WO2018009036A1 - Amorphous iron-based alloy and composite material for radiation shielding manufactured using same - Google Patents

Amorphous iron-based alloy and composite material for radiation shielding manufactured using same Download PDF

Info

Publication number
WO2018009036A1
WO2018009036A1 PCT/KR2017/007322 KR2017007322W WO2018009036A1 WO 2018009036 A1 WO2018009036 A1 WO 2018009036A1 KR 2017007322 W KR2017007322 W KR 2017007322W WO 2018009036 A1 WO2018009036 A1 WO 2018009036A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous
iron
based alloy
atomic
alloy
Prior art date
Application number
PCT/KR2017/007322
Other languages
French (fr)
Korean (ko)
Inventor
이승훈
문재원
박지성
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2018009036A1 publication Critical patent/WO2018009036A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C35/00Master alloys for iron or steel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C35/00Master alloys for iron or steel
    • C22C35/005Master alloys for iron or steel based on iron, e.g. ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals

Definitions

  • the present invention relates to an amorphous iron-based alloy, in detail, based on Fe represented by the general formula Fe a B b X c Z d in the amorphous iron-based alloy containing a high content of boron, together with the iron and boron Mo, Cr, Further comprising a certain ratio of C, Si, Gd, Mn, Zr, Ti or Nb, to ensure the stability of the amorphous phase, as well as to significantly improve the corrosion resistance, mechanical strength and radiation shielding rate, amorphous iron-based alloy It is about.
  • Spent nuclear fuel emitted from nuclear power plants emits a large amount of thermal neutrons, and used nuclear fuel is stored and stored in water to prevent the thermal neutrons from being released to the outside.
  • the amount of spent fuel has increased as the amount of nuclear fuel used for nuclear power generation increases for smooth power supply. Accordingly, as the storage space of spent nuclear fuel is saturated, securing of storage space is emerging as a big problem.
  • the present invention is based on iron, has an amorphous structure, and improves the boron content (solubility) to ensure the stability of the amorphous structure and at the same time corrosion resistance, mechanical strength and radioactivity.
  • the problem is to provide an amorphous iron-based alloy with significantly improved shielding rate.
  • the present invention to solve the above problems, to provide a radioactive shielding composite prepared by mixing concrete, polymer, mortar or ceramic to the amorphous iron-based alloy as a problem.
  • B is the atomic% of boron (B) and 5 ⁇ b ⁇ 35,
  • C is an atomic percentage of X and 1 ⁇ c ⁇ 15, X is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb,
  • D is an atomic% of Z, and 0 ⁇ d ⁇ 25, wherein Z is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb, provided that the same is not the same as X
  • Z is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb, provided that the same is not the same as X
  • An amorphous iron-based alloy is provided.
  • a radiation shielding composite prepared by mixing concrete, polymer, mortar, or ceramic with the amorphous iron-based alloy.
  • the amorphous iron-based alloy represented by the general formula Fe a B b X c Z d does not have defects such as grain boundaries as it has an amorphous structure, and thus has a higher strength than general crystalline metals having the same composition. And not only having excellent corrosion resistance, but also to include a high content of boron, showing excellent performance in radioactive shielding, in particular thermal neutron shielding.
  • the present invention can exhibit an improved radiation shielding function by including gadolinium together with boron in the amorphous iron-based alloy represented by the general formula Fe a B b X c Z d .
  • the present invention is an iron-based amorphous iron-based alloy, as the atomic percentage of Fe exceeds 50, can be used as a structural material showing a radioactive shielding function, of course, it is also useful economically.
  • Figure 1 shows the thermal neutron shielding of the radiation shielding composite prepared according to the present invention.
  • Mo 3 is Fe 72 B 24 according to an embodiment of the present invention .
  • 5 Mo 3 Gd 0 .5, Fe 72 B 23 Mo 3 Gd 2, Fe 72 B 20 Mo 3 Gd 5 , and Fe 72 B 15 Mo 3 Gd 10 composition is the analysis of the XRD of the amorphous iron-based alloy having the graph.
  • Mo 3 Gd 2 is a XRD analysis graph of the amorphous iron-based alloy having the following composition.
  • 5 is Fe 67 B 24 Mo 3 Gd 1 Cr 5 , Fe 62 B 24 according to an embodiment of the present invention .
  • 5 Mo 3 Gd 0 XRD analysis of an amorphous iron-based alloy having 5 Cr 10 , Fe 62 B 24 Mo 3 Gd 1 Cr 10, and Fe 52 B 24 Mo 3 Gd 1 Cr 20 .
  • FIG. 6 is a graph illustrating an XRD analysis of an amorphous iron-based alloy having a Fe 65 B 30 Mo 3 C 2 composition according to an embodiment of the present invention.
  • Fe 72 B 24 is Fe 72 B 24 according to an embodiment of the present invention . 5 Mo 3 Gd 0 .5, Fe 72 B 23 Mo 3 Gd 2, Fe 72 B 20 Mo 3 Gd 5 , and Fe 72 B 15 Mo 3 Gd 10 composition was analyzed and the iron-based amorphous alloy having a DSC graph.
  • Fe 72 B 24 according to an embodiment of the present invention .
  • 5 Mo 3 0.5 Gd 2 is an analysis of the iron-based amorphous alloy having a composition in the DSC plot.
  • Fe 65 B 30 Mo 3 C 2 according to an embodiment of the present invention It is a graph analyzing the amorphous iron-based alloy having a composition by DSC.
  • Fe 72 B 24 according to an embodiment of the present invention .
  • 5 Mo 3 Gd 0 .5 Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23.5 Mo 3 Gd 1.5, Fe 72 B 23 Mo 3 Gd 2 and Fe 72 B 22.
  • 5 Mo 3 Gd 2 .5 is the analysis of the corrosion properties of the iron-based amorphous alloy having a composition graph.
  • Fe 13 is Fe 67 B 24 Mo 3 Gd 1 Cr 5 , Fe 62 B 24 according to an embodiment of the present invention . 5 Mo 3 Gd 0 . Corrosion characteristics of amorphous iron based alloys containing 5 Cr 10 , Fe 62 B 24 Mo 3 Gd 1 Cr 10 and Fe 52 B 24 Mo 3 Gd 1 Cr 20 .
  • the present invention relates to an amorphous iron-based alloy, in detail, based on Fe represented by the general formula Fe a B b X c Z d in the amorphous iron-based alloy containing a high content of boron, together with the iron and boron Mo, Cr, Further comprising a certain ratio of C, Si, Gd, Mn, Zr, Ti or Nb, to ensure the stability of the amorphous phase, as well as to significantly improve the corrosion resistance, mechanical strength and radiation shielding rate, amorphous iron-based alloy It is about.
  • A is the atomic% of iron (Fe)
  • b is 5 ⁇ b ⁇ 35 as atomic% of boron (B)
  • C is an atomic% of X, wherein 1 ⁇ c ⁇ 15, X is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb
  • d is an atomic% of Z 0 ⁇ d ⁇ 25, wherein Z is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb, but is not the same as X. This is provided.
  • the iron (Fe) is known, a is the atomic% (at%) of the iron.
  • the iron contained in the base is, in addition to the high-purity Fe element, steel, pig iron, cast iron, Fe-B alloy iron, Fe-Cr alloy iron, Fe-Mo alloy iron , Fe-P alloy is characterized in that any one or more selected from the group consisting of iron.
  • amorphous iron-based alloy of the present invention represented by the general formula Fe a B b X c Z d , B is boron, b is the atomic% of the boron.
  • the boron may be included in the iron-based alloy in a high content as the present invention has an amorphous structure, thereby improving radioactive shielding, in particular thermal neutron shielding rate.
  • b which is the atomic% of boron, is 5 ⁇ b ⁇ 35, and preferably b is 15 ⁇ b ⁇ 25.
  • amorphous iron-based alloy of the present invention represented by the general formula Fe a B b X c Z d , wherein c is 1% ⁇ c ⁇ 15 in atomic% of X, wherein X is Mo, Cr, C, Si And Gd, Mn, Zr, Ti, and Nb.
  • amorphous iron-based alloy of the present invention represented by the general formula Fe a B b X c Z d , wherein d is 0 ⁇ d ⁇ 25 in atomic% of Z, and Z is Mo, Cr, C, Si, It is any one selected from Gd, Mn, Zr, Ti, and Nb, except that it is not the same as X.
  • b + c or b + d is 20 to 30 atomic%
  • the boron (B) and gadolinium (Gd) may be included together in the amorphous iron-based alloy.
  • the sum of atomic% of boron and atomic% of Gd is 20 to 30.
  • X is Mo or Si
  • Z is Cr
  • Gd or C
  • c is an atomic% of X is 1 ⁇ c ⁇ 5
  • d is an atomic% of Z is 0 ⁇ d ⁇ 20 It is preferable.
  • the atomic% a of Fe is 70 to 80 atomic%.
  • An amorphous iron-based alloy of the present invention the formula Fe a B b X c is represented as well as a Z d, wherein in the formula Fe a B b X c Z d, without the same as the X and Z Mo, Cr , C, Si, Gd, Mn, Zr, Ti and Nb is characterized in that it further comprises any one or more elements selected from.
  • the general formula Fe a B b X c Z d when X is Mo or Si, and Z is Gd or C, 100 atomic% of the general formula Fe a B b X c Z d It contains Cr at 5 to 25 atomic percent.
  • the general formula Fe a B b X c Z d when X is Mo or Si, and Z is Gd or C, 100 atomic% of the general formula Fe a B b X c Z d It is characterized in that it further comprises Cr in 8 to 18 atomic%.
  • the amorphous iron-based alloy of the present invention includes a high content of B based on Fe, as well as any one or more selected from Cr, Mo, C, Si, and Gd as a certain atomic% content. While ensuring the stability of the amorphous structure is characterized in that the thermal neutron shielding rate represented by 20 ⁇ 90%.
  • the amorphous iron-based alloy of the present invention may have a variety of shapes, characterized in that the shape of the ribbon, fibers, pieces, bulk or powder.
  • a radiation shielding composite prepared by mixing concrete, polymer, mortar, or ceramic with the amorphous iron-based alloy.
  • the composite material is characterized by exhibiting a thermal neutron shielding rate of 20 to 90%.
  • a master alloy of Fe 72 B 25 Mo 3 composition after weighing for each element based on 20g, using a vacuum arc furnace in a high-purity argon atmosphere A mother alloy of Fe 72 B 25 Mo 3 composition consisting of 72 at% of Fe, 25 at% of B, and 3 at% of Mo was prepared by vacuum arc melting.
  • the master alloy Fe and Mo having a purity of 99.8% or more, and ferroboron (Ferro-boron> 99.8%) were used.
  • an amorphous ribbon of the prepared Fe 25 Mo 3 B 72 Fe composition of a master alloy by a melt spinning (melt-spinning) equipment 72 B 25 Mo 3 composition was prepared.
  • the melt spitting was carried out in an inert gas atmosphere under the condition that the linear speed of the rotating wheel was 35-40 m / s and the pressure of the gas for extruding the molten molten metal was 0.04-0.06 MPa. Accordingly, Fe 72 B 25 Mo 3 composition of 0.020-0.023mm thickness An amorphous ribbon shaped specimen was produced.
  • the Fe 52 - 67 B 25 Mo 3 Cr 5 -20 amorphous ribbons of composition, by the respective atomic%, Fe 52 B 25 Mo 3 Cr 20, Fe 57 B 25 Mo 3 Cr 15, Fe 62 B 25 It was prepared with an amorphous ribbon having a composition of Mo 3 Cr 10 and Fe 67 B 25 Mo 3 Cr 5 .
  • Fe, Mo, and Gd having a purity of 99.8% or more, and ferroboron (Ferro-boron> 99.8%), except that the composition of the amorphous ribbon and the atomic% of each of the composition was different from the Fe 72 B 25 Mo 3
  • an amorphous ribbon of Fe 72 B 15-24.5 Mo 3 Gd 0.5-10 composition having a thickness of 0.020-0.023 mm was prepared.
  • the Fe 72 B 15 - 23 Mo 3 Gd 2 -10 amorphous ribbons of composition by the respective atomic%, Fe 72 B 24.5 Mo 3 Gd 0.5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23 . 5 Mo 3 Gd 1 .5, Fe 72 B 23 Mo 3 Gd 2, Fe 72 B 22. 5 Mo 3 Gd 2 .5, was prepared in an amorphous ribbon having Fe 72 B 20 Mo 3 Gd 5 and a composition of Fe 72 B 15 Mo 3 Gd 10.
  • Fe, Mo, Cr, and Gd having a purity of 99.8% or more, and ferroboron (Ferro-boron> 99.8%), except that the composition of the amorphous ribbon and the atomic% of the respective compositions were different from each other.
  • Fe 72 B 25 Mo 3 In the same manner as the amorphous ribbon manufacturing process of the composition, thickness of 0.020-0.023mm Fe 52 - 67 B 24 -24. 5 Mo 3 Gd 0 .5- 1.0 Cr to prepare amorphous ribbons of composition 5-20.
  • the Fe 52 - 67 B 24 -24. 5 Mo 3 Gd 0 .5- 1.0 Cr 5 -20 amorphous ribbons of composition, by the respective atomic% Fe 67 B 24 Mo 3 Gd 1 Cr 5, Fe 62 B 24. 5 Mo 3 Gd 0 . It was prepared with an amorphous ribbon having a composition of 5 Cr 10 , Fe 62 B 24 Mo 3 Gd 1 Cr 10, and Fe 52 B 24 Mo 3 Gd 1 Cr 20 .
  • Fe, Mo, Pig iron (iron with 4.3 wt.% Of C) and ferroboron (Ferro-boron> 99.8%) having a purity of 99.8% or more were used for the composition of the amorphous ribbon and the respective compositions. Except for changing the atomic% Fe 72 B 25 Mo 3 Fe 65 B 30 Mo 3 C 2 with a thickness of 0.020-0.023 mm An amorphous ribbon of composition was produced.
  • Fe 72 B 25 Mo 3 produced long by the above And then to be incorporated by cutting the amorphous ribbon of the composition to 20 ⁇ 30mm in length, a width is 50mm placed vertically is 50mm and spread evenly on a polyester (polyester) having a thickness of 10mm, as 3 days solidified Fe 72 B 25 Mo 3 A radiation shielding composite was prepared for an amorphous ribbon of composition.
  • the content of the ribbon blended with the polyester was set to 1vol% (Example 1-1) or 2vol% (Example 1-2).
  • Example 1-1 Fe 72 B 23 Mo 3 Gd 2 in the same manner as in Example 1-1, except that the amorphous alloy contained Fe 72 B 23 Mo 3 Gd 2.
  • a shielding composite including an amorphous alloy was prepared.
  • Example 1-1 Fe 72 B 20 Mo 3 Gd 5 in the same manner as in Example 1-1, except that the amorphous alloy contained Fe 72 B 20 Mo 3 Gd 5.
  • a shielding composite including an amorphous alloy was prepared.
  • Example 1-1 Fe 72 B 15 Mo 3 Gd 10 in the same manner as in Example 1-1, except that the amorphous alloy contained Fe 72 B 15 Mo 3 Gd 10.
  • a shielding composite including an amorphous alloy was prepared.
  • Fe 72 B 24 produced long by the single roll method .
  • 5 Mo 3 Gd 0 .5 and then to cut the blended composition of the amorphous ribbon to a length of 10 ⁇ 15mm, into the radius and thickness to spread evenly in the cylindrical concrete composite material of 50mm, as 28 days curing by Fe 72 B 24.
  • 5 Mo composite was prepared for radiation shielding for an amorphous ribbon of 3 Gd 0 .5 composition.
  • the content of the ribbon to be blended with the concrete composite was 1vol%, and the mixing ratio of the concrete composite is shown in Table 1 below.
  • a radiation shielding composite including FIBRAFLEX was prepared in the same manner as in Example 1-1, except that the commercially available iron-based amorphous ribbon FIBRAFLEX was included.
  • a radiation shielding composite including FIBRAFLEX was prepared in the same manner as in Example 1-2, except that the commercially available iron-based amorphous ribbon FIBRAFLEX was included.
  • Polyester aggregate which does not contain iron-based amorphous ribbon
  • Control 1 was prepared by hardening only 3 days of polyester (polyester) without iron-based amorphous ribbon and having a width of 50 mm, a length of 50 mm, and a thickness of 10 mm.
  • a control group 2 was prepared by hardening a mortar having a width of 50 mm, a length of 50 mm, and a thickness of 10 mm without using an iron-based amorphous ribbon for 25 days.
  • a control 3 having a cylindrical radius and a thickness of 50 mm was prepared using concrete in the same manner as in Example 4-1, without including the iron-based amorphous ribbon. At this time, the ratio of the concrete is shown in Table 2 below.
  • XRD analysis was performed in the range of 20 to 90 Hz at a rate of 2 Hz / min.
  • FIG. 2 is a ribbon shape having the composition Fe 72 B 25 Mo 3 , Fe 52 B 25 Mo 3 Cr 20 , Fe 57 B 25 Mo 3 Cr 15 , Fe 62 B 25 Mo 3 Cr 10 and Fe 67 B 25 Mo 3 Cr 5 XRD analysis of the amorphous iron-based alloy of.
  • FIG. 6 is a graph illustrating an XRD analysis of a ribbon-shaped amorphous iron-based alloy having a Fe 65 B 30 Mo 3 C 2 composition.
  • the amorphous iron-based alloys of all the compositions show halo patterns, which are characteristic of the amorphous phase, and thus, all of the ribbon-shaped amorphous iron-based alloys were prepared in the amorphous crystalline phase. .
  • this result is determined to be due to the high content of B to increase the amorphous forming ability to 25at% or to include both B and Gd and the sum is high as 25at%.
  • DSC Differential scanning calorimetry
  • Fe 72 B 24 . 5 Mo 3 Gd 0 .5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23. 5 Mo 3 Gd 1 .5, Fe 72 B 23 Mo 3 Gd 2 B 72 and Fe 22.5 Mo 3 2.5 Gd composition is a graph analysis of the iron-based amorphous alloy ribbon of a shape having a DSC.
  • 11 is a ribbon shape having the composition Fe 72 B 25 Mo 3 , Fe 52 B 25 Mo 3 Cr 20 , Fe 57 B 25 Mo 3 Cr 15 , Fe 62 B 25 Mo 3 Cr 10 and Fe 67 B 25 Mo 3 Cr 5 This is a graph analyzing corrosion characteristics of amorphous iron-based alloys.
  • Fe 72 B 24 . 5 Mo 3 Gd 0 .5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23. 5 Mo 3 Gd 1 .5, Fe 72 B 23 Mo 3 Gd 2 B 72 and Fe 22.5 Mo 3 2.5 Gd composition is a graph analysis of the corrosive properties of the iron-based amorphous alloy ribbon having the shape.
  • the passivation section in which the corrosion current does not increase can be seen when the atomic percentage of chromium is more than 10%.
  • the neutron counts were measured first in the absence of shielding test samples (air).
  • the neutron counting rate was measured between the detector and the source, and the composite prepared in Examples 1-1 to 3-4, Comparative Example 1, Comparative Example 2, and Control 1 to Control 3 were measured, and all samples were measured. At the end, the neutron count was measured once again in the absence of test samples.
  • the thermal neutron shielding rate was calculated based on the measured count rate, which is shown in Table 3 below.
  • Example 1-1 to Example 3-4 all exhibit a relatively high thermal neutron shielding rate. This is considered to be because all of the above examples show a high boron (B) content.
  • the radiation shielding composite is boron and gadodol
  • the thermal neutron shielding significantly improved than the radiation shielding composite of the polyester and the amorphous iron-based alloy mixed by the thermal neutron shielding rate of the concrete It was confirmed that the shielding rate was shown.
  • control group 1 shows a thermal neutron shielding rate of 26.65% as the polyester itself contains hydrogen, which is a thermal neutron shielding element
  • an amorphous ribbon containing boron of Example 1-1 compared to the control group 1 The bar was shown to improve the shielding performance of about 14 to 16% per 1 vol.%, It was confirmed that the thermal neutron shielding rate is significantly improved by containing a high content of boron.
  • control group 3 shows a shielding capacity of 68.44% under the influence of hydrogen bonding and thickness inside the concrete aggregate, but the amorphous ribbon containing gadolinium and boron of Example 4-1 compared to the control group 1 vol.%
  • the shielding performance was improved by about 17.5%, it was confirmed that the thermal neutron shielding rate was remarkably improved by including a high content of boron together with gadolium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to an amorphous iron-based alloy, and specifically, to an amorphous iron-based alloy represented by the general formula FeaBbXcZd, wherein a is the atomic percent of iron (Fe), being a=100-(b+c+d) and a>50; b is the atomic percent of boron (B), being 5<b<35; c is the atomic percent of X, being 1<c<15; X is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti and Nb; d is the atomic percent of Z, being 0≤d<25; and Z is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti and Nb, provided that Z is not identical to X.

