WO2018010040A1 - 影像增强真实度的方法与应用该方法在可穿戴式眼镜的手术导引 - Google Patents

影像增强真实度的方法与应用该方法在可穿戴式眼镜的手术导引 Download PDF

Info

Publication number
WO2018010040A1
WO2018010040A1 PCT/CN2016/000374 CN2016000374W WO2018010040A1 WO 2018010040 A1 WO2018010040 A1 WO 2018010040A1 CN 2016000374 W CN2016000374 W CN 2016000374W WO 2018010040 A1 WO2018010040 A1 WO 2018010040A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion matrix
eye
camera
obtaining
image
Prior art date
Application number
PCT/CN2016/000374
Other languages
English (en)
French (fr)
Inventor
王民良
李佩渊
胡名贤
Original Assignee
王民良
李佩渊
胡名贤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王民良, 李佩渊, 胡名贤 filed Critical 王民良
Priority to PCT/CN2016/000374 priority Critical patent/WO2018010040A1/zh
Priority to US16/316,623 priority patent/US10603133B2/en
Priority to EP16908373.0A priority patent/EP3525173A4/en
Priority to CN201680087350.3A priority patent/CN109416841B/zh
Priority to TW105134457A priority patent/TWI615126B/zh
Publication of WO2018010040A1 publication Critical patent/WO2018010040A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • A61B2034/2057Details of tracking cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • A61B2034/256User interfaces for surgical systems having a database of accessory information, e.g. including context sensitive help or scientific articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/502Headgear, e.g. helmet, spectacles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • the present invention relates to a method of image enhancement realism, and a surgical guide for applying the method to wearable glasses.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • X-ray nuclear medicine images
  • C-ARM mobile X-ray machine
  • ultrasonic image as the guidance aid (instant video) and the non-image guidance system.
  • Clinical application of surgical imaging guidance systems including spinal surgery guidance (eg, pedicle screw fixation, removal of injury sites, removal of lumps, fixation depth, and placement of electrodes for treatment of epilepsy patients); cranial lesion surgery (eg, Treatment of meningiomas, craniopharyngioma, chondrosarcoma, and others in cranial lesions; tissue sectioning and tumor resection; treatment of Parkinson's disease; stereotactic treatment of psychiatric cerebral palsy; functional endoscopic sinus surgery , neurovascular repair surgery and ventricular bypass surgery and ventricular shunt replacement surgery.
  • the system can also be used for hip and knee surgery, such as total knee arthroplasty, total hip arthroplasty, and anterior cruciate ligament reconstruction.
  • Surgical guidance must be combined with various techniques such as imaging, electronics, and machinery to project the azimuth of the surgical instrument onto the image to assist the physician in grasping the relative orientation between the device and the patient to achieve the purpose of navigation.
  • various techniques such as imaging, electronics, and machinery to project the azimuth of the surgical instrument onto the image to assist the physician in grasping the relative orientation between the device and the patient to achieve the purpose of navigation.
  • the patient's surgical position is marked with a mark, and then the patient is subjected to computerized tomography or magnetic resonance imaging. After that, the computerized tomography and/or magnetic resonance image is reconstructed in the computer from the three-dimensional position near the surgical site. Image and indicate the location of the anomaly and normal functional area.
  • the patient's surgical position and surgical instruments are marked with an infra-red camera (or ultrasonic wave, etc.) to simultaneously locate the relative position of the surgical instrument and the surgical position based on the infrared signals reflected by the marking balls to establish a space during operation. relationship.
  • the surgeon can see the reconstructed image through the heads-up display or the eyepiece attached to the head.
  • Augmented Reality is generally used to display virtual information on real images of patients. Especially in the endoscope structure, in the past, often in the minimally invasive surgery to augment the reality of the image stack Plus, this method cannot be observed directly through the camera, but it can be seen in the pre-operative image.
  • the augmented reality technology assists the surgeon in seeing the patient's body parts so that the doctor can effectively locate the important structure before visiting the surgical site without the need for prior confirmation of the position by touch.
  • Augmented reality technology appears to be the most promising research currently available, guiding and helping surgeons oversee the process of robotic surgery.
  • the physical space is traditionally positioned by the tracking probe, and the surgical position marking points are aligned using the least square method.
  • the most common 3D to 2D surgical position markers are based primarily on the function of specific surface features.
  • the surface of the surgical site is segmented by the contours acquired from the pre-operative image and the intra-operative image, and recorded in such a way as to minimize the distance according to the cost function.
  • the selection of the contour is rather cumbersome and time consuming. Therefore, it is necessary to use a reference mark such as a metal needle or a mesh to align the surgical site with a marker point for image guided treatment.
  • the main object of the present invention is to provide a method for enhancing the realism of an image for obtaining a correct position of an eye-to-mark point, comprising the steps of: obtaining a first conversion matrix of a camera and a marker point; a second conversion matrix of the eye and the camera; connecting the first conversion matrix and the second conversion matrix to obtain a correct position corresponding matrix of the eye to the marker point; linking the correct position corresponding matrix to the marker point Position feature to obtain the correct position of the eye for the point.
  • obtaining the first conversion matrix is to detect a position feature of the marker point using a library and obtain a first mathematical operation.
  • obtaining a second conversion matrix of the eye and the camera comprising the steps of: wearing a pair of glasses, clicking a plurality of corner points of the marker point to obtain one or two on the screen of the glasses Dimensional coordinates; using a library to obtain a camera-three-dimensional coordinate, obtaining the two-dimensional coordinates and the second conversion matrix of the camera via a second mathematical operation; and obtaining the second conversion matrix by using a de-coupling equation.
  • the plurality of corner points of the marker point are 12 corner points of the marker point.
  • Another object of the present invention is to provide a surgical guiding method for wearable glasses, which comprises the steps of: first creating a tomographic image at one or more marking points of the affected part before the operation; and making the tomographic image into a three-dimensional simulation Image; a method for enhancing the trueness of the image for obtaining a correct position of the eye of the operator's eye to the affected part to adjust the error of the three-dimensional simulated image and the marked point; wherein the image realism is enhanced
  • the method includes the steps of: obtaining a first conversion matrix of a camera and the marker point; obtaining a second conversion matrix of the operator's eye and the camera; and coupling the first transformation matrix and the second transformation matrix to obtain the The eye corresponds to a correct position of the marker point; the correct position corresponding to the matrix and the location feature of the marker point is obtained to obtain the correct position of the marker point for the eye.
  • obtaining the first conversion matrix is to detect a position feature of the marker point using a library and obtain a first mathematical operation.
  • obtaining a second conversion matrix of the eye and the camera comprising the steps of: wearing a pair of glasses, clicking a plurality of corner points of the marker point to obtain one or two on the screen of the glasses Dimensional coordinates; using a library to obtain a camera-three-dimensional coordinate, obtaining the two-dimensional coordinates and the second conversion matrix of the camera via a second mathematical operation; and obtaining the second conversion matrix by using a de-coupling equation.
  • the plurality of corner points of the marker point are 12 corner points of the marker point.
  • 1 is a system architecture of a method for enhancing image realism of the present invention and a surgical guidance method for wearable glasses using the method.
  • FIG. 2 is a coordinate relationship diagram of the system architecture shown in FIG. 1.
  • the method for enhancing the realism of the image proposed by the present invention can be applied to Augmented Reality Computer Assisted Glasses for Orthopaedic (ARCAGO).
