用いられるドラム表面に配置する磁気層を特定のコード(BCDコード)に従って配置すると共に、当該コードを直接目でも読み取れるような数値を記載し、エンコーダの計測値と表示値の食い違いのないアブソリュートエンコーダの出願を行っている(実開平6-2474号公報を参照)。
The applicant has been developing a magnetic encoder for a long time, and arranges the magnetic layer arranged on the drum surface used in the magnetic encoder in accordance with a specific code (BCD code) so that the code can be read directly by the eyes. Have filed an absolute encoder in which there is no discrepancy between the measured value and the displayed value of the encoder (see Japanese Utility Model Laid-Open No. 6-2474).
また、こういった磁気式エンコーダのドラムには、円周方向に順次N極とS極とが繰り返されるように磁気が埋め込まれ、この磁気の変化をセンサにより検知することにより計測を行っている(特開2005-283404号公報を参照)。
In addition, magnetism is embedded in the drum of such a magnetic encoder so that the N pole and the S pole are sequentially repeated in the circumferential direction, and measurement is performed by detecting this change in magnetism with a sensor. (See JP 2005-283404 A).
しかしながら、特開2005-283404号公報で示されているように、ドラムに埋め込む磁気がN極とS極が繰り返される配列の場合、検知精度を上げるべく磁力を高めようとすれば、必然的に大きな磁石が必要となり、それに伴いドラムも大きくなり、最終的にはエンコーダ自体が大きくなるという問題があった。更に、磁力を高めれば高めるほど、その磁力の乱れを補正するための補正回路が別途必要となり、コスト増大や大型化だけでなく、耐久性の低下(余計な回路が増えれば増えるほどその分故障するリスクが増大する。)を招くという歯がゆい問題点が存在した。
However, as shown in Japanese Patent Laid-Open No. 2005-283404, in the case where the magnetism embedded in the drum is an arrangement in which the N pole and the S pole are repeated, if the magnetic force is increased in order to increase the detection accuracy, it is inevitable. There is a problem that a large magnet is required, and the drum is enlarged accordingly, and eventually the encoder itself is enlarged. In addition, the higher the magnetic force, the more need for a correction circuit to correct the disturbance of the magnetic force, not only increase the cost and size, but also decrease the durability (the more extra circuits increase, the more the failure There is a problem that it is irritating.
そこで本発明は、こういった問題点を解決し、コンパクト且つ耐久性に優れた磁気式エンコーダ用ドラム及び当該ドラムを備えたアブソリュートエンコーダを提供する事をその課題としている。
Therefore, the object of the present invention is to solve such problems and provide a compact and durable drum for a magnetic encoder and an absolute encoder equipped with the drum.
上記課題を解決するべく、本願発明は、磁気式エンコーダ用ドラムであって、ドラムに配置される磁気層は、外周面側が全て一方の極となるように配置されていることを特徴とする。
In order to solve the above problems, the present invention is a drum for a magnetic encoder, wherein the magnetic layer arranged on the drum is arranged so that the outer peripheral surface side is all one pole.
発明者は、ドラムに配置される磁気層が、恰も技術常識として「N極とS極の繰り返し」となっている点に疑問を抱いた。そこで発想を根底から転換して開発に取り組んだ結果、ドラムの表面に配置する磁気層の極を一方の極(N極又はS極)で統一することにより、従来の問題点が一気に解決できることを見いだしたのである。即ち、ドラムの外側(外周側、半径方向外側)が全てN極(又はS極)になるように磁気層を配置したのである。その結果、従来と比較すれば非常に弱い磁力の磁気層であっても、磁気センサによって正確に検知できることが可能となった。磁気層の磁力が小さくても足りるので、ドラムの物理的な大きさを小さく構成できる。更に、余計な補正回路を備える必要も無いので、故障リスクが大幅に減り、極めて高い耐久性を獲得することも可能となったのである。
The inventor questioned that the magnetic layer placed on the drum is “repeated N pole and S pole” as common technical knowledge. Therefore, as a result of changing the idea from the ground up and working on development, by unifying the poles of the magnetic layer arranged on the surface of the drum with one pole (N pole or S pole), it is possible to solve the conventional problems at once. I found it. That is, the magnetic layer is arranged so that the outer side (outer peripheral side, radially outer side) of the drum is all N-pole (or S-pole). As a result, even a magnetic layer having a very weak magnetic force compared to the prior art can be accurately detected by a magnetic sensor. Since the magnetic force of the magnetic layer is small, the physical size of the drum can be reduced. Furthermore, since it is not necessary to provide an extra correction circuit, the risk of failure is greatly reduced, and extremely high durability can be obtained.
