WO2018014623A1 - 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 - Google Patents
煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 Download PDFInfo
- Publication number
- WO2018014623A1 WO2018014623A1 PCT/CN2017/082998 CN2017082998W WO2018014623A1 WO 2018014623 A1 WO2018014623 A1 WO 2018014623A1 CN 2017082998 W CN2017082998 W CN 2017082998W WO 2018014623 A1 WO2018014623 A1 WO 2018014623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coal rock
- thermal image
- fracture
- image sequence
- infrared radiation
- Prior art date
Links
- 239000011435 rock Substances 0.000 title claims abstract description 104
- 239000003245 coal Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 61
- 206010017076 Fracture Diseases 0.000 title claims abstract description 55
- 208000010392 Bone Fractures Diseases 0.000 title claims abstract description 53
- 230000005855 radiation Effects 0.000 title claims abstract description 52
- 238000011161 development Methods 0.000 title claims abstract description 29
- 238000012544 monitoring process Methods 0.000 title claims abstract description 16
- 238000010586 diagram Methods 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims description 15
- 239000002985 plastic film Substances 0.000 claims description 10
- 229920006255 plastic film Polymers 0.000 claims description 10
- 230000005856 abnormality Effects 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000001931 thermography Methods 0.000 claims 1
- 238000005065 mining Methods 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 238000004880 explosion Methods 0.000 abstract description 2
- 239000000284 extract Substances 0.000 abstract description 2
- 230000000750 progressive effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 208000013201 Stress fracture Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/06—Special adaptations of indicating or recording means
- G01N3/068—Special adaptations of indicating or recording means with optical indicating or recording means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0641—Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
- G01N2203/0647—Image analysis
Definitions
- the invention relates to the field of water retention mining and rock formation control, and particularly relates to an infrared radiation monitoring and positioning method for a fracture development zone in a coal rock rupture process.
- the present invention overcomes the above disadvantages in time and space by using the variance and the difference infrared thermal image sequence diagram of the progressive infrared thermal image sequence diagram.
- An infrared radiation monitoring and positioning method for a crack development zone in a coal rock rupture process comprising the following steps:
- c Determining the time node of the abnormality of the infrared radiation information in the process of bearing the fracture of the coal rock: calculating the variance of the difference infrared thermal image sequence diagram obtained in the step (b), and finding the extreme value of the variance of the difference infrared thermal image sequence diagram And the corresponding occurrence time point, and determine whether the extreme value occurrence time of the variance of the infrared thermal image sequence diagram is the moment of bearing coal rock fracture;
- the variance of the differential infrared thermal image sequence diagram carrying the coal rock fracture process in the step (c) is calculated according to the formula (I), and the formula (I) is: among them
- the infrared radiation detecting system comprises a press, a plastic film, a bearing coal rock, an isolated closed box, an infrared camera and a data acquisition device.
- the above press, the plastic film, the bearing coal rock and the infrared camera are all located inside the isolated closed box.
- the upper and lower surfaces of the above-mentioned bearing coal rock contacting the press are provided with a plastic film.
- the above data acquisition device is respectively connected to a press and an infrared camera.
- step (a) when the information of the infrared radiation in the process of breaking the coal rock is started, the press of the infrared radiation detecting system and the infrared thermal imager are simultaneously started.
- the present invention adopts the variance of the differential infrared thermal image sequence diagram, which can reflect the bearing state and the radiation temperature field of the coal rock, and can be used as a judgment to determine whether the bearing coal rock is damaged and loses the bearing capacity.
- the index has the following advantages: (a) The variance of the differential infrared thermal image sequence diagram can not only express the abnormal information of the differential infrared thermal image sequence diagram through specific data, but also the adjacent two frames of the difference infrared thermal image sequence diagram. The difference was doubled. (b) It is possible to accurately and quantitatively determine whether the coal rock is in a micro-rupture or failure state by the ratio (amplitude) of the variance of the difference infrared thermal image sequence diagrams of two adjacent frames. (c) The ability of this indicator to capture information on coal rock fracture instability is significantly better than the average infrared radiation temperature (AIRT) and maximum (small) values.
- the present invention employs a progressive infrared thermal image sequence diagram to show the fracture development zone during the fracture process of the bearing coal rock.
