WO2018008732A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2018008732A1
WO2018008732A1 PCT/JP2017/024870 JP2017024870W WO2018008732A1 WO 2018008732 A1 WO2018008732 A1 WO 2018008732A1 JP 2017024870 W JP2017024870 W JP 2017024870W WO 2018008732 A1 WO2018008732 A1 WO 2018008732A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
width
shoulder
stone
Prior art date
Application number
PCT/JP2017/024870
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 長谷川
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2018008732A1 publication Critical patent/WO2018008732A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping

Definitions

  • the present invention relates to a tire, and more particularly, to a tire capable of improving stone biting performance while preventing uneven wear in a tread portion.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a tire that can improve stone-resisting performance in a tread portion of the tire.
  • a tire having a main groove extending in a zigzag shape in a tire circumferential direction in a tread portion, and connecting bent portions adjacent to each other in the tire circumferential direction of the main groove.
  • One groove width of the main groove portion is set wider than the other groove width, and the groove width ratio of the other main groove portion to the groove width of the one main groove portion is 0.5 to 0.75. It was set as the structure set to this range. According to this configuration, the stone biting performance can be improved.
  • the main stone biting holding force is changed from three-point support to two-point support, Since the stone that has been bitten can be easily removed from the groove, the stone biting performance can be improved.
  • FIG. 5 is a view as seen from the direction of the arrow uu in FIG. 4. It is the table
  • FIG. 1 is a plan view showing a tread pattern according to the present embodiment.
  • FIG. 2 is an enlarged view of the tread portion. Note that the tread pattern of this embodiment does not change the grounding pattern even if the relationship between the vehicle body side and the vehicle body outside is changed when assembling the tire (the setting of the rotation direction is not necessary when the tire is mounted on the vehicle). Designed to be)
  • the tread portion 1 includes a plurality of main grooves 2 to 4 extending in the tire circumferential direction, and a width direction groove 5 and a narrow groove 6 extending in the tire width direction.
  • the main grooves 2 to 4 are so-called main grooves, and have a tread wear indicator (not shown) at the groove bottom.
  • the main grooves 2 and 3 are respectively provided on the outer side in the tire width direction, extend in a zigzag shape along the tire circumferential direction, and divide the tread portion 1 into left and right shoulder land portions 30A and 30B and a center land portion 31.
  • the center land portion 31 is provided between the main grooves 2 and 3, and is further divided into left and right center land portions 31A and 31B by a main groove 4 extending in a zigzag shape along the tire circumferential direction.
  • zigzag extending in the tire circumferential direction means that the straight portion of the groove inclined with respect to the tire circumferential direction extends in the tire circumferential direction while turning back so that the inclination directions are alternate.
  • channel is linear in many cases, it does not necessarily need to be limited to linear form and includes what is formed in curved shape.
  • the center land portions 31 ⁇ / b> A and 31 ⁇ / b> B are periodically provided with a width direction groove 5 extending in the tire width direction and communicating with the main grooves 2 and 4 and the main grooves 3 and 4 along the tire circumferential direction.
  • the center land portions 31A and 31B are formed by a plurality of block rows that are continuous in the tire circumferential direction. That is, a so-called block pattern is formed on the tread portion 1.
  • the left and right shoulder land portions 30A and 30B are periodically provided with narrow grooves 6 extending in the tire width direction along the tire circumferential direction.
  • the configuration of each of the grooves 2 to 6 will be described.
  • the main grooves 2 and 3 are referred to as shoulder grooves
  • the main groove 4 is referred to as a center groove
  • the width direction groove 5 is referred to as a lug groove.
  • the groove width is a length dimension that opens to the ground contact surface 1a when it is new, measured in a direction orthogonal to the extending direction of the groove.
  • the center groove 4 is provided in the center in the tire width direction (hereinafter referred to as a tire center) CL.
  • the center groove 4 includes a straight portion 7 and a straight portion 8 whose extending directions are inclined in opposite directions with respect to the tire circumferential direction, and a bent portion 15 in which the extending direction of the straight portion 7 and the straight portion 8 changes.
  • the straight portions 7 and 8 constituting the center groove 4 have the same groove widths w7 and w8, groove lengths L7 and L8, and angles extending with respect to the tire circumferential direction (hereinafter referred to as groove swing angles) ⁇ 7 and ⁇ 8. Is set.
  • the groove widths w7 and w8 of the straight portions 7 and 8 are set in a range of 15 mm to 25 mm, for example.
  • the groove lengths L7 and L8 are defined by the groove center lines 7z and 8z as shown in FIG. Further, the groove length L7 is the distance from one intersection point where the groove center line 7z and the groove center lines 8z, 8z of the adjacent straight portions 8, 8 intersect, and the groove length L8 is the groove length L8. This is the distance from one intersection to the other intersection where the center line 8z and the groove center lines 7, 7 of the adjacent straight portions 7, 7 intersect. Further, the groove swing angles ⁇ 7 and ⁇ 8 refer to the acute angle side among the angles at which the groove center lines 7z and 8z intersect the tire circumferential direction.
  • the groove swing width fw4 of the center groove 4 is set in a range of 5 mm to 20 mm.
  • the groove swing width fw4 refers to the length in the tire width direction from one intersection where the groove center lines 7z, 8z of the adjacent straight portions 7, 8 intersect each other to the other intersection.
  • the center groove 4 includes a plurality of protrusions 19 that protrude toward the tire surface side on the groove bottom 4c.
  • the protrusions 19 are formed intermittently at predetermined intervals along the extending direction of the center groove 4.
  • the protrusion 19 is formed such that the height from the groove bottom of the center groove 4 is in the range of 10% to 30% of the groove depth of the center groove 4, for example, a stone or the like trying to fit into the center groove 4 Prevent biting of foreign objects.
  • the shoulder grooves 2 and 3 are respectively provided at positions that are symmetrical from the outside in the tire width direction.
  • the shoulder grooves 2 and 3 have the same configuration.
  • the shoulder groove 3 is formed so that the shape of the shoulder groove 2 is reversed, and the symmetry of the shoulder grooves 2 and 3 in the ground contact pattern is set. In the following description, the configuration of the groove will be described using the shoulder groove 2.
  • the shoulder groove 2 is composed of straight portions 11 and 12 whose extending direction is inclined in the opposite direction with respect to the tire circumferential direction, and a bent portion 14, and is formed to extend in a zigzag shape in the tire circumferential direction.
  • the straight portions 11 and 12 in the shoulder groove 2 are set so that the groove width w12 of the other straight portion 12 is wider than the groove width w11 of the one straight portion 11.
  • the groove width ratio (groove width w11 / groove width w12) between the groove width w11 of the linear portion 11 and the groove width w12 of the linear portion 12 is set in the range of 0.5 to 0.75.
  • the groove width ratio is smaller than 0.5, the contact pressure of the portion where the straight portion 11 and the stone are in contact increases and the stone is in a three-point support state. If it is greater than 0.75, the straight portion 12 and the stone As a result, the contact pressure at the point where the stones come into contact increases, and the stone is in a three-point support state, so that the stone biting performance cannot be improved.
  • the groove widths w11 and w12 are set in the range of 10 mm to 25 mm, respectively.
  • the stone biting performance at the bent portion 14 can be improved as compared with the case where the groove width ratio is the same as that of the center groove 4.
  • the groove lengths L11, L12 of the straight portions 11, 12 are the groove swing angles ⁇ 11, ⁇ 12 intersecting the tire circumferential direction and the length in the tire width direction between the adjacent bent portions 14, 14.
  • the groove swing angles ⁇ 11 and ⁇ 12 are set in the range of 25 ° to 45 °, and the groove swing width fw2 is set in the range of 7 mm to 30 mm.
  • the groove length L11 is a distance from one intersection point where the groove center line 11z of the straight line portion 11 and the groove center lines 12z, 12z of the straight line portions 12 and 12 adjacent to the straight line portion 11 to the other intersection point
  • the groove length The length L12 is a distance from one intersection to the other intersection where the groove center line 12z of the straight portion 12 and the groove center lines 11z and 11z of the straight portion 11 adjacent to the straight portion 12 intersect.
  • the groove swing angles ⁇ 11 and ⁇ 12 refer to the acute angle side of the angle at which the groove center line 11z of the straight portion 11 and the groove center line 12z of the straight portion 12 intersect with the tire circumferential direction.
  • the groove swing width fw2 is the length in the tire width direction from one intersection point where the groove center lines 11z, 12z of the adjacent straight portions 11, 12 intersect to the other intersection point.
  • the groove swing angles ⁇ 11 and 12 and the groove swing width fw2 are set within the above range so that the groove length L12 is 85% to 115% with respect to the groove length L11. Set it. Thereby, the edge effect in the shoulder groove 2 can be obtained effectively, and the uneven wear resistance performance can be improved while ensuring the driving force and the braking force.
  • the lug groove 5 is formed so as to communicate the bent portion 14 located on the tire center CL side of the shoulder groove 2 and the bent portion 15 located on the shoulder groove 2 side of the center groove 4.
  • the lug groove 5 extends in the tire width direction toward the center groove 4 at an angle larger than the groove swing angle ⁇ 12 of the linear portion 12, and the extension direction is changed in the tire circumferential direction opposite to the center groove 4 on the way. It is formed so as to communicate.
  • the lug groove 5 is formed with a groove width w5 in the range of 5 mm to 10 mm. Further, the lug groove 5 is set such that the groove depth h5 from the tire surface is 0.2 to 0.6 times (h5 / h2) the groove depth h2 of the shoulder groove 2.
  • the corners facing the straight portions 12 having a wide groove width can be provided in the block 20 defined by the lug grooves 5 and 5 adjacent in the tire circumferential direction. Then, when the block 20 swings due to contact with the road surface, the stones biting into the bent portion 14 are pushed out to the straight portion 12 by the corner portion and are easily discharged from the shoulder groove 2.
  • the ground contact area of the block 20 can be increased by connecting the bent portion 15 of the adjacent center groove 4 and the bent portion 14 of the shoulder groove 2 by the lug groove 5, so that the block rigidity of the block 20 is increased. Can do.
  • the block 20 is defined. Since the pitch length in the tire circumferential direction between the formed lug grooves 5 and 5 is optimized, a decrease in braking force and an occurrence of uneven wear due to an excessive increase in the edge component while preventing a decrease in the rigidity of the block 20 Can be prevented.
  • the groove swing width fw2 of the shoulder groove 2 is desirably 1.1 to 3.0 times the groove swing width fw4 of the center groove 4. When the groove swing width fw4 is smaller than 1.1 times, the traction performance is lowered, and when it is larger than 3.0 times, the partial wear property is deteriorated.
  • FIG. 3 is a diagram illustrating the relationship between the straight portions 11 and 12 in the shoulder groove 2.
  • the straight portion 11 and the straight portion 12 in the shoulder groove 2 are preferably formed so as to satisfy the following relationship.
  • the stone bites at the bent portions 14 and 14 include the groove walls 12a and 12b that define the straight portion 12 having a wide groove width, and the groove wall 11a or the groove wall 11b of the straight portion 11 that faces the extending direction of the straight portion 12. It is caused by being sandwiched between the three surfaces. Therefore, the triangle A and the triangle B assuming the state where the stone bites are generated in the bent portions 14 and 14 are set to the bent portions 14 and 14 positioned at both ends of the linear portion 12.
  • a center line 12z is set in the straight line portion 12.
  • the intersection with the groove wall 11a of the linear part 11 where the center line 12z intersects is set as A1.
  • the groove wall 11a where the intersection A1 is set is extended, and the intersection with the groove wall 12a of the linear portion 12 is set as A2.
  • the intersection of the groove wall 11b of the straight part 11 and the groove wall 12b of the straight part 12 is set as a point A3.
  • the triangle A is set to one bending part 14 by connecting the intersections A1, A2, and A3 with straight lines.
  • the intersections A1, A2, and A3 may be referred to as vertices A1, A2, and A3.
  • a triangle B is set at the other bent portion 14.
  • the intersection of the groove walls 11b of the straight line part 11 where the center line 12z intersects is set as B1.
  • the groove wall 11a and the groove wall 12a of the linear part 12 are extended, and the intersection where these intersect is set as B2.
  • the intersection of the groove wall 12b and the groove wall 5b of the lug groove 5 is set as B3.
  • the triangle B is set to the other bending part 14 by connecting intersection B1, B2, B3 with a straight line.
  • the intersection points B1, B2, and B3 may be referred to as vertices B1, B2, and B3.
  • the angle a1 of the vertex A1 of the triangle A is set in the range of 90 ° to 130 °
  • the angle b1 of the vertex B1 is set in the range of 65 ° to 105 °. It is preferable. More preferably, the angle a1 of the vertex A1 of the triangle A is set to be larger than the angle b1 of the vertex B1 of the triangle B while satisfying the numerical range. In this way, by setting the vertices A1 and B1 of the triangles A and B, the stone biting performance can be improved.
  • the groove width w11 of the straight portion 11 and the groove width w12 of the straight portion 12 in the shoulder groove 2 or the groove swing angle ⁇ 12 of the straight portion 11 relative to the straight portion 12 and the straight portion 12 of the straight portion 12 with respect to the straight portion 11 are satisfied.
  • the groove swing angle ⁇ 11 and the position of the lug groove 5 opening in the shoulder groove 2 and the groove width w5 are effectively removed during traveling. It becomes possible.
  • FIG. 4 is a partially enlarged view of the bent portion 14 in the shoulder groove 20.
  • 5A is a cross-sectional view of the straight portion 11 in the shoulder groove 2
  • FIG. 5B is a cross-sectional view of the straight portion 12 in the shoulder groove 2.
  • predetermined inclination angles hereinafter referred to as groove wall angles
  • ⁇ and ⁇ are set in the groove walls 2 a and 2 b forming the shoulder groove 2.
  • the groove wall angles ⁇ and ⁇ are the acute angles of the angles of the groove walls 2a and 2b with respect to the normal direction of the ground contact surface 1a on the tread surface.
  • a groove wall angle ⁇ is set to a predetermined angle in the groove wall 2a located on the outer side in the tire width direction.
  • the groove wall angle ⁇ 12 of the straight portion 12 is preferably set in the range of 8 ° to 15 °
  • the groove wall angle ⁇ 11 of the straight portion 11 is preferably set in the range of 8 ° to 15 °.
  • the groove wall angle ⁇ is set to be different depending on the position on the groove wall 2b located on the tire center CL side. Specifically, in the groove wall 2b, different groove wall angles ⁇ 11 and ⁇ 12 are set for the straight portions 11 and 12, respectively.
  • the groove wall angles ⁇ 11 and ⁇ 12 are set as follows. In the block 20, a point X is set at a corner portion protruding to the shoulder land portion 30 ⁇ / b> A side, that is, a corner portion corresponding to the bent portion 14 located on the outer side in the tire width direction of the shoulder groove 2 (the intersection point X is a figure). 3).
  • the groove wall on the side where the distance in the width direction is long The groove wall angle is set smaller than the groove wall on the short side in the width direction.
  • the groove wall angle ⁇ 12 of the straight portion 12 is set to 20 ° to 30 °
  • the groove wall angle ⁇ 11 of the straight portion 11 is set to a range of 8 ° to 15 °
  • ⁇ 12 is set to be twice or more of ⁇ 11.
  • the groove wall angle ( ⁇ 12) on the inner side in the width direction of the straight portion 12 is set to be larger than the groove wall angle ( ⁇ 11) on the outer side in the width direction and the groove wall angles ( ⁇ 11, ⁇ 12) of the straight portion 11.
  • the boundary JA is a position where the extension of the groove wall 11b forming the straight portion 11 and the extension of the groove wall 5a of the lug groove 5A intersect (intersection B in FIG. 3), the boundary JB. Is the position where the extension of the groove wall 12b forming the straight portion 12 and the extension of the groove wall 5b of the lug groove 5B intersect on the tread surface.
  • the width direction distance k2 from the point X to the boundary JA set in the block 20 is longer than the width direction distance k1 to the boundary JB, so the point X reaches the boundary JA.
  • An angle larger than the groove wall angle ⁇ 11 of the groove wall 11b extending from the point X to the boundary JB is set to the groove wall angle ⁇ 12 of the groove wall 12b.
  • the groove wall angle ⁇ 11 of the groove wall 11b is in the range of 8 ° to 15 °
  • the groove wall angle ⁇ 12 of the groove wall 12b is in the range of 20 ° to 30 °, so that the groove wall angle ratio ( ⁇ 12 / ⁇ 11) is Set to a range of 2.0 times or more.
  • the block 20 is preferably provided with a groove 22 having one end opening in the shoulder groove 2 and the other end terminating in the block 20.
  • the groove 22 opens at the center in the extending direction of the linear portion 11 constituting the shoulder groove 2 and extends along the lug groove 5.
  • the groove 22 is formed, for example, in the range where the groove width w22 is 1 mm to 3 mm and the groove depth h22 is 2 mm to 5 mm.
  • the relationship between the groove width w22 and the groove depth h22 is set such that the dimension of the groove depth h22 is larger than the dimension of the groove width w22 within the above range.
  • the groove 20 that opens to the shoulder groove 2 in the block 20 it is possible to change the movable range of the block 20 during traveling. That is, since a new tire has a deep groove depth, it is difficult for the stone caught in the bent portion 14 to come off. Therefore, by providing the groove 22 having a groove depth that does not affect the rigidity of the block 20, the vicinity of the surface of the block 20 can be easily moved by friction with the road surface. Thereby, the stone bitten by the bent portion 14 on the tire center CL side of the shoulder groove 2 is such that the edge portion of the block 20 (the boundary JB portion shown in the above description) is indicated by an arrow x in FIG. By greatly moving in the direction of the wide straight portion 12 of the shoulder groove 2, the shoulder groove 2 is pushed out in the direction of the straight portion 12 and excluded from the shoulder groove 2. Therefore, the stone biting performance can be further improved.
  • the narrow groove 6 is provided corresponding to the groove 22 provided in the block 20.
  • the narrow groove 6 is formed so that one end opens into the main groove 2 and the other end terminates in the shoulder land portion 30A.
  • the narrow groove 6 opens into the shoulder groove 2 so that one end side extends the groove 22, and extends in a bow shape so that the inclination angle gradually decreases with respect to the tire width direction.
  • the narrow groove 6 is formed, for example, in the range where the groove width w6 is 1 mm to 3 mm and the groove depth h6 is 2 mm to 5 mm.
  • FIG. 7 is a table summarizing test conditions and evaluation results for evaluating the stone biting performance.
  • tires corresponding to the conditions shown in the same table were prepared and evaluated by counting the number of stones caught in the actual tire grooves after traveling 10,000 km on the gravel road test road at 60 km / h. did.
  • the tire size of the test tire is 13R22.5.
  • the case where the areas Sa and Sb of the triangles A and B shown in FIG. 3 are constant and the angles a1 and b1 of the triangles A and B are changed to evaluate the stone resistance performance will be described.
  • relative evaluation was performed on the basis of the conventional example.
  • the performance is better as the index is larger than 100, and the performance is lowered as the standard index is smaller than 100.
  • the angle a1 is in the range of 90 ° to 130 °
  • the angle b1 is 65. It can be seen that the stone biting performance is excellent when the angle is in the range of ° to 105 °.
  • Comparative Examples 1 and 2 it can be seen that as the angle a1 is smaller than 90 ° and the angle b1 is smaller than 65 °, the stone biting performance decreases.
  • Comparative Example 5 it can be seen that when the area Sa is smaller than 60 mm 2 and the area Sb is smaller than 85 mm 2 , the stone biting performance is lowered.
  • Comparative Example 6 it can be seen that when the area Sa is larger than 90 mm 2 and the area Sb is larger than 115 mm 2 , the stone biting performance is lowered.
  • FIG. 8 is a diagram summarizing the setting ranges of the angle a1 and the area Sa of the triangle A and the angle b1 and the area Sb of the triangle B.
  • the groove widths w11 and w12 and the groove swing are set such that the angle a1 and the area Sa are included in the rectangular area Ea, and the triangle B is included in the rectangular area Eb.
  • Angles ⁇ 11 and ⁇ 12 and groove lengths L11 and L12 may be set.
  • FIG. 9A to FIG. 9C are diagrams showing a mechanism by which stones caught in the bent portion 14 in which the triangle A is set are removed.
  • G in the same figure is the stone which was bitten.
  • FIG. 9A shows a state where the stone is bitten when the angle a1 at the vertex A1 is 90 ° or less.
  • the stone G deforms the groove wall 11a, the groove wall 12a, and the top V where the groove wall 11b and the groove wall 12b are continuous as shown by the broken line, and as shown by the arrow in the figure, the force F1 , F2, F3.
  • the stone G acts in the extending direction of the linear portion 12 by the force F1. . Accordingly, the stone G is pushed out from the bent portion 14 toward the straight portion 12 and is removed from the circumferential groove 2. Therefore, by adjusting the area Sa of the triangle A and the angle a1 of the vertex A1 facing the straight line portion 12 having a wide groove width within the above range, the stone G supported at three points in the bent portion 14 is changed to the straight line portion 12. By adopting two-point extrusion, it can be excluded from the circumferential groove 2. Further, as shown in FIG.
  • the center groove 4 has been described as being formed in a zigzag shape along the tire circumferential direction, but may be formed so as to extend linearly along the tire circumferential direction. You may form like the shoulder grooves 2 and 3. Further, the number of the shoulder grooves 2 and 3 having the above-described configuration formed in the tread portion is not limited to two, and more may be provided.
  • the tire according to an embodiment of the present invention can be described as follows. That is, a tire having a main groove extending in a zigzag shape in a tire circumferential direction in a tread portion, wherein one groove width of a main groove portion connecting bent portions adjacent to each other in the tire circumferential direction of the main groove is the other
  • the tire is configured to be wider than the groove width of the one main groove portion, and the ratio of the groove width of the other main groove portion to the groove width of the one main groove portion is set in the range of 0.5 to 0.75. . According to this configuration, the stone biting performance can be improved.
  • the groove width of one and the other main groove portions is set in a range of 5 mm to 30 mm. Further, since the main groove is provided on both the left and right shoulder sides of the tread portion, it is possible to improve the stone biting performance of the tire. Further, provided periodically along the tire circumferential direction, and provided with a width direction groove extending in the tire width direction, the width direction groove opens to a bent portion located on the tire center side of the main groove, The stone biting performance can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Provided is a tire having a main groove that is disposed in a tread section so as to extend in a zigzag in the tire circumferential direction, wherein: the main groove is configured to have a main groove portion which connects between bent parts adjacent to each other in the tire circumferential direction, and one side of the main groove portion has a width greater than the other side thereof; and the ratio of the width of main groove portion on the other side with respect to the width of the main groove portion on the one side is set to fall within a range of 0.5-0.75.

