WO2018012012A1 - ガス絶縁電気機器及びガス絶縁電気機器の製造方法 - Google Patents

ガス絶縁電気機器及びガス絶縁電気機器の製造方法 Download PDF

Info

Publication number
WO2018012012A1
WO2018012012A1 PCT/JP2017/003222 JP2017003222W WO2018012012A1 WO 2018012012 A1 WO2018012012 A1 WO 2018012012A1 JP 2017003222 W JP2017003222 W JP 2017003222W WO 2018012012 A1 WO2018012012 A1 WO 2018012012A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear resistance
gas
conductive foreign
film
nonlinear
Prior art date
Application number
PCT/JP2017/003222
Other languages
English (en)
French (fr)
Inventor
吉村 学
涼子 川野
壮一朗 海永
伸緒 横村
悟 佐藤
慎一朗 中内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017526997A priority Critical patent/JP6189002B1/ja
Priority to EP17827147.4A priority patent/EP3487019B1/en
Priority to US16/316,157 priority patent/US11031765B2/en
Publication of WO2018012012A1 publication Critical patent/WO2018012012A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/063Totally-enclosed installations, e.g. in metal casings filled with oil or gas
    • H02G5/065Particle traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/02Bases, casings, or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/48Means for preventing discharge to non-current-carrying parts, e.g. using corona ring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/045Details of casing, e.g. gas tightness
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure

