WO2018010676A1 - 一种信息传输方法、基站及计算机存储介质 - Google Patents

一种信息传输方法、基站及计算机存储介质 Download PDF

Info

Publication number
WO2018010676A1
WO2018010676A1 PCT/CN2017/092820 CN2017092820W WO2018010676A1 WO 2018010676 A1 WO2018010676 A1 WO 2018010676A1 CN 2017092820 W CN2017092820 W CN 2017092820W WO 2018010676 A1 WO2018010676 A1 WO 2018010676A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna ports
resource
selecting
csi
aggregation
Prior art date
Application number
PCT/CN2017/092820
Other languages
English (en)
French (fr)
Inventor
王飞
童辉
吴丹
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2018010676A1 publication Critical patent/WO2018010676A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to transmission resource management technologies in the field of communications, and in particular, to an information transmission method, a base station, and a computer storage medium.
  • CSI-RS channel state information reference symbols
  • CSI channel state information
  • Non-precoded (NP, Non-precoded) CSI-RS scheme R13 currently supports the largest 16-port CSI-RS. For more than 16 ports, overload in NP CSI-RS scheme is a serious problem, and CSI-RS Coverage performance may not be guaranteed;
  • beamforming (BF, Beam formed) CSI-RS scheme which is specifically divided into cell-specific BF CSI-RS and UE-specific BF CSI-RS; cell-specific BF CSI-RS based schemes FDD and TDD are available. Used, but in order to ensure performance, CSI-RS overhead is also relatively large, close to or even exceed the overhead of directly using NP CSI-RS.
  • the UE-specific BF CSI-RS based scheme is more suitable for TDD because the TDD base station can form BF CSI-RS based on channel reciprocity, but FDD cannot compare accurate channel information.
  • the hybrid CSI-RS scheme the CSI feedback of the scheme can be divided into two phases: phase one sends a long-period NP CSI-RS for the base station, and the long-term channel direction information fed back by the UE; Second, the base station forms a BF CSI-RS according to the long-term channel direction information fed back by the UE, and the UE measures and feeds back short-term channel state information, and may include a Precoding Matrix Indicator (PMI)/channel quality in the feedback channel state information. Indication (CQI, Channel Quality Indicator) / Rank Indication (RI, Rank Indication), and the like.
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • RI Rank Indication
  • the purpose of the present application is to provide an information transmission method, a base station, and a computer storage medium, which can solve at least the above problems in the prior art.
  • An embodiment of the present application provides an information transmission method, where the method includes:
  • M aggregation resources where the aggregation resources are composed of CSI-RS resources for mapping at least one antenna port; and all the aggregation resources of the M aggregation resources
  • the sum of the number of all antenna ports mapped is less than P; M is an integer greater than or equal to 1;
  • the CSI-RS transmission is performed by the M aggregation resources.
  • the embodiment of the present application further provides a base station, where the base station includes:
  • An information acquiring unit configured to acquire a topology of P antenna ports; where P is an integer greater than or equal to 1;
  • a resource selection unit configured to obtain M aggregation resources based on a topology of the P antenna ports, where the aggregation resource is composed of CSI-RS resources used to map at least one antenna port; the M aggregation The sum of the number of all antenna ports mapped by all the aggregated resources in the resource is less than P; M is an integer greater than or equal to 1;
  • a transmission unit configured to perform CSI-RS transmission by using the M aggregation resources.
  • the embodiment of the present application further provides a base station, including: a processor and a memory for storing a computer program capable of running on the processor,
  • processor is configured to perform the steps of the foregoing method when the computer program is run.
  • the embodiment of the present application further provides a computer storage medium on which a computer program is stored, wherein the computer program is executed by a processor to implement the steps of the foregoing method.
  • the information transmission method, the base station, and the computer storage medium provided by the embodiments of the present application can perform CSI-RS resource mapping only on some of the P antenna ports after acquiring the topology of the P antenna ports. . In this way, the transmission overhead of the CSI-RS can be reduced while still ensuring that the corresponding CSI information can be obtained.
  • FIG. 1 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a CSI processing flow of a base station and a UE side
  • FIG. 3 is a schematic diagram 1 of selecting an antenna port according to an embodiment of the present application.
  • 4-1 is a schematic diagram 2 of selecting an antenna port according to an embodiment of the present application.
  • 4-2 is a schematic diagram 3 of selecting an antenna port according to an embodiment of the present application.
  • 4-3 is a schematic diagram 4 of selecting an antenna port according to an embodiment of the present application.
  • 4-4 is a schematic diagram 5 of selecting an antenna port according to an embodiment of the present application.
  • Figure 5 shows the topology of a 20-port antenna
  • Figure 6 shows the topology of a 28-port antenna
  • FIG. 7 is a schematic diagram of a code book according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the embodiment of the present application provides an information transmission method, as shown in FIG. 1 , including:
  • Step 101 Acquire a topology of P antenna ports; where P is an integer greater than or equal to 1;
  • Step 102 Select, according to the topology structure of the P antenna ports, M aggregation resources, where the aggregation resource is composed of CSI-RS resources including at least one antenna port; and at least part of the M aggregation resources
  • the port is used for transmitting the CSI-RS, and the sum of the number of antenna ports for transmitting the CSI-RS is less than P;
  • M is an integer greater than or equal to 1;
  • Step 103 Perform CSI-RS transmission by using the M aggregation resources.
  • FD-MIMO needs to support ⁇ 20, 24, 28, 32 ⁇ CSI-RS antenna ports in R14.
  • the main purpose of the NP CSI-RS is to let the base station acquire the CSI information of the UE; in the second phase, the beamforming is sent through the CSI-RS. And the information such as the port, the short-term CSI feedback information sent by the terminal device is received, and the CSI information may include a Precoding Matrix Indicator (PMI), a Channel Quality Indicator (CQI), or a rank indicator ( RI, Rank Indication).
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • RI rank indicator
  • the acquiring the topology of the P antenna ports includes: obtaining a topology structure of the antenna ports including the two polarization directions, and each of the antenna ports of the polarization direction includes the N1 column and the N2 row antenna ports; Wherein N1 and N2 are integers greater than one.
  • the P antenna ports include two types of polarized antenna ports, and each of the polarized antenna ports can be represented as (N1, N2), where N1 represents the number of ports of the same dimension in the first dimension, and N2 represents the second.
  • N1 represents the number of ports of the same dimension in the first dimension
  • N2 represents the second.
  • the number of ports with the same polarization, the total number of ports P 2 * N1 * N2.
  • the first dimension may be a horizontal dimension; the second dimension may be a vertical dimension.
  • Ki ports may have a one-to-one correspondence with some of the foregoing P ports (that is, some of the Ki ports may not be used for CSI measurement).
  • the sum of the number of all the antenna ports supported by all the aggregate resources of the M aggregation resources is less than P, that is, it can be expressed by the following formula: K1+K2+...+KM ⁇ P.
  • the CSI-RS resource contains Ki (Ki value is ⁇ 2, 4, 8 ⁇ )
  • the CSI information fed back by the terminal device does not need to be very accurate, so it is not necessary to correspond to the CSI-RS resources for all the ports, and the information about the horizontal and vertical dimensions of the UE may be acquired separately.
  • Partial-port CSI-RS resource mapping (for example, sending 2 NP CSI-RS resource resources, corresponding to a certain row and a column of the antenna array), considering that only CSI information needs to be obtained, only one of them may be selected.
  • An antenna in a polarization direction transmits a CSI-RS. As shown in FIG. 3, such a CSI-RS transmission mode helps to reduce CSI-RS overhead.
  • the first quantity and the second quantity are the same or different, and the first quantity and the second quantity are integer multiples of two.
  • M can be a value of 2, that is, P-port non-precoded CSI-RS is represented by aggregating two CSI-RS resources, and the two CSI-RS resources can be represented as ⁇ K1, K2 ⁇ . That is, the first CSI-RS resource is K1-port CSI-RS resource, the second The CSI-RS resources are K2-port CSI-RS resources.
  • the first quantity and the second quantity are one of the following: two, four, eight. That is, K1 and K2 may have values of ⁇ 2, 4, 8 ⁇ .
  • the topology of the P antenna ports is twenty antenna ports, and N1 is equal to five, and N2 is equal to two;
  • the selecting obtains M aggregation resources, including:
  • Selecting one row from two rows of antenna ports selecting four first antenna ports from the five co-polarized antenna ports included in the selected row, and selecting a second antenna port other than the four first antenna ports. And the four first antenna ports are corresponding to the second aggregation resource; and the two co-polarized antenna ports in the column of the second antenna port are corresponding to the first aggregation resource.
  • the method further includes: generating notification signaling according to a number of an antenna port corresponding to each CSI-RS resource of the M aggregation resources; and sending the notification signaling to the terminal device.
  • the method further includes: receiving at least channel state information reported by the terminal device, where the channel state information includes at least a precoding matrix indication.
  • the vertical dimension in the structure that is, the topological structure is a two-dimensional topology of 2 rows and 5 columns. For this case, that is, when N1 is greater than N2, one column of antenna ports is selected from the N1 column, and the selected one column is selected.
  • a plurality of antenna ports are mapped to the first aggregation resource; a row of antenna ports is selected from the N2 rows, and a second number of antenna port mapping values are selected from the selected one of the antenna ports.
  • ⁇ K1, K2 ⁇ can take the value ⁇ 4, 2 ⁇ , and K1 and K2 are the first quantity and the second quantity, respectively.
  • the 4-port CSI-RS resource corresponds to any four co-polarized ports of the five co-polarized ports of any row in the topology, and two of the remaining one of the same-polarized ports in the row are located.
  • the same-polarized port corresponds to the 2-port CSI-RS resource.
  • the base station sends the notification signaling to the terminal device, and may adopt a default manner, or implicit signaling, or explicit signaling.
  • the generating the notification signaling according to the number of the antenna port corresponding to each CSI-RS resource of the M aggregation resources may be: 4 ports and 2-port CSI in the 4-port CSI-RS resource Which one of the RS resources is combined to correspond to five co-polarized ports of a row of the 20-port topology, and to determine the horizontal dimension PMI; the 2-port CSI-RS resource corresponds to the 20-port Topology A two-polarized port of a column and used to determine the vertical dimension PMI.
  • the topology of the P antenna ports is twenty antenna ports, and N1 is equal to two, and N2 is equal to five;
  • the selecting obtains M aggregation resources, including:
  • the first dimension is used as the horizontal dimension in the topology
  • the second dimension is used as the vertical dimension in the topology, that is, the topology a two-dimensional topology of five rows and two columns.
  • N1 is not greater than N2
  • a row of antenna ports is selected from the N2 rows, and a first number of antenna ports are selected from the selected one of the antenna ports to be mapped to the a first aggregation resource
  • selecting a column of antenna ports from the N1 column and selecting a second number of antenna ports from the selected one of the antenna ports to map to the second aggregation resource; that is, ⁇ K1, K2 ⁇ may be a value ⁇ 2, 4 ⁇ , indicating that the 4-port CSI-RS resource corresponds to any four co-polarized ports in any of the five co-polarized ports in any one of the topologies, for the remaining one co-polarization of the column
  • the two co-polarized ports in the row of the port correspond to the 2-port CSI-RS resource.
  • the base station needs to inform the UE (default mode, or implicit signaling, or explicit signaling) Which of the four ports in the 4-port CSI-RS resource and the 2-port CSI-RS resource are combined to correspond to five co-polarized ports in a column of the 20-port topology, and The vertical dimension PMI is determined; the 2-port CSI-RS resource is mapped to two co-polarized ports of a row of the 20-port topology, and the horizontal dimension PMI is determined thereby.
  • the topology of the P antenna ports is twenty-four antenna ports, and N1 is equal to four, and N2 is equal to three;
  • the selecting obtains M aggregation resources, including:
  • Selecting one column from the four columns of antenna ports selecting two first antenna ports from the three co-polarized antenna ports included in the selected one column, and a second antenna port except the two first antenna ports. And the two first antenna ports are corresponding to the second aggregation resource; and the four same-polarized antenna ports in the row of the one second antenna port are corresponding to the first aggregation resource;
  • Selecting one column from the four columns of antenna ports selecting two first antenna ports from the three co-polarized antenna ports included in the selected one column, and a second antenna port except the two first antenna ports. And the two first antenna ports are corresponding to the first aggregation resource; and the four co-polarized antenna ports in the row of the one second antenna port are corresponding to the second aggregation resource.
  • ⁇ K1, K2 ⁇ can take a value of ⁇ 4, 2 ⁇ , indicating that the 2-port CSI-RS resource corresponds to 3 of any column in the topology.
  • Any two co-polarized ports in the same-polarized port correspond to the 4-port CSI-RS resource for the four co-polarized ports in the row of the remaining one-polarized port in the column.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which of the two ports in the 2-port CSI-RS resource and the 4-port CSI-RS resource Combine to correspond to the three co-polarized ports of a column of the 24-port topology, and use this to determine the vertical dimension PMI; the 4-port CSI-RS resource corresponds to the four peers of a row of the 24-port topology Port, and use this to determine the horizontal dimension PMI.
  • the UE the default mode, or implicit signaling, or explicit signaling
  • the topology of the P antenna ports is twenty-four antenna ports, and N1 is equal to three, and N2 is equal to four;
  • the selecting obtains M aggregation resources, including:
  • Selecting one row from the four rows of antenna ports selecting two first antenna ports from the three co-polarized antenna ports included in the selected row, and a second antenna port other than the two first antenna ports. And the two first antenna ports are corresponding to the second aggregation resource; and the four co-polarized antenna ports in the column of the second antenna port are corresponding to the first aggregation resource;
  • Selecting one row from four rows of antenna ports selecting two first antenna ports from one of the three co-polarized antenna ports included in the selected row, and one other than the two first antenna ports a second antenna port, the two first antenna ports are corresponding to the first aggregation resource; and the four co-polarized antenna ports in the column of the one second antenna port are connected to the second aggregation resource correspond.
  • Vertical dimension that is, a two-dimensional topology with a topology of 4 rows and 3 columns.
  • ⁇ K1, K2 ⁇ can take the value ⁇ 4, 2 ⁇ or ⁇ 2, 4 ⁇ , indicating the 2-port CSI