Description

タイヤtire
 本発明は、タイヤに関し、特にトレッド部における偏摩耗を防ぎつつ耐石噛み性能を向上可能なタイヤに関する。 The present invention relates to a tire, and more particularly, to a tire capable of improving stone biting performance while preventing uneven wear in a tread portion.
 従来、タイヤでは、タイヤ円周方向に延びる主溝をジグザグ状に形成することで、トラクション性能や制動性能が向上することが知られている。 Conventionally, in a tire, it is known that traction performance and braking performance are improved by forming a main groove extending in the tire circumferential direction in a zigzag shape.
特開2001-315507号公報JP 2001-315507 A
 しかしながら、主溝をジグザグ状に形成すると、直線部分に比べ、屈曲部分において石噛みが生じ易いという問題がある。例えば、図10(a)に示すように、溝の直線部分に噛み込まれた石Gは、対向する溝壁m1;m2の間で挟み込まれ、図中矢印で示すように2点で支持されるため溝Mの延長方向に沿って移動が容易となって走行時の路面との接触により石が抜けやすい。一方、図10(b)に示すような屈曲部分では、凹状に屈曲する溝壁m1;m1と、凸状に屈曲する溝壁m2;m2により形成される角部Vの間で挟み込まれ、図中矢印で示すように3点で支持されるため、上述の2点支持の場合に比べて、保持力が大きく溝から石が抜けにくい。石噛みを低減させる方策として、例えば、主溝の溝深さを浅くしたり、溝幅を広くしたり、溝壁の角度を大きく設定することが考えられるが、このように主溝を形成すると偏摩耗が生じ易いという問題がある。
 本発明は、上記問題に鑑みてなされたものであり、タイヤのトレッド部における耐石噛み性能を向上可能なタイヤを提供することを目的とする。
However, when the main groove is formed in a zigzag shape, there is a problem that stone biting is likely to occur at the bent portion as compared with the straight portion. For example, as shown in FIG. 10 (a), a stone G caught in a straight portion of a groove is sandwiched between opposing groove walls m1; m2, and supported at two points as indicated by arrows in the figure. Therefore, it is easy to move along the extending direction of the groove M, and the stone is easily removed by contact with the road surface during traveling. On the other hand, the bent portion as shown in FIG. 10B is sandwiched between the groove wall m1; m1 bent in a concave shape and the corner portion V formed by the groove wall m2; m2 bent in a convex shape. Since it is supported at three points as indicated by the middle arrow, the holding force is large and the stones are not easily removed from the groove as compared with the above-described two-point support. As a measure to reduce stone biting, for example, it is conceivable to reduce the groove depth of the main groove, widen the groove width, or set the angle of the groove wall to be large. There is a problem that uneven wear tends to occur.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a tire that can improve stone-resisting performance in a tread portion of the tire.
 上記課題を解決するためのタイヤの構成として、タイヤ円周方向にジグザグ状に延びる主溝をトレッド部に有するタイヤであって、前記主溝のタイヤ円周方向に隣接する屈曲部同士を接続する主溝部分の一方の溝幅が他方の溝幅よりも幅広に設定され、前記一方の主溝部分の溝幅に対して前記他方の主溝部分の溝幅比が0.5~0.75の範囲に設定される構成とした。
 本構成によれば、耐石噛み性能を向上させることができる。即ち、屈曲部において溝幅の広い一方の主溝部分に対向する他方の主溝部分の溝壁が一方の主溝部分に近づくため、主たる石噛み保持力が3点支持から2点支持となり、噛みこんだ石が溝から抜けやすくなるため、耐石噛み性能を向上させることができる。
As a configuration of a tire for solving the above-described problem, a tire having a main groove extending in a zigzag shape in a tire circumferential direction in a tread portion, and connecting bent portions adjacent to each other in the tire circumferential direction of the main groove. One groove width of the main groove portion is set wider than the other groove width, and the groove width ratio of the other main groove portion to the groove width of the one main groove portion is 0.5 to 0.75. It was set as the structure set to this range.
According to this configuration, the stone biting performance can be improved. That is, since the groove wall of the other main groove portion facing one main groove portion having a wider groove width in the bent portion approaches one main groove portion, the main stone biting holding force is changed from three-point support to two-point support, Since the stone that has been bitten can be easily removed from the groove, the stone biting performance can be improved.
トレッドパターンの一実施形態を示す平面図である。It is a top view which shows one Embodiment of a tread pattern. トレッド部の拡大図である。It is an enlarged view of a tread part. ショルダー溝における直線部11,12の関係を示す図である。It is a figure which shows the relationship between the linear parts 11 and 12 in a shoulder groove. ショルダー溝の部分拡大図である。It is the elements on larger scale of a shoulder groove. 図5(a)及び図5B(b)はショルダー溝の断面図である。5A and 5B are cross-sectional views of the shoulder groove. 図4におけるu-u矢視図である。FIG. 5 is a view as seen from the direction of the arrow uu in FIG. 4. 耐石噛み性能を評価するための試験条件及び評価結果を纏めた表である。It is the table | surface which put together the test conditions for evaluating stone biting performance, and an evaluation result. 三角形Aにおける角度及び面積、三角形Bの角度b1及び面積Sbの好適範囲を纏めた図である。It is the figure which put together the suitable range of the angle and area in the triangle A, the angle b1 of the triangle B, and the area Sb. 図9(a)乃至図9(c)は石が排除されるメカニズムを示す図である。FIG. 9A to FIG. 9C are diagrams showing a mechanism for removing stones. 図10(a)及び図10(b)は従来の石噛みの状態を示す図である。10 (a) and 10 (b) are diagrams showing a conventional stone biting state.
 以下、発明の実施形態を通じて本発明を詳説するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明される特徴の組み合わせのすべてが発明の解決手段に必須であるとは限らず、選択的に採用される構成を含むものである。 Hereinafter, the present invention will be described in detail through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are included in the invention. It is not necessarily essential to the solution, but includes a configuration that is selectively adopted.
 図1は、本実施形態に係るトレッドパターンを示す平面図である。図2は、トレッド部の拡大図である。なお、本実施形態のトレッドパターンは、タイヤをリム組みする際に車体側及び車体外側の関係を入れ替えても接地パターンが変わらないように(タイヤを車両に装着する時に回転方向の設定が不要となるように)設計されている。 FIG. 1 is a plan view showing a tread pattern according to the present embodiment. FIG. 2 is an enlarged view of the tread portion. Note that the tread pattern of this embodiment does not change the grounding pattern even if the relationship between the vehicle body side and the vehicle body outside is changed when assembling the tire (the setting of the rotation direction is not necessary when the tire is mounted on the vehicle). Designed to be)
 図1,図2に示すように、トレッド部1には、タイヤ円周方向に延長する複数の主溝2乃至4と、タイヤ幅方向に延長する幅方向溝5及び細溝6とを備える。主溝2乃至4は、所謂主溝であって、溝底に図示しないトレッドウェアインジケータを有する。
 主溝2,3は、それぞれタイヤ幅方向外側に設けられ、タイヤ円周方向に沿ってジグザグ状に延長し、トレッド部1を左右のショルダー陸部30A,30B及びセンター陸部31に区画する。センター陸部31は、主溝2,3の間に設けられ、タイヤ円周方向に沿ってジグザグ状に延長する主溝4により、さらに左右のセンター陸部31A,31Bに区画される。
As shown in FIGS. 1 and 2, the tread portion 1 includes a plurality of main grooves 2 to 4 extending in the tire circumferential direction, and a width direction groove 5 and a narrow groove 6 extending in the tire width direction. The main grooves 2 to 4 are so-called main grooves, and have a tread wear indicator (not shown) at the groove bottom.
The main grooves 2 and 3 are respectively provided on the outer side in the tire width direction, extend in a zigzag shape along the tire circumferential direction, and divide the tread portion 1 into left and right shoulder land portions 30A and 30B and a center land portion 31. The center land portion 31 is provided between the main grooves 2 and 3, and is further divided into left and right center land portions 31A and 31B by a main groove 4 extending in a zigzag shape along the tire circumferential direction.
 タイヤ円周方向にジグザグ状に延びるとは、タイヤ円周方向に対して傾斜している溝の直線部が、傾斜方向が互い違いになるように折り返しながらタイヤ円周方向に延びることをいう。なお、溝の直線部は、直線状であることが多いが、必ずしも直線状に限定する必要はなく、湾曲状に形成されているものも含む。 The term “zigzag extending in the tire circumferential direction” means that the straight portion of the groove inclined with respect to the tire circumferential direction extends in the tire circumferential direction while turning back so that the inclination directions are alternate. In addition, although the linear part of a groove | channel is linear in many cases, it does not necessarily need to be limited to linear form and includes what is formed in curved shape.
 センター陸部31A,31Bには、タイヤ幅方向に延長し、主溝2,4、主溝3,4に連通する幅方向溝5がタイヤ円周方向に沿って周期的に設けられる。これにより、センター陸部31A,31Bは、タイヤ円周方向に連続する複数のブロック列により形成される。つまり、トレッド部1に所謂ブロックパターンが形成される。
 また、左右のショルダー陸部30A,30Bには、タイヤ幅方向に延長する細溝6が、タイヤ円周方向に沿って周期的に設けられている。
The center land portions 31 </ b> A and 31 </ b> B are periodically provided with a width direction groove 5 extending in the tire width direction and communicating with the main grooves 2 and 4 and the main grooves 3 and 4 along the tire circumferential direction. Thus, the center land portions 31A and 31B are formed by a plurality of block rows that are continuous in the tire circumferential direction. That is, a so-called block pattern is formed on the tread portion 1.
The left and right shoulder land portions 30A and 30B are periodically provided with narrow grooves 6 extending in the tire width direction along the tire circumferential direction.
 以下、各溝2乃至6の構成について説明する。なお、以下の説明では、主溝2,3をショルダー溝、主溝4をセンター溝、幅方向溝5をラグ溝という。また、溝幅については、溝の延長方向と直交する方向により測定される新品時の接地面1aに開口する長さ寸法とした。
 センター溝4は、タイヤ幅方向中心(以下、タイヤセンターという)CLに設けられる。センター溝4は、タイヤ円周方向に対して延長方向が互いに逆向きに傾斜する直線部7と直線部8と、直線部7と直線部8との延長方向が変わる屈曲部15とで構成される。センター溝4を構成する直線部7と直線部8は、溝幅w7,w8、溝長さL7,L8及びタイヤ円周方向に対して延長する角度(以下溝振り角度)α7,α8が同一に設定される。このようなセンター溝4を形成することにより、ジグザグ状に主溝をタイヤセンターCL上に形成したときのトレッドパターンに、左右の対称性が得られる。
Hereinafter, the configuration of each of the grooves 2 to 6 will be described. In the following description, the main grooves 2 and 3 are referred to as shoulder grooves, the main groove 4 is referred to as a center groove, and the width direction groove 5 is referred to as a lug groove. In addition, the groove width is a length dimension that opens to the ground contact surface 1a when it is new, measured in a direction orthogonal to the extending direction of the groove.
