WO2018012539A1 - Three-dimensional molding method and molding material for use with same - Google Patents

Three-dimensional molding method and molding material for use with same Download PDF

Info

Publication number
WO2018012539A1
WO2018012539A1 PCT/JP2017/025418 JP2017025418W WO2018012539A1 WO 2018012539 A1 WO2018012539 A1 WO 2018012539A1 JP 2017025418 W JP2017025418 W JP 2017025418W WO 2018012539 A1 WO2018012539 A1 WO 2018012539A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding method
polyester copolymer
dimensional molding
dimensional
butanediol
Prior art date
Application number
PCT/JP2017/025418
Other languages
French (fr)
Japanese (ja)
Inventor
雄俊 中谷
Original Assignee
ユニチカ株式会社
雄俊 中谷
金築 亮
本多 真理子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社, 雄俊 中谷, 金築 亮, 本多 真理子 filed Critical ユニチカ株式会社
Priority to JP2018527633A priority Critical patent/JP6758666B2/en
Publication of WO2018012539A1 publication Critical patent/WO2018012539A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids

Definitions

  • the present invention relates to a three-dimensional molding method for obtaining a molded product with a 3D printer or a 3D pen, and particularly to a three-dimensional molding method for easily changing the shape of the molded product and a molding material used therefor.
  • High-strength, high-rigidity or heat-resistant resins such as ABS resin, polycarbonate resin or polylactic acid resin are mainly used as the thermoplastic resin used in the hot melt lamination method (Patent Document 1, Claim 11).
  • Patent Document 1 Patent Document 1
  • the thermoplastic resin is high strength or high rigidity, it is possible to change the shape at home It was difficult.
  • An object of the present invention is to provide a three-dimensional molding method capable of easily changing the shape of a molded article and making the molded article high strength or high rigidity after the change.
  • the present invention solves the above problems by adopting a specific molding material. That is, the present invention relates to a three-dimensional molding method for creating a three-dimensional shape by melting and laminating filaments mainly composed of a thermoplastic resin, wherein the thermoplastic resin contains terephthalic acid as an acid component, Polyester copolymer containing ethylene glycol and 1,4-butanediol as components (hereinafter referred to as “polyester copolymer A”), or terephthalic acid and ⁇ -caprolactone as acid components, and ethylene glycol and diol components as diol components.
  • the present invention relates to a three-dimensional molding method characterized by being a polyester copolymer containing 1,4-butanediol (hereinafter referred to as “polyester copolymer B”).
  • polyester copolymer B polyester copolymer containing 1,4-butanediol
  • ⁇ -caprolactone is a cyclic ester,
  • the molding material used in the present invention is a filamentous material mainly composed of a polyester copolymer A containing terephthalic acid as an acid component and ethylene glycol and 1,4-butanediol as a diol component. Further, it is composed of a linear article mainly composed of a polyester copolymer B containing terephthalic acid and ⁇ -caprolactone as acid components and ethylene glycol and 1,4-butanediol as diol components. Furthermore, it is good also considering the mixture of the polyester copolymers A and B as a main body. The mixing ratio of the polyester copolymer A and the polyester copolymer B is arbitrary.
  • a core-sheath type filament having polyester copolymer A as a core component and polyester copolymer B as a sheath component, or conversely, a core having polyester copolymer B as a core component and polyester copolymer A as a sheath component. It may be a sheath type filament.
  • Polyester copolymers A and B can be produced by a known polycondensation method, and generally can be produced by adding 50 mol% of an acid component and 50 mol% of a diol component and dehydrating and condensing them.
  • What is characteristic of the present invention is that terephthalic acid (with ⁇ -caprolactone if necessary) is used as the acid component, and ethylene glycol and 1,4-butanediol are used as the diol component.
  • terephthalic acid with ⁇ -caprolactone if necessary
  • ethylene glycol and 1,4-butanediol are used as the diol component.
  • Each of these components is used for adjusting the glass transition temperature and the crystallization temperature.
  • the 1,4-butanediol used in combination with ethylene glycol as the diol component is preferably 30 to 70 mol% in the diol component.
  • the ⁇ -caprolactone used in combination with terephthalic acid as the acid component is preferably 5 to 20 mol% in the acid component.
  • ⁇ -caprolactone is used as a copolymerization component, the glass transition temperature of the polyester copolymer B can be further reduced.
  • ⁇ -caprolactone exceeds 20 mol%, the polyester copolymer B tends to be difficult to crystallize at a predetermined temperature.
  • the filaments mainly composed of the polyester copolymer A and / or B are continuous filaments having a diameter of about 1 to 3 mm.
  • the filaments are wound around several tens to several hundreds of meters and attached to a 3D printer. It is done.
  • a monofilament yarn or a multifilament yarn obtained by arranging a plurality of monofilament yarns is used.
  • multifilament yarns it is preferable in handling that the monofilament yarns are not easily separated by fusing each monofilament yarn after being aligned or twisted.
  • each monofilament yarn is preferably fused.
  • a braid is excellent in handling because it has excellent mechanical properties such as breaking strength and bending strength. Furthermore, it is not limited to the above-described ones, and any material that is a filament can be used as a filament.
  • polyester copolymers A and / or B other polymers may be added to the filament in order to adjust the strength of the molded product, the shape change of the molded product, and the like.
  • polyacetal resin, polyolefin resin, acrylic resin, vinyl acetate resin, polyester resin, polyamide resin, vinyl chloride resin, vinylidene chloride resin, polytetrafluoroethylene resin, silicone resin or polyurethane resin May be added alone or in admixture.
  • These other polymers may be added to the inside of the filament, or may be added in a state of covering the surface of the filament.
  • the amount of other polymer added is about 1 to 30% by mass. When there is too much addition amount of another polymer, the shape change by the low heating which is the characteristic of the polyester copolymer A and / or B will become difficult.
  • various additives may be contained in the filament as desired.
  • a dye or pigment may be added to the filament to obtain a color molding.
  • a thermochromic pigment that changes color at the glass transition temperature and the crystallization temperature is added to the filament, it can be determined whether the molded product is deformable or whether the molded product is crystallized, It is preferable.
  • fillers, plasticizers, flame retardants, lubricants, weathering agents, antioxidants, heat-resistant agents, and the like can be added.
  • the additive amount is about 0.01 to 5% by mass.
  • the monofilament yarn constituting the filament can be obtained by melting a raw material mainly composed of polyester copolymer A and / or B and extruding it from a spinning nozzle.
  • a monofilament yarn by the following method. That is, it is preferable that the raw material is spun by a melt spinning method and then stretched to crystallize the polyester copolymer A and / or B to obtain a monofilament yarn. It is also preferred to obtain a monofilament yarn by spinning by melt spinning and then heat treating to crystallize the polyester copolymer A and / or B.
  • the monofilament yarn obtained by such a method has the polyester copolymer A and / or B crystallized, the filaments composed of this monofilament yarn are not easily broken or deformed. Is preferable.
  • ⁇ Linear items attached to a 3D printer are fed into an extruder by a feeder.
  • the extruder includes an extrusion nozzle and a heating device that heats the extrusion nozzle.
  • the filament is melted in the heating device and discharged from the extrusion nozzle.
  • the extruder moves based on the data, and the discharged melt is laminated to obtain a three-dimensional shaped molding.
  • laminating the melt it may be heated or cooled as necessary, but laminating at room temperature is sufficient. Also in the case of heating, it is preferable that the crystallization is not promoted.
