WO2018008720A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2018008720A1
WO2018008720A1 PCT/JP2017/024804 JP2017024804W WO2018008720A1 WO 2018008720 A1 WO2018008720 A1 WO 2018008720A1 JP 2017024804 W JP2017024804 W JP 2017024804W WO 2018008720 A1 WO2018008720 A1 WO 2018008720A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display
light
light source
backlight
Prior art date
Application number
PCT/JP2017/024804
Other languages
French (fr)
Japanese (ja)
Inventor
正史 屋鋪
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018008720A1 publication Critical patent/WO2018008720A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present application relates to a display device, and more particularly to a display device capable of realizing a variety of image display modes by backlight control.
  • a display device including a backlight and a display panel that displays an image by modulating light of the backlight, such as a liquid crystal display device.
  • a display device technologies for realizing various display performances by controlling the turning on and off of the backlight in accordance with the timing of displaying an image have been developed.
  • Patent Document 1 realizes color display by combining a backlight that can emit red, green, and blue light in a time-sharing manner with a liquid crystal panel, and synchronizing the switching of the liquid crystal element and the light emission of the backlight.
  • a field sequential type liquid crystal display device is disclosed.
  • Patent Document 2 discloses that a field sequential liquid crystal display device is used in an electronic camera having a monitor screen capable of displaying a captured subject image.
  • This liquid crystal display device uses a color display mode in which color display is performed by switching between lighting of backlights of R, G, and B colors and display of the liquid crystal shutter panel at high speed, and a liquid crystal shutter panel without lighting the backlight. It is possible to switch between a monochrome display mode for performing only display. Thereby, the electronic camera can operate with low power consumption even when the monitor screen is displayed.
  • an object of the present application is to reduce power consumption in a display device that can realize a variety of image display modes by backlight control.
  • the display device A light source; A light guide plate having an incident surface for light from the light source and an exit surface for emitting light from the light source that has entered from the incident surface; A display panel that is provided so as to overlap the light exit surface of the light guide plate and displays an image by controlling the transmittance of incident light for each of a plurality of pixels; Based on image data indicating an image to be displayed on the display panel, a panel drive unit that outputs a signal for controlling the transmittance of each pixel of the display panel to the display panel; A light source driving unit for driving the light source; A first generation unit configured to generate a plurality of subfield images to be displayed in each of a plurality of subfield periods obtained by dividing one frame period in accordance with the first operation mode based on the image data; An image processing unit including a second generation unit that generates an image for display without dividing one frame period in correspondence with the second operation mode; The light source can emit a plurality of colors different from each other, The light source driving unit drives the light source
  • the light source driving unit switches the color of light emitted every subfield period, In the second operation mode, the panel drive unit outputs a signal for displaying the image generated by the second generation unit to the display panel, and the light source drive unit performs the first operation.
  • This is a display device that drives the light source in a mode different from that in the mode.
  • FIG. 1 is a functional block diagram illustrating a configuration example of the display device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the backlight viewed from a direction perpendicular to the display surface.
  • FIG. 3A is a cross-sectional view of a plane perpendicular to the display surface of the display device.
  • FIG. 3B is a cross-sectional view of a surface perpendicular to the display surface of the display device.
  • FIG. 4 is a diagram illustrating an example of a display image in the color display mode.
  • FIG. 5 is a diagram illustrating an example of a transmitted light image display mode.
  • 6 is a functional block diagram illustrating a detailed configuration example of the image processing unit of the display device illustrated in FIG. FIG.
  • FIG. 7 is a diagram illustrating an example of an operation in the display device according to the first embodiment.
  • FIG. 8 is a functional block diagram showing a detailed configuration example of the image data generation unit 44 shown in FIG.
  • FIG. 9 is a diagram illustrating an example of a display image in the color display mode according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a transmitted light image display mode.
  • FIG. 11 is a functional block diagram illustrating a configuration example of the image data generation unit in the third embodiment.
  • FIG. 12 is a diagram illustrating an example of the operation in the monochromatic display mode in the display device according to the third embodiment.
  • FIG. 13 is a diagram illustrating another example of the operation in the monochromatic display mode in the display device according to the third embodiment.
  • FIG. 14 is a cross-sectional view illustrating a configuration example of the color filter type display device 10.
  • FIG. 15 is a cross-sectional view illustrating a configuration example of a display device using the direct type backlight
  • a display device includes a light source, a light guide plate having a light incident surface from the light source, and an output surface that emits light of the light source that has entered from the incident surface, and the light guide plate Based on image data indicating a display panel provided on the exit surface and displaying an image by controlling the transmittance of incident light for each of a plurality of pixels, the display panel Based on the image data, a panel driving unit that outputs a signal for controlling the transmittance of each pixel to the display panel, a light source driving unit that drives the light source, and 1st operation mode.
  • a first generation unit that generates a plurality of subfield images to be displayed in each of a plurality of subfield periods formed by dividing a frame period, and one frame period is not divided corresponding to the second operation mode.
  • Show on And an image processing unit that includes a second generating unit that generates an image for.
  • the light source can emit a plurality of colors different from each other, and the light source driving unit controls the light source based on lighting control data for controlling a lighting state of the light source when displaying an image indicated by the image data.
  • the panel driving unit outputs a signal for sequentially displaying the images generated by the first generation unit to the display panel for each of a plurality of subfield periods in one frame period.
  • the light source driving unit switches a color to be emitted every subfield period.
  • the panel drive unit outputs a signal for displaying the image generated by the second generation unit to the display panel, and the light source drive unit performs the first operation.
  • the light source is driven in a mode different from that in the mode.
  • the display device has at least a first operation mode and a second operation mode.
  • the image processing unit is configured to display a plurality of subfield images to be displayed in each of a plurality of subfield periods obtained by dividing one frame period based on the image data by the first generation unit. Is generated. That is, the display panel can be driven by a field sequential method.
  • the second operation mode the second generation unit generates an image for display without dividing one frame period.
  • the panel driving unit outputs a signal for sequentially displaying the images generated by the first generation unit to the display panel for each of a plurality of subfield periods in one frame period. Then, the light source driving unit switches a color to be emitted every subfield period.
  • the panel drive unit In the second operation mode, the panel drive unit outputs a signal for displaying the image generated by the second generation unit to the display panel, and the light source drive unit performs the first operation.
  • the light source is driven in a mode different from that in the mode.
  • driving the light source in a mode different from that in the first operation mode includes turning off the light source.
  • the second operation mode it is not necessary to generate input image data into a plurality of subfield images.
  • frame rate conversion processing using a frame memory or the like is necessary for the input image data. Since this conversion process is unnecessary in the second operation mode, power consumption can be reduced.
  • the light source is driven in different modes in the first operation mode and the second operation mode, a variety of image display modes can be realized by backlight control.
  • the display device in the first configuration, light can be transmitted through a back surface, which is a surface facing the emission surface of the light guide plate, and in the first operation mode.
  • the display panel controls the transmittance of light incident on the display panel from the light source through the light exit surface of the light guide plate for each pixel based on a signal from the panel driving unit.
  • the light source driving unit turns off the light source, and the display panel transmits the back surface of the light guide plate based on a signal from the panel driving unit.
  • the display panel displays a color image by controlling the transmittance of light incident on the display panel from the light source through the exit surface of the light guide plate.
