WO2018012152A1 - Hydrogen generation system - Google Patents

Hydrogen generation system Download PDF

Info

Publication number
WO2018012152A1
WO2018012152A1 PCT/JP2017/021172 JP2017021172W WO2018012152A1 WO 2018012152 A1 WO2018012152 A1 WO 2018012152A1 JP 2017021172 W JP2017021172 W JP 2017021172W WO 2018012152 A1 WO2018012152 A1 WO 2018012152A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
generation system
support
generation device
Prior art date
Application number
PCT/JP2017/021172
Other languages
French (fr)
Japanese (ja)
Inventor
アルツゲ ラシカ ダサナヤケ
壮一郎 鈴木
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018527441A priority Critical patent/JPWO2018012152A1/en
Publication of WO2018012152A1 publication Critical patent/WO2018012152A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen generation system.
  • This application claims priority based on Japanese Patent Application No. 2016-140587 filed in Japan on July 15, 2016, the contents of which are incorporated herein by reference.
  • Non-Patent Documents 1 and 2 As an apparatus for generating hydrogen gas, for example, a hydrogen generation system using electrolysis of water as described in Non-Patent Documents 1 and 2 is known. Since this type of hydrogen generation system is relatively large, it is placed in an environment where the outside air temperature is relatively low, such as indoors.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a hydrogen generation system with improved efficiency for generating hydrogen gas.
  • the hydrogen generation system of one embodiment of the present invention is a hydrogen generation system including a support and a hydrogen generation device, and the support can be heated by solar heat, and the hydrogen generation device supplies water.
  • the support and the hydrogen generator are connected so that hydrogen gas is generated by electrolysis and heat of the support is transmitted to the hydrogen generator.
  • the temperature of the support rises by being heated by solar heat (solar heat).
  • solar heat solar heat
  • the temperature of the water used in the hydrogen generator rises as the heat of the support is transmitted.
  • the overvoltage decreases and it becomes easier to electrolyze, so that the efficiency of generating hydrogen gas can be increased.
  • the support may be a roof of a building.
  • the roof of the building is less likely to be shielded from solar heat by other buildings or the like, and is easily heated. Therefore, the temperature of the water used for the hydrogen generator can be increased efficiently, and the efficiency of generating hydrogen gas can be further increased.
  • the support is a solar power generation device that converts sunlight into electric power
  • the hydrogen generation device is attached to a surface opposite to the light receiving surface of the solar power generation device. It may be.
  • the hydrogen generator preferably has a high temperature of water to be used, but does not require sunlight.
  • the solar power generation apparatus requires sunlight, but if the temperature is too high, the power conversion efficiency is lowered.
  • the solar power generation device receives sunlight at its light receiving surface and converts it into electric power.
  • the temperature of the water used in the hydrogen generator is increased by the heat of the solar power generator heated by solar heat, making hydrogen gas efficient Will occur. For example, when supplying water at room temperature to the hydrogen generator, the water takes away the heat of the solar power generator heated by solar heat, so the temperature of the solar power generator is lowered to convert the power in the solar power generator. Can be increased.
  • the support may be at least one of a building floor, the building foundation, and a pavement.
  • the support may be a building floor, foundation, or pavement.
  • the support may be a building wall or a pillar.
  • the support may be a movable roof or floor.
  • the hydrogen generator may be in the form of a film. According to this aspect, when the hydrogen generator is formed of a flexible material, the hydrogen generator can be easily bent. Therefore, the hydrogen generator can be easily installed in various shapes.
  • the efficiency of generating hydrogen gas can be increased.
  • the hydrogen generation system 1 of the present embodiment includes a solar power generation device (support) 11 that can be heated by solar heat, and a hydrogen generation device 21 connected to the solar power generation device 11. And.
  • the solar power generation device 11 is attached to a roof 13 of a house (building) 12 via a support member 14.
  • the support member 14 is configured, for example, by forming an angle 14a, which is a metal rod-like member, into a predetermined shape with a fastening member (not shown) such as a bolt.
  • the structure of the house 12 is not particularly limited, and may be one-story (one-story) or two or more stories.
  • the configuration of the roof 13 may be a flat roof that is substantially flat with respect to the horizontal plane, or a gable roof, a dormitory roof, or the like having a slope inclined with respect to the horizontal plane.
  • the solar power generation device 11 is not particularly limited as long as it is a device that converts sunlight incident on the surface 11a that is a light receiving surface into electric power.
  • the solar power generation device 11 converts, for example, sunlight into electric power using a DC voltage.
  • a compound solar cell such as a dye-sensitized solar cell, or a silicon solar cell such as a single crystal or polycrystalline solar cell can be used.
  • the solar power generation device 11 is formed in a plate shape.
  • the solar power generation device 11 is provided with a tab (not shown) for taking out the generated power to the outside.
  • the solar power generation device 11 is fixed to the support member 14 by a fastening member or the like (not shown) so that the surface 11a faces upward and faces the sun S.
  • the surface 11a is a light receiving surface on which sunlight L described later is incident.
  • the tab of the solar power generator 11 is connected to a power conditioner provided in the house 12 through wiring.
  • the power conditioner converts a DC voltage into an AC voltage and adjusts the voltage of the AC voltage.
  • the power conditioner is connected to an outlet provided on the wall of the house 12.
  • the configuration of the hydrogen generator 21 is not particularly limited.
  • the hydrogen generator 21 may be either an alkaline type or a PEM (Proton Exchange Membrane) type, but in the present embodiment, the hydrogen generator 21 will be described as an alkaline type.
  • the hydrogen generator 21 includes an electrolytic cell 22, a diaphragm 23, a water supply pipe 24, and a gas-liquid separator 25.
  • the electrolytic cell 22 includes two substrates 28 that are spaced apart from each other and a sealing material 29 that seals the periphery of the substrate 28 in a liquid-tight manner.
  • a diaphragm 23 is provided in the electrolytic cell 22.
  • the electrolytic cell 22 is partitioned into an anode chamber 22a and a cathode chamber 22b by a diaphragm 23.
  • the anode chamber 22a is provided with an anode 31, and the cathode chamber 22b is provided with a cathode 32.
  • the anode 31 and the cathode 32 face each other with the diaphragm 23 interposed therebetween.
  • An electrolytic solution 34 is provided in the anode chamber 22a and the cathode chamber 22b.
  • the electrolytic cell 22 is connected to a gas-liquid separator 25 by a water supply pipe 24.
  • the water supply pipe 24 includes a first branch pipe 24a and a second branch pipe 24b.
  • the first branch pipe 24a is connected to the end of the anode chamber 22a, and the second branch pipe 24b is connected to the end of the cathode chamber 22b.
  • An oxygen exhaust pipe 35 is provided in the upper part of the cathode chamber 22b.
  • the gas-liquid separator 25 is connected to the water source 38 and the hydrogen storage unit 39.
  • the base material 28 is not particularly limited as long as it is an insulating material and is not modified by the electrolytic solution 34.
  • a resin plate, a resin film, or the like is used for the substrate 28, for example.
  • the diaphragm 23 should just be a film
  • a conventionally known diaphragm is used, for example, a hydrocarbon-based anion exchange membrane or the like.
  • a conventionally known cathode is used for the anode 31.
  • a platinum group such as Pt, Rh, Ir, Ni, Fe, etc., and alloys thereof are used.
  • a conventionally known anode is used as the cathode 32.
  • Ni, Ru, Ir, Ti, Sn, Mo, Ta, Nb, V, Fe, Mn, Pt, Pd, Au, alloys thereof, and oxides thereof are used.
  • an aqueous solution of an alkali metal hydroxide such as an aqueous NaOH solution or an aqueous KOH solution is used.
  • the content of the alkali metal hydroxide in the aqueous solution is preferably 0.1 to 50% by mass, and more preferably 1 to 40% by mass.
  • the electrolytic cell 22 of the hydrogen generator 21 configured as described above is flexible in a film shape (sheet shape). As shown in FIG. 2, the electrolytic cell 22 is directly connected to the back surface (lower surface, the surface opposite to the front surface 11a of the solar power generation device 11) 11b of the solar power generation device 11 by a fastening member such as a bolt (not shown). Has been.
  • the gas-liquid separator 25 shown in FIG. 3 only needs to be capable of separating hydrogen in water.
  • the gas-liquid separator 25 includes a container such as a pressurized tank, a separation tower filled with a hydrogen adsorbent, and the like.
  • the water source 38 is not particularly limited, and for example, a water supply, an ion exchange water production device, a pure water production device, or the like is used as the water source 38.