  • the present invention mainly solves a recording method relating to the application of a three-dimensional model to surgery, and uses a three-dimensional model captured from a CT pre-operative image.
  • We will combine the use of enhanced realism techniques in surgery and the basic imaging methods using 3D-3D attitude recording. Once the gesture is recorded, the enhanced authenticity will be considered a mixture of virtual and real environmental spaces that simultaneously reproduce the patient's information.
  • the first part is the position at which the camera grabs a marker point
  • the second part is the position error value of the operator's eye 30 for the marker point.
  • FIG. 1 shows a system architecture of a method for enhancing image realism of the present invention and a surgical guidance method for wearable glasses using the method.
  • Figure 2 is a diagram showing the coordinate relationship of the system architecture shown in Figure 1.
  • the camera 10 is located near the marker point 20
  • the operator's eye 30 is located near the camera 10 and above the marker point 20. Since the operator is wearing a wearable eyeglass, there is a screen 40 of wearable glasses between the eye 30 and the marker point 20.
  • the method of real image realism can obtain the correct position of the eye on a marked point, including the following steps:
  • Step 1 obtaining a marker of the camera with a first transformation matrix M mc;
  • Step 2 Obtain a second conversion matrix M ce of the eye and the camera
  • Step 3 Linking the first conversion matrix and the second conversion matrix to obtain a correct position corresponding matrix M me of the eye to the marker point;
  • Step 4 Linking the correct position corresponding matrix to the position feature of the marked point to obtain the correct position of the marked point by the eye.
  • the value of the first conversion matrix M mc of the camera and the marker is variable, but can be obtained by the camera; the second conversion matrix M ce of the eye and the camera has a fixed value, but the value is unknown.
  • the correction is made by a plurality of corner points of the marker point to obtain the value of the second transformation matrix M ce .
  • the value of the correct position corresponding matrix M me is variable and unknown, and can be obtained by multiplying the first conversion matrix by the second conversion matrix.
  • the transformation matrix M mc is a first use position wherein a first detecting the marker library and obtain a first mathematical operation.
  • X C , Y C , Z C are the coordinates of the camera, as shown in matrix (1); and X m , Y m , Z m are the positional features of the marked point, that is, the coordinates of the marked point.
  • step 2 a second conversion matrix of the eye and the camera is obtained, comprising the following steps:
  • Step 21 wearing a pair of glasses, clicking on the plurality of corner points of the marked point to obtain a two-dimensional coordinate on the screen of the glasses;
  • Step 22 using a second library to obtain a three-dimensional coordinate corresponding to the camera, obtaining the two-dimensional coordinates and the second conversion matrix M ce of the camera via a second mathematical operation, as shown in the matrix formula (2);
  • (u i , v i , w i ) is a two-dimensional coordinate on the screen, which has different corresponding coordinate values according to a plurality of corner points of the marked point; It is the three-dimensional coordinates of the camera, which has different corresponding coordinate values according to the plurality of corner points of the marked point.
  • step 22 the second conversion matrix is obtained by using a de-coupling equation.
  • the plurality of corner points of the mark point are at least 8 corner points, preferably 12 corner points.
  • the first library and the second library are ArToolKit library written in C/C++ language or a library such as Auroco or ooopds.
  • the surgical guiding method of the wearable glasses includes the following steps:
  • Step 100 Before the operation, first make a tomographic image at more than one marking point of the affected part;
  • Step 200 the tomographic image is formed into a three-dimensional stereoscopic image
  • Step 300 by using a method for enhancing image realism, for obtaining a correct position of a surgical operator's eye to the marked point of the affected part, to adjust the error of the three-dimensional stereoscopic image and the marked point;
  • step 300 the method for enhancing the image realism includes the following steps:
  • Step 310 obtaining a first conversion matrix of a camera and the mark point
  • Step 320 obtaining a second conversion matrix of the eye and the camera
  • Step 330 Link the first conversion matrix and the second conversion matrix to obtain a correct position corresponding matrix of the eye to the marker point;
  • Step 340 linking the correct position corresponding matrix and the position feature of the marked point to obtain the correct position of the marked point by the eye.
  • the tomographic image may include computerized tomography (CT), magnetic resonance imaging (MRI), X-ray, nuclear medicine image and the like to reconstruct a 3D non-immediate image model.
  • CT computerized tomography
  • MRI magnetic resonance imaging
  • X-ray nuclear medicine image
  • the human eye sees the visual focus from the glasses and the actual object is at a wrong distance from the eye.
  • the difference is therefore the present invention to solve this problem.
  • the operator that is, the surgeon, wears glasses (that is, computer-aided glasses), and then tests the surgery in multiples, usually 8 or more, preferably 12 detection points.
  • the operator's eye 30 depends on the focal length of the eyeglasses.
  • the error value of the visual focal length is fed back to the computer system for calculation, and the obtained adjusted focal length value is adjusted according to the three-dimensional stereoscopic image obtained in steps 100 and 200, and projected on the screen 40 of the computer-aided glasses.
  • a precise 3D simulated image of the vision located in the affected part can be obtained.
  • the first conversion matrix is obtained by using a first library to detect the location feature of the marker point and obtained by a first mathematical operation, as shown in matrix (1).
  • step 320 obtaining a second conversion matrix of the eye and the camera, comprising the steps of:
  • Step 321 wearing a pair of glasses, clicking a plurality of corner points of the marked point to obtain two-dimensional coordinates on the screen of the glasses;
  • Step 322 using a second library to obtain a three-dimensional coordinate corresponding to the camera, obtaining the two-dimensional coordinates and the second conversion matrix of the camera via a second mathematical operation; as shown in matrix formula (2);
  • Step 322 obtaining the second conversion matrix by using a de-coupling equation.
  • the plurality of corner points of the mark point are at least 8 corner points, preferably 12 corner points.
  • the first library and the second library are ArToolKit library written in C/C++ language, or a library such as Auracco or ooopds.
  • the present invention overcomes the problem of establishing a basic image method by the proposed method of enhancing image realism.
  • a three-dimensional model of a patient is used to illustrate the proposed basic imaging recording method and to find entry points for a full-scale surgical procedure.
  • the results of the experiment showed that two surgeons used the proposed enhanced image realism system in four spinal procedures, and the time to guide the needle to the target entry point by C-arm would be reduced by 70%.
  • the main reason is that the image will be directly applicable to the glasses, and the surgeon only needs to look at the patient without paying attention to the C-arm screen.
  • These tests show that the system works flawlessly in the operating room and provides useful information, especially for spinal surgery looking for entry points.
  • 20 sets of entry points were used on the simulated dummy and the ARCAGO system was used to simulate the lumbar puncture procedure in four experiments. In the case of dynamic operation, the average error distance is 2.2 ⁇ 0.25 mm.
  • the present invention passes the surgical guiding method of the proposed wearable glasses.
  • the stereo calibration accuracy of both eyes is ⁇ 1.5mm; the clinical calibration time is ⁇ 3 minutes.
  • the point positioning point accuracy is ⁇ 1mm; and the positioning execution speed is 30fps.
  • the three-dimensional stereoscopic image model has an offset stability of ⁇ 1.5 mm and an execution speed of 30 fps.
  • the present invention has the following steps of reducing operative time and reducing X-ray usage radiation. Less line, auxiliary surgery positioning and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Computer Graphics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Computing Systems (AREA)
  • Geometry (AREA)
  • Processing Or Creating Images (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Abstract