  • cooling since there is little possibility that a molded article will crystallize, it may carry out arbitrarily.
  • a conventionally known filament may be attached to the 3D printer to obtain a molded article. And you may shape only the specific site
  • the filamentous material used in the present invention or molded Various processing such as plasma processing may be performed on the part.
  • the support material may be molded by the filaments used in the present invention.
  • the support material is easily deformed by heating, and can be easily removed from the main molded object. Moreover, if it is in the state softened by heating, it is also possible to easily remove the support material with a tool such as a cutter, nipper, engraving knife, scissors, or cutting tools.
  • the polyester copolymer A and / or B used in the present invention has a melting point of 250 ° C. or lower, preferably 200 ° C. or lower, more preferably 130 to 200 ° C.
  • the glass transition temperature is 50 ° C. or less, preferably 30 to 50 ° C.
  • the crystallization temperature is 120 ° C. or lower, preferably 20 ° C. or higher than the glass transition temperature.
  • the crystallization temperature is a temperature at which crystallization of the polyester copolymer A and / or B is most accelerated.
  • the obtained molded product is in a state of having a lot of amorphous regions without being promoted for crystallization unless it is heat-treated near the crystallization temperature during melt lamination.
  • the shape when the molding is heated to a temperature higher than the glass transition temperature, the shape can be easily changed.
  • the glass transition temperature is about 30 to 50 ° C.
  • the shape can be easily changed by immersing in bath water or holding it with fingers.
  • crystallization temperature when it heat-processes at crystallization temperature, crystallization will advance and it can be set as a highly strong or highly rigid molded article. For example, if the crystallization temperature is about 100 ° C., crystallization proceeds and a molded article with high strength or high rigidity is obtained when immersed in boiling water.
  • the shape of the molded product obtained by melt lamination can be changed by heating, and the molded product can be made to have high strength or high rigidity by heat treatment after the change.
  • the shape can be changed at about 30 to 50 ° C., and the heat treatment can be performed at about 100 ° C., so that the shape of the molded product can be easily changed at home, and the molded product can be easily made with high strength or high strength at home.
  • the shape can be made rigid.
  • Polyester copolymer A was obtained by copolymerizing 50 mol% terephthalic acid, 25 mol% ethylene glycol and 25 mol% 1,4-butanediol by dehydration condensation. This polyester copolymer A had a melting point of 180 ° C., a glass transition temperature of 45 ° C., a crystallization temperature of 110 ° C., and a specific gravity of 1.38. This polyester copolymer A was melt-spun with an extruder-type spinning machine and drawn to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
  • Polyester copolymer B was obtained by copolymerizing 43 mol% terephthalic acid, 7 mol% ⁇ -caprolactone, 25 mol% ethylene glycol and 25 mol% 1,4-butanediol by dehydration condensation.
  • This polyester copolymer B had a melting point of 160 ° C., a glass transition temperature of 30 ° C., a crystallization temperature of 75 ° C., and a specific gravity of 1.38.
  • This polyester copolymer B was melt-spun with an extruder-type spinning machine and drawn to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
  • Example 3 Polyester copolymer A of Example 1 was melt-spun with an extruder-type spinning machine to obtain a monofilament yarn without stretching. Then, this monofilament yarn was introduced into a hot air dryer, heat-treated at 110 ° C. for 5 minutes under no load, and air-cooled to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
  • Example 4 Polyester copolymer B of Example 2 was melt-spun with an extruder-type spinning machine to obtain a monofilament yarn without stretching. Then, this monofilament yarn was introduced into a hot air dryer, subjected to heat treatment at 75 ° C. for 5 minutes under no load, and air-cooled to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
  • Example 5 Polyester copolymer A of Example 1 was melt-spun with an extruder-type spinning machine and drawn to obtain a 430 dtex monofilament yarn.
  • a braid was obtained by braiding the monofilament yarn with 21 multifilament yarns as the core yarn, and the multifilament yarn with 2 filaments as the side yarns, and braiding with an eight-square punching machine (braiding machine). The obtained braid was subjected to heat treatment at 170 ° C. for 2 minutes to obtain a line product made of a braid having a diameter of 1.75 mm.
  • Example 6 In the same manner as in Example 5, except that the polyester copolymer B of Example 2 was used and the heat treatment was performed at 150 ° C. for 2 minutes, a filament made of braid having a diameter of 1.75 mm was formed. Obtained.
  • Example 7 A mixture in which 50% by mass of the polyester copolymer A of Example 1 and 50% by mass of the polyester copolymer B of Example 2 were uniformly mixed was obtained. This mixture was melt-spun with an extruder-type spinning machine and stretched to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
  • Example 8 A mixture obtained by uniformly mixing 95% by mass of the polyester copolymer A of Example 1 and 5% by mass of a polyolefin resin (trade name “engage 8200” manufactured by Dow Chemical Co., Ltd.) was obtained. This mixture was melt-spun with an extruder-type spinning machine and stretched to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
  • a polyolefin resin trade name “engage 8200” manufactured by Dow Chemical Co., Ltd.
  • Example 9 A mixture in which 90% by mass of the polyester copolymer B of Example 2 and 10% by mass of a polyester resin (trade name “Elitel UE-3210” manufactured by Unitika Co., Ltd.) were uniformly mixed was obtained. This mixture was melt-spun with an extruder-type spinning machine and stretched to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
  • a polyester resin trade name “Elitel UE-3210” manufactured by Unitika Co., Ltd.
  • Comparative Example 1 Polylactic acid having a melting point of 165 ° C., a glass transition temperature of 60 ° C., a crystallization temperature of 110 ° C. and a specific gravity of 1.24 is melt-spun with an extruder-type spinning machine, drawn, and made of a monofilament yarn having a diameter of 1.75 mm. Obtained a line item.
  • the molded products obtained by the methods according to Examples 1 to 9 become soft enough to change the shape when heated to 50 ° C., which is higher than the glass transition temperature.
  • the molded product obtained by the method according to Comparative Example 1 has a glass transition temperature of polylactic acid of 60 ° C., heating at 50 ° C. does not become soft enough to change the shape.
  • the molded article obtained by the method which concerns on the comparative example 1 will also become soft, and a shape change is possible, but if it heats at 60 degreeC or more at home, there exists a danger of a burn. Therefore, it is not preferable.
  • the moldings obtained by the methods according to Examples 1 to 9 become soft when heated to the glass transition temperature before the heat treatment, but are heated to the glass transition temperature after the heat treatment. As can be seen from FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

[Problem] To provide a three-dimensional molding method that allows for the shape of a molded article to be easily altered, and allows for the molded article to be imparted with high strength or rigidity following such alteration. [Solution] In this three-dimensional molding method, a molded article having a three-dimensional shape is produced by melting and layering lines of a material containing primarily a thermoplastic resin. When doing so, a polyester copolymer comprising terephthalic acid as an acid component, and ethylene glycol and 1,4-butanediol as diol components, is used as the thermoplastic resin. Alternatively, a polyester copolymer comprising terephthalic acid and ε-caprolactone as acid components, and ethylene glycol and 1,4-butanediol as diol components, is used. The polyester copolymer has a melting point of 130–200°C, a glass transition temperature of 30–50°C, and a crystallization temperature that is no more than 120°C, but is at least 20°C higher than the glass transition temperature.