The center groove 4 is provided in the center in the tire width direction (hereinafter referred to as a tire center) CL. The center groove 4 includes a straight portion 7 and a straight portion 8 whose extending directions are inclined in opposite directions with respect to the tire circumferential direction, and a bent portion 15 in which the extending direction of the straight portion 7 and the straight portion 8 changes. The The straight portions 7 and 8 constituting the center groove 4 have the same groove widths w7 and w8, groove lengths L7 and L8, and angles extending with respect to the tire circumferential direction (hereinafter referred to as groove swing angles) α7 and α8. Is set. By forming such a center groove 4, left and right symmetry is obtained in the tread pattern when the main groove is formed on the tire center CL in a zigzag shape.
 直線部7,8の溝幅w7,w8は、例えば15mm~25mmの範囲で設定される。なお、溝長さL7,L8は、同図に示すように溝中心線7z、8zにより定義される。また、溝長さL7は、溝中心線7zと、隣接する直線部8,8の溝中心線8z,8zとが交差する一方の交点から他方の交点までの距離、溝長さL8は、溝中心線8zと、隣接する直線部7,7の溝中心線7,7とが交差する一方の交点から他方の交点までの距離をいう。また、溝振り角度α7,α8は、溝中心線7z,8zが、タイヤ円周方向に交差する角度のうち鋭角側をいう。また、センター溝4の溝振り幅fw4は、5mm~20mmの範囲で設定される。溝振り幅fw4は、隣接する直線部7,8の溝中心線7z,8zが交差する一方の交点から他方の交点までのタイヤ幅方向の長さをいう。溝振り幅fw4をこの範囲にすることで制動力の低下や偏摩耗の発生を防ぐことができる。 The groove widths w7 and w8 of the straight portions 7 and 8 are set in a range of 15 mm to 25 mm, for example. The groove lengths L7 and L8 are defined by the groove center lines 7z and 8z as shown in FIG. Further, the groove length L7 is the distance from one intersection point where the groove center line 7z and the groove center lines 8z, 8z of the adjacent straight portions 8, 8 intersect, and the groove length L8 is the groove length L8. This is the distance from one intersection to the other intersection where the center line 8z and the groove center lines 7, 7 of the adjacent straight portions 7, 7 intersect. Further, the groove swing angles α7 and α8 refer to the acute angle side among the angles at which the groove center lines 7z and 8z intersect the tire circumferential direction. Further, the groove swing width fw4 of the center groove 4 is set in a range of 5 mm to 20 mm. The groove swing width fw4 refers to the length in the tire width direction from one intersection where the groove center lines 7z, 8z of the adjacent straight portions 7, 8 intersect each other to the other intersection. By setting the groove swing width fw4 within this range, it is possible to prevent a reduction in braking force and occurrence of uneven wear.
 センター溝4は、溝底4cにタイヤ表面側に向けて突出する複数の突起19を備える。突起19は、センター溝4の延長方向に沿って所定間隔で断続的に形成される。突起19は、例えば、センター溝4の溝底からの高さが、センター溝4の溝深さの10%~30%の範囲で形成され、センター溝4に嵌まり込もうとする石等の異物の噛み込みを防止する。 The center groove 4 includes a plurality of protrusions 19 that protrude toward the tire surface side on the groove bottom 4c. The protrusions 19 are formed intermittently at predetermined intervals along the extending direction of the center groove 4. The protrusion 19 is formed such that the height from the groove bottom of the center groove 4 is in the range of 10% to 30% of the groove depth of the center groove 4, for example, a stone or the like trying to fit into the center groove 4 Prevent biting of foreign objects.
 ショルダー溝2,3は、タイヤ幅方向外側から左右対称となる位置にそれぞれ設けられる。なお、本実施形態では、ショルダー溝2,3は、同一構成とした。また、ショルダー溝3は、ショルダー溝2の形状が逆向きとなるように形成され、接地パターンにおけるショルダー溝2,3の対称性が設定される。以下の説明では、ショルダー溝2を用いて溝の構成について説明する。 The shoulder grooves 2 and 3 are respectively provided at positions that are symmetrical from the outside in the tire width direction. In the present embodiment, the shoulder grooves 2 and 3 have the same configuration. The shoulder groove 3 is formed so that the shape of the shoulder groove 2 is reversed, and the symmetry of the shoulder grooves 2 and 3 in the ground contact pattern is set. In the following description, the configuration of the groove will be described using the shoulder groove 2.
 ショルダー溝2は、タイヤ円周方向に対して延長方向が逆向きに傾斜する直線部11,12と、屈曲部14とで構成され、タイヤ円周方向にジグザグ状に延びるように形成される。
 ショルダー溝2における直線部11,12は、一方の直線部11の溝幅w11に対して他方の直線部12の溝幅w12が広く設定される。詳細には、直線部11の溝幅w11と、直線部12の溝幅w12との溝幅比(溝幅w11/溝幅w12)が0.5~0.75の範囲で設定される。溝幅比が、0.5より小さいと、直線部11と石が接触する箇所の接触圧力が上昇し石が3点支持状態となってしまい、0.75より大きいと、直線部12と石が接触する箇所の接触圧力が上昇し石が3点支持状態となってしまい、耐石噛み性能を向上させることができない。
 溝幅w11及びw12は、それぞれ10mm~25mmの範囲で設定される。
The shoulder groove 2 is composed of straight portions 11 and 12 whose extending direction is inclined in the opposite direction with respect to the tire circumferential direction, and a bent portion 14, and is formed to extend in a zigzag shape in the tire circumferential direction.
The straight portions 11 and 12 in the shoulder groove 2 are set so that the groove width w12 of the other straight portion 12 is wider than the groove width w11 of the one straight portion 11. Specifically, the groove width ratio (groove width w11 / groove width w12) between the groove width w11 of the linear portion 11 and the groove width w12 of the linear portion 12 is set in the range of 0.5 to 0.75. If the groove width ratio is smaller than 0.5, the contact pressure of the portion where the straight portion 11 and the stone are in contact increases and the stone is in a three-point support state. If it is greater than 0.75, the straight portion 12 and the stone As a result, the contact pressure at the point where the stones come into contact increases, and the stone is in a three-point support state, so that the stone biting performance cannot be improved.
The groove widths w11 and w12 are set in the range of 10 mm to 25 mm, respectively.
 このように溝幅比を設定することにより、例えば、センター溝4のように同一の溝幅で形成したときに比べて、屈曲部14における耐石噛み性能を向上させることができる。 By setting the groove width ratio in this way, for example, the stone biting performance at the bent portion 14 can be improved as compared with the case where the groove width ratio is the same as that of the center groove 4.
 直線部11,12の溝長さL11,L12は、タイヤ円周方向に対して交差する溝振り角度α11,α12及び隣接する屈曲部14,14間のタイヤ幅方向の長さである溝振り幅fw2により設定される。溝振り角度α11,α12は、25°~45°の範囲、かつ、溝振り幅fw2が、7mm~30mmの範囲に設定される。 The groove lengths L11, L12 of the straight portions 11, 12 are the groove swing angles α11, α12 intersecting the tire circumferential direction and the length in the tire width direction between the adjacent bent portions 14, 14. Set by fw2. The groove swing angles α11 and α12 are set in the range of 25 ° to 45 °, and the groove swing width fw2 is set in the range of 7 mm to 30 mm.
 溝長さL11は、直線部11の溝中心線11zと直線部11に隣接する直線部12,12の溝中心線12z,12zとが交差する一方の交点から他方の交点までの距離、溝長さL12は、直線部12の溝中心線12zと、直線部12に隣接する直線部11の溝中心線11z,11zとが交差する一方の交点から他方の交点までの距離をいう。また、溝振り角度α11,α12は、タイヤ円周方向に対して直線部11の溝中心線11z及び直線部12の溝中心線12zが交差する角度のうち鋭角側をいう。また、溝振り幅fw2は、隣接する直線部11,12の溝中心線11z,12zが交差する一方の交点から他方の交点までのタイヤ幅方向の長さをいう。 The groove length L11 is a distance from one intersection point where the groove center line 11z of the straight line portion 11 and the groove center lines 12z, 12z of the straight line portions 12 and 12 adjacent to the straight line portion 11 to the other intersection point, the groove length The length L12 is a distance from one intersection to the other intersection where the groove center line 12z of the straight portion 12 and the groove center lines 11z and 11z of the straight portion 11 adjacent to the straight portion 12 intersect. Further, the groove swing angles α11 and α12 refer to the acute angle side of the angle at which the groove center line 11z of the straight portion 11 and the groove center line 12z of the straight portion 12 intersect with the tire circumferential direction. Further, the groove swing width fw2 is the length in the tire width direction from one intersection point where the groove center lines 11z, 12z of the adjacent straight portions 11, 12 intersect to the other intersection point.
 さらに、溝長さL11,L12については、溝長さL12が溝長さL11に対して85%~115%となるように上記溝振り角度α11,12及び溝振り幅fw2を上記範囲の中から設定すれば良い。これにより、ショルダー溝2におけるエッジ効果を効果的に得て、駆動力や制動力を確保しつつ耐偏摩耗性能を向上させることができる。 Further, for the groove lengths L11 and L12, the groove swing angles α11 and 12 and the groove swing width fw2 are set within the above range so that the groove length L12 is 85% to 115% with respect to the groove length L11. Set it. Thereby, the edge effect in the shoulder groove 2 can be obtained effectively, and the uneven wear resistance performance can be improved while ensuring the driving force and the braking force.
 ラグ溝5は、ショルダー溝2のタイヤセンターCL側に位置する屈曲部14と、センター溝4のショルダー溝2側に位置する屈曲部15とを連通するように形成される。ラグ溝5は、直線部12の溝振り角度α12よりも大きな角度でセンター溝4に向けてタイヤ幅方向に延長し、途中で延長方向をタイヤ円周方向逆向きに変更してセンター溝4に連通するように形成される。
 ラグ溝5は、溝幅w5が5mm~10mmの範囲で形成される。また、ラグ溝5は、タイヤ表面からの溝深さh5が、ショルダー溝2の溝深さh2の0.2~0.6倍(h5/h2)に設定される。
The lug groove 5 is formed so as to communicate the bent portion 14 located on the tire center CL side of the shoulder groove 2 and the bent portion 15 located on the shoulder groove 2 side of the center groove 4. The lug groove 5 extends in the tire width direction toward the center groove 4 at an angle larger than the groove swing angle α12 of the linear portion 12, and the extension direction is changed in the tire circumferential direction opposite to the center groove 4 on the way. It is formed so as to communicate.