Description

비정질 철계 합금 및 이를 이용하여 제조한 방사능 차폐용 복합재Amorphous Iron-Based Alloy and Radioactive Shielding Composites Prepared Using the Same
본 발명은 비정질 철계 합금에 관한 것으로서, 상세하게는 일반식 FeaBbXcZd 로 표현되는 Fe를 기반으로 높은 함량의 붕소를 포함한 비정질 철계 합금에 상기 철 및 붕소와 함께 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 또는 Nb를 일정 비율로 더 포함하여, 비정질상의 안정성을 확보함은 물론이고 내식성, 기계적 강도 및 방사능 차폐율을 현저히 향상시키는 것을 특징으로 하는, 비정질 철계 합금에 관한 것이다.The present invention relates to an amorphous iron-based alloy, in detail, based on Fe represented by the general formula Fe a B b X c Z d in the amorphous iron-based alloy containing a high content of boron, together with the iron and boron Mo, Cr, Further comprising a certain ratio of C, Si, Gd, Mn, Zr, Ti or Nb, to ensure the stability of the amorphous phase, as well as to significantly improve the corrosion resistance, mechanical strength and radiation shielding rate, amorphous iron-based alloy It is about.
원자력 발전소에서 배출된 사용 후 핵연료는 많은 양의 열중성자를 방출하며, 이러한 열중성자가 외부로 방출되는 것을 방지하기 위하여 사용 후 핵연료를 수중에서 보관 및 저장하고 있는 실정이다. 그러나 지속적인 전력 수요의 상승에 맞추어 원활한 전력 공급을 위하여 원자력 발전에 사용된 핵연료의 양이 증가함에 따라 사용 후 핵연료의 발생량이 증가되었다. 이에 따라 사용 후 핵연료의 저장 공간이 포화되면서 저장 공간의 확보가 큰 문제로 대두되고 있다.Spent nuclear fuel emitted from nuclear power plants emits a large amount of thermal neutrons, and used nuclear fuel is stored and stored in water to prevent the thermal neutrons from being released to the outside. However, in response to the continuous increase in the demand for electricity, the amount of spent fuel has increased as the amount of nuclear fuel used for nuclear power generation increases for smooth power supply. Accordingly, as the storage space of spent nuclear fuel is saturated, securing of storage space is emerging as a big problem.
따라서 한정된 공간 내에서 사용 후 핵 연료를 보관 및 저장하기 위해서는 많은 양의 사용 후 핵연료를 좁은 공간에 효율적으로 저장할 수 있는 사용 후 핵연료 저장용 구조체의 고효율화 및 고밀도화가 불가피한 실정이며, 구조체 소재의 고성능화가 요구되고 있는 상황이다. Therefore, in order to store and store spent nuclear fuel in a limited space, it is inevitable to increase the efficiency and density of the spent fuel storage structure that can efficiently store a large amount of spent fuel in a narrow space. This is a required situation.
사용 후 핵연료 저장 용기로서 사용되는 재료는 우수한 열중성자 흡수능을 구비하는 것은 물론이고, 내식성이 요구된다.(원자력재료종합정보시스템, "사용 후 해연력 운반/저장용 열중성자 차폐재")Materials used as spent fuel storage containers not only have excellent thermal neutron absorption capacity, but also require corrosion resistance. (Atomic Material Information System, "Thermal Neutron Shielding Material for Transport / Storage of Decommissioned Waste after Use")
이러한 목적으로 선진국에서는 열중성자 차폐용 재료로서 알루미늄 합금 및 스테인리스강에 중성자 흡수능이 우수한 보론, 보론화합물, 리튬, 가돌리늄, 사마늄, 유로퓸, 카드뮴, 디스프로슘 등을 복합화하여 고효율의 차폐 성능을 갖는 신소재가 개발되고 있다. For this purpose, developed countries have developed new materials with high efficiency shielding performance by combining boron, boron compounds, lithium, gadolinium, samarium, europium, cadmium, and dysprosium with aluminum alloy and stainless steel as thermal neutron shielding materials. Is being developed.
그러나 상기 기지 금속을 알루미늄합금이나 스테인리스강으로 하여 수십 마이크로 크기의 보론 또는 보론 화합물(B4C)을 첨가하게 되는데, 일정량 이상이 되면 열간가공성, 냉간가공성, 인성 및 용접성 등이 저하되는 문제점이 있어 일정량 이상의 보론 화합물 첨가가 매우 어렵다. 특히 스테인리스강의 경우 오스테나이트상 내의 붕소의 용해도가 거의 없기 때문에 매우 소량의 B(2wt% 미만)가 첨가될 수 밖에 없으며 높은 차폐성능을 기대하기 어려운 실정이다.(한국 등록특허 제10-1290304호)However, when the base metal is aluminum alloy or stainless steel, dozens of micro sized boron or boron compound (B 4 C) is added, but if a predetermined amount or more, there is a problem in that hot workability, cold workability, toughness and weldability are deteriorated. It is very difficult to add more than a certain amount of boron compound. In particular, since stainless steel has little solubility of boron in the austenite phase, very small amounts of B (less than 2 wt%) can be added and high shielding performance is difficult to expect. (Korean Patent No. 10-1290304)
이에, 사용 후 핵연료 저장 시설의 차폐 효율성 향상을 위해 보론의 함유량을 증가시켜 높은 중성자 흡수성능을 가짐과 동시에, 구조체로서의 기계적 강도 및 내부식성을 유지할 수 있는 방사선 및 중성자 차폐 구조체 개발이 절실히 필요한 실정이다.Therefore, there is an urgent need to develop a radiation and neutron shielding structure that can increase the content of boron to improve shielding efficiency of spent fuel storage facilities and have high neutron absorption performance while maintaining mechanical strength and corrosion resistance as a structure. .
이에 본 발명은 상기의 문제점을 해결하기 위하여, 철을 기지로 하고, 비정질 구조를 갖도록 하며, 붕소의 함유량(고용도)을 향상시킴으로서 비정질구조의 안정성을 확보함과 동시에 내부식성, 기계적 강도 및 방사능 차폐율이 현저히 향상된 비정질 철계 합금을 제공하는 것을 그 해결과제로 한다.In order to solve the above problems, the present invention is based on iron, has an amorphous structure, and improves the boron content (solubility) to ensure the stability of the amorphous structure and at the same time corrosion resistance, mechanical strength and radioactivity. The problem is to provide an amorphous iron-based alloy with significantly improved shielding rate.
또한 본 발명은 상기의 문제점을 해결하기 위하여, 상기 비정질 철계 합금에 콘크리트, 폴리머, 몰타르 또는 세라믹을 혼합하여 제조한 방사능 차폐용 복합재를 제공하는 것을 그 해결과제로 한다.In addition, the present invention to solve the above problems, to provide a radioactive shielding composite prepared by mixing concrete, polymer, mortar or ceramic to the amorphous iron-based alloy as a problem.
상기 과제를 해결하기 위한 본 발명의 일 측면에 따르면,According to an aspect of the present invention for solving the above problems,
일반식 FeaBbXcZd 로 표현되고, Represented by the general formula Fe a B b X c Z d ,
상기 a는 철(Fe)의 원자%로, 상기 a는 a=100-(b+c+d)이고 a>50이며,A is the atomic% of iron (Fe), a is a = 100- (b + c + d) and a> 50,
상기 b는 보론(B)의 원자%로 5<b<35이고,B is the atomic% of boron (B) and 5 <b <35,
상기 c는 X의 원자%로 1<c<15이며, 상기 X는 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나이고,C is an atomic percentage of X and 1 <c <15, X is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb,
상기 d는 Z의 원자%로 0≤d<25 이고, 상기 Z는 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나이면서, 단, 상기 X와 동일하지 않는 것을 특징으로 하는, 비정질 철계 합금이 제공된다.D is an atomic% of Z, and 0 ≦ d <25, wherein Z is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb, provided that the same is not the same as X An amorphous iron-based alloy is provided.
또한 상기 과제를 해결하기 위한 본 발명의 다른 일 측면에 따르면, In addition, according to another aspect of the present invention for solving the above problems,
상기 비정질 철계 합금에 콘크리트, 폴리머, 몰타르 또는 세라믹을 혼합하여 제조한 방사능 차폐용 복합재가 제공된다.Provided is a radiation shielding composite prepared by mixing concrete, polymer, mortar, or ceramic with the amorphous iron-based alloy.
본 발명, 일반식 FeaBbXcZd 로 표현되는 비정질 철계 합금은 비정질 구조를 가짐에 따라 결정립계(grain boundary)같은 결함이 존재하지 않고, 이에 따라 같은 조성을 갖는 일반 결정질 금속에 비해 높은 강도 및 우수한 내식성을 가짐은 물론이고, 붕소를 높은 함량으로 포함할 수 있도록 하여, 방사능 차폐, 특히 열중성자 차폐에 우수한 성능을 나타낸다.In the present invention, the amorphous iron-based alloy represented by the general formula Fe a B b X c Z d does not have defects such as grain boundaries as it has an amorphous structure, and thus has a higher strength than general crystalline metals having the same composition. And not only having excellent corrosion resistance, but also to include a high content of boron, showing excellent performance in radioactive shielding, in particular thermal neutron shielding.
더욱이 본 발명은, 일반식 FeaBbXcZd 로 표현되는 비정질 철계 합금에 붕소와 함께 가돌리늄을 포함하여 보다 향상된 방사능 차폐 기능을 나타낼 수 있다.Furthermore, the present invention can exhibit an improved radiation shielding function by including gadolinium together with boron in the amorphous iron-based alloy represented by the general formula Fe a B b X c Z d .
또한, 본 발명은 철을 기지로 하는 비정질 철계 합금으로, 상기 Fe의 원자%가 50을 초과함에 따라, 방사능 차폐 기능을 나타내는 구조재로서 사용될 수 있음은 물론이고, 경제적인 면에서도 유용하다.In addition, the present invention is an iron-based amorphous iron-based alloy, as the atomic percentage of Fe exceeds 50, can be used as a structural material showing a radioactive shielding function, of course, it is also useful economically.
도 1은 본 발명에 따라 제조된 방사능 차폐용 복합재의 열중성자 차폐를 나타낸 것이다.Figure 1 shows the thermal neutron shielding of the radiation shielding composite prepared according to the present invention.
도 2는 본 발명의 일 실시예에 따라 Fe72B25Mo3, Fe52B25Mo3Cr20, Fe57B25Mo3Cr15, Fe62B25Mo3Cr10 및 Fe67B25Mo3Cr5의 조성을 갖는 비정질 철계 합금에 대한 XRD 분석 그래프를 나타낸 것이다.2 is Fe 72 B 25 Mo 3 , Fe 52 B 25 Mo 3 Cr 20 , Fe 57 B 25 Mo 3 Cr 15 , Fe 62 B 25 Mo 3 Cr 10 and Fe 67 B 25 Mo according to an embodiment of the present invention An XRD analysis graph of an amorphous iron-based alloy having a composition of 3 Cr 5 is shown.
도 3은 본 발명의 일 실시예에 따라 Fe72B24 . 5Mo3Gd0 .5, Fe72B23Mo3Gd2, Fe72B20Mo3Gd5 및 Fe72B15Mo3Gd10 조성을 갖는 비정질 철계 합금에 대한 XRD를 분석한 그래프이다.3 is Fe 72 B 24 according to an embodiment of the present invention . 5 Mo 3 Gd 0 .5, Fe 72 B 23 Mo 3 Gd 2, Fe 72 B 20 Mo 3 Gd 5 , and Fe 72 B 15 Mo 3 Gd 10 composition is the analysis of the XRD of the amorphous iron-based alloy having the graph.
도 4는 본 발명의 일 실시예에 따라 Fe72B24 . 5Mo3Gd0 .5, Fe72B24Mo3Gd1 , Fe72B23.5Mo3Gd1.5, Fe72B23Mo3Gd2 및 Fe72B22 . 5Mo3Gd2 .5 조성을 갖는 비정질 철계 합금에 대한 XRD를 분석한 그래프이다.4 is Fe 72 B 24 according to an embodiment of the present invention . 5 Mo 3 Gd 0 .5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23.5 Mo 3 Gd 1.5, Fe 72 B 23 Mo 3 Gd 2 and Fe 72 B 22. 5 Mo 3 0.5 Gd 2 is a XRD analysis graph of the amorphous iron-based alloy having the following composition.
도 5는 본 발명의 일 실시예에 따라 Fe67B24Mo3Gd1Cr5, Fe62B24 . 5Mo3Gd0 . 5Cr10, Fe62B24Mo3Gd1Cr10 및 Fe52B24Mo3Gd1Cr20 조성을 갖는 비정질 철계 합금에 대한 XRD를 분석한 그래프이다.5 is Fe 67 B 24 Mo 3 Gd 1 Cr 5 , Fe 62 B 24 according to an embodiment of the present invention . 5 Mo 3 Gd 0 . XRD analysis of an amorphous iron-based alloy having 5 Cr 10 , Fe 62 B 24 Mo 3 Gd 1 Cr 10, and Fe 52 B 24 Mo 3 Gd 1 Cr 20 .