Description

三次元造型法及びそれに用いる造型材料Three-dimensional molding method and molding material used therefor
 本発明は、3Dプリンターや3Dペンにて造型物を得る三次元造型法に関し、特に、造型物の形状を変更しやすい三次元造型法及びそれに用いる造型材料に関するものである。 The present invention relates to a three-dimensional molding method for obtaining a molded product with a 3D printer or a 3D pen, and particularly to a three-dimensional molding method for easily changing the shape of the molded product and a molding material used therefor.
 近年、3DCADや3DCG(三次元コンピューターグラフィックス)等のデータに基づき、立体形状の造型物を得る三次元造型法が急速に普及している。特に、造型材料として熱可塑性樹脂を用いる熱溶解積層法(FDM法)を採用している3Dプリンターは、廉価版も販売され、家庭においても普及している。 In recent years, a three-dimensional molding method for obtaining a three-dimensional molded article based on data such as 3D CAD and 3DCG (three-dimensional computer graphics) has been rapidly spread. In particular, 3D printers that employ a hot melt lamination method (FDM method) using a thermoplastic resin as a molding material are also sold at low cost and are also popular in the home.
 熱溶解積層法に用いられる熱可塑性樹脂としては、ABS樹脂、ポリカーボネート樹脂又はポリ乳酸樹脂等の高強度、高剛性又は耐熱性樹脂が主として用いられている(特許文献1、請求項11)。三次元造型法で得られた造型物が所望の形状となっていないとき、形状変更を行う必要が生じるが、熱可塑性樹脂が高強度又は高剛性であると、家庭で形状変更を行うことは困難であった。 High-strength, high-rigidity or heat-resistant resins such as ABS resin, polycarbonate resin or polylactic acid resin are mainly used as the thermoplastic resin used in the hot melt lamination method (Patent Document 1, Claim 11). When the molded product obtained by the three-dimensional molding method is not in the desired shape, it is necessary to change the shape, but if the thermoplastic resin is high strength or high rigidity, it is possible to change the shape at home It was difficult.
特開2015-221568号公報Japanese Patent Laying-Open No. 2015-221568
 本発明の課題は、造型物の形状を容易に変更しうると共に、変更後において造型物を高強度又は高剛性としうる三次元造型法を提供することにある。 An object of the present invention is to provide a three-dimensional molding method capable of easily changing the shape of a molded article and making the molded article high strength or high rigidity after the change.
 本発明は、造型材料として特定のものを採用することにより、上記課題を解決したものである。すなわち、本発明は、熱可塑性樹脂を主体とする線条物を、溶融させて積層させることにより立体形状を作成する三次元造型法において、熱可塑性樹脂が、酸成分としてテレフタル酸を含み、ジオール成分としてエチレングリコール及び1,4-ブタンジオールを含むポリエステル共重合体(以下、「ポリエステル共重合体A」という。)、又は酸成分としてテレフタル酸及びε-カプロラクトンを含み、ジオール成分としてエチレングリコール及び1,4-ブタンジオールを含むポリエステル共重合体(以下、「ポリエステル共重合体B」という。)であることを特徴とする三次元造型法に関するものである。なお、ε-カプロラクトンは環状エステルであるが、便宜上、本明細書では酸成分に属するものとする。 The present invention solves the above problems by adopting a specific molding material. That is, the present invention relates to a three-dimensional molding method for creating a three-dimensional shape by melting and laminating filaments mainly composed of a thermoplastic resin, wherein the thermoplastic resin contains terephthalic acid as an acid component, Polyester copolymer containing ethylene glycol and 1,4-butanediol as components (hereinafter referred to as “polyester copolymer A”), or terephthalic acid and ε-caprolactone as acid components, and ethylene glycol and diol components as diol components The present invention relates to a three-dimensional molding method characterized by being a polyester copolymer containing 1,4-butanediol (hereinafter referred to as “polyester copolymer B”). Although ε-caprolactone is a cyclic ester, for the sake of convenience, it is assumed that it belongs to the acid component in this specification.
 本発明で用いる造型材料は、酸成分としてテレフタル酸を含み、ジオール成分としてエチレングリコール及び1,4-ブタンジオールを含むポリエステル共重合体Aを主体とする線条物よりなるものである。また、酸成分としてテレフタル酸及びε-カプロラクトンを含み、ジオール成分としてエチレングリコール及び1,4-ブタンジオールを含むポリエステル共重合体Bを主体とする線条物よりなるものである。さらに、ポリエステル共重合体A及びBの混合物を主体としてもよい。ポリエステル共重合体Aとポリエステル共重合体Bの混合比は任意であり、たとえば、ポリエステル共重合体A:ポリエステル共重合体B=1:0.1~10(質量比)程度でよく、好ましくはポリエステル共重合体A:ポリエステル共重合体B=1:0.5~2程度である。また、ポリエステル共重合体Aを芯成分としポリエステル共重合体Bを鞘成分とした芯鞘型線条物又は逆にポリエステル共重合体Bを芯成分としポリエステル共重合体Aを鞘成分とした芯鞘型線条物であってもよい。 The molding material used in the present invention is a filamentous material mainly composed of a polyester copolymer A containing terephthalic acid as an acid component and ethylene glycol and 1,4-butanediol as a diol component. Further, it is composed of a linear article mainly composed of a polyester copolymer B containing terephthalic acid and ε-caprolactone as acid components and ethylene glycol and 1,4-butanediol as diol components. Furthermore, it is good also considering the mixture of the polyester copolymers A and B as a main body. The mixing ratio of the polyester copolymer A and the polyester copolymer B is arbitrary. For example, the polyester copolymer A: polyester copolymer B = 1 may be about 0.1 to 10 (mass ratio), preferably Polyester copolymer A: Polyester copolymer B = 1: about 0.5 to 2. Further, a core-sheath type filament having polyester copolymer A as a core component and polyester copolymer B as a sheath component, or conversely, a core having polyester copolymer B as a core component and polyester copolymer A as a sheath component. It may be a sheath type filament.
 ポリエステル共重合体A及びBは、公知の重縮合法で製造することができ、一般的に酸成分50モル%とジオール成分50モル%を仕込んで脱水縮合することにより製造することができる。本発明で特徴的なことは、酸成分としてテレフタル酸(必要によりε-カプロラクトンを併せて)を用い、ジオール成分としてエチレングリコール及び1,4-ブタンジオールを用いたことにある。これら各成分は、ガラス転移温度及び結晶化温度の調整のために用いられるものである。 Polyester copolymers A and B can be produced by a known polycondensation method, and generally can be produced by adding 50 mol% of an acid component and 50 mol% of a diol component and dehydrating and condensing them. What is characteristic of the present invention is that terephthalic acid (with ε-caprolactone if necessary) is used as the acid component, and ethylene glycol and 1,4-butanediol are used as the diol component. Each of these components is used for adjusting the glass transition temperature and the crystallization temperature.
 ジオール成分としてエチレングリコールと併用される1,4-ブタンジオールは、ジオール成分中、30~70モル%であるのが好ましい。1,4-ブタンジオールが30モル%未満又は70モル%を超えると、ポリエステル共重合体A及びBのガラス転移温度が低下しにくくなる傾向が生じる。酸成分としてテレフタル酸と併用されるε-カプロラクトンは、酸成分中、5~20モル%であるのが好ましい。ε-カプロラクトンを共重合成分として用いると、ポリエステル共重合体Bのガラス転移温度をより低下させることができる。なお、ε-カプロラクトンが20モル%を超えると、ポリエステル共重合体Bが所定温度で結晶化しにくくなる傾向が生じる。 The 1,4-butanediol used in combination with ethylene glycol as the diol component is preferably 30 to 70 mol% in the diol component. When 1,4-butanediol is less than 30 mol% or exceeds 70 mol%, the glass transition temperatures of the polyester copolymers A and B tend to be difficult to decrease. The ε-caprolactone used in combination with terephthalic acid as the acid component is preferably 5 to 20 mol% in the acid component. When ε-caprolactone is used as a copolymerization component, the glass transition temperature of the polyester copolymer B can be further reduced. When ε-caprolactone exceeds 20 mol%, the polyester copolymer B tends to be difficult to crystallize at a predetermined temperature.