Definitions

  • the present invention relates to a gas-insulated electrical apparatus in which a central conductor to which a high voltage is applied is housed in a ground tank, and the central conductor and the ground tank are insulated with an insulating gas filled in the ground tank, and a method for manufacturing the gas-insulated electrical apparatus It is about.
  • a gas-insulated electrical device contains an electrical device such as a high-voltage conductor, switchgear, or current transformer as a central conductor in a grounded tank that is a sealed container, and the sealed container is filled with an insulating gas.
  • the component equipment and the high-voltage conductor are insulated from the sealed container.
  • Gas-insulated electrical equipment is generally used as a high-voltage device by arranging a high-voltage conductor through which current flows inside a grounded tank, which is a sealed container, and sealing the insulating gas, which is the main insulating medium, inside the grounded tank. Is the mainstream.
  • the insulating gas includes sulfur hexafluoride gas (SF 6 ), dry air, nitrogen, carbon dioxide gas, CF 4 , CHI 3 , C 2 F 6 , C 3 F 8 , or a mixed gas in which those gases are combined. Illustrated. Sulfur hexafluoride gas has a dielectric strength about three times that of air.
  • the insulating gas which is the main insulating medium, is used after being pressurized to atmospheric pressure or higher in order to improve the insulating performance and the shut-off performance. Therefore, in order to seal the gas and keep the insulation distance between the ground tank and the high voltage conductor uniform, for example, the ground tank is often cylindrical and the high voltage conductor is often arranged coaxially with the tank. Also, the high voltage conductor is often cylindrical. It should be noted that the sulfur hexafluoride gas has a high dielectric strength in an equal electric field, but the insulation performance deteriorates in an unequal electric field.
  • millimeter-level conductive foreign matter is generated from the sliding part connecting the high-voltage conductor or the contact part between the conductors such as the breaker and disconnector
  • Conductive foreign matter may be mixed in as dust when manufacturing gas-insulated electrical equipment or when installing on-site.
  • the generated or mixed conductive foreign matter remains on the bottom surface inside the ground tank.
  • the conductive foreign matter is charged by an action such as electrostatic induction. After that, it begins to move by the action of Coulomb force according to the potential gradient between the ground tank and the high voltage conductor.
  • a non-linear resistance film is formed on the inner surface of the ground tank to reduce the amount of conductive foreign matter charged in order to suppress the behavior of the conductive foreign matter.
  • a method is disclosed in US Pat.
  • the nonlinear resistance film is a resin filled with a nonlinear resistance material having nonlinear electrical characteristics, and is formed on the inner surface of the ground tank.
  • Patent Document 2 discloses that a non-linear resistance film in which the filling amount of the non-linear resistance material into the resin is in the range of 30% to 80% is effective.
  • the filling amount of the non-linear resistance material is preferably 30% to 80%, but the size of the conductive foreign matter and the non-linear resistance material are the same as in Patent Document 1 described above. However, there is a problem similar to that of Patent Document 1.
  • the present invention has been made to solve the above-described problems, and provides a gas-insulated electrical apparatus that can suppress partial discharge that occurs in a minute gap in the vicinity of a conductive foreign matter and suppress charging of the conductive foreign matter. It is intended to do.
  • the present invention provides a metal sealed container, a high-voltage conductor that is housed in the sealed container and to which a voltage is applied, and the high-voltage conductor in the sealed container.
  • An insulating support member that insulates and supports, and a non-linear resistance film that covers at least a portion on the lower side of the high-voltage conductor on the inner surface of the sealed container.
  • the non-linear resistance film is formed by dispersing non-linear resistance material particles in an insulating material, and the non-linear resistance film is in non-linear resistance so that the non-linear resistance material particles are always in contact with one or more conductive foreign substances mixed in the sealed container. Particles of material are placed.
  • the gas-insulated electrical apparatus According to the gas-insulated electrical apparatus according to the present invention, there is an effect that the partial discharge generated in the minute gap near the conductive foreign matter can be suppressed and the charging of the conductive foreign matter can be suppressed.
  • the figure which shows the dependence of the local electric field near the contact point of a conductive foreign material and a nonlinear resistance film when the position of the conductive foreign material is changed in the film surface direction of the nonlinear resistance film The figure which showed the positional relationship of the non-linear resistance material of a non-linear resistance film, and the electroconductive foreign material which contacts it in the gas insulation electric equipment which concerns on Embodiment 2 of this invention.
  • the figure which represented the relationship between a filling factor and particle size based on Formula (3) A sectional view in the axial direction of a gas-insulated electrical apparatus according to Embodiment 6 of the present invention. Diagram showing non-linear resistance material and conductive foreign material in contact with it Diagram showing an example of particle size distribution of nonlinear resistance material
  • FIG. 1 is an axial cross-sectional view of a gas-insulated electrical apparatus 1 according to Embodiment 1.
  • the gas-insulated electrical device 1 is attached to the grounding tank 2, a cylindrical grounding tank 2 that is a metal sealed container, a high-voltage conductor 3 that is disposed inside the grounding tank 2, and to which a high voltage is applied, And an insulating support member 4 for insulatingly supporting the high voltage conductor 3.
  • the high voltage conductor 3 is fixed at a position coaxial with the ground tank 2 by an insulating support member 4 made of a solid insulator.
  • FIG. 1 shows a part of the gas-insulated electric device 1, and the gas-insulated electric device 1 is used together with the above-described components, as well as devices such as a circuit breaker, a disconnector, and an instrument current transformer. It constitutes a gas insulated switchgear. Between the ground tank 2 and the high voltage conductor 3, an insulating gas 5 for insulating the two is filled. Examples of the insulating gas 5 include single gases such as SF 6 , dry air, N 2 , CO 2 , O 2 , and CF 3 I. In addition, the insulating gas 5 may be a mixture of the above single gas in two or more kinds.
  • a non-linear resistance film 6 is disposed on the inner surface of the ground tank 2.
  • the non-linear resistance film 6 is disposed, for example, on the lower inner surface of the ground tank 2.
  • the non-linear resistance film 6 covers at least a portion on the lower side of the high voltage conductor 3 on the inner surface of the ground tank 2.
  • the non-linear resistance film 6 is a film formed by filling an insulating material 7 whose main component is resin with particles of a non-linear resistance material (for example, ZnO or SiC) 8.
  • the non-linear resistance film 6 has a non-linear volume resistivity in which the resistivity decreases when the electric field affected by the non-linear resistance material 8 filled in the insulating material 7 becomes higher than a critical value. .
  • the insulating material 7 includes a thermoplastic resin and a thermosetting resin.
  • resins such as vinyl chloride, polyester, and nylon are used, and for thermosetting resins, resins such as epoxy, urethane, and acrylic are used.
  • the particles of the non-linear resistance material 8 have a characteristic that the resistance value is large in the low electric field region but the resistance value is small in the high electric field region.
  • the nonlinear resistance material 8 may be, for example, MgO, ZnSe, CdTe, AlGa, InP, GaAs, InSb, GaP, GaN, AlP, InN, InAs, NaCl, AgBr, or any other material that exhibits nonlinear resistance characteristics in addition to ZnO and SiC. CuCl.
  • the formation method of the non-linear resistance film 6 includes a method of curing after forming a thin film by spray coating, brush coating, baking coating, dip coating, sheet coating or the like.
  • the conditions required for the non-linear resistance film 6 applicable to the gas-insulated electrical apparatus 1 include that no decomposition gas is generated, that the deterioration over time during the operation time is small, and that the performance is under a thermal environment of around 100 degrees. It does not fall.
  • the conductive foreign matter 9 Immediately after the conductive foreign matter 9 is generated, it falls to the bottom surface in the ground tank 2 due to gravity and becomes flat.
  • the phenomenon of electrostatic induction acts on the conductive foreign matter 9. Electric charges are supplied from the ground tank 2 to the conductive foreign matter 9, and the conductive foreign matter 9 is charged. Since the charged conductive foreign material 9 generates an electric field between the high-voltage conductor 3 and the ground tank 2 in the charged ground tank 2, it receives the action of the Coulomb force according to the charge amount, Stands up from the flat state and rises toward the high-voltage conductor 3.
  • the high voltage conductor 3 is approached and brought into contact. Since the vicinity of the high voltage conductor 3 is a high electric field, if an overvoltage such as a lightning surge enters while the conductive foreign material 9 is close to the high voltage conductor 3, a ground fault may occur.
  • FIG. 1 shows the operation of the nonlinear resistive film 6 against the electric field.
  • the resistivity is high when the electric field is low, the resistivity starts to decrease when the electric field is increased, and the resistance is decreased when the electric field is further increased.
  • the voltage applied to the high voltage conductor 3 is low, the electric field in the nonlinear resistance film 6 is low, and the resistance value of the nonlinear resistance material 8 in the nonlinear resistance film 6 is high.
  • the non-linear resistance film 6 composed of the insulating material 7 and the non-linear resistance material 8 behaves as an insulator, the flow of electric charge from the ground tank 2 to the conductive foreign material 9 is blocked, and the conductive foreign material 9 is electrostatically induced. No charging due to. Accordingly, the force acting on the conductive foreign material 9 by the action of the electric field between the high voltage conductor 3 and the ground tank 2 is reduced. As a result, the force acting on the conductive foreign material 9 due to the action of the electric field is less likely to be greater than the weight of the conductive foreign material 9, and the conductive foreign material 9 is less likely to float.
  • FIG. 4 is a diagram showing the dependence of the local electric field in the vicinity of the contact point between the conductive foreign material 9 and the nonlinear resistance film 6 on the electric field around the conductive foreign material 9.
  • FIG. 4 compares the dependence when the conductive foreign material 9 is in contact with the nonlinear resistance material 8 and the dependence when the conductive foreign material 9 is not in contact with the nonlinear resistance material 8.