도 6은 본 발명의 일 실시예에 따라 Fe65B30Mo3C2 조성을 갖는 비정질 철계 합금에 대한 XRD를 분석한 그래프이다.6 is a graph illustrating an XRD analysis of an amorphous iron-based alloy having a Fe 65 B 30 Mo 3 C 2 composition according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따라 Fe72B25Mo3, Fe52B25Mo3Cr20, Fe57B25Mo3Cr15, Fe62B25Mo3Cr10 및 Fe67B25Mo3Cr5 조성을 갖는 비정질 철계 합금을 DSC로 분석한 그래프이다.7 is Fe 72 B 25 Mo 3 , Fe 52 B 25 Mo 3 Cr 20 , Fe 57 B 25 Mo 3 Cr 15 , Fe 62 B 25 Mo 3 Cr 10 and Fe 67 B 25 Mo according to an embodiment of the present invention It is a graph analyzing the amorphous iron-based alloy having a 3 Cr 5 composition by DSC.
도 8은 본 발명의 일 실시예에 따라 Fe72B24 . 5Mo3Gd0 .5, Fe72B23Mo3Gd2, Fe72B20Mo3Gd5 및 Fe72B15Mo3Gd10 조성을 갖는 비정질 철계 합금을 DSC로 분석한 그래프이다.8 is Fe 72 B 24 according to an embodiment of the present invention . 5 Mo 3 Gd 0 .5, Fe 72 B 23 Mo 3 Gd 2, Fe 72 B 20 Mo 3 Gd 5 , and Fe 72 B 15 Mo 3 Gd 10 composition was analyzed and the iron-based amorphous alloy having a DSC graph.
도 9는 본 발명의 일 실시예에 따라 Fe72B24 . 5Mo3Gd0 .5, Fe72B24Mo3Gd1 , Fe72B23.5Mo3Gd1.5, Fe72B23Mo3Gd2 .0 및 Fe72B22 . 5Mo3Gd2 .5 조성을 갖는 비정질 철계 합금을 DSC로 분석한 그래프이다.9 is Fe 72 B 24 according to an embodiment of the present invention . 5 Mo 3 Gd 0 .5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23.5 Mo 3 Gd 1.5, Fe 72 B 23 Mo 3 Gd 2 .0 , and Fe 72 B 22. 5 Mo 3 0.5 Gd 2 is an analysis of the iron-based amorphous alloy having a composition in the DSC plot.
도 10은 본 발명의 일 실시예에 따라 Fe65B30Mo3C2 조성을 갖는 비정질 철계 합금을 DSC로 분석한 그래프이다.10 is Fe 65 B 30 Mo 3 C 2 according to an embodiment of the present invention It is a graph analyzing the amorphous iron-based alloy having a composition by DSC.
도 11은 본 발명의 일 실시예에 따라 Fe72B25Mo3, Fe52B25Mo3Cr20, Fe57B25Mo3Cr15, Fe62B25Mo3Cr10 및 Fe67B25Mo3Cr5 조성을 갖는 비정질 철계 합금에 대한 부식특성을 분석한 그래프이다.11 is Fe 72 B 25 Mo 3 , Fe 52 B 25 Mo 3 Cr 20 , Fe 57 B 25 Mo 3 Cr 15 , Fe 62 B 25 Mo 3 Cr 10 and Fe 67 B 25 Mo according to an embodiment of the present invention This is a graph analyzing the corrosion characteristics of the amorphous iron-based alloy having a 3 Cr 5 composition.
도 12는 본 발명의 일 실시예에 따라 Fe72B24 . 5Mo3Gd0 .5, Fe72B24Mo3Gd1 , Fe72B23.5Mo3Gd1.5, Fe72B23Mo3Gd2 및 Fe72B22 . 5Mo3Gd2 .5 조성을 갖는 비정질 철계 합금에 대한 부식특성을 분석한 그래프이다.12 is Fe 72 B 24 according to an embodiment of the present invention . 5 Mo 3 Gd 0 .5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23.5 Mo 3 Gd 1.5, Fe 72 B 23 Mo 3 Gd 2 and Fe 72 B 22. 5 Mo 3 Gd 2 .5 is the analysis of the corrosion properties of the iron-based amorphous alloy having a composition graph.
도 13은 본 발명의 일 실시예에 따라 Fe67B24Mo3Gd1Cr5, Fe62B24 . 5Mo3Gd0 . 5Cr10, Fe62B24Mo3Gd1Cr10 및 Fe52B24Mo3Gd1Cr20 조성을 갖는 비정질 철계 합금에 대한 부식특성을 분석한 그래프이다.13 is Fe 67 B 24 Mo 3 Gd 1 Cr 5 , Fe 62 B 24 according to an embodiment of the present invention . 5 Mo 3 Gd 0 . Corrosion characteristics of amorphous iron based alloys containing 5 Cr 10 , Fe 62 B 24 Mo 3 Gd 1 Cr 10 and Fe 52 B 24 Mo 3 Gd 1 Cr 20 .
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은 비정질 철계 합금에 관한 것으로서, 상세하게는 일반식 FeaBbXcZd 로 표현되는 Fe를 기반으로 높은 함량의 붕소를 포함한 비정질 철계 합금에 상기 철 및 붕소와 함께 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 또는 Nb를 일정 비율로 더 포함하여, 비정질상의 안정성을 확보함은 물론이고 내식성, 기계적 강도 및 방사능 차폐율을 현저히 향상시키는 것을 특징으로 하는, 비정질 철계 합금에 관한 것이다.The present invention relates to an amorphous iron-based alloy, in detail, based on Fe represented by the general formula Fe a B b X c Z d in the amorphous iron-based alloy containing a high content of boron, together with the iron and boron Mo, Cr, Further comprising a certain ratio of C, Si, Gd, Mn, Zr, Ti or Nb, to ensure the stability of the amorphous phase, as well as to significantly improve the corrosion resistance, mechanical strength and radiation shielding rate, amorphous iron-based alloy It is about.
본 발명의 일 측면에 따르면, According to one aspect of the invention,
일반식 FeaBbXcZd 로 표현되고, Represented by the general formula Fe a B b X c Z d ,
상기 a는 철(Fe)의 원자%로, 상기 a는 a=100-(b+c+d)이고 a>50이며, 상기 b는 보론(B)의 원자%로 5<b<35이고, 상기 c는 X의 원자%로 1<c<15이며, 상기 X는 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나이고, 상기 d는 Z의 원자%로 0≤d<25 이고, 상기 Z는 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나이면서, 단, 상기 X와 동일하지 않는 것을 특징으로 하는, 비정질 철계 합금이 제공된다.A is the atomic% of iron (Fe), a is a = 100- (b + c + d) and a> 50, b is 5 <b <35 as atomic% of boron (B), C is an atomic% of X, wherein 1 <c <15, X is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb, and d is an atomic% of Z 0 ≦ d <25, wherein Z is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb, but is not the same as X. This is provided.
상기 일반식 FeaBbXcZd 로 표현되는 본 발명의 비정질 철계 합금에 있어서, 상기 철(Fe)은 기지이고, a는 상기 철의 원자%(at%)를 나타낸 것이다. In the amorphous iron-based alloy of the present invention represented by the general formula Fe a B b X c Z d , the iron (Fe) is known, a is the atomic% (at%) of the iron.
이때, 상기 비정질 철계 합금의 원자% a는 a=100-(b+c+d)이고, a>50 로, 상기 철이 기지재로서, 50을 초과한 원자% 함량으로 상기 비정질 철계 합금에 포함됨에 따라, 상기 비정질 철계 합금은 구조체에 용이하게 사용될 수 있다.In this case, the atomic% a of the amorphous iron-based alloy is a = 100- (b + c + d), a> 50, the iron is a base material, the iron is contained in the amorphous iron-based alloy in an atomic% content of more than 50 Accordingly, the amorphous iron-based alloy can be easily used in the structure.
또한, 상기 기지로 포함되는 철은 순도 높은 Fe 원소 외에도, 강(steel), 용선(pig iron), 주물선(cast iron), Fe-B 합금철, Fe-Cr 합금철, Fe-Mo 합금철, Fe-P합금철로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 한다.In addition, the iron contained in the base is, in addition to the high-purity Fe element, steel, pig iron, cast iron, Fe-B alloy iron, Fe-Cr alloy iron, Fe-Mo alloy iron , Fe-P alloy is characterized in that any one or more selected from the group consisting of iron.
상기 일반식 FeaBbXcZd 로 표현되는 본 발명의 비정질 철계 합금에 있어서, B는 보론이고, b는 상기 보론의 원자%를 나타낸 것이다.In the amorphous iron-based alloy of the present invention represented by the general formula Fe a B b X c Z d , B is boron, b is the atomic% of the boron.
상기 보론은 본 발명이 비정질 구조를 가짐에 따라 높은 함량으로 상기 철계 합금에 포함될 수 있고, 이에 따라 방사성 차폐, 특히 열중성자 차폐율을 향상시킨다. The boron may be included in the iron-based alloy in a high content as the present invention has an amorphous structure, thereby improving radioactive shielding, in particular thermal neutron shielding rate.
이때 보론의 원자 %인 b는 5<b<35이고, 바람직하게는 b는 15≤b≤25인 것을 특징으로 한다.In this case, b, which is the atomic% of boron, is 5 <b <35, and preferably b is 15≤b≤25.
또한, 상기 일반식 FeaBbXcZd 로 표현되는 본 발명의 비정질 철계 합금에 있어서, 상기 c는 X의 원자%로 1<c<15이며, 상기 X는 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나인 것으로 한다.In addition, in the amorphous iron-based alloy of the present invention represented by the general formula Fe a B b X c Z d , wherein c is 1% <c <15 in atomic% of X, wherein X is Mo, Cr, C, Si And Gd, Mn, Zr, Ti, and Nb.
또한, 일반식 FeaBbXcZd 로 표현되는 본 발명의 비정질 철계 합금에 있어서, 상기 d는 Z의 원자%로 0≤d<25 이고, 상기 Z는 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나이면서, 단, 상기 X와 동일하지 않는 것을 특징으로 한다. In addition, in the amorphous iron-based alloy of the present invention represented by the general formula Fe a B b X c Z d , wherein d is 0≤d <25 in atomic% of Z, and Z is Mo, Cr, C, Si, It is any one selected from Gd, Mn, Zr, Ti, and Nb, except that it is not the same as X.
이때 바람직하게는, 상기 X 또는 Z가 Gd인 경우, 상기 b+c 또는 b+d가 20 ~ 30원자%로, 상기 비정질 철계 합금에 보론(B)과 가돌리니움(Gd)을 함께 포함할 경우 보론의 원자%와 Gd의 원자%의 합이 20 ~ 30이 되는 것을 특징으로 한다.In this case, preferably, when X or Z is Gd, b + c or b + d is 20 to 30 atomic%, and the boron (B) and gadolinium (Gd) may be included together in the amorphous iron-based alloy. In this case, the sum of atomic% of boron and atomic% of Gd is 20 to 30.
또한, 상기 X는 Mo 또는 Si이고, 상기 Z는 Cr, Gd 또는 C이며, 이때 상기 X의 원자%인 c는 1<c<5이고, 상기 Z의 원자%인 d는 0≤d≤20인 것이 바람직하다.In addition, X is Mo or Si, Z is Cr, Gd or C, wherein c is an atomic% of X is 1 <c <5, d is an atomic% of Z is 0≤d≤20 It is preferable.
보다 바람직하게는 상기 X가 Mo이고, 상기 Z가 Gd일 때, Fe의 원자% a는 70~80원자%인 것을 특징으로 한다.More preferably, when X is Mo and Z is Gd, the atomic% a of Fe is 70 to 80 atomic%.
본 발명의 비정질 철계 합금은, 상기 일반식 FeaBbXcZd 로 표현됨은 물론이고, 상기 일반식 FeaBbXcZd에, 상기 X 및 Z와 동일하지 않으면서 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나 이상의 원소를 더 포함하는 것을 특징으로 한다.An amorphous iron-based alloy of the present invention, the formula Fe a B b X c is represented as well as a Z d, wherein in the formula Fe a B b X c Z d, without the same as the X and Z Mo, Cr , C, Si, Gd, Mn, Zr, Ti and Nb is characterized in that it further comprises any one or more elements selected from.
상세하게는, 상기 일반식 FeaBbXcZd에 있어서, 상기 X가 Mo 또는 Si이고, 상기 Z가 Gd 또는 C일 때, 상기 일반식 FeaBbXcZd의 100원자%에 대해 Cr을 5 ~ 25원자%로 더 포함한다. 바람직하게는, 상기 일반식 FeaBbXcZd에 있어서, 상기 X가 Mo 또는 Si이고, 상기 Z가 Gd 또는 C일 때, 상기 일반식 FeaBbXcZd의 100원자%에 대해 Cr을 8 ~ 18원자%로 더 포함하는 것을 특징으로 한다.Specifically, in the general formula Fe a B b X c Z d , when X is Mo or Si, and Z is Gd or C, 100 atomic% of the general formula Fe a B b X c Z d It contains Cr at 5 to 25 atomic percent. Preferably, in the general formula Fe a B b X c Z d , when X is Mo or Si, and Z is Gd or C, 100 atomic% of the general formula Fe a B b X c Z d It is characterized in that it further comprises Cr in 8 to 18 atomic%.
또한, 바람직하게는 상기 일반식 FeaBbXcZd에 있어서, 상기 X가 Si이고, 상기 Z가 Gd 또는 C일 때, 상기 일반식 FeaBbXcZd의 100원자%에 대해 Mo을 1 ~ 10원자%로 더 포함하는 것을 특징으로 한다.Preferably, in the general formula Fe a B b X c Z d , when X is Si and Z is Gd or C, 100 atom% of the general formula Fe a B b X c Z d Mo to 1 to 10 atomic% characterized in that it further comprises.