  • the light source is turned off, and the transmitted light including a transmissive region through which the rear of the display device can be seen is controlled by controlling the transmittance of light that is transmitted through the back surface of the light guide plate and incident on the display panel. Display an image. Therefore, the color image display mode and the transmitted light image display mode can be switched by controlling turning on and off of the light source when displaying an image. As a result, a variety of image display modes can be realized in the display device. Further, since the frame rate conversion process is unnecessary in the second operation mode, the power consumption can be reduced.
  • the image data further includes a gradation value of each pixel in the image to be displayed.
  • the gradation value of the image data that causes the pixel to display white in the display of the color image corresponds to the gradation value of the transmittance at which light from the back of the light guide plate passes through the pixel in the display of the transmitted light image. It can be set as follows. Thereby, the region corresponding to white in the color image displayed when the light source is turned on becomes a transmissive region that can be seen through the back of the display device in the transmitted light image displayed when the light source is turned off. Therefore, an area corresponding to white in the display image is controlled by controlling turning on and off of the light source. It can be displayed in white or a transmissive region.
  • the image data generation unit is configured to display a subfield image of an image displayed by lighting a light source in the first operation mode.
  • the generation process can be different from the generation process of the subfield image of the image displayed with the light source turned off in the second operation mode.
  • a subfield image suitable for a display image can be generated when the light source is turned on and off.
  • the image data generation unit includes a subfield image corresponding to each of the plurality of colors of the light source, A subfield image corresponding to the mixed color of the plurality of colors may be generated.
  • the image data generation unit uses the gradation value of the subfield image corresponding to each color as the gradation of the subfield image of the mixed color.
  • a process of changing according to the value can be executed.
  • the processing of changing the gradation value of the subfield image corresponding to each color according to the gradation value of the subfield image of the mixed color Can be configured not to execute.
  • the display panel in any one of the second to fifth configurations, includes a transmission region and a black region only when displaying an image when the light source is turned off. An optical image can be displayed. Thereby, the difference of the display mode of a color image and a transmitted light image can be enlarged. Therefore, for example, a display mode that draws attention is possible in the display device.
  • the light source driving unit causes the panel driving unit to display an image based on the same image data on the display panel. While the light source is on, the light source can be switched on and off. Accordingly, it is possible to switch between color display and transmitted light image display while displaying the content of the same image data. Therefore, two display modes are possible with the same content. For example, an eye-catching display mode is possible.
  • the light source driving unit in the first configuration, in the second operation mode, can light the light source in a single color.
  • single color lighting is not limited to each of a plurality of colors that the light source can emit, and by combining various lighting ratios of these colors, a single color image is displayed in the frame for the human eye. Means a lighting state in which is visually recognized.
  • the light sources since the light sources are driven in different modes in the first operation mode and the second operation mode, a variety of image display modes can be realized by backlight control.
  • input image data requires frame rate conversion processing using a frame memory or the like, but in the second operation mode, this conversion processing is unnecessary. Power consumption can be reduced.
  • FIG. 1 is a functional block diagram illustrating a configuration example of the display device according to the first embodiment.
  • the display device 10 shown in FIG. 1 displays an image based on image data supplied from an external signal source 5.
  • the display device 10 includes a display panel 11 and a backlight 12 including a light source 19 and a light guide plate 18.
  • the light guide plate 18 guides light from the light source 19 to the display surface of the display panel 11.
  • the display panel 11 is provided so as to overlap the light guide plate 18.
  • the display panel 11 displays an image by controlling the transmittance of light incident on the display panel 11 for each of a plurality of pixels.
  • the display device 10 is a liquid crystal display device that controls the light transmittance for each pixel by controlling the alignment of the liquid crystal will be described.
  • the display device 10 includes an image processing unit 4 that processes image data and outputs data for driving the display panel 11 and the backlight 12, and a display control circuit. 13, a gate driver 14, a source driver 15, and a backlight control circuit 16.
  • the display panel 11 includes m gate lines G1 to Gm, n source lines S1 to Sn, and (m ⁇ n) pixel circuits 17.
  • the gate lines G1 to Gm are formed extending in the first direction (in the example of FIG. 1, the horizontal direction (lateral direction) of the display screen).
  • the source lines S1 to Sn are formed to extend in a direction intersecting the first direction (in the example of FIG. 1, the vertical direction (vertical direction) of the display screen).
  • the (m ⁇ n) pixel circuits 17 are provided corresponding to the intersections of the gate lines G1 to Gm and the source lines S1 to Sn, respectively.
  • the gate line can also be called a scan line
  • the source line can also be called a data line or a signal line.
  • the gate driver can also be called a scanning line driver circuit, and the source driver can be called a data line driver circuit.
  • the signal source 5 supplies the display device 10 with image data V1 indicating an image to be displayed every frame period.
  • the image data V1 supplied to the display device 10 is input to the image processing unit 4.
  • the image processing unit 4 processes the input image data V1 and outputs the processed image data V1 to the display control circuit 13, and controls the timing of displaying the image and lighting the light source 19 in the backlight 12.
  • the display control circuit 13 controls the source driver 15 and the gate driver 14 based on the image data, and causes the display panel 11 to output a signal for controlling the transmittance of each pixel of the display panel 11.
  • the display control circuit 13 outputs a control signal C1 and image data V2 to the source driver 15.
  • the control signal C1 includes, for example, a source start pulse and a source clock.
  • the source driver 15 drives the source lines S1 to Sn based on the control signal C2 and the image data V2.
  • the display control circuit 13 outputs a control signal C ⁇ b> 2 to the gate driver 14.
  • the gate driver 14 drives the gate lines G1 to Gm based on the control signal C2.
  • the control signal C2 includes, for example, a gate start pulse and a gate clock.
  • the gate driver 14 sequentially selects the gate lines G1 to Gm one by one at a timing according to the control signal C2. A selection voltage is applied to the selected gate line over one line period.
  • the source driver 15 applies a source voltage corresponding to the image data V2 to the source lines S1 to Sn at a timing according to the control signal C1 over one line period. As a result, the source voltage corresponding to the image data V2 is written to each of the n pixel circuits 17 connected to the selected gate line. This operation is sequentially repeated for the gate lines G1 to Gm. As a result, the source voltage corresponding to the image data V2 in each pixel circuit 17 is written, and the transmittance of each pixel is controlled.
  • the display panel 11 displays an image indicated by the image data V2.
  • the display control circuit 13, the gate driver 14, and the source driver 15 control the transmittance of each pixel of the display panel 11 based on the image data V ⁇ b> 1 and V ⁇ b> 2 indicating the image to be displayed on the display panel 11.
  • the panel driving unit is configured to output a signal to the display panel 11.
  • the image processing unit 4 outputs backlight data C3 indicating whether or not to turn on the light source 19 to the backlight control circuit 16.
  • the backlight control circuit 16 controls turning on and off of the light source based on the backlight data C3. For example, the backlight control circuit 16 turns on the backlight 12 when the backlight data C3 is 1, and turns off the backlight 12 when the backlight data C3 is 0.
  • the backlight control circuit 16 is an example of a light source driving unit that drives the light source 19.
  • a case where the display device 10 displays a color image by a field sequential method will be described as an example.
  • a color image is displayed by displaying different color screens for each of a plurality of subfields obtained by dividing one screen display period, that is, one frame period.