ドラムへ磁気層を備える構成は特に限定されず種々の方法を採用することが可能であるが、例えば、両面着磁の磁気シートをドラムに貼付するといったシンプルな構成を採用することも可能であり、貼付前の磁気シートの段階で磁力等の調整が容易であり、何より構造がシンプルなことから耐久性向上への寄与が大きい。
The configuration including the magnetic layer on the drum is not particularly limited, and various methods can be employed. For example, a simple configuration in which a double-sided magnetic sheet is attached to the drum can be employed. It is easy to adjust the magnetic force and the like at the stage of the magnetic sheet before sticking, and since the structure is simple, it contributes greatly to the improvement of durability.
更に、敢えて「磁力の弱い」等方性磁石を用いて磁気層を構成している。これは単に最適材料を選択したというわけではない。従来は検知精度を高めるために磁力を高くすることが技術常識であるため、磁力の弱い「等方性」の磁石を採用することに対してはそこに阻害要因が存在していた。外側に位置する磁気層を一方の極だけに統一することに加えて等方性磁石を利用することで、より磁力を「弱く」しつつ、検知制度の向上を図っているのである。
Furthermore, the magnetic layer is formed by using an isotropic magnet with “weak magnetic force”. This is not simply the choice of the optimal material. Conventionally, increasing the magnetic force in order to increase the detection accuracy is a common technical knowledge, and there have been obstacles to the use of “isotropic” magnets with weak magnetic force. In addition to unifying the magnetic layer located on the outer side to only one pole, an isotropic magnet is used to improve the detection system while making the magnetic force “weaker”.
本発明を適用することで、コンパクト且つ耐久性に優れた磁気式エンコーダ用ドラム及び当該ドラムを備えたアブソリュートエンコーダを提供することができる。
By applying the present invention, it is possible to provide a compact and highly durable magnetic encoder drum and an absolute encoder including the drum.
以下、添付図面を参照しつつ、本発明の実施形態の一例であるアブソリュートエンコーダ100について説明を加える。なお、図面理解容易の為、各部の大きさや寸法を誇張して表現している部分があり、実際の製品と必ずしも一致しない部分があることを付記しておく。また各図面は符号の向きに見るものとし、当該向きを基本に上下左右、手前、奥と表現する。
Hereinafter, an absolute encoder 100 as an example of an embodiment of the present invention will be described with reference to the accompanying drawings. For easy understanding of the drawings, it should be noted that there are portions where the size and dimensions of each portion are exaggerated and there are portions that do not necessarily match the actual product. In addition, each drawing is viewed in the direction of the reference sign, and is expressed as upper, lower, left, right, near, and back based on the direction.
〈アブソリュートエンコーダの構成〉
図1に示されている通り、本発明の実施形態の一例に係るアブソリュートエンコーダ100は、金属製のケーシング内に配置された軸上に、磁気層を備えた5つのドラム(第1のドラム110、第2のドラム120、第3のドラム130、第4のドラム140、第5のドラム150)を備える。なお、図示していないが、各ドラム110、120、130、140、150には、それぞれに対応する磁気センサが設けられており、各ドラムの表面に配置されている磁気層をこの磁気センサにより読み取り可能となっている。 <Configuration of absolute encoder>
As shown in FIG. 1, anabsolute encoder 100 according to an example of the embodiment of the present invention includes five drums (first drum 110) having a magnetic layer on a shaft disposed in a metal casing. , Second drum 120, third drum 130, fourth drum 140, and fifth drum 150). Although not shown, each drum 110, 120, 130, 140, 150 is provided with a corresponding magnetic sensor, and the magnetic layer disposed on the surface of each drum is provided by this magnetic sensor. It can be read.