一种增强影像真实度的方法,包含下列步骤:获得一相机(10)与一标记点(20)的一第一转换矩阵(M mc);获得眼睛(30)与该相机(10)的一第二转换矩阵(M ce);连结该第一转换矩阵(M mc)与该第二转换矩阵(M ce)以获得该眼睛(30)对该标记点(20)的一正确位置对应矩阵(M me);连结该正确位置对应矩阵(M me)与该标记点(20)的位置特征,以获得该眼睛(30)对该标记点(20)的该正确位置。还提出一种可穿戴式眼镜的手术导引方法,可用于获得手术操作者眼睛(30)对该标记点(20)的正确位置。

Description

影像增强真实度的方法与应用该方法在可穿戴式眼镜的手术导引 技术领域
本发明有关于一种影像增强真实度的方法,以及一种应用该方法在可穿戴式眼镜的手术导引。
背景技术
近年来,在新型医疗服务技术的发展中,电脑辅助手术(Computer-assisted surgery)的利用比率大幅提升。由于手术器械以及影像技术的进步,医师进行手术的精准度提升,同时也可将病患身上的伤口降到最小。一般而言,电脑辅助手术通常包含四个部分:从病人身上获取影像、影像分析与处理、诊断与手术前规划模拟、以及最后对病人进行手术时的手术导引。目前以电脑导航进行外科手术方面共分有下列几种类型:利用断层扫描影像,包括电脑断层(CT)、磁共振影像(MRI)、X光、核医影像,重建出3D模型(非即时影像),再利用开刀房用移动式X光机(C-ARM)或超音波影像作为导引的辅助(即时影像)、以及非影像式导引系统。
外科手术影像导引系统临床的应用,包括脊髓手术导引(例如,椎弓根螺钉固定、切除损伤部位、切除硬块、于固定的深度及安置癫痫患者治疗用电极);头颅病变手术(例如,脑膜瘤的治疗,颅咽管瘤,软骨肉瘤,和其他在颅部病变);组织切片和肿瘤切除术;帕金森氏病的治疗;精神疾病脑回部立体定位治疗;功能性内试镜鼻窦手术,神经血管修补手术及心室绕道手术和心室分流置换手术。本系统也可用于髋关节和膝关节手术,例如全膝关节置换术,全髋关节置换术,和前十字韧带重建。
手术导引必须结合影像、电子、机械等各类技术,将手术器械方位投影至影像上,辅助医师掌握器械与病人间的相对方位,达到导航的目的。在手术前先在病人手术位置贴上标记点,再让病患接受电脑断层或磁振造影显影的检查;之后将电脑断层或/及磁共振影像的影像在电脑内重组出手术位置附近的三维影像,并标明异常与正常功能区的位置。手术时病人手术位置及手术器械上均安装标记,红外线摄影机(或超音波等)可依据这些标记球反射出来的红外线讯号,同步定位出手术器械和手术位置的相对位置,以建立手术时的空间关系。此外,外科医师也可通过抬头显示器或头上所带的目镜,见到重组的影像。
扩增实境(Augmented Reality,AR)一般用以在病患的真实影像上显示虚拟资讯。特别是在内视镜结构中,过去经常在微创手术以扩增实境进行影像的叠 加,此方式并无法直接通过摄影机进行观察,但是却可在手术前影像中见到。扩增实境技术协助外科医生可看透病患的身体部位,使得医生在探视手术位置前,即可有效定位其重要结构,而不需要事前通过触觉而进行位置的确认。扩增实境技术似乎是目前最有发展潜力的研究,其引导并帮助外科医生监督机器人手术的过程。
在手术位置贴上标记点上,传统上是通过追踪探针进行物理空间的定位,而其手术位置标记点采用最小平方法来对准。最常见的三维至二维手术位置标记点,主要根据特殊表面特征的功能。而手术位置的表面将由手术前影像与手术中影像所撷取的轮廓进行分割,并根据成本函数使距离最小化的方式来进行纪录。而该轮廓的选择相当繁琐且耗费时间,因此,需要使用如金属针或网格进行基准标记,用以对准手术位置贴上标记点以进行影像引导治疗。目前发展出许多方法用以解决手术前影像装置的姿态评估问题,其中,影像射线假定相交于一共用点上。过去已经针对影像基础问题进行研究。闭合形式解(Closed-form solutions)已经被制定用以确认是否采用三或四组三维/二维对应处。
鉴于上述问题,有必要提出一种更精确的手术导引方式。在本专利中,其主要提出一种影像增强真实度的方法,特别是应用该方法在整形外科用增强真实性的电脑辅助眼镜(Augmented Reality Computer Assisted Glasses for Orthopaedic,ARCAGO)。
发明内容
本发明的主要目的在于提出一种增强影像真实度的方法,用于获得一眼睛对一标记点的一正确位置,其包括下列步骤:获得一相机与一标记点的一第一转换矩阵;获得该眼睛与该相机的一第二转换矩阵;连结该第一转换矩阵与该第二转换矩阵以获得该眼睛对该标记点的一正确位置对应矩阵;连结该正确位置对应矩阵与该标记点的位置特征,以获得该眼睛对该标记点的该正确位置。