 ポリエステル共重合体A及び/又はBを主体とする線条物は、直径が1~3mm程度の連続線条物であり、これを数十~数百m巻いてリール状として、3Dプリンターに取り付けられる。線条物としては、モノフィラメント糸又はモノフィラメント糸を複数本引き揃えてなるマルチフィラメント糸が用いられる。マルチフィラメント糸を用いる場合は、引き揃えたまま又は撚りを掛けた上で、各モノフィラメント糸を融着させて各モノフィラメント糸がばらけにくいようにするのが、取り扱い上、好ましい。また、線条物としては、モノフィラメント糸又はマルチフィラメント糸を編組機(製紐機)にて編組して組紐とした後、各モノフィラメント糸を融着させるのが好ましい。組紐は破断強度や屈曲強度等の機械的物性に優れているため、取り扱い上、好ましい。さらに、上記したものに限らず、線条となっているものであれば、どのようなものでも線条物として用いられる。 The filaments mainly composed of the polyester copolymer A and / or B are continuous filaments having a diameter of about 1 to 3 mm. The filaments are wound around several tens to several hundreds of meters and attached to a 3D printer. It is done. As the filament, a monofilament yarn or a multifilament yarn obtained by arranging a plurality of monofilament yarns is used. When using multifilament yarns, it is preferable in handling that the monofilament yarns are not easily separated by fusing each monofilament yarn after being aligned or twisted. Moreover, as a filament, after monofilament yarn or multifilament yarn is braided with a braiding machine (string making machine) to form a braid, each monofilament yarn is preferably fused. A braid is excellent in handling because it has excellent mechanical properties such as breaking strength and bending strength. Furthermore, it is not limited to the above-described ones, and any material that is a filament can be used as a filament.
 線条物中には、ポリエステル共重合体A及び/又はBの他に、造型物の強度や造形物の形状変更等を調整するために、他の重合体が添加されていてもよい。たとえば、ポリアセタール樹脂、ポリオレフィン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、ポリテトラフルオロエチレン系樹脂、シリコーン系樹脂又はポリウレタン系樹脂を単独で又は混合して添加してもよい。これらの他の重合体は、線条物の内部に添加されていてもよいし、線条物の表面を被覆する状態で添加されていてもよい。他の重合体の添加量は、1~30質量%程度である。他の重合体の添加量が多すぎると、ポリエステル共重合体A及び/又はBの特性である低加温による形状変更が困難となる。 In addition to the polyester copolymers A and / or B, other polymers may be added to the filament in order to adjust the strength of the molded product, the shape change of the molded product, and the like. For example, polyacetal resin, polyolefin resin, acrylic resin, vinyl acetate resin, polyester resin, polyamide resin, vinyl chloride resin, vinylidene chloride resin, polytetrafluoroethylene resin, silicone resin or polyurethane resin May be added alone or in admixture. These other polymers may be added to the inside of the filament, or may be added in a state of covering the surface of the filament. The amount of other polymer added is about 1 to 30% by mass. When there is too much addition amount of another polymer, the shape change by the low heating which is the characteristic of the polyester copolymer A and / or B will become difficult.
 また、線条物中には、所望に応じて種々の添加剤が含有されていてもよい。たとえば、カラー造型物を得るために染料又は顔料を線条物中に添加してもよい。特に、本発明ではガラス転移温度及び結晶化温度で変色するサーモクロミック顔料を線条物中に添加おくと、造型物が変形可能か否か又は造型物が結晶化したか否かを判断でき、好ましいものである。さらに、充填剤、可塑剤、難燃剤、滑剤、耐候剤、酸化防止剤又は耐熱剤等を添加することもできる。なお、添加剤の添加量は0.01~5質量%程度である。 In addition, various additives may be contained in the filament as desired. For example, a dye or pigment may be added to the filament to obtain a color molding. In particular, in the present invention, if a thermochromic pigment that changes color at the glass transition temperature and the crystallization temperature is added to the filament, it can be determined whether the molded product is deformable or whether the molded product is crystallized, It is preferable. Furthermore, fillers, plasticizers, flame retardants, lubricants, weathering agents, antioxidants, heat-resistant agents, and the like can be added. The additive amount is about 0.01 to 5% by mass.
 線条物を構成するモノフィラメント糸は、ポリエステル共重合体A及び/又はBを主体とする原料を溶融し、これを紡糸ノズルから押し出すことによって得ることができる。特に、本発明においては、以下の方法でモノフィラメント糸を得るのが好ましい。すなわち、原料を溶融紡糸法によって紡糸した後、延伸してポリエステル共重合体A及び/又はBを結晶化させてモノフィラメント糸を得るのが好ましい。また、溶融紡糸法によって紡糸した後、熱処理してポリエステル共重合体A及び/又はBを結晶化させてモノフィラメント糸を得るのも好ましい。なお、熱処理する際の温度は、ポリエステル共重合体A及び/又はBの結晶化が進行する後述する温度範囲で行うのが良い。かかる方法によって得られたモノフィラメント糸は、ポリエステル共重合体A及び/又はBが結晶化されているため、このモノフィラメント糸で構成される線条物は破断しにくく、また変形しにくいため、取り扱い性が良く、好ましいものである。 The monofilament yarn constituting the filament can be obtained by melting a raw material mainly composed of polyester copolymer A and / or B and extruding it from a spinning nozzle. In particular, in the present invention, it is preferable to obtain a monofilament yarn by the following method. That is, it is preferable that the raw material is spun by a melt spinning method and then stretched to crystallize the polyester copolymer A and / or B to obtain a monofilament yarn. It is also preferred to obtain a monofilament yarn by spinning by melt spinning and then heat treating to crystallize the polyester copolymer A and / or B. In addition, it is good to perform the temperature at the time of heat processing in the temperature range mentioned later at which crystallization of the polyester copolymer A and / or B advances. Since the monofilament yarn obtained by such a method has the polyester copolymer A and / or B crystallized, the filaments composed of this monofilament yarn are not easily broken or deformed. Is preferable.
 3Dプリンターに取り付けられた線条物は、フィーダーによって、押出機に送り込まれる。押出機には、押出ノズルとこの押出ノズルを加熱する加熱装置を備えており、加熱装置中で線条物は溶融して、押出ノズルから吐出される。押出機はデータに基づいて移動しており、吐出した溶融物は積層されて立体形状の造型物が得られる。溶融物を積層する際に、必要に応じて加温したり冷却してもよいが、室温中で積層することで十分である。加温する場合も、造型物の結晶化が促進しない程度とするのが好ましい。また、冷却する場合は、造型物が結晶化する恐れが少ないので、任意に行えばよい。なお、本発明で用いる線条物の他に、従来公知の線条物も3Dプリンターに取り付けて、造型物を得てもよい。そして、造型物の特定の部位のみを、本発明で用いる線条物で造型してもよい。また、この場合、本発明で用いる線条物で造型される部位と、従来公知の線条物で造型される部位との接着性を向上させるため、本発明で用いる線条物又は造型された部位に、プラズマ加工等の種々の加工を施してもよい。さらには、従来公知の線条物で主体となる造型物を得ると共に、本発明で用いる線条物によってサポート材を造型してもよい。本発明で用いる線条物でサポート材を造型した場合、加温することによりサポート材が容易に変形し、主体となる造形物から取り外すことが容易になる。また加温により軟化した状態であれば、カッター、ニッパー、彫刻刀、ハサミ等の工具又は刃物類によってサポート材を除去することも容易に可能である。 ¡Linear items attached to a 3D printer are fed into an extruder by a feeder. The extruder includes an extrusion nozzle and a heating device that heats the extrusion nozzle. The filament is melted in the heating device and discharged from the extrusion nozzle. The extruder moves based on the data, and the discharged melt is laminated to obtain a three-dimensional shaped molding. When laminating the melt, it may be heated or cooled as necessary, but laminating at room temperature is sufficient. Also in the case of heating, it is preferable that the crystallization is not promoted. Moreover, when cooling, since there is little possibility that a molded article will crystallize, it may carry out arbitrarily. In addition to the filament used in the present invention, a conventionally known filament may be attached to the 3D printer to obtain a molded article. And you may shape only the specific site | part of a molded article with the filament used by this invention. Moreover, in this case, in order to improve the adhesiveness between the part molded with the filamentous material used in the present invention and the part molded with the conventionally known filamentous material, the filamentous material used in the present invention or molded Various processing such as plasma processing may be performed on the part. Furthermore, while obtaining a molding mainly composed of conventionally known filaments, the support material may be molded by the filaments used in the present invention. In the case where the support material is molded with the filamentous material used in the present invention, the support material is easily deformed by heating, and can be easily removed from the main molded object. Moreover, if it is in the state softened by heating, it is also possible to easily remove the support material with a tool such as a cutter, nipper, engraving knife, scissors, or cutting tools.