- the index has the following advantages: (a) the difference infrared thermal image sequence diagram eliminates the common part of the original two infrared frames of the adjacent two frames, and only retains the difference between the adjacent two frames of the original infrared thermal image sequence map, thereby improving the The saliency and accuracy of infrared radiation anomaly information during the process of bearing coal rock rupture are discriminated.
- FIG. 1 is a flow chart of a method for monitoring and locating infrared radiation in a fissure development zone during a rock fracture process of the present invention
- FIG. 2 is a schematic structural view of a coal rock infrared radiation monitoring system according to the present invention.
- FIG. 3 is a sequence diagram of an original infrared thermal image of a certain bearing coal rock in the present invention
- Figure 4 is a sequence diagram of a differential infrared thermal image of a certain bearing coal rock in Figure 3;
- Figure 5 is a graph showing the variation of the variance of a certain coal rock load and the difference infrared thermal image sequence chart with time in the present invention
- FIG. 1 is a flow chart of the present invention, and an infrared radiation monitoring and positioning method for a fracture development zone in a coal rock rupture process, comprising the following steps:
- Infrared radiation detection system includes press 1, plastic film 2, bearing coal rock 3, isolated closed box 4, infrared thermal imager 5 and data acquisition instrument 6; press 1, plastic film 2, bearing coal rock 3 and infrared heat
- the imager 5 is located inside the isolation and closure box 4, and the isolation and closure box 4 is mainly arranged to avoid the infrared radiation information of the coal rock 3 affected by the external environment, thereby improving the accuracy of the infrared radiation detection system;
- Located on the press 1, the upper and lower surfaces of the bearing coal rock 3 in contact with the press 1 are provided with a plastic film 2; the data collecting instrument 6 is connected to the press 1 and the infrared camera 5, respectively.
- the infrared radiation detection system is used to monitor and store the infrared radiation information of the outer surface of the coal rock during the rupture of the coal rock 3, and the original infrared thermal image sequence diagram of the bearing coal rock 3 rupture process is obtained, as shown in Fig. 3.
- the press 1 and the infrared thermal imager 5 of the infrared radiation detecting system are simultaneously started.
- step (b) Determine the time node at which the infrared radiation information abnormality occurs during the rupture of the bearing coal rock 3.
- step (b) Calculate the variance of the difference infrared thermal image sequence diagram obtained in step (b), find the extreme value of the variance of the differential infrared thermal image sequence diagram and the corresponding occurrence time point, and judge the variance of the difference infrared thermal image sequence diagram. Whether the extreme value occurs at the time when the coal rock breaks.
- step (d) Determine the fracture development zone at the moment of bearing coal rock fracture. According to the extreme value of the variance of the infrared thermal image sequence diagram obtained in step (c) and the corresponding occurrence time point, the sequence of the infrared thermal image sequence of the moment is extracted, and finally the fracture development zone of the bearing coal rock 3 is determined. .
- Figure 5 is a graph showing the variation of the variance of a load bearing coal rock and the infrared thermal image sequence diagram with time according to the present invention. It can be seen from the figure that the load and the differential infrared thermal image sequence during the fracture process of the bearing coal rock The variance of the graph changes at the same time. Therefore, the variance of the progressive infrared thermal image sequence diagram can express the abnormal information of the differential infrared thermal image sequence map through specific data. The ratio (amplitude) of the variance of the differential infrared thermal image sequence diagrams of two adjacent frames can accurately and quantitatively determine whether the coal rock is in a micro-rupture or failure state.
- This indicator captures the ability of coal rock fracture instability information, significantly better than Average infrared radiation temperature (AIRT), maximum (small) value and other indicators.