상술한 본 발명 비정질 철계 합금은 Fe 을 기지로 하여 높은 함량의 B를 포함함은 물론이고, Cr, Mo, C, Si 및 Gd 중에서 선택되는 어느 하나 이상을 일정 원자 %함량으로 더 포함함에 따라, 비정질 구조의 안정성을 확보하면서도 열중성자 차폐율을 20~90%로 나타내는 것을 특징으로 한다.  As described above, the amorphous iron-based alloy of the present invention includes a high content of B based on Fe, as well as any one or more selected from Cr, Mo, C, Si, and Gd as a certain atomic% content. While ensuring the stability of the amorphous structure is characterized in that the thermal neutron shielding rate represented by 20 ~ 90%.
또한, 본 발명 비정질 철계 합금은 다양한 형상을 가질 수 있으며, 리본, 섬유, 조각, 벌크 또는 분말의 형상인 것을 특징으로 한다.In addition, the amorphous iron-based alloy of the present invention may have a variety of shapes, characterized in that the shape of the ribbon, fibers, pieces, bulk or powder.
본 발명의 다른 일 측면으로는,In another aspect of the present invention,
상기 비정질 철계 합금에 콘크리트, 폴리머, 몰타르 또는 세라믹을 혼합하여 제조한 방사능 차폐용 복합재가 제공된다. Provided is a radiation shielding composite prepared by mixing concrete, polymer, mortar, or ceramic with the amorphous iron-based alloy.
상기 복합재는, 20~90%의 열중성자 차폐율을 나타내는 것을 특징으로 한다.The composite material is characterized by exhibiting a thermal neutron shielding rate of 20 to 90%.
이하, 본 발명을 실시예에 의하여 더욱 상세히 설명하나, 본 발명의 범위가 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited by Examples.
<< 실시예Example >>
리본 형상의 비정질 철계 합금 제조Ribbon-shaped amorphous iron alloy
(1)Fe72B25Mo3 조성의 비정질 리본 제조(1) Preparation of amorphous ribbon of Fe 72 B 25 Mo 3 composition
먼저 Fe72B25Mo3 조성의 모합금(master alloy)을 제조하기 위하여, 20g 기준으로 상기 각 원소별로 웨잉(weighing)을 한 후, 고순도 아르곤 분위기에서 진공 아크 용해로(vaccum arc furnace)를 사용하여 진공아크용해법으로 72at%의 Fe, 25at%의 B 및 3at%의 Mo로 이루어진 Fe72B25Mo3 조성의 모합금을 제조하였다. 이때 상기 모합금 성분은 99.8% 이상의 순도를 갖는 Fe 및 Mo과, 페로보론(Ferro-boron > 99.8%) 을 사용하였다.First, in order to manufacture a master alloy of Fe 72 B 25 Mo 3 composition, after weighing for each element based on 20g, using a vacuum arc furnace in a high-purity argon atmosphere A mother alloy of Fe 72 B 25 Mo 3 composition consisting of 72 at% of Fe, 25 at% of B, and 3 at% of Mo was prepared by vacuum arc melting. In this case, as the master alloy, Fe and Mo having a purity of 99.8% or more, and ferroboron (Ferro-boron> 99.8%) were used.
다음으로, 상기 제조된 Fe72B25Mo3 조성의 모합금을 멜트스피닝(melt-spinning)장비를 이용하여 Fe72B25Mo3 조성의 비정질 리본을 제조하였다. 이때 상기 멜트스피팅은 회전하는 휠의 선속도가 35-40m/s, 녹은 용탕을 밀어내는 가스의 압력이 0.04-0.06 MPa의 조건으로 불활성 기체 분위기에서 실시되었다. 이에 따라 0.020-0.023mm 두께의 Fe72B25Mo3 조성의 비정질 리본 형상의 시편을 제작하였다. Next, an amorphous ribbon of the prepared Fe 25 Mo 3 B 72 Fe composition of a master alloy by a melt spinning (melt-spinning) equipment 72 B 25 Mo 3 composition was prepared. At this time, the melt spitting was carried out in an inert gas atmosphere under the condition that the linear speed of the rotating wheel was 35-40 m / s and the pressure of the gas for extruding the molten molten metal was 0.04-0.06 MPa. Accordingly, Fe 72 B 25 Mo 3 composition of 0.020-0.023mm thickness An amorphous ribbon shaped specimen was produced.
(2) Fe52 - 67B25Mo3Cr5 -20 조성의 비정질 리본 제조 (2) Fe 52 - 67 B 25 Mo 3 Cr Preparation of 5-20 Composition amorphous ribbon
99.8% 이상의 순도를 갖는 Fe, Mo 및 Cr과, 페로보론(Ferro-boron>99.8%) 을 사용하여, 비정질 리본의 조성과 상기 각각의 조성에 대한 원자%를 달리한 것을 제외하고는 상기 Fe72B25Mo3 조성의 비정질 리본 제조과정과 동일한 방법으로, 0.020-0.023mm 두께의 Fe52-67B25Mo3Cr5-20 조성의 비정질 리본을 제조하였다.Fe, Mo and Cr having a purity of 99.8% or more, and ferroboron (Ferro-boron> 99.8%), except that the composition of the amorphous ribbon and the atomic% for each of the above composition of the Fe 72 B 25 Mo 3 An amorphous ribbon having a composition of Fe 52-67 B 25 Mo 3 Cr 5-20 having a thickness of 0.020-0.023 mm was prepared in the same manner as the amorphous ribbon manufacturing process.
이때, 상기 Fe52 - 67B25Mo3Cr5 -20 조성의 비정질 리본은, 각각의 원자%에 의하여, Fe52B25Mo3Cr20, Fe57B25Mo3Cr15, Fe62B25Mo3Cr10 및 Fe67B25Mo3Cr5의 조성을 갖는 비정질 리본으로 제조하였다.In this case, the Fe 52 - 67 B 25 Mo 3 Cr 5 -20 amorphous ribbons of composition, by the respective atomic%, Fe 52 B 25 Mo 3 Cr 20, Fe 57 B 25 Mo 3 Cr 15, Fe 62 B 25 It was prepared with an amorphous ribbon having a composition of Mo 3 Cr 10 and Fe 67 B 25 Mo 3 Cr 5 .
(3) Fe72B15 -24. 5Mo3Gd0 .5-10 조성의 비정질 리본 제조(3) Fe 72 B 15 -24. 5 Mo 3 Gd 0 .5-10 prepared amorphous ribbon of the composition
99.8% 이상의 순도를 갖는 Fe, Mo 및 Gd과, 페로보론(Ferro-boron>99.8%) 을 사용하여, 비정질 리본의 조성과 상기 각각의 조성에 대한 원자%를 달리한 것을 제외하고는 상기 Fe72B25Mo3 조성의 비정질 리본 제조과정과 동일한 방법으로, 0.020-0.023mm 두께의 Fe72B15-24.5Mo3Gd0.5-10 조성의 비정질 리본을 제조하였다.Fe, Mo, and Gd having a purity of 99.8% or more, and ferroboron (Ferro-boron> 99.8%), except that the composition of the amorphous ribbon and the atomic% of each of the composition was different from the Fe 72 B 25 Mo 3 In the same manner as the amorphous ribbon manufacturing process, an amorphous ribbon of Fe 72 B 15-24.5 Mo 3 Gd 0.5-10 composition having a thickness of 0.020-0.023 mm was prepared.
이때, 상기 Fe72B15 - 23Mo3Gd2 -10 조성의 비정질 리본은, 각각의 원자%에 의하여, Fe72B24.5Mo3Gd0.5, Fe72B24Mo3Gd1 , Fe72B23 . 5Mo3Gd1 .5, Fe72B23Mo3Gd2, Fe72B22 . 5Mo3Gd2 .5, Fe72B20Mo3Gd5 및 Fe72B15Mo3Gd10의 조성을 갖는 비정질 리본으로 제조하였다.In this case, the Fe 72 B 15 - 23 Mo 3 Gd 2 -10 amorphous ribbons of composition, by the respective atomic%, Fe 72 B 24.5 Mo 3 Gd 0.5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23 . 5 Mo 3 Gd 1 .5, Fe 72 B 23 Mo 3 Gd 2, Fe 72 B 22. 5 Mo 3 Gd 2 .5, was prepared in an amorphous ribbon having Fe 72 B 20 Mo 3 Gd 5 and a composition of Fe 72 B 15 Mo 3 Gd 10.
(4) Fe52 - 67B24 -24. 5Mo3Gd0 .5- 1.0Cr5 -20 조성의 비정질 리본 제조 (4) Fe 52 - 67 B 24 -24. 5 Mo 3 Gd 0 .5- 1.0 Cr 5 -20 prepared amorphous ribbon of the composition
99.8% 이상의 순도를 갖는 Fe, Mo, Cr 및 Gd과, 페로보론(Ferro-boron>99.8%) 을 사용하여, 비정질 리본의 조성과 상기 각각의 조성에 대한 원자%를 달리한 것을 제외하고는 상기 Fe72B25Mo3 조성의 비정질 리본 제조과정과 동일한 방법으로, 0.020-0.023mm 두께의 Fe52 - 67B24 -24. 5Mo3Gd0 .5- 1.0Cr5 -20 조성의 비정질 리본을 제조하였다.Using Fe, Mo, Cr, and Gd having a purity of 99.8% or more, and ferroboron (Ferro-boron> 99.8%), except that the composition of the amorphous ribbon and the atomic% of the respective compositions were different from each other. Fe 72 B 25 Mo 3 In the same manner as the amorphous ribbon manufacturing process of the composition, thickness of 0.020-0.023mm Fe 52 - 67 B 24 -24. 5 Mo 3 Gd 0 .5- 1.0 Cr to prepare amorphous ribbons of composition 5-20.
이때, 상기 Fe52 - 67B24 -24. 5Mo3Gd0 .5- 1.0Cr5 -20 조성의 비정질 리본은, 각각의 원자%에 의하여 Fe67B24Mo3Gd1Cr5, Fe62B24 . 5Mo3Gd0 . 5Cr10, Fe62B24Mo3Gd1Cr10 및 Fe52B24Mo3Gd1Cr20의 조성을 갖는 비정질 리본으로 제조하였다.In this case, the Fe 52 - 67 B 24 -24. 5 Mo 3 Gd 0 .5- 1.0 Cr 5 -20 amorphous ribbons of composition, by the respective atomic% Fe 67 B 24 Mo 3 Gd 1 Cr 5, Fe 62 B 24. 5 Mo 3 Gd 0 . It was prepared with an amorphous ribbon having a composition of 5 Cr 10 , Fe 62 B 24 Mo 3 Gd 1 Cr 10, and Fe 52 B 24 Mo 3 Gd 1 Cr 20 .
(5) Fe65B30Mo3C2 조성의 비정질 리본 제조(5) Fe 65 B 30 Mo 3 C 2 Amorphous Ribbon Preparation of Composition
99.8% 이상의 순도를 갖는 Fe, Mo, 용선(Pig iron; iron with 4.3wt.% of C) 및 페로보론(Ferro-boron>99.8%) 을 사용하여, 비정질 리본의 조성과 상기 각각의 조성에 대한 원자%를 달리한 것을 제외하고는 상기 Fe72B25Mo3 조성의 비정질 리본 제조과정과 동일한 방법으로, 0.020-0.023mm 두께의 Fe65B30Mo3C2 조성의 비정질 리본을 제조하였다.Fe, Mo, Pig iron (iron with 4.3 wt.% Of C) and ferroboron (Ferro-boron> 99.8%) having a purity of 99.8% or more were used for the composition of the amorphous ribbon and the respective compositions. Except for changing the atomic% Fe 72 B 25 Mo 3 Fe 65 B 30 Mo 3 C 2 with a thickness of 0.020-0.023 mm An amorphous ribbon of composition was produced.
비정질 합금을 포함한 방사능 차폐용 복합재 제조Preparation of Radiation Shielding Composites Containing Amorphous Alloys
< 실시예 1-1 및 실시예 1-2> Fe72B25Mo3 비정질 합금을 포함한 방사능 차폐용 복합재 < Example 1-1 and Example 1-2> Fe 72 B 25 Mo 3 Radiation Shielding Composites Including Amorphous Alloys
상기 단룰법으로 길게 제조된 Fe72B25Mo3 조성의 비정질 리본을 20~30mm 길이로 잘라서 배합할 수 있도록 한 후, 가로가 50mm이고 세로가 50mm이며 두께가 10mm인 폴리에스테르(polyester)에 골고루 퍼지게 넣고, 그대로 3일간 굳혀 Fe72B25Mo3 조성의 비정질 리본에 대한 방사능 차폐용 복합제를 제조하였다.Fe 72 B 25 Mo 3 produced long by the above And then to be incorporated by cutting the amorphous ribbon of the composition to 20 ~ 30mm in length, a width is 50mm placed vertically is 50mm and spread evenly on a polyester (polyester) having a thickness of 10mm, as 3 days solidified Fe 72 B 25 Mo 3 A radiation shielding composite was prepared for an amorphous ribbon of composition.
단, 이때 상기 폴리에스테르와 배합되는 상기 리본의 함량은 1vol%(실시예 1-1) 또는 2vol%(실시예 1-2)으로 하였다. However, at this time, the content of the ribbon blended with the polyester was set to 1vol% (Example 1-1) or 2vol% (Example 1-2).
< 실시예 2> Fe62B25Mo3Cr10 비정질 합금을 포함한 방사능 차폐용 복합재 < Example 2> Fe 62 B 25 Mo 3 Cr 10 Radiation Shielding Composites Including Amorphous Alloys
비정질 합금으로 Fe62B25Mo3Cr10을 포함하도록 한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로, Fe62B25Mo3Cr10 비정질 합금을 포함한 차폐용 복합재 제조하였다. Except for containing amorphous alloy Fe 62 B 25 Mo 3 Cr 10 In the same manner as in Example 1-1, Fe 62 B 25 Mo 3 Cr 10 A shielding composite including an amorphous alloy was prepared.
< 실시예 3-1> Fe72B23Mo3Gd2 비정질 합금을 포함한 방사능 차폐용 복합재 < Example 3-1> Fe 72 B 23 Mo 3 Gd 2 Radiation Shielding Composites Including Amorphous Alloys
비정질 합금으로 Fe72B23Mo3Gd2를 포함하도록 한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로, Fe72B23Mo3Gd2 비정질 합금을 포함한 차폐용 복합재 제조하였다.Fe 72 B 23 Mo 3 Gd 2 in the same manner as in Example 1-1, except that the amorphous alloy contained Fe 72 B 23 Mo 3 Gd 2. A shielding composite including an amorphous alloy was prepared.