 本発明で用いるポリエステル共重合体A及び/又はBは、その融点が250℃以下であり、好ましくは200℃以下であり、より好ましくは130~200℃となっている。また、ガラス転移温度は50℃以下であり、好ましくは30~50℃となっている。さらに、結晶化温度は120℃以下であり、好ましくはガラス転移温度よりも20℃以上高い温度となっている。なお、結晶化温度とは、ポリエステル共重合体A及び/又はBの結晶化が最も促進される温度である。得られた造型物は、溶融積層中に結晶化温度付近で熱処理されない限り、結晶化が促進されず、非晶領域を多く持つ状態となっている。このため、造型物をガラス転移温度以上に加温すると、容易に形状変更が可能となる。たとえば、ガラス転移温度が30~50℃程度であると、風呂の湯に浸漬したり、或いは手指で握っていると、容易に形状変更を行うことができる。そして、形状変更した後に、結晶化温度にて熱処理すると、結晶化が進み高強度又は高剛性の造型物とすることができる。たとえば、結晶化温度が100℃程度であると、沸騰水中に浸漬しておくと、結晶化が進み高強度又は高剛性の造型物となる。なお、形状変更した後に熱処理を行わずに、室温程度に冷却した場合は、結晶化は進んでいないが、形状変更した状態で固定した造形物となる。かかる造型物は、ガラス転移温度以上に加温すると、再度形状変更が可能となる。 The polyester copolymer A and / or B used in the present invention has a melting point of 250 ° C. or lower, preferably 200 ° C. or lower, more preferably 130 to 200 ° C. The glass transition temperature is 50 ° C. or less, preferably 30 to 50 ° C. Furthermore, the crystallization temperature is 120 ° C. or lower, preferably 20 ° C. or higher than the glass transition temperature. The crystallization temperature is a temperature at which crystallization of the polyester copolymer A and / or B is most accelerated. The obtained molded product is in a state of having a lot of amorphous regions without being promoted for crystallization unless it is heat-treated near the crystallization temperature during melt lamination. For this reason, when the molding is heated to a temperature higher than the glass transition temperature, the shape can be easily changed. For example, when the glass transition temperature is about 30 to 50 ° C., the shape can be easily changed by immersing in bath water or holding it with fingers. And after shape change, when it heat-processes at crystallization temperature, crystallization will advance and it can be set as a highly strong or highly rigid molded article. For example, if the crystallization temperature is about 100 ° C., crystallization proceeds and a molded article with high strength or high rigidity is obtained when immersed in boiling water. In addition, when it cools to about room temperature, without performing heat processing after shape change, although crystallization has not progressed, it becomes a molded article fixed in the state which changed shape. When the molded product is heated to a temperature higher than the glass transition temperature, the shape can be changed again.
 本発明に係る三次元造型法を採用すると、溶融積層して得られた造型物の形状を加温により変更しうると共に、変更後に熱処理することにより造型物を高強度又は高剛性にすることができるという効果を奏する。特に、形状変更は30~50℃程度で可能であり、熱処理は100℃程度で可能であるため、家庭で造型物の形状変更が容易に行え、また家庭で造型物を容易に高強度又は高剛性にすることができるという効果を奏する。 When the three-dimensional molding method according to the present invention is adopted, the shape of the molded product obtained by melt lamination can be changed by heating, and the molded product can be made to have high strength or high rigidity by heat treatment after the change. There is an effect that can be done. In particular, the shape can be changed at about 30 to 50 ° C., and the heat treatment can be performed at about 100 ° C., so that the shape of the molded product can be easily changed at home, and the molded product can be easily made with high strength or high strength at home. There is an effect that it can be made rigid.
実施例1
 テレフタル酸50モル%、エチレングリコール25モル%及び1,4-ブタンジオール25モル%を脱水縮合により共重合してポリエステル共重合体Aを得た。このポリエステル共重合体Aは、その融点が180℃、ガラス転移温度が45℃、結晶化温度が110℃及び比重が1.38であった。このポリエステル共重合体Aを、エクストルーダー型紡糸機にて溶融紡糸し、延伸して、直径1.75mmのモノフィラメント糸よりなる線条物を得た。
Example 1
Polyester copolymer A was obtained by copolymerizing 50 mol% terephthalic acid, 25 mol% ethylene glycol and 25 mol% 1,4-butanediol by dehydration condensation. This polyester copolymer A had a melting point of 180 ° C., a glass transition temperature of 45 ° C., a crystallization temperature of 110 ° C., and a specific gravity of 1.38. This polyester copolymer A was melt-spun with an extruder-type spinning machine and drawn to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
実施例2
 テレフタル酸43モル%、ε-カプロラクトン7モル%、エチレングリコール25モル%及び1,4-ブタンジオール25モル%を脱水縮合により共重合してポリエステル共重合体Bを得た。このポリエステル共重合体Bは、その融点が160℃、ガラス転移温度が30℃、結晶化温度が75℃及び比重が1.38であった。このポリエステル共重合体Bを用い、エクストルーダー型紡糸機にて溶融紡糸し、延伸して、直径1.75mmのモノフィラメント糸よりなる線条物を得た。
Example 2
Polyester copolymer B was obtained by copolymerizing 43 mol% terephthalic acid, 7 mol% ε-caprolactone, 25 mol% ethylene glycol and 25 mol% 1,4-butanediol by dehydration condensation. This polyester copolymer B had a melting point of 160 ° C., a glass transition temperature of 30 ° C., a crystallization temperature of 75 ° C., and a specific gravity of 1.38. This polyester copolymer B was melt-spun with an extruder-type spinning machine and drawn to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
実施例3
 実施例1のポリエステル共重合体Aを、エクストルーダー型紡糸機にて溶融紡糸し、延伸せずに、モノフィラメント糸を得た。そして、このモノフィラメント糸を熱風乾燥機に導入し、無荷重の状態で110℃にて5分間の熱処理を行い、空冷して、直径1.75mmのモノフィラメント糸よりなる線条物を得た。
Example 3
Polyester copolymer A of Example 1 was melt-spun with an extruder-type spinning machine to obtain a monofilament yarn without stretching. Then, this monofilament yarn was introduced into a hot air dryer, heat-treated at 110 ° C. for 5 minutes under no load, and air-cooled to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
実施例4
 実施例2のポリエステル共重合体Bを、エクストルーダー型紡糸機にて溶融紡糸し、延伸せずに、モノフィラメント糸を得た。そして、このモノフィラメント糸を熱風乾燥機に導入し、無荷重の状態で75℃にて5分間の熱処理を行い、空冷して、直径1.75mmのモノフィラメント糸よりなる線条物を得た。
Example 4
Polyester copolymer B of Example 2 was melt-spun with an extruder-type spinning machine to obtain a monofilament yarn without stretching. Then, this monofilament yarn was introduced into a hot air dryer, subjected to heat treatment at 75 ° C. for 5 minutes under no load, and air-cooled to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
実施例5
 実施例1のポリエステル共重合体Aを、エクストルーダー型紡糸機にて溶融紡糸し、延伸して、430デシテックスのモノフィラメント糸を得た。このモノフィラメント糸を21本引き揃えたマルチフィラメント糸を芯糸とし、2本引き揃えたマルチフィラメント糸を側糸として、8本角打ち製紐機(編組機)にて編組した組紐を得た。得られた組紐に、170℃で2分間の熱処理を施し、直径1.75mmの組紐よりなる線条物を得た。
Example 5
Polyester copolymer A of Example 1 was melt-spun with an extruder-type spinning machine and drawn to obtain a 430 dtex monofilament yarn. A braid was obtained by braiding the monofilament yarn with 21 multifilament yarns as the core yarn, and the multifilament yarn with 2 filaments as the side yarns, and braiding with an eight-square punching machine (braiding machine). The obtained braid was subjected to heat treatment at 170 ° C. for 2 minutes to obtain a line product made of a braid having a diameter of 1.75 mm.
実施例6
 実施例2のポリエステル共重合体Bを用いること及び熱処理の条件を150℃で2分間とすることの他は、実施例5と同一の方法で、直径1.75mmの組紐よりなる線条物を得た。
Example 6