  • the hydrogen storage unit 39 is not particularly limited, and a container capable of storing hydrogen, such as a pressurized tank or a cylinder filled with a hydrogen adsorbent, is used for the hydrogen storage unit 39.
  • the hydrogen generator 21 configured as described above operates as follows.
  • a DC voltage is applied between the anode 31 and the cathode 32.
  • Water is allowed to flow from the water source 38 in the order of the gas-liquid separator 25 and the water supply pipe 24 to flow into the electrolytic cell 22.
  • the water is at a room temperature of, for example, about 2 ° C. to 40 ° C. in the water source 38.
  • the room temperature varies depending on the season such as summer or winter.
  • Anode 4H + + 4e ⁇ ⁇ 2H 2 (1)
  • Cathode 4OH ⁇ ⁇ 2H 2 O + O 2 + 4e ⁇ (2)
  • water is electrolyzed, hydrogen gas is generated in the anode chamber 22a, and oxygen gas is generated in the cathode chamber 22b.
  • the oxygen gas generated in the cathode chamber 22b rises in the cathode chamber 22b and is discharged to the outside from the oxygen discharge pipe 35.
  • the hydrogen gas generated in the anode chamber 22a rises in the anode chamber 22a and flows into the water supply pipe 24 from the first branch pipe 24a.
  • the hydrogen gas that has flowed into the water supply pipe 24 aerates the water in the water supply pipe 24.
  • the carbon dioxide discharged from the water and the hydrogen gas aerated from the water flow through the water supply pipe 24 and flow into the gas-liquid separator 25.
  • the hydrogen gas that has flowed into the gas-liquid separator 25 is separated from the water by the gas-liquid separator 25 and flows into the hydrogen reservoir 39.
  • the hydrogen generator 21 is preferably attached to the solar power generator 11 with the electrolytic cell 22 in contact with the back surface 11 b of the solar power generator 11. Since the electrolytic cell 22 is attached to the solar power generation device 11, the heat of the solar power generation device 11 is transmitted to the electrolytic cell 22, and the water in the electrolytic cell 22 is higher than room temperature, for example, 50 ° C to 95 ° C. Heated to a degree. In addition, when the water supplied from the water source 38 is heated in the electrolysis tank 22, this water takes the heat of the solar power generation device 11 heated by solar heat.
  • the solar power generation device 11 When sunlight L emitted by the sun S enters the surface 11a of the solar power generation device 11, the solar power generation device 11 generates electric power by a DC voltage.
  • the solar power generation device 11 attached to the roof 13 of the house 12 is less likely to be blocked from sunlight L and solar heat by other buildings or the like.
  • the electric power generated by the solar power generation device 11 is sent to the power conditioner through the tab and the wiring of the solar power generation device 11.
  • the electric power sent from the solar power generator 11 is converted into an alternating voltage and the voltage is adjusted.
  • the converted electric power is sent to each outlet, and is used in an electrical product or the like connected to this outlet.
  • the temperature of the solar power generation device 11 is increased by the heat generated by the sun S (solar heat).
  • the water used for the hydrogen generator 21 is heated by the heat of the solar power generator 11 and the temperature rises. In general, as the temperature of water rises, the overvoltage decreases and it becomes easier to electrolyze, so that hydrogen gas is likely to be generated.
  • the electrolytic cell 22 is in contact with the solar power generation device 11, the water in the electrolytic cell 22 is efficiently heated by the heat of the solar power generation device 11 through the electrolytic cell 22.
  • the hydrogen gas generated in the anode chamber 22 a of the electrolytic cell 22 flows through the water supply pipe 24 as described above, is processed by the gas-liquid separator 25, and is stored in the hydrogen storage unit 39. Oxygen gas generated in the cathode chamber 22b of the electrolytic cell 22 is discharged from the oxygen discharge pipe 35 to the outside.
  • the hydrogen generation system 1 configured as described above is a hydrogen / power generation system because it generates not only hydrogen gas but also electric power.
  • FIG. 4 disclosed in Lei Bi, Samir Boulfrad et al., “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides” Chem. Soc. Rev., 2014, 43, p.8255-8270 The simulation result is shown.
  • the horizontal axis of FIG. 4 represents the temperature of water, and the vertical axis represents the energy required to electrolyze 1 mol (mol) of water.
  • a line L6 indicated by a dotted line is electric energy necessary for electrolysis of water.
  • a line L7 indicated by an alternate long and short dash line is heat energy necessary for electrolysis of water.
  • a line L8 indicated by a solid line is the sum of the value of the line L6 and the value of the line L7.
  • the energy efficiency shown in Table 1 is obtained when the heat source operates at an efficiency of 100%. Since the efficiency of heaters and water heaters that are actually used as heat sources is lower than 100%, the energy efficiency of the hydrogen generation system of this embodiment is considered to be equal to or higher than the energy efficiency values shown in Table 1. In general, as the efficiency of the heat source approaches 100%, the cost of the heat source increases.
  • the temperature of the solar power generation device 11 rises by being heated by solar heat (solar heat).
  • solar heat solar heat
  • the temperature of the water used for the hydrogen generation device 21 rises due to the transfer of heat from the solar power generation device 11.
  • the overvoltage decreases and it becomes easier to electrolyze, so that the efficiency of generating hydrogen gas in the hydrogen generation system 1 can be increased.
  • the reduction of the water overvoltage enables the hydrogen generation system 1 to operate at a high current density.
  • the temperature of the water to be used is high, the hydrogen generator 21 does not require sunlight.
  • the solar power generation device 11 needs sunlight, but if the temperature is too high, the power conversion efficiency is lowered.
  • the solar power generation device 11 receives sunlight L at its light receiving surface and converts it into electric power.
  • the temperature of the water used for the hydrogen generation device 21 is increased by the heat of the solar power generation device 11 heated by solar heat, and hydrogen gas is efficiently used. Occurs. For example, when normal temperature water is supplied to the hydrogen generator 21, this water takes heat of the solar power generator 11 heated by solar heat. Therefore, the temperature of the solar power generator 11 is lowered to reduce the temperature of the solar power generator 11. Power conversion efficiency can be increased.
  • the hydrogen generator 21 Since the hydrogen generator 21 is installed on the roof 13, the installation space can be used effectively, and the hydrogen generator 21 can be installed without affecting the design of the house 12. Since the hydrogen generator 21 is in the form of a flexible film, the hydrogen generator 21 can be easily bent, and the hydrogen generator 21 can be easily installed by being deformed into various shapes. Since the hydrogen generator 21 can be easily deformed, the installation space can be effectively utilized and the design of the hydrogen generator 21 can be improved.
  • the hydrogen generating device 21 can be made light and light.
  • the film-like hydrogen generator 21 is a continuous production method (a so-called Roll to process in which each step is processed while pulling out a roll-shaped substrate on one end side, and the roll-shaped roll is wound on the other end side. In this case, the cost required for manufacturing the hydrogen generator 21 can be reduced.
  • the support body was the solar power generation device 11, the support body is not limited to this.
  • the support body is not limited to this.
  • the hydrogen generation system 2 shown in FIG. The roof 13 of the house 12 is less likely to be shielded from solar heat by other buildings or the like, and easily rises in temperature. Therefore, the temperature of the water used for the hydrogen generator 21 can be increased efficiently, and the efficiency of generating hydrogen gas can be further increased.
  • the building is not limited to the house 12, but may be a warehouse, a factory, a car park, or the like.
  • Supports that can be heated by solar heat are building exterior walls (walls), floors (edges), pillars, windows, attics, concrete foundations, concrete and asphalt pavements, automobiles, ships (mobiles).
  • solar heat there is no particular limitation as long as it can be heated by solar heat, such as a roof, a deck (floor), etc., and can attach the electrolytic cell 22 of the hydrogen generator 21.
  • Examples of the support made of concrete include a roof of a building, an outer wall (wall), a pillar, a floor and the like in addition to the above.
  • the hydrogen generator 21 may not be formed into a film but may be formed thick.
  • the hydrogen generation system of the present invention can be widely applied to a hydrogen generation system in which a hydrogen generator is attached to a support.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A hydrogen generation system (1) is provided with a support body (11) and a hydrogen generation device (21), the support body (11) being capable of being increased in temperature by solar heat, the hydrogen generation device (21) generating hydrogen gas by electrolysis of water, and the support body (11) and the hydrogen generation device (21) being connected so that heat of the support body (11) is transmitted to the hydrogen generation device (21).