- AIRT Average infrared radiation temperature
- maximum (small) value and other indicators.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Radiation Pyrometers (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
一种煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,涉及保水开采与岩层控制领域,适用于研究煤岩破裂过程中裂隙发育规律和发育位置的探测。此方法采用逐差红外热像序列图的方差指标确定承载煤岩破裂与破坏的时间节点,在此基础上,根据时间节点提取此刻的红外热像图定位承载煤岩破裂时刻的裂隙发育区,实现了对裂隙发育区的时空预测。研究结果可应用于由承载煤岩破裂引起的煤(岩)爆、矿井突水等人类工程灾害的监测监控,尤其对丰富矿山保水开采与岩层控制理论具有科学意义。
Description
本发明涉及保水开采与岩层控制领域,具体涉及煤岩破裂过程中裂隙发育区的红外辐射监测定位方法。
煤岩受力破裂失稳是引发煤(岩)爆、矿柱屈服坍塌、矿井突水以及矿震等矿井灾害的根本原因。研究表明,煤岩在承载受力、变形及破裂过程中,随着应力的变化包括红外波段在内的电磁辐射强度会发生变化,在破裂失稳时会出现热红外异常。正确认识煤岩破裂失稳过程中的红外辐射特征,找出煤岩破裂过程中的裂隙发育规律,进而准确有效地对煤岩的破裂过程进行监测与前兆预警,是实现保水开采的重要理论基础。目前国内外学者对煤岩破裂失稳过程红外辐射特征做出大量研究,但是均存在以下问题:(1)判别煤岩是否处于微破裂或者破坏状态时,均采用平均红外辐射温度(AIRT)、最大(小)值等指标,而这些指标在实际测试煤岩样承载破裂过程中,不易明显被观测发生变化,因此造成不能快速、有效捉煤岩破裂失稳的准确时刻;(2)仅采用原始红外热像序列图这一指标判断承载煤岩破裂过程中的裂隙发育区时,忽视了承载煤岩破裂过程中的累积热(热力耦合)效应,不能显著、准确判别承载煤岩破裂过程中红外辐射异常信息。因此,目前急需研究一种能快速、有效定位煤岩破裂过程中的裂隙发育区的方法。
发明内容
本发明为解决上述问题,利用逐差红外热像序列图的方差、逐差红外热像序列图,分别从时间和空间上克服上述缺点。
为了实现上述目的,本发明技术方案如下:
一种煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,该方法包括以下步骤:
a、获取承载煤岩破裂过程中的原始红外辐射信息:利用红外辐射探测系统监测并存储承载煤岩破裂过程中煤岩外表面的红外辐射信息,得到承载煤岩破裂过程中原始红外热像序列图;
b、计算逐差红外热像序列图:对步骤(a)得到的煤岩原始红外热像序列图中的煤岩原始红外热像序列进行逐帧相减,得到承载煤岩破裂过程中逐差红外热像序列图;
c、确定承载煤岩破裂过程中的红外辐射信息异常发生的时间节点:对步骤(b)得到的逐差红外热像序列图计算方差,找出逐差红外热像序列图的方差的极值及相对应的发生时间点,并判断逐差红外热像序列图方差的极值发生时间点是否为承载煤岩破裂时刻;
d、确定承载煤岩破裂时刻裂隙发育区:根据步骤(c)中得到的逐差红外热像序列图的方差的极值及相对应的发生时间点,提取此刻的逐差红外热像序列图,最终确定承载煤岩破裂时刻裂隙发育区。
进一步地,步骤(c)中承载煤岩破裂过程的逐差红外热像序列图的方差根据公式
(I)计算得到,公式(I)为:其中为逐差红外热像序列图的方差;f(i,j,k)为原始红外热像序列图第k帧的二维温度矩阵;i(i=1,2…,M)为温度矩阵的行号,M为温度矩阵的总行数;j(j=1,2…,N)为温度矩阵的列号,N为温度矩阵的总列数;AIRT(k)为原始红外热像序列图第k帧的平均值。
进一步地,上述红外辐射探测系统包括压力机、塑料薄膜、承载煤岩、隔离封闭箱体、红外热像仪和数据采集仪。
进一步地,上述压力机、塑料薄膜、承载煤岩和红外热像仪均位于隔离封闭箱体的内部。
进一步地,上述承载煤岩位于压力机上。
进一步地,上述承载煤岩与压力机接触的上下表面设有塑料薄膜。
进一步地,上述数据采集仪分别与压力机和红外热像仪连接。
进一步地,在步骤(a)中开始监测承载煤岩破裂过程中红外辐射信息时,同时同步启动红外辐射探测系统的压力机和红外热像仪。
与现有技术相比,本发明的有益效果在于:
(1)本发明采用了逐差红外热像序列图的方差这一新统计指标可以反应出煤岩的承载受力状态和辐射温度场状况,可作为判断承载煤岩是否发生破坏并失去承载能力的标准。该指标有以下优点:(a)逐差红外热像序列图的方差不仅可以将逐差红外热像序列图的异常信息通过具体数据表现出来,而且将相邻两帧逐差红外热像序列图的差异进行了二次放大。(b)通过相邻两帧的逐差红外热像序列图的方差之比(振幅)来可以准确地定量判别煤岩是否处于微破裂或者破坏状态。(c)该指标捕捉煤岩破裂失稳信息的能力,明显优于平均红外辐射温度(AIRT)、最大(小)值等指标。
(2)本发明采用了逐差红外热像序列图来显示承载煤岩破裂过程中的裂隙发育区。该指标有以下优点:(a)逐差红外热像序列图把相邻两帧原始红外序列图的共性部分消除,只保留相邻两帧原始红外热像序列图的差异部分,从而提高了其判别承载煤岩破裂过程中红外辐射异常信息的显著性和准确性。(b)消除了承载煤岩破裂过程中的累积热(热力耦合)效应,只保留了应力变化瞬间煤岩的红外辐射(瞬时)变化特征,可以更有效提取承载煤岩破裂时的红外辐射特征。(c)相较于原始红外热像序列图,该指标所显示的热像图异常区域更加显著和直观,与其他红外辐射正常区域的对比度更大,所以该指标可以及时发现承载煤岩破裂过程中的裂隙发育区。