  • the backlight control circuit 16 switches the light emission color of the light source 19 in accordance with the timing when the display control circuit 13 displays sub-field images of different colors on the display panel 11 when displaying a color image.
  • the backlight control unit 16 can also control the state of the backlight 12 (for example, lighting or extinguishing) for each frame period, for example. For example, lighting control data indicating whether or not to turn on the backlight 12 when displaying the image indicated by the input image data V1 is received from the signal source 5, and one image is obtained based on the lighting control data. It is possible to control whether or not the backlight 12 is lit in one frame period to be displayed.
  • the display device 10 operates in a color image display mode for displaying a color image and a transmitted light image display mode for displaying a monotone image including a transmissive area through which the back of the display device 10 can be seen. be able to.
  • FIG. 2 is a diagram illustrating a configuration example of the backlight 12 as viewed from a direction perpendicular to the display surface.
  • the backlight 12 is an edge light type. That is, the light source 19 is disposed so as to face the side surface (the lower side surface in the example of FIG. 2) of the light guide plate 18.
  • the light source 19 is provided with, for example, RGB three-color light emitting diodes (LED: Light Emitting Diode).
  • the light guide plate 18 is formed of a transparent material.
  • the portion of the backlight 12 that overlaps the display screen of the display panel 11, that is, the display area where the pixels are arranged, is transparent.
  • the light source 19 is disposed at a position facing one side surface of the light guide plate 18, but the light source 19 may be disposed at a position facing a plurality of side surfaces of the light guide plate 18.
  • FIG. 3A and 3B are cross-sectional views of a plane perpendicular to the display surface of the display device 10.
  • FIG. 3A shows an example of a state in which a transmitted light image including a transmissive region in which the backlight 12 is turned off and the back of the display device 10 can be seen is displayed.
  • FIG. 3B shows an example of a state in which the backlight 12 is turned on to display a color image.
  • the display panel 11 is provided at a position overlapping the backlight 12 in the direction perpendicular to the display screen.
  • the display panel 11 includes two first and second substrates 25 and 22 and a liquid crystal 24 provided therebetween.
  • On one surface (for example, the surface opposite to the backlight 12) of the first substrate 25 gate lines G1 to Gm, source lines S1 to Sn, a pixel circuit 17, and the like are provided.
  • a polarizing plate 26 is provided on the other surface of the first substrate 25.
  • a common electrode (not shown) is formed on one surface of the second substrate 22 (for example, the surface on the backlight 12 side).
  • a polarizing plate 21 is provided on the other surface of the second substrate 22.
  • the first substrate 25 and the second substrate 22 can be formed of, for example, glass or resin.
  • the light guide plate 18 of the backlight 12 has an incident surface 18a for light from the light source 19 and 18b for emitting light from the light source 19 that has entered from the incident surface 18a.
  • the display panel 11 is provided so as to overlap the light exit surface 18 b of the light guide plate 18. That is, the backlight 12 is an illumination unit that irradiates one surface of the display panel 11 with light.
  • the display area on which the image of the display panel 11 is displayed can transmit light.
  • the backlight 12 is configured so that light can be transmitted through a portion overlapping the display screen of the display panel 11.
  • a member provided at a position overlapping in the direction perpendicular to the display area of the display panel 11 and the display screen is formed of a transparent material.
  • a light guide plate 18 capable of transmitting light in a direction perpendicular to the display screen is disposed on the back surface of the display panel 11. That is, no member that shields light is disposed on the back surface of the display panel 11.
  • a transparent material such as an acrylic plate is used for a member on the back side of the light guide plate 18, or nothing can be arranged on the back side of the light guide plate 18.
  • the light guide plate 18 has a configuration in which light from the light source 19 propagating through the light guide plate 18 is easily emitted from the emission surface 18 b facing the display panel 11 toward the display panel 11. Yes.
  • dots (not shown) that reflect incident light can be formed at predetermined intervals on the exit surface 18 b and the back surface 18 c of the light guide plate 18.
  • the light from the light source 19 that has entered from the incident surface 18 a of the light guide plate 18 travels while being totally reflected in the light guide plate 18.
  • the light from the light source 19 that has entered the dots on the back surface 18 c of the light guide plate 18 is reflected by the dots and is emitted from the emission surface 18 b of the light guide plate 18 toward the display panel 11.
  • the dots are formed, for example, by printing with white opaque ink (such as organic ultraviolet curable ink) or metal ink (such as aluminum or gold). Further, instead of printing dots, the surface of the light guide plate 18 can be processed into a shape in which light is easily reflected by a die press or laser processing.
  • the light guide plate 18 may be formed of a material that easily reflects light, without being limited to the form using the reflection due to the shape of the surface of the light guide plate 18.
  • the light guide plate 18 may include a reflection structure that reflects light traveling inside and emits the light to the outside.
  • the backlight 12 when the backlight 12 is turned on, the amount of light irradiated from the light source 19 through the light guide plate 18 to the display panel 11 passes through the back surface 18 b of the light guide plate 18 and reaches the display panel 11. More than for this reason, when the backlight 12 is turned on, the display panel 11 displays the color of the light from the backlight 12, and the back of the display device 10 is not seen through.
  • the display device 10 has a color display mode and a transmitted light image display mode.
  • the backlight 12 is turned on, and the display panel 11 displays a color image that does not include a transmissive area through which the back of the display device 10 can be seen.
  • the transmitted light image display mode the backlight 12 is turned off, and the display panel 11 displays a monotone image (transmitted light image) including a transmissive area.
  • the display panel 11 displays an image by controlling the transmittance of light incident on the display panel 11 for each pixel based on the signal of the panel drive unit in both the color display mode and the transmitted light image display mode. To do. In the color display mode, that is, when the backlight 12 is turned on when displaying an image, the display panel 11 transmits light that propagates from the light source 19 through the light guide plate 18 and enters the display panel 11 through the emission surface 18b. Will control the rate. In the case of the transmitted light image display mode, that is, when the backlight 12 is turned off when displaying an image, the display panel 11 enters the display panel 11 through the back surface 18c of the light guide plate 18 from the outside of the display device 10. The transmittance of light to be controlled is controlled. Thereby, the transmitted light image including the transmissive region can be displayed. In the transmissive region, the back of the display device 10 can be seen through.
  • FIG. 4 is a diagram illustrating an example of a display image in the color display mode.
  • FIG. 5 is a diagram illustrating an example of a transmitted light image display mode.
  • the region A1 is displayed in red
  • the region A2 is displayed in blue
  • the region A3 is displayed in yellow
  • the region A4 is displayed in white
  • the region A5 is displayed in green.
  • the display image shown in FIG. 5 includes a transmissive area A6 and an area A7 displayed in black. In the transmissive area A6, the object B1 behind the display device 10 can be seen through.
  • each RGB light emitted from the backlight 12 displays a color corresponding to the transmittance adjusted by the display panel 11.
  • the transmitted light image display mode since the backlight 12 is turned off, light transmitted through the back surface of the light guide plate 18 is displayed in a pixel region having a sufficiently large transmittance, as in the region A6 of the image shown in FIG. Output to the front of the screen. Therefore, such a region becomes a transmissive region and the background of the display device 10 can be seen through.
  • This can be achieved, for example, by arranging a light guide plate 18 that allows light from the outside of the display device 10 to be transmitted from the back side of the display panel 11.