  • the electric field concentration near the contact point between the non-linear resistance film 6 and the conductive foreign material 9 is alleviated and partial discharge is less likely to occur. . Even if partial discharge occurs, the charge flows through the portion of the non-linear resistance film 6 facing the high voltage conductor 3 and escapes, and charging of the conductive foreign material 9 is suppressed. On the other hand, since the portion near the ground tank 2 in the non-linear resistance film 6 maintains a high resistance value, charging of the conductive foreign material 9 due to the transfer of charges from the inner surface of the ground tank 2 to the conductive foreign material 9 is suppressed. From the above, the force that acts on the foreign material by conducting the electric field generated from the high-voltage conductor 3 is less likely to be greater than the weight of the conductive foreign material 9, and the conductive foreign material 9 is less likely to float.
  • FIG. 4 shows the display including the electric field generated on the surface of the conductive foreign material 9.
  • the generated electric field also decreases, but when it is not in contact, the electric field is high.
  • the non-linear resistance film 6 As described above, if the non-linear resistance film 6 is configured, the electric field in the vicinity of the contact portion can be relaxed before the partial discharge is generated in the vicinity of the contact portion between the conductive foreign matter 9 and the ground tank 2, and the occurrence of the partial discharge can be suppressed. .
  • production of partial discharge in the nonlinear resistive film 6 becomes small is demonstrated in detail.
  • the non-linear resistance material 8 and the conductive foreign material 9 contained in the non-linear resistance film 6 are in contact at any one point. Need to be.
  • the filling amount of the non-linear resistance material 8 is reduced, the arrangement of the non-linear resistance material 8 in the non-linear resistance film 6 is sparse as shown in FIG. 5, and the conductive foreign material 9 may not touch the non-linear resistance material 8. Increases nature.
  • the conductive foreign material 9 comes into contact with the insulating material 7 and becomes a so-called triple junction formed by the intersection of three different substances, and the intersection has a very high electric field. There is a high possibility that electric discharge occurs and the conductive foreign material 9 is charged and floats.
  • FIG. 6 is an axial sectional view similar to FIG. 1 showing the relationship between the nonlinear resistive film 6 and the conductive foreign material 9 in contact with the nonlinear resistive film 6 in the first embodiment.
  • the particles of the non-linear resistance material 8 in the non-linear resistance film 6 are arranged on the surface layer of the non-linear resistance film 6 in order to always contact one or more particles of the conductive foreign material 9 that has fallen, and a part of the non-linear resistance material 8 is exposed. I am letting.
  • the nonlinear resistance material 8 particles are arranged so as to be exposed on the surface of the nonlinear resistance film 6 as shown in FIG. Even in such a case, a very thin insulating material 7 may be formed on the surface of the nonlinear resistance material 8. However, even if a very thin insulating material 7 is formed on the surface of the nonlinear resistance material 8, the characteristics of the nonlinear resistance material 8 are hardly affected. Alternatively, after forming the non-linear resistance film 6, the surface layer of the non-linear resistance film 6 may be polished to remove the very thin insulating material 7 and expose the non-linear resistance material 8.
  • the interval (distance) W between the adjacent non-linear resistance materials 8 is made smaller than the size (width) of the conductive foreign material 9.
  • the invention of the first embodiment is arranged so that one or more particles of the non-linear resistance material 8 of the non-linear resistance film 6 are always in contact with the conductive foreign material 9, for example, the non-linear resistance on the surface layer of the non-linear resistance film 6.
  • the conductive foreign material 9 is not charged, and the conductive foreign material 9 is prevented from rising, and the deterioration of the insulation performance of the gas-insulated electrical equipment caused by the floating of the conductive foreign material 9 is suppressed. It is possible to improve the insulation reliability of the gas-insulated electrical apparatus 1.
  • FIG. 8 illustrates the non-linear resistance material 8 and the conductive foreign material 9 in contact therewith.
  • FIG. 8 is an axial sectional view similar to FIG.
  • FIG. 9 is a view of the nonlinear resistance material 8 as viewed from the surface layer of the nonlinear resistance film 6.
  • the shape of the conductive foreign material 9 is assumed to be a linear foreign material whose performance is expected to deteriorate most in terms of insulation. Although it is expected that the tip of the foreign substance on the line has various structures, a hemispherical shape that is difficult to contact is assumed in consideration of contact with the nonlinear resistance material 8.
  • the degree of exposure of the non-linear resistance material 8 to the surface layer of the non-linear resistance film 6 is assumed to be about half the particle size (diameter) of the non-linear resistance material 8.
  • the hemispherical tip diameter of the conductive foreign material 9 is D
  • the particle size (diameter) of the nonlinear resistance material 8 is d
  • the distance between adjacent nonlinear resistance materials 8 is W
  • the insulating material 7 is filled with the nonlinear resistance material 8
  • the rate is defined as Z. From FIG. 8, the condition that the conductive foreign material 9 contacts the particles of the nonlinear resistance material 8 is expressed by the following formula (1).
  • the filling rate Z is calculated in consideration of the distance W from each particle, and is expressed by the equation (2).
  • the relationship between the particle size (diameter) d of the nonlinear resistance material 8 and the filling rate Z with respect to the size (hemispherical tip diameter) D of the conductive foreign material 9 is derived from the expressions (1) and (2), the following expression (3) is obtained. Represented.
  • FIG. 10 is a diagram showing the relationship between the filling rate Z and the particle size d based on the equation (3). If the particle size d is 25 ⁇ m, the filling rate Z may be 5% or more in order to contact the conductive foreign material 9 having a size D of 200 ⁇ m. Further, in order to make contact with the conductive foreign material 9 having a size D of 1 ⁇ m, it is possible to make contact if the filling rate Z is 43% or more.
  • the conductive foreign material 9 can contact the non-linear resistance material 6 in the non-linear resistance film 6 without fail. Thereby, electric field relaxation around the conductive foreign material 9 acts, and charging of the conductive foreign material 9 can be suppressed. As a result, the dielectric breakdown caused by the floating of the conductive foreign material 9 can be prevented, and the insulation reliability of the gas-insulated electrical apparatus 1 can be improved. That is, by using the expression (3), if the conductive foreign material 9 is larger than the set size D of the conductive foreign material 9, the particle size d and the filling rate Z that can be reliably brought into contact with the nonlinear resistance material 8 Can be derived.
  • Embodiment 3 a gas-insulated electrical apparatus according to Embodiment 3 of the present invention will be described in detail.
  • conductive foreign substances 9 having a length of 10 mm that may be mixed in during installation, and these are currently removed as much as possible in the inspection process in order to reduce the insulation performance.
  • it is possible to remove the thin wire-shaped conductive foreign material 9 having a length of 3 mm and a width of 0.2 mm or more it is difficult to remove the conductive foreign material 9 smaller than that, so it can be mixed into the ground tank 2. There is sex.
  • the gas-insulated electrical device 1 is designed to withstand a voltage even when foreign matter mixed in a thin wire having a length of 3 mm and a width of 0.2 mm is mixed. It is difficult to remove the conductive foreign matter 9 that occurs rarely during actual operation after installation, and we are striving for preventive maintenance by using a capture device or a partial discharge detection device that captures the conductive foreign matter 9 that behaves. . That is, when the conductive foreign matter 9 having a length of 3 mm or more and a width of 0.2 mm or more is mixed in the ground tank 2 and the conductive foreign matter 9 does not come into contact with the nonlinear resistance material 8, there is a risk that the insulation performance is deteriorated. Arise.
  • the conductive foreign material 9 has a length of 3 mm or more and a width of 0.2 mm or more, the particle size d and the filling rate Z in which the non-linear resistance material 8 is arranged so as to be in contact with the non-linear resistance material 8 must be defined.
  • the condition is set to the smallest dimension of the conductive foreign matter 9 in question, and when the conductive foreign matter 9 in contact with the nonlinear resistive film 6, the nonlinear resistive material in the nonlinear resistive film 6 is used. In other words, the electric field relaxation around the conductive foreign material 9 acts and the charging of the conductive foreign material 9 can be suppressed.
  • the invention of Embodiment 3 defines the particle size d and the filling rate Z of the non-linear resistance material 8 with respect to the conductive foreign material 9 that may not be found and removed during assembly. Since the non-linear resistance material 8 in the film 6 can come into contact with the conductive foreign matter 9, the electric field around the conductive foreign matter 9 can be relaxed, and the partial discharge that causes charging is suppressed. 9 can reduce the influence of a decrease in insulation performance, and the withstand voltage performance of the device can be improved.
  • Embodiment 4 FIG. Next, a gas-insulated electrical apparatus according to Embodiment 4 of the present invention will be described in detail.
  • a nonlinear resistance film 6 that allows the nonlinear resistance material 8 to contact at least one point with the conductive foreign material 9 will be described.
  • the method of disposing the nonlinear resistance material 8 on the surface layer of the nonlinear resistance film 6 varies depending on the specific gravity of the nonlinear resistance material 8 filled in the nonlinear resistance film 6.
  • Insulating material 7 may be one that is originally thermally cured with a liquid resin, or one that is cured after being liquefied by heating or chemical reaction, that is, in a liquid state.
  • the nonlinear resistance material 8 floats in the insulating material 7 due to its own weight difference.
  • the time elapses after painting the ground tank 2 the nonlinear resistance material 8 floats due to the difference in its own weight, and the nonlinear resistance material 8 gathers on the surface layer of the nonlinear resistance film 6.
  • the non-linear resistance material 8 settles down due to the difference in its own weight and is positioned below the insulating material 7. In order to collect the non-linear resistance material 8 on the surface layer of the non-linear resistance film 6, a device is required.
  • a film may be formed by mixing an anti-settling agent, which is an additive that has a low viscosity when the nonlinear resistance material 8 is filled in the insulating material 7 and the viscosity increases after the nonlinear resistance film 6 is formed.
  • an anti-settling agent which is an additive that has a low viscosity when the nonlinear resistance material 8 is filled in the insulating material 7 and the viscosity increases after the nonlinear resistance film 6 is formed.
  • the anti-settling agent include additives that impart thixotropic properties.
  • Additives that impart thixotropic properties include, for example, aliphatic amides, urea urethanes, polyethylene oxides, polymerized vegetable oils, sulfate ester anionic surfactants, polyether ester type surfactants, poly Thixotropic agents for organic solvent systems such as carboxylic acid amine salts, and organic bentonite-based, ultrafine silica-based, surface-treated calcium carbonate-based inorganic particulate solvent-based thixotropic agents, amide wax, hydrogenated castor oil Examples thereof include wax-based, benzylidene sorbitol-based, and metal soap (such as zinc stearate and aluminum stearate).