Description

水素発生システムHydrogen generation system
 本発明は、水素発生システムに関する。
 本願は、2016年7月15日に、日本に出願された日本国特願2016-140587号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hydrogen generation system.
This application claims priority based on Japanese Patent Application No. 2016-140587 filed in Japan on July 15, 2016, the contents of which are incorporated herein by reference.
 従来、水素ガスを発生させる装置として、例えば非特許文献1及び2に記載されたような水の電気分解を用いた水素発生システムが知られている。
 この種の水素発生システムは比較的大型であるため、室内のような外気温が比較的低い環境下に置かれている。
Conventionally, as an apparatus for generating hydrogen gas, for example, a hydrogen generation system using electrolysis of water as described in Non-Patent Documents 1 and 2 is known.
Since this type of hydrogen generation system is relatively large, it is placed in an environment where the outside air temperature is relatively low, such as indoors.
 しかしながら、この種の水素発生システムでは、水素ガスが発生する効率が低く改善の余地がある。 However, in this type of hydrogen generation system, the efficiency of generating hydrogen gas is low and there is room for improvement.
 本発明は、このような問題点に鑑みてなされたものであって、水素ガスを発生する効率を高めた水素発生システムを提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a hydrogen generation system with improved efficiency for generating hydrogen gas.
 上記課題を解決するために、この発明は以下の手段を提案している。
 本発明の一態様の水素発生システムは、支持体と、水素発生装置と、を備える水素発生システムであって、前記支持体は、太陽熱により昇温可能であり、前記水素発生装置は、水を電気分解することで水素ガスを発生し、前記支持体の熱が前記水素発生装置に伝達されるように、前記支持体と前記水素発生装置とが接続されてなることを特徴としている。
 この態様によれば、支持体は太陽熱(太陽の熱)で加熱されることで温度が上昇する。支持体と水素発生装置とが接続されていることで、水素発生装置に用いられる水は、支持体の熱が伝達されることにより温度が上昇する。一般的に、水は温度が上昇するほど過電圧が下がり電気分解しやすくなるため、水素ガスを発生する効率を高めることができる。
In order to solve the above problems, the present invention proposes the following means.
The hydrogen generation system of one embodiment of the present invention is a hydrogen generation system including a support and a hydrogen generation device, and the support can be heated by solar heat, and the hydrogen generation device supplies water. The support and the hydrogen generator are connected so that hydrogen gas is generated by electrolysis and heat of the support is transmitted to the hydrogen generator.
According to this aspect, the temperature of the support rises by being heated by solar heat (solar heat). By connecting the support and the hydrogen generator, the temperature of the water used in the hydrogen generator rises as the heat of the support is transmitted. In general, as the temperature of water increases, the overvoltage decreases and it becomes easier to electrolyze, so that the efficiency of generating hydrogen gas can be increased.
 また、上記の水素発生システムにおいて、前記支持体は、建築物の屋根であってもよい。
 この態様によれば、建築物の屋根は他の建築物等により太陽熱を遮られることが少なく、加熱されやすい。したがって、水素発生装置に用いられる水の温度を効率的に上昇させることができ、水素ガスを発生する効率をより高めることができる。
In the hydrogen generation system, the support may be a roof of a building.
According to this aspect, the roof of the building is less likely to be shielded from solar heat by other buildings or the like, and is easily heated. Therefore, the temperature of the water used for the hydrogen generator can be increased efficiently, and the efficiency of generating hydrogen gas can be further increased.
 また、上記の水素発生システムにおいて、前記支持体は、太陽光を電力に変換する太陽光発電装置であり、前記水素発生装置は、前記太陽光発電装置の受光面の反対側の面に取付けられていてもよい。
 この態様によれば、水素発生装置は、使用する水の温度が高いことが好ましいが、太陽光を必要としない。一方で、太陽光発電装置は太陽光が必要であるが、温度が高過ぎると電力の変換効率が低下する。
 太陽光発電装置は、太陽光をその受光面で受けて、電力に変換する。太陽光発電装置の受光面の反対側の面に水素発生装置を取付けることで、太陽熱で加熱された太陽光発電装置の熱で水素発生装置に用いられる水の温度を上昇させ、水素ガスを効率的に発生する。水素発生装置に例えば常温の水を供給するときに、この水は太陽熱で加熱された太陽光発電装置の熱を奪うため、太陽光発電装置の温度を下げて太陽光発電装置における電力の変換効率を高めることができる。
In the hydrogen generation system, the support is a solar power generation device that converts sunlight into electric power, and the hydrogen generation device is attached to a surface opposite to the light receiving surface of the solar power generation device. It may be.
According to this aspect, the hydrogen generator preferably has a high temperature of water to be used, but does not require sunlight. On the other hand, the solar power generation apparatus requires sunlight, but if the temperature is too high, the power conversion efficiency is lowered.
The solar power generation device receives sunlight at its light receiving surface and converts it into electric power. By installing a hydrogen generator on the surface opposite to the light-receiving surface of the solar power generator, the temperature of the water used in the hydrogen generator is increased by the heat of the solar power generator heated by solar heat, making hydrogen gas efficient Will occur. For example, when supplying water at room temperature to the hydrogen generator, the water takes away the heat of the solar power generator heated by solar heat, so the temperature of the solar power generator is lowered to convert the power in the solar power generator. Can be increased.
 また、上記の水素発生システムにおいて、前記支持体は、建築物の床、前記建築物の基礎、及び舗道の少なくとも1つであってもよい。
 また、上記の水素発生システムにおいて、前記支持体は、建築物の床又は基礎、舗道であってもよい。
 また、上記の水素発生システムにおいて、前記支持体は、建築物の壁又は柱であってもよい。
 また、上記の水素発生システムにおいて、前記支持体は、移動体の屋根又は床であってもよい。
In the hydrogen generation system, the support may be at least one of a building floor, the building foundation, and a pavement.
In the hydrogen generation system, the support may be a building floor, foundation, or pavement.
In the hydrogen generation system, the support may be a building wall or a pillar.
In the hydrogen generation system, the support may be a movable roof or floor.
 また、上記の水素発生システムにおいて、前記水素発生装置はフィルム状であってもよい。
 この態様によれば、水素発生装置を可撓性を有する材料で形成した場合に、水素発生装置を曲げやすくなるため、水素発生装置を様々な形状に変形させて容易に設置することができる。
In the hydrogen generation system, the hydrogen generator may be in the form of a film.
According to this aspect, when the hydrogen generator is formed of a flexible material, the hydrogen generator can be easily bent. Therefore, the hydrogen generator can be easily installed in various shapes.
 本発明の水素発生システムによれば、水素ガスを発生する効率を高めることができる。 According to the hydrogen generation system of the present invention, the efficiency of generating hydrogen gas can be increased.
本発明の一実施形態の水素発生システムが取付けられる住宅の斜視図である。It is a perspective view of the house where the hydrogen generation system of one embodiment of the present invention is attached. 同水素発生システムの要部の側面図である。It is a side view of the principal part of the hydrogen generation system. 同水素発生システムの水素発生装置における一部を破断した模式図である。It is the schematic diagram which fractured | ruptured a part in the hydrogen generator of the hydrogen generation system. 水の温度による水の電気分解に要する各エネルギーの必要量の変化を表す図である。It is a figure showing the change of the required amount of each energy required for the electrolysis of water by the temperature of water. 本発明の変形例の実施形態における水素発生システムの要部の側面図である。It is a side view of the principal part of the hydrogen generation system in the embodiment of the modification of the present invention.
 以下、本発明に係る水素発生システムの一実施形態を、図1から図4図5を参照しながら説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の厚さや寸法の比率は適宜異ならせてある。
 図1及び図2に示すように、本実施形態の水素発生システム1は、太陽熱により昇温可能な太陽光発電装置(支持体)11と、太陽光発電装置11に接続された水素発生装置21と、を備えている。
 太陽光発電装置11は、住宅(建築物)12の屋根13に支持部材14を介して取付けられている。支持部材14は、例えば、金属製の棒状部材であるアングル14aを、ボルト等の締結部材(不図示)で所定の形状に形成することで構成されている。
Hereinafter, an embodiment of a hydrogen generation system according to the present invention will be described with reference to FIGS. In all the drawings below, the thicknesses and dimensional ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.
As shown in FIGS. 1 and 2, the hydrogen generation system 1 of the present embodiment includes a solar power generation device (support) 11 that can be heated by solar heat, and a hydrogen generation device 21 connected to the solar power generation device 11. And.
The solar power generation device 11 is attached to a roof 13 of a house (building) 12 via a support member 14. The support member 14 is configured, for example, by forming an angle 14a, which is a metal rod-like member, into a predetermined shape with a fastening member (not shown) such as a bolt.
 住宅12の構成は特に限定されず、1階建て(平屋)でもよいし、2階建て以上でもよい。屋根13の構成は、水平面に対してほぼ平坦な平屋根でもよいし、水平面に対して傾いた斜面を有する切妻屋根、寄棟屋根等でもよい。 The structure of the house 12 is not particularly limited, and may be one-story (one-story) or two or more stories. The configuration of the roof 13 may be a flat roof that is substantially flat with respect to the horizontal plane, or a gable roof, a dormitory roof, or the like having a slope inclined with respect to the horizontal plane.