  • the transmissive region is not limited to a pixel region having the highest transmittance. For example, a region of a pixel that is controlled to have a transmittance such that the rear can be seen through can be included in the transmissive region.
  • the backlight 12 is not like the region A4 of the image shown in FIG. White is displayed by light.
  • a pixel having a sufficiently high transmittance becomes a highly transparent transmission region. Therefore, for example, in the display device 10, in the image data V ⁇ b> 1 input from the signal source 5, the gradation value region indicating “white” is displayed in white when the backlight is lit, and is transparent when the backlight is turned off. Can do.
  • the transparent display is a state where the back surface of the display device 10 can be seen through.
  • a color display can be performed when the backlight is turned on, and a monotone display including a transparent display area and a black (or gray scale) area can be performed when the backlight is turned off.
  • a monotone display including a transparent display area and a black (or gray scale) area can be performed when the backlight is turned off.
  • FIG. 6 is a functional block diagram illustrating a detailed configuration example of the image processing unit 4 of the display device 10 illustrated in FIG. 1.
  • the image processing unit 4 includes a coordinate generation unit 41, a determination unit 42, a separation unit 43, an image data generation unit 44, a backlight data generation unit 45, and a timing control unit 46.
  • the coordinate generation unit 41, the determination unit 42, and the separation unit 43 are circuits that detect the control information of the backlight 12 included in the input image data V1.
  • the image data V1 includes, for example, data for each of a plurality of pixels (for example, gradation values for each RGB of each pixel).
  • the coordinate generation unit 41 generates data indicating the coordinates (X, Y) of each pixel in the input image data.
  • the coordinate generation unit 41 has, for example, a memory (register) that can be rewritten from the outside to hold the total number of horizontal pixels M and the total number of vertical lines N.
  • the coordinate generation unit 41 increments the horizontal counter (variable) by 1 each time pixel data is input.
  • the vertical line counter (variable) is incremented by 1 at the next pixel data input, and the horizontal counter is returned to 1.
  • the coordinate generation unit 41 stores the values of the horizontal counter and the vertical counter as coordinate values (X, Y) when data of each pixel is input. Thereby, the coordinates (X, Y) of each pixel of the input image data V1 can be generated.
  • the upper left pixel in the image indicated by the image data V1 is the origin
  • X is the horizontal direction
  • Y is the vertical direction.
  • the determination unit 42 specifies data used as control information for the backlight 12 among a plurality of pixel data included in the image data.
  • a pixel value of specific coordinates (as an example, data of coordinates (0, 0)) in the image data is used as a value indicating control information of the backlight 12, that is, the backlight 12.
  • the control data of the backlight 12 is data indicating lighting / extinguishing (non-lighting) of the backlight 12.
  • the determination unit 42 can notify the separation unit 43 of, for example, a value indicating whether the value of each coordinate is the gradation value of the image to be displayed or the control data of the backlight 12 as the determination value.
  • the image data may have a portion corresponding to the image display period and a portion corresponding to the blanking period.
  • the control data of the backlight 12 can be included in a portion corresponding to the blanking period.
  • One frame period is divided into an image display period and a blanking period.
  • the image data V1 for one frame period has a portion corresponding to the image display period and a portion for the blanking period.
  • the portion corresponding to the image display period includes data (for example, gradation value) of each pixel corresponding to each pixel circuit 17.
  • the portion corresponding to the blanking period includes control data of the backlight 12 indicating whether or not the backlight 12 is lit in the frame period.
  • the separation unit 43 separates the data indicating the image to be displayed from the image data V1 and the control data of the backlight 12 according to the determination by the determination unit 42.
  • the separation unit 43 outputs data indicating an image included in the image data V1 to the image data generation unit 44, and outputs control data of the backlight 12 included in the image data V1 to the backlight data generation unit 45.
  • the image data generation unit 44 generates a plurality of subfield images to be displayed in each of a plurality of subfield periods obtained by dividing one frame period based on the input image data. For example, as display data for performing field sequential display from image data including gradation values of RGB colors in each pixel, each color of WRGB obtained by adding a mixed color W (white) to each RGB color A subfield image corresponding to is generated. The generated subfield image is output to the timing control unit 46.
  • the backlight data generation unit 45 generates control data for causing the light source 19 of the corresponding color to emit light in the subfield period corresponding to each color of WRGB, and outputs the control data to the timing control unit 46.
  • the backlight data generation unit 45 and the timing control unit 46 simultaneously emit RGB light sources in the subfield period corresponding to W (white), and correspond to the R light source and G in the subfield period corresponding to R. Control is performed so that the G light source emits light during the subfield period and the B light source emits light during the subfield period corresponding to B.
  • the backlight data generation unit 45 determines whether to turn on the backlight 12 for each frame based on control data indicating whether to turn on the backlight 12 when displaying the image indicated by the image data V1.
  • the backlight data indicating is generated. For example, when the RGB gradation values (R, G, B) at coordinates (0, 0) included in the image data are larger than the threshold value, the backlight 12 is turned on during the frame period for displaying the image data. When (R, G, B) is smaller than the threshold value, the backlight data can be generated so that the backlight 12 is turned off during the frame period.
  • the threshold value can be set to 128.
  • the backlight data is instructed to turn off the backlight.
  • the backlight is instructed to turn on the backlight.
  • Write data can be generated.
  • the generated backlight data is input to the image data generation unit 44 and the timing control unit 46.
  • the detection process of the control data of the backlight 12 is not limited to the above example.
  • the control data of the backlight 12 is included in the input image data V1, but the control data of the backlight 12 may be input separately in addition to the image data V1.
  • the control data of the backlight 12 can be input simultaneously with the image data V1 or in association with the image data V1.
  • the image processing unit 4 inputs the control data to the backlight data generation unit 45 or the timing control unit 46 in synchronization with the image data V1 of one frame period or in association with the image data V1 of one frame period. can do.
  • the timing control unit 46 performs timing control to synchronize the display of each subfield image of WRGB and lighting of the WRGB backlight.
  • the backlight 12 includes a light source 19 that emits light of a plurality of colors, that is, RGB colors.
  • the timing control unit 46 generates a timing control signal that synchronizes the timing of irradiating each of the RGB colors and their mixed color W with the timing of displaying the subfield images of each of the WRGB, and the display control circuit 13 and the backlight control circuit. 16 is output.
  • FIG. 7 is a diagram illustrating an example of the timing of image data input, subfield image display, and backlight 12 lighting on the display device 10.
  • the image data is input from the signal source 5 to the display device 10 every frame period at 60 Hz.
  • the backlight 12 is turned on to perform color display by field sequential driving (color display mode).
  • the backlight 12 is turned off, and transparent / monochrome display is performed (transmitted light image display mode).
  • one frame period is divided into first to fourth subfield periods.
  • first to fourth subfield periods subfield images corresponding to the respective colors of WRGB are displayed.
  • the first to fourth subfield periods are displayed at 240 Hz, that is, at a frequency that is four times the frequency of the image data.
  • the display control circuit 13 causes the gate driver 14 and the source driver 15 to output a signal based on the data of the subfield image of the mixed color W to the display panel 11, and the backlight control circuit 16
  • the light 12 is caused to emit RGB light sources simultaneously.
  • the mixed color W that is, white light is emitted from the light source 19.
  • the W (white) field is displayed in the first subfield period.