  • the average film thickness after forming the nonlinear resistive film 6 may become thinner than the particle size of the nonlinear resistive material 8.
  • the insulating material 7 is partly scraped by polishing the surface of the formed nonlinear resistance film 6, and the nonlinear resistance material 8 is exposed on the surface layer.
  • the conductive foreign material 9 that has contacted the nonlinear resistance film 6 can contact the nonlinear resistance material 8.
  • the insulating material 7 that is a resin has a lower hardness than the nonlinear resistance material 8 that is an inorganic substance, and if the insulating material 7 is polished, the nonlinear resistance material 8 is hardly polished and scraped.
  • the material 8 can be exposed to the surface layer of the nonlinear resistance film 6. Even when the nonlinear resistance material 8 having a specific gravity smaller than that of the insulating material 7 is used, the insulating material 7 may be polished to expose more nonlinear resistance material 8.
  • the nonlinear resistance material 8 in the nonlinear resistance film 6 can be arranged on the surface layer, and the nonlinear resistance material 8 always comes into contact with the conductive foreign material 9, and the conductive foreign material.
  • the electric field relaxation around 9 acts, and the charging of the conductive foreign material 9 can be suppressed.
  • the dielectric breakdown caused by the floating of the conductive foreign material 9 can be prevented, and the insulation reliability of the gas-insulated electrical apparatus 1 can be improved.
  • the insulating material 7 and the non-linear resistance material 8 having a specific gravity relationship as shown in the fourth embodiment, the size and non-linearity of the conductive foreign material 9 as shown in the first to third embodiments.
  • the particle size and filling rate of the resistance material 8 may be set.
  • Embodiment 5 FIG. Next, a gas-insulated electrical apparatus according to Embodiment 5 of the present invention will be described in detail.
  • the conductive foreign material 9 behaves under the influence of mechanical vibration and the local electric field at the contact portion between the conductive foreign material 9 and the nonlinear resistance film 6 changes, the electric field is generated before partial discharge occurs.
  • the volume resistivity of the relaxable nonlinear resistive film 6 will be described.
  • the mechanical vibration from the outside applied to the ground tank 2 is assumed to be vibration generated by the movement of equipment (disconnector, circuit breaker) and the like provided in the ground tank 2.
  • equipment disconnector, circuit breaker
  • the local electric field in the vicinity of the contact point between the conductive foreign material 9 and the non-linear resistance film 6 causes the conductive foreign material 9 to become static before the partial discharge occurs. It is necessary to return to a value almost equal to the local electric field value in the stationary state. This time for the electric field to return to the original is defined as a time constant T.
  • the discharge delay time is the sum of a statistical delay time from when a voltage is applied to when initial electrons serving as a discharge seed are generated and a formation delay time from when the initial electrons are generated until the initial electrons are grown.
  • the statistical delay time of discharge in gas is about 0 s at the shortest, and the formation delay time is several tens of ns at the shortest. From this, the shortest time of the time delay of discharge is set to several tens of ns (for example, elucidation of short-term region Vt characteristics of the quasi-equal electric field gap in SF6 by square wave impulse (authorized by Central Research Institute of Electric Power Industry) ])).
  • the time delay of discharge 50 ns and the relative dielectric constant of the nonlinear resistive film 6 are set to 10
  • the electrical resistivity of the nonlinear resistive film 6 is 5.5 ⁇ 10 2 ⁇ m. .
  • the time constant T at the minimum value of the resistivity of the non-linear resistance film 6 is smaller than the discharge delay time, even if the position of the conductive foreign material 9 is displaced due to the vibration of the ground tank 2, the conductive foreign material 9 Before the partial discharge is generated in the vicinity of the contact portion between 9 and the nonlinear resistance film 6, the electric field value in the vicinity of the contact portion can be returned to the local electric field value in the stationary state, and the occurrence of the partial discharge can be suppressed. As a result, the dielectric breakdown caused by the floating of the conductive foreign material 9 can be prevented, and the insulation reliability of the gas-insulated electrical apparatus 1 can be improved.
  • the gas can be further increased.
  • the insulation reliability of the insulated electrical device 1 can be improved.
  • FIG. 11 shows the structure of the tank inner surface portion of the gas-insulated electric apparatus in the sixth embodiment.
  • an insulating film 10 is inserted between the non-linear resistance film 6 and the ground tank 2. When the electric field is low, the non-linear resistance film 6 behaves as an insulating film.
  • the non-linear resistance film 6 behaves as a low-resistance film, so that there is a risk of being supplied with electric charges from the ground tank 2 by electrostatic induction. If there is an insulating film 10 between the non-linear resistance film 6 and the ground tank 2, the charge supply is blocked by the resistance of the insulating film 10, and the conductive foreign material 9 is not charged.
  • the volume resistivity of the insulating film 10 is 10 12 ⁇ ⁇ m or more.
  • the insulating film 10 is inserted between the nonlinear resistance film 6 and the inner surface of the ground tank 2 as described above, charge injection from the ground tank 2 is suppressed, and the conductive foreign material 9 due to electrostatic induction 9 Can be suppressed. As a result, the dielectric breakdown caused by the floating of the conductive foreign material 9 can be prevented, and the insulation reliability of the gas-insulated electrical apparatus 1 can be improved. Further, by applying the configuration in which the insulating film 10 is inserted between the nonlinear resistance film 6 and the inner surface of the ground tank 2 to the configurations shown in the first to fifth embodiments, further gas insulation is achieved. The insulation reliability of the electric device 1 can be improved.
  • Embodiment 7 FIG. Next, a gas-insulated electrical apparatus according to Embodiment 7 of the present invention will be described in detail based on FIG.
  • the non-linear resistance film defining the relationship between the particle size of the non-linear resistance material 8 that enables the non-linear resistance material 8 to contact at least one point with the conductive foreign material 9, the non-linear resistance film 6, and the surface roughness. 6 will be described.
  • FIG. 12 shows the non-linear resistance material 8 and the conductive foreign material 9 in contact therewith.
  • FIG. 12 is a sectional view in the axial direction similar to FIG.
  • the insulating material 7 is in a liquid state before being applied, and when the non-linear resistance material 8 is not filled, the surface layer has a roughness of 5 to 6 ⁇ m or less. Accordingly, when the non-linear resistance material 8 is not held on the surface layer of the non-linear resistance film 6 but settles to the lower layer, the surface roughness becomes several ⁇ m or less because the non-linear resistance material 8 does not appear on the surface layer.
  • the surface roughness of the non-linear resistance film 6 is such that a part of the non-linear resistance material 8 is from the surface of the insulating material 7. Since it protrudes, it becomes rougher than the case where the nonlinear resistance material 8 sinks. Further, as described above, even when the insulating material 7 is partly removed by polishing the surface of the nonlinear resistive film 6 and the nonlinear resistive material 8 is exposed on the surface layer, the nonlinear resistive material 8 is removed from the surface of the insulating material 7. Since it protrudes, the surface roughness becomes rough.
  • the conductive foreign matter 9 becomes non-linear. It becomes easy to contact the resistance material 8.
  • the local electric field in the vicinity of the contact point between the conductive foreign material 9 and the non-linear resistance film 6 can be reduced, and the conductive foreign material 9 is prevented from floating due to the charge being supplied to the conductive foreign material 9 due to partial discharge. Insulation breakdown can be prevented, and the insulation reliability of the gas-insulated electrical apparatus 1 can be improved.
  • the insulation reliability of the gas-insulated electrical apparatus 1 can be further increased. It is possible to improve the performance.
  • FIG. 13 is a diagram illustrating an example of the particle size distribution of the nonlinear resistance material 8.
  • the particle size distribution indicates a distribution having a certain particle size as a peak.
  • the particle size of the non-linear resistance material 8 is defined from the size of the conductive foreign material 9 and the filling rate.
  • the non-linear resistance material 8 becomes larger than the prescribed particle size, it becomes difficult to contact the conductive foreign material 9. Therefore, by using the non-linear resistance material 8 having a particle size distribution peak in the vicinity of the specified particle size, the non-linear resistance material 8 having the specified particle size can be reduced, and the conductive foreign material 9 can be more reliably non-linear resistance. The material 8 can be contacted.
  • the non-linear resistance material 8 having a particle size equal to or smaller than the prescribed particle size may easily come into contact with the conductive foreign material 9, but the non-linear characteristics may not appear in the resistance.
  • the non-linear resistance material 8 having a particle size distribution peak in the vicinity of the specified particle size the non-linear resistance material 8 smaller than the specified particle size, that is, the non-linear resistance material 8 that does not exhibit the non-linear resistance is reduced. can do. Thereby, it can prevent that the electrically conductive foreign material 9 charges through the nonlinear resistance material 8 in which nonlinear resistance does not appear, and can suppress the fall of the insulation performance of the gas insulated electrical equipment 1.
  • FIG. For example, when ZnO is used for the non-linear resistance material 8, it is desirable to use ZnO of 5 to 6 ⁇ m or more so that non-linear resistance appears.
  • the conductive foreign material 9 can easily come into contact with the non-linear resistance material 8 with the filling amount defined by the equation (3).
  • the local electric field in the vicinity of the contact point between the conductive foreign material 9 and the non-linear resistance film 6 can be reduced, electric charges are not supplied to the conductive foreign material due to partial discharge, and the conductive foreign material 9 does not float up, resulting in dielectric breakdown. Insulation reliability of the gas-insulated electrical apparatus 1 can be improved.
  • the insulation reliability of the gas-insulated electrical apparatus 1 can be further increased. It is possible to improve the performance.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 gas insulated electrical equipment
  • 2 grounding tank (sealed container)
  • 3 high voltage conductor
  • 4 insulating support member
  • 5 insulating gas
  • 6 nonlinear resistance film
  • 7 insulating material
  • 8 nonlinear resistance material
  • 9 conductive foreign matter
  • 10 insulating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Installation Of Bus-Bars (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