  • the -RS resource corresponds to any two co-polarized ports of the three co-polarized ports of any row in the topology, and the four co-polarized ports in the column of the remaining one of the same-polarized ports in the row, and 4-port CSI-RS resource corresponds.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which of the two ports in the 2-port CSI-RS resource and the 4-port CSI-RS resource Combine to correspond to the three co-polarized ports of a row of the 24-port topology, and use this to determine the horizontal dimension PMI; the 4-port CSI-RS resource corresponds to the four peers of a column of the 24-port topology Port, and use this to determine the vertical dimension PMI.
  • the UE the default mode, or implicit signaling, or explicit signaling
  • the topology of the P antenna ports is thirty-two antenna ports, and N1 is equal to eight, and N2 is equal to two;
  • the selecting obtains M aggregation resources, including:
  • the same-polarized antenna port corresponds to the second aggregation resource;
  • the co-polarized antenna ports correspond to the first aggregation resource.
  • the second dimension is used as the vertical dimension in the topology, that is, the topology
  • ⁇ K1, K2 ⁇ can take a value of ⁇ 8, 2 ⁇ or ⁇ 2, 8 ⁇ , indicating that the 8-port CSI-RS resource corresponds to the topology.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) to determine the horizontal dimension PMI by using the 8-port CSI-RS resource; and determine the vertical dimension PMI by using the 2-port CSI-RS resource. .
  • the topology of the P antenna ports is thirty-two antenna ports, and N1 is equal to two, and N2 is equal to eight;
  • the selecting obtains M aggregation resources, including:
  • the port corresponds to the second aggregation resource; a row is selected from the eight rows of antenna ports, and two co-polarized antenna ports included in the selected row correspond to the first aggregation resource.
  • the first dimension is used as the horizontal dimension in the topology
  • the second dimension is used as the vertical dimension in the topology, that is, the topology
  • ⁇ K1, K2 ⁇ can take a value of ⁇ 8, 2 ⁇ or ⁇ 2, 8 ⁇ , indicating that the 8-port CSI-RS resource corresponds to the topology.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) to determine the vertical dimension PMI with the 8-port CSI-RS resource; and determine the horizontal dimension PMI with the 2-port CSI-RS resource. .
  • the topology of the P antenna ports is thirty-two antenna ports, and N1 is equal to four, and N2 is equal to four;
  • the selecting obtains M aggregation resources, including:
  • the first dimension is used as the horizontal dimension in the topology
  • the second dimension is taken as the vertical dimension in the topology, that is, the topology
  • ⁇ K1, K2 ⁇ can take a value of ⁇ 4, 4 ⁇ , indicating that the first 4-port CSI-RS resource corresponds to any of the topologies.
  • the base station needs to notify the UE (the default mode, or implicit) Signaling, or explicit signaling) Which 4-port CSI-RS resource is used to determine the vertical dimension PMI; which 4-port CSI-RS resource is used to determine the horizontal dimension PMI.
  • the method further includes: generating notification signaling according to the number of the antenna port corresponding to each CSI-RS resource of the M aggregation resources; and sending the notification signaling to the terminal device.
  • the method further includes: receiving at least channel state information reported by the terminal device; wherein the channel state information includes at least The coding matrix indicates.
  • the generation and delivery of the indication may refer to FIG. 7 in the protocol design, and may consider reusing the codebookConfigN1-r13 and codebookConfigN2-r13 fields of the CSI-RS-InfoNonPrecoded-r13 in the current TS36.331; wherein N1 and N2 respectively correspond to the CSI -RS antenna port The number of ports of the same polarization for the horizontal and vertical dimensions.
  • the CSI-RS resource mapping is performed on some of the P antenna ports. In this way, the transmission overhead of the CSI-RS can be reduced while still ensuring that the corresponding CSI information can be obtained.
  • the value of M may be 1, that is, the P-port is represented by one K1-port CSI-RS resource.
  • Non-precoded CSI-RS, K1 and K2 may have values of ⁇ 2, 4, 8 ⁇ .
  • the selecting the M aggregation resources includes: selecting a CSI-RS resource that includes the third number of antenna ports as the third aggregation resource; wherein the third quantity is an integer multiple of two. Wherein, the third quantity is one of the following: two, four, eight.
  • the topology of the P antenna ports is twenty-four antenna ports, and N1 is equal to two, and N2 is equal to six;
  • the selecting obtains M aggregation resources, including:
  • the first dimension is used as the horizontal dimension in the topology
  • the second dimension is used as the topology.
  • the vertical dimension that is, the two-dimensional topology with a topology of 2 rows and 6 columns.
  • K1 can take a value of 8, indicating that the 8-port CSI-RS resource corresponds to any row and any column in the topology.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which 6 ports of the 8-port CSI-RS resource correspond to 6 co-polarized ports in the same row, and In this way, the horizontal dimension PMI is determined; which of the 8-port CSI-RS resources are corresponding to the two co-polarized ports of one column, and the vertical dimension PMI is determined.
  • the topology of the P antenna ports is twenty-four antenna ports, and N1 is equal to six, and N2 is equal to two;
  • the selecting obtains M aggregation resources, including:
  • the first dimension is taken as extension In the horizontal dimension in the structure, the second dimension is used as the vertical dimension in the topology, that is, the topology is a two-dimensional topology of 6 rows and 2 columns.
  • K1 can take a value of 8, indicating 8-port CSI.
  • -RS resource corresponds to any row and any column in the topology.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which two ports in the 8-port CSI-RS resource correspond to two co-polarized ports in the same row, and In this way, the horizontal dimension PMI is determined; which of the 8-port CSI-RS resources are mapped to the six co-polarized ports of a column, and the vertical dimension PMI is determined.
  • the topology of the P antenna ports is twenty-eight antenna ports, and N1 is equal to seven, and N2 is equal to two;
  • the selecting obtains M aggregation resources, including:
  • a row is selected from the two rows of antenna ports and one column is selected from the seven columns of antenna ports, and the selected one row and the eight antenna ports of the same polarization direction included in the selected one column correspond to the third aggregation resource.
  • the first dimension is used as the horizontal dimension in the topology
  • the second dimension is used as the topology.
  • Vertical dimension that is, a two-dimensional topology with a topology of 2 rows and 7 columns.
  • K1 can take a value of 8, indicating that the 8-port CSI-RS resource corresponds to any row in the topology and 8 in any column.
  • Vertical dimension that is, a two-dimensional topology with a topology of 2 rows and 7 columns.
  • K1 can take a value of 8, indicating that the 8-port CSI-RS resource corresponds to any row in the topology and 8 in any column.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which 7 ports of the 8-port CSI-RS resource correspond to 7 co-polarized ports in the same row, and In this way, the horizontal dimension PMI is determined; which of the 8-port CSI-RS resources are corresponding to the two co-polarized ports of one column, and the vertical dimension PMI is determined thereby;
  • the topology of the P antenna ports is twenty-eight antenna ports, and N1 is equal to two, and N2 is equal to seven;
  • the selecting obtains M aggregation resources, including:
  • a row is selected from the seven rows of antenna ports and one column is selected from the two columns of antenna ports, and the selected one row and the eight antenna ports of the same polarization direction included in the selected one column correspond to the third aggregation resource.
  • K1 can take a value of 8, indicating that the 8-port CSI-RS resource corresponds to eight co-polarized ports contained in any row and any column in the topology.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which two ports in the 8-port CSI-RS resource correspond to two co-polarized ports in the same row, and In this way, the horizontal dimension PMI is determined; which 7 ports of the 8-port CSI-RS resource are mapped to 7 co-polarized ports of a column, and the vertical dimension PMI is determined thereby.
  • the UE the default mode, or implicit signaling, or explicit signaling
  • Figures 5 and 6 show a layout of 20-port and 28-port, respectively.
  • CSI-RS resources resources
  • 12/16 port in Table 6.10.5-1 of TS36.211.
  • a similar design of ⁇ 20, 24, 28, 32 ⁇ CSI-RS resources may be as follows. 3 is shown. Characteristic is adopted One The port's CSI-RS resource configurations are combined into ⁇ 20, 24, 28, 32 ⁇ CSI-RS resources.
  • a design that combines two CSI-RS resource configurations (or a pair of CSI-RS resource configurations) into ⁇ 20, 24, 28, 32 ⁇ CSI-RS resources can be used.
  • the number of ports of the two CSI-RS resource configurations is N1 and N2, respectively (as shown in Table 4), where N1 and N2 correspond to the same polarization of the horizontal and vertical dimensions in the CSI-RS antenna port layout, respectively.
  • Table 3 for the design method of ⁇ 20, 24, 28, 32 ⁇ CSI-RS resources the design and definition of ⁇ 3,5,6,7 ⁇ -port CSI-RS resource configuration is required in the combination, due to the single
  • the CSI-RS resource configuration only supports ⁇ 1, 2, 4, 8 ⁇ .
  • One method is to use the first three ports in the legacy 4-port CSI-RS resource configuration for the 3-port CSI-RS resource configuration, and for the ⁇ 5,6,7 ⁇ -port CSI-RS resource configuration, The first 5/6/7 ports in the legacy 8-port CSI-RS resource configuration can be taken by default. This design approach can result in wasted CSI-RS resources.
  • An improved design method is: for a CSI-RS resource combination involving ⁇ 3, 5, 6, 7 ⁇ -port, by using 2 CSI-RS resource configurations with 1 or 2 legacy CSI-RS resources
  • the configuration is represented, but the correspondence between each port in the CSI-RS resource configuration (2) and the ⁇ 20, 24, 28, 32 ⁇ CSI-RS antenna port needs to be re-interpreted.
  • An example is shown in Table 5.
  • the base station includes:
  • the information acquiring unit 81 is configured to acquire a topology of P antenna ports, where P is an integer greater than or equal to 1;
  • the resource selection unit 82 is configured to select, according to the topology structure of the P antenna ports, M aggregation resources, where the aggregation resource is composed of CSI-RS resources including at least one antenna port; and the M aggregation resources At least part of the antenna ports are used for transmitting CSI-RS, and the sum of the number of antenna ports for transmitting CSI-RS is less than P; M is an integer greater than or equal to 1;
  • the transmitting unit 83 is configured to perform CSI-RS transmission by using the M aggregation resources.
  • FD-MIMO needs to support ⁇ 20, 24, 28, 32 ⁇ CSI-RS antenna ports in R14.
  • the main purpose of the NP CSI-RS is to let the base station acquire the CSI information of the UE; in the second phase, the beamforming is sent through the CSI-RS. And the information such as the port, the short-term CSI feedback information sent by the terminal device is received, and the CSI information may include a Precoding Matrix Indicator (PMI), a Channel Quality Indicator (CQI), and a rank indicator. (RI, Rank Indication).
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • RI rank Indication
  • the information obtaining unit 81 is configured to obtain an antenna port that includes two polarization directions, and each of the antenna ports of the polarization direction includes an N1 row and an N2 antenna port; wherein N1 and N2 are both greater than one. The integer.
  • the P antenna ports include two types of polarized antenna ports, and each of the polarized antenna ports can be represented as (N1, N2), where N1 represents the number of ports of the same dimension in the first dimension, and N2 represents the second.
  • N1 represents the number of ports of the same dimension in the first dimension
  • N2 represents the second.
  • the number of ports with the same polarization, the total number of ports P 2 * N1 * N2.
  • Ki ports may have a one-to-one correspondence with some of the foregoing P ports (that is, some of the Ki ports may not be used for CSI measurement).
  • the sum of the number of all the antenna ports supported by all the aggregate resources of the M aggregation resources is less than P, that is, it can be expressed by the following formula: K1+K2+...+KM ⁇ P.
  • the CSI-RS resource contains Ki (Ki value is ⁇ 2, 4, 8 ⁇ )
  • the CSI information fed back by the terminal device does not need to be very accurate, so it is not necessary to correspond to the CSI-RS resources for all the ports, and the information about the horizontal and vertical dimensions of the UE may be acquired separately.
  • Partial-port CSI-RS resource mapping (for example, sending 2 NP CSI-RS resource resources, corresponding to a certain row and a column of the antenna array), considering that only CSI information needs to be obtained, only one of them may be selected.
  • An antenna in a polarization direction transmits a CSI-RS, as shown in FIG. 3, such a CSI-RS transmission The way to help reduce CSI-RS overhead.
  • the resource selection unit 82 is configured to select a maximum value from the N1 and N2 as a first reference value, a minimum value as a second reference value, and select a CSI-RS resource for mapping the first number of antenna ports. As the first aggregation resource, selecting a CSI-RS resource for mapping the second number of antenna ports as the second aggregation resource;
  • the first quantity is not less than the second quantity, the first quantity is not greater than the first reference value, the second quantity is not greater than the second reference value, and the first quantity and the second quantity are The number is an integer multiple of two.
  • M can be a value of 2, that is, P-port non-precoded CSI-RS is represented by aggregating two CSI-RS resources, and the two CSI-RS resources can be represented as ⁇ K1, K2 ⁇ . That is, the first CSI-RS resource is a K1-port CSI-RS resource, and the second CSI-RS resource is a K2-port CSI-RS resource.
  • the first quantity and the second quantity are one of the following: two, four, eight. That is, K1 and K2 may have values of ⁇ 2, 4, 8 ⁇ .
  • the method further includes :
  • N1 is greater than N2
  • a row of antenna ports is selected from the N1 column, and the first number of antenna ports are selected from the selected one column to be mapped to the first aggregation resource; one row of antenna ports is selected from the N2 row, and the selected one row of antennas is selected. Selecting a second number of antenna port mapping values from the port to be the second aggregation resource;
  • N1 is not greater than N2
  • a row of antenna ports is selected from the N2 row, and a first number of antenna ports are selected from the selected one of the antenna ports to be mapped to the first aggregation resource; and one column of antenna ports is selected from the N1 column, and the slave antenna is selected.
  • the selected antenna ports may all be antenna ports of the same polarization direction.
  • the resource selection unit 82 is configured to generate notification signaling according to the number of the antenna port corresponding to each CSI-RS resource of the M aggregation resources, and send the notification signaling to the terminal device.
  • the method further includes: receiving at least channel state information reported by the terminal device; wherein the channel state information includes at least The coding matrix indicates.
  • the topology of the P antenna ports is twenty antenna ports, and N1 is equal to five, and N2 is equal to two;
  • the resource selection unit is configured to select a CSI-RS resource that includes four antenna ports as the first aggregation resource, and select a CSI-RS resource that includes two antenna ports as the second aggregation resource.
  • Selecting one row from two rows of antenna ports selecting four first antenna ports from one of the five co-polarized antenna ports included in the selected row, and one other than the four first antenna ports a second antenna port, the four first antenna ports are corresponding to the second aggregation resource; and two of the same-polarized antenna ports in the column of the second antenna port are connected to the first aggregation resource correspond.