 太陽光発電装置11は、受光面である表面11aに入射した太陽光を電力に変換する装置であれば特に限定されない。太陽光発電装置11は、例えば太陽光を直流電圧による電力に変換する。太陽光発電装置11としては、例えば色素増感太陽電池等の化合物系太陽電池や、単結晶、多結晶太陽電池等のようなシリコン系太陽電池を用いることができる。太陽光発電装置11は、板状に形成されている。
 太陽光発電装置11には、発生した電力を外部に取出すための図示しないタブが設けられている。
 太陽光発電装置11は、表面11aが上方になるとともに太陽Sに対向するように、図示しない締結部材等により支持部材14に固定されている。表面11aは、後述する太陽光Lが入射する受光面である。
The solar power generation device 11 is not particularly limited as long as it is a device that converts sunlight incident on the surface 11a that is a light receiving surface into electric power. The solar power generation device 11 converts, for example, sunlight into electric power using a DC voltage. As the solar power generation device 11, for example, a compound solar cell such as a dye-sensitized solar cell, or a silicon solar cell such as a single crystal or polycrystalline solar cell can be used. The solar power generation device 11 is formed in a plate shape.
The solar power generation device 11 is provided with a tab (not shown) for taking out the generated power to the outside.
The solar power generation device 11 is fixed to the support member 14 by a fastening member or the like (not shown) so that the surface 11a faces upward and faces the sun S. The surface 11a is a light receiving surface on which sunlight L described later is incident.
 図示はしないが、太陽光発電装置11のタブは、配線を通して住宅12に設けられたパワーコンディショナーに接続されている。パワーコンディショナーは、直流電圧を交流電圧に変換したり、交流電圧の電圧を調節したりする。パワーコンディショナーは、住宅12の壁等に設けられたコンセントに接続されている。 Although not shown, the tab of the solar power generator 11 is connected to a power conditioner provided in the house 12 through wiring. The power conditioner converts a DC voltage into an AC voltage and adjusts the voltage of the AC voltage. The power conditioner is connected to an outlet provided on the wall of the house 12.
 水素発生装置21の構成は、特に限定されない。水素発生装置21はアルカリ型でもPEM(Proton Exchange Membrane)型でもどちらでもよいが、本実施形態では水素発生装置21がアルカリ型であるとして説明する。
 図3に示すように、水素発生装置21は、電解槽22と、隔膜23と、給水配管24と、気液分離器25と、を有する。電解槽22は、離間して対向する2枚の基材28と、基材28の周縁を液密に封止する封止材29とを備える。
 電解槽22内には、隔膜23が設けられている。電解槽22内は、隔膜23によって、陽極室22aと陰極室22bとに仕切られている。陽極室22aには陽極31が備えられ、陰極室22bには陰極32が備えられている。陽極31と陰極32とは、隔膜23を介して対向している。
 陽極室22a及び陰極室22bには、電解液34が備えられている。
The configuration of the hydrogen generator 21 is not particularly limited. The hydrogen generator 21 may be either an alkaline type or a PEM (Proton Exchange Membrane) type, but in the present embodiment, the hydrogen generator 21 will be described as an alkaline type.
As shown in FIG. 3, the hydrogen generator 21 includes an electrolytic cell 22, a diaphragm 23, a water supply pipe 24, and a gas-liquid separator 25. The electrolytic cell 22 includes two substrates 28 that are spaced apart from each other and a sealing material 29 that seals the periphery of the substrate 28 in a liquid-tight manner.
A diaphragm 23 is provided in the electrolytic cell 22. The electrolytic cell 22 is partitioned into an anode chamber 22a and a cathode chamber 22b by a diaphragm 23. The anode chamber 22a is provided with an anode 31, and the cathode chamber 22b is provided with a cathode 32. The anode 31 and the cathode 32 face each other with the diaphragm 23 interposed therebetween.
An electrolytic solution 34 is provided in the anode chamber 22a and the cathode chamber 22b.
 電解槽22は、給水配管24によって気液分離器25と接続されている。給水配管24は、第一の分岐配管24aと第二の分岐配管24bとを備える。第一の分岐配管24aは、陽極室22aの端部に接続され、第二の分岐配管24bは、陰極室22bの端部に接続されている。
 陰極室22bの上部には、酸素排出管35が設けられている。
 気液分離器25は、水源38及び水素貯留部39と接続されている。
The electrolytic cell 22 is connected to a gas-liquid separator 25 by a water supply pipe 24. The water supply pipe 24 includes a first branch pipe 24a and a second branch pipe 24b. The first branch pipe 24a is connected to the end of the anode chamber 22a, and the second branch pipe 24b is connected to the end of the cathode chamber 22b.
An oxygen exhaust pipe 35 is provided in the upper part of the cathode chamber 22b.
The gas-liquid separator 25 is connected to the water source 38 and the hydrogen storage unit 39.
 基材28は、絶縁性を有し、かつ電解液34で変性しない材質であれば特に限定されない。基材28には、例えば、樹脂製板や樹脂製フィルム等が用いられる。
 隔膜23は、イオン透過性を有しかつ水素ガス及び酸素ガスを透過しない膜であればよい。隔膜23には、従来公知の隔膜が用いられ、例えば、炭化水素系の陰イオン交換膜等が用いられる。
The base material 28 is not particularly limited as long as it is an insulating material and is not modified by the electrolytic solution 34. For the substrate 28, for example, a resin plate, a resin film, or the like is used.
The diaphragm 23 should just be a film | membrane which has ion permeability and does not permeate | transmit hydrogen gas and oxygen gas. As the diaphragm 23, a conventionally known diaphragm is used, for example, a hydrocarbon-based anion exchange membrane or the like.
 陽極31には、従来公知の陰極が用いられる。陽極31には、例えば、Pt、Rh、Ir等の白金族、Ni、Fe等、及びこれらの合金等が用いられる。
 陰極32には、従来公知の陽極が用いられる。陰極32には、Ni、Ru、Ir、Ti、Sn、Mo、Ta、Nb、V、Fe、Mn、Pt、Pd、Au、及びこれらの合金並びにこれらの酸化物が用いられる。
 電解液34には、例えば、NaOH水溶液、KOH水溶液等のアルカリ金属水酸化物の水溶液が用いられる。
 アルカリ金属水酸化物の水溶液を電解液34として用いる場合、該水溶液中のアルカリ金属水酸化物の含有量は、0.1~50質量%が好ましく、1~40質量%がより好ましい。
A conventionally known cathode is used for the anode 31. For the anode 31, for example, a platinum group such as Pt, Rh, Ir, Ni, Fe, etc., and alloys thereof are used.
A conventionally known anode is used as the cathode 32. For the cathode 32, Ni, Ru, Ir, Ti, Sn, Mo, Ta, Nb, V, Fe, Mn, Pt, Pd, Au, alloys thereof, and oxides thereof are used.
For the electrolytic solution 34, for example, an aqueous solution of an alkali metal hydroxide such as an aqueous NaOH solution or an aqueous KOH solution is used.
When an aqueous solution of an alkali metal hydroxide is used as the electrolytic solution 34, the content of the alkali metal hydroxide in the aqueous solution is preferably 0.1 to 50% by mass, and more preferably 1 to 40% by mass.
 このように構成された水素発生装置21の電解槽22は、フィルム状(シート状)で可撓性を有することが好ましい。図2に示すように、電解槽22は、太陽光発電装置11の裏面(下面、太陽光発電装置11における表面11aの反対側の面)11bに、例えば図示しないボルト等の締結部材により直接接続されている。 It is preferable that the electrolytic cell 22 of the hydrogen generator 21 configured as described above is flexible in a film shape (sheet shape). As shown in FIG. 2, the electrolytic cell 22 is directly connected to the back surface (lower surface, the surface opposite to the front surface 11a of the solar power generation device 11) 11b of the solar power generation device 11 by a fastening member such as a bolt (not shown). Has been.
 図3に示す気液分離器25は、水中の水素を分離できるものであればよく、例えば、気液分離器25には、加圧タンク等の容器、水素吸着材が充填された分離塔等が用いられる。
 水源38は、特に限定されず、例えば、水源38には水道、イオン交換水製造器、純水製造器等が用いられる。
 水素貯留部39は、特に限定されず、水素貯留部39には加圧タンク、水素吸着剤が充填されたボンベ等、水素を貯留し得る容器が用いられる。
The gas-liquid separator 25 shown in FIG. 3 only needs to be capable of separating hydrogen in water. For example, the gas-liquid separator 25 includes a container such as a pressurized tank, a separation tower filled with a hydrogen adsorbent, and the like. Is used.
The water source 38 is not particularly limited, and for example, a water supply, an ion exchange water production device, a pure water production device, or the like is used as the water source 38.
The hydrogen storage unit 39 is not particularly limited, and a container capable of storing hydrogen, such as a pressurized tank or a cylinder filled with a hydrogen adsorbent, is used for the hydrogen storage unit 39.
 このように構成された水素発生装置21は、以下のように動作する。
 陽極31と陰極32との間に直流電圧を印加する。水を水源38から気液分離器25、給水配管24の順で通流させ、電解槽22内に流入させる。水は、水源38において例えば2℃~40℃程度の常温になっている。なお、常温は、夏期や冬期等の季節等により変わる。
 陽極31と陰極32との間に電圧を印加すると、陽極31では下記(1)式の反応が生じ、陰極32では下記(2)式の反応が生じる。
 陽極:4H+4e→2H ・・・(1)
 陰極:4OH→2HO+O+4e ・・・(2)
 これにより水が電気分解し、陽極室22aに水素ガスが発生するとともに、陰極室22bに酸素ガスが生じる。
The hydrogen generator 21 configured as described above operates as follows.
A DC voltage is applied between the anode 31 and the cathode 32. Water is allowed to flow from the water source 38 in the order of the gas-liquid separator 25 and the water supply pipe 24 to flow into the electrolytic cell 22. The water is at a room temperature of, for example, about 2 ° C. to 40 ° C. in the water source 38. The room temperature varies depending on the season such as summer or winter.