  • the R (red) light source emits light to display the R (red) field
  • the G (green) light source emits light to display the G (green) field.
  • the B (blue) light source emits light and the B (blue) field is displayed.
  • the image is displayed at the same frequency (60 Hz) as the input image data while the backlight 12 remains off.
  • the transmitted light image display mode in each pixel, the transmittance corresponding to any gradation between the gradation with the highest transmittance (total transparency) and the gradation with the lowest transmittance (black). Will display the image. Therefore, in the transmitted light image display mode, a black and white image (totally transparent-black image) including a transmissive area is displayed.
  • the display device 10 can display, for example, a grayscale image between totally transparent and black. Alternatively, the display device 10 can also display a binary image including pixels that are completely transparent and black only.
  • a binary image can be displayed by setting the input image data V1 as a binary image.
  • the input image data V1 can be converted into a binary image by the image processing unit 4 to display the binary image.
  • the image processing unit 4 is configured so that the processing of the image data differs between the color display mode and the transmitted light image display mode.
  • the image processing unit 4 generates a color image generation unit that generates image data for displaying a color image based on the image data V1, and generates a transparent and black binary image based on the image data V2.
  • a value image generating unit and a switching unit that switches between image data output of the color image generating unit and image data output of the binary image generating unit based on data for controlling lighting of the backlight can be used. .
  • FIG. 8 is a functional block diagram showing a detailed configuration example of the image data generation unit 44 shown in FIG.
  • the image data generation unit 44 includes a first generation unit 441 that generates a subfield image of an image to be displayed by lighting the light source 19 in the color display mode, and the light source 19 in the transmitted light image display mode. And a second generation unit 442 for generating an image to be displayed.
  • the image data generation unit 44 further includes a switching unit 443.
  • the switching unit 443 receives the backlight data output from the backlight data generation unit 45, and transfers the image data V1 to either the first generation unit 441 or the second generation unit 442 in accordance with the turning on / off of the backlight 12. Switch input. That is, the switching unit 443 sends the image data V1 of the frame in which the backlight 12 is turned on to the first generation unit 441, and sends the image data V1 of the frame in which the backlight 12 is turned off to the second generation unit 442.
  • the first generation unit 441 generates a subfield image corresponding to the mixed color W (white) in which RGB is mixed based on the gradation values of the RGB colors of the input image data V1. Further, the first generation unit 441 generates a subfield image corresponding to each RGB color based on the gradation values of each RGB color of the input image data V1. At this time, the first generation unit 441 changes the gradation value of each color of RGB in the image data V1 according to the gradation value of the subfield image of the mixed color W, and converts the gradation value of the subfield image of each color of RGB. It can be a gradation value.
  • the second generation unit 442 generates an image for transparent / monochrome display based on the gradation values of the RGB colors of the input image data V1.
  • the first generation unit 441 performs gradation values (Wout) corresponding to WRGB of display data as described below with respect to RGB gradation values (Rin, Gin, Bin) of input image data V1.
  • Rout, Gout, Bout can be determined.
  • min (Rin, Gin, Bin) represents a gradation value representing the lowest transmittance among RGB gradation values (Rin, Gin, Bin).
  • Wout min (Rin, Gin, Bin) * ⁇ (0 ⁇ ⁇ ⁇ 1)
  • the first generation unit 441 compares the gradation values (Rin, Gin, Bin) of each pixel in the input image data V1, and the lowest gradation value min (Rin, Gin, Bin) in each pixel. This is determined as the gradation value Wout of the mixed color W.
  • a gradation value lower than min (Rin, Gin, Bin) can be set as the gradation value Wout of the mixed color W.
  • the first generation unit 441 subtracts the gradation value Wout of the mixed color W from the RGB gradation values (Rin, Gin, Bin) of each pixel in the image data V1 to obtain the gradation value of each RGB subfield. Calculate as
  • the first generation unit 441 can set a gradation value lower than the above-described min (Rin, Gin, Bin) as the gradation value of the mixed color W.
  • the frame rate is converted using the frame memory 446. That is, the image data output from the first generation unit 441 is written into the frame memory 446 by the frame memory writing unit 445.
  • the frame memory reading unit 447 reads the image data from the frame memory 446 at 240 Hz and sends it to the timing control unit 46.
  • the same frame rate as that of the input image data V1 may be used, so that frame rate conversion processing using a frame memory is unnecessary. Thereby, power consumption can be further reduced.
  • FIG. 9 is a diagram illustrating an example of a display image in the color display mode according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a transmitted light image display mode.
  • the image data V1 that is the basis of the display image of FIG. 9 and the display image of FIG. 10 is the same, and the backlight 12 is turned on in FIG. 9, and the backlight 12 is turned off in FIG. Therefore, in the example shown in FIG. 9, similarly to FIG. 4, the region A1 is displayed in red, the region A2 is displayed in blue, the region A3 is displayed in yellow, the region A4 is displayed in white, and the region A5 is displayed in green.
  • the areas A1, A2, A3, and A5 are displayed in a gray scale corresponding to the RGB gradation values, and the area A4 is transparent. That is, the region A4 becomes a transmissive region, and the thing B1 behind the display device 10 can be seen through.
  • an area that is “white display” when the backlight 12 is turned on is “transparent display” when the backlight 12 is turned off.
  • the gradation value for white display and the gradation value for transparent display both correspond to the gradation value that maximizes the transmittance of all the RGB colors.
  • the backlight control circuit 16 includes the backlight while the display control circuit 13 continuously displays images based on the same image data on the display panel 11 over a plurality of frame periods. 12 can be switched on and off.
  • the display device 10 can receive input of image data V1 of a still image and control data of the backlight 12 corresponding to the still image.
  • the display control circuit 13 causes the display panel 11 to display the same image data V1 image over a plurality of frame periods. In each of the plurality of frame periods, an instruction to turn on or off the backlight 12 in each frame period is output from the backlight control circuit 16 to the backlight 12.
  • a light guide plate 18 that is transparent when the backlight 12 is turned off is disposed on the back surface of the liquid crystal 24, and a pixel region indicating “white” in the input image data is displayed in white when the backlight 12 is lit.
  • the display is transparent.
  • the same content (the same image data is input to the display device 10) is used when the backlight 12 is turned on and when the backlight 12 is turned off.
  • the light 12 is turned off, an area that is displayed in white when the backlight 12 is turned on can be displayed transparently. Thereby, the eye catching effect can be enhanced.
  • color display is performed when the backlight is turned on, and when the backlight is turned off, the display is completely invisible or monochrome display.
  • the white display portion is transparent and the back of the display You can see the object in Thereby, for example, a digital signage using the display device 10 can produce an effect that enhances the eye catching effect.
  • the conventional display appears to simply move the white square.
  • the white display portion (A4) is transparently displayed, so that different portions on the back side that are shielded by the display device 10 (the transparent display moves).
  • the visible area changes can be enhanced.
  • the same frame rate as the input image data V1 may be used, so that frame rate conversion processing using a frame memory is unnecessary. Thereby, power consumption can be further reduced.
  • the display device 10 performs, as an operation mode, a color display mode in which the backlight 12 is turned on and field sequential driving is performed, and a transparent / monochrome display with the backlight 12 turned off. And a transmitted light image display mode to be performed.
  • the display device has a full-color display mode (same as the color display mode in the first and second embodiments) by operating the field sequential drive by turning on the backlight 12 as an operation mode. And a monochrome display mode.