图1为本发明中煤岩破裂过程中裂隙发育区的红外辐射监测定位方法的流程图;
图2为本发明中煤岩红外辐射监测系统的结构示意图;
图3为本发明中某一承载煤岩的原始红外热像序列图;
图4为图3中的某一承载煤岩的逐差红外热像序列图;
图5为本发明中某一煤岩载荷和逐差红外热像序列图的方差随时间变化曲线图;
图中:1-压力机;2-塑料薄膜;3-承载煤岩;4-隔离封闭箱体;5-红外热像仪;6-红外辐射采集仪。
下面结合附图和具体实施例对本发明作更进一步的说明,以便本领域内的技术人员了解本发明。
如图1所示的是本发明的流程图,煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,包括以下步骤:
a、获取承载煤岩破裂过程中的原始红外辐射信息。在实施本步骤前,需要提前准备红外辐射探测系统,如图2所示。红外辐射探测系统包括压力机1、塑料薄膜2、承载煤岩3、隔离封闭箱体4、红外热像仪5和数据采集仪6;压力机1、塑料薄膜2、承载煤岩3和红外热像仪5均位于隔离封闭箱体4的内部,隔离封闭箱体4的设置主要是为了避免外界环境影响承受煤岩3的红外辐射信息,从而提高红外辐射探测系统的准确性;承载煤岩3位于压力机1上,承载煤岩3与压力机1接触的上下表面设有塑料薄膜2;数据采集仪6分别与压力机1和红外热像仪5连接。利用红外辐射探测系统监测并存储承载煤岩3破裂过程中煤岩外表面的红外辐射信息,得到承载煤岩3破裂过程中原始红外热像序列图,如图3所示。开始监测承载煤岩3破裂过程中红外辐射信息时,同时同步启动红外辐射探测系统的压力机1和红外热像仪5。
b、计算逐差红外热像序列图。对步骤(a)得到的承载煤岩3原始红外热像序列图中的煤岩原始红外热像序列进行逐帧相减,得到承载煤岩3破裂过程中逐差红外热像序列图,如图4所示。
c、确定承载煤岩3破裂过程中的红外辐射信息异常发生的时间节点。对步骤(b)得到的逐差红外热像序列图计算方差,找出逐差红外热像序列图的方差的极值及相对应的发生时间点,并判断逐差红外热像序列图方差的极值发生时间点是否为承载煤岩破裂时刻。承载煤岩3破裂过程的逐差红外热像序列图的方差根据公式(I)计算得到;公式(I)为:其中为逐差红外热像序列图的方差;f(i,j,k)为原始红外热像序列图第k帧的二维温度矩阵;i(i=1,2…,M)为温度矩阵的行号,M为温度矩阵的总行数;j(j=1,2…,N)为温度矩阵的列号,N为温度矩阵的总列数;AIRT(k)为原始红外热像序列图第k帧的平均值。
d、确定承载煤岩破裂时刻裂隙发育区。根据步骤(c)中得到的逐差红外热像序列图的方差的极值及相对应的发生时间点,提取此刻的逐差红外热像序列图,最终确定承载煤岩3破裂时刻裂隙发育区。
图5为本发明中某一承载煤岩的载荷和逐差红外热像序列图的方差随时间变化曲线图,从图中可知,承载煤岩在破裂过程中,载荷与逐差红外热像序列图的方差同时发生变化,因此,逐差红外热像序列图的方差可以将逐差红外热像序列图的异常信息通过具体数据表现出来。通过相邻两帧的逐差红外热像序列图的方差之比(振幅)来可以准确地定量判别煤岩是否处于微破裂或者破坏状态。该指标捕捉煤岩破裂失稳信息的能力,明显优于
平均红外辐射温度(AIRT)、最大(小)值等指标。利用逐差红外热像序列图的方差这一指标提高了其判别承载煤岩破裂过程中红外辐射异常信息的显著性和准确性。
以上实施方式仅用以说明本发明而并非限制本发明所描述的技术方案;因此尽管本说明书参照上述的各个实施方式对本发明已进行了详细的说明,但是本领域的普通技术人员应当理解,仍然可以对本发明进行修改或者等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。
Claims (8)
- 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,其特征在于,该方法包括以下步骤:a、获取承载煤岩破裂过程中的原始红外辐射信息:利用红外辐射探测系统监测并存储承载煤岩破裂过程中煤岩外表面的红外辐射信息,得到承载煤岩破裂过程中原始红外热像序列图;b、计算逐差红外热像序列图:对步骤(a)得到的煤岩原始红外热像序列图中的煤岩原始红外热像序列进行逐帧相减,得到承载煤岩破裂过程中逐差红外热像序列图;c、确定承载煤岩破裂过程中的红外辐射信息异常发生的时间节点:对步骤(b)得到的逐差红外热像序列图计算方差,找出逐差红外热像序列图的方差的极值及相对应的发生时间点,并判断逐差红外热像序列图方差的极值发生时间点是否为承载煤岩破裂时刻;d、确定承载煤岩破裂时刻裂隙发育区:根据步骤(c)中得到的逐差红外热像序列图的方差的极值及相对应的发生时间点,提取此刻的逐差红外热像序列图,最终确定承载煤岩破裂时刻裂隙发育区。
- 如权利要求2所述的煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,其特征在于,所述红外辐射探测系统包括压力机(1)、塑料薄膜(2)、承载煤岩(3)、隔离封闭箱体(4)、红外热像仪(5)和数据采集仪(6)。
- 如权利要求3所述的煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,其特征在于,所述压力机(1)、塑料薄膜(2)、承载煤岩(3)和红外热像仪(5)均位于隔离封闭箱体(4)的内部。
- 如权利要求4所述的煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,其特征在于,所述承载煤岩(3)位于压力机(1)上。