  • the vertical dimension in the structure that is, the topological structure is a two-dimensional topology of 2 rows and 5 columns. For this case, that is, when N1 is greater than N2, one column of antenna ports is selected from the N1 column, and the selected one column is selected.
  • a plurality of antenna ports are mapped to the first aggregation resource; a row of antenna ports is selected from the N2 rows, and a second number of antenna port mapping values are selected from the selected one of the antenna ports.
  • ⁇ K1, K2 ⁇ can take the value ⁇ 4, 2 ⁇ , and K1 and K2 are the first quantity and the second quantity, respectively.
  • the 4-port CSI-RS resource corresponds to any four co-polarized ports of the five co-polarized ports of any row in the topology, and two of the remaining one of the same-polarized ports in the row are located.
  • the same-polarized port corresponds to the 2-port CSI-RS resource.
  • the base station sends the notification signaling to the terminal device, and may adopt a default manner, or implicit signaling, or explicit signaling.
  • the generating the notification signaling according to the number of the antenna port corresponding to each CSI-RS resource of the M aggregation resources may be: 4 ports and 2-port CSI in the 4-port CSI-RS resource Which one of the RS resources is combined to correspond to five co-polarized ports of a row of the 20-port topology, and to determine the horizontal dimension PMI; the 2-port CSI-RS resource corresponds to the 20-port Topology A two-polarized port of a column and used to determine the vertical dimension PMI.
  • the topology of the P antenna ports is twenty antenna ports, and N1 is equal to two, and N2 is equal to five;
  • a resource selection unit configured to select a CSI-RS resource that includes four antenna ports as the first aggregation resource, and select a CSI-RS resource that includes two antenna ports as the second aggregation resource;
  • the first dimension is used as the horizontal dimension in the topology
  • the second dimension is used as the vertical dimension in the topology, that is, the topology a two-dimensional topology of five rows and two columns.
  • N1 is not greater than N2
  • a row of antenna ports is selected from the N2 rows, and a first number of antenna ports are selected from the selected one of the antenna ports to be mapped to the a first aggregation resource
  • selecting a column of antenna ports from the N1 column and selecting a second number of antenna ports from the selected one of the antenna ports to map to the second aggregation resource; that is, ⁇ K1, K2 ⁇ may be a value ⁇ 2, 4 ⁇ , indicating that the 4-port CSI-RS resource corresponds to any four co-polarized ports in any of the five co-polarized ports in any one of the topologies, for the remaining one co-polarization of the column
  • the two co-polarized ports in the row of the port correspond to the 2-port CSI-RS resource.
  • the base station needs to inform the UE (default mode, or implicit signaling, or explicit signaling) which of the 4 ports and 2-port CSI-RS resources in the 4-port CSI-RS resource
  • One port is combined to correspond to five co-polarized ports of a column of the 20-port topology, and the vertical dimension PMI is determined by this; the 2-port CSI-RS resource is mapped to a row of the 20-port topology.
  • the topology of the P antenna ports is twenty-four antenna ports, and N1 is equal to four, and N2 is equal to three;
  • the resource selection unit is configured to select a CSI-RS resource that includes four antenna ports as the first aggregation resource, and select a CSI-RS resource that includes two antenna ports as the second aggregation resource.
  • Selecting one column from the four columns of antenna ports selecting two first antenna ports from the three co-polarized antenna ports included in the selected one column, and a second antenna port except the two first antenna ports. And the two first antenna ports are corresponding to the second aggregation resource; and the four same-polarized antenna ports in the row of the one second antenna port are corresponding to the first aggregation resource;
  • Selecting one column from the four columns of antenna ports selecting two first antenna ports from the three co-polarized antenna ports included in the selected one column, and a second antenna port except the two first antenna ports. And the two first antenna ports are corresponding to the first aggregation resource; and the four co-polarized antenna ports in the row of the one second antenna port are corresponding to the second aggregation resource.
  • ⁇ K1, K2 ⁇ can take the value ⁇ 4, 2 ⁇ , Indicates that the 2-port CSI-RS resource corresponds to any two of the three co-polarized ports in any one of the columns in the topology, and the remaining one of the same-polarized ports in the column is 4 The same-polarized port corresponds to the 4-port CSI-RS resource.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which of the two ports in the 2-port CSI-RS resource and the 4-port CSI-RS resource Combine to correspond to the three co-polarized ports of a column of the 24-port topology, and use this to determine the vertical dimension PMI; the 4-port CSI-RS resource corresponds to the four peers of a row of the 24-port topology Port, and use this to determine the horizontal dimension PMI.
  • the UE the default mode, or implicit signaling, or explicit signaling
  • the topology of the P antenna ports is twenty-four antenna ports, and N1 is equal to three, and N2 is equal to four;
  • the resource selection unit is configured to select a CSI-RS resource that includes four antenna ports as the first aggregation resource, and select a CSI-RS resource that includes two antenna ports as the second aggregation resource.
  • Selecting one row from the four rows of antenna ports selecting two first antenna ports from the three co-polarized antenna ports included in the selected row, and a second antenna port other than the two first antenna ports. And the two first antenna ports are corresponding to the second aggregation resource; and the four co-polarized antenna ports in the column of the second antenna port are corresponding to the first aggregation resource;
  • Vertical dimension that is, a two-dimensional topology with a topology of 4 rows and 3 columns.
  • ⁇ K1, K2 ⁇ can take the value ⁇ 4, 2 ⁇ or ⁇ 2, 4 ⁇ , indicating the 2-port CSI
  • the -RS resource corresponds to any two co-polarized ports of the three co-polarized ports of any row in the topology, and the four co-polarized ports in the column of the remaining one of the same-polarized ports in the row, and 4-port CSI-RS resource corresponds.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which of the two ports in the 2-port CSI-RS resource and the 4-port CSI-RS resource Combine to correspond to the three co-polarized ports of a row of the 24-port topology, and use this to determine the horizontal dimension PMI; the 4-port CSI-RS resource corresponds to the four peers of a column of the 24-port topology Port, and use this to determine the vertical dimension PMI.
  • the UE the default mode, or implicit signaling, or explicit signaling
  • the topology of the P antenna ports is thirty-two antenna ports, and N1 is equal to eight, and N2 is equal to two;
  • the resource selection unit is configured to select a CSI-RS resource that includes eight antenna ports as the first aggregation resource, and select a CSI-RS resource that includes two antenna ports as the second aggregation resource.
  • the same-polarized antenna port corresponds to the second aggregation resource;
  • the port corresponds to the second aggregation resource; a column is selected from the eight columns of antenna ports, and two co-polarized antenna ports included in the selected one column are corresponding to the first aggregation resource.
  • the second dimension is used as the vertical dimension in the topology, that is, the topology
  • ⁇ K1, K2 ⁇ can take a value of ⁇ 8, 2 ⁇ or ⁇ 2, 8 ⁇ , indicating that the 8-port CSI-RS resource corresponds to the topology.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) to determine the horizontal dimension PMI by using the 8-port CSI-RS resource; and determine the vertical dimension PMI by using the 2-port CSI-RS resource. ;
  • the topology of the P antenna ports is thirty-two antenna ports, and N1 is equal to two, and N2 is equal to eight;
  • the resource selection unit is configured to select a CSI-RS resource that includes eight antenna ports as the first aggregation resource, and select a CSI-RS resource that includes two antenna ports as the second aggregation resource.
  • Selecting one column from the two columns of antenna ports, the eight co-polarized antenna ports included in the selected one column correspond to the second aggregation resource; selecting one row from the eight-row antenna port, and selecting two from the selected row
  • the co-polarized antenna ports correspond to the first aggregation resource.
  • the first dimension is taken as extension
  • the horizontal dimension in the structure is the second dimension as the vertical dimension in the topology, that is, the topological structure is a two-dimensional topology of 8 rows and 2 columns.
  • ⁇ K1, K2 ⁇ can take a value of ⁇ 8. 2 ⁇ or ⁇ 2, 8 ⁇ , indicating that the 8-port CSI-RS resource corresponds to 8 co-polarized ports of any column in the topology, where the 2-port CSI-RS resource corresponds to any row in the topology 2 simultaneous polarization ports.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) to determine the vertical dimension PMI with the 8-port CSI-RS resource; and determine the horizontal dimension PMI with the 2-port CSI-RS resource. ;
  • the topology of the P antenna ports is thirty-two antenna ports, and N1 is equal to four, and N2 is equal to four;
  • the resource selection unit is configured to select a CSI-RS resource that includes four antenna ports as the first aggregation resource, and select a CSI-RS resource that includes four antenna ports as the second aggregation resource.
  • the first dimension is used as the horizontal dimension in the topology
  • the second dimension is taken as the vertical dimension in the topology, that is, the topology
  • ⁇ K1, K2 ⁇ can take a value of ⁇ 4, 4 ⁇ , indicating that the first 4-port CSI-RS resource corresponds to any of the topologies.
  • the base station needs to inform the UE (the default mode, or implicit signaling, or explicit signaling) which 4-port CSI-RS resource to use to determine the vertical dimension PMI; which 4-port CSI-RS resource to use Determine the horizontal dimension PMI.
  • the value of M may be 1, that is, the P-port is represented by one K1-port CSI-RS resource.
  • Non-precoded CSI-RS, K1 and K2 may have values of ⁇ 2, 4, 8 ⁇ .
  • the resource selection unit 82 is configured to select a CSI-RS resource that includes a third number of antenna ports as a third aggregation resource, where the third quantity is an integer multiple of two, and the third quantity Not greater than the sum of N1 and N2.
  • the third quantity is one of the following: two, four, eight.
  • the topology of the P antenna ports is twenty-four antenna ports, and N1 is equal to two, and N2 is equal to six;
  • the resource selection unit is configured to select a CSI-RS resource that includes eight antenna ports as a third aggregation resource; select one column from two columns of antenna ports, and select six identical polarization directions included in one selected column.
  • the antenna port corresponds to six CSI-RS resources in the third aggregation resource; one row is selected from six rows of antenna ports, and two antenna ports of the same polarization direction included in the selected row are connected to the third The remaining two CSI-RS resources in the aggregated resource correspond.
  • the first dimension is used as the horizontal dimension in the topology
  • the second dimension is used as the topology.
  • the vertical dimension that is, the two-dimensional topology with a topology of 2 rows and 6 columns.
  • K1 can take a value of 8, indicating that the 8-port CSI-RS resource corresponds to any row and any column in the topology.
  • the base station needs to inform the UE (default mode, or implicit signaling, or explicit signaling) Which six ports of the 8-port CSI-RS resource correspond to the six co-polarized ports in the same row, and thereby determine the horizontal-dimensional PMI; which of the 8-port CSI-RS resources correspond to the two ports Go to a list of 2 co-polarized ports and use this to determine the vertical dimension PMI.
  • the topology of the P antenna ports is twenty-four antenna ports, and N1 is equal to six, and N2 is equal to two;
  • the resource selection unit is configured to select a CSI-RS resource that includes eight antenna ports as a third aggregation resource; select one row from two rows of antenna ports, and select six identical polarization directions included in the selected row.
  • the antenna port corresponds to six CSI-RS resources in the third aggregation resource; one column is selected from six column antenna ports, and two antenna ports of the same polarization direction included in the selected one column are connected to the third The remaining two CSI-RS resources in the aggregated resource correspond.
  • K1 can take a value of 8, indicating that the 8-port CSI-RS resource corresponds to any row and any column in the topology.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which two ports in the 8-port CSI-RS resource correspond to two co-polarized ports in the same row, and In this way, the horizontal dimension PMI is determined; which of the 8-port CSI-RS resources are mapped to the six co-polarized ports of a column, and the vertical dimension PMI is determined.
  • the topology of the P antenna ports is twenty-eight antenna ports, and N1 is equal to seven, and N2 is equal to two;
  • the resource selection unit is configured to select a CSI-RS resource that includes eight antenna ports as a third aggregation resource; select one row from two rows of antenna ports and select one column from seven antenna ports, and select a row. And eight antenna ports of the same polarization direction included in the selected one column correspond to the third aggregation resource.
  • the first dimension is used as the horizontal dimension in the topology
  • the second dimension is used as the topology.
  • Vertical dimension that is, a two-dimensional topology with a topology of 2 rows and 7 columns.
  • K1 can take a value of 8, indicating that the 8-port CSI-RS resource corresponds to any row in the topology and 8 in any column.
  • Vertical dimension that is, a two-dimensional topology with a topology of 2 rows and 7 columns.
  • K1 can take a value of 8, indicating that the 8-port CSI-RS resource corresponds to any row in the topology and 8 in any column.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which 7 ports of the 8-port CSI-RS resource correspond to 7 co-polarized ports in the same row, and In this way, the horizontal dimension PMI is determined; which of the 8-port CSI-RS resources are corresponding to the two co-polarized ports of one column, and the vertical dimension PMI is determined thereby;
  • the topology of the P antenna ports is twenty-eight antenna ports, and N1 is equal to two, and N2 is equal to seven;
  • the resource selection unit is configured to select a CSI-RS resource that includes eight antenna ports as a third aggregation resource; select one row from seven row antenna ports and select one column from two column antenna ports, and select a row. And eight antenna ports of the same polarization direction included in the selected one column correspond to the third aggregation resource.
  • K1 can take a value of 8, indicating that the 8-port CSI-RS resource corresponds to eight co-polarized ports contained in any row and any column in the topology.
  • the base station needs to notify the UE (the default mode, or implicit signaling, or explicit signaling) which two ports in the 8-port CSI-RS resource correspond to two co-polarized ports in the same row, and In this way, the horizontal dimension PMI is determined; which 7 ports of the 8-port CSI-RS resource are mapped to 7 co-polarized ports of a column, and the vertical dimension PMI is determined thereby.
  • the UE the default mode, or implicit signaling, or explicit signaling
  • the integrated modules described in the embodiments of the present application may also be stored in a computer readable storage medium if they are implemented in the form of software functional modules and sold or used as separate products. Based on such understanding, the technical solution of the embodiments of the present application may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, a network device, or a network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种信息传输方法、基站及计算机存储介质,其中方法包括:获取P个天线端口的拓扑结构;其中,P为大于等于1的整数;基于所述P个天线端口的拓扑结构,选取得到M个聚合资源;其中,所述聚合资源由包含至少一个天线端口的CSI-RS资源组成;所述M个聚合资源中至少部分天线端口用于传输CSI-RS,且用于传输CSI-RS的天线端口的数量之和小于P;M为大于等于1的整数;通过所述M个聚合资源进行CSI-RS的传输。