図1に示されている通り、本発明の実施形態の一例に係るアブソリュートエンコーダ100は、金属製のケーシング内に配置された軸上に、磁気層を備えた5つのドラム(第1のドラム110、第2のドラム120、第3のドラム130、第4のドラム140、第5のドラム150)を備える。なお、図示していないが、各ドラム110、120、130、140、150には、それぞれに対応する磁気センサが設けられており、各ドラムの表面に配置されている磁気層をこの磁気センサにより読み取り可能となっている。 <Configuration of absolute encoder>
As shown in FIG. 1, an
第1~第5のドラムはギヤにより連結されている。第1のドラム110が10回転すると第2のドラム120が1回転し、第2のドラム120が10回転すると第3のドラム130が1回転し、第3のドラム130が10回転すると第4のドラム140が1回転し、第4のドラム140が10回転すると第5のドラム150が1回転するようにギヤの歯合により連結されている。即ち、第1のギヤ110の1回転を「1」とすれば第5のドラム150の1回転は「10000」に相当する。なお、ここではドラム数が5のアブソリュートエンコーダを例に説明しているが、これに限定されるものではない。必要に応じて、5未満若しくは6以上のドラム数のアブソリュートエンコーダとすることも可能である。
The first to fifth drums are connected by gears. When the first drum 110 rotates 10 times, the second drum 120 rotates once, when the second drum 120 rotates 10 times, the third drum 130 rotates once, and when the third drum 130 rotates 10 times, the fourth drum 120 rotates. When the drum 140 rotates once and the fourth drum 140 rotates 10 times, the fifth drum 150 is connected by gear engagement so as to rotate once. That is, if one rotation of the first gear 110 is “1”, one rotation of the fifth drum 150 corresponds to “10000”. Although an absolute encoder having 5 drums is described here as an example, the present invention is not limited to this. If necessary, an absolute encoder with less than 5 or 6 or more drums may be used.
また、各ドラムは、当該ドラムの厚み方向に略等間隔に分割されて4つの磁気トラック(第1磁気トラック111、第2磁気トラック112、第3磁気トラック113、第4磁気トラック114)を有している。図2を参照しつつ、第1のドラム110を例に説明するが、第2~第5のドラムの構成も同一のため、重複説明は省略する。
Each drum has four magnetic tracks (a first magnetic track 111, a second magnetic track 112, a third magnetic track 113, and a fourth magnetic track 114) that are divided at substantially equal intervals in the thickness direction of the drum. is doing. The first drum 110 will be described as an example with reference to FIG. 2. However, since the configurations of the second to fifth drums are the same, a duplicate description is omitted.
図2に示されている通り、4つの磁気トラック(第1磁気トラック111、第2磁気トラック112、第3磁気トラック113、第4磁気トラック114)には、BCDコード(2進化10進法)を表すために、トラック毎の異なる位置に磁気層Mを備える。
As shown in FIG. 2, the four magnetic tracks (first magnetic track 111, second magnetic track 112, third magnetic track 113, and fourth magnetic track 114) have a BCD code (binary decimal notation). In order to express the above, the magnetic layer M is provided at a different position for each track.
図3は、磁気トラック毎の磁気層Mの配置図である。ドラム一周を1~10の10のエリアに分割し、そのエリア毎に所定のルールに従って磁気層Mが配置されている。その結果、ドラムの1/10回転単位での計測が可能となっている。
FIG. 3 is a layout diagram of the magnetic layer M for each magnetic track. One round of the drum is divided into 10 areas of 1 to 10, and the magnetic layer M is arranged in each area according to a predetermined rule. As a result, measurement in units of 1/10 rotation of the drum is possible.