In the same manner as in Example 5, except that the polyester copolymer B of Example 2 was used and the heat treatment was performed at 150 ° C. for 2 minutes, a filament made of braid having a diameter of 1.75 mm was formed. Obtained.
実施例7
 実施例1のポリエステル共重合体A50質量%と実施例2のポリエステル共重合体B50質量%を均一に混合した混合物を得た。この混合物をエクストルーダー型紡糸機にて溶融紡糸し、延伸して、直径1.75mmのモノフィラメント糸よりなる線条物を得た。
Example 7
A mixture in which 50% by mass of the polyester copolymer A of Example 1 and 50% by mass of the polyester copolymer B of Example 2 were uniformly mixed was obtained. This mixture was melt-spun with an extruder-type spinning machine and stretched to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
実施例8
 実施例1のポリエステル共重合体A95質量%とポリオレフィン系樹脂(ダウ・ケミカル社製、商品名「エンゲージ 8200」)5質量%を均一に混合した混合物を得た。この混合物をエクストルーダー型紡糸機にて溶融紡糸し、延伸して、直径1.75mmのモノフィラメント糸よりなる線条物を得た。
Example 8
A mixture obtained by uniformly mixing 95% by mass of the polyester copolymer A of Example 1 and 5% by mass of a polyolefin resin (trade name “engage 8200” manufactured by Dow Chemical Co., Ltd.) was obtained. This mixture was melt-spun with an extruder-type spinning machine and stretched to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
実施例9
 実施例2のポリエステル共重合体B90質量%とポリエステル系樹脂(ユニチカ社製、商品名「エリーテル UE-3210」)10質量%を均一に混合した混合物を得た。この混合物をエクストルーダー型紡糸機にて溶融紡糸し、延伸して、直径1.75mmのモノフィラメント糸よりなる線条物を得た。
Example 9
A mixture in which 90% by mass of the polyester copolymer B of Example 2 and 10% by mass of a polyester resin (trade name “Elitel UE-3210” manufactured by Unitika Co., Ltd.) were uniformly mixed was obtained. This mixture was melt-spun with an extruder-type spinning machine and stretched to obtain a filament made of monofilament yarn having a diameter of 1.75 mm.
比較例1
 融点165℃、ガラス転移温度60℃、結晶化温度110℃及び比重が1.24のポリ乳酸を、エクストルーダー型紡糸機にて溶融紡糸し、延伸して、直径1.75mmのモノフィラメント糸よりなる線条物を得た。
Comparative Example 1
Polylactic acid having a melting point of 165 ° C., a glass transition temperature of 60 ° C., a crystallization temperature of 110 ° C. and a specific gravity of 1.24 is melt-spun with an extruder-type spinning machine, drawn, and made of a monofilament yarn having a diameter of 1.75 mm. Obtained a line item.
 実施例1~9及び比較例1で得られた線条物を用い、XYZ printing社製の3Dプリンター(Davinci Pro)にて、縦80mm、横10mm、厚さ2mmの直方体よりなる10種の造型物を得た。これらの造型物の垂れ試験を以下の方法で行った。すなわち、この造型物を、図1に示す如く、台(図1で濃墨で表した部分)上に縦方向の端部を載置したうえで、両面テープで固定し、台から60mm張り出した状態で5分間放置した。これを25℃及び50℃で行い、造型物の張り出した端縁が当初の状態から、何mm垂れたか(垂れ長)を測定した。その結果を表1に示した。 Using the filaments obtained in Examples 1 to 9 and Comparative Example 1, 10 types of moldings consisting of a rectangular parallelepiped having a length of 80 mm, a width of 10 mm, and a thickness of 2 mm using a 3D printer (Davinci Pro) manufactured by XYZ printing I got a thing. The sag test of these moldings was performed by the following method. That is, as shown in FIG. 1, the molded product was placed with a double-sided tape on the stand (portion shown in dark ink in FIG. 1), fixed with double-sided tape, and extended 60 mm from the stand. The state was left for 5 minutes. This was performed at 25 ° C. and 50 ° C., and it was measured how many mm (the sag length) the overhanging edge of the molded article sagged from the initial state. The results are shown in Table 1.
[表1]
       ━━━━━━━━━━━━━━━━━━━
               垂 れ 長 (mm)
             ━━━━━━━━━━━━━
              25℃   50℃
       ━━━━━━━━━━━━━━━━━━━
        実施例1   0    21
        実施例2   1    32
        実施例3   0    23
        実施例4   1    31
        実施例5   0    22
        実施例6   1    33
        実施例7   1    25
        実施例8   0    11
        実施例9   1    33
        比較例1   0     2
       ━━━━━━━━━━━━━━━━━━━
[Table 1]
━━━━━━━━━━━━━━━━━━━
Sagging length (mm)
━━━━━━━━━━━━━
25 ° C 50 ° C
━━━━━━━━━━━━━━━━━━━
Example 1 0 21
Example 2 1 32
Example 3 0 23
Example 4 1 31
Example 5 0 22
Example 6 1 33
Example 7 1 25
Example 8 0 11
Example 9 1 33
Comparative Example 1 0 2
━━━━━━━━━━━━━━━━━━━
 表1の結果から分かるように、実施例1~9に係る方法で得られた造型物は、ガラス転移温度以上である50℃に加温すると、形状変更が可能な程度に柔らかくなる。一方、比較例1に係る方法で得られた造型物は、ポリ乳酸のガラス転移温度が60℃であるため、50℃の加温では、形状変更が可能な程度に柔らかくならない。なお、60℃以上に加温すれば、比較例1に係る方法で得られた造型物も柔らかくなって形状変更が可能となるが、家庭で60℃以上に加温すると、火傷の危険があるため好ましくない。 As can be seen from the results in Table 1, the molded products obtained by the methods according to Examples 1 to 9 become soft enough to change the shape when heated to 50 ° C., which is higher than the glass transition temperature. On the other hand, since the molded product obtained by the method according to Comparative Example 1 has a glass transition temperature of polylactic acid of 60 ° C., heating at 50 ° C. does not become soft enough to change the shape. In addition, if it heats above 60 degreeC, the molded article obtained by the method which concerns on the comparative example 1 will also become soft, and a shape change is possible, but if it heats at 60 degreeC or more at home, there exists a danger of a burn. Therefore, it is not preferable.
 次に、得られた直方体よりなる10種の造型物を、各々、所定の温度で5分間放置して熱処理した。すなわち、実施例1、3、5及び8に係る方法で得られた造型物については110℃で、実施例2、4、6及び9に係る方法で得られた造型物については70℃で、実施例7に係る方法で得られた造型物については100℃で、比較例1に係る方法で得られた造型物については110℃で熱処理した。そして、前記した方法で垂れ長を測定した。その結果を表2に示した。 Next, 10 types of molded articles made of the obtained rectangular parallelepiped were each left to heat treatment at a predetermined temperature for 5 minutes. That is, the molded product obtained by the method according to Examples 1, 3, 5 and 8 was 110 ° C., and the molded product obtained by the method according to Examples 2, 4, 6 and 9 was 70 ° C. The molded product obtained by the method according to Example 7 was heat-treated at 100 ° C., and the molded product obtained by the method according to Comparative Example 1 was heat-treated at 110 ° C. Then, the sag length was measured by the method described above. The results are shown in Table 2.
[表2]
       ━━━━━━━━━━━━━━━━━━━
               垂 れ 長 (mm)
             ━━━━━━━━━━━━━
              25℃   50℃
       ━━━━━━━━━━━━━━━━━━━
        実施例1   0     0
        実施例2   0     0
        実施例3   0     0
        実施例4   0     0
        実施例5   0     0
        実施例6   0     0
        実施例7   0     0
        実施例8   0     0
        実施例9   0     0
        比較例1   0     0
       ━━━━━━━━━━━━━━━━━━━
[Table 2]
━━━━━━━━━━━━━━━━━━━
Sagging length (mm)
━━━━━━━━━━━━━
25 ° C 50 ° C
━━━━━━━━━━━━━━━━━━━
Example 1 0 0
Example 2 0 0
Example 3 0 0
Example 4 0 0
Example 5 0 0
Example 6 0 0
Example 7 0 0
Example 8 0 0
Example 9 0 0
Comparative Example 1 0 0
━━━━━━━━━━━━━━━━━━━
 表2の結果から分かるように、実施例1~9に係る方法で得られた造型物は、熱処理前ではガラス転移温度に加温すると柔らかくなるが、熱処理後ではガラス転移温度に加温しても剛性を保持していることが分かる。 As can be seen from the results in Table 2, the moldings obtained by the methods according to Examples 1 to 9 become soft when heated to the glass transition temperature before the heat treatment, but are heated to the glass transition temperature after the heat treatment. As can be seen from FIG.
垂れ長を測定する際の造型物の台からの張り出し状態を示した側面図である。It is the side view which showed the protrusion state from the stand of the molded article at the time of measuring drooping length.