- 如权利要求5所述的煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,其特征在于,所述承载煤岩(3)与压力机(1)接触的上下表面设有塑料薄膜(2)。
- 如权利要求6所述的煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,其特征在于,所述数据采集仪(6)分别与压力机(1)和红外热像仪(5)连接。
- 如权利要求7所述的煤岩破裂过程中裂隙发育区的红外辐射监测定位方法,其特征在于,在步骤(a)中开始监测承载煤岩破裂过程中红外辐射信息时,同时同步启动红外辐射探测系统的压力机(1)和红外热像仪(5)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610572831.5 | 2016-07-20 | ||
CN201610572831.5A CN106018096A (zh) | 2016-07-20 | 2016-07-20 | 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018014623A1 true WO2018014623A1 (zh) | 2018-01-25 |
Family
ID=57116695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/082998 WO2018014623A1 (zh) | 2016-07-20 | 2017-05-04 | 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106018096A (zh) |
WO (1) | WO2018014623A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2581293A (en) * | 2016-12-30 | 2020-08-12 | Ogrands Innovation Inc | A method for detecting degree of crack development of asphalt pavement |
CN111811924A (zh) * | 2020-07-06 | 2020-10-23 | 安徽理工大学 | 一种判别岩石扩容起始点的红外试验方法 |
CN112665731A (zh) * | 2020-12-31 | 2021-04-16 | 中国矿业大学 | 红外辐射技术监测煤岩破坏失稳的分级预警方法 |
CN113408426A (zh) * | 2021-06-22 | 2021-09-17 | 浙江天铂云科光电股份有限公司 | 一种变电站设备智能检测方法及其系统 |
CN114113217A (zh) * | 2021-11-15 | 2022-03-01 | 中国矿业大学 | 一种煤岩体损伤程度的红外辐射量化评价方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106018096A (zh) * | 2016-07-20 | 2016-10-12 | 中国矿业大学 | 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 |
CN107782622A (zh) * | 2017-10-24 | 2018-03-09 | 中国矿业大学 | 应力‑瓦斯耦合作用煤体损伤红外辐射测试装置及方法 |
CN109443543B (zh) * | 2018-11-23 | 2021-05-04 | 中国矿业大学 | 承载煤岩损伤演化的红外辐射量化表征方法 |
CN109696354A (zh) * | 2018-12-19 | 2019-04-30 | 昆明理工大学 | 一种裂隙岩体破坏演化过程中红外辐射监测装置及方法 |
CN110411572B (zh) * | 2019-07-10 | 2020-12-15 | 中国矿业大学 | 承载煤岩破裂的红外辐射监测预警方法 |
CN111982964B (zh) * | 2020-07-08 | 2023-02-03 | 武汉工程大学 | 一种岩爆红外监测的装置及方法 |
CN111811933B (zh) * | 2020-07-31 | 2022-03-11 | 中国矿业大学 | 一种承载煤岩损伤破裂过程中的红外辐射信息去噪方法 |
CN113188909B (zh) * | 2021-04-28 | 2022-03-01 | 中国矿业大学 | 承载煤岩裂纹萌生和稳定扩展起点的红外辐射识别方法 |
CN113484145B (zh) * | 2021-07-06 | 2022-07-05 | 中国矿业大学 | 煤岩变形破裂过程的红外辐射信息去噪与监测预警方法 |
CN113738448A (zh) * | 2021-09-13 | 2021-12-03 | 中国矿业大学 | 采动岩体渗突水远近临多源分级信息智能监测预警方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5517861A (en) * | 1994-10-11 | 1996-05-21 | United Technologies Corporation | High temperature crack monitoring apparatus |