  • the single color display mode is the same as the transmitted light image display mode of the first embodiment in that the output data for transparent / monochrome display described in the first embodiment is used, but the single color display mode is turned on without turning off the backlight 12. In this way, a monochrome image can be seen.
  • “single color lighting” means a lighting state in which a monochrome image is visually recognized in the frame by human eyes by variously combining lighting ratios of the RGB light sources of the backlight 12. It does not mean that only one color of the RGB light source is lit. For example, when the R light source and the G light source are turned on simultaneously or in a time-division manner, yellow monochromatic light is visually recognized by human eyes. Such a state is also included in “single color lighting”.
  • the display device according to the third embodiment is different from the display device 10 according to the first embodiment in that the image processing unit 6 illustrated in FIG. 11 is provided instead of the image processing unit 4 illustrated in FIG. ing.
  • the image processing unit 6 of the display device includes a coordinate generation unit 41, a determination unit 62, a separation unit 43, an image data generation unit 44, a backlight data generation unit 65, and a timing control unit. 66.
  • the determination unit 62 identifies data used as control information for the backlight 12 among a plurality of pixel data included in the image data V1.
  • pixel values of predetermined specific coordinates for example, data of coordinates (0, 0) and coordinates (1, 0)
  • the control data of the backlight 12 is data indicating the lighting state of the backlight 12.
  • the determination unit 42 can notify the separation unit 43 of, for example, a value indicating whether the value of each coordinate is the gradation value of the image to be displayed or the control data of the backlight 12 as the determination value.
  • the backlight data generation unit 65 generates backlight data indicating how to turn on the backlight 12 for each frame based on the control data of the backlight 12. For example, if the RGB gradation values (R, G, B) at coordinates (0, 0) included in the image data are larger than the threshold value, the backlight 12 is displayed in full color during the frame period for displaying the image data. When the corresponding lighting state is set and (R, G, B) is smaller than the threshold value, the backlight data can be generated so that the backlight 12 is lit in a single color during the frame period. When the maximum gradation indicated by the image data is 255 gradations, for example, the threshold value can be set to 128.
  • the backlight data generation unit 65 and the timing control unit 66 simultaneously emit RGB light sources in the subfield period corresponding to W (white), and R in the subfield period corresponding to R.
  • the G light source is controlled to emit light in the subfield period corresponding to G
  • the B light source is controlled to emit light in the subfield period corresponding to B.
  • the backlight data generation unit 65 and the timing control unit 66 can create an arbitrary color by variously combining the lighting ratios of the three light sources of RGB of the light source 19. For example, only one of R, G, and B light sources may be lit in the frame.
  • the frame F3 in the single color display mode for example, by turning on only the R light source and the G light source, it is possible to realize yellow single color display.
  • FIG. 13 for example, by turning on the R light source and the G light source alternately in a time division manner in the frame F ⁇ b> 3 in the single color display mode, a yellow image can be visually recognized by the human eye. it can.
  • the field sequential drive is performed at a frequency (240 Hz) that is four times the frequency (60 Hz) of the input image V1, whereas the single color is used.
  • image display is performed at the same frequency as the input image V1.
  • the frame rate conversion process using the frame memory is not necessary, and the power consumption can be reduced.
  • the display device having the full color display mode and the single color display mode has been described.
  • the transmitted light image display mode described in the first and second embodiments may also be included as the operation mode. .
  • FIG. 15 is a cross-sectional view showing a configuration example of a display device using a direct type backlight 41, which is a modification of the first and second embodiments.
  • the portion of the backlight 41 that overlaps the display area of the display panel 11 is transparent.
  • the backlight 41 is configured using a transparent light source and a transparent substrate.
  • the transparent light source for example, organic EL (Electroluminescence) or inorganic EL can be used.
  • a substantially transparent LED backlight can be configured by arranging a large number of thin and small LEDs on a substrate such as glass or plastic to transmit light for transparent display.
  • a substrate such as glass or plastic
  • the configuration of the transparent substrate include a configuration in which the substrate itself is formed of a transparent material, and a configuration in which the substrate is configured with a thin film (for example, a thickness of several nm or less) so that light can be transmitted. It is done.
  • the direct type backlight 4 having a transparent portion overlapping the display area of the display panel 11 can be used.
  • a display device to which the present invention can be applied is not limited to a liquid crystal display device.
  • the present invention can also be applied to other display devices (display devices other than liquid crystal display devices) that include a lighting unit that irradiates light on one surface of the display panel and has a function of showing through the back of the display screen. it can.
  • the display panel includes a display panel including a plurality of shutter elements that are two-dimensionally arranged and capable of controlling an on state in which light is transmitted and an off state in which light is blocked for each pixel, and a backlight.
  • the present invention can also be applied to a display device that switches an ON state and an OFF state of a shutter element in accordance with each bit of image data a plurality of times.
  • Image processing unit 10 Display device 11 Display panel 12 Backlight 13 Display control circuit 16 Backlight control circuit 18 Light guide plate 19 Light source

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Provided is a display device that can realize greater diversity of display modes of images through backlight control, and that reduces power consumption. A display device 10 comprises: a light source 19; a display panel 11; a panel driving unit that outputs a signal that controls the transmittance of each pixel of the display panel 11; and a light source driving unit 16. At the time of a first operation mode, the panel driving unit outputs to the display panel 11 a signal that causes an image to be sequentially displayed in each of a plurality of sub field periods during one frame period, and the light source driving unit 16 switches the color of emitted light in each sub field period. At the time of a second operation mode, the panel driving unit outputs to the display panel 11 a signal that causes an image to be displayed without dividing one frame period into sub frame periods, and the light source driving unit 16 drives the light source using a different mode from that at the time of the first operation mode.

Description

表示装置Display device
 本願は、表示装置に関し、特に、バックライト制御により画像の表示態様の多様性を実現できる表示装置に関する。 The present application relates to a display device, and more particularly to a display device capable of realizing a variety of image display modes by backlight control.
 例えば、液晶表示装置のように、バックライトと、バックライトの光を変調することによって画像を表示する表示パネルとを備える表示装置がある。このような表示装置において、画像を表示するタイミングに合わせてバックライトの点灯及び消灯を制御することで、様々な表示性能を実現する技術が開発されている。 For example, there is a display device including a backlight and a display panel that displays an image by modulating light of the backlight, such as a liquid crystal display device. In such a display device, technologies for realizing various display performances by controlling the turning on and off of the backlight in accordance with the timing of displaying an image have been developed.
 一例として、下記特許文献1には、赤、緑、青色光が時分割で発光可能なバックライトと液晶パネルを組み合わせ、液晶素子のスイッチングとバックライトの発光とを同期させることによってカラー表示を実現するフィールドシーケンシャル方式の液晶表示装置が開示されている。 As an example, Patent Document 1 below realizes color display by combining a backlight that can emit red, green, and blue light in a time-sharing manner with a liquid crystal panel, and synchronizing the switching of the liquid crystal element and the light emission of the backlight. A field sequential type liquid crystal display device is disclosed.