The lug groove 5 is formed with a groove width w5 in the range of 5 mm to 10 mm. Further, the lug groove 5 is set such that the groove depth h5 from the tire surface is 0.2 to 0.6 times (h5 / h2) the groove depth h2 of the shoulder groove 2.
 このようにラグ溝5を設けることにより、タイヤ円周方向に隣接するラグ溝5,5により区画されるブロック20に、溝幅の広い直線部12に対向する角部を設けることができる。そして、路面との接触によりブロック20が揺動することにより、屈曲部14に噛み込んだ石が、上記角部によって直線部12に押し出され、ショルダー溝2から排出され易くなる。
 また、近接するセンター溝4の屈曲部15と、ショルダー溝2の屈曲部14とをラグ溝5により連通させることにより、ブロック20の接地面積を大きくできるため、ブロック20のブロック剛性を高くすることができる。
By providing the lug grooves 5 in this manner, the corners facing the straight portions 12 having a wide groove width can be provided in the block 20 defined by the lug grooves 5 and 5 adjacent in the tire circumferential direction. Then, when the block 20 swings due to contact with the road surface, the stones biting into the bent portion 14 are pushed out to the straight portion 12 by the corner portion and are easily discharged from the shoulder groove 2.
In addition, the ground contact area of the block 20 can be increased by connecting the bent portion 15 of the adjacent center groove 4 and the bent portion 14 of the shoulder groove 2 by the lug groove 5, so that the block rigidity of the block 20 is increased. Can do.
 また、ショルダー溝2を構成する直線部11,12の溝振り角度α11,α12を25°~45°の範囲、かつ溝振り幅fw2を7mm~30mmの範囲で設定することにより、ブロック20を画成するラグ溝5,5間のタイヤ円周方向のピッチ長さが適正化されるため、ブロック20の剛性の低下を防ぎつつ、エッジ成分の過度の増加による制動力の低下や偏摩耗の発生を防ぐことができる。ショルダー溝2の溝振り幅fw2は、センター溝4の溝振り幅fw4の1.1倍~3.0倍となることが望ましい。溝振り幅fw4が、1.1倍より小さいと、トラクション性能が低下し、また、3.0倍よりも大きいと偏摩耗性が悪化する。 Further, by setting the groove swing angles α11 and α12 of the straight portions 11 and 12 constituting the shoulder groove 2 in the range of 25 ° to 45 ° and the groove swing width fw2 in the range of 7 mm to 30 mm, the block 20 is defined. Since the pitch length in the tire circumferential direction between the formed lug grooves 5 and 5 is optimized, a decrease in braking force and an occurrence of uneven wear due to an excessive increase in the edge component while preventing a decrease in the rigidity of the block 20 Can be prevented. The groove swing width fw2 of the shoulder groove 2 is desirably 1.1 to 3.0 times the groove swing width fw4 of the center groove 4. When the groove swing width fw4 is smaller than 1.1 times, the traction performance is lowered, and when it is larger than 3.0 times, the partial wear property is deteriorated.
 図3は、ショルダー溝2における直線部11,12の関係を示す図である。同図に示すように、ショルダー溝2における直線部11及び直線部12は、以下の関係を満たすように形成されることが好ましい。
 屈曲部14,14における石噛みは、溝幅の広い直線部12を画成する溝壁12a,12bと、直線部12の延長方向に対面する直線部11の溝壁11a、又は溝壁11bとの3面により挟まれることで生じる。そこで、屈曲部14,14に石噛みが生じた状態を想定した三角形A及び三角形Bを直線部12の両端に位置する屈曲部14,14に設定する。
FIG. 3 is a diagram illustrating the relationship between the straight portions 11 and 12 in the shoulder groove 2. As shown in the figure, the straight portion 11 and the straight portion 12 in the shoulder groove 2 are preferably formed so as to satisfy the following relationship.
The stone bites at the bent portions 14 and 14 include the groove walls 12a and 12b that define the straight portion 12 having a wide groove width, and the groove wall 11a or the groove wall 11b of the straight portion 11 that faces the extending direction of the straight portion 12. It is caused by being sandwiched between the three surfaces. Therefore, the triangle A and the triangle B assuming the state where the stone bites are generated in the bent portions 14 and 14 are set to the bent portions 14 and 14 positioned at both ends of the linear portion 12.
 以下、三角形A及び三角形Bの設定方法について説明する。
 まず、直線部12に中心線12zを設定する。次に、中心線12zが交差する直線部11の溝壁11aとの交点をA1として設定する。次に、交点A1が設定された溝壁11aを延長し、直線部12の溝壁12aとの交点をA2として設定する。次に、直線部11の溝壁11bと直線部12の溝壁12bとの交点を点A3として設定する。そして、交点A1、A2、A3を直線で結ぶことで一方の屈曲部14に三角形Aを設定する。なお、交点A1,A2,A3については、頂点A1,A2,A3と言う場合がある。
 次に、他方の屈曲部14に三角形Bを設定する。中心線12zが交差する直線部11の溝壁11bの交点をB1として設定する。次に、溝壁11aと、直線部12の溝壁12aとを延長し、これらが交差した交点をB2として設定する。次に、溝壁12bとラグ溝5の溝壁5bとの交点をB3として設定する。そして、交点B1、B2、B3を直線で結ぶことで他方の屈曲部14に三角形Bを設定する。なお、交点B1,B2,B3については、頂点B1,B2,B3と言う場合がある。
Hereinafter, a method for setting the triangle A and the triangle B will be described.
First, a center line 12z is set in the straight line portion 12. Next, the intersection with the groove wall 11a of the linear part 11 where the center line 12z intersects is set as A1. Next, the groove wall 11a where the intersection A1 is set is extended, and the intersection with the groove wall 12a of the linear portion 12 is set as A2. Next, the intersection of the groove wall 11b of the straight part 11 and the groove wall 12b of the straight part 12 is set as a point A3. And the triangle A is set to one bending part 14 by connecting the intersections A1, A2, and A3 with straight lines. The intersections A1, A2, and A3 may be referred to as vertices A1, A2, and A3.
Next, a triangle B is set at the other bent portion 14. The intersection of the groove walls 11b of the straight line part 11 where the center line 12z intersects is set as B1. Next, the groove wall 11a and the groove wall 12a of the linear part 12 are extended, and the intersection where these intersect is set as B2. Next, the intersection of the groove wall 12b and the groove wall 5b of the lug groove 5 is set as B3. And the triangle B is set to the other bending part 14 by connecting intersection B1, B2, B3 with a straight line. The intersection points B1, B2, and B3 may be referred to as vertices B1, B2, and B3.
 上述のように、ショルダー溝2に設定された三角形A、三角形Bにおいて、三角形Aの頂点A1の角度a1が90°~130°、頂点B1の角度b1が65°~105°の範囲で設定されることが好ましい。より好ましくは、上記数値範囲を満たしつつ、三角形Aの頂点A1の角度a1を三角形Bの頂点B1の角度b1よりも大きくなるように設定することが好ましい。このように、三角形A,Bの頂点A1,B1を設定することにより、耐石噛み性能を向上させることができる。 As described above, in the triangle A and the triangle B set in the shoulder groove 2, the angle a1 of the vertex A1 of the triangle A is set in the range of 90 ° to 130 °, and the angle b1 of the vertex B1 is set in the range of 65 ° to 105 °. It is preferable. More preferably, the angle a1 of the vertex A1 of the triangle A is set to be larger than the angle b1 of the vertex B1 of the triangle B while satisfying the numerical range. In this way, by setting the vertices A1 and B1 of the triangles A and B, the stone biting performance can be improved.
 さらに、三角形Aの面積Saが60mm~90mm、三角形Bの面積Sbが85mm~115mmの範囲となるように、直線部11と直線部12との交差する角度及び溝幅w11と溝幅w12とを設定することが好ましい。また、ショルダー側に位置する三角形Aよりもセンター側に位置する三角形Bの面積を大きくすることにより、噛み込まれた石がショルダー溝2から抜けやすくなり、タイヤにおいて接地圧の高い領域における耐石噛み性能を向上させることができる。 Furthermore, the angle at which the straight portion 11 and the straight portion 12 intersect, the groove width w11, and the groove so that the area Sa of the triangle A is in the range of 60 mm 2 to 90 mm 2 and the area Sb of the triangle B is in the range of 85 mm 2 to 115 mm 2. It is preferable to set the width w12. Further, by increasing the area of the triangle B positioned on the center side than the triangle A positioned on the shoulder side, the bite stones can be easily removed from the shoulder groove 2, and the stone resistance in the region where the contact pressure is high in the tire. The biting performance can be improved.
 上記関係を満たすように、ショルダー溝2における直線部11の溝幅w11や直線部12の溝幅w12、或は直線部12に対する直線部11の溝振り角度α12や直線部11に対する直線部12の溝振り角度α11、さらに、ショルダー溝2に開口するラグ溝5の位置や溝幅w5との互いの関係を設定することにより、屈曲部14に噛み込まれた石を走行時に効果的に除去することが可能となる。 The groove width w11 of the straight portion 11 and the groove width w12 of the straight portion 12 in the shoulder groove 2 or the groove swing angle α12 of the straight portion 11 relative to the straight portion 12 and the straight portion 12 of the straight portion 12 with respect to the straight portion 11 are satisfied. By setting the mutual relationship between the groove swing angle α11 and the position of the lug groove 5 opening in the shoulder groove 2 and the groove width w5, the stones caught in the bent portion 14 are effectively removed during traveling. It becomes possible.
 図4は、ショルダー溝20における屈曲部14の部分拡大図である。図5(a)は、ショルダー溝2における直線部11及び図5(b)はショルダー溝2における直線部12の断面図である。
 また、ショルダー溝2を形成する溝壁2a,2bには、所定の傾斜角度(以下溝壁角度という)β,γが設定される。溝壁角度β,γは、トレッド表面における接地面1aの法線方向に対する溝壁2a,2bの角度のうち鋭角側をいう。タイヤ幅方向外側に位置する溝壁2aには、溝壁角度βが、所定の角度で設定される。直線部12の溝壁角度β12は8°~15°、直線部11の溝壁角度β11は8°~15°の範囲で設定すると良い。
FIG. 4 is a partially enlarged view of the bent portion 14 in the shoulder groove 20. 5A is a cross-sectional view of the straight portion 11 in the shoulder groove 2 and FIG. 5B is a cross-sectional view of the straight portion 12 in the shoulder groove 2.
In addition, predetermined inclination angles (hereinafter referred to as groove wall angles) β and γ are set in the groove walls 2 a and 2 b forming the shoulder groove 2. The groove wall angles β and γ are the acute angles of the angles of the groove walls 2a and 2b with respect to the normal direction of the ground contact surface 1a on the tread surface. A groove wall angle β is set to a predetermined angle in the groove wall 2a located on the outer side in the tire width direction. The groove wall angle β12 of the straight portion 12 is preferably set in the range of 8 ° to 15 °, and the groove wall angle β11 of the straight portion 11 is preferably set in the range of 8 ° to 15 °.