根据本发明的一特征,获得该第一转换矩阵是使用一函式库侦测该标记点的位置特征并经一第一数学运算获得。
根据本发明的一特征,获得该眼睛与该相机的一第二转换矩阵,包含下列步骤:戴上一眼镜,点选该标记点的复数个角点以获得该眼镜的荧幕上的一二维坐标;利用一函式库获得相对应该相机一三维坐标,经一第二数学运算获得该二维坐标与该相机的该第二转换矩阵;利用解联立方程式获得该第二转换矩阵。
根据本发明的一特征,该标记点的复数个角点为该标记点的12个角点。
本发明的另一目的在于提出一种可穿戴式眼镜的手术导引方法,其包括下列步骤:手术前,于患部一个以上的标记点先制作一断层影像;将该断层影像制作成一三维立体模拟影像;通过一增强影像真实度的方法,用于获得一手术操作者眼睛对该患部的标记点的一正确位置,以调整该三维立体模拟影像与该标记点的误差;其中增强影像真实度的方法包括下列步骤:获得一相机与该标记点的一第一转换矩阵;获得该手术操作者眼睛与该相机的一第二转换矩阵;连结该第一转换矩阵与该第二转换矩阵以获得该眼睛对该标记点的一正确位置对应矩阵;连结该正确位置对应矩阵与该标记点的位置特征,以获得该眼睛对该标记点的该正确位置。
根据本发明的一特征,获得该第一转换矩阵是使用一函式库侦测该标记点的位置特征并经一第一数学运算获得。
根据本发明的一特征,获得该眼睛与该相机的一第二转换矩阵,包含下列步骤:戴上一眼镜,点选该标记点的复数个角点以获得该眼镜的荧幕上的一二维坐标;利用一函式库获得相对应该相机一三维坐标,经一第二数学运算获得该二维坐标与该相机的该第二转换矩阵;利用解联立方程式获得该第二转换矩阵。
根据本发明的一特征,该标记点的复数个角点为该标记点的12个角点。
附图说明
图1为本发明的增强影像真实度的方法与使用该方法的可穿戴式眼镜的手术导引方法的系统架构。
图2为图1所示系统架构的坐标关系图。
具体实施方式
虽然本发明可表现为不同形式的实施例,但附图及下文中的说明仅为本发明的较佳实施例,并请了解本文所揭示的内容为本发明的一范例,且并非意图用以将本发明限制于图示及/或所描述的特定实施例中。
本发明所提出的影像增强真实度的方法,可应用在整形外科用增强真实性的电脑辅助眼镜(Augmented Reality Computer Assisted Glasses for Orthopaedic,ARCAGO)。本发明主要是解决有关于三维模型应用于手术中的记录方法,且其使用由CT术前影像所撷取的三维模型。我们将结合在手术使用增强真实性技术以及采用三维-三维姿态记录的基础影像方法。一旦记录该姿态,则该增强真实性将可视为一虚拟以及真实环境空间的混合,其同步重现患者的资讯。
由于人的眼睛从眼镜看出去的视觉焦距与实际物体相对眼睛的距离有误差值,因此本发明在于解决这个问题。第一个部分是相机抓一标记点位置,第二个部分是校正手术操作者眼睛30对于该标记点的位置误差值。
现请参考图1,其显示为本发明的增强影像真实度的方法与使用该方法的可穿戴式眼镜的手术导引方法的系统架构。图2所示为图1所示系统架构的坐标关系图。其中,相机10位于标记点20的附近,手术操作者眼睛30位于相机10附近,且位于标记点20的上方。由于手术操作者配戴一可穿戴式眼镜,所以在眼睛30与标记点20之间存在着可穿戴式眼镜的荧幕40。
该强影像真实度的方法,可获得眼睛对一标记点的正确位置,包括下列步骤:
步骤1:获得相机与一标记点的一第一转换矩阵Mmc
步骤2:获得眼睛与该相机的一第二转换矩阵Mce
步骤3:连结该第一转换矩阵与该第二转换矩阵以获得眼睛对该标记点的正确位置对应矩阵Mme
步骤4:连结该正确位置对应矩阵与该标记点的位置特征,以获得眼睛对该标记点的正确位置。
需注意的是,其中相机与标记点的第一转换矩阵Mmc中其值是变动的,但可以由相机获得;眼睛与相机的第二转换矩阵Mce其值是固定的,但是其值未知,需经由该标记点的复数个角点来做校正以获得第二转换矩阵Mce的值。而该正确位置对应矩阵Mme其值是变动且未知的,便可通过将第一转换矩阵与乘上第二转换矩阵来获得。
现请同时参考图2。在步骤1中,获得第一转换矩阵Mmc是使用一第一函式库侦测该标记点的位置特征并经一第一数学运算获得。其中XC,YC,ZC为相机的坐标,如矩阵式(1)中所示;且Xm,Ym,Zm为该标记点的位置特征,亦即该标记点的坐标。
Figure PCTCN2016000374-appb-000001
现请同时参考图2。在步骤2中,获得眼睛与该相机的一第二转换矩阵,包含下列步骤:
步骤21,戴上一眼镜,点选该标记点的复数个角点以获得眼镜的荧幕上的一二维坐标;
步骤22,利用一第二函式库获得相对应该相机一三维坐标,经一第二数学运算获得该二维坐标与该相机的第二转换矩阵Mce,如矩阵式(2)中所示;其中(ui,vi,wi)为荧幕上的二维坐标,其是根据该标记点的复数个角点而有不同的对应坐标值;且
Figure PCTCN2016000374-appb-000002
为该相机的三维坐标,其是根据该标记点的复数个角点而有不同的对应坐标值。
Figure PCTCN2016000374-appb-000003
步骤22,利用解联立方程式获得该第二转换矩阵。
其中,该标记点的复数个角点至少为8个以上的角点,较佳是12个角点。且该第一函式库与该第二函式库为C/C++语言编写的ArToolKit函式库或是Aurocco或ooopds等的函式库。
该可穿戴式眼镜的手术导引方法,其包括下列步骤:
步骤100,手术前,于患部一个以上的标记点先制作一断层影像;
步骤200,将该断层影像制作成一三维立体模拟影像;
步骤300,通过一增强影像真实度的方法,用于获得一手术操作者眼睛对患部的标记点的一正确位置,以调整该三维立体模拟影像与该标记点的误差;
其中步骤300,增强影像真实度的方法包括下列步骤:
步骤310,获得一相机与该标记点的一第一转换矩阵;
步骤320,获得眼睛与该相机的一第二转换矩阵;
步骤330,连结该第一转换矩阵与该第二转换矩阵以获得眼睛对该标记点的一正确位置对应矩阵;
步骤340,连结该正确位置对应矩阵与该标记点的位置特征,以获得眼睛对该标记点的该正确位置。
其中该断层影像可以包括电脑断层(CT)、磁共振影像(MRI)、X光、核医影像等影像,以重建出的3D非即时影像模型。
由于人的眼睛从眼镜看出去的视觉焦距与实际物体相对眼睛的距离有误 差值,因此本发明在于解决这个问题。在手术前,手术操作者,亦即执刀医生,戴上眼镜(亦即是电脑辅助眼镜)后,先以复数个,通常是8个以上,较佳是12个侦测点,以测试手术操作者眼睛30取决自眼镜的焦距。经过计算后,将该视觉焦距的误差值回馈至电脑系统运算,所得的调整焦距数值将会据以调节步骤100与步骤200所得的三维立体模拟影像,并投影于该电脑辅助眼镜的荧幕40前,如此即可获得对位于患部的视觉的精准的3D模拟影像。
在步骤310中,获得该第一转换矩阵是使用一第一函式库侦测该标记点的位置特征并经一第一数学运算获得,如矩阵式(1)所示。
在步骤320中,获得眼睛与该相机的一第二转换矩阵,包含下列步骤:
步骤321,戴上一眼镜,点选该标记点的复数个角点以获得眼镜的荧幕上的二维坐标;
步骤322,利用一第二函式库获得相对应该相机一三维坐标,经一第二数学运算获得该二维坐标与该相机的该第二转换矩阵;如矩阵式(2)所示;
步骤322,利用解联立方程式获得该第二转换矩阵。
其中,该标记点的复数个角点至少为8个以上的角点,较佳是12个角点。且该第一函式库与该第二函式库为C/C++语言编写的ArToolKit函式库,或是Aurocco或ooopds等的函式库。
本发明通过所提出的增强影像真实度的方法,克服建立基础影像方法的问题。在临床实验中,使用一病患的三维模型,该ARCAGO用以说明所提出的基础影像记录方法,并用以寻找整型外科手术的切入点。实验结果显示,有两名外科医生层使用所提出的增强影像真实度系统于四次脊柱手术中,而比起使用C-arm引导针头至目标切入点的时间将可缩短70%。主要原因是影像将直接显适于眼镜上,而外科医生仅需要注视病患而不需要注意C-arm的荧幕。这些试验显示该系统可完美地在手术房运作并提供相当有用的资讯,特别是寻找切入点的脊柱外科手术。为了精确地进行评估,使用于20组切入点于模拟的假人上,并使用ARCAGO系统模拟腰椎穿刺流程于四次实验之中。在动态操作情况下,其平均误差距离为2.2±0.25毫米。
本发明通过所提出的可穿戴式眼镜的手术导引方法。在临床实验中,双眼立体校准精确度≤1.5mm;临床使用校准时间≤3分钟。标记点定位点精确度≤1mm;且定位的执行速度达30fps。三维立体模拟影像模型偏移稳定性≤1.5mm,且执行速度达30fps。
根据本发明的揭示,本发明具有下列减少手术时间、降低X光使用量辐射 线少、辅助手术定位等优点。
虽然本发明已以前述较佳实施例揭示,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作各种更动与修改。如上述的解释,都可以作各形式的修正与变化,而不会破坏此发明的精神。因此本发明的保护范围当视后附权利要求范围的界定为准。