Claims (9)

  1.  熱可塑性樹脂を主体とする線条物を、溶融させて積層させることにより立体形状を作成する三次元造型法において、
     前記熱可塑性樹脂が、酸成分としてテレフタル酸を含み、ジオール成分としてエチレングリコール及び1,4-ブタンジオールを含むポリエステル共重合体であることを特徴とする三次元造型法。
    In the three-dimensional molding method of creating a three-dimensional shape by melting and laminating the filaments mainly composed of thermoplastic resin,
    A three-dimensional molding method, wherein the thermoplastic resin is a polyester copolymer containing terephthalic acid as an acid component and ethylene glycol and 1,4-butanediol as a diol component.
  2.  熱可塑性樹脂を主体とする線条物を、溶融させて積層させることにより立体形状を作成する三次元造型法において、
     前記熱可塑性樹脂が、酸成分としてテレフタル酸及びε-カプロラクトンを含み、ジオール成分としてエチレングリコール及び1,4-ブタンジオールを含むポリエステル共重合体であることを特徴とする三次元造型法。
    In the three-dimensional molding method of creating a three-dimensional shape by melting and laminating the filaments mainly composed of thermoplastic resin,
    3. A three-dimensional molding method, wherein the thermoplastic resin is a polyester copolymer containing terephthalic acid and ε-caprolactone as acid components and ethylene glycol and 1,4-butanediol as diol components.
  3.  ジオール成分中、1,4-ブタンジオールが30~70モル%存在する請求項1又は2記載の三次元造型法。 The three-dimensional molding method according to claim 1 or 2, wherein 1,4-butanediol is present in an amount of 30 to 70 mol% in the diol component.
  4.  酸成分中、ε-カプロラクトンが5~20モル%存在する請求項2記載の三次元造型法。 The three-dimensional molding method according to claim 2, wherein 5 to 20 mol% of ε-caprolactone is present in the acid component.
  5.  線条物がモノフィラメント糸、モノフィラメント糸を複数本引き揃えてなるマルチフィラメント糸又はモノフィラメント糸或いはマルチフィラメント糸を編組してなる組紐である請求項1乃至4のいずれか一項に記載の三次元造型法。 The three-dimensional molding according to any one of claims 1 to 4, wherein the filament is a monofilament yarn, a multifilament yarn obtained by aligning a plurality of monofilament yarns, a braided cord obtained by braiding a monofilament yarn or a multifilament yarn. Law.
  6.  熱可塑性樹脂の融点が200℃以下であり、ガラス転移温度が50℃以下であり、結晶化温度が120℃以下であって、結晶化温度はガラス転移温度よりも20℃以上高い請求項1乃至5のいずれか一項に記載の三次元造型法。 The melting point of the thermoplastic resin is 200 ° C or lower, the glass transition temperature is 50 ° C or lower, the crystallization temperature is 120 ° C or lower, and the crystallization temperature is 20 ° C or higher than the glass transition temperature. The three-dimensional molding method according to any one of 5.
  7.  線条物を溶融させ積層させて得られた立体形状の造型物を、50℃以下の温度に加温して形状変更し、その後、70℃~120℃の温度で熱処理することにより、ポリエステル共重合体の結晶化を促進させる請求項1乃至6のいずれか一項に記載の三次元造型法。 A three-dimensional molded product obtained by melting and laminating the filaments is heated to a temperature of 50 ° C. or lower, and then subjected to a heat treatment at a temperature of 70 ° C. to 120 ° C. The three-dimensional molding method according to any one of claims 1 to 6, which promotes crystallization of a polymer.
  8.  酸成分としてテレフタル酸を含み、ジオール成分としてエチレングリコール及び1,4-ブタンジオールを含むポリエステル共重合体を主体とする線条物よりなる三次元造型法に用いる造型材料。 A molding material used in a three-dimensional molding method comprising a linear article mainly composed of a polyester copolymer containing terephthalic acid as an acid component and ethylene glycol and 1,4-butanediol as a diol component.
  9.  酸成分としてテレフタル酸及びε-カプロラクトンを含み、ジオール成分としてエチレングリコール及び1,4-ブタンジオールを含むポリエステル共重合体を主体とする線条物よりなる三次元造型法に用いる造型材料。 A molding material used in a three-dimensional molding method comprising a filament mainly composed of a polyester copolymer containing terephthalic acid and ε-caprolactone as acid components and ethylene glycol and 1,4-butanediol as diol components.
PCT/JP2017/025418 2016-07-15 2017-07-12 Three-dimensional molding method and molding material for use with same WO2018012539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527633A JP6758666B2 (en) 2016-07-15 2017-07-12 Three-dimensional molding method and molding materials used for it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016140904 2016-07-15
JP2016-140904 2016-07-15
JP2016199497 2016-10-07
JP2016-199497 2016-10-07