When a voltage is applied between the anode 31 and the cathode 32, the reaction of the following formula (1) occurs at the anode 31, and the reaction of the following formula (2) occurs at the cathode 32.
Anode: 4H + + 4e → 2H 2 (1)
Cathode: 4OH → 2H 2 O + O 2 + 4e (2)
As a result, water is electrolyzed, hydrogen gas is generated in the anode chamber 22a, and oxygen gas is generated in the cathode chamber 22b.
 陰極室22bで発生した酸素ガスは、陰極室22b内を上昇し、酸素排出管35から外部に排出される。
 陽極室22aで発生した水素ガスは、陽極室22a内を上昇し、第一の分岐配管24aから給水配管24に流入する。
 給水配管24に流入した水素ガスは、給水配管24中で水を曝気する。水が水素ガスで曝気されると、水中に溶存していた二酸化炭素の分圧が下がり、二酸化炭素が水から排出される。こうして、電解槽22に供給される水は、予め水素ガスで曝気され、二酸化炭素が除去される。
 水から排出された二酸化炭素、及び、水を曝気した水素ガスは、給水配管24内を通流し、気液分離器25に流入する。
 気液分離器25に流入した水素ガスは、気液分離器25で水と分離され、水素貯留部39に流入する。
The oxygen gas generated in the cathode chamber 22b rises in the cathode chamber 22b and is discharged to the outside from the oxygen discharge pipe 35.
The hydrogen gas generated in the anode chamber 22a rises in the anode chamber 22a and flows into the water supply pipe 24 from the first branch pipe 24a.
The hydrogen gas that has flowed into the water supply pipe 24 aerates the water in the water supply pipe 24. When water is aerated with hydrogen gas, the partial pressure of carbon dioxide dissolved in the water decreases, and carbon dioxide is discharged from the water. Thus, the water supplied to the electrolytic cell 22 is previously aerated with hydrogen gas, and carbon dioxide is removed.
The carbon dioxide discharged from the water and the hydrogen gas aerated from the water flow through the water supply pipe 24 and flow into the gas-liquid separator 25.
The hydrogen gas that has flowed into the gas-liquid separator 25 is separated from the water by the gas-liquid separator 25 and flows into the hydrogen reservoir 39.
 図2に示すように、水素発生装置21は、電解槽22が太陽光発電装置11の裏面11bに接触した状態で、太陽光発電装置11に取付けられていることが好ましい。電解槽22が太陽光発電装置11に取付けられていることで、太陽光発電装置11の熱が電解槽22に伝達され、電解槽22内の水が、常温よりも高い例えば50℃~95℃程度に加熱される。
 なお、水源38から供給された水が電解槽22内で加熱されることで、この水は太陽熱により昇温した太陽光発電装置11の熱を奪う。
As shown in FIG. 2, the hydrogen generator 21 is preferably attached to the solar power generator 11 with the electrolytic cell 22 in contact with the back surface 11 b of the solar power generator 11. Since the electrolytic cell 22 is attached to the solar power generation device 11, the heat of the solar power generation device 11 is transmitted to the electrolytic cell 22, and the water in the electrolytic cell 22 is higher than room temperature, for example, 50 ° C to 95 ° C. Heated to a degree.
In addition, when the water supplied from the water source 38 is heated in the electrolysis tank 22, this water takes the heat of the solar power generation device 11 heated by solar heat.
 次に、以上のように構成された水素発生システム1の動作について説明する。
 太陽Sが発した太陽光Lが太陽光発電装置11の表面11aに入射すると、太陽光発電装置11は直流電圧による電力を発生する。住宅12の屋根13に取付けられた太陽光発電装置11は、他の建築物等により太陽光L及び太陽熱を遮られることが少ない。
 太陽光発電装置11が発生した電力は、太陽光発電装置11のタブ、及び配線を通してパワーコンディショナーに送られる。パワーコンディショナーにおいて、太陽光発電装置11から送られた電力は、交流電圧に変換されるとともに電圧が調節される。変換された電力は各コンセントに送られ、このコンセントに接続された電気製品等で使用される。
Next, the operation of the hydrogen generation system 1 configured as described above will be described.
When sunlight L emitted by the sun S enters the surface 11a of the solar power generation device 11, the solar power generation device 11 generates electric power by a DC voltage. The solar power generation device 11 attached to the roof 13 of the house 12 is less likely to be blocked from sunlight L and solar heat by other buildings or the like.
The electric power generated by the solar power generation device 11 is sent to the power conditioner through the tab and the wiring of the solar power generation device 11. In the power conditioner, the electric power sent from the solar power generator 11 is converted into an alternating voltage and the voltage is adjusted. The converted electric power is sent to each outlet, and is used in an electrical product or the like connected to this outlet.
 一方で、太陽Sが発した熱(太陽熱)により、太陽光発電装置11の温度が上昇する。
 水素発生装置21に用いられる水は、太陽光発電装置11の熱で加熱されて温度が上昇する。一般的に、水は温度が上昇するほど過電圧が下がり電気分解しやすくなるため、水素ガスが発生しやすくなる。
 電解槽22が太陽光発電装置11に接触しているため、電解槽22内の水は、電解槽22を介して太陽光発電装置11の熱で効率的に加熱される。
 電解槽22の陽極室22aで発生した水素ガスは、前述のように給水配管24内を流れて気液分離器25で処理され、水素貯留部39で蓄えらえる。電解槽22の陰極室22bで発生した酸素ガスは、酸素排出管35から外部に排出される。
On the other hand, the temperature of the solar power generation device 11 is increased by the heat generated by the sun S (solar heat).
The water used for the hydrogen generator 21 is heated by the heat of the solar power generator 11 and the temperature rises. In general, as the temperature of water rises, the overvoltage decreases and it becomes easier to electrolyze, so that hydrogen gas is likely to be generated.
Since the electrolytic cell 22 is in contact with the solar power generation device 11, the water in the electrolytic cell 22 is efficiently heated by the heat of the solar power generation device 11 through the electrolytic cell 22.
The hydrogen gas generated in the anode chamber 22 a of the electrolytic cell 22 flows through the water supply pipe 24 as described above, is processed by the gas-liquid separator 25, and is stored in the hydrogen storage unit 39. Oxygen gas generated in the cathode chamber 22b of the electrolytic cell 22 is discharged from the oxygen discharge pipe 35 to the outside.
 なお、このように構成された水素発生システム1は、水素ガスだけでなく電力も発生させるため、水素・電力発生システムとなる。 Note that the hydrogen generation system 1 configured as described above is a hydrogen / power generation system because it generates not only hydrogen gas but also electric power.
(実施例)
 以下では、本発明の実施例を具体的に示してより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 前述の水素発生システムにおいて、下記のものを用いた。
・陰極及び陽極は、株式会社ニラコ製のニッケルフォーム(nickel foam)とした。
・電解液は、30wt%のKOH水溶液とした。
 電解槽内の水の温度を一定の温度に設定し、陰極と陽極との間に流す電流を100mA/cmとした。この状態で1時間安定させた後で、過電圧を測定した。
 水の温度を25℃、50℃、70℃、90℃に設定してそれぞれ安定させたときの、過電圧は、2.38V、2.29V、2.15V、2.08Vとなった。
 このことから、水は温度が上昇するほど過電圧が下がり、電気分解しやすくなることが確認できた。
(Example)
Hereinafter, examples of the present invention will be specifically described and described in detail. However, the present invention is not limited to the following examples.
In the above-described hydrogen generation system, the following was used.
-The negative electrode and the positive electrode were nickel foam (nickel foam) manufactured by Nilaco Corporation.
The electrolyte solution was a 30 wt% KOH aqueous solution.
The temperature of the water in the electrolytic cell was set to a constant temperature, and the current flowing between the cathode and the anode was set to 100 mA / cm 2 . After stabilizing in this state for 1 hour, overvoltage was measured.
When the water temperature was set to 25 ° C., 50 ° C., 70 ° C., and 90 ° C. and stabilized, the overvoltages were 2.38 V, 2.29 V, 2.15 V, and 2.08 V, respectively.
From this, it has been confirmed that the overvoltage of water decreases as the temperature rises, and electrolysis easily occurs.
 図4に、Lei Bi, Samir Boulfrad et al., “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”  Chem. Soc. Rev., 2014, 43, p.8255-8270で開示されたシミュレーション結果を示す。図4の横軸は水の温度を表し、縦軸は水1mol(モル)を電気分解するのに必要なエネルギーを表す。 4 disclosed in Lei Bi, Samir Boulfrad et al., “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides” Chem. Soc. Rev., 2014, 43, p.8255-8270 The simulation result is shown. The horizontal axis of FIG. 4 represents the temperature of water, and the vertical axis represents the energy required to electrolyze 1 mol (mol) of water.
 点線で示す線L6は、水の電気分解において必要な電気エネルギーである。一点鎖線で示す線L7は、水の電気分解において必要な熱エネルギーである。実線で示す線L8は、線L6の値と線L7の値との合計である。温度が100℃未満では、水は液体の状態であり、温度が100℃を超えると、水は蒸気になる。
 水の温度が上昇するほど、必要な電気エネルギーは大幅に小さくなる。一方で、水の温度が上昇するほど、必要な熱エネルギーは大幅に大きくなり、必要な全エネルギーの大きさが相殺される。
A line L6 indicated by a dotted line is electric energy necessary for electrolysis of water. A line L7 indicated by an alternate long and short dash line is heat energy necessary for electrolysis of water. A line L8 indicated by a solid line is the sum of the value of the line L6 and the value of the line L7. When the temperature is less than 100 ° C., the water is in a liquid state, and when the temperature exceeds 100 ° C., the water becomes steam.
The higher the water temperature, the much less electrical energy is required. On the other hand, the higher the water temperature, the greater the required thermal energy, offsetting the amount of total energy required.