ガス絶縁電気機器は、金属製の密閉容器(2)と、密閉容器(2)の内部に収容されて電圧が印加される高電圧導体(3)と、高電圧導体(3)を密閉容器(2)に対して絶縁支持する絶縁支持部材(4)と、密閉容器(2)の内面のうち少なくとも高電圧導体(3)の下側となる部分を覆う非線形抵抗膜(6)と、を備える。非線形抵抗膜(6)は、絶縁材料に非線形抵抗材料の粒子が分散されて形成され、非線形抵抗材料の粒子が密閉容器(2)内に混入した導電性異物に常に1個以上接触するように、絶縁材料に非線形抵抗材料の粒子が配置される。

Description

ガス絶縁電気機器及びガス絶縁電気機器の製造方法
 この発明は、高電圧が印加される中心導体を接地タンク内部に収容し、接地タンク内部に充填した絶縁ガスで中心導体と接地タンクとを絶縁したガス絶縁電気機器及びガス絶縁電気機器の製造方法に関するものである。
 ガス絶縁電気機器は、例えば密閉容器となる接地タンクの内部に、中心導体としての高電圧導体、開閉機器、変流器などの電気機器を収容して、密閉容器内に絶縁ガスを充填して、構成機器及び高電圧導体と密閉容器とを絶縁するようになっている。ガス絶縁電気機器は、一般に密閉容器となる接地タンクの内部に電流が流れる高電圧導体を配設し、主絶縁媒体である絶縁ガスを接地タンクの内部に密閉封入し、高電圧機器として使用するのが主流である。絶縁ガスには、六フッ化硫黄ガス(SF)、乾燥空気、窒素、炭酸ガス、CF、CHI、C、C等、あるいはそれらのガスを組み合わせた混合ガスが例示される。六フッ化硫黄ガスは空気の約3倍の絶縁耐力がある。絶縁ガスに六フッ化硫黄ガスを用いることで、高電圧導体と接地タンク間の距離を縮め、ガス絶縁電気機器の縮小化を図ることができる。
 ガス絶縁電気機器では、絶縁性能および遮断性能を高めるため、主絶縁媒体である絶縁ガスを大気圧以上に加圧して使用している。そのため、ガスを密閉し、かつ接地タンクと高電圧導体との絶縁距離を均等に保つために、例えば接地タンクを円筒形状にし、高電圧導体をタンクと同軸に配置する場合が多い。また高電圧導体を円筒形状とする場合が多い。六フッ化硫黄ガスは平等電界における絶縁耐力が高い反面、不平等な電界下では絶縁性能が低下することに留意する必要がある。
 開閉機器が接地タンクの内部に収容されたガス絶縁電気機器の場合、高電圧導体を接続する摺動部または遮断機、断路器などの導体同士の接触部から、ミリメートルレベルの導電性異物が発生することがある。ガス絶縁電気機器製作時または現地での据付作業時に導電性異物が塵として混入する場合もある。発生もしくは混入した導電性異物は接地タンク内部の底面部に留まる。しかしながら、高電圧導体への課電中では静電誘導等の作用で導電性異物は帯電する。その後接地タンクと高電圧導体間の電位勾配に従ってクーロン力の作用で運動を始める。
 運動初期では平伏していた導電性異物が起立する。その後、導電性異物は浮上を始め、高電圧導体に接近または高電圧導体に接触するような運動をするようになる。互いに円筒形状であり同軸に配置された接地タンクと高電圧導体の場合、高電圧導体の近傍はタンク底面部と比べ高電界となる。そのため、金属製でかつ線状の異物が高電圧導体の近傍に存在すると、異物の先端ではさらに電界が高くなり放電発生の可能性が高まる。この状態で雷サージなどの過電圧が進入すると地絡する可能性がある。すなわち、導電性異物が帯電して浮上することで、ガス絶縁電気機器の絶縁性能が低下する。
 導電性異物に起因した絶縁性能の低下に対する対策には、導電性異物の挙動を抑制することを目的として、接地タンクの内側表面に非線形抵抗膜を形成して、導電性異物の帯電量を抑える方法が、特許文献1に開示されている。非線形抵抗膜は非線形な電気特性を有する非線形抵抗材料を樹脂に充填したもので、これを接地タンクの内側表面に形成する。非線形抵抗膜の表層に導電性異物が接触したとき、電界が集中する導電性異物の周辺部分の非線形抵抗膜の抵抗が低下することによって、導電性異物の周辺部分で非線形抵抗膜の電位が導電性異物の電位に近づく。これにより、導電性異物の周辺の等電位線の間隔が広がり電界が緩和されることで、部分放電や電子放射の発生が抑制される。また非線形抵抗材料の樹脂への充填量として30%から80%の範囲にした非線形抵抗膜が有効であることが特許文献2に開示されている。
特許第5065994号公報 国際公開第2014/112123号
 上述した特許文献1に示された構造では、特に樹脂に充填する非線形抵抗材料のサイズ、充填量に対する設定がないため、導電性異物のサイズと非線形抵抗材料のサイズ、非線形抵抗材料の充填率の関係によっては接地タンクの底面部にある導電性異物が非線形抵抗材料に接触しにくくなる場合がある。その場合、非線形抵抗膜と導電性異物との接触部近傍の微小ギャップが高電界部となり、部分放電や電界放出が発生し、導電性異物が帯電する恐れがある。導電性異物の電荷に作用する静電力が、導電性異物に働く重力を上回ると導電性異物が浮上を開始し、ガス絶縁電気機器の絶縁性能の低下を招く。また上述した特許文献2に記載された構造では、非線形抵抗材料の充填量として30%から80%が望ましいと記載があるが、上述した特許文献1と同様に導電性異物のサイズと非線形抵抗材料のサイズの設定がないため、特許文献1と同様の課題がある。
 この発明は、上記のような課題を解決するためになされたものであり、導電性異物近傍の微小ギャップで発生する部分放電を抑制し、導電性異物の帯電を抑制できるガス絶縁電気機器を提供することを目的とするものである。
 上述した課題を解決し、目的を達成するために、本発明は、金属製の密閉容器と、密閉容器の内部に収容されて電圧が印加される高電圧導体と、高電圧導体を密閉容器に対して絶縁支持する絶縁支持部材と、密閉容器の内面のうち少なくとも高電圧導体の下側となる部分を覆う非線形抵抗膜と、を備える。非線形抵抗膜は、絶縁材料に非線形抵抗材料の粒子が分散されて形成され、非線形抵抗材料の粒子が密閉容器内に混入した導電性異物に常に1個以上接触するように、絶縁材料に非線形抵抗材料の粒子が配置される。
 この発明に係るガス絶縁電気機器によれば、導電性異物近傍の微小ギャップで発生する部分放電を抑制し、導電性異物の帯電を抑制できるという効果を奏する。
この発明の実施の形態1に係るガス絶縁電気機器の軸方向断面図 この発明の実施の形態1に係るガス絶縁電気機器の接地タンク内面に形成した非線形抵抗膜内に非線形抵抗材料が分布している状態を示す図 この発明の実施の形態1に係るガス絶縁電気機器に使用される非線形抵抗膜の電界に対する抵抗率の変化を示した図 導電性異物の周囲電界に対する導電性異物と非線形抵抗膜の接触点近傍の局所電界の依存性を示す図 この発明の実施の形態1に係るガス絶縁電気機器において、非線形抵抗材料の充填量が小さい場合に導電性異物が非線形抵抗膜に接触する様子を示した図 この発明の実施の形態1に係るガス絶縁電気機器において、非線形抵抗膜の非線形抵抗材料に導電性異物が接触する様子を示した図 導電性異物を非線形抵抗膜の膜面方向に位置を変化させた場合に、導電性異物と非線形抵抗膜の接触点近傍の局所電界の依存性を示す図 この発明の実施の形態2に係るガス絶縁電気機器における、非線形抵抗膜の非線形抵抗材料とそれに接触する導電性異物との位置関係を示した図 この発明の実施の形態2に係るガス絶縁電気機器における、非線形抵抗膜上面からみた非線形抵抗膜表層に配置された非線形抵抗材料を示した図 式(3)に基づいて充填率と粒子サイズとの関係を表した図 この発明の実施の形態6に係るガス絶縁電気機器の軸方向断面図 非線形抵抗材料とそれに接触する導電性異物を示す図 非線形抵抗材料の粒度分布の一例を示す図
 以下に、本発明の実施の形態にかかるガス絶縁電気機器及びその製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 以下、この発明の実施の形態1に係るガス絶縁電気機器を図1から図7に基づいて詳細に説明する。図1は、実施の形態1に係るガス絶縁電気機器1の軸方向断面図である。ガス絶縁電気機器1は、金属製の密閉容器である円筒状の接地タンク2と、接地タンク2の内部に配置され、高電圧が印加される高電圧導体3と、接地タンク2に取付けられ、高電圧導体3を絶縁支持する絶縁支持部材4とを有する。高電圧導体3は固体絶縁物からなる絶縁支持部材4で接地タンク2と同軸中心の位置に固定されている。
 なお、図1は、ガス絶縁電気機器1の一部を示したものであり、ガス絶縁電気機器1は以上述べた構成要素の他、遮断器、断路器、計器用変流器等の機器と共にガス絶縁開閉装置を構成している。接地タンク2と高電圧導体3との間には、両者を絶縁するための絶縁ガス5が充填されている。絶縁ガス5には、例えばSF、乾燥空気、N、CO、O、CFIなどの単体ガスが挙げられる。また、上記単体ガスを2種類もしくはそれ以上の種類で混合させたものを絶縁ガス5に用いても良い。
 接地タンク2の内表面には非線形抵抗膜6が配置されている。非線形抵抗膜6は、例えば接地タンク2の下側の内表面に配置されている。非線形抵抗膜6は、接地タンク2の内面のうち少なくとも高電圧導体3の下側となる部分を覆う。非線形抵抗膜6は、図2に示すように樹脂を主成分とする絶縁材料7の中に非線形抵抗材料(例えばZnOまたはSiC)8の粒子を充填させて形成した被膜である。また、非線形抵抗材料8の一部は絶縁材料7から露出しており、密閉容器である接地タンク2内に混入した一定の導電性異物9が非線形抵抗材料8の粒子に常に接触するようになっている。その理由については後で詳しく説明する。非線形抵抗膜6は、絶縁材料7の中に充填されている非線形抵抗材料8により、作用を受ける電界が臨界値より高くなると抵抗率が低下する非線形な体積抵抗率を有しているものである。
 絶縁材料7には、熱可塑性樹脂と熱硬化性樹脂が挙げられる。熱可塑性樹脂であれば塩化ビニル系、ポリエステル系、ナイロン系等の樹脂が、熱硬化性樹脂であればエポキシ系、ウレタン系、アクリル系等の樹脂が使用される。非線形抵抗材料8の粒子は、低電界領域での抵抗値は大きいが、高電界領域では抵抗値が小さくなる特性を有する。非線形抵抗材料8は、ZnO、SiC以外に非線形抵抗特性を示す材料としては、例えばMgO、ZnSe、CdTe、AlGa、InP、GaAs、InSb、GaP、GaN、AlP、InN、InAs、NaCl、AgBr、または、CuClが挙げられる。
 非線形抵抗膜6の形成方法には、吹き付け塗装、はけ塗り、焼付け塗装、浸漬塗装、シート塗装などで薄膜を形成後硬化させる方法がある。またガス絶縁電気機器1に適用できる非線形抵抗膜6に要求される条件には、分解ガスを生成しないこと、運転時間中に性能に対する経年劣化が小さいこと、100度前後の熱環境下で性能が落ちないことが挙げられる。
 次に、この発明の実施の形態1のガス絶縁電気機器1において生じる物理現象について説明する。ガス絶縁電気機器1を構成する部品は、工場内のある一部は清浄環境下で組み立てられて現地へ輸送され、残りは現地で組み立てられる。どちらの組み立て環境下においても導電性異物(金属異物とも言う)9を混入させないように極力注意を払う配慮はなされているが、ガス絶縁電気機器1の接地タンク2の中に導電性異物9が紛れ込む可能性がある。これら導電性異物9の大部分は検査工程で取り除かれるが、長さが3mm程度以下で、太さ(幅)が0.2mm程度以下の導電性異物9は発見が困難のため接地タンク2内に残される場合がある。
 導電性異物9は、発生した直後は重力によって接地タンク2内の底面に落下して平伏した状態となる。ここで、高電圧導体3に電圧が印加されている運転状態で、導電性異物9が接地タンク2を構成する金属に直接接触する場合、静電誘導の現象が導電性異物9に作用して接地タンク2から導電性異物9に電荷が供給されて、導電性異物9は帯電する。帯電した導電性異物9は、課電されている接地タンク2内では高電圧導体3と接地タンク2の間で電界が発生しているため、帯電量に応じたクーロン力の作用を受けて、平伏した状態から起立、高電圧導体3に向けて浮上する。その後、高電圧導体3に接近して接触する。高電圧導体3の近傍は高電界であるため、導電性異物9が高電圧導体3に接近した状態で雷サージなどの過電圧が侵入すると、地絡に至る場合がある。