Publications (1)

Publication Number Publication Date
WO2018012539A1 true WO2018012539A1 (en) 2018-01-18

Family

ID=60952087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025418 WO2018012539A1 (en) 2016-07-15 2017-07-12 Three-dimensional molding method and molding material for use with same

Country Status (2)

Country Link
JP (1) JP6758666B2 (en)
WO (1) WO2018012539A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050755A (en) * 2018-09-27 2020-04-02 ユニチカ株式会社 Method of altering shape of molded article, molding material used for the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912693A (en) * 1995-06-23 1997-01-14 Nippon Ester Co Ltd Copolymerized polyester for binder fiber excellent in heat resistance
JP2008303494A (en) * 2007-06-07 2008-12-18 Unitica Fibers Ltd Method for producing heat-bonding filament and heat-bonding filament
JP2009235150A (en) * 2008-03-26 2009-10-15 Toray Ind Inc Polyester composition and method for producing it
JP2010261131A (en) * 2009-05-11 2010-11-18 Nippon Ester Co Ltd Mildewproofing heat-bonding polyester fiber
JP2016210947A (en) * 2015-05-13 2016-12-15 三菱化学株式会社 Filament resin for material extrusion type three-dimensional printer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226140A (en) * 2016-06-22 2017-12-28 株式会社リコー Polylactic acid composition for three-dimensional molding, and method for manufacturing three-dimensionally molded object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912693A (en) * 1995-06-23 1997-01-14 Nippon Ester Co Ltd Copolymerized polyester for binder fiber excellent in heat resistance
JP2008303494A (en) * 2007-06-07 2008-12-18 Unitica Fibers Ltd Method for producing heat-bonding filament and heat-bonding filament
JP2009235150A (en) * 2008-03-26 2009-10-15 Toray Ind Inc Polyester composition and method for producing it
JP2010261131A (en) * 2009-05-11 2010-11-18 Nippon Ester Co Ltd Mildewproofing heat-bonding polyester fiber
JP2016210947A (en) * 2015-05-13 2016-12-15 三菱化学株式会社 Filament resin for material extrusion type three-dimensional printer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIEN-WEI SHYR: "Sequence Distribution and Crystal Structure of Poly(ethylene/butylene terephthalate) Copolyesters Compared With Poly(ethylene/trimethylene terephthalate) Copolyesters", JOURNAL OF POLYMER SCIENCE :PART B: POLYMER PHHSICS, vol. 45, 2007, pages 405 - 419, XP055459186 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050755A (en) * 2018-09-27 2020-04-02 ユニチカ株式会社 Method of altering shape of molded article, molding material used for the method

Also Published As

Publication number Publication date
JP6758666B2 (en) 2020-09-23
JPWO2018012539A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
CN108882764B (en) Resin composition for artificial hair and molded article thereof
JP7011581B2 (en) Artificial hair fiber
KR102137243B1 (en) Polyethylene Yarn, Method for Manufacturing The Same, and Skin Cooling Fabric Comprising The Same
KR101656198B1 (en) Fiber for artificial hair, and head decoration article including same
WO2018012539A1 (en) Three-dimensional molding method and molding material for use with same
KR101907049B1 (en) Fiber for artificial hair, and hairpiece product
JP6706501B2 (en) Molding material
JP5301806B2 (en) Fiber products
JP5819735B2 (en) Mixed yarn excellent in cool feeling
JPH07205275A (en) Stick made of synthetic resin and apparatus for producing the same
JP5210856B2 (en) Method for producing vinyl chloride resin fiber
JP2020050755A (en) Method of altering shape of molded article, molding material used for the method
JP7186427B2 (en) Molded product and method for changing shape of molded product
KR102144201B1 (en) Polypropylene filament elastic yarns, fabric thereof and manufacture method
CN112111052A (en) Raw material formula of PET flat filament and preparation method thereof
JP6437292B2 (en) Polyester fiber
KR101690837B1 (en) Nonwoven web having an excellent soft property and the preparing process thereof
JP5304680B2 (en) Polytrimethylene terephthalate polyester partially oriented fiber
KR102534492B1 (en) Cut-resistance complex fiber
JP2005307409A (en) Method for producing fiber for polyester artificial hair
JP6675891B2 (en) Modeling method
KR20150083473A (en) Polyester mixed yarn with different shrinkage and the preparing process thereof
KR20240021259A (en) Fibers for artificial hair, fiber bundles for artificial hair and hair decoration products
KR20170076941A (en) Method of preparing highly elongated monofilament of biodegradable resin and highly elongated monofilament manufactured by the method
JP2012177208A (en) Fiber for artificial hair and hair ornament

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018527633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827665

Country of ref document: EP

Kind code of ref document: A1