また、これら磁気層Mは全て、外周面側(半径方向外側:表面側)がN極となるように構成される(図4参照)。例えば、両面着磁(等方性磁石)のマグネットシート素材がトラック幅サイズに切断され、それがBCDコードに従ってドラム表面に全てN極が外側となるように貼付されて構成される。
Further, all of these magnetic layers M are configured so that the outer peripheral surface side (radially outer side: surface side) is an N pole (see FIG. 4). For example, a double-sided magnetized (isotropic magnet) magnet sheet material is cut into a track width size, and is affixed to the drum surface so that all the N poles are on the outside according to the BCD code.
〈アブソリュートエンコーダの作用・機能〉
本発明に係る磁気式エンコーダ用ドラム110、120、130、140、150及び当該ドラムを備えたアブソリュートエンコーダ100は、外側が全てN極となるように磁気層Mが配置されているので、磁気層Mの磁力が従来のものと比べて弱い磁力の磁気層であっても、磁気センサによって正確に検知できることが可能となっている。磁気層Mの磁力が小さくても足りるので、ドラムの物理的な大きさを小さく構成できるため、アブソリュートエンコーダ全体を小さくコンパクトに構成できる。更に、磁気層Mの磁力が小さくても磁気センサによる正確な検知ができるため、余計な補正回路を備える必要も無い。即ち、故障リスクを大幅に減らすことができ、極めて高い耐久性を獲得することも可能となった。 <Operation and function of absolute encoder>
In the magnetic encoder drums 110, 120, 130, 140, 150 and the absolute encoder 100 including the drum according to the present invention, the magnetic layer M is disposed so that the outer side is all N poles. Even a magnetic layer having a magnetic force M that is weaker than that of the conventional magnetic layer can be accurately detected by the magnetic sensor. Since the magnetic force of the magnetic layer M can be small, the physical size of the drum can be made small, and the entire absolute encoder can be made small and compact. Further, even if the magnetic force of the magnetic layer M is small, accurate detection can be performed by the magnetic sensor, so that it is not necessary to provide an extra correction circuit. That is, the failure risk can be greatly reduced, and extremely high durability can be obtained.
本発明に係る磁気式エンコーダ用ドラム110、120、130、140、150及び当該ドラムを備えたアブソリュートエンコーダ100は、外側が全てN極となるように磁気層Mが配置されているので、磁気層Mの磁力が従来のものと比べて弱い磁力の磁気層であっても、磁気センサによって正確に検知できることが可能となっている。磁気層Mの磁力が小さくても足りるので、ドラムの物理的な大きさを小さく構成できるため、アブソリュートエンコーダ全体を小さくコンパクトに構成できる。更に、磁気層Mの磁力が小さくても磁気センサによる正確な検知ができるため、余計な補正回路を備える必要も無い。即ち、故障リスクを大幅に減らすことができ、極めて高い耐久性を獲得することも可能となった。 <Operation and function of absolute encoder>
In the
特に、記憶回路により検知量を記憶しておかずとも、BCDコード読み取りで直接検知量を読み取ることができる(ドラム表面に数字等を記載すれば目視での読み取りも可)アブソリュートエンコーダという性質と、本発明の磁気層単一極ドラムを採用した結果としての耐久性及びコンパクト性を活かすことによって、従来広く利用されてきた機械分野のみならず、風力発電や津波災害対応装置など、今まで以上の幅広い分野での利用に耐えることができる。
〈その他の構成例〉
上記では、磁気層Mは、ドラムの外周面側(半径方向外側)が全てN極となるように構成されていたが、S極に統一されていてもよい。 In particular, even if the detection amount is not stored in the memory circuit, the detection amount can be read directly by reading the BCD code (there can be visually read if numbers etc. are written on the drum surface). By utilizing the durability and compactness as a result of adopting the magnetic layer single pole drum of the invention, not only the machine field that has been widely used in the past, but also a wider range than ever, such as wind power generation and tsunami disaster response devices Can withstand use in the field.
<Other configuration examples>
In the above description, the magnetic layer M is configured such that the outer peripheral surface side (radially outer side) of the drum is all N poles, but may be unified to S poles.