 また、タイヤセンターCL側に位置する溝壁2bには、溝壁角度γが、位置に応じて異なるように設定される。具体的には、溝壁2bでは、直線部11,12毎に異なる溝壁角度γ11,γ12が設定される。溝壁角度γ11,γ12は、次のように設定される。ブロック20において、ショルダー陸部30A側に突出する角部、即ち、ショルダー溝2のタイヤ幅方向外側に位置する屈曲部14に対応する角部に点Xを設定する(なお、交点Xは、図3における交点A3である)。次に、点Xからこのブロック20を画成する一組のラグ溝5A,5Bと、ショルダー溝2との境界JA,JBまでの幅方向距離のうち、幅方向距離が長い側の溝壁に、幅方向距離が短い側の溝壁よりも小さな溝壁角度を設定する。
 直線部12の溝壁角度γ12は20°~30°、直線部11の溝壁角度γ11は8°~15°の範囲で、γ12はγ11の2倍以上に設定される。このように、ショルダー溝2において、直線部12の幅方向内側の溝壁角度(γ12)を幅方向外側の溝壁角度(γ11)、及び直線部11の溝壁角度(β11、β12)よりも大きく設定する、好ましくは2倍以上に設定することで、ショルダー溝2の石が抜けやすくなり、耐石噛み性能が向上する。更に好適にはβ11がγ11よりも大きく且つγ12がβ12よりも大きくすることで石への反力を最適化することが可能となり、より一層の耐石噛み性能を向上させることが可能となる。
 なお、本実施形態では、境界JAは、直線部11を形成する溝壁11bの延長とラグ溝5Aの溝壁5aの延長とがトレッド表面において交差する位置(図3における交点B)、境界JBは、直線部12を形成する溝壁12bの延長とラグ溝5Bの溝壁5bの延長とがトレッド表面において交差する位置とした。
Further, the groove wall angle γ is set to be different depending on the position on the groove wall 2b located on the tire center CL side. Specifically, in the groove wall 2b, different groove wall angles γ11 and γ12 are set for the straight portions 11 and 12, respectively. The groove wall angles γ11 and γ12 are set as follows. In the block 20, a point X is set at a corner portion protruding to the shoulder land portion 30 </ b> A side, that is, a corner portion corresponding to the bent portion 14 located on the outer side in the tire width direction of the shoulder groove 2 (the intersection point X is a figure). 3). Next, among the distance in the width direction from the point X to the boundary JA and JB between the pair of lug grooves 5A and 5B that define the block 20 and the shoulder groove 2, the groove wall on the side where the distance in the width direction is long The groove wall angle is set smaller than the groove wall on the short side in the width direction.
The groove wall angle γ12 of the straight portion 12 is set to 20 ° to 30 °, the groove wall angle γ11 of the straight portion 11 is set to a range of 8 ° to 15 °, and γ12 is set to be twice or more of γ11. Thus, in the shoulder groove 2, the groove wall angle (γ12) on the inner side in the width direction of the straight portion 12 is set to be larger than the groove wall angle (γ11) on the outer side in the width direction and the groove wall angles (β11, β12) of the straight portion 11. By setting it large, and preferably by setting it twice or more, stones in the shoulder groove 2 can be easily removed, and the stone biting performance is improved. More preferably, by making β11 larger than γ11 and γ12 larger than β12, it is possible to optimize the reaction force against the stone, and it is possible to further improve the stone biting performance.
In the present embodiment, the boundary JA is a position where the extension of the groove wall 11b forming the straight portion 11 and the extension of the groove wall 5a of the lug groove 5A intersect (intersection B in FIG. 3), the boundary JB. Is the position where the extension of the groove wall 12b forming the straight portion 12 and the extension of the groove wall 5b of the lug groove 5B intersect on the tread surface.
 図4に示すように、本実施形態では、ブロック20に設定した点Xから境界JAまでの幅方向距離k2が、境界JBまでの幅方向距離k1よりも長いため、点Xから境界JAに至る溝壁12bの溝壁角度γ12に、点Xから境界JBに至る溝壁11bの溝壁角度γ11よりも大きな角度を設定する。この場合、溝壁11bの溝壁角度γ11は8°~15°の範囲、溝壁12bの溝壁角度γ12は20°~30°の範囲の中から、溝壁角度比(γ12/γ11)が2.0倍以上の範囲となるように設定する。このようにブロック20を画成するショルダー溝2の溝壁2bに異なる溝壁角度γ11,γ12を設定することにより、センター陸部31Aのショルダー部側における耐石噛み性能を向上させることができる。 As shown in FIG. 4, in this embodiment, the width direction distance k2 from the point X to the boundary JA set in the block 20 is longer than the width direction distance k1 to the boundary JB, so the point X reaches the boundary JA. An angle larger than the groove wall angle γ11 of the groove wall 11b extending from the point X to the boundary JB is set to the groove wall angle γ12 of the groove wall 12b. In this case, the groove wall angle γ11 of the groove wall 11b is in the range of 8 ° to 15 °, and the groove wall angle γ12 of the groove wall 12b is in the range of 20 ° to 30 °, so that the groove wall angle ratio (γ12 / γ11) is Set to a range of 2.0 times or more. Thus, by setting different groove wall angles γ11 and γ12 to the groove wall 2b of the shoulder groove 2 that defines the block 20, the stone biting performance on the shoulder portion side of the center land portion 31A can be improved.
 図4,図6に示すように、ブロック20には、一端がショルダー溝2に開口し、他端がブロック20内で終端する溝22を設けることが好ましい。溝22は、ショルダー溝2を構成する直線部11の延長方向中央側で開口し、ラグ溝5に沿うように延長する。
 溝22は、図6に示すように、例えば、溝幅w22が1mm~3mm、溝深さh22が2mm~5mmの範囲で形成される。好ましくは、溝22は、溝幅w22と溝深さh22の関係が、上記範囲において溝深さh22の寸法を溝幅w22の寸法よりも大きく設定すると良い。
As shown in FIGS. 4 and 6, the block 20 is preferably provided with a groove 22 having one end opening in the shoulder groove 2 and the other end terminating in the block 20. The groove 22 opens at the center in the extending direction of the linear portion 11 constituting the shoulder groove 2 and extends along the lug groove 5.
As shown in FIG. 6, the groove 22 is formed, for example, in the range where the groove width w22 is 1 mm to 3 mm and the groove depth h22 is 2 mm to 5 mm. Preferably, in the groove 22, the relationship between the groove width w22 and the groove depth h22 is set such that the dimension of the groove depth h22 is larger than the dimension of the groove width w22 within the above range.
 このようにブロック20にショルダー溝2に開口する溝22を設けることにより、走行時のブロック20の可動範囲に変化を与えることができる。即ち、新品時のタイヤは、溝深さが深いため、屈曲部14において噛みこんだ石が外れにくい。そこで、ブロック20の剛性に影響を与えない程度の溝深さの溝22を設けることにより、路面との摩擦によりブロック20の表面近傍部分を動きやすくすることができる。これにより、ショルダー溝2のタイヤセンターCL側の屈曲部14に噛みこまれた石は、ブロック20のエッジ部分(上記説明において示した境界JB部分)が、図1の矢印xで示すように、ショルダー溝2の幅広な直線部12方向にも大きく動くことにより、直線部12方向に押し出されてショルダー溝2から排除される。したがって、耐石噛み性能をより向上させることができる。 Thus, by providing the groove 20 that opens to the shoulder groove 2 in the block 20, it is possible to change the movable range of the block 20 during traveling. That is, since a new tire has a deep groove depth, it is difficult for the stone caught in the bent portion 14 to come off. Therefore, by providing the groove 22 having a groove depth that does not affect the rigidity of the block 20, the vicinity of the surface of the block 20 can be easily moved by friction with the road surface. Thereby, the stone bitten by the bent portion 14 on the tire center CL side of the shoulder groove 2 is such that the edge portion of the block 20 (the boundary JB portion shown in the above description) is indicated by an arrow x in FIG. By greatly moving in the direction of the wide straight portion 12 of the shoulder groove 2, the shoulder groove 2 is pushed out in the direction of the straight portion 12 and excluded from the shoulder groove 2. Therefore, the stone biting performance can be further improved.
 細溝6は、ブロック20に設けられた溝22に対応して設けられる。細溝6は、一端が主溝2に開口し、他端がショルダー陸部30A内で終端するように形成される。詳細には、細溝6は、一端側が溝22を延長するようにショルダー溝2に開口し、タイヤ幅方向に対して傾斜角度が徐々に小さくなるように弓なりに延長する。
 細溝6は、例えば、溝幅w6が1mm~3mm、溝深さh6が2mm~5mmの範囲で形成される。
The narrow groove 6 is provided corresponding to the groove 22 provided in the block 20. The narrow groove 6 is formed so that one end opens into the main groove 2 and the other end terminates in the shoulder land portion 30A. Specifically, the narrow groove 6 opens into the shoulder groove 2 so that one end side extends the groove 22, and extends in a bow shape so that the inclination angle gradually decreases with respect to the tire width direction.
The narrow groove 6 is formed, for example, in the range where the groove width w6 is 1 mm to 3 mm and the groove depth h6 is 2 mm to 5 mm.
[実施例]
 図7は、耐石噛み性能を評価するための試験条件及び評価結果を纏めた表である。性能評価試験では、同表に示す各条件に対応するタイヤを作製し、時速60km/hで砂利道試験道路1万km走行後に実際のタイヤの溝に噛みこまれた石の数を数えて評価した。なお、試験タイヤのタイヤサイズは、13R22.5である。
 図3に示した三角形A,Bの面積Sa,Sbを一定とし、三角形A,Bの角度a1、b1を変化させて耐石噛み性能を評価した場合について説明する。なお、従来例を基準として相対評価を行った。即ち、基準の指数を100とし、100より大きくなるほど性能が優れ、100より小さくなるほど性能が低下したことを示している。三角形A,Bの面積Sa,Sbを一定とし、角度a1,b1を変化させた場合、実施例1~実施例5に示すように、角度a1を90°~130°の範囲、角度b1を65°~105°の範囲とすることにより耐石噛み性能に優れることが分かる。例えば、比較例1,2に示すように、角度a1を90°より小さく、角度b1を65°より小さくする程、耐石噛み性能が低下することが分かる。また、比較例3,4に示すように、角度a1を130°より大きく、角度b1を105°より大きくする程、耐石噛み性能が低下することが分かる。
 また、角度a1及び角度b1を一定とし、面積Sa,Sbを変化させた場合、実施例6から実施例9に示すように、面積Saを60mm~90mmの範囲、面積Sbを85mm~110mmの範囲とすることにより耐石噛み性能に優れることが分かる。
 例えば、比較例5に示すように、面積Saを60mmより小さく、面積Sbを85mmよりも小さくした場合、耐石噛み性能が低下することが分かる。また、比較例6に示すように、面積Saを90mmより大きく、面積Sbを115mmよりも大きくした場合、耐石噛み性能が低下することが分かる。
[Example]
FIG. 7 is a table summarizing test conditions and evaluation results for evaluating the stone biting performance. In the performance evaluation test, tires corresponding to the conditions shown in the same table were prepared and evaluated by counting the number of stones caught in the actual tire grooves after traveling 10,000 km on the gravel road test road at 60 km / h. did. The tire size of the test tire is 13R22.5.