Description

一种信息传输方法、基站及计算机存储介质
相关申请的交叉引用
本申请基于申请号为201610551884.9、申请日为2016年07月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域中的传输资源管理技术,尤其涉及一种信息传输方法、基站及计算机存储介质。
背景技术
目前,根据采用的信道状态信息参考符号(CSI-RS)、和信道状态信息(CSI)反馈方式的不同,R13/R14的FD-MIMO传输方案可以分为3大类:
一、非预编码(NP,Non-precoded)CSI-RS方案,R13目前支持最大16-port CSI-RS,对于超过16个端口,NP CSI-RS方案中过载是个严重的问题,而且CSI-RS的覆盖性能可能无法保证;
二、波束赋形(BF,Beam formed)CSI-RS方案,具体分为cell-specific BF CSI-RS和UE-specific BF CSI-RS;基于cell-specific BF CSI-RS的方案FDD和TDD都可使用,但是为了保证性能,CSI-RS开销也比较大,接近甚至超过直接使用NP CSI-RS的开销。基于UE-specific BF CSI-RS的方案更适用于TDD,因为TDD基站可以基于信道互易性形成BF CSI-RS,但是FDD无法比较准确的信道信息
三、混合型的CSI-RS方案,该方案的CSI反馈可以分为两个阶段:阶段一为基站发送长周期的NP CSI-RS,UE反馈的长期信道方向信息;阶段 二为基站根据UE反馈的长期信道方向信息形成BF CSI-RS,UE测量并反馈短期的信道状态信息,在反馈的信道状态信息中可能包括预编码矩阵指示(PMI,Precoding Matrix Indicator)/信道质量指示(CQI,Channel Quality Indicator)/秩指示(RI,Rank Indication)等。
可以看出,现有技术中不论采用那种方法进行CSI-RS的传输,均可能出现传输CSI-RS的开销较大的问题。
发明内容
有鉴于此,本申请的目的在于提供一种信息传输方法、基站及计算机存储介质,能至少解决现有技术中存在的上述问题。
为达到上述目的,本申请的技术方案是这样实现的:
本申请实施例提供了一种信息传输方法,所述方法包括:
获取P个天线端口的拓扑结构;其中,P为大于等于1的整数;
基于所述P个天线端口的拓扑结构,选取得到M个聚合资源;其中,所述聚合资源由用于映射至少一个天线端口的CSI-RS资源组成;所述M个聚合资源中全部聚合资源所映射的全部天线端口的数量之和小于P;M为大于等于1的整数;
通过所述M个聚合资源进行CSI-RS的传输。
本申请实施例还提供了一种基站,所述基站包括:
信息获取单元,用于获取P个天线端口的拓扑结构;其中,P为大于等于1的整数;
资源选取单元,用于基于所述P个天线端口的拓扑结构,选取得到M个聚合资源;其中,所述聚合资源由用于映射至少一个天线端口的CSI-RS资源组成;所述M个聚合资源中全部聚合资源所映射的全部天线端口的数量之和小于P;M为大于等于1的整数;
传输单元,用于通过所述M个聚合资源进行CSI-RS的传输。
本申请实施例还提供了一种基站,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器用于运行所述计算机程序时,执行前述方法的步骤。
本申请实施例还提供了一种计算机存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现前述方法的步骤。
本申请实施例提供的一种信息传输方法、基站及计算机存储介质,就能够在获取到P个天线端口的拓扑结构后,仅对P个天线端口中的部分天线端口进行CSI-RS的资源映射。如此,在仍然保证能够获取到相应的CSI信息的基础上,能够降低CSI-RS的传输开销。
附图说明
图1为本申请实施例信息传输方法流程示意图;
图2为基站和UE侧CSI处理流程示意图;
图3为本申请实施例选取天线端口的示意图一;
图4-1为本申请实施例选取天线端口的示意图二;
图4-2为本申请实施例选取天线端口的示意图三;
图4-3为本申请实施例选取天线端口的示意图四;
图4-4为本申请实施例选取天线端口的示意图五;
图5为20端口天线的拓扑结构;
图6为28端口天线的拓扑结构;
图7为本申请实施例码本示意图;
图8为本申请实施例基站组成结构示意图。
具体实施方式
下面结合附图及具体实施例对本申请再作进一步详细的说明。
实施例一、
本申请实施例提供了一种信息传输方法,如图1所示,包括:
步骤101:获取P个天线端口的拓扑结构;其中,P为大于等于1的整数;
步骤102:基于所述P个天线端口的拓扑结构,选取得到M个聚合资源;其中,所述聚合资源由包含至少一个天线端口的CSI-RS资源组成;所述M个聚合资源中至少部分天线端口用于传输CSI-RS,且用于传输CSI-RS的天线端口的数量之和小于P;M为大于等于1的整数;
步骤103:通过所述M个聚合资源进行CSI-RS的传输。
本实施例应用于基站侧。在R14中FD-MIMO需要支持{20,24,28,32}CSI-RS天线端口。在基于混合CSI-RS的方案中,可以参见图2,在第一阶段中,NP CSI-RS主要目的是让基站获取UE的CSI信息;在第二阶段中,通过CSI-RS发送波束赋形以及端口等信息,接收到终端设备发来的短期CSI反馈信息,在CSI信息中可以包括有预编码矩阵指示(PMI,Precoding Matrix Indicator)/信道质量指示(CQI,Channel Quality Indicator)/秩指示(RI,Rank Indication)。
具体来说,本实施例提供的方案,针对P个天线端口(port)非预编码(non-precoded)的CSI-RS(其中P={20,24,28,32});其中,P个天线端口的拓扑结构可以为包含有P个天线端口的二维拓扑结构。
所述获取P个天线端口的拓扑结构,包括:获取到包含有两种极化方向的天线端口的拓扑结构,每一种极化方向的天线端口中均包括有N1列N2行个天线端口;其中,N1和N2均为大于1的整数。
P个天线端口中包括有两种极化的天线端口,每一种极化的天线端口均可以表示为(N1、N2),其中N1表示第一维相同极化的port数,N2表示第二维相同极化的port数,总端口数P=2*N1*N2。其中,所述第一维可以为水平维;所述第二维可以为垂直维。
通过聚合M个聚合资源,也就是M个CSI-RS资源来表示P个天线端口非预编码CSI-RS,其中第M个聚合资源中的第i个聚合资源中包括有Ki个端口,其中i为整数,1=<i<=M;
需要理解的是,上述Ki个端口中可以只有部分端口与前述P个port中的某些port存在一一对应关系(即Ki个端口中可以有部分不被用于CSI measurement)。
所述M个聚合资源中全部聚合资源支持的全部天线端口的数量之和小于P,也就是可以用以下公式来表示:K1+K2+…+KM<P。
CSI-RS resource包含Ki(Ki取值为{2,4,8})
通过上述描述,可以看出,终端设备反馈的CSI信息获取到PMI由于不需要非常精确,所以能够不需要对全部端口均对应CSI-RS资源,为了分别获取UE水平维和垂直维的信息,可以采用部分端口(partial-port)的CSI-RS资源映射(例如,发送2个NP CSI-RS资源resources,分别对应天线阵列的某一行和某一列),考虑到只需要获取CSI信息,可以只选择其中一个极化方向的天线发送CSI-RS,如图3所示,这样的CSI-RS发送方式有助于降低CSI-RS开销。
下面,结合上述方案,本实施例提供当M=2时的具体处理方式:
所述选取得到M个聚合资源,包括:
选取包含第一数量个天线端口的CSI-RS资源作为第一聚合资源、选取包含第二数量个天线端口的CSI-RS资源作为第二聚合资源;
其中,所述第一数量以及第二数量相同或不同、且所述第一数量以及第二数量均为二的整数倍。
通过上述描述可以看出M可以取值为2,即通过聚合2个CSI-RS资源来表示P-port non-precoded CSI-RS,这2个CSI-RS资源可以表示为{K1,K2},即第一个CSI-RS resource为K1-port CSI-RS resource,第二 个CSI-RS resource为K2-port CSI-RS resource。
具体的,所述第一数量以及第二数量为以下之一:二、四、八。也就是说,K1和K2可能的取值为{2,4,8}。
第一种场景、
所述P个天线端口的拓扑结构为二十个天线端口,且N1等于五、N2等于二;
相应的,所述选取得到M个聚合资源,包括:
选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从两行天线端口中选取一行,从选取的一行中包含的五个相同极化方向的天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在列中的两个同极化天线端口与所述第二聚合资源对应
或者,
选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从两行天线端口中选取一行,从选取的一行中包含的五个同极化天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在列中的两个同极化天线端口与所述第一聚合资源对应。
所述方法还包括:根据所述M个聚合资源中每一个CSI-RS资源对应的天线端口的编号生成通知信令;发送所述通知信令至终端设备。与其相应的,所述通过所述M个聚合资源进行CSI-RS的传输之后,所述方法还 包括:至少接收到终端设备上报的信道状态信息;其中,所述信道状态信息中至少包括有预编码矩阵指示。
参见图4-1,其中,天线端口的拓扑结构为每一个极化方向为{N1,N2}={5,2};将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为2行5列的二维拓扑结构,对于这种情况,也就是,当N1大于N2时,从N1列中选取一列天线端口,从选取的一列中选取第一数量个天线端口映射至所述第一聚合资源;从N2行中选取一行天线端口,从选取的一行天线端口中选取第二数量个天线端口映射值第二聚合资源。
参见图4-1{K1,K2}可以取值为{4,2},K1和K2分别为第一数量以及第二数量。其中,4-port CSI-RS resource对应于拓扑结构中任意一行的5个同极化port中的任意4个同极化port,对于该行剩余的1个同极化port所在列中的2个同极化port,与2-port CSI-RS resource对应。
具体来说,基站发送所述通知信令至终端设备,可以采用默认的方式,或隐式的信令,或显式的信令。具体的,所述根据所述M个聚合资源中每一个CSI-RS资源对应的天线端口的编号生成通知信令可以为:将4-port CSI-RS resource中的4个port和2-port CSI-RS resource中的哪1个port联合起来对应到20-port拓扑结构某一行的5个同极化port,并以此来确定水平维PMI;将2-port CSI-RS resource对应到20-port拓扑结构某一列的2个同极化port,并以此来确定垂直维PMI。
第二种场景、
所述P个天线端口的拓扑结构为二十个天线端口,且N1等于二、N2等于五;
相应的,所述选取得到M个聚合资源,包括:
选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两 个天线端口的CSI-RS资源作为第二聚合资源;
从两列天线端口中选取一列,从选取的一列中包含的五个同极化天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在行中的两个同极化天线端口与所述第二聚合资源对应;
或者,
选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从两列天线端口中选取一列,从选取的一列中包含的五个同极化天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在行中的两个同极化天线端口与所述第一聚合资源对应。
对于20-port non-precoded CSI-RS,{N1,N2}={2,5},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为5行2列的二维拓扑结构,对于这种情况,当N1不大于N2时,从N2行中选取一列天线端口,从选取的一行天线端口中选取第一数量个天线端口映射至所述第一聚合资源;从N1列中选取一列天线端口,从选取的一列天线端口中选取第二数量个天线端口映射至所述第二聚合资源;也就是说,{K1,K2}可以取值为{2,4},表示其中的4-port CSI-RS resource对应于拓扑结构中任意一列的5个同极化port中的任意4个同极化port,对于该列剩余的1个同极化port所在行中的2个同极化port,与2-port CSI-RS resource对应。
基站需要通知UE(默认的方式,或隐式的信令,或显式的信令) 将4-port CSI-RS resource中的4个port和2-port CSI-RS resource中的哪1个port联合起来对应到20-port拓扑结构某一列的5个同极化port,并以此来确定垂直维PMI;将2-port CSI-RS resource对应到20-port拓扑结构某一行的2个同极化port,并以此来确定水平维PMI。
第三种场景、
所述P个天线端口的拓扑结构为二十四个天线端口,且N1等于四、N2等于三;
相应的,所述选取得到M个聚合资源,包括:
选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从四列天线端口中选取一列,从选取的一列中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在行中的四个同极化天线端口与所述第一聚合资源对应;
或者,
选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从四列天线端口中选取一列,从选取的一列中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在行中的四个同极化天线端口与所述第二聚合资源对应。
对于24-port non-precoded CSI-RS,{N1,N2}={4,3},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为 3行4列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{4,2},表示其中的2-port CSI-RS resource对应于拓扑结构中任意一列的3个同极化port中的任意2个同极化port,对于该列剩余的1个同极化port所在行中的4个同极化port,与4-port CSI-RS resource对应。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将2-port CSI-RS resource中的2个port和4-port CSI-RS resource中的哪1个port联合起来对应到24-port拓扑结构某一列的3个同极化port,并以此来确定垂直维PMI;将4-port CSI-RS resource对应到24-port拓扑结构某一行的4个同极化port,并以此来确定水平维PMI。
第四种场景、
所述P个天线端口的拓扑结构为二十四个天线端口,且N1等于三、N2等于四;
相应的,所述选取得到M个聚合资源,包括:
选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从四行天线端口中选取一行,从选取的一行中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在列中的四个同极化天线端口与所述第一聚合资源对应;
或者,
选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从四行天线端口中选取一行,从选取的一行中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个 第二天线端口,将所述两个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在列中的四个同极化天线端口与所述第二聚合资源对应。
参见图4-3,对于24-port non-precoded CSI-RS,{N1,N2}={3,4},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为4行3列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{4,2}或{2,4},表示其中的2-port CSI-RS resource对应于拓扑结构中任意一行的3个同极化port中的任意2个同极化port,对于该行剩余的1个同极化port所在列中的4个同极化port,与4-port CSI-RS resource对应。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将2-port CSI-RS resource中的2个port和4-port CSI-RS resource中的哪1个port联合起来对应到24-port拓扑结构某一行的3个同极化port,并以此来确定水平维PMI;将4-port CSI-RS resource对应到24-port拓扑结构某一列的4个同极化port,并以此来确定垂直维PMI。
第五种场景、
所述P个天线端口的拓扑结构为三十二个天线端口,且N1等于八、N2等于二;
相应的,所述选取得到M个聚合资源,包括:
选取包含八个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从两行天线端口中选取一行,从选取的一行中包含的八个同极化天线端口与所述第一聚合资源相对应;从八列天线端口中选取一列,将选取的一列中包含的两个同极化天线端口与所述第二聚合资源对应;
或者,
选取包含八个天线端口的CSI-RS资源作为第二聚合资源、选取包含两 个天线端口的CSI-RS资源作为第一聚合资源;
从两行天线端口中选取一行,从选取的一行中包含的八个同极化天线端口与所述第二聚合资源相对应;从八列天线端口中选取一列,将选取的一列中包含的两个同极化天线端口与所述第一聚合资源对应。
对于32-port non-precoded CSI-RS,{N1,N2}={8,2},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为2行8列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{8,2}或{2,8},表示其中的8-port CSI-RS resource对应于拓扑结构中任意一行的8个同极化port,其中的2-port CSI-RS resource对应于拓扑结构中任意一列的2个同极化port。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)用8-port CSI-RS resource来确定水平维PMI;用2-port CSI-RS resource来确定垂直维PMI。