< 실시예 3-2> Fe72B20Mo3Gd5 비정질 합금을 포함한 방사능 차폐용 복합재 제조 < Example 3-2> Fe 72 B 20 Mo 3 Gd 5 Preparation of Radiation Shielding Composites Containing Amorphous Alloys
비정질 합금으로 Fe72B20Mo3Gd5를 포함하도록 한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로, Fe72B20Mo3Gd5 비정질 합금을 포함한 차폐용 복합재 제조하였다.Fe 72 B 20 Mo 3 Gd 5 in the same manner as in Example 1-1, except that the amorphous alloy contained Fe 72 B 20 Mo 3 Gd 5. A shielding composite including an amorphous alloy was prepared.
< 실시예 3-3> Fe72B15Mo3Gd10 비정질 합금을 포함한 방사능 차폐용 복합재 < Example 3-3> Fe 72 B 15 Mo 3 Gd 10 Radiation Shielding Composites Including Amorphous Alloys
비정질 합금으로 Fe72B15Mo3Gd10을 포함하도록 한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로, Fe72B15Mo3Gd10 비정질 합금을 포함한 차폐용 복합재 제조하였다.Fe 72 B 15 Mo 3 Gd 10 in the same manner as in Example 1-1, except that the amorphous alloy contained Fe 72 B 15 Mo 3 Gd 10. A shielding composite including an amorphous alloy was prepared.
< 실시예 3-4> Fe72B24 . 5Mo3Gd0 .5 비정질 합금을 포함한 방사능 차폐용 복합재 < Example 3-4> Fe 72 B 24 . 5 Mo 3 Gd 0 .5 composite material for shielding radiation, including amorphous alloy
상기 단롤법으로 길게 제조된 Fe72B24 . 5Mo3Gd0 .5 조성의 비정질 리본을 10~15mm 길이로 잘라서 배합할 수 있도록 한 후, 반경과 두께가 50mm인 원기둥형 콘크리트 복합체에 골고루 퍼지게 넣고, 그대로 28일간 양생하여 Fe72B24 . 5Mo3Gd0 .5 조성의 비정질 리본에 대한 방사능 차폐용 복합재를 제조하였다. 단, 이때 상기 콘크리트 복합체와 배합되는 상기 리본의 함량은 1vol%으로 하였으며, 상기 콘크리트 복합체의 배합비는 하기 표1에 나타내었다.Fe 72 B 24 produced long by the single roll method . 5 Mo 3 Gd 0 .5 and then to cut the blended composition of the amorphous ribbon to a length of 10 ~ 15mm, into the radius and thickness to spread evenly in the cylindrical concrete composite material of 50mm, as 28 days curing by Fe 72 B 24. 5 Mo composite was prepared for radiation shielding for an amorphous ribbon of 3 Gd 0 .5 composition. However, at this time, the content of the ribbon to be blended with the concrete composite was 1vol%, and the mixing ratio of the concrete composite is shown in Table 1 below.
W/C*W / C * Super-plasticizer(%)**Super-plasticizer (%) ** Amorphoussteel fiber(Vol.%)Amorphoussteel fiber (Vol.%) Weight ratio (2154.6 kg, total weight)Weight ratio (2154.6 kg, total weight)
CementCement FineaggregateFineaggregate CoarseaggregateCoarseaggregate
0.40.4 0.50.5 1.01.0 0.200.20 0.250.25 0.550.55
* Water/Cement ratio* Water / Cement ratio
**the water reducing admixture for good workabilitythe water reducing admixture for good workability
< 비교예 1> FIBRAFLEX를 포함한 방사능 차폐용 복합재(1vol%) < Comparative Example 1> Radiation Shielding Composite (1vol%) including FIBRAFLEX
시중에서 판매되는 상용화된 철계 비정질 리본 FIBRAFLEX를 포함하도록 한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로, FIBRAFLEX를 포함한 방사능 차폐용 복합재를 제조하였다.A radiation shielding composite including FIBRAFLEX was prepared in the same manner as in Example 1-1, except that the commercially available iron-based amorphous ribbon FIBRAFLEX was included.
< 비교예 2> FIBRAFLEX를 포함한 방사능 차폐용 복합재(2vol%) < Comparative Example 2> Radiation Shielding Composites containing FIBRAFLEX (2vol%)
시중에서 판매되는 상용화된 철계 비정질 리본 FIBRAFLEX를 포함하도록 한 것을 제외하고는 상기 실시예 1-2와 동일한 방법으로, FIBRAFLEX를 포함한 방사능 차폐용 복합재를 제조하였다.A radiation shielding composite including FIBRAFLEX was prepared in the same manner as in Example 1-2, except that the commercially available iron-based amorphous ribbon FIBRAFLEX was included.
<대조군> <Control group>
<대조군 1> 철계 비정질 리본을 포함하지 않는 폴리에스테르 집합체 <Control 1> Polyester aggregate which does not contain iron-based amorphous ribbon
철계 비정질 리본을 포함하지 않고, 가로 50mm, 세로 50mm 및 두께 10mm인 폴리에스테르(polyester)만을 3일간 굳혀서 대조군 1을 제조하였다. Control 1 was prepared by hardening only 3 days of polyester (polyester) without iron-based amorphous ribbon and having a width of 50 mm, a length of 50 mm, and a thickness of 10 mm.
<대조군 2> 철계 비정질 리본을 포함하지 않는 몰타르 집합체 <Control 2> Maltar aggregate that does not contain iron-based amorphous ribbon
철계 비정질 리본을 포함하지 않고, 가로 50mm, 세로 50mm 및 두께 10mm인 몰타르(mortar)를 25일간 굳혀서 대조군 2를 제조하였다.A control group 2 was prepared by hardening a mortar having a width of 50 mm, a length of 50 mm, and a thickness of 10 mm without using an iron-based amorphous ribbon for 25 days.
<대조군 3> 철계 비정질 리본을 포함하지 않는 콘크리트 집합체 <Control 3> Concrete aggregate containing no iron-based ribbon
철계 비정질 리본을 포함하지 않고, 상기 실시예 4-1과 동일한 방법으로 콘크리트를 사용하여 원기둥형의 반경 및 두께가 50mm인 대조군 3을 제조하였다. 이때 상기 콘크리트의 비율은 하기 표2에 나타내었다.A control 3 having a cylindrical radius and a thickness of 50 mm was prepared using concrete in the same manner as in Example 4-1, without including the iron-based amorphous ribbon. At this time, the ratio of the concrete is shown in Table 2 below.
W/C*W / C * Super-plasticizer(%)**Super-plasticizer (%) ** Amorphoussteel fiber(Vol.%)Amorphoussteel fiber (Vol.%) Weight ratio (2154.6 kg, total weight)Weight ratio (2154.6 kg, total weight)
CementCement FineaggregateFineaggregate CoarseaggregateCoarseaggregate
0.40.4 00 00 0.200.20 0.250.25 0.550.55
* Water/Cement ratio* Water / Cement ratio
**the water reducing admixture for good workabilitythe water reducing admixture for good workability
<< 시험예Test Example >>
비정질 Amorphous 철계Iron 합금의  Alloy 결정구조 상Crystal structure 분석 analysis
상기 제조된 리본 형상의 Fe72B25Mo3, Fe52B25Mo3Cr20, Fe57B25Mo3Cr15, Fe62B25Mo3Cr10, Fe67B25Mo3Cr5, Fe72B24 . 5Mo3Gd0 .5, Fe72B24Mo3Gd1 , Fe72B23 . 5Mo3Gd1 .5, Fe72B23Mo3Gd2, Fe72B22 . 5Mo3Gd2 .5, Fe72B20Mo3Gd5 , Fe72B15Mo3Gd10 , Fe67B24Mo3Gd1Cr5, Fe62B24.5Mo3Gd0.5Cr10, Fe62B24Mo3Gd1Cr10 , Fe52B24Mo3Gd1Cr20 Fe65B30Mo3C2 조성을 갖는 비정질 철계 합금 모두에 대하여, 결정구조 상을 확인하기 위해, 상기 합금 각각에 대한 XRD 분석, 열 분석을 실시하였다.Fe 72 B 25 Mo 3 , Fe 52 B 25 Mo 3 Cr 20 , Fe 57 B 25 Mo 3 Cr 15 , Fe 62 B 25 Mo 3 Cr 10 , Fe 67 B 25 Mo 3 Cr 5 , Fe 72 B 24 . 5 Mo 3 Gd 0 .5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23. 5 Mo 3 Gd 1 .5, Fe 72 B 23 Mo 3 Gd 2, Fe 72 B 22. 5 Mo 3 Gd 2.5 , Fe 72 B 20 Mo 3 Gd 5 , Fe 72 B 15 Mo 3 Gd 10 , Fe 67 B 24 Mo 3 Gd 1 Cr 5 , Fe 62 B 24.5 Mo 3 Gd 0.5 Cr 10 , Fe 62 B 24 Mo 3 Gd 1 Cr 10 , Fe 52 B 24 Mo 3 Gd 1 Cr 20 And Fe 65 B 30 Mo 3 C 2 For all of the amorphous iron-based alloys having the composition, XRD analysis and thermal analysis of each of the alloys were conducted to confirm the crystal structure phase.
(1) (One) XRDXRD (X-ray diffraction) 분석(X-ray diffraction) analysis
XRD 분석은, 2ㅀ/min의 속도로 20~90ㅀ의 범위에서 측정되었으며, 이때 사용된 장비는 X-ray diffractometer D/Max-2500(Rigaku, Japan)이며, Cu target(λ=1.54056Å, Ka)을 사용하였다.XRD analysis was performed in the range of 20 to 90 Hz at a rate of 2 Hz / min. The instrument used was an X-ray diffractometer D / Max-2500 (Rigaku, Japan) and Cu target (λ = 1.54056 Hz, Ka) was used.
도 2는 상기 Fe72B25Mo3, Fe52B25Mo3Cr20, Fe57B25Mo3Cr15, Fe62B25Mo3Cr10 및 Fe67B25Mo3Cr5 조성을 갖는 리본 형상의 비정질 철계 합금에 대한 XRD를 분석한 그래프이다.2 is a ribbon shape having the composition Fe 72 B 25 Mo 3 , Fe 52 B 25 Mo 3 Cr 20 , Fe 57 B 25 Mo 3 Cr 15 , Fe 62 B 25 Mo 3 Cr 10 and Fe 67 B 25 Mo 3 Cr 5 XRD analysis of the amorphous iron-based alloy of.
도 3은 상기 Fe72B24 . 5Mo3Gd0 .5, Fe72B23Mo3Gd2, Fe72B20Mo3Gd5 및 Fe72B15Mo3Gd10 조성을 갖는 리본 형상의 비정질 철계 합금에 대한 XRD를 분석한 그래프이다.3 is Fe 72 B 24 . 5 Mo 3 Gd 0 .5, Fe 72 B 23 Mo 3 Gd 2, Fe 72 B 20 Mo 3 Gd 5 And XRD of a ribbon-shaped amorphous iron-based alloy having a Fe 72 B 15 Mo 3 Gd 10 composition.
도 4는 상기 Fe72B24 . 5Mo3Gd0 .5, Fe72B24Mo3Gd1 , Fe72B23 . 5Mo3Gd1 .5, Fe72B23Mo3Gd2 및 Fe72B22.5Mo3Gd2.5 조성을 갖는 리본 형상의 비정질 철계 합금에 대한 XRD를 분석한 그래프이다.4 is Fe 72 B 24 . 5 Mo 3 Gd 0 .5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23. 5 Mo 3 Gd 1 .5, Fe 72 B 23 Mo 3 Gd 2 B 72 and Fe 22.5 Mo 3 2.5 Gd composition a graph showing the XRD analysis for the iron-based amorphous alloy ribbon having the shape.
도 5는 상기 Fe67B24Mo3Gd1Cr5, Fe62B24 . 5Mo3Gd0 . 5Cr10, Fe62B24Mo3Gd1Cr10 및 Fe52B24Mo3Gd1Cr20 조성을 갖는 리본형상의 비정질 철계 합금에 대한 XRD를 분석한 그래프이다.5 is Fe 67 B 24 Mo 3 Gd 1 Cr 5 , Fe 62 B 24 . 5 Mo 3 Gd 0 . 5 Cr 10 , Fe 62 B 24 Mo 3 Gd 1 Cr 10 And XRD of a ribbon-shaped amorphous iron-based alloy having a Fe 52 B 24 Mo 3 Gd 1 Cr 20 composition.
도 6는 상기 Fe65B30Mo3C2 조성을 갖는 리본형상의 비정질 철계 합금에 대한 XRD를 분석한 그래프이다.FIG. 6 is a graph illustrating an XRD analysis of a ribbon-shaped amorphous iron-based alloy having a Fe 65 B 30 Mo 3 C 2 composition.
상기 도 2 내지 도 6을 참고하면, 상기 모든 조성의 비정질 철계 합금은, 비정질 상의 특징인 halo pattern을 나타냄에 따라, 상기 제조된 리본 형상의 비정질 철계 합금 모두는 비정질의 결정상으로 제조되었음을 확인할 수 있었다.Referring to FIGS. 2 to 6, the amorphous iron-based alloys of all the compositions show halo patterns, which are characteristic of the amorphous phase, and thus, all of the ribbon-shaped amorphous iron-based alloys were prepared in the amorphous crystalline phase. .
또한 이와 같은 결과는 비정질 형성능을 높이는 B의 함량이 25at%로 높거나 또는 B와 Gd를 모두 포함하고 상기 함량이 합이 25at%로 높게 나타남에 따른 것으로 판단된다.In addition, this result is determined to be due to the high content of B to increase the amorphous forming ability to 25at% or to include both B and Gd and the sum is high as 25at%.
(2) 열 분석(2) thermal analysis
시차주사열량측정법(differential scanning calorimetry, DSC)을 사용하여, 상기 제조된 리본 형상의 비정질 철계 합금 모두의 비정질상의 안정성에 대하여 분석하였다.Differential scanning calorimetry (DSC) was used to analyze the stability of the amorphous phase of all of the ribbon-shaped amorphous iron-based alloys prepared above.
도 7은 상기 Fe72B25Mo3, Fe52B25Mo3Cr20, Fe57B25Mo3Cr15, Fe62B25Mo3Cr10 및 Fe67B25Mo3Cr5 조성을 갖는 리본 형상의 비정질 철계 합금을 DSC로 분석한 그래프이다.7 is a ribbon shape having the composition Fe 72 B 25 Mo 3 , Fe 52 B 25 Mo 3 Cr 20 , Fe 57 B 25 Mo 3 Cr 15 , Fe 62 B 25 Mo 3 Cr 10 and Fe 67 B 25 Mo 3 Cr 5 Is a graph of DSC analysis of amorphous iron-based alloys.