The case where the areas Sa and Sb of the triangles A and B shown in FIG. 3 are constant and the angles a1 and b1 of the triangles A and B are changed to evaluate the stone resistance performance will be described. In addition, relative evaluation was performed on the basis of the conventional example. That is, when the reference index is 100, the performance is better as the index is larger than 100, and the performance is lowered as the standard index is smaller than 100. When the areas Sa and Sb of the triangles A and B are constant and the angles a1 and b1 are changed, as shown in the first to fifth embodiments, the angle a1 is in the range of 90 ° to 130 °, and the angle b1 is 65. It can be seen that the stone biting performance is excellent when the angle is in the range of ° to 105 °. For example, as shown in Comparative Examples 1 and 2, it can be seen that as the angle a1 is smaller than 90 ° and the angle b1 is smaller than 65 °, the stone biting performance decreases. Further, as shown in Comparative Examples 3 and 4, it can be seen that the stone-resisting performance decreases as the angle a1 is larger than 130 ° and the angle b1 is larger than 105 °.
Further, when the angles a1 and b1 are constant and the areas Sa and Sb are changed, the area Sa is in the range of 60 mm 2 to 90 mm 2 and the area Sb is 85 mm 2 to 85 mm as shown in the sixth to ninth embodiments. It turns out that it is excellent in stone biting performance by setting it as the range of 110 mm < 2 >.
For example, as shown in Comparative Example 5, it can be seen that when the area Sa is smaller than 60 mm 2 and the area Sb is smaller than 85 mm 2 , the stone biting performance is lowered. In addition, as shown in Comparative Example 6, it can be seen that when the area Sa is larger than 90 mm 2 and the area Sb is larger than 115 mm 2 , the stone biting performance is lowered.
 図8は、三角形Aの角度a1及び面積Sa、三角形Bの角度b1及び面積Sbの設定範囲を纏めた図である。同図に示すように、三角形Aについては角度a1及び面積Saが矩形領域Ea内、三角形Bについては角度b1及び面積Sbが矩形領域Eb内に含まれるように、溝幅w11,w12、溝振り角度α11,α12、溝長さL11,L12を設定すると良い。 FIG. 8 is a diagram summarizing the setting ranges of the angle a1 and the area Sa of the triangle A and the angle b1 and the area Sb of the triangle B. As shown in the figure, for the triangle A, the groove widths w11 and w12 and the groove swing are set such that the angle a1 and the area Sa are included in the rectangular area Ea, and the triangle B is included in the rectangular area Eb. Angles α11 and α12 and groove lengths L11 and L12 may be set.
 図9(a)乃至図9(c)は、三角形Aを設定した屈曲部14に噛み込まれた石が排除されるメカニズムを示す図である。なお、同図におけるGは、噛み込まれた石である。図9(a)は、頂点A1における角度a1が90°以下のときの石の噛み込み状態を示している。この場合、石Gは、溝壁11a、溝壁12a及び、溝壁11bと溝壁12bとが連続する頂部Vを、破線で示すように変形させて、図中矢印に示すように、力F1,F2,F3で保持される。各力F1,F2の合力に対して力F3が、石Gに対して均衡状態となるように対抗するため、屈曲部14において石Gはしっかりと保持されてしまい排除されにくい。
 一方、図9(b)に示すように、頂点A1における角度a1が90°~130°の範囲に有る場合には、以下のときの石の噛み込み状態を示している。この場合、石Gは、溝壁11a、溝壁12a及び溝壁12bを破線で示すように変形させて、図中矢印に示すように、力F1,F2,F3で保持される。力F2,F3は互いに対向するため均衡状態を形成するが、力F1が力F2,F3の交差方向に作用するため、石Gは、力F1によって直線部12の延長方向に作用することになる。これにより、石Gは、屈曲部14から直線部12に向けて押し出されて周方向溝2から排除される。したがって、三角形Aの面積Sa及び溝幅の広い直線部12に対向する頂点A1の角度a1を上記範囲内で調整することにより、屈曲部14において3点支持された石Gを、直線部12に押し出し2点支持とすることで、周方向溝2から排除することができる。
 また、図9(c)に示すように、頂点A1における角度a1が130°を超える場合には、以下のときの石の噛み込み状態を示している。この場合、石Gは、溝壁11a、溝壁12a及び溝壁12bを破線で示すように変形させて、図中矢印に示すように、力F1,F2,F3で保持される。力F2が直線部11の延長方向、力F3が溝壁11aと溝壁12aとの交差部分方向に作用するため、石Gを溝壁11aに向けて押圧する。一方、力F1は、直線部12の延長方向に作用するものの、力F2と力F3との合力と均衡状態となるため、屈曲部14において石Gはしっかりと保持されてしまい排除されにくい。
 なお、他方の屈曲部14に設定される三角形Bについても同様のメカニズムで石Gが除去されることは言うまでもない。
FIG. 9A to FIG. 9C are diagrams showing a mechanism by which stones caught in the bent portion 14 in which the triangle A is set are removed. In addition, G in the same figure is the stone which was bitten. FIG. 9A shows a state where the stone is bitten when the angle a1 at the vertex A1 is 90 ° or less. In this case, the stone G deforms the groove wall 11a, the groove wall 12a, and the top V where the groove wall 11b and the groove wall 12b are continuous as shown by the broken line, and as shown by the arrow in the figure, the force F1 , F2, F3. Since the force F3 counteracts the resultant force of the forces F1 and F2 so as to be in equilibrium with the stone G, the stone G is firmly held at the bent portion 14 and is not easily removed.
On the other hand, as shown in FIG. 9 (b), when the angle a1 at the vertex A1 is in the range of 90 ° to 130 °, the following is the state of stone biting. In this case, the stone G is held by forces F1, F2, and F3 as shown by the arrows in the figure by deforming the groove wall 11a, the groove wall 12a, and the groove wall 12b as indicated by broken lines. Since the forces F2 and F3 face each other, an equilibrium state is formed. However, since the force F1 acts in the crossing direction of the forces F2 and F3, the stone G acts in the extending direction of the linear portion 12 by the force F1. . Accordingly, the stone G is pushed out from the bent portion 14 toward the straight portion 12 and is removed from the circumferential groove 2. Therefore, by adjusting the area Sa of the triangle A and the angle a1 of the vertex A1 facing the straight line portion 12 having a wide groove width within the above range, the stone G supported at three points in the bent portion 14 is changed to the straight line portion 12. By adopting two-point extrusion, it can be excluded from the circumferential groove 2.
Further, as shown in FIG. 9C, when the angle a1 at the vertex A1 exceeds 130 °, the stone biting state at the following time is shown. In this case, the stone G is held by forces F1, F2, and F3 as shown by the arrows in the figure by deforming the groove wall 11a, the groove wall 12a, and the groove wall 12b as indicated by broken lines. Since the force F2 acts in the extending direction of the straight portion 11 and the force F3 acts in the direction of the intersecting portion between the groove wall 11a and the groove wall 12a, the stone G is pressed toward the groove wall 11a. On the other hand, although the force F1 acts in the extending direction of the straight portion 12, it is in a balanced state with the resultant force of the force F2 and the force F3.
Needless to say, the stone G is removed by the same mechanism for the triangle B set in the other bent portion 14.
 なお、上記実施形態では、センター溝4をタイヤ円周方向に沿ってジグザグ状に形成するとして説明したが、タイヤ円周方向に沿って直線状に延長するように形成しても良く、また、ショルダー溝2,3のように形成しても良い。
 また、トレッド部に形成される上記構成を有するのショルダー溝2,3の数量は2本に限定されず、それ以上設けても良い。
In the above embodiment, the center groove 4 has been described as being formed in a zigzag shape along the tire circumferential direction, but may be formed so as to extend linearly along the tire circumferential direction. You may form like the shoulder grooves 2 and 3.
Further, the number of the shoulder grooves 2 and 3 having the above-described configuration formed in the tread portion is not limited to two, and more may be provided.
 本発明の一実施形態に係るタイヤは以下のように記述することができる。すなわち、タイヤ円周方向にジグザグ状に延びる主溝をトレッド部に有するタイヤであって、前記主溝のタイヤ円周方向に隣接する屈曲部同士を接続する主溝部分の一方の溝幅が他方の溝幅よりも幅広に設定され、前記一方の主溝部分の溝幅に対して前記他方の主溝部分の溝幅比が0.5~0.75の範囲に設定される構成としたタイヤ。
 本構成によれば、耐石噛み性能を向上させることができる。即ち、屈曲部において溝幅の広い一方の主溝部分に対向する他方の主溝部分の溝壁が一方の主溝部分に近づくため、主たる石噛み保持力が3点支持から2点支持となり、噛みこんだ石が溝から抜けやすくなるため、耐石噛み性能を向上させることができる。
 また、タイヤにおける他の構成として、一方及び他方の主溝部分の溝幅が、5mm~30mmの範囲に設定される。
 また、前記主溝がトレッド部の左右の両ショルダー側に設けられたので、タイヤにおける耐石噛み性能を向上させることができる。
 また、タイヤ円周方向に沿って周期的に設けられ、タイヤ幅方向に延長する幅方向溝を備え、前記幅方向溝が前記主溝のタイヤセンター側に位置する屈曲部に開口することにより、耐石噛み性能をより向上させることができる。
The tire according to an embodiment of the present invention can be described as follows. That is, a tire having a main groove extending in a zigzag shape in a tire circumferential direction in a tread portion, wherein one groove width of a main groove portion connecting bent portions adjacent to each other in the tire circumferential direction of the main groove is the other The tire is configured to be wider than the groove width of the one main groove portion, and the ratio of the groove width of the other main groove portion to the groove width of the one main groove portion is set in the range of 0.5 to 0.75. .
According to this configuration, the stone biting performance can be improved. That is, since the groove wall of the other main groove portion facing one main groove portion having a wider groove width in the bent portion approaches one main groove portion, the main stone biting holding force is changed from three-point support to two-point support, Since the stone that has been bitten can be easily removed from the groove, the stone biting performance can be improved.
As another configuration of the tire, the groove width of one and the other main groove portions is set in a range of 5 mm to 30 mm.
Further, since the main groove is provided on both the left and right shoulder sides of the tread portion, it is possible to improve the stone biting performance of the tire.
Further, provided periodically along the tire circumferential direction, and provided with a width direction groove extending in the tire width direction, the width direction groove opens to a bent portion located on the tire center side of the main groove, The stone biting performance can be further improved.
 1 トレッド部、2,3 ショルダー溝(主溝)、
4 センター溝(主溝)、5 ラグ溝、6 細溝、22 溝。
1 tread, 2, 3 shoulder groove (main groove),
4 center grooves (main grooves), 5 lug grooves, 6 narrow grooves, 22 grooves.