第六种场景、
所述P个天线端口的拓扑结构为三十二个天线端口,且N1等于二、N2等于八;
相应的,所述选取得到M个聚合资源,包括:
选取包含八个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从两列天线端口中选取一列,从选取的一列中包含的八个同极化天线端口与所述第一聚合资源相对应;从八行天线端口中选取一行,从选取的一行中包含的两个同极化天线端口与所述第二聚合资源对应;
或者,
选取包含八个天线端口的CSI-RS资源作为第二聚合资源、选取包含两个天线端口的CSI-RS资源作为第一聚合资源;
从两列天线端口中选取一列,从选取的一列中包含的八个同极化天线 端口与所述第二聚合资源相对应;从八行天线端口中选取一行,从选取的一行中包含的两个同极化天线端口与所述第一聚合资源对应。
对于32-port non-precoded CSI-RS,{N1,N2}={2,8},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为8行2列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{8,2}或{2,8},表示其中的8-port CSI-RS resource对应于拓扑结构中任意一列的8个同极化port,其中的2-port CSI-RS resource对应于拓扑结构中任意一行的2个同极化port。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)用8-port CSI-RS resource来确定垂直维PMI;用2-port CSI-RS resource来确定水平维PMI。
第七种场景、
所述P个天线端口的拓扑结构为三十二个天线端口,且N1等于四、N2等于四;
相应的,所述选取得到M个聚合资源,包括:
选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从四行天线端口中选取一行,将选取的一行中包含的四个同极化天线端口与所述第一聚合资源相对应;从四列天线端口中选取一列,将选取的一列中包含的四个同极化天线端口与第二聚合资源对应。
对于32-port non-precoded CSI-RS,{N1,N2}={4,4},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为8行2列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{4,4},表示其中的第一个4-port CSI-RS resource对应于拓扑结构中任意一列的4个同极化port,其中的第二个4-port CSI-RS resource对应于拓扑结构中任意一行的4个同极化port。基站需要通知UE(默认的方式,或隐式 的信令,或显式的信令)用哪一个4-port CSI-RS resource来确定垂直维PMI;用哪一个4-port CSI-RS resource来确定水平维PMI。
另外,所述方法还包括:根据所述M个聚合资源中每一个CSI-RS资源对应的天线端口的编号生成通知信令;发送所述通知信令至终端设备。与其相应的,所述通过所述M个聚合资源进行CSI-RS的传输之后,所述方法还包括:至少接收到终端设备上报的信道状态信息;其中,所述信道状态信息中至少包括有预编码矩阵指示。
具体的,指示的生成以及下发可以参见图7在协议设计时可以考虑重用目前TS36.331中CSI-RS-InfoNonPrecoded-r13的codebookConfigN1-r13和codebookConfigN2-r13字段;其中N1和N2分别对应于CSI-RS antenna port layout中的水平和垂直维的相同极化的port数。
可见,通过采用上述方案,就能够在获取到P个天线端口的拓扑结构后,进队P个天线端口中的部分天线端口进行CSI-RS的资源映射。如此,在仍然保证能够获取到相应的CSI信息的基础上,能够降低CSI-RS的传输开销。
实施例二、
在上述实施例提供的处理基础上,本实施例主要针对M=1的场景进行详细说明,具体的:M可以取值为1,即通过1个K1-port CSI-RS resource来表示P-port non-precoded CSI-RS,K1和K2可能的取值为{2,4,8}。
具体的,所述选取M个聚合资源包括:选取包含第三数量个天线端口的CSI-RS资源作为第三聚合资源;其中,所述第三数量为二的整数倍。其中,所述第三数量为以下之一:二、四、八。
下面结合图4-1~图4-4进行M=1的具体说明:
示例一、
所述P个天线端口的拓扑结构为二十四个天线端口,且N1等于二、N2等于六;
相应的,所述选取得到M个聚合资源,包括:
选取包含八个天线端口的CSI-RS资源作为第三聚合资源;
从两列天线端口中选取一列,将选取的一列中包含的六个相同极化方向的天线端口与所述第三聚合资源中的六个CSI-RS资源对应;从六行天线端口中选取一行,将选取的一行中包含的两个相同极化方向的天线端口与所述第三聚合资源中的剩余的两个CSI-RS资源对应。
参见图4-2,对于24-port non-precoded CSI-RS,{N1,N2}={6,2},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为2行6列的二维拓扑结构,对于这种情况,K1可以取值为8,表示8-port CSI-RS resource中对应于拓扑结构中任意一行和任意一列。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将8-port CSI-RS resource中的哪6个port对应于同一行的6个同极化port,并以此来确定水平维PMI;将8-port CSI-RS resource中的哪2个port对应到一列的2个同极化port,并以此来确定垂直维PMI。
所述P个天线端口的拓扑结构为二十四个天线端口,且N1等于六、N2等于二;
相应的,所述选取得到M个聚合资源,包括:
选取包含八个天线端口的CSI-RS资源作为第三聚合资源;
从两行天线端口中选取一行,将选取的一行中包含的六个相同极化方向的天线端口与所述第三聚合资源中的六个CSI-RS资源对应;从六列天线端口中选取一列,将选取的一列中包含的两个相同极化方向的天线端口与所述第三聚合资源中的剩余的两个CSI-RS资源对应。
对于24-port non-precoded CSI-RS,{N1,N2}={2,6},将第一维作为拓 扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为6行2列的二维拓扑结构,对于这种情况,K1可以取值为8,表示8-port CSI-RS resource对应于拓扑结构中任意一行和任意一列。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将8-port CSI-RS resource中的哪2个port对应于同一行的2个同极化port,并以此来确定水平维PMI;将8-port CSI-RS resource中的哪6个port对应到一列的6个同极化port,并以此来确定垂直维PMI。
示例二、
所述P个天线端口的拓扑结构为二十八个天线端口,且N1等于七、N2等于二;
相应的,所述选取得到M个聚合资源,包括:
选取包含八个天线端口的CSI-RS资源作为第三聚合资源;
从两行天线端口中选取一行并且从七列天线端口中选取一列,将选取的一行以及选取的一列中包含的八个相同极化方向的天线端口与所述第三聚合资源对应。
参见图4-4,对于28-port non-precoded CSI-RS,{N1,N2}={7,2},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为2行7列的二维拓扑结构,对于这种情况,K1可以取值为8,表示8-port CSI-RS resource对应于拓扑结构中任意一行和任意一列包含的8个同极化port。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将8-port CSI-RS resource中的哪7个port对应于同一行的7个同极化port,并以此来确定水平维PMI;将8-port CSI-RS resource中的哪2个port对应到一列的2个同极化port,并以此来确定垂直维PMI;
所述P个天线端口的拓扑结构为二十八个天线端口,且N1等于二、N2等于七;
相应的,所述选取得到M个聚合资源,包括:
选取包含八个天线端口的CSI-RS资源作为第三聚合资源;
从七行天线端口中选取一行并且从两列天线端口中选取一列,将选取的一行以及选取的一列中包含的八个相同极化方向的天线端口与所述第三聚合资源对应。
对于28-port non-precoded CSI-RS,{N1,N2}={2,7},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为7行2列的二维拓扑结构,对于这种情况,K1可以取值为8,表示8-port CSI-RS resource对应于拓扑结构中任意一行和任意一列包含的8个同极化port。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将8-port CSI-RS resource中的哪2个port对应于同一行的2个同极化port,并以此来确定水平维PMI;将8-port CSI-RS resource中的哪7个port对应到一列的7个同极化port,并以此来确定垂直维PMI。
下面结合表1,对实施例一以及实施例二提供的选取映射值CSI-RS资源的天线端口的列表;通过下面的列表能够清楚看出不同场景下针对不同端口数量进行映射的处理方式,这里不进行赘述:
Figure PCTCN2017092820-appb-000001
Figure PCTCN2017092820-appb-000002
表1
由于现有技术中,采用传统的full-port CSI-RS mapping时,考虑到实际的天线尺寸等因素,{20,24,28,32}CSI-RS antenna port的典型layout如表2所示,其中,可以看出全部的天线端口均要映射到对应的CSI-RS资源中:
Figure PCTCN2017092820-appb-000003
表2
图5和图6则分别表示了一种20-port和28-port的layout。参考TS36.211的Table 6.10.5-1中12/16 port的CSI-RS资源(resources)的设计,一种类似的{20,24,28,32}CSI-RS resources资源的设计可能如表3 所示。特点是采用
Figure PCTCN2017092820-appb-000004
Figure PCTCN2017092820-appb-000005
port的CSI-RS resource configurations组合成{20,24,28,32}CSI-RS resources资源。
天线端口数量 每一个资源对应天线端口数 CSI-RS资源的数量
20 4 5
24 4 6
28 4 7
32 8 4
表3
如果采用partial-port CSI-RS mapping,可以采用将2个CSI-RS resource configurations(或称为a pair of CSI-RS resource configurations)组合成{20,24,28,32}CSI-RS资源的设计方式,这2个CSI-RS resource configurations的port数分别为N1和N2(如表4所示),其中N1和N2分别对应于CSI-RS antenna port layout中的水平和垂直维的相同极化的port数(在协议设计时可以考虑重用目前TS36.331中CSI-RS-InfoNonPrecoded-r13的codebookConfigN1-r13和codebookConfigN2-r13字段,或者基于此进行少量修改,如可能需要扩展现有N1和N2的取值范围)。
Figure PCTCN2017092820-appb-000006
Figure PCTCN2017092820-appb-000007
表4
表3的关于{20,24,28,32}CSI-RS资源的设计方法,组合中需要{3,5,6,7}-port CSI-RS resource configuration的设计和定义,由于目前标准中单个CSI-RS resource configuration仅支持{1,2,4,8}。一种方法是对于3-port CSI-RS resource configuration,可以默认取legacy 4-port CSI-RS resource configuration中的前3个port,而对于{5,6,7}-port CSI-RS resource configuration,可以默认取legacy 8-port CSI-RS resource configuration中的前5/6/7个port。这种设计方法会造成CSI-RS资源的浪费。一种改进的设计方法是:对于CSI-RS资源组合中涉及{3,5,6,7}-port的,通过将2个CSI-RS resource configurations用1个或2个legacy的CSI-RS resource configuration来表示,但是需要重新解释该CSI-RS resource configuration(2)中各port与{20,24,28,32}CSI-RS antenna port的对应关系,一种示例如表5所示。
Figure PCTCN2017092820-appb-000008
Figure PCTCN2017092820-appb-000009
表5
实施例三、
本申请实施例提供了一种基站,如图8所示,所述基站包括:
信息获取单元81,用于获取P个天线端口的拓扑结构;其中,P为大于等于1的整数;
资源选取单元82,用于基于所述P个天线端口的拓扑结构,选取得到M个聚合资源;其中,所述聚合资源由包含至少一个天线端口的CSI-RS资源组成;所述M个聚合资源中至少部分天线端口用于传输CSI-RS,且用于传输CSI-RS的天线端口的数量之和小于P;M为大于等于1的整数;
传输单元83,用于通过所述M个聚合资源进行CSI-RS的传输。
本实施例应用于基站侧。在R14中FD-MIMO需要支持{20,24,28,32}CSI-RS天线端口。在基于混合CSI-RS的方案中,可以参见图2,在第一阶段中,NP CSI-RS主要目的是让基站获取UE的CSI信息;在第二阶段中,通过CSI-RS发送波束赋形以及端口等信息,接收到终端设备发来的短期CSI反馈信息,在CSI信息中可以包括有预编码矩阵指示(PMI,Precoding Matrix Indicator)/信道质量指示(CQI,Channel Quality Indicator)/秩指示 (RI,Rank Indication)。
具体来说,本实施例提供的方案,针对P个天线端口(port)非预编码(non-precoded)的CSI-RS(其中P={20,24,28,32});其中,P个天线端口的拓扑结构可以为包含有P个天线端口的二维拓扑结构。
信息获取单元81,用于获取到包含有两种极化方向的天线端口,每一种极化方向的天线端口中均包括有N1行N2列个天线端口;其中,N1和N2均为大于1的整数。
P个天线端口中包括有两种极化的天线端口,每一种极化的天线端口均可以表示为(N1、N2),其中N1表示第一维相同极化的port数,N2表示第二维相同极化的port数,总端口数P=2*N1*N2。
通过聚合M个聚合资源,也就是M个CSI-RS资源来表示P个天线端口非预编码CSI-RS,其中第M个聚合资源中的第i个聚合资源中包括有Ki个端口,其中i为整数,1=<i<=M;
需要理解的是,上述Ki个端口中可以只有部分端口与前述P个port中的某些port存在一一对应关系(即Ki个端口中可以有部分不被用于CSI measurement)。
所述M个聚合资源中全部聚合资源支持的全部天线端口的数量之和小于P,也就是可以用以下公式来表示:K1+K2+…+KM<P。
CSI-RS resource包含Ki(Ki取值为{2,4,8})
通过上述描述,可以看出,终端设备反馈的CSI信息获取到PMI由于不需要非常精确,所以能够不需要对全部端口均对应CSI-RS资源,为了分别获取UE水平维和垂直维的信息,可以采用部分端口(partial-port)的CSI-RS资源映射(例如,发送2个NP CSI-RS资源resources,分别对应天线阵列的某一行和某一列),考虑到只需要获取CSI信息,可以只选择其中一个极化方向的天线发送CSI-RS,如图3所示,这样的CSI-RS发送 方式有助于降低CSI-RS开销。
下面,结合上述方案,本实施例提供当M=2时的具体处理方式:
所述资源选取单元82,用于从所述N1以及N2中选取得到最大数值作为第一参考数值、选取最小数值作为第二参考数值;选取用于映射第一数量个天线端口的CSI-RS资源作为第一聚合资源、选取用于映射第二数量个天线端口的CSI-RS资源作为第二聚合资源;
其中,所述第一数量不小于第二数量,所述第一数量不大于所述第一参考数值、所述第二数量不大于所述第二参考数值,并且所述第一数量以及第二数量均为二的整数倍。
通过上述描述可以看出M可以取值为2,即通过聚合2个CSI-RS资源来表示P-port non-precoded CSI-RS,这2个CSI-RS资源可以表示为{K1,K2},即第一个CSI-RS resource为K1-port CSI-RS resource,第二个CSI-RS resource为K2-port CSI-RS resource。
具体的,所述第一数量以及第二数量为以下之一:二、四、八。也就是说,K1和K2可能的取值为{2,4,8}。
所述选取用于映射第一数量个天线端口的CSI-RS资源作为第一聚合资源、选取用于映射第二数量个天线端口的CSI-RS资源作为第二聚合资源之后,所述方法还包括:
当N1大于N2时,从N1列中选取一列天线端口,从选取的一列中选取第一数量个天线端口映射至所述第一聚合资源;从N2行中选取一行天线端口,从选取的一行天线端口中选取第二数量个天线端口映射值第二聚合资源;
当N1不大于N2时,从N2行中选取一列天线端口,从选取的一行天线端口中选取第一数量个天线端口映射至所述第一聚合资源;从N1列中选取一列天线端口,从选取的一列天线端口中选取第二数量个天线端口映射 至所述第二聚合资源。
其中,需要进一步说明的是,选取的天线端口可以均为同一个极化方向的天线端口。
所述资源选取单元82,用于根据所述M个聚合资源中每一个CSI-RS资源对应的天线端口的编号生成通知信令;发送所述通知信令至终端设备。与其相应的,所述通过所述M个聚合资源进行CSI-RS的传输之后,所述方法还包括:至少接收到终端设备上报的信道状态信息;其中,所述信道状态信息中至少包括有预编码矩阵指示。
下面,结合图4-1~图4-4对本实施例提供的M=2的处理场景进行具体说明:
示例一、
所述P个天线端口的拓扑结构为二十个天线端口,且N1等于五、N2等于二;
所述资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从两行天线端口中选取一行,从选取的一行中包含的五个相同极化方向的天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在列中的两个同极化天线端口与所述第二聚合资源对应