〈その他の構成例〉
上記では、磁気層Mは、ドラムの外周面側(半径方向外側)が全てN極となるように構成されていたが、S極に統一されていてもよい。 In particular, even if the detection amount is not stored in the memory circuit, the detection amount can be read directly by reading the BCD code (there can be visually read if numbers etc. are written on the drum surface). By utilizing the durability and compactness as a result of adopting the magnetic layer single pole drum of the invention, not only the machine field that has been widely used in the past, but also a wider range than ever, such as wind power generation and tsunami disaster response devices Can withstand use in the field.
<Other configuration examples>
In the above description, the magnetic layer M is configured such that the outer peripheral surface side (radially outer side) of the drum is all N poles, but may be unified to S poles.
100・・・アブソリュートエンコーダ
110・・・第1のドラム
111・・・第1磁気トラック
112・・・第2磁気トラック
113・・・第3磁気トラック
114・・・第4磁気トラック
120・・・第2のドラム
130・・・第3のドラム
140・・・第4のドラム
150・・・第5のドラム
M・・・磁気層 100 ...Absolute encoder 110 ... First drum 111 ... First magnetic track 112 ... Second magnetic track 113 ... Third magnetic track 114 ... Fourth magnetic track 120 ... Second drum 130 ... Third drum 140 ... Fourth drum 150 ... Fifth drum M ... Magnetic layer
110・・・第1のドラム
111・・・第1磁気トラック
112・・・第2磁気トラック
113・・・第3磁気トラック
114・・・第4磁気トラック
120・・・第2のドラム
130・・・第3のドラム
140・・・第4のドラム
150・・・第5のドラム
M・・・磁気層 100 ...
Claims (5)
- 磁気式エンコーダ用ドラムであって、
ドラム外周表面には、円周方向に磁気層が配置される部分と配置されない部分を設けると共に、
前記ドラムに配置される前記磁気層は、外周面側が全て一方の極となるように配置されている
ことを特徴とする磁気式エンコーダ用ドラム。 A magnetic encoder drum,
The drum outer peripheral surface is provided with a portion where the magnetic layer is disposed in the circumferential direction and a portion where the magnetic layer is not disposed,
The magnetic layer disposed on the drum is disposed so that the outer peripheral surface side is one pole. The magnetic encoder drum. - 請求の範囲1において、
前記磁気層は、両面着磁の磁気シートを前記ドラムに貼付した構成とされている
ことを特徴とする磁気式エンコーダ用ドラム。 In claim 1,
The magnetic encoder drum, wherein the magnetic layer has a structure in which a double-sided magnetized magnetic sheet is attached to the drum. - 請求の範囲1において、
前記磁気層は、等方性磁石により構成されている
ことを特徴とする磁気式エンコーダ用ドラム。 In claim 1,
The magnetic layer is made of an isotropic magnet. A magnetic encoder drum, wherein: - 請求の範囲2において、
前記磁気層は、等方性磁石により構成されている
ことを特徴とする磁気式エンコーダ用ドラム。 In claim 2,
The magnetic layer is made of an isotropic magnet. A magnetic encoder drum, wherein: - 請求の範囲1~4のいずれかに記載の磁気式エンコーダ用ドラムを備えた、アブソリュートエンコーダ。 An absolute encoder comprising the magnetic encoder drum according to any one of claims 1 to 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-143312 | 2016-07-21 | ||
JP2016143312A JP6064072B1 (en) | 2016-07-21 | 2016-07-21 | Magnetic encoder drum and absolute encoder provided with the drum |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018016200A1 true WO2018016200A1 (en) | 2018-01-25 |
Family
ID=57800064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020563 WO2018016200A1 (en) | 2016-07-21 | 2017-06-02 | Drum for magnetic encoder and absolute encoder provided with said drum |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6064072B1 (en) |
WO (1) | WO2018016200A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53110160U (en) * | 1977-01-19 | 1978-09-02 | ||
JPH01239413A (en) * | 1988-03-18 | 1989-09-25 | Matsushita Electric Ind Co Ltd | Magnetic absolute encoder device |
JPH0373862A (en) * | 1989-08-15 | 1991-03-28 | Japan Servo Co Ltd | Rotation detector |
US6166655A (en) * | 1998-10-14 | 2000-12-26 | Chen; Hung-Chou | Device and method for identifying magnetic induction coordinate |