 次に非線形抵抗膜6の作用について説明する。ここで、図1では接地タンク2内に微小な導電性異物9が混入し、非線形抵抗膜6上に存在するものとする。図3は非線形抵抗膜6の電界に対する抵抗特性を示したものである。電界が低いと抵抗率が高く、ある電界になると抵抗率が下がり始め、さらに電界が高くなると低抵抗となる特性を有している。高電圧導体3に印加される電圧が低い場合は非線形抵抗膜6中の電界が低く、非線形抵抗膜6内の非線形抵抗材料8の抵抗値は高くなる。その場合、絶縁材料7と非線形抵抗材料8で構成された非線形抵抗膜6は絶縁物としてふるまい、接地タンク2から導電性異物9への電荷の流入が遮断され、導電性異物9は静電誘導による帯電はしない。従って、高電圧導体3と接地タンク2間の電界の作用で導電性異物9に働く力は小さくなる。これにより、電界の作用で導電性異物9に働く力が導電性異物9の自重より大きくなりにくくなり、導電性異物9は浮上しにくくなる。
 一方、高電圧導体3に印加される電圧が高く非線形抵抗膜6中の電界が高い場合は、非線形抵抗膜6内の非線形抵抗材料8の抵抗値が小さくなる。これにより、非線形抵抗膜6の高電圧導体3に近い部分は導電性を示す。図4は、導電性異物9の周囲電界に対する導電性異物9と非線形抵抗膜6の接触点近傍の局所電界の依存性を示す図である。図4では、導電性異物9が非線形抵抗材料8に接触している場合の依存性と、導電性異物9が非線形抵抗材料8に接触していない場合の依存性とを比較している。
 図4に示す通り、導電性異物9が非線形抵抗材料8に接触している場合は、非線形抵抗膜6と導電性異物9の接触点近傍における電界集中が緩和されて部分放電が発生しにくくなる。仮に部分放電が発生したとしても電荷は非線形抵抗膜6の高電圧導体3に面する部分を流れて逃げてしまい、導電性異物9の帯電は抑制される。一方、非線形抵抗膜6のうち接地タンク2に近い部分は高い抵抗値を保つため、接地タンク2の内表面から導電性異物9への電荷の移動による導電性異物9の帯電は抑制される。以上より、高電圧導体3から発生した電界の作用で導電し異物に働く力が導電性異物9の自重より大きくなりにくくなり、導電性異物9は浮上しにくくなる。
 一方、導電性異物9が非線形抵抗材料8に接触していない場合は、非線形抵抗膜6と導電性異物9の接触点近傍における電界は高くなり、導電性異物9は帯電して絶縁性能を低下させる。なお、図4は導電性異物9の表面に発生する電界を含めて表示している。また、導電性異物9が非線形抵抗材料8に接触している場合は発生電界も下がるが、接触していない場合は高電界となる。
 以上、非線形抵抗膜6を構成すれば、導電性異物9と接地タンク2の接触部近傍で部分放電が発生する前に接触部近傍における電界を緩和でき、部分放電の発生を抑制できることを説明した。次に、非線形抵抗膜6において部分放電の発生を抑制する作用が小さくなる場合について詳細に説明する。導電性異物9と非線形抵抗膜6の接触点近傍に電界緩和効果を得るためには、非線形抵抗膜6中に含有されている非線形抵抗材料8と導電性異物9はどこか一点でも接触している必要がある。非線形抵抗膜6中における非線形抵抗材料8の割合を多くしすぎると、塗料の粘度が下がるため塗装膜形成が困難であり、必然と非線形抵抗材料8の充填量を減らす傾向になる。
 しかしながら、非線形抵抗材料8の充填量を減らすと、図5に示すように、非線形抵抗膜6中の非線形抵抗材料8の配置がまばらとなり、導電性異物9が非線形抵抗材料8に触れていない可能性が高まる。非線形抵抗材料8と触れていない場合は、導電性異物9は絶縁材料7と接触することなり、3つの異なる物質の交点で形成するいわゆるトリプルジャンクションとなり、交点は非常に電界が高くなるため、部分放電が発生し、導電性異物9が帯電して浮上する可能性が高くなる。
 以上、非線形抵抗膜6において部分放電の発生を抑制する作用が働きにくくなる場合を説明したが、この発明の実施の形態1におけるガス絶縁電気機器1について詳細に説明する。図6は、実施の形態1における非線形抵抗膜6とこの非線形抵抗膜6に接触する導電性異物9との関係を示した図1と同様の軸方向の断面図である。非線形抵抗膜6における非線形抵抗材料8の粒子は、落下してきた導電性異物9に常に1個以上接触させるために、非線形抵抗膜6の表層に配置し、かつ非線形抵抗材料8は一部を露出させている。実際に非線形抵抗材料8を樹脂となる絶縁材料7に混ぜて非線形抵抗膜6を形成する場合、図6に示すように非線形抵抗膜6の表層に非線形抵抗材料8の粒子が露出するように配置させた場合であっても、非線形抵抗材料8の表面にごく薄い絶縁材料7が形成される場合もある。しかしながら、非線形抵抗材料8の表面にごく薄い絶縁材料7が形成される場合であっても、非線形抵抗材料8の特性にはほぼ影響がない。また非線形抵抗膜6を形成後、非線形抵抗膜6の表層を研磨することによってごく薄い絶縁材料7を除去し、非線形抵抗材料8を露出させてもよい。
 さらに導電性異物9の大きさ(幅)よりも、隣り合う非線形抵抗材料8の間隔(距離)Wを小さくさせている。このように非線形抵抗膜6の非線形抵抗材料8の粒子が導電性異物9に常に1個以上接触するような配置とすると、導電性異物9は非線形抵抗材料8に必ず接触する形となる。こうような構造にすることによって、導電性異物9と非線形抵抗膜6との間で電荷交換が行われ、非線形抵抗膜6と導電性異物9のそれぞれの電位が近づき、導電性異物9の周囲の電界を緩和することが可能となる。図7は非線形抵抗膜6の非線形抵抗材料8に対して、非線形抵抗膜6上に位置する導電性異物9が非線形抵抗膜6との膜面方向に位置を変えた場合に、導電性異物9の周囲の電界強度の変化を示したものである。図7より導電性異物9が非線形抵抗材料8に接触した場合は、電界は低いが、接触しなくなった位置になると急激に電界が高くなることがわかる。
 以上のように、実施の形態1の発明は、非線形抵抗膜6の非線形抵抗材料8の粒子が導電性異物9に常に1個以上接触するような配置、例えば非線形抵抗膜6の表層に非線形抵抗材料8の粒子を露出させることで、導電性異物9の帯電が無くなり、導電性異物9は浮上することが抑制され、導電性異物9の浮上によって引き起こされるガス絶縁電気機器の絶縁性能低下を抑制することが可能で、ガス絶縁電気機器1の絶縁信頼性を向上することができる。
実施の形態2.
 次に、この発明の実施の形態2に係るガス絶縁電気機器を図8および図9に基づいて詳細に説明する。実施の形態2では、非線形抵抗材料8が導電性異物9と少なくとも1点接触することを可能とする非線形抵抗材料8のサイズと充填量との関係を規定した非線形抵抗膜6について述べる。図8は非線形抵抗材料8とそれに接触する導電性異物9を図示している。図8は図1と同様に軸方向の断面図である。また図9は非線形抵抗材料8を非線形抵抗膜6の表層から見た図である。
 導電性異物9の形状はここでは絶縁上最も性能低下が予想される線状異物を想定する。線上異物の先端は様々な構造があるのは予想されるが、非線形抵抗材料8との接触を考える上で接触しにくい半球状の形状を想定する。また、非線形抵抗材料8の非線形抵抗膜6の表層への露出度は、非線形抵抗材料8の粒子サイズ(直径)の半分ほどのサイズが露呈するとする。
 ここで導電性異物9の半球先端径をD、非線形抵抗材料8の粒子サイズ(直径)をd、隣り合う非線形抵抗材料8の間の距離をW、非線形抵抗材料8の絶縁材料7への充填率をZと定義する。図8から導電性異物9が非線形抵抗材料8の粒子に接触する条件は下記式(1)であらわされる。
Figure JPOXMLDOC01-appb-M000002
 また、図9より表層に非線形抵抗材料8の粒子を充填したときに、それぞれの粒子からの距離Wを考慮して、充填率Zを求めると式(2)で表わされる。
Figure JPOXMLDOC01-appb-M000003
 式(1)(2)から導電性異物9のサイズ(半球先端径)Dに対しての非線形抵抗材料8の粒子サイズ(直径)dと充填率Zの関係を導き出すと下記式(3)で表わされる。
Figure JPOXMLDOC01-appb-M000004
 図10は、式(3)に基づいて充填率Zと粒子サイズdとの関係を表した図である。仮に粒子サイズdが25μmとすると、サイズDが200μmの導電性異物9に接触させるには充填率Zが5%以上あればよい。また、サイズDが1μmの導電性異物9に接触させるには充填率Zが43%以上あれば接触することが可能となる。すなわち、導電性異物9のサイズ(半球先端径)Dに対して、式(3)を満たすような非線形抵抗材料8の粒子サイズ(直径)dと充填率Zにすることで、導電性異物9が非線形抵抗膜6に接触するときは、非線形抵抗膜6中の非線形抵抗材料8に必ず接触することができる。これにより、導電性異物9の周囲の電界緩和が作用し、導電性異物9への帯電を抑制することができる。その結果、導電性異物9の浮上によって引き起こされる絶縁破壊を防止でき、ガス絶縁電気機器1の絶縁信頼性を向上することができる。すなわち、式(3)を用いることで、設定した導電性異物9のサイズDより大きな導電性異物9であれば、確実に非線形抵抗材料8に接触させることのできる粒子サイズdと充填率Zとを導き出すことができる。
実施の形態3.
 次に、この発明の実施の形態3に係るガス絶縁電気機器について詳細に説明する。製作時、据え付け時に紛れ込む可能性がある導電性異物9は長さ10mmのものが多く、これらが絶縁性能を低下させるために検査過程で極力除去しているのが現状である。しかし、長さ3mm、幅0.2mm以上の細線形状の導電性異物9は取り除くことが可能だが、それ以下の導電性異物9は取り除くことが困難のため、接地タンク2の内部に混入する可能性がある。実用上はガス絶縁電気機器1の設計上、長さ3mm、幅0.2mmの細線の混入異物が混入しても、耐電圧する設計を行っている。据え付け後の実運転でまれに発生する導電性異物9に対しては、除去は難しく、挙動する導電性異物9を捕獲する捕獲装置や部分放電検出装置などを使うことで予防保全に努めている。すなわち、長さ3mm以上、幅0.2mm以上の導電性異物9が接地タンク2の内部に混入し、その導電性異物9が非線形抵抗材料8に接触しない場合に、絶縁性能の低下の恐れが生じる。
 従って、長さ3mm以上、幅0.2mm以上の導電性異物9であれば、必ず非線形抵抗材料8に接触できるように非線形抵抗材料8が配置される粒子サイズdと充填率Zを規定すれば、より確実に絶縁性能の低下を防ぐことができる。これは、問題となる導電性異物9のサイズの一番小さい次元に条件設定することで、問題となる導電性異物9が非線形抵抗膜6に接触するときは非線形抵抗膜6中の非線形抵抗材料8に必ず接触することができ、導電性異物9の周囲の電界緩和が作用し、導電性異物9への帯電を抑制することができると換言できる。
 すなわち、式(3)において、導電性異物9のサイズDを0.2mmで設定して、粒子サイズdと充填率Zを導き出すことで、実用上問題となる導電性異物9が接地タンク2の内部に混入した場合であっても、導電性異物9の浮上によって引き起こされる絶縁破壊を防止でき、ガス絶縁電気機器1の絶縁信頼性を向上することができる。
 以上のように、実施の形態3の発明は非線形抵抗材料8の粒子サイズdと充填率Zを、組み立て時に発見、除去できない可能性のある導電性異物9に対して規定することで、非線形抵抗膜6中の非線形抵抗材料8が、導電性異物9に対して接触することが可能となり、導電性異物9の周囲が電界緩和でき帯電の原因である部分放電が抑制されるため、導電性異物9による絶縁性能低下の影響をさげることができ機器の耐電圧性能を向上することができる。
実施の形態4.
 次に、この発明の実施の形態4に係るガス絶縁電気機器について詳細に説明する。実施の形態4では非線形抵抗材料8が導電性異物9と少なくとも1点接触することを可能とする非線形抵抗膜6について述べる。非線形抵抗膜6の表層に非線形抵抗材料8を配置するには非線形抵抗膜6に充填する非線形抵抗材料8の比重によってその方法が変わる。絶縁材料7には、もともと液状樹脂で熱硬化するもの、または加熱、化学反応によって液状になったのちに硬化するもの、すなわち液状状態のものを用いる場合がある。この場合、非線形抵抗材料8の比重が絶縁材料7よりも小さければ、液状の絶縁材料7に非線形抵抗材料8を混ぜた場合、自重の差によって非線形抵抗材料8が絶縁材料7の中で浮上する。接地タンク2に塗装後、時間を経過させると自重の差によって非線形抵抗材料8が浮上することで、非線形抵抗膜6の表層に非線形抵抗材料8が集まる。