或者,
选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从两行天线端口中选取一行,从选取的一行中包含的五个同极化天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个 第二天线端口,将所述四个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在列中的两个同极化天线端口与所述第一聚合资源对应。
参见图4-1,其中,天线端口的拓扑结构为每一个极化方向为{N1,N2}={5,2};将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为2行5列的二维拓扑结构,对于这种情况,也就是,当N1大于N2时,从N1列中选取一列天线端口,从选取的一列中选取第一数量个天线端口映射至所述第一聚合资源;从N2行中选取一行天线端口,从选取的一行天线端口中选取第二数量个天线端口映射值第二聚合资源。
参见图4-1{K1,K2}可以取值为{4,2},K1和K2分别为第一数量以及第二数量。其中,4-port CSI-RS resource对应于拓扑结构中任意一行的5个同极化port中的任意4个同极化port,对于该行剩余的1个同极化port所在列中的2个同极化port,与2-port CSI-RS resource对应。
具体来说,基站发送所述通知信令至终端设备,可以采用默认的方式,或隐式的信令,或显式的信令。具体的,所述根据所述M个聚合资源中每一个CSI-RS资源对应的天线端口的编号生成通知信令可以为:将4-port CSI-RS resource中的4个port和2-port CSI-RS resource中的哪1个port联合起来对应到20-port拓扑结构某一行的5个同极化port,并以此来确定水平维PMI;将2-port CSI-RS resource对应到20-port拓扑结构某一列的2个同极化port,并以此来确定垂直维PMI。
所述P个天线端口的拓扑结构为二十个天线端口,且N1等于二、N2等于五;
资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从两列天线端口中选取一列,从选取的一列中包含的五个同极化天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在行中的两个同极化天线端口与所述第二聚合资源对应;
或者,
选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从两列天线端口中选取一列,从选取的一列中包含的五个同极化天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在行中的两个同极化天线端口与所述第一聚合资源对应。
对于20-port non-precoded CSI-RS,{N1,N2}={2,5},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为5行2列的二维拓扑结构,对于这种情况,当N1不大于N2时,从N2行中选取一列天线端口,从选取的一行天线端口中选取第一数量个天线端口映射至所述第一聚合资源;从N1列中选取一列天线端口,从选取的一列天线端口中选取第二数量个天线端口映射至所述第二聚合资源;也就是说,{K1,K2}可以取值为{2,4},表示其中的4-port CSI-RS resource对应于拓扑结构中任意一列的5个同极化port中的任意4个同极化port,对于该列剩余的1个同极化port所在行中的2个同极化port,与2-port CSI-RS resource对应。
基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将4-port CSI-RS resource中的4个port和2-port CSI-RS resource中的哪 1个port联合起来对应到20-port拓扑结构某一列的5个同极化port,并以此来确定垂直维PMI;将2-port CSI-RS resource对应到20-port拓扑结构某一行的2个同极化port,并以此来确定水平维PMI。
示例二、
所述P个天线端口的拓扑结构为二十四个天线端口,且N1等于四、N2等于三;
相应的,所述资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从四列天线端口中选取一列,从选取的一列中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在行中的四个同极化天线端口与所述第一聚合资源对应;
或者,
选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从四列天线端口中选取一列,从选取的一列中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在行中的四个同极化天线端口与所述第二聚合资源对应。
对于24-port non-precoded CSI-RS,{N1,N2}={4,3},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为3行4列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{4,2}, 表示其中的2-port CSI-RS resource对应于拓扑结构中任意一列的3个同极化port中的任意2个同极化port,对于该列剩余的1个同极化port所在行中的4个同极化port,与4-port CSI-RS resource对应。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将2-port CSI-RS resource中的2个port和4-port CSI-RS resource中的哪1个port联合起来对应到24-port拓扑结构某一列的3个同极化port,并以此来确定垂直维PMI;将4-port CSI-RS resource对应到24-port拓扑结构某一行的4个同极化port,并以此来确定水平维PMI。
所述P个天线端口的拓扑结构为二十四个天线端口,且N1等于三、N2等于四;
相应的,所述资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从四行天线端口中选取一行,从选取的一行中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在列中的四个同极化天线端口与所述第一聚合资源对应;
或者,
选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从四行天线端口中选取一行,从选取的一行中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在列中的四个同极化天线端口与所述第二聚合资 源对应。
参见图4-3,对于24-port non-precoded CSI-RS,{N1,N2}={3,4},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为4行3列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{4,2}或{2,4},表示其中的2-port CSI-RS resource对应于拓扑结构中任意一行的3个同极化port中的任意2个同极化port,对于该行剩余的1个同极化port所在列中的4个同极化port,与4-port CSI-RS resource对应。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将2-port CSI-RS resource中的2个port和4-port CSI-RS resource中的哪1个port联合起来对应到24-port拓扑结构某一行的3个同极化port,并以此来确定水平维PMI;将4-port CSI-RS resource对应到24-port拓扑结构某一列的4个同极化port,并以此来确定垂直维PMI。
示例三、
所述P个天线端口的拓扑结构为三十二个天线端口,且N1等于八、N2等于二;
相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从两行天线端口中选取一行,从选取的一行中包含的八个同极化天线端口与所述第一聚合资源相对应;从八列天线端口中选取一列,将选取的一列中包含的两个同极化天线端口与所述第二聚合资源对应;
或者,
选取包含八个天线端口的CSI-RS资源作为第二聚合资源、选取包含两个天线端口的CSI-RS资源作为第一聚合资源;
从两行天线端口中选取一行,从选取的一行中包含的八个同极化天线 端口与所述第二聚合资源相对应;从八列天线端口中选取一列,将选取的一列中包含的两个同极化天线端口与所述第一聚合资源对应。
对于32-port non-precoded CSI-RS,{N1,N2}={8,2},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为2行8列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{8,2}或{2,8},表示其中的8-port CSI-RS resource对应于拓扑结构中任意一行的8个同极化port,其中的2-port CSI-RS resource对应于拓扑结构中任意一列的2个同极化port。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)用8-port CSI-RS resource来确定水平维PMI;用2-port CSI-RS resource来确定垂直维PMI;
所述P个天线端口的拓扑结构为三十二个天线端口,且N1等于二、N2等于八;
相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
从两列天线端口中选取一列,从选取的一列中包含的八个同极化天线端口与所述第一聚合资源相对应;从八行天线端口中选取一行,从选取的一行中包含的两个同极化天线端口与所述第二聚合资源对应;
或者,
选取包含八个天线端口的CSI-RS资源作为第二聚合资源、选取包含两个天线端口的CSI-RS资源作为第一聚合资源;
从两列天线端口中选取一列,从选取的一列中包含的八个同极化天线端口与所述第二聚合资源相对应;从八行天线端口中选取一行,从选取的一行中包含的两个同极化天线端口与所述第一聚合资源对应。
对于32-port non-precoded CSI-RS,{N1,N2}={2,8},将第一维作为拓 扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为8行2列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{8,2}或{2,8},表示其中的8-port CSI-RS resource对应于拓扑结构中任意一列的8个同极化port,其中的2-port CSI-RS resource对应于拓扑结构中任意一行的2个同极化port。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)用8-port CSI-RS resource来确定垂直维PMI;用2-port CSI-RS resource来确定水平维PMI;
所述P个天线端口的拓扑结构为三十二个天线端口,且N1等于四、N2等于四;
相应的,所述资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
从四行天线端口中选取一行,将选取的一行中包含的四个同极化天线端口与所述第一聚合资源相对应;从四列天线端口中选取一列,将选取的一列中包含的四个同极化天线端口与第二聚合资源对应。
对于32-port non-precoded CSI-RS,{N1,N2}={4,4},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为8行2列的二维拓扑结构,对于这种情况,{K1,K2}可以取值为{4,4},表示其中的第一个4-port CSI-RS resource对应于拓扑结构中任意一列的4个同极化port,其中的第二个4-port CSI-RS resource对应于拓扑结构中任意一行的4个同极化port。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)用哪一个4-port CSI-RS resource来确定垂直维PMI;用哪一个4-port CSI-RS resource来确定水平维PMI。
可见,通过采用上述方案,就能够在获取到P个天线端口的拓扑结构后,仅对P个天线端口中的部分天线端口进行CSI-RS的资源映射。如此, 在仍然保证能够获取到相应的CSI信息的基础上,能够降低CSI-RS的传输开销。
实施例四、
在上述实施例提供的处理基础上,本实施例主要针对M=1的场景进行详细说明,具体的:M可以取值为1,即通过1个K1-port CSI-RS resource来表示P-port non-precoded CSI-RS,K1和K2可能的取值为{2,4,8}。
具体的,所述资源选取单元82,用于选取包含第三数量个天线端口的CSI-RS资源作为第三聚合资源;其中,所述第三数量为二的整数倍、并且所述第三数量不大于N1与N2之和。其中,所述第三数量为以下之一:二、四、八。
下面结合图4-1~图4-4进行M=1的具体说明:
示例一、
所述P个天线端口的拓扑结构为二十四个天线端口,且N1等于二、N2等于六;
相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第三聚合资源;从两列天线端口中选取一列,将选取的一列中包含的六个相同极化方向的天线端口与所述第三聚合资源中的六个CSI-RS资源对应;从六行天线端口中选取一行,将选取的一行中包含的两个相同极化方向的天线端口与所述第三聚合资源中的剩余的两个CSI-RS资源对应。
参见图4-2,对于24-port non-precoded CSI-RS,{N1,N2}={6,2},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为2行6列的二维拓扑结构,对于这种情况,K1可以取值为8,表示8-port CSI-RS resource中对应于拓扑结构中任意一行和任意一列。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令) 将8-port CSI-RS resource中的哪6个port对应于同一行的6个同极化port,并以此来确定水平维PMI;将8-port CSI-RS resource中的哪2个port对应到一列的2个同极化port,并以此来确定垂直维PMI。
所述P个天线端口的拓扑结构为二十四个天线端口,且N1等于六、N2等于二;
相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第三聚合资源;从两行天线端口中选取一行,将选取的一行中包含的六个相同极化方向的天线端口与所述第三聚合资源中的六个CSI-RS资源对应;从六列天线端口中选取一列,将选取的一列中包含的两个相同极化方向的天线端口与所述第三聚合资源中的剩余的两个CSI-RS资源对应。
对于24-port non-precoded CSI-RS,{N1,N2}={2,6},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为6行2列的二维拓扑结构,对于这种情况,K1可以取值为8,表示8-port CSI-RS resource对应于拓扑结构中任意一行和任意一列。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将8-port CSI-RS resource中的哪2个port对应于同一行的2个同极化port,并以此来确定水平维PMI;将8-port CSI-RS resource中的哪6个port对应到一列的6个同极化port,并以此来确定垂直维PMI。
示例二、
所述P个天线端口的拓扑结构为二十八个天线端口,且N1等于七、N2等于二;
相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第三聚合资源;从两行天线端口中选取一行并且从七列天线端口中选取一列,将选取的一行以及选取的一列中包含的八个相同极化方向的天线端口与所述第三聚合资源对应。
参见图4-4,对于28-port non-precoded CSI-RS,{N1,N2}={7,2},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为2行7列的二维拓扑结构,对于这种情况,K1可以取值为8,表示8-port CSI-RS resource对应于拓扑结构中任意一行和任意一列包含的8个同极化port。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将8-port CSI-RS resource中的哪7个port对应于同一行的7个同极化port,并以此来确定水平维PMI;将8-port CSI-RS resource中的哪2个port对应到一列的2个同极化port,并以此来确定垂直维PMI;
所述P个天线端口的拓扑结构为二十八个天线端口,且N1等于二、N2等于七;
相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第三聚合资源;从七行天线端口中选取一行并且从两列天线端口中选取一列,将选取的一行以及选取的一列中包含的八个相同极化方向的天线端口与所述第三聚合资源对应。
对于28-port non-precoded CSI-RS,{N1,N2}={2,7},将第一维作为拓扑结构中的水平维,将第二维作为拓扑结构中的垂直维,即拓扑结构为7行2列的二维拓扑结构,对于这种情况,K1可以取值为8,表示8-port CSI-RS resource对应于拓扑结构中任意一行和任意一列包含的8个同极化port。基站需要通知UE(默认的方式,或隐式的信令,或显式的信令)将8-port CSI-RS resource中的哪2个port对应于同一行的2个同极化port,并以此来确定水平维PMI;将8-port CSI-RS resource中的哪7个port对应到一列的7个同极化port,并以此来确定垂直维PMI。
可见,通过采用上述方案,就能够在获取到P个天线端口的拓扑结构后,仅对P个天线端口中的部分天线端口进行CSI-RS的资源映射。如此,在仍然保证能够获取到相应的CSI信息的基础上,能够降低CSI-RS的传输 开销。
本申请实施例所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、网络设备、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。