 水の電気分解に必要な全エネルギーを表す線L8から、表1のようにエネルギー効率が求められる。水の温度が50℃のときのエネルギー効率は15.6%であり、水の温度が85℃のときのエネルギー効率は17.0%である。
 なお、水の温度がT℃のときのエネルギー効率は、図4において、水の温度がT℃のときの線L7(熱エネルギー)の値を、水の温度がT℃のときの線L8(エネルギーの合計)の値で除した値である。
 以上のことから、水は温度が上昇するほどエネルギー効率が高くなることが分かった。
From the line L8 representing the total energy required for water electrolysis, energy efficiency is obtained as shown in Table 1. The energy efficiency when the water temperature is 50 ° C. is 15.6%, and the energy efficiency when the water temperature is 85 ° C. is 17.0%.
In FIG. 4, the energy efficiency when the water temperature is T.degree. C. is the value of the line L7 (thermal energy) when the water temperature is T.degree. C. and the line L8 when the water temperature is T.degree. It is a value divided by the value of (total energy).
From the above, it was found that the energy efficiency of water increases as the temperature increases.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、熱源が100%の効率で作動する場合に、表1に示すエネルギー効率になる。実際に熱源として用いられるヒータ及び給湯機等の効率は100%よりも低いため、本実施形態の水素発生システムのエネルギー効率は、表1に示すエネルギー効率の値以上になると考えられる。なお、一般的に、熱源の効率が100%に近づくほど、熱源のコストが高くなる。 Note that the energy efficiency shown in Table 1 is obtained when the heat source operates at an efficiency of 100%. Since the efficiency of heaters and water heaters that are actually used as heat sources is lower than 100%, the energy efficiency of the hydrogen generation system of this embodiment is considered to be equal to or higher than the energy efficiency values shown in Table 1. In general, as the efficiency of the heat source approaches 100%, the cost of the heat source increases.
 以上説明したように、本実施形態の水素発生システム1によれば、太陽光発電装置11は太陽熱(太陽の熱)で加熱されることで温度が上昇する。太陽光発電装置11と水素発生装置21とが接続されていることで、水素発生装置21に用いられる水は、太陽光発電装置11の熱が伝達されることにより温度が上昇する。一般的に、水は温度が上昇するほど過電圧が下がり電気分解しやすくなるため、水素発生システム1において水素ガスを発生する効率を高めることができる。
 水の過電圧が下がることで、水素発生システム1が高電流密度で作動可能になる。
As described above, according to the hydrogen generation system 1 of the present embodiment, the temperature of the solar power generation device 11 rises by being heated by solar heat (solar heat). By connecting the solar power generation device 11 and the hydrogen generation device 21, the temperature of the water used for the hydrogen generation device 21 rises due to the transfer of heat from the solar power generation device 11. In general, as the temperature of water rises, the overvoltage decreases and it becomes easier to electrolyze, so that the efficiency of generating hydrogen gas in the hydrogen generation system 1 can be increased.
The reduction of the water overvoltage enables the hydrogen generation system 1 to operate at a high current density.
 水素発生装置21は、使用する水の温度が高いことが好ましいが、太陽光を必要としない。一方で、太陽光発電装置11は太陽光が必要であるが、温度が高過ぎると電力の変換効率が低下する。
 太陽光発電装置11は、太陽光Lをその受光面で受けて、電力に変換する。太陽光発電装置11の裏面11bに水素発生装置21を取付けることで、太陽熱で加熱された太陽光発電装置11の熱で水素発生装置21に用いられる水の温度を上昇させ、水素ガスを効率的に発生する。
 水素発生装置21に例えば常温の水を供給するときに、この水は太陽熱で加熱された太陽光発電装置11の熱を奪うため、太陽光発電装置11の温度を下げて太陽光発電装置11における電力の変換効率を高めることができる。
Although it is preferable that the temperature of the water to be used is high, the hydrogen generator 21 does not require sunlight. On the other hand, the solar power generation device 11 needs sunlight, but if the temperature is too high, the power conversion efficiency is lowered.
The solar power generation device 11 receives sunlight L at its light receiving surface and converts it into electric power. By attaching the hydrogen generation device 21 to the back surface 11b of the solar power generation device 11, the temperature of the water used for the hydrogen generation device 21 is increased by the heat of the solar power generation device 11 heated by solar heat, and hydrogen gas is efficiently used. Occurs.
For example, when normal temperature water is supplied to the hydrogen generator 21, this water takes heat of the solar power generator 11 heated by solar heat. Therefore, the temperature of the solar power generator 11 is lowered to reduce the temperature of the solar power generator 11. Power conversion efficiency can be increased.
 水素発生装置21は屋根13の上に設置されているため、設置スペースを有効活用できるとともに、住宅12のデザイン性に影響を与えずに水素発生装置21を設置することができる。
 水素発生装置21は可撓性を有するフィルム状であるため、水素発生装置21が曲げやすくなり、水素発生装置21を様々な形状に変形させて容易に設置することができる。水素発生装置21が変形させやすいことで、設置スペースを有効活用できるとともに、水素発生装置21のデザイン性を向上させることができる。
 水素発生装置21をフィルム状にして、軽くすることができる。フィルム状の水素発生装置21は、連続的製造方法(一端側でロール状にした基材を引き出しつつ各工程の加工を施し、他端側でロール状に巻き取りながら作業を行う、いわゆるRoll to Roll方式の製造方法)で製造することができ、この場合、水素発生装置21の製造に要するコストを抑えることができる。
Since the hydrogen generator 21 is installed on the roof 13, the installation space can be used effectively, and the hydrogen generator 21 can be installed without affecting the design of the house 12.
Since the hydrogen generator 21 is in the form of a flexible film, the hydrogen generator 21 can be easily bent, and the hydrogen generator 21 can be easily installed by being deformed into various shapes. Since the hydrogen generator 21 can be easily deformed, the installation space can be effectively utilized and the design of the hydrogen generator 21 can be improved.
The hydrogen generating device 21 can be made light and light. The film-like hydrogen generator 21 is a continuous production method (a so-called Roll to process in which each step is processed while pulling out a roll-shaped substrate on one end side, and the roll-shaped roll is wound on the other end side. In this case, the cost required for manufacturing the hydrogen generator 21 can be reduced.
 以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。
 例えば、前記実施形態では、支持体は太陽光発電装置11であるとしたが、支持体はこれに限定されない。例えば、図5に示す水素発生システム2のように、支持体は住宅12の屋根13であってもよい。住宅12の屋根13は他の建築物等により太陽熱を遮られることが少なく、昇温しやすい。したがって、水素発生装置21に用いられる水の温度を効率的に上昇させることができ、水素ガスを発生する効率をより高めることができる。
As mentioned above, although one embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and modifications, combinations, and deletions within a scope that does not depart from the gist of the present invention. Etc. are also included.
For example, in the said embodiment, although the support body was the solar power generation device 11, the support body is not limited to this. For example, as in the hydrogen generation system 2 shown in FIG. The roof 13 of the house 12 is less likely to be shielded from solar heat by other buildings or the like, and easily rises in temperature. Therefore, the temperature of the water used for the hydrogen generator 21 can be increased efficiently, and the efficiency of generating hydrogen gas can be further increased.
 支持体が住宅12の屋根13である場合、建築物は住宅12に限られず、倉庫、工場、カーパーク等でもよい。また、太陽熱で加熱され得る支持体は、建築物の外壁(壁)、床(縁側)、柱、窓、屋根裏、コンクリート製の基礎、コンクリート製やアスファルト製の舗道、自動車、船(移動体)の屋根、甲板(床)等、太陽熱で加熱され得るものであって、水素発生装置21の電解槽22を取付け可能なものであれば、特に限定されない。
 コンクリート製の支持体としては、上記のもの以外に、建築物の屋根、外壁(壁)、柱、床等を挙げることができる。
 水素発生装置21は、フィルム状に形成されず、厚く形成されていてもよい。
When the support is the roof 13 of the house 12, the building is not limited to the house 12, but may be a warehouse, a factory, a car park, or the like. Supports that can be heated by solar heat are building exterior walls (walls), floors (edges), pillars, windows, attics, concrete foundations, concrete and asphalt pavements, automobiles, ships (mobiles). There is no particular limitation as long as it can be heated by solar heat, such as a roof, a deck (floor), etc., and can attach the electrolytic cell 22 of the hydrogen generator 21.
Examples of the support made of concrete include a roof of a building, an outer wall (wall), a pillar, a floor and the like in addition to the above.
The hydrogen generator 21 may not be formed into a film but may be formed thick.
 本発明の水素発生システムによれば、水素発生装置を支持体に取付けて用いる水素発生システムに広く適用することができる。 The hydrogen generation system of the present invention can be widely applied to a hydrogen generation system in which a hydrogen generator is attached to a support.
 1、2 水素発生システム
 11 太陽光発電装置(支持体)
 11a 表面(受光面)
 11b 裏面(受光面の反対側の面)
 12 住宅(建築物)
 13 屋根(支持体)
 21 水素発生装置
1, 2 Hydrogen generation system 11 Solar power generator (support)
11a Surface (light-receiving surface)
11b Back surface (surface opposite to light receiving surface)
12 Housing (Building)
13 Roof (support)
21 Hydrogen generator