Claims (10)

  1. 增强影像真实度的方法,用于获得眼睛对一标记点的一正确位置,其特征在于,包括下列步骤:
    获得相机与一标记点的一第一转换矩阵;
    获得眼睛与该相机的一第二转换矩阵;
    连结该第一转换矩阵与该第二转换矩阵以获得眼睛对该标记点的一正确位置对应矩阵;
    连结该正确位置对应矩阵与该标记点的位置特征,以获得眼睛对该标记点的该正确位置。
  2. 根据权利要求1所述的增强影像真实度的方法,其特征在于,获得所述第一转换矩阵使用一第一函式库侦测所述标记点的位置特征并经一第一数学运算获得。
  3. 根据权利要求1所述的增强影像真实度的方法,其特征在于,获得眼睛与相机的第二转换矩阵包含下列步骤:
    戴上一眼镜,点选所述标记点的复数个角点以获得该眼镜的荧幕上的一二维坐标;
    利用一第二函式库获得相对应该相机一三维坐标,经一第二数学运算获得该二维坐标与该相机的该第二转换矩阵;
    利用解联立方程式获得该第二转换矩阵。
  4. 根据权利要求3所述的增强影像真实度的方法,其特征在于,所述标记点的复数个角点至少为8个角点。
  5. 根据权利要求3所述的增强影像真实度的方法,其特征在于,所述标记点的复数个角点为12个角点。
  6. 可穿戴式眼镜的手术导引方法,其特征在于,包括下列步骤:
    手术前,于患部一个以上的标记点先制作一断层影像;
    将该断层影像制作成一三维立体模拟影像;
    通过一增强影像真实度的方法,用于获得一手术操作者眼睛对该患部的标记点的一正确位置,以调整该三维立体模拟影像与该标记点的误差;
    其中增强影像真实度的方法包括下列步骤:
    获得一相机与该标记点的一第一转换矩阵;
    获得该手术操作者眼睛与该相机的一第二转换矩阵;
    连结该第一转换矩阵与该第二转换矩阵以获得该眼睛对该标记点的一正确位置对应矩阵;
    连结该正确位置对应矩阵与该标记点的位置特征,以获得该眼睛对该标记点的该正确位置。
  7. 根据权利要求6所述的可穿戴式眼镜的手术导引方法,其特征在于,获得所述第一转换矩阵使用一第一函式库侦测所述标记点的位置特征并经一第一数学运算获得。
  8. 根据权利要求6所述的可穿戴式眼镜的手术导引方法,其特征在于,获得眼睛与相机的一第二转换矩阵,包含下列步骤:
    戴上一眼镜,点选该标记点的复数个角点以获得该眼镜的荧幕上的一二维坐标;
    利用一第二函式库获得相对应该相机一三维坐标,经一第二数学运算获得该二维坐标与该相机的该第二转换矩阵;
    利用解联立方程式获得该第二转换矩阵。
  9. 根据权利要求8所述的可穿戴式眼镜的手术导引方法,其特征在于,所述标记点的复数个角点至少为8个角点。
  10. 根据权利要求8项所述的可穿戴式眼镜的手术导引方法,其特征在于,所述标记点的复数个角点为12个角点。
PCT/CN2016/000374 2016-07-11 2016-07-11 影像增强真实度的方法与应用该方法在可穿戴式眼镜的手术导引 WO2018010040A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/000374 WO2018010040A1 (zh) 2016-07-11 2016-07-11 影像增强真实度的方法与应用该方法在可穿戴式眼镜的手术导引
US16/316,623 US10603133B2 (en) 2016-07-11 2016-07-11 Image guided augmented reality method and a surgical navigation of wearable glasses using the same
EP16908373.0A EP3525173A4 (en) 2016-07-11 2016-07-11 IMAGE REALITY EXTENSION PROCESS AND SURGICAL GUIDE TO APPLY THIS TO WEARABLE GLASSES
CN201680087350.3A CN109416841B (zh) 2016-07-11 2016-07-11 影像增强真实度的方法与应用该方法在可穿戴式眼镜的手术导引
TW105134457A TWI615126B (zh) 2016-07-11 2016-10-25 影像增強真實度之方法與應用該方法在可穿戴式眼鏡之手術導引