CN103983513A (zh) * | 2014-05-22 | 2014-08-13 | 中国矿业大学 | 一种采用红外辐射观测煤岩裂隙发育过程的装置及方法 |
CN103983514A (zh) * | 2014-05-22 | 2014-08-13 | 中国矿业大学 | 一种煤岩裂隙发育红外辐射监测试验方法 |
CN105318971A (zh) * | 2014-07-07 | 2016-02-10 | 南京理工大学 | 对红外视频序列采用图像配准的自适应非均匀性校正方法 |
CN106018096A (zh) * | 2016-07-20 | 2016-10-12 | 中国矿业大学 | 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930217B2 (ja) * | 1978-11-20 | 1984-07-25 | 富士通株式会社 | 疵検出信号処理装置 |
CA2354202A1 (en) * | 2001-07-26 | 2003-01-26 | Deborah Jean Henry | Stone cell determination using fluorescence |
CN101482491B (zh) * | 2008-12-15 | 2011-11-02 | 中国科学院上海技术物理研究所 | 一种高背景抑制型热红外高光谱实验装置 |
-
2016
- 2016-07-20 CN CN201610572831.5A patent/CN106018096A/zh active Pending
-
2017
- 2017-05-04 WO PCT/CN2017/082998 patent/WO2018014623A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5517861A (en) * | 1994-10-11 | 1996-05-21 | United Technologies Corporation | High temperature crack monitoring apparatus |
CN103983513A (zh) * | 2014-05-22 | 2014-08-13 | 中国矿业大学 | 一种采用红外辐射观测煤岩裂隙发育过程的装置及方法 |
CN103983514A (zh) * | 2014-05-22 | 2014-08-13 | 中国矿业大学 | 一种煤岩裂隙发育红外辐射监测试验方法 |
CN105318971A (zh) * | 2014-07-07 | 2016-02-10 | 南京理工大学 | 对红外视频序列采用图像配准的自适应非均匀性校正方法 |
CN106018096A (zh) * | 2016-07-20 | 2016-10-12 | 中国矿业大学 | 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 |
Non-Patent Citations (3)
Title |
---|
HOU, YIMIN ET AL.: "Steel Material Nondestructive Testing Methods Based on Infrared Image", INDUSTRIAL CONTROL COMPUTER, vol. 25, no. 12, 31 December 2012 (2012-12-31), pages 54 - 56, ISSN: 1001-182X * |
LIU, SHANJUN ET AL.: "Quantitative Analysis Methods Of Infrared Radiation Temperature Field Variation In Rock Loading Process", CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, vol. 34, no. S1, 31 May 2015 (2015-05-31), pages 2968 - 2976, ISSN: 1000-6915 * |
MA, LIQIANG ET AL.: "Experimental study on dependence of infrared radiation on stress for coal fracturing process", JOURNAL OF CHINA COAL SOCIETY, vol. 42, no. 1, 31 January 2017 (2017-01-31), pages 140 - 147, XP055454300, ISSN: 0253-9993 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2581293A (en) * | 2016-12-30 | 2020-08-12 | Ogrands Innovation Inc | A method for detecting degree of crack development of asphalt pavement |
GB2581294A (en) * | 2016-12-30 | 2020-08-12 | Ogrands Innovation Inc | A method for detecting crack development degree index of asphalt pavement |