Claims (7)

  1.  支持体と、水素発生装置と、を備える水素発生システムであって、
     前記支持体は、太陽熱により昇温可能であり、
     前記水素発生装置は、水を電気分解することで水素ガスを発生し、
     前記支持体の熱が前記水素発生装置に伝達されるように、前記支持体と前記水素発生装置とが接続されてなる水素発生システム。
    A hydrogen generation system comprising a support and a hydrogen generator,
    The support can be heated by solar heat,
    The hydrogen generator generates hydrogen gas by electrolyzing water,
    A hydrogen generation system in which the support and the hydrogen generator are connected so that heat of the support is transferred to the hydrogen generator.
  2.  前記支持体は、建築物の屋根である請求項1に記載の水素発生システム。 The hydrogen generation system according to claim 1, wherein the support is a roof of a building.
  3.  前記支持体は、太陽光を電力に変換する太陽光発電装置であり、
     前記水素発生装置は、前記太陽光発電装置の受光面の反対側の面に取付けられている請求項1又は2に記載の水素発生システム。
    The support is a solar power generation device that converts sunlight into electric power,
    The hydrogen generation system according to claim 1, wherein the hydrogen generation device is attached to a surface opposite to a light receiving surface of the solar power generation device.
  4.  前記支持体は、建築物の床、前記建築物の基礎、及び舗道の少なくとも1つである請求項1に記載の水素発生システム。 2. The hydrogen generation system according to claim 1, wherein the support is at least one of a building floor, a foundation of the building, and a pavement.
  5.  前記支持体は、建築物の壁又は柱である請求項1に記載の水素発生システム。 The hydrogen generation system according to claim 1, wherein the support is a wall or a pillar of a building.
  6.  前記支持体は、移動体の屋根又は床である請求項1に記載の水素発生システム。 The hydrogen generation system according to claim 1, wherein the support is a roof or a floor of a moving body.
  7.  前記水素発生装置はフィルム状である請求項1から6のいずれか一項に記載の水素発生システム。 The hydrogen generation system according to any one of claims 1 to 6, wherein the hydrogen generator is in the form of a film.
PCT/JP2017/021172 2016-07-15 2017-06-07 Hydrogen generation system WO2018012152A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527441A JPWO2018012152A1 (en) 2016-07-15 2017-06-07 Hydrogen generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016140587 2016-07-15
JP2016-140587 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018012152A1 true WO2018012152A1 (en) 2018-01-18