 また、下記特許文献2には、撮像された被写体像を表示可能なモニタ画面を有する電子カメラにおいて、フィールドシーケンシャル液晶表示装置を用いることが開示されている。この液晶表示装置は、R、G、B各色のバックライトの点灯と液晶シャッタパネルの表示とを高速で切り替えることによりカラー表示を行うカラー表示モードと、バックライトを点灯せずに液晶シャッタパネルによる表示のみを行う白黒表示モードとが切り替え可能となっている。これにより、電子カメラは、モニタ画面を表示させた状態でも低消費電力で動作できる。 Further, Patent Document 2 below discloses that a field sequential liquid crystal display device is used in an electronic camera having a monitor screen capable of displaying a captured subject image. This liquid crystal display device uses a color display mode in which color display is performed by switching between lighting of backlights of R, G, and B colors and display of the liquid crystal shutter panel at high speed, and a liquid crystal shutter panel without lighting the backlight. It is possible to switch between a monochrome display mode for performing only display. Thereby, the electronic camera can operate with low power consumption even when the monitor screen is displayed.
特許第3912999号Japanese Patent No. 3912999 特開2003-60944号公報JP 2003-60944 A
 しかしながら、上記特許文献2に記載の表示装置は、バックライトが消灯された白黒表示モードにおいてもフィールドシーケンシャル表示を行っているので、消費電力が大きいという課題がある。そこで、本願は、バックライト制御により画像の表示態様の多様性を実現できる表示装置において、消費電力の低減を図ることを目的とする。 However, the display device described in Patent Document 2 performs field sequential display even in the black and white display mode in which the backlight is turned off. Therefore, an object of the present application is to reduce power consumption in a display device that can realize a variety of image display modes by backlight control.
 本発明の一実施形態における表示装置は、
 光源と、
 前記光源からの光の入射面と、前記入射面から入った前記光源の光を出射する出射面とを有する導光板と、
 前記導光板の前記出射面に重ねて設けられ、入射した光の透過率を複数の画素毎に制御することで画像を表示する表示パネルと、
 表示パネルに表示すべき画像を示す画像データに基づいて、前記表示パネルの画素毎の透過率を制御する信号を前記表示パネルに出力するパネル駆動部と、
 前記光源を駆動する光源駆動部と、
 前記画像データに基づいて、第1の動作モードに対応して、1フレーム期間を分割してできる複数のサブフィールド期間のそれぞれに表示するための複数のサブフィールド画像を生成する第1生成部と、第2の動作モードに対応して、1フレーム期間を分割せずに表示するための画像を生成する第2生成部とを備えた画像処理部とを備え、
 前記光源は、互いに異なる複数の色を発光可能であり、
 前記光源駆動部は、前記画像データで示される画像を表示する時に前記光源の点灯状態を制御する点灯制御データに基づいて、前記光源を駆動し、
 前記第1の動作モードの際には、前記パネル駆動部は、1フレーム期間における複数のサブフィールド期間毎に、前記第1生成部で生成された画像を順次表示させる信号を前記表示パネルに出力し、前記光源駆動部は、前記サブフィールド期間毎に発光する色を切り替え、
 前記第2の動作モードの際には、前記パネル駆動部は、前記第2生成部で生成された画像を表示させる信号を前記表示パネルに出力し、前記光源駆動部は、前記第1の動作モードの際とは異なる態様で光源を駆動する、表示装置である。
In one embodiment of the present invention, the display device
A light source;
A light guide plate having an incident surface for light from the light source and an exit surface for emitting light from the light source that has entered from the incident surface;
A display panel that is provided so as to overlap the light exit surface of the light guide plate and displays an image by controlling the transmittance of incident light for each of a plurality of pixels;
Based on image data indicating an image to be displayed on the display panel, a panel drive unit that outputs a signal for controlling the transmittance of each pixel of the display panel to the display panel;
A light source driving unit for driving the light source;
A first generation unit configured to generate a plurality of subfield images to be displayed in each of a plurality of subfield periods obtained by dividing one frame period in accordance with the first operation mode based on the image data; An image processing unit including a second generation unit that generates an image for display without dividing one frame period in correspondence with the second operation mode;
The light source can emit a plurality of colors different from each other,
The light source driving unit drives the light source based on lighting control data for controlling a lighting state of the light source when displaying an image indicated by the image data;
In the first operation mode, the panel driving unit outputs a signal for sequentially displaying the images generated by the first generation unit to the display panel for each of a plurality of subfield periods in one frame period. The light source driving unit switches the color of light emitted every subfield period,
In the second operation mode, the panel drive unit outputs a signal for displaying the image generated by the second generation unit to the display panel, and the light source drive unit performs the first operation. This is a display device that drives the light source in a mode different from that in the mode.
 本願開示によれば、バックライト制御により画像の表示態様の多様性を実現できると共に、消費電力の低減を図ることができる。 According to the present disclosure, it is possible to realize a variety of image display modes by backlight control and to reduce power consumption.
図1は、実施形態1にかかる表示装置の構成例を示す機能ブロック図である。FIG. 1 is a functional block diagram illustrating a configuration example of the display device according to the first embodiment. 図2は、表示面に垂直な方向から見たバックライトの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the backlight viewed from a direction perpendicular to the display surface. 図3Aは、表示装置の表示面に垂直な面の断面図である。FIG. 3A is a cross-sectional view of a plane perpendicular to the display surface of the display device. 図3Bは、表示装置の表示面に垂直な面の断面図である。FIG. 3B is a cross-sectional view of a surface perpendicular to the display surface of the display device. 図4は、カラー表示モードの表示画像の一例を示す図である。FIG. 4 is a diagram illustrating an example of a display image in the color display mode. 図5は、透過光画像表示モードの一例を示す図である。FIG. 5 is a diagram illustrating an example of a transmitted light image display mode. 図6は、図1に示す表示装置の画像処理部の詳細な構成例を示す機能ブロック図である。6 is a functional block diagram illustrating a detailed configuration example of the image processing unit of the display device illustrated in FIG. 図7は、実施形態1にかかる表示装置における動作の一例を表す図である。FIG. 7 is a diagram illustrating an example of an operation in the display device according to the first embodiment. 図8は、図6に示す画像データ生成部44の詳細な構成例を示す機能ブロック図である。FIG. 8 is a functional block diagram showing a detailed configuration example of the image data generation unit 44 shown in FIG. 図9は、実施形態2におけるカラー表示モードの表示画像の一例を示す図である。FIG. 9 is a diagram illustrating an example of a display image in the color display mode according to the second embodiment. 図10は、透過光画像表示モードの一例を示す図である。FIG. 10 is a diagram illustrating an example of a transmitted light image display mode. 図11は、実施形態3における画像データ生成部の構成例を示す機能ブロック図である。FIG. 11 is a functional block diagram illustrating a configuration example of the image data generation unit in the third embodiment. 図12は、実施形態3の表示装置における単色表示モードの動作の一例を示す図である。FIG. 12 is a diagram illustrating an example of the operation in the monochromatic display mode in the display device according to the third embodiment. 図13は、実施形態3の表示装置における単色表示モードの動作の他の例を示す図である。FIG. 13 is a diagram illustrating another example of the operation in the monochromatic display mode in the display device according to the third embodiment. 図14は、カラーフィルタ方式の表示装置10の構成例を示す断面図である。FIG. 14 is a cross-sectional view illustrating a configuration example of the color filter type display device 10. 図15は、直下型のバックライト41を用いた表示装置の構成例を示す断面図である。FIG. 15 is a cross-sectional view illustrating a configuration example of a display device using the direct type backlight 41.