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/000374 WO2018010040A1 (zh) 2016-07-11 2016-07-11 影像增强真实度的方法与应用该方法在可穿戴式眼镜的手术导引

Publications (1)

Publication Number Publication Date
WO2018010040A1 true WO2018010040A1 (zh) 2018-01-18

Family

ID=60952235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000374 WO2018010040A1 (zh) 2016-07-11 2016-07-11 影像增强真实度的方法与应用该方法在可穿戴式眼镜的手术导引

Country Status (5)

Country Link
US (1) US10603133B2 (zh)
EP (1) EP3525173A4 (zh)
CN (1) CN109416841B (zh)
TW (1) TWI615126B (zh)
WO (1) WO2018010040A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109223121A (zh) * 2018-07-31 2019-01-18 广州狄卡视觉科技有限公司 基于医学影像模型重建、定位的脑出血穿刺手术导航系统
CN109767645A (zh) * 2019-02-01 2019-05-17 谷东科技有限公司 一种基于ar眼镜的停车规划辅助方法及系统
US10383692B1 (en) 2018-04-13 2019-08-20 Taiwan Main Orthopaedic Biotechnology Co., Ltd. Surgical instrument guidance system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US11980507B2 (en) 2018-05-02 2024-05-14 Augmedics Ltd. Registration of a fiducial marker for an augmented reality system
TWI678679B (zh) * 2018-07-09 2019-12-01 財團法人資訊工業策進會 空間座標轉換伺服器以及方法
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
US11357593B2 (en) 2019-01-10 2022-06-14 Covidien Lp Endoscopic imaging with augmented parallax
US11980506B2 (en) 2019-07-29 2024-05-14 Augmedics Ltd. Fiducial marker
US11992373B2 (en) 2019-12-10 2024-05-28 Globus Medical, Inc Augmented reality headset with varied opacity for navigated robotic surgery
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
US11464581B2 (en) 2020-01-28 2022-10-11 Globus Medical, Inc. Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
TWI741536B (zh) * 2020-03-20 2021-10-01 台灣骨王生技股份有限公司 基於混合實境的手術導航影像成像方法
TWI727725B (zh) * 2020-03-27 2021-05-11 台灣骨王生技股份有限公司 手術導航系統及其成像方法
US11607277B2 (en) 2020-04-29 2023-03-21 Globus Medical, Inc. Registration of surgical tool with reference array tracked by cameras of an extended reality headset for assisted navigation during surgery
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
CN113349928B (zh) * 2021-05-20 2023-01-24 清华大学 用于柔性器械的增强现实手术导航装置
TWI786666B (zh) * 2021-06-07 2022-12-11 國立臺灣大學 穿刺引導系統及方法
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter
TWI778922B (zh) * 2022-02-21 2022-09-21 國立勤益科技大學 鼻腔量測系統
CN117124334B (zh) * 2023-10-23 2024-01-23 湖南视比特机器人有限公司 机器人漂移校正方法、机器人、存储介质和终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163236A (zh) * 2006-10-10 2008-04-16 Itt制造企业公司 用于动态地校正头戴视频系统中的视差的系统和方法
WO2014155288A2 (en) * 2013-03-25 2014-10-02 Ecole Polytechnique Federale De Lausanne (Epfl) Method and apparatus for head worn display with multiple exit pupils
WO2015126466A1 (en) * 2014-02-21 2015-08-27 The University Of Akron Imaging and display system for guiding medical interventions
CN105320271A (zh) * 2014-07-10 2016-02-10 精工爱普生株式会社 利用直接几何建模的头戴式显示器校准
CN105395252A (zh) * 2015-12-10 2016-03-16 哈尔滨工业大学 具有人机交互的可穿戴式血管介入手术三维立体图像导航装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753828B2 (en) * 2000-09-25 2004-06-22 Siemens Corporated Research, Inc. System and method for calibrating a stereo optical see-through head-mounted display system for augmented reality
US7190331B2 (en) * 2002-06-06 2007-03-13 Siemens Corporate Research, Inc. System and method for measuring the registration accuracy of an augmented reality system
CN1957373A (zh) * 2004-03-12 2007-05-02 布拉科成像S.P.A.公司 基于视频的扩增实境增强型外科手术导航系统的精度评估
US8648897B2 (en) * 2006-10-10 2014-02-11 Exelis, Inc. System and method for dynamically enhancing depth perception in head borne video systems
CN101797182A (zh) * 2010-05-20 2010-08-11 北京理工大学 一种基于增强现实技术的鼻内镜微创手术导航系统
US8957948B2 (en) * 2010-08-24 2015-02-17 Siemens Corporation Geometric calibration of head-worn multi-camera eye tracking system
US9111351B2 (en) * 2011-12-15 2015-08-18 Sony Corporation Minimizing drift using depth camera images
JP6008397B2 (ja) * 2013-03-04 2016-10-19 Kddi株式会社 光学式シースルー型hmdを用いたarシステム
US9264702B2 (en) * 2013-08-19 2016-02-16 Qualcomm Incorporated Automatic calibration of scene camera for optical see-through head mounted display
JP6368142B2 (ja) * 2014-05-14 2018-08-01 キヤノン株式会社 情報処理装置、情報処理方法
US10070120B2 (en) * 2014-09-17 2018-09-04 Qualcomm Incorporated Optical see-through display calibration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163236A (zh) * 2006-10-10 2008-04-16 Itt制造企业公司 用于动态地校正头戴视频系统中的视差的系统和方法
WO2014155288A2 (en) * 2013-03-25 2014-10-02 Ecole Polytechnique Federale De Lausanne (Epfl) Method and apparatus for head worn display with multiple exit pupils
WO2015126466A1 (en) * 2014-02-21 2015-08-27 The University Of Akron Imaging and display system for guiding medical interventions
CN105320271A (zh) * 2014-07-10 2016-02-10 精工爱普生株式会社 利用直接几何建模的头戴式显示器校准
CN105395252A (zh) * 2015-12-10 2016-03-16 哈尔滨工业大学 具有人机交互的可穿戴式血管介入手术三维立体图像导航装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3525173A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10383692B1 (en) 2018-04-13 2019-08-20 Taiwan Main Orthopaedic Biotechnology Co., Ltd. Surgical instrument guidance system
CN109223121A (zh) * 2018-07-31 2019-01-18 广州狄卡视觉科技有限公司 基于医学影像模型重建、定位的脑出血穿刺手术导航系统
CN109767645A (zh) * 2019-02-01 2019-05-17 谷东科技有限公司 一种基于ar眼镜的停车规划辅助方法及系统