JP2001333567A (en) * | 2000-05-20 | 2001-11-30 | Mirae Corp | Linear motor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6234011A (en) * | 1985-08-06 | 1987-02-14 | Shin Meiwa Ind Co Ltd | Method for adjusting magnetic field of magnetic encoder |
JPH062474U (en) * | 1992-05-26 | 1994-01-14 | 和光精機株式会社 | Rotation indicator for rangefinder |
JPH08166253A (en) * | 1994-12-15 | 1996-06-25 | Nikon Corp | Magnetic encoder |
JP2005283404A (en) * | 2004-03-30 | 2005-10-13 | Sayama Precision Ind Co | Magnetic encoder |
JP5261913B2 (en) * | 2005-10-21 | 2013-08-14 | 株式会社安川電機 | Linear motion actuator and system |
JP2015132496A (en) * | 2014-01-10 | 2015-07-23 | セイコーエプソン株式会社 | Magnetic encoder, electro-mechanical device, mobile object, and robot |
-
2016
- 2016-07-21 JP JP2016143312A patent/JP6064072B1/en active Active
-
2017
- 2017-06-02 WO PCT/JP2017/020563 patent/WO2018016200A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53110160U (en) * | 1977-01-19 | 1978-09-02 | ||
JPH01239413A (en) * | 1988-03-18 | 1989-09-25 | Matsushita Electric Ind Co Ltd | Magnetic absolute encoder device |
JPH0373862A (en) * | 1989-08-15 | 1991-03-28 | Japan Servo Co Ltd | Rotation detector |
US6166655A (en) * | 1998-10-14 | 2000-12-26 | Chen; Hung-Chou | Device and method for identifying magnetic induction coordinate |
JP2001333567A (en) * | 2000-05-20 | 2001-11-30 | Mirae Corp | Linear motor |
Also Published As
Publication number | Publication date |
---|---|
JP6064072B1 (en) | 2017-01-18 |
JP2018013423A (en) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103256883B (en) | Also the angular sensor of absolute rotation angle can be determined when multiple rotary | |
JP5480967B2 (en) | Multi-period absolute position detector | |
TWI579533B (en) | Absolute encoder devices and motors | |
JP6412016B2 (en) | Magnetic absolute rotary encoder | |
JP4880066B2 (en) | Origin position signal detector | |
JP6412014B2 (en) | Magnetic angle encoder and electronic water meter | |
EP2889588B1 (en) | Direct-reading type metering device and direct-reading type water meter | |
JP2016503174A (en) | Multi-turn absolute magnetic encoder | |
KR20080077369A (en) | Magnetic angular position sensor for a course up to 360° | |
JP2017037023A (en) | Rotation detector | |
JP6438889B2 (en) | Permanent magnet suitable for magnetic angle encoder | |
JP2009537011A (en) | Elliptical gear meter | |
JP2006119082A (en) | Steering angle detecting device | |
US20160076910A1 (en) | Magnetic position sensor and sensing method | |
JP2008128962A (en) | Absolute angle detector | |
JP2008008699A (en) | Rotation detecting apparatus | |
WO2018016200A1 (en) | Drum for magnetic encoder and absolute encoder provided with said drum | |
US20140174201A1 (en) | Torque Sensor | |
RU2436037C1 (en) | Absolute angle transducer | |
JP5331505B2 (en) | Rotation angle detection device and steering device | |
KR101271828B1 (en) | Computing Method of Absolute Steering Angle Using Steering Angle Sensing System | |
JP2008275517A (en) | Multi-rotation absolute angle detector | |
KR101582529B1 (en) | The absolute encoder of counter type | |
JP2020003221A (en) | Rotation angle detection device | |
TW202007941A (en) | Magnetic encoder for measuring yaw and angular position of rotating shaft and device thereof including an annular base, a magnetic encoding unit, and a position encoding unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17830720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17830720 Country of ref document: EP Kind code of ref document: A1 |