Claims (4)

  1.   タイヤ円周方向にジグザグ状に延びる主溝をトレッド部に有するタイヤであって、
    前記主溝のタイヤ円周方向に隣接する屈曲部同士を接続する主溝部分の一方の溝幅が他方の溝幅よりも幅広に設定され、前記一方の主溝部分の溝幅に対して前記他方の主溝部分の溝幅比が0.5~0.75の範囲に設定されたことを特徴とするタイヤ。
    A tire having a tread portion having a main groove extending zigzag in the tire circumferential direction,
    One groove width of the main groove portion connecting the bent portions adjacent to each other in the tire circumferential direction of the main groove is set wider than the other groove width, and the groove width of the one main groove portion is A tire characterized in that a groove width ratio of the other main groove portion is set in a range of 0.5 to 0.75.
  2.  前記主溝部分の一方及び他方の溝幅が、5mm~30mmの範囲に設定されたことを特徴とする請求項1に記載のタイヤ。 The tire according to claim 1, wherein the width of one and the other of the main groove portions is set in a range of 5 mm to 30 mm.
  3.  前記主溝をトレッド部の左右の両ショルダー側に備えた請求項1又は請求項2に記載のタイヤ。 The tire according to claim 1 or 2, wherein the main groove is provided on both the left and right shoulder sides of the tread portion.
  4.  タイヤ円周方向に沿って周期的に設けられ、タイヤ幅方向に延長する幅方向溝を備え、
    前記幅方向溝が前記主溝のタイヤセンター側に位置する屈曲部に開口することを特徴とする請求項3に記載のタイヤ。
    Provided periodically along the tire circumferential direction, provided with a width direction groove extending in the tire width direction,
    The tire according to claim 3, wherein the widthwise groove opens in a bent portion located on a tire center side of the main groove.
PCT/JP2017/024870 2016-07-06 2017-07-06 Tire WO2018008732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-134262 2016-07-06
JP2016134262A JP2018002055A (en) 2016-07-06 2016-07-06 Tire