Also Published As

Publication number Publication date
EP3525173A4 (en) 2020-07-08
CN109416841B (zh) 2023-03-31
TW201801682A (zh) 2018-01-16
TWI615126B (zh) 2018-02-21
EP3525173A1 (en) 2019-08-14
US10603133B2 (en) 2020-03-31
CN109416841A (zh) 2019-03-01
US20190216572A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
TWI615126B (zh) 影像增強真實度之方法與應用該方法在可穿戴式眼鏡之手術導引
Ma et al. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study
TWI741359B (zh) 與手術導航系統整合之混合實境系統
Marmulla et al. Laser-scan-based navigation in cranio-maxillofacial surgery
JP5328137B2 (ja) 用具又は埋植物の表現を表示するユーザ・インタフェイス・システム
Eggers et al. Image-to-patient registration techniques in head surgery
CN102727309B (zh) 结合内窥镜影像的外科手术导航系统
Andrews et al. Registration techniques for clinical applications of three-dimensional augmented reality devices
CN102784003B (zh) 一种基于结构光扫描的椎弓根内固定手术导航系统
US20140031668A1 (en) Surgical and Medical Instrument Tracking Using a Depth-Sensing Device
WO2017117517A1 (en) System and method for medical imaging
US20080114267A1 (en) Systems and methods for implant distance measurement
Caversaccio et al. Computer assistance for intraoperative navigation in ENT surgery
US20080154120A1 (en) Systems and methods for intraoperative measurements on navigated placements of implants
CN202751447U (zh) 一种基于结构光扫描的椎弓根内固定手术导航系统
KR102105974B1 (ko) 의료 영상 시스템
US20210196404A1 (en) Implementation method for operating a surgical instrument using smart surgical glasses
Tebo et al. An optical 3D digitizer for frameless stereotactic surgery
US20240041558A1 (en) Video-guided placement of surgical instrumentation
Mirota et al. High-accuracy 3D image-based registration of endoscopic video to C-arm cone-beam CT for image-guided skull base surgery
Yaniv et al. Applications of augmented reality in the operating room
CN114980832A (zh) 用于规划和执行三维全息介入手术的系统和方法
US11406346B2 (en) Surgical position calibration method
Linte et al. Image-guided procedures: tools, techniques, and clinical applications
Wu et al. Process analysis and application summary of surgical navigation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016908373

Country of ref document: EP

Effective date: 20190211