도 8은 상기 Fe72B24 . 5Mo3Gd0 .5, Fe72B23Mo3Gd2,Fe72B20Mo3Gd5 및 Fe72B15Mo3Gd10 조성을 갖는 리본 형상의 비정질 철계 합금을 DSC로 분석한 그래프이다.8 is Fe 72 B 24 . 5 Mo 3 Gd 0 .5, Fe 72 B 23 Mo 3 Gd 2, Fe 72 B 20 Mo 3 Gd 5 And a ribbon-shaped amorphous iron-based alloy having a Fe 72 B 15 Mo 3 Gd 10 composition by DSC.
도 9는 상기 Fe72B24 . 5Mo3Gd0 .5, Fe72B24Mo3Gd1 , Fe72B23 . 5Mo3Gd1 .5, Fe72B23Mo3Gd2 및 Fe72B22.5Mo3Gd2.5 조성을 갖는 리본 형상의 비정질 철계 합금을 DSC로 분석한 그래프이다.9 is Fe 72 B 24 . 5 Mo 3 Gd 0 .5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23. 5 Mo 3 Gd 1 .5, Fe 72 B 23 Mo 3 Gd 2 B 72 and Fe 22.5 Mo 3 2.5 Gd composition is a graph analysis of the iron-based amorphous alloy ribbon of a shape having a DSC.
도 10은 상기 Fe65B30Mo3C2 조성을 갖는 리본 형상의 비정질 철계 합금을 DSC로 분석한 그래프이다.10 is Fe 65 B 30 Mo 3 C 2 It is a graph which analyzed the ribbon-shaped amorphous iron type alloy which has a composition by DSC.
상기 도 7 내지 도 10을 참고하면, 상기 모든 조성의 비정질 철계 합금은 상기 DSC 분석에서 모두 뚜렷한 발열 피크를 나타냄에 따라, 상기 합금 모두는 비정질의 결정상으로 제조되었음을 확인할 수 있었다. Referring to FIGS. 7 to 10, all of the amorphous iron-based alloys of all compositions showed distinct exothermic peaks in the DSC analysis, and thus, all of the alloys were confirmed to be made of an amorphous crystalline phase.
부식 특성 분석Corrosion Characterization
상기 실시예 1-1 내지 실시예 3-4에 대한 부식특성 분석은, 3.5wt.% NaCl용액의 가상 해수분위기에서 포화 칼로멜 전극(SCE;Saturated Calomel Electrode, KCl)을 기준전극으로 하여, 1mV/s의 속도로 -0.25V ~ 1.5V의 범위에서의 동전위 분극시험(Potentiodynamic test)을 진행하였으며 부식시험에 사용된 장비는 Parstat 2273(Princeton Applied Research)을 사용하였다.Corrosion characteristics analysis of the Examples 1-1 to 3-4, 1mV / Saturated Calomel Electrode (SCE) in a virtual sea water atmosphere of 3.5wt.% NaCl solution as a reference electrode, Potentiodynamic test was conducted in the range of -0.25V to 1.5V at the speed of s. Parstat 2273 (Princeton Applied Research) was used for the corrosion test.
도 11은 상기 Fe72B25Mo3, Fe52B25Mo3Cr20, Fe57B25Mo3Cr15, Fe62B25Mo3Cr10 및 Fe67B25Mo3Cr5 조성을 갖는 리본 형상의 비정질 철계 합금에 대한 부식특성을 분석한 그래프이다.11 is a ribbon shape having the composition Fe 72 B 25 Mo 3 , Fe 52 B 25 Mo 3 Cr 20 , Fe 57 B 25 Mo 3 Cr 15 , Fe 62 B 25 Mo 3 Cr 10 and Fe 67 B 25 Mo 3 Cr 5 This is a graph analyzing corrosion characteristics of amorphous iron-based alloys.
도 12는 상기 Fe72B24 . 5Mo3Gd0 .5, Fe72B24Mo3Gd1 , Fe72B23 . 5Mo3Gd1 .5, Fe72B23Mo3Gd2 및 Fe72B22.5Mo3Gd2.5 조성을 갖는 리본 형상의 비정질 철계 합금에 대한 부식특성을 분석한 그래프이다.12 is Fe 72 B 24 . 5 Mo 3 Gd 0 .5, Fe 72 B 24 Mo 3 Gd 1, Fe 72 B 23. 5 Mo 3 Gd 1 .5, Fe 72 B 23 Mo 3 Gd 2 B 72 and Fe 22.5 Mo 3 2.5 Gd composition is a graph analysis of the corrosive properties of the iron-based amorphous alloy ribbon having the shape.
도 13은 상기 Fe67B24Mo3Gd1Cr5, Fe62B24 . 5Mo3Gd0 . 5Cr10, Fe62B24Mo3Gd1Cr10 및 Fe52B24Mo3Gd1Cr20 조성을 갖는 리본 형상의 비정질 철계 합금에 대한 부식특성을 분석한 그래프이다.13 is Fe 67 B 24 Mo 3 Gd 1 Cr 5 , Fe 62 B 24 . 5 Mo 3 Gd 0 . 5 Cr 10 , Fe 62 B 24 Mo 3 Gd 1 Cr 10 And Fe 52 B 24 Mo 3 Gd 1 Cr 20 It is a graph analyzing the corrosion characteristics for the ribbon-shaped amorphous iron alloy having a composition.
이에 따르면 부식전위의 증가와 무관하게 부식전류가 상승하지 않는 부동태 구간이 크롬의 원자% 가 10% 이상일때부터 나타나는 것을 확인할 수 있다.According to this, regardless of the increase in the corrosion potential, the passivation section in which the corrosion current does not increase can be seen when the atomic percentage of chromium is more than 10%.
열 중성자 차폐율 측정Thermal Neutron Shielding Rate Measurement
상기 실시예 1-1 내지 실시예 3-4에 대한 열 중성자 차폐율을 확인하기 위하여, 241Am-Be를 중성자 선원으로 사용하고, SP9 3He 비례계수기를 열중성자 검출기로 사용하여 중성자 계수율(neutron counting rate)를 측정하였다. In order to confirm the thermal neutron shielding rate for Examples 1-1 to 3-4, 241 Am-Be was used as the neutron source, and the SP9 3 He proportional counter was used as the thermal neutron detector. counting rate) was measured.
또한, 이때 상기 실시예 1-1 내지 실시예 3-4의 방사능 차폐 성능 비교를 위하여, 상기 비교예 1, 비교예 2 및 대조군 1 내지 대조군 3에 대한 각각의 중성자 계수율을 측정하였다.In addition, in this case, in order to compare the radiation shielding performance of Examples 1-1 to 3-4, each of the neutron counts for Comparative Example 1, Comparative Example 2, and Controls 1 to 3 was measured.
상기 중상서 계수율 측정은 먼저, 상기 열중성자 검출기에서 산란중성자의 검출을 차단하기 위하여 전면부를 제외한 나머지 부분을 카드뮴으로 차폐시키고 중성자 선원으로부터 상기 검출기를 거리 9cm의 위치에 설치하였다. 다음으로, 상기 중성자 선원에서 방출되는 중성자를 폴리에틸렌 감속재를 사용하여 속중성자를 에너지를 잃은 열중성자로 변환시킨 후, 차폐 시험 시료가 없는 상태(air)에서 중성자 계수율을 먼저 측정하였다.In the measurement of the neutral phase count rate, first, in order to block the detection of scattering neutrons in the thermal neutron detector, the remaining portion except the front part was shielded with cadmium, and the detector was installed at a position of 9 cm from the neutron source. Next, after converting neutrons emitted from the neutron source into thermal neutrons using a polyethylene moderator, the neutron counts were measured first in the absence of shielding test samples (air).
이 후, 검출기와 선원 사이에 상기 제조된 실시예 1-1 내지 실시예 3-4의 복합재, 비교예 1, 비교예 2 및 대조군 1 내지 대조군 3 을 샘플로 두고 중성자 계수율을 측정하고 모든 샘플 측정이 끝나면 다시 시험시료가 없는 상태에서 한번 더 중성자 계수율을 측정하였다.Subsequently, the neutron counting rate was measured between the detector and the source, and the composite prepared in Examples 1-1 to 3-4, Comparative Example 1, Comparative Example 2, and Control 1 to Control 3 were measured, and all samples were measured. At the end, the neutron count was measured once again in the absence of test samples.
상기 측정된 계수율을 바탕으로 열중성자 차폐율을 산출하였으며, 이를 하기 표 3에 나타내었다.The thermal neutron shielding rate was calculated based on the measured count rate, which is shown in Table 3 below.
조성Furtherance 열중성자 차폐율(%)Thermal neutron shielding rate (%)
실시예 1-1Example 1-1 polyester + Fe72B25Mo3 1vol%polyester + Fe 72 B 25 Mo 3 1vol% 40.9440.94
실시예 1-2Example 1-2 polyester + Fe72B25Mo3 2vol%polyester + Fe 72 B 25 Mo 3 2vol% 56.0856.08
실시예 2Example 2 polyester + Fe62B25Mo3Cr10 1vol%polyester + Fe 62 B 25 Mo 3 Cr 10 1vol% 25.7425.74
실시예 3-1Example 3-1 polyester + Fe72B23Mo3Gd2 1vol%polyester + Fe 72 B 23 Mo 3 Gd 2 1vol% 63.8563.85
실시예 3-2Example 3-2 polyester + Fe72B20Mo3Gd5 1vol%polyester + Fe 72 B 20 Mo 3 Gd 5 1vol% 67.5067.50
실시예 3-3Example 3-3 polyester + Fe72B15Mo3Gd10 1vol%polyester + Fe 72 B 15 Mo 3 Gd 10 1vol% 74.6374.63
실시예 3-4Example 3-4 concrete + Fe72B24.5Mo3Gd0.5 1vol%concrete + Fe 72 B 24.5 Mo 3 Gd 0.5 1vol% 85.9485.94
비교예 1Comparative Example 1 polyester + FIBRAFLEX 1vol%polyester + FIBRAFLEX 1vol% 22.2922.29
비교예 2Comparative Example 2 polyester + FIBRAFLEX 2vol%polyester + FIBRAFLEX 2vol% 21.8721.87
대조군 1 Control group 1 only-polyesteronly-polyester 26.6526.65
대조군 2 Control 2 only-mortaronly-mortar 13.5213.52
대조군 3 Control group 3 only-concreteonly-concrete 68.4468.44
이를 참고하면, 실시예 1-1 내지 실시예 3-4 모두는 비교적 높은 열중성자 차폐율을 나타냄을 확인할 수 있었다. 이는, 상기 실시예 모두 높은 붕소(B) 함량을 나타내기 때문인 것으로 판단된다.Referring to this, it can be seen that Example 1-1 to Example 3-4 all exhibit a relatively high thermal neutron shielding rate. This is considered to be because all of the above examples show a high boron (B) content.
또한, 붕소(B)와 가돌리니움(Gd)을 함께 포함하는 경우(실시예 3-1 내지 실시예 3-4) 현저히 향상된 열중성자 차폐율을 나타내며, 특히 상기 방사능 차폐용 복합재가 붕소 및 가돌리움을 포함하는 비정질 철계 합금으로, 콘크리트와 혼합되는 경우(실시예 3-4), 상기 콘크리트의 열중성자 차폐율에 의해 폴리에스테르와 상기 비정질 철계 합금이 혼합된 방사능 차폐용 복합재보다 현저히 향상된 열중성자 차폐율을 나타냄을 확인할 수 있었다.In addition, when including the boron (B) and gadolinium (Gd) (Examples 3-1 to 3-4) shows a significantly improved thermal neutron shielding rate, in particular the radiation shielding composite is boron and gadodol In the case of amorphous iron-based alloy containing a lithium, when mixed with concrete (Example 3-4), the thermal neutron shielding significantly improved than the radiation shielding composite of the polyester and the amorphous iron-based alloy mixed by the thermal neutron shielding rate of the concrete It was confirmed that the shielding rate was shown.
반면, 붕소를 전혀 포함하지 않는 시중에 판매되는 비정질 리본 FIBRAFLEX을 포함한 비교예의 경우, 열중성자 차폐율이 낮게 측정됨에 따라, 붕소 함량에 따라 열중성자 차폐율이 향상됨을 확인할 수 있었다.On the other hand, in the comparative example including a commercially available amorphous ribbon FIBRAFLEX that does not contain any boron, as the thermal neutron shielding rate is measured low, it was confirmed that the thermal neutron shielding rate is improved according to the boron content.
또한, 대조군 1은 폴리에스테르 자체가 열중성자 차폐 가능한 원소인 수소를 포함하고 있음에 따라 26.65%의 열중성자 차폐율을 나타내기는 하나, 상기 대조군 1 대비 상기 실시예 1-1의 붕소를 포함한 비정질 리본은 1vol.% 당 14~16% 정도의 차폐능 향상을 나타내는 바, 붕소를 높은 함량으로 포함함에 따라 열중성자 차폐율이 현저히 향상됨을 확인할 수 있었다. In addition, although the control group 1 shows a thermal neutron shielding rate of 26.65% as the polyester itself contains hydrogen, which is a thermal neutron shielding element, an amorphous ribbon containing boron of Example 1-1 compared to the control group 1 The bar was shown to improve the shielding performance of about 14 to 16% per 1 vol.%, It was confirmed that the thermal neutron shielding rate is significantly improved by containing a high content of boron.
또한, 대조군 3의 경우 콘크리트 집합체 내부의 수소결합 및 두께의 영향으로 68.44%의 차폐능을 나타내나, 상기 대조군 3 대비 상기 실시예 4-1의 가돌리니움과 붕소를 포함한 비정질 리본은 1vol.%당 17.5% 정도의 차폐능 향상을 나타내는 바, 높은 함량의 붕소를 가돌리움과 함께 포함함에 따라 열중성자 차폐율이 현저히 향상됨을 확인할 수 있었다. In addition, the control group 3 shows a shielding capacity of 68.44% under the influence of hydrogen bonding and thickness inside the concrete aggregate, but the amorphous ribbon containing gadolinium and boron of Example 4-1 compared to the control group 1 vol.% When the shielding performance was improved by about 17.5%, it was confirmed that the thermal neutron shielding rate was remarkably improved by including a high content of boron together with gadolium.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the equivalent scope of the patent to be described.