GB2581293B (en) * | 2016-12-30 | 2021-01-06 | Ogrands Innovation Inc | A method for detecting degree of crack development of asphalt pavement |
GB2581294B (en) * | 2016-12-30 | 2021-01-06 | Ogrands Innovation Inc | A method for detecting crack development degree index of asphalt pavement |
CN111811924A (zh) * | 2020-07-06 | 2020-10-23 | 安徽理工大学 | 一种判别岩石扩容起始点的红外试验方法 |
CN111811924B (zh) * | 2020-07-06 | 2023-12-12 | 安徽理工大学 | 一种判别岩石扩容起始点的红外试验方法 |
CN112665731A (zh) * | 2020-12-31 | 2021-04-16 | 中国矿业大学 | 红外辐射技术监测煤岩破坏失稳的分级预警方法 |
CN113408426A (zh) * | 2021-06-22 | 2021-09-17 | 浙江天铂云科光电股份有限公司 | 一种变电站设备智能检测方法及其系统 |
CN114113217A (zh) * | 2021-11-15 | 2022-03-01 | 中国矿业大学 | 一种煤岩体损伤程度的红外辐射量化评价方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106018096A (zh) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018014623A1 (zh) | 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 | |
US10422705B2 (en) | Apparatus and method for measuring body temperature of a human body | |
CN103821126B (zh) | 一种基坑三维变形的监测方法 | |
Andersen et al. | Stress release in exhumed intermediate and deep earthquakes determined from ultramafic pseudotachylyte | |
CN103278615B (zh) | 一种二氧化碳煤层地质储存的试验方法 | |
CN104833631B (zh) | 自平衡式钢筋混凝土粘结锚固性能测试仪 | |
CN102261982A (zh) | 一种隧道渗水的预警方法 | |
CN105136101A (zh) | 一种桥梁状态参数实时监测及报警系统 | |
CN107870351A (zh) | 一种孔内及孔外双重固定可回收式微震传感器安装方法 | |
CN102288678A (zh) | 一种利用剪切波速评价软弱土扰动程度的方法 | |
CN106246222A (zh) | 一种采煤工作面顶板裂隙带演化特征的可视化观测方法 | |
CN105351007B (zh) | 一种煤矿水质快速检测及水害预警系统 | |
CN108333216A (zh) | 粮堆结露预警检测仪 | |
LI et al. | Infrared thermography for prediction of spontaneous combustion of sulfide ores | |
CN206160924U (zh) | 一种新型混凝土变形测量架 | |
CN207526492U (zh) | 拖管式水平井温压剖面测试装置 | |
Jin et al. | Machine learning-based identification of segment joint failure in underground tunnels | |
CN115839772A (zh) | 一种解决风流影响的巷道应力红外监测方法及装置 | |
CN104281846A (zh) | 一种基于视觉识别的仪表数据采集方法 | |
CN105258968A (zh) | 巷道掌子面突水模拟试验装置及其试验方法 | |
CN205562063U (zh) | 一种基于导热反问题方法的封闭煤场温度在线监测装置 | |
CN106154356A (zh) | 自动气象站在线故障检测系统和检测方法 | |
CN207317862U (zh) | 建筑门窗现场节能性能的测试仪器 | |
CN208092008U (zh) | 一种用于结晶器的物料反应检测系统 | |
Rakha et al. | Campus as a lab for computer vision-based heat mapping drones: A case study for multiple building envelope inspection using unmanned aerial systems (UAS) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17830261 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17830261 Country of ref document: EP Kind code of ref document: A1 |