Family

ID=60951727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021172 WO2018012152A1 (en) 2016-07-15 2017-06-07 Hydrogen generation system

Country Status (2)

Country Link
JP (1) JPWO2018012152A1 (en)
WO (1) WO2018012152A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634253U (en) * 1979-08-21 1981-04-03
JPS6117855A (en) * 1984-02-29 1986-01-25 Nippon Jiryoku Senko Kk Solar heat water heater
JPH04325391A (en) * 1991-04-08 1992-11-13 Un Zee Cho Solar heated fuel self-feed type wide deck multi-leg ship
JPH09195076A (en) * 1996-01-10 1997-07-29 Mitsubishi Heavy Ind Ltd Gaseous hydrogen and oxygen producing device
JP2012036414A (en) * 2010-08-03 2012-02-23 Sony Corp Power generation and hydrogen gas generating apparatus
JP2013160416A (en) * 2012-02-03 2013-08-19 West Nippon Expressway Co Ltd Air conditioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634253U (en) * 1979-08-21 1981-04-03
JPS6117855A (en) * 1984-02-29 1986-01-25 Nippon Jiryoku Senko Kk Solar heat water heater
JPH04325391A (en) * 1991-04-08 1992-11-13 Un Zee Cho Solar heated fuel self-feed type wide deck multi-leg ship
JPH09195076A (en) * 1996-01-10 1997-07-29 Mitsubishi Heavy Ind Ltd Gaseous hydrogen and oxygen producing device
JP2012036414A (en) * 2010-08-03 2012-02-23 Sony Corp Power generation and hydrogen gas generating apparatus
JP2013160416A (en) * 2012-02-03 2013-08-19 West Nippon Expressway Co Ltd Air conditioning system

Also Published As

Publication number Publication date
JPWO2018012152A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
CN101886270B (en) For the high pressure electrolysis cell of hydrogen manufacturing from water
AU2012228513B2 (en) Hydrogen offloading in an electrochemical generator unit including a hydrogen fuel cell
Mergel et al. Status on technologies for hydrogen production by water electrolysis
AU2011244435B2 (en) Device for storing and restoring electrical energy
CN104332644A (en) Hydrogen power generation system with air humidity adjusting function
CN100337723C (en) Electrochemical generator
CN105862066B (en) High-pressure proton membrane water electrolysis device and method
US11643741B2 (en) Method of producing hydrogen
KR101716959B1 (en) Integration power distribution apparatus for a hybrid power supply system by energy circulation
JPWO2020095543A1 (en) How to operate the electrochemical hydrogen compressor and the electrochemical hydrogen compressor
CN106715759A (en) Electrolytic cell for production of organic chemical hydrides
CN204289608U (en) There is the hydrogen gas generating system of air humidity regulatory function
WO2004092059A1 (en) Fuel for fuel battery, fuel battery, and power generating method using same
CN105449247A (en) Solar-assisted power generating charge station
WO2018012152A1 (en) Hydrogen generation system
US9570772B2 (en) Power production apparatus and structure block system for water storage facility
US10337110B2 (en) Device and method for the flexible use of electricity
JP2007265921A (en) Fuel cell system and operation method of fuel cell
He et al. Electrochemical hydrogen production
CN204702808U (en) By the equipment of oxygen-containing gas Electrochemical Generation of Ozone
Pitschak et al. Electrolytic processes
Vaculik et al. Calculation of efficiency of hydrogen storage system at the fuel cells laboratory
JP2012052208A (en) Method of operating water electrolysis system
Rodríguez-Castellanos et al. Solar-hydrogen-fuel cell prototype as a source of renewable energy generation
CN201534047U (en) Water knockout vessel of proton exchange membrane fuel cell system for vehicles and ships

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827284

Country of ref document: EP

Kind code of ref document: A1