Publications (1)

Publication Number Publication Date
WO2018008732A1 true WO2018008732A1 (en) 2018-01-11

Family

ID=60912761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024870 WO2018008732A1 (en) 2016-07-06 2017-07-06 Tire

Country Status (2)

Country Link
JP (1) JP2018002055A (en)
WO (1) WO2018008732A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156321A (en) * 1995-12-12 1997-06-17 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2006315475A (en) * 2005-05-11 2006-11-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008207659A (en) * 2007-02-26 2008-09-11 Bridgestone Corp Pneumatic tire
JP2008296795A (en) * 2007-05-31 2008-12-11 Sumitomo Rubber Ind Ltd Pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156321A (en) * 1995-12-12 1997-06-17 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2006315475A (en) * 2005-05-11 2006-11-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008207659A (en) * 2007-02-26 2008-09-11 Bridgestone Corp Pneumatic tire
JP2008296795A (en) * 2007-05-31 2008-12-11 Sumitomo Rubber Ind Ltd Pneumatic tire

Also Published As

Publication number Publication date
JP2018002055A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP4138688B2 (en) Pneumatic tire
JP6092059B2 (en) Pneumatic tire
CA2911606C (en) Pneumatic tire
JPWO2007083657A1 (en) Pneumatic tire
US10603960B2 (en) Pneumatic tire
JP2014218109A (en) Heavy load tire
JP2011515266A (en) Tire tread pattern
WO2015108079A1 (en) Pneumatic tire
JP2006188185A (en) Pneumatic tire
US20210122193A1 (en) Pneumatic tire, a tread band, and a tread block comprising a sipe, and a lamella plate for the manufacture thereof
KR101697378B1 (en) Heavy duty tire
US10308078B2 (en) Pneumatic tire
CN105612064A (en) Tread comprising a directional tread pattern
KR101631758B1 (en) Kerf structure and pneumatic tire comprising the same
US20160137002A1 (en) Pneumatic tire
JP2000280713A (en) Pneumatic tire
CN109421438A (en) Pneumatic tire
JP2017001463A (en) Pneumatic tire
WO2018008732A1 (en) Tire
JP2900264B2 (en) Pneumatic tire
JP6612604B2 (en) Pneumatic tire
JP6284821B2 (en) Pneumatic tire
JP5893375B2 (en) Pneumatic tire
JP2006188184A (en) Pneumatic tire
JP6603119B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824335

Country of ref document: EP

Kind code of ref document: A1