Claims (12)

  1. 일반식 FeaBbXcZd 로 표현되고, Represented by the general formula Fe a B b X c Z d ,
    상기 a는 철(Fe)의 원자%로, 상기 a는 a=100-(b+c+d)이고 a>50이며,A is the atomic% of iron (Fe), a is a = 100- (b + c + d) and a> 50,
    상기 b는 보론(B)의 원자%로 5<b<35이고,B is the atomic% of boron (B) and 5 <b <35,
    상기 c는 X의 원자%로 1<c<15이며, 상기 X는 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나이고,C is an atomic percentage of X and 1 <c <15, X is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb,
    상기 d는 Z의 원자%로 0≤d<25 이고, 상기 Z는 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나이면서, 단, 상기 X와 동일하지 않는 것을 특징으로 하는, 비정질 철계 합금.D is an atomic% of Z, and 0 ≦ d <25, wherein Z is any one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti, and Nb, provided that the same is not the same as X An amorphous iron-based alloy, characterized in that.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 X 또는 Z가 Gd인 경우, 상기 b+c 또는 b+d가 20 ~ 30 원자%인 것을 특징으로 하는, 비정질 철계 합금.When X or Z is Gd, the b + c or b + d is 20 to 30 atomic%, amorphous iron-based alloy.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 X는 Mo 또는 Si이고, 상기 Z는 Cr, Gd 또는 C인 것을 특징으로 하는, 비정질 철계 합금.X is Mo or Si, and Z is Cr, Gd or C, amorphous iron-based alloy.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 비정질 철계 합금은, 상기 일반식 FeaBbXcZd에 상기 X 및 Z와 동일하지 않으면서 Mo, Cr, C, Si, Gd, Mn, Zr, Ti 및 Nb 중에서 선택되는 어느 하나 이상의 원소를 더 포함하는 것을 특징으로 하는, 비정질 철계 합금.The amorphous iron-based alloy, at least one selected from Mo, Cr, C, Si, Gd, Mn, Zr, Ti and Nb without being the same as the X and Z in the general formula Fe a B b X c Z d An amorphous iron-based alloy, further comprising an element.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 일반식 FeaBbXcZd에 있어서, 상기 X가 Mo 또는 Si이고, 상기 Z가 Gd 또는 C일 때, 상기 일반식 FeaBbXcZd의 100원자%에 대해 Cr을 5 ~ 25 원자%로 더 포함하는 것을 특징으로 하는, 비정질 철계 합금.In the general formula Fe a B b X c Z d , when X is Mo or Si, and Z is Gd or C, Cr is added to 100 atomic% of the general formula Fe a B b X c Z d An iron-based alloy, characterized in that it further comprises 5 to 25 atomic%.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 일반식 FeaBbXcZd의에 있어서, 상기 X가 Si이고, 상기 Z가 Gd 또는 C일 때, 상기 일반식 FeaBbXcZd의 100원자%에 대해 Mo을 1 ~ 10 원자%로 더 포함하는 것을 특징으로 하는, 비정질 철계 합금.In the general formula Fe a B b X c Z d , when X is Si and Z is Gd or C, Mo is 1 based on 100 atomic% of the general formula Fe a B b X c Z d . Amorphous iron-based alloy, characterized in that it further comprises in 10 atomic%.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 X가 Mo이고, 상기 Z가 Gd일 때, Fe의 원자% a는 70~80원자% 인 것을 특징으로 하는, 비정질 철계 합금.When X is Mo and Z is Gd, the atomic% a of Fe is 70 to 80 atomic%, amorphous iron-based alloy.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 Fe는 강(steel), 용선(pig iron), 주물선(cast iron), Fe-B 합금철, Fe-Cr 합금철, Fe-Mo 합금철 및 Fe-P합금철로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는, 비정질 철계 합금.The Fe is any one selected from the group consisting of steel, pig iron, cast iron, Fe-B alloy iron, Fe-Cr alloy iron, Fe-Mo alloy iron and Fe-P alloy iron An amorphous iron-based alloy, characterized in that one or more.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 비정질 철계 합금은 리본, 섬유, 조각, 벌크 또는 분말의 형상인 것을 특징으로 하는, 비정질 철계 합금.The amorphous iron-based alloy is characterized in that the shape of ribbons, fibers, pieces, bulk or powder, amorphous iron-based alloy.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 비정질계 철계 합금은 20 ~ 90%의 열중성자 차폐율을 나타내는 것을 특징으로 하는, 비정질 철계 합금.The amorphous iron-based alloy is characterized in that the thermal neutron shielding rate of 20 to 90%, amorphous iron-based alloy.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 따른 비정질 철계 합금에 콘크리트, 폴리머, 몰타르 또는 세라믹을 혼합하여 제조하는 것을 특징으로 하는, 방사능 차폐용 복합재.A composite for shielding radiation, characterized in that the amorphous iron-based alloy according to any one of claims 1 to 10 to the concrete, polymer, mortar or ceramics by mixing.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 복합재는, 20 ~ 90%의 열중성자 차폐율을 나타내는 것을 특징으로 하는, 방사능 차폐용 복합재.The composite is a radiation shielding composite, characterized in that the thermal neutron shielding rate of 20 to 90%.
PCT/KR2017/007322 2016-07-07 2017-07-07 Amorphous iron-based alloy and composite material for radiation shielding manufactured using same WO2018009036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160086364A KR101801861B1 (en) 2016-07-07 2016-07-07 amorphous iron-based alloy and radiation shielding composite material by manufactured using the same
KR10-2016-0086364 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018009036A1 true WO2018009036A1 (en) 2018-01-11