Claims (38)

  1. 一种信息传输方法,所述方法包括:
    获取P个天线端口的拓扑结构;其中,P为大于等于1的整数;
    基于所述P个天线端口的拓扑结构,选取得到M个聚合资源;其中,所述聚合资源由包含至少一个天线端口的CSI-RS资源组成;所述M个聚合资源中至少部分天线端口用于传输CSI-RS,且用于传输CSI-RS的天线端口的数量之和小于P;M为大于等于1的整数;
    通过所述M个聚合资源进行CSI-RS的传输。
  2. 根据权利要求1所述的方法,其中,所述获取P个天线端口的拓扑结构,包括:
    获取到包含有两种极化方向的天线端口的拓扑结构,每一种极化方向的天线端口中均包括有N1列N2行个天线端口;其中,N1和N2均为大于1的整数。
  3. 根据权利要求2所述的方法,其中,所述选取得到M个聚合资源,包括:
    选取包含第一数量个天线端口的CSI-RS资源作为第一聚合资源、选取包含第二数量个天线端口的CSI-RS资源作为第二聚合资源;
    其中,所述第一数量以及第二数量相同或不同、且所述第一数量以及第二数量均为2的整数倍。
  4. 根据权利要求3所述的方法,其中,所述第一数量以及第二数量为以下之一:2、4、8。
  5. 根据权利要求4所述的方法,其中,所述P个天线端口的拓扑结构为20个天线端口,且N1等于5、N2等于2;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从两行天线端口中选取一行,从选取的一行中包含的五个相同极化方向的天线端口中选取得到4个第一天线端口以及除所述4个第一天线端口外的一个第二天线端口,将所述4个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在列中的两个同极化天线端口与所述第二聚合资源对应
    或者,
    选取包含2个天线端口的CSI-RS资源作为第一聚合资源、选取包含4个天线端口的CSI-RS资源作为第二聚合资源;
    从两行天线端口中选取一行,从选取的一行中包含的5个同极化天线端口中选取得到4个第一天线端口以及除所述4个第一天线端口外的一个第二天线端口,将所述4个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在列中的2个同极化天线端口与所述第一聚合资源对应。
  6. 根据权利要求4所述的方法,其中,所述P个天线端口的拓扑结构为20个天线端口,且N1等于2、N2等于5;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含4个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从两列天线端口中选取一列,从选取的一列中包含的五个同极化天线端口中选取得到4个第一天线端口以及除所述4个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在行中的两个同极化天线端口与所述第二聚合资源对应;
    或者,
    选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含4个天线端口的CSI-RS资源作为第二聚合资源;
    从两列天线端口中选取一列,从选取的一列中包含的五个同极化天线端口中选取得到4个第一天线端口以及除所述4个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在行中的两个同极化天线端口与所述第一聚合资源对应。
  7. 根据权利要求4所述的方法,其中,所述P个天线端口的拓扑结构为24个天线端口,且N1等于4、N2等于3;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从四列天线端口中选取一列,从选取的一列中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在行中的四个同极化天线端口与所述第一聚合资源对应;
    或者,
    选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
    从四列天线端口中选取一列,从选取的一列中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在行中的四个同极化天线端口与所述第二聚合资 源对应。
  8. 根据权利要求4所述的方法,其中,所述P个天线端口的拓扑结构为24个天线端口,且N1等于3、N2等于4;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从四行天线端口中选取一行,从选取的一行中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在列中的四个同极化天线端口与所述第一聚合资源对应;
    或者,
    选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
    从四行天线端口中选取一行,从选取的一行中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在列中的四个同极化天线端口与所述第二聚合资源对应。
  9. 根据权利要求4所述的方法,其中,所述P个天线端口的拓扑结构为32个天线端口,且N1等于8、N2等于2;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含八个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从两行天线端口中选取一行,从选取的一行中包含的八个同极化天线 端口与所述第一聚合资源相对应;从八列天线端口中选取一列,将选取的一列中包含的两个同极化天线端口与所述第二聚合资源对应;
    或者,
    选取包含八个天线端口的CSI-RS资源作为第二聚合资源、选取包含两个天线端口的CSI-RS资源作为第一聚合资源;
    从两行天线端口中选取一行,从选取的一行中包含的八个同极化天线端口与所述第二聚合资源相对应;从八列天线端口中选取一列,将选取的一列中包含的两个同极化天线端口与所述第一聚合资源对应。
  10. 根据权利要求4所述的方法,其中,所述P个天线端口的拓扑结构为32个天线端口,且N1等于2、N2等于8;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含八个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从两列天线端口中选取一列,从选取的一列中包含的八个同极化天线端口与所述第一聚合资源相对应;从八行天线端口中选取一行,从选取的一行中包含的两个同极化天线端口与所述第二聚合资源对应;
    或者,
    选取包含八个天线端口的CSI-RS资源作为第二聚合资源、选取包含两个天线端口的CSI-RS资源作为第一聚合资源;
    从两列天线端口中选取一列,从选取的一列中包含的八个同极化天线端口与所述第二聚合资源相对应;从八行天线端口中选取一行,从选取的一行中包含的两个同极化天线端口与所述第一聚合资源对应。
  11. 根据权利要求4所述的方法,其中,所述P个天线端口的拓扑结构为32个天线端口,且N1等于4、N2等于4;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
    从四行天线端口中选取一行,将选取的一行中包含的四个同极化天线端口与所述第一聚合资源相对应;从四列天线端口中选取一列,将选取的一列中包含的四个同极化天线端口与第二聚合资源对应。
  12. 根据权利要求2所述的方法,其中,所述选取得到M个聚合资源,包括:
    选取包含第三数量个天线端口的CSI-RS资源作为第三聚合资源;
    其中,所述第三数量为2的整数倍。
  13. 根据权利要求12所述的方法,其中,所述第三数量为以下之一:2、4、8。
  14. 根据权利要求13所述的方法,其中,所述P个天线端口的拓扑结构为24个天线端口,且N1等于2、N2等于6;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含八个天线端口的CSI-RS资源作为第三聚合资源;
    从两列天线端口中选取一列,将选取的一列中包含的六个相同极化方向的天线端口与所述第三聚合资源中的六个CSI-RS资源对应;从六行天线端口中选取一行,将选取的一行中包含的两个相同极化方向的天线端口与所述第三聚合资源中的剩余的两个CSI-RS资源对应。
  15. 根据权利要求13所述的方法,其中,所述P个天线端口的拓扑结构为24个天线端口,且N1等于6、N2等于2;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含八个天线端口的CSI-RS资源作为第三聚合资源;
    从两行天线端口中选取一行,将选取的一行中包含的六个相同极化方向的天线端口与所述第三聚合资源中的六个CSI-RS资源对应;从六列天线 端口中选取一列,将选取的一列中包含的两个相同极化方向的天线端口与所述第三聚合资源中的剩余的两个CSI-RS资源对应。
  16. 根据权利要求13所述的方法,其中,所述P个天线端口的拓扑结构为28个天线端口,且N1等于7、N2等于2;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含八个天线端口的CSI-RS资源作为第三聚合资源;
    从两行天线端口中选取一行并且从七列天线端口中选取一列,将选取的一行以及选取的一列中包含的八个相同极化方向的天线端口与所述第三聚合资源对应。
  17. 根据权利要求13所述的方法,其中,所述P个天线端口的拓扑结构为28个天线端口,且N1等于2、N2等于7;
    相应的,所述选取得到M个聚合资源,包括:
    选取包含八个天线端口的CSI-RS资源作为第三聚合资源;
    从七行天线端口中选取一行并且从两列天线端口中选取一列,将选取的一行以及选取的一列中包含的八个相同极化方向的天线端口与所述第三聚合资源对应。
  18. 根据权利要求1-17任一项所述的方法,其中,所述通过所述M个聚合资源进行CSI-RS的传输之前,所述方法还包括:
    分别确定所述M个聚合资源中每一个CSI-RS资源对应的天线端口的编号;
    相应的,所述方法还包括:
    根据所述M个聚合资源中每一个CSI-RS资源对应的天线端口的编号生成通知信令;发送所述通知信令至终端设备。
  19. 一种基站,所述基站包括:
    信息获取单元,用于获取P个天线端口的拓扑结构;其中,P为大于等 于1的整数;
    资源选取单元,用于基于所述P个天线端口的拓扑结构,选取得到M个聚合资源;其中,所述聚合资源由包含至少一个天线端口的CSI-RS资源组成;所述M个聚合资源中至少部分天线端口用于传输CSI-RS,且用于传输CSI-RS的天线端口的数量之和小于P;M为大于等于1的整数;
    传输单元,用于通过所述M个聚合资源进行CSI-RS的传输。
  20. 根据权利要求19所述的基站,其中,所述信息获取单元,用于获取到包含有两种极化方向的天线端口,每一种极化方向的天线端口中均包括有N1列N2行个天线端口;其中,N1和N2均为大于1的整数。
  21. 根据权利要求20所述的基站,其中,所述资源选取单元,用于选取包含第一数量个天线端口的CSI-RS资源作为第一聚合资源、选取包含第二数量个天线端口的CSI-RS资源作为第二聚合资源;
    其中,所述第一数量以及第二数量相同或不同、且所述第一数量以及第二数量均为2的整数倍。
  22. 根据权利要求21所述的基站,其中,所述第一数量以及第二数量为以下之一:2、4、8。
  23. 根据权利要求22所述的基站,其中,所述P个天线端口的拓扑结构为20个天线端口,且N1等于5、N2等于2;
    所述资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从两行天线端口中选取一行,从选取的一行中包含的五个相同极化方向的天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在列中的两个同极化天线端口与所述第二聚合资源对应
    或者,
    选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
    从两行天线端口中选取一行,从选取的一行中包含的五个同极化天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在列中的两个同极化天线端口与所述第一聚合资源对应。
  24. 根据权利要求22所述的基站,其中,所述P个天线端口的拓扑结构为20个天线端口,且N1等于2、N2等于5;
    资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从两列天线端口中选取一列,从选取的一列中包含的五个同极化天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在行中的两个同极化天线端口与所述第二聚合资源对应;
    或者,
    选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
    从两列天线端口中选取一列,从选取的一列中包含的五个同极化天线端口中选取得到四个第一天线端口以及除所述四个第一天线端口外的一个第二天线端口,将所述四个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在行中的两个同极化天线端口与所述第一聚合资源对应。
  25. 根据权利要求22所述的基站,其中,所述P个天线端口的拓扑结构为24个天线端口,且N1等于4、N2等于3;
    相应的,所述资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从四列天线端口中选取一列,从选取的一列中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在行中的四个同极化天线端口与所述第一聚合资源对应;
    或者,
    选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
    从四列天线端口中选取一列,从选取的一列中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在行中的四个同极化天线端口与所述第二聚合资源对应。
  26. 根据权利要求22所述的基站,其中,所述P个天线端口的拓扑结构为24个天线端口,且N1等于3、N2等于4;
    相应的,所述资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从四行天线端口中选取一行,从选取的一行中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个 第二天线端口,将所述两个第一天线端口与所述第二聚合资源相对应;将所述一个第二天线端口所在列中的四个同极化天线端口与所述第一聚合资源对应;
    或者,
    选取包含两个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
    从四行天线端口中选取一行,从选取的一行中包含的三个同极化天线端口中选取得到两个第一天线端口以及除所述两个第一天线端口外的一个第二天线端口,将所述两个第一天线端口与所述第一聚合资源相对应;将所述一个第二天线端口所在列中的四个同极化天线端口与所述第二聚合资源对应。
  27. 根据权利要求22所述的基站,其中,所述P个天线端口的拓扑结构为32个天线端口,且N1等于8、N2等于2;
    相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从两行天线端口中选取一行,从选取的一行中包含的八个同极化天线端口与所述第一聚合资源相对应;从八列天线端口中选取一列,将选取的一列中包含的两个同极化天线端口与所述第二聚合资源对应;
    或者,
    选取包含八个天线端口的CSI-RS资源作为第二聚合资源、选取包含两个天线端口的CSI-RS资源作为第一聚合资源;
    从两行天线端口中选取一行,从选取的一行中包含的八个同极化天线端口与所述第二聚合资源相对应;从八列天线端口中选取一列,将选取的一列中包含的两个同极化天线端口与所述第一聚合资源对应。
  28. 根据权利要求22所述的基站,其中,所述P个天线端口的拓扑结构为32个天线端口,且N1等于2、N2等于8;
    相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第一聚合资源、选取包含两个天线端口的CSI-RS资源作为第二聚合资源;
    从两列天线端口中选取一列,从选取的一列中包含的八个同极化天线端口与所述第一聚合资源相对应;从八行天线端口中选取一行,从选取的一行中包含的两个同极化天线端口与所述第二聚合资源对应;
    或者,
    选取包含八个天线端口的CSI-RS资源作为第二聚合资源、选取包含两个天线端口的CSI-RS资源作为第一聚合资源;
    从两列天线端口中选取一列,从选取的一列中包含的八个同极化天线端口与所述第二聚合资源相对应;从八行天线端口中选取一行,从选取的一行中包含的两个同极化天线端口与所述第一聚合资源对应。
  29. 根据权利要求22所述的基站,其中,所述P个天线端口的拓扑结构为三十二个天线端口,且N1等于四、N2等于四;
    相应的,所述资源选取单元,用于选取包含四个天线端口的CSI-RS资源作为第一聚合资源、选取包含四个天线端口的CSI-RS资源作为第二聚合资源;
    从四行天线端口中选取一行,将选取的一行中包含的四个同极化天线端口与所述第一聚合资源相对应;从四列天线端口中选取一列,将选取的一列中包含的四个同极化天线端口与第二聚合资源对应。
  30. 根据权利要求20所述的基站,其中,
    所述资源选取单元,用于选取包含第三数量个天线端口的CSI-RS资源作为第三聚合资源;
    其中,所述第三数量为二的整数倍。
  31. 根据权利要求30所述的基站,其中,所述第三数量为以下之一:2、4、8。
  32. 根据权利要求31所述的基站,其中,所述P个天线端口的拓扑结构为24个天线端口,且N1等于2、N2等于6;
    相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第三聚合资源;从两列天线端口中选取一列,将选取的一列中包含的六个相同极化方向的天线端口与所述第三聚合资源中的六个CSI-RS资源对应;从六行天线端口中选取一行,将选取的一行中包含的两个相同极化方向的天线端口与所述第三聚合资源中的剩余的两个CSI-RS资源对应。
  33. 根据权利要求31所述的基站,其中,所述P个天线端口的拓扑结构为24个天线端口,且N1等于6、N2等于2;
    相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第三聚合资源;从两行天线端口中选取一行,将选取的一行中包含的六个相同极化方向的天线端口与所述第三聚合资源中的六个CSI-RS资源对应;从六列天线端口中选取一列,将选取的一列中包含的两个相同极化方向的天线端口与所述第三聚合资源中的剩余的两个CSI-RS资源对应。
  34. 根据权利要求31所述的基站,其中,所述P个天线端口的拓扑结构为28个天线端口,且N1等于7、N2等于2;
    相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第三聚合资源;从两行天线端口中选取一行并且从七列天线端口中选取一列,将选取的一行以及选取的一列中包含的八个相同极化方向的天线端口与所述第三聚合资源对应。
  35. 根据权利要求31所述的基站,其中,所述P个天线端口的拓扑结构为28个天线端口,且N1等于2、N2等于7;
    相应的,所述资源选取单元,用于选取包含八个天线端口的CSI-RS资源作为第三聚合资源;从七行天线端口中选取一行并且从两列天线端口中选取一列,将选取的一行以及选取的一列中包含的八个相同极化方向的天线端口与所述第三聚合资源对应。
  36. 根据权利要求19-35任一项所述的基站,其中,
    所述资源选取单元,用于分别确定所述M个聚合资源中每一个CSI-RS资源对应的天线端口的编号;
    相应的,所述传输单元,还用于根据所述M个聚合资源中每一个CSI-RS资源对应的天线端口的编号生成通知信令;发送所述通知信令至终端设备。
  37. 一种基站,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器用于运行所述计算机程序时,执行权利要求1至18任一项所述方法的步骤。
  38. 一种计算机存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1至18任一项所述方法的步骤。
PCT/CN2017/092820 2016-07-13 2017-07-13 一种信息传输方法、基站及计算机存储介质 WO2018010676A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610551884.9A CN107623561B (zh) 2016-07-13 2016-07-13 一种信息传输方法及基站
CN201610551884.9 2016-07-13