 一方、非線形抵抗材料8の比重が絶縁材料7よりも大きければ、自重の差によって非線形抵抗材料8が沈降し絶縁材料7の下層に位置することになる。非線形抵抗膜6の表層に非線形抵抗材料8を集めさせるには工夫が必要となる。
 非線形抵抗材料8を膜の下層に配置することを防止するためには、硬化前の絶縁材料7の粘度そのものを上げて形成し、沈降する前に硬化させて膜を形成させるとよい。もしくは非線形抵抗材料8を絶縁材料7に充填したときには粘度が低く、非線形抵抗膜6を形成後に粘度があがるような添加材である沈降防止剤を混入させて膜を形成してもよい。沈降防止剤には、例えば、チクソトロピック性を付与する添加剤が挙げられる。チクソトロピック性を付与する添加剤には、例えば、脂肪族アミド系、ウレアウレタン系、酸化ポリエチレン系、重合植物油系、硫酸エステル系アニオン界面活性剤系、ポリエーテル・エステル型界面活性剤系、ポリカルボン酸アミン塩系等の有機系溶剤系用チクソトロピック剤、および有機ベントナイト系、超微粉シリカ系、表面処理炭酸カルシウム系等の無機微粒子系溶剤系用チクソトロピック剤、アマイドワックス系、水添ひまし油ワックス系、ベンジリデンソルビトール系、金属石鹸(ステアリン酸亜鉛、ステアリン酸アルミニウム等)が挙げられる。もしくは非線形抵抗膜6を形成後の平均膜厚が、非線形抵抗材料8の粒子サイズよりも薄くなるように形成してもよい。もしくは絶縁材料7のみを接地タンク2に先に形成し、絶縁材料7が硬化する前に非線形抵抗材料8の粒子を絶縁材料7の上に吹き付けてもよい。
 一方で、非線形抵抗材料8の粒子が沈降することを防止するのではなく、形成された非線形抵抗膜6の表面を研磨することで絶縁材料7を一部削り、非線形抵抗材料8を表層で剥き出しにさせると、非線形抵抗膜6に接触した導電性異物9は非線形抵抗材料8に接触することができる。一般的に樹脂である絶縁材料7は無機物である非線形抵抗材料8よりも硬度が低く、絶縁材料7を研磨するようにすれば非線形抵抗材料8まで研磨して削ることはほぼ無いので、非線形抵抗材料8を非線形抵抗膜6の表層に露出させることができる。なお、絶縁材料7よりも比重の小さい非線形抵抗材料8を用いた場合であっても、絶縁材料7の研磨を行って、より多くの非線形抵抗材料8を露出させてもよい。
 以上のような方法のいずれかをとれば、非線形抵抗膜6中の非線形抵抗材料8を表層に配置することが可能となり、非線形抵抗材料8が導電性異物9に必ず接触して、導電性異物9の周囲の電界緩和が作用し、導電性異物9への帯電を抑制することができる。その結果、導電性異物9の浮上によって引き起こされる絶縁破壊を防止でき、ガス絶縁電気機器1の絶縁信頼性を向上することができる。なお、本実施の形態4に示したような比重関係の絶縁材料7と非線形抵抗材料8を用いつつ、上記実施の形態1から実施の形態3に示したように導電性異物9のサイズ、非線形抵抗材料8の粒子サイズ、充填率を設定してもよい。
実施の形態5.
 次に、この発明の実施の形態5に係るガス絶縁電気機器について詳細に説明する。実施の形態5では、導電性異物9が機械的振動の影響で挙動し、導電性異物9と非線形抵抗膜6との接触部の局所電界が変化した場合でも、部分放電が発生する前に電界緩和可能な非線形抵抗膜6の体積抵抗率について述べる。接地タンク2に外部から機械的振動が加わると、静置状態では浮上に必要な電荷量を持たなかった導電性異物9が振動によって挙動し、そのはずみに導電性異物9と非線形抵抗膜6の接触点近傍の局所電界が変化して、部分放電が発生し、導電性異物に電荷が供給され導電性異物9が浮上してしまう可能性がある。
 ここで言う、接地タンク2に加わる外部からの機械振動とは、この接地タンク2に併設された機器(断路器、遮断器)等の動きで発生する振動を想定する。導電性異物9が運動した瞬間に部分放電が発生しないためには、導電性異物9と非線形抵抗膜6の接触点近傍の局所電界が、部分放電が発生する前に、導電性異物9が静置状態の局所電界値とほぼ同等の値に戻る必要がある。この、電界が元に戻る時間を時定数Tと定義する。ここで、非線形抵抗膜6の時定数Tは、体積抵抗率ρ・誘電率εとすると、下記式(4)で表される。
       T=ρ×ε・・・(4)
 一方で、部分放電が発生するまでは、放電遅れ時間と呼ばれる時間がある。放電遅れ時間は、電圧が印加されてから放電のタネとなる初期電子が発生するまでの統計的遅れ時間と、初期電子が発生してから放電に成長するまでの形成遅れ時間の和である。ガス中における放電の統計遅れ時間は最短でほぼ0sであり、形成遅れ時間は最短で数十nsである。このことから放電の時間遅れの最短時間は数十nsとされる(たとえば文献『方形波インパルスによるSF6中準平等電界ギャップの短時間領域V-t特性の解明(著・財団法人電力中央研究所)』)。数値例として放電の時間遅れ=時定数を50ns、非線形抵抗膜6の比誘電率を10として式(4)に代入すると、非線形抵抗膜6の電気抵抗率は5.5×10Ωmとなる。
 上記のように非線形抵抗膜6の抵抗率の最小値における時定数Tを放電遅れ時間より小さくすることで、接地タンク2の振動により導電性異物9の位置ずれが発生しても、導電性異物9と非線形抵抗膜6の接触部近傍で部分放電が発生する前に接触部近傍における電界値を静置状態の局所電界値にまで戻すことができ、部分放電の発生を抑制できる。その結果、導電性異物9の浮上によって引き起こされる絶縁破壊を防止でき、ガス絶縁電気機器1の絶縁信頼性を向上することができる。また、非線形抵抗膜6の抵抗率の最小値における時定数Tを放電遅れ時間より小さくする構成を、上記実施の形態1から実施の形態4で示した構成に適用することで、より一層のガス絶縁電気機器1の絶縁信頼性の向上を図ることができる。
実施の形態6.
 次に、この発明の実施の形態6に係るガス絶縁電気機器を図11に基づいて詳細に説明する。実施の形態6では、金属である接地タンク2から電荷供給を抑制して導電性異物9の帯電を抑止する構造について述べる。図11は実施の形態6におけるガス絶縁電気機器のタンク内面部の構造を示す。実施の形態6では非線形抵抗膜6と接地タンク2の間に絶縁膜10を挿入した構造としている。非線形抵抗膜6は電界が低い場合は絶縁膜としての振る舞いを見せるが、高電界となると低抵抗膜としての振る舞いを見せるため、接地タンク2からの静電誘導による電荷供給を受ける恐れがある。非線形抵抗膜6と接地タンク2の間に絶縁膜10があれば、絶縁膜10の抵抗によって電荷供給が遮断され、導電性異物9が帯電することも起こらない。絶縁膜10の体積抵抗率は1012Ω・m以上であれば十分である。
 上記のように非線形抵抗膜6と接地タンク2の内面との間に絶縁膜10を挿入するような構成をとれば、接地タンク2からの電荷注入が抑制され、静電誘導による導電性異物9の帯電を抑制することができる。その結果、導電性異物9の浮上によって引き起こされる絶縁破壊を防止でき、ガス絶縁電気機器1の絶縁信頼性を向上することができる。また、非線形抵抗膜6と接地タンク2の内面との間に絶縁膜10を挿入する構成を、上記実施の形態1から実施の形態5で示した構成に適用することで、より一層のガス絶縁電気機器1の絶縁信頼性の向上を図ることができる。
実施の形態7.
 次に、この発明の実施の形態7に係るガス絶縁電気機器を図12に基づいて詳細に説明する。実施の形態7では、非線形抵抗材料8が導電性異物9と少なくとも1点接触することを可能とする非線形抵抗材料8の粒子サイズと非線形抵抗膜6と表面粗さの関係を規定した非線形抵抗膜6について述べる。なお、表面粗さの求め方には、算術平均粗さ、最大高さ、十点平均粗さといった様々な手法がある。
 図12は非線形抵抗材料8とそれに接触する導電性異物9を図示している。図12は図1と同様に軸方向の断面図である。絶縁材料7は塗布する前は液状であり、非線形抵抗材料8を充填しない場合は粗さが5~6μm以下の表層となる。従って、非線形抵抗材料8が非線形抵抗膜6の表層に保持されずに、下層に沈降した場合、表層には非線形抵抗材料8が現れないため表面粗さは数μm以下となる。
 一方、非線形抵抗材料8が非線形抵抗膜6の下層に沈降せずに表層に露出した場合には、非線形抵抗膜6の表面粗さは、絶縁材料7の表面から非線形抵抗材料8の一部が突出するため、非線形抵抗材料8が沈降した場合よりも粗くなる。また、上述したように非線形抵抗膜6の表面を研磨することで絶縁材料7を一部削り、非線形抵抗材料8を表層に露出させた場合にも、非線形抵抗材料8が絶縁材料7の表面から突出するため、表面粗さが荒くなる。
 上記のように非線形抵抗膜6の表面粗さを、絶縁材料7のみで膜を形成した場合の表面粗さより大きく、かつ非線形抵抗材料8の粒径以下にすることで、導電性異物9が非線形抵抗材料8に接触しやすくなる。これにより、導電性異物9と非線形抵抗膜6の接触点近傍の局所電界を低減できて、部分放電による導電性異物9に電荷が供給されて導電性異物9が浮上することがなくなり、引き起こされる絶縁破壊を防止でき、ガス絶縁電気機器1の絶縁信頼性を向上することができる。なお、また、本実施の形態7に示した表面粗さの構成を、上記実施の形態1から実施の形態6で示した構成に適用することで、より一層のガス絶縁電気機器1の絶縁信頼性の向上を図ることができる。
実施の形態8.
 次に、この発明の実施の形態8に係るガス絶縁電気機器を図13に基づいて詳細に説明する。実施の形態8では、非線形抵抗材料8の粒度分布について述べる。図13は、非線形抵抗材料8の粒度分布の一例を示す図である。粒度分布はある粒径をピークに持つ分布を示している。
 式(3)および図10に基づいて、導電性異物9のサイズと、充填率とから、非線形抵抗材料8の粒子サイズが規定される。規定された粒子サイズよりも非線形抵抗材料8が大きくなると、導電性異物9に接触しにくくなる。そのため、規定された粒子サイズの近傍に粒度分布のピークを持つ非線形抵抗材料8を用いることで、規定された粒子サイズの非線形抵抗材料8を少なくして、より確実に導電性異物9を非線形抵抗材料8に接触させることができる。一方、規定された粒子サイズ以下の非線形抵抗材料8は、導電性異物9に接触しやすいものの、抵抗に非線形特性が表れなくなることがある。そのため、規定された粒子サイズの近傍に粒度分布のピークを持つ非線形抵抗材料8を用いることで、規定された粒径サイズより小さい非線形抵抗材料8、すなわち非線形抵抗が表れない非線形抵抗材料8を少なくすることができる。これにより、非線形抵抗が表れない非線形抵抗材料8を介して導電性異物9が帯電することを防ぐことができ、ガス絶縁電気機器1の絶縁性能の低下を抑えることができる。例えば、非線形抵抗材料8にZnOを用いた場合には、非線形抵抗が表れるようにするために5~6μm以上のZnOを用いることが望ましい。
 従って、上記のように粒度分布のピークが1つとなる非線形抵抗材料8を用いることで、式(3)で規定された充填量で、導電性異物9が非線形抵抗材料8に接触しやすくなる。これにより、導電性異物9と非線形抵抗膜6の接触点近傍の局所電界を低減でき、部分放電による導電性異物に電荷が供給されて導電性異物9が浮上することがなくなり、引き起こされる絶縁破壊を防止でき、ガス絶縁電気機器1の絶縁信頼性の向上を図ることができる。また、粒度分布のピークが1つとなる非線形抵抗材料8を用いる構成を、上記実施の形態1から実施の形態5で示した構成に適用することで、より一層のガス絶縁電気機器1の絶縁信頼性の向上を図ることができる。
 以上、この発明の実施の形態を記述したが、この発明は実施の形態に限定されるものではなく、種々の設計変更を行うことが可能であり、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1:ガス絶縁電気機器、2:接地タンク(密閉容器)、3:高電圧導体、4:絶縁支持部材、5:絶縁ガス、6:非線形抵抗膜、7:絶縁材料、8:非線形抵抗材料、9:導電性異物、10:絶縁膜。