Family

ID=60810726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007322 WO2018009036A1 (en) 2016-07-07 2017-07-07 Amorphous iron-based alloy and composite material for radiation shielding manufactured using same

Country Status (2)

Country Link
KR (1) KR101801861B1 (en)
WO (1) WO2018009036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124287A (en) * 2022-07-08 2022-09-30 中国矿业大学 Multifunctional concrete and preparation method thereof
EP4191612A4 (en) * 2020-07-27 2024-02-21 Toshiba Kk Radiation shielding body, method for manufacturing radiation shielding body, and radiation shielding structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112159170B (en) * 2020-09-18 2021-08-20 中国原子能科学研究院 Ionizing radiation shielding material for intermediate energy proton accelerator
KR102611618B1 (en) * 2021-06-16 2023-12-08 이상민 Composite material composition for shielding radiation, electromagnetic wave and magnetic field, and composite sheet using the same
CN116043138A (en) * 2023-01-03 2023-05-02 深圳市铂科新材料股份有限公司 Iron-based amorphous soft magnetic material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767572A (en) * 1985-07-31 1988-08-30 Siempelkamp Giesserei Gmbh & Co. Method of making radiation shielding elements for use in nuclear technology
KR20140070639A (en) * 2011-09-29 2014-06-10 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Radiation shielding structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767572A (en) * 1985-07-31 1988-08-30 Siempelkamp Giesserei Gmbh & Co. Method of making radiation shielding elements for use in nuclear technology
KR20140070639A (en) * 2011-09-29 2014-06-10 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Radiation shielding structures

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MADLNEHEI, M. ET AL.: "Glass-formation and Corrosion Properties of Fe-Cr-Mo-C-B Glassy Ribbons with Low Cr Content", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 615, 11 January 2014 (2014-01-11), pages S128 - S131, XP055453834 *
MOON, JAE WON ET AL.: "Analysis on Mechanical Properties and Fracture of Molten Iron based Amorphous", FALL CONFERENCE OF THE KOREAN INSTITUTE OF METALS AND MATERIALS ABSTRACT, 28 October 2015 (2015-10-28), pages 205 *
MOON, JAE WON ET AL.: "Glass Forming Ability and Mechanical Properties of (Fe79C1 1B8Si2)100-XCrX (X = 0-8) Amorphous Ribbons", JOURNAL OF KOREA FOUNDRY SOCIETY, vol. 36, no. 1, February 2016 (2016-02-01), pages 88 - 93 *
MOON, JAE WON, MECHANICAL PROPERTIES, CORROSION RESISTANCE AND THERMAL NEUTRON SHIELDING EFFICIENCY OF FE72-XB25MO3CRX (X = 0, 5, 10, 15, 20) HIGH BORON AMORPHOUS RIBBONS, December 2015 (2015-12-01), pages 1 - 59 *
ZHANG, WEI ET AL.: "Soft Magnetic Properties of (Fe, Co)-RE-B Amorphous Alloys with a Large Supercooled Liquid Region", MATERIALS TRANSACTIONS, vol. 42, no. 6, 2001, pages 1142 - 1145 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4191612A4 (en) * 2020-07-27 2024-02-21 Toshiba Kk Radiation shielding body, method for manufacturing radiation shielding body, and radiation shielding structure
CN115124287A (en) * 2022-07-08 2022-09-30 中国矿业大学 Multifunctional concrete and preparation method thereof
CN115124287B (en) * 2022-07-08 2022-12-06 中国矿业大学 Multifunctional concrete and preparation method thereof

Also Published As

Publication number Publication date
KR101801861B1 (en) 2017-11-27

Similar Documents

Publication Publication Date Title
WO2018009036A1 (en) Amorphous iron-based alloy and composite material for radiation shielding manufactured using same
WO2015083878A1 (en) High-strength welding joint having excellent cryogenic impact toughness, and wire for flux-cored arc welding therefor
WO2016104879A1 (en) Hot press-formed member with excellent powdering resistance at time of press forming, and method for manufacturing same
WO2015099218A1 (en) Welding material for heat resistant steel
WO2013100698A1 (en) Non-oriented magnetic steel sheet and method for manufacturing same
WO2017164601A1 (en) High-entropy alloy for ultra-low temperature
US20160340765A1 (en) Zirconium-based amorphous alloy and manufacturing method thereof
WO2018117614A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2019117430A1 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
WO2019124890A1 (en) Thick steel plate having excellent low-temperature toughness and manufacturing method therefor
KR20230128019A (en) Inorganic compositions and fibers and flakes thereof
JPWO2022145401A5 (en)
WO2016085257A1 (en) Annealing separator composition for oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet using same
WO2021125683A2 (en) Non-oriented electrical steel sheet and method for manufacturing same
WO2018117632A1 (en) Magnesium alloy having excellent corrosion resistance and method for manufacturing same
CA1227671A (en) Aluminum alloy having a high electrical resistance and an excellent formability
CN101445895B (en) Rare earth-based amorphous alloy and preparation method thereof
Matsuura et al. Low-temperature specific heat study of Ni100-xZrx (x= 30-80) metallic glasses
WO2022103243A1 (en) Austenitic stainless steel having corrosion-resistant alumina oxide film formed thereon in lead or lead-bismuth eutectic, and manufacturing method therefor
US5221646A (en) Neutron absorbing glass compositions
WO2022234901A1 (en) Electric steel sheet with (001) texture and manufacturing method therefor
WO2021107579A1 (en) Stainless steel flux cored wire for manufacturing lng tank
JPH01168833A (en) Boron-containing titanium alloy
Boulet et al. Crystal structure and magnetic properties of the uranium germanide U5Ge4
WO2024019408A1 (en) Alloy composition of titanium-gadolinium alloy with excellent neutron absorption ability and tensile properties and neutron absorbing structural material manufactured by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824591

Country of ref document: EP

Kind code of ref document: A1