Publications (1)

Publication Number Publication Date
WO2018010676A1 true WO2018010676A1 (zh) 2018-01-18

Family

ID=60951969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092820 WO2018010676A1 (zh) 2016-07-13 2017-07-13 一种信息传输方法、基站及计算机存储介质

Country Status (2)

Country Link
CN (1) CN107623561B (zh)
WO (1) WO2018010676A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077549A1 (en) * 2022-10-13 2024-04-18 Huawei Technologies Co., Ltd. Systems and methods for quasi-co-polarization direction indication with dual-polarized antennas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN104052532A (zh) * 2013-03-15 2014-09-17 中兴通讯股份有限公司 一种无线信道参考信号的发送方法和装置
WO2016079694A1 (en) * 2014-11-18 2016-05-26 Telefonaktiebolaget L M Ericsson (Publ) Signaling adapted csi-rs periodicities in active antenna systems
CN105659655A (zh) * 2013-09-27 2016-06-08 英特尔公司 Csi-rs天线端口扩展和3d码本设计

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101740221B1 (ko) * 2010-01-18 2017-05-29 주식회사 골드피크이노베이션즈 채널상태정보-기준신호 할당 방법 및 장치
CN102546110A (zh) * 2011-12-31 2012-07-04 电信科学技术研究院 一种传输信道状态信息的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052532A (zh) * 2013-03-15 2014-09-17 中兴通讯股份有限公司 一种无线信道参考信号的发送方法和装置
CN105659655A (zh) * 2013-09-27 2016-06-08 英特尔公司 Csi-rs天线端口扩展和3d码本设计
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
WO2016079694A1 (en) * 2014-11-18 2016-05-26 Telefonaktiebolaget L M Ericsson (Publ) Signaling adapted csi-rs periodicities in active antenna systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077549A1 (en) * 2022-10-13 2024-04-18 Huawei Technologies Co., Ltd. Systems and methods for quasi-co-polarization direction indication with dual-polarized antennas

Also Published As

Publication number Publication date
CN107623561A (zh) 2018-01-23
CN107623561B (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2015161795A1 (zh) 一种信道状态信息测量的方法、系统及设备
US10735064B2 (en) Method for determining precoding matrix indicator, user equipment, and base station
CN113346935B (zh) 用于码本设计和信令的方法和装置
KR102414697B1 (ko) 다수의 배열 안테나를 사용하는 이동통신 시스템에서 csi-rs 포트 공유를 위한 기준신호 설정 방법 및 장치
US10637538B2 (en) Information processing method, base station, and user equipment
WO2017050033A1 (zh) 一种信息发送及确定、关系确定的方法及装置
ES2882295T3 (es) Tamaño de subbanda independiente para el indicador de matriz de precodificación y el indicador de calidad de canal
WO2015101109A1 (zh) 一种信道状态信息测量、参考信号的发送方法和装置
JP6108250B2 (ja) チャネル状態情報を報告および受信する方法およびデバイス
TW201409961A (zh) 一種傳輸參考信號的方法、裝置及系統
CN106160952B (zh) 一种信道信息反馈方法及装置
US20200178098A1 (en) Method and apparatus for channel state information reporting
CN109155693B (zh) 低复杂度多配置csi报告
JP2016515777A (ja) 参照信号を受信するためおよび送るための方法および装置、ユーザ機器、ならびに基地局
BR112021009948A2 (pt) métodos realizados por um dispositivo sem fio para relatar informação de estado do canal e por um nó de rede para decodificação da informação de estado do canal, dispositivo sem fio, e, nó de rede
WO2014059581A1 (zh) 配置信道状态信息参考信号的方法、基站及接入点
WO2016161963A1 (zh) 一种csi反馈方法、装置和相关设备
WO2014047794A1 (zh) 反馈csi-rs资源组合的方法和装置、用户设备和基站
WO2017049644A1 (zh) 一种资源选择的方法及装置和一种电子设备
KR102100308B1 (ko) 코드북 확정 방법 및 장치
JP2020506586A (ja) チャネル状態情報フィードバックの方法、ユーザ機器、および基地局
CN106899522B (zh) 一种信道状态信息参考信号csi-rs的发送方法、装置及基站
US10498505B2 (en) Method of transmitting transmission channel state information, and device, base station and terminal utilizing same
WO2018010676A1 (zh) 一种信息传输方法、基站及计算机存储介质
WO2018228214A1 (zh) 信道状态信息的传输方法、接入网设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17827012

Country of ref document: EP

Kind code of ref document: A1