Claims (11)

  1.  金属製の密閉容器と、
     前記密閉容器の内部に収容されて電圧が印加される高電圧導体と、
     前記高電圧導体を前記密閉容器に対して絶縁支持する絶縁支持部材と、
     前記密閉容器の内面のうち少なくとも前記高電圧導体の下側となる部分を覆う非線形抵抗膜と、を備え、
     前記非線形抵抗膜は、絶縁材料に非線形抵抗材料の粒子が分散されて形成され、
     前記非線形抵抗材料の粒子が前記密閉容器内に混入した導電性異物に常に1個以上接触するように、前記絶縁材料に非線形抵抗材料の粒子を配置させたことを特徴とするガス絶縁電気機器。
  2.  前記非線形抵抗膜は、前記非線形抵抗材料の粒子サイズをd、前記密閉容器に混入する導電性異物のサイズをD、前記絶縁材料への前記非線形抵抗材料の粒子の充填率をZとした場合、
    Figure JPOXMLDOC01-appb-M000001
    となる、前記非線形抵抗材料の粒子サイズd、充填率Zで構成したことを特徴とする請求項1に記載のガス絶縁電気機器。
  3.  前記非線形抵抗膜は、前記導電性異物のサイズDが0.2mmに設定されたことを特徴とする請求項2に記載のガス絶縁電気機器。
  4.  前記非線形抵抗膜は、絶縁材料に非線形抵抗材料の粒子が分散されて形成され、
     前記非線形抵抗材料の比重は、前記絶縁材料の比重よりも小さいことを特徴とする請求項1に記載のガス絶縁電気機器。
  5.  前記非線形抵抗膜は、絶縁材料に非線形抵抗材料の粒子が分散されて形成され、
     前記非線形抵抗膜の平均膜厚が、前記非線形抵抗材料の粒子サイズよりも薄いことを特徴とする請求項1に記載のガス絶縁電気機器。
  6.  前記非線形抵抗膜は、その非線形抵抗膜に含まれる非線形特性を有する粒子の粒度分布が1つの粒度を頂点としたこと特徴とする請求項1から請求項5のいずれか1項に記載のガス絶縁電気機器。
  7.  前記非線形抵抗膜の抵抗率の最小値における時定数は、放電遅れ時間より小さいことを特徴とする請求項1から請求項6のいずれか1項に記載のガス絶縁電気機器。
  8.  前記非線形抵抗膜と前記密閉容器の間に設けられた絶縁膜をさらに備えることを特徴とする請求項1から請求項7のいずれか1項に記載のガス絶縁電気機器。
  9.  前記絶縁材料は樹脂で構成されたことを特徴とする請求項1から請求項8のいずれか1項に記載のガス絶縁電気機器。
  10.  前記非線形抵抗膜は、前記非線形抵抗膜の表面粗さが、前記非線形抵抗材料の粒子サイズ以下であり、前記絶縁材料のみで形成された膜の表面粗さよりも大きいことを特徴とする請求項9に記載のガス絶縁電気機器。
  11.  金属製の密閉容器の内部に、絶縁材料に非線形抵抗材料が混合された非線形抵抗膜を形成するステップと、
     前記非線形抵抗膜の表面を研磨して前記非線形抵抗材料を露出させるステップと、を備えることを特徴とするガス絶縁電気機器の製造方法。
PCT/JP2017/003222 2016-07-13 2017-01-30 ガス絶縁電気機器及びガス絶縁電気機器の製造方法 WO2018012012A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017526997A JP6189002B1 (ja) 2016-07-13 2017-01-30 ガス絶縁電気機器及びガス絶縁電気機器の製造方法
EP17827147.4A EP3487019B1 (en) 2016-07-13 2017-01-30 Gas-insulated electric apparatus and manufacturing method for gas-insulated electric apparatus
US16/316,157 US11031765B2 (en) 2016-07-13 2017-01-30 Gas-insulated electric apparatus and manufacturing method of gas-insulated electric apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-138274 2016-07-13
JP2016138274 2016-07-13

Publications (1)

Publication Number Publication Date
WO2018012012A1 true WO2018012012A1 (ja) 2018-01-18

Family

ID=60952923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003222 WO2018012012A1 (ja) 2016-07-13 2017-01-30 ガス絶縁電気機器及びガス絶縁電気機器の製造方法

Country Status (3)

Country Link
US (1) US11031765B2 (ja)
EP (1) EP3487019B1 (ja)
WO (1) WO2018012012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11888295B2 (en) * 2019-02-01 2024-01-30 Mitsubishi Electric Corporation Gas insulated apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207047A (ja) * 2009-03-06 2010-09-16 Toshiba Corp 密閉型絶縁装置
JP2014013786A (ja) * 2012-07-03 2014-01-23 Toshiba Corp 非直線抵抗材料およびその製造方法
WO2015136753A1 (ja) * 2014-03-12 2015-09-17 三菱電機株式会社 ガス絶縁開閉装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424994B2 (ja) * 1994-12-22 2003-07-07 株式会社日立製作所 ガス絶縁機器及びガス絶縁開閉装置及びガス絶縁母線及びケーブル直結ガス絶縁開閉装置
JP5065994B2 (ja) 2008-05-22 2012-11-07 株式会社東芝 密閉型絶縁装置およびその運転方法
JP5710080B2 (ja) 2013-01-21 2015-04-30 三菱電機株式会社 ガス絶縁開閉装置
US10069285B2 (en) 2014-11-20 2018-09-04 Mitsubishi Electric Corporation Gas-insulated switchgear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207047A (ja) * 2009-03-06 2010-09-16 Toshiba Corp 密閉型絶縁装置
JP2014013786A (ja) * 2012-07-03 2014-01-23 Toshiba Corp 非直線抵抗材料およびその製造方法
WO2015136753A1 (ja) * 2014-03-12 2015-09-17 三菱電機株式会社 ガス絶縁開閉装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11888295B2 (en) * 2019-02-01 2024-01-30 Mitsubishi Electric Corporation Gas insulated apparatus

Also Published As

Publication number Publication date
US20200091698A1 (en) 2020-03-19
US11031765B2 (en) 2021-06-08
EP3487019A1 (en) 2019-05-22
EP3487019B1 (en) 2021-05-26
EP3487019A4 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
US9508507B2 (en) Gas insulated electrical equipment
JP6072353B2 (ja) ガス絶縁開閉装置
KR101195889B1 (ko) 밀폐형 절연 장치
JP6289665B2 (ja) ガス絶縁開閉装置
EP2947737B1 (en) Gas-insulated switchgear
JP6067150B2 (ja) ガス絶縁電気機器
WO2018012012A1 (ja) ガス絶縁電気機器及びガス絶縁電気機器の製造方法
JP6189002B1 (ja) ガス絶縁電気機器及びガス絶縁電気機器の製造方法
US10965106B2 (en) Gas-insulated electrical equipment
JP6608099B1 (ja) ガス絶縁機器
WO2019123889A1 (ja) 開閉装置
WO2017098553A1 (ja) ガス絶縁機器
JP2016131415A (ja) ガス絶縁開閉装置
Zhang et al. A novel nonlinear coating for suppression of metallic particle motion in GIS
CN110824313A (zh) 封闭式气体绝缘组合电器的缺陷模拟结构
JP2019088117A (ja) ガス絶縁開閉装置
JP2018007292A (ja) 密閉型絶縁装置およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017526997

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827147

Country of ref document: EP

Effective date: 20190213