 第1の構成にかかる表示装置は、光源と、前記光源からの光の入射面と、前記入射面から入った前記光源の光を出射する出射面とを有する導光板と、前記導光板の前記出射面に重ねて設けられ、入射した光の透過率を複数の画素毎に制御することで画像を表示する表示パネルと、表示パネルに表示すべき画像を示す画像データに基づいて、前記表示パネルの画素毎の透過率を制御する信号を前記表示パネルに出力するパネル駆動部と、前記光源を駆動する光源駆動部と、前記画像データに基づいて、第1の動作モードに対応して、1フレーム期間を分割してできる複数のサブフィールド期間のそれぞれに表示するための複数のサブフィールド画像を生成する第1生成部と、第2の動作モードに対応して、1フレーム期間を分割せずに表示するための画像を生成する第2生成部とを備えた画像処理部とを備える。前記光源は、互いに異なる複数の色を発光可能であり、前記光源駆動部は、前記画像データで示される画像を表示する時に前記光源の点灯状態を制御する点灯制御データに基づいて、前記光源を駆動する。前記第1の動作モードの際には、前記パネル駆動部は、1フレーム期間における複数のサブフィールド期間毎に、前記第1生成部で生成された画像を順次表示させる信号を前記表示パネルに出力し、前記光源駆動部は、前記サブフィールド期間毎に発光する色を切り替える。前記第2の動作モードの際には、前記パネル駆動部は、前記第2生成部で生成された画像を表示させる信号を前記表示パネルに出力し、前記光源駆動部は、前記第1の動作モードの際とは異なる態様で光源を駆動する。 A display device according to a first configuration includes a light source, a light guide plate having a light incident surface from the light source, and an output surface that emits light of the light source that has entered from the incident surface, and the light guide plate Based on image data indicating a display panel provided on the exit surface and displaying an image by controlling the transmittance of incident light for each of a plurality of pixels, the display panel Based on the image data, a panel driving unit that outputs a signal for controlling the transmittance of each pixel to the display panel, a light source driving unit that drives the light source, and 1st operation mode. A first generation unit that generates a plurality of subfield images to be displayed in each of a plurality of subfield periods formed by dividing a frame period, and one frame period is not divided corresponding to the second operation mode. Show on And an image processing unit that includes a second generating unit that generates an image for. The light source can emit a plurality of colors different from each other, and the light source driving unit controls the light source based on lighting control data for controlling a lighting state of the light source when displaying an image indicated by the image data. To drive. In the first operation mode, the panel driving unit outputs a signal for sequentially displaying the images generated by the first generation unit to the display panel for each of a plurality of subfield periods in one frame period. Then, the light source driving unit switches a color to be emitted every subfield period. In the second operation mode, the panel drive unit outputs a signal for displaying the image generated by the second generation unit to the display panel, and the light source drive unit performs the first operation. The light source is driven in a mode different from that in the mode.
 上記第1の構成によれば、表示装置は、少なくとも、第1の動作モードと第2の動作モードとを有する。画像処理部は、第1の動作モードでは、第1生成部により、前記画像データに基づいて、1フレーム期間を分割してできる複数のサブフィールド期間のそれぞれに表示するための複数のサブフィールド画像を生成する。すなわち、フィールドシーケンシャル方式で表示パネルを駆動することができる。第2の動作モードでは、第2生成部により、1フレーム期間を分割せずに表示するための画像を生成する。前記第1の動作モードの際には、前記パネル駆動部は、1フレーム期間における複数のサブフィールド期間毎に、前記第1生成部で生成された画像を順次表示させる信号を前記表示パネルに出力し、前記光源駆動部は、前記サブフィールド期間毎に発光する色を切り替える。前記第2の動作モードの際には、前記パネル駆動部は、前記第2生成部で生成された画像を表示させる信号を前記表示パネルに出力し、前記光源駆動部は、前記第1の動作モードの際とは異なる態様で光源を駆動する。ここで、第1の動作モードの際とは異なる態様での光源の駆動とは、光源を消灯させることも含む。 According to the first configuration, the display device has at least a first operation mode and a second operation mode. In the first operation mode, the image processing unit is configured to display a plurality of subfield images to be displayed in each of a plurality of subfield periods obtained by dividing one frame period based on the image data by the first generation unit. Is generated. That is, the display panel can be driven by a field sequential method. In the second operation mode, the second generation unit generates an image for display without dividing one frame period. In the first operation mode, the panel driving unit outputs a signal for sequentially displaying the images generated by the first generation unit to the display panel for each of a plurality of subfield periods in one frame period. Then, the light source driving unit switches a color to be emitted every subfield period. In the second operation mode, the panel drive unit outputs a signal for displaying the image generated by the second generation unit to the display panel, and the light source drive unit performs the first operation. The light source is driven in a mode different from that in the mode. Here, driving the light source in a mode different from that in the first operation mode includes turning off the light source.
 この構成によれば、第2の動作モードの際には、入力された画像データを複数のサブフィールド画像に生成する処理が不要である。第1の動作モードでは、入力された画像データに対して、フレームメモリ等を用いたフレームレートの変換処理が必要である。第2の動作モードではこの変換処理が不要であるので、消費電力を低減することができる。また、第1の動作モードと第2の動作モードとにおいて互いに異なる態様で光源が駆動されるので、バックライト制御により画像の表示態様の多様性を実現できる。 According to this configuration, in the second operation mode, it is not necessary to generate input image data into a plurality of subfield images. In the first operation mode, frame rate conversion processing using a frame memory or the like is necessary for the input image data. Since this conversion process is unnecessary in the second operation mode, power consumption can be reduced. In addition, since the light source is driven in different modes in the first operation mode and the second operation mode, a variety of image display modes can be realized by backlight control.
 第2の構成にかかる表示装置は、第1の構成においてさらに、前記導光板の前記出射面と対向する面である背面を光が透過可能となっており、前記第1の動作モードの際には、前記表示パネルは、前記パネル駆動部の信号に基づいて、前記光源から前記導光板の前記出射面を通って前記表示パネルへ入射する光の透過率を画素毎に制御することでカラー画像を表示し、前記第2の動作モードの際には、前記光源駆動部は前記光源を消灯し、前記表示パネルは、前記パネル駆動部の信号に基づいて、前記導光板の前記背面を透過して前記表示パネルへ入射する光の透過率を画素毎に制御することで、前記表示装置の後方が透けて見える透過領域を含む透過光画像を表示する。 In the display device according to the second configuration, in the first configuration, light can be transmitted through a back surface, which is a surface facing the emission surface of the light guide plate, and in the first operation mode. The display panel controls the transmittance of light incident on the display panel from the light source through the light exit surface of the light guide plate for each pixel based on a signal from the panel driving unit. In the second operation mode, the light source driving unit turns off the light source, and the display panel transmits the back surface of the light guide plate based on a signal from the panel driving unit. By controlling the transmittance of light incident on the display panel for each pixel, a transmitted light image including a transmissive region through which the rear of the display device can be seen is displayed.
 上記第2の構成においては、導光板の光の出射面と対向する面である背面を光が透過可能となっている。表示パネルは、第1の動作モードでは、光源から導光板の出射面を通って表示パネルへ入射する光の透過率を制御してカラー画像を表示する。また、第2の動作モードでは、光源を消灯し、導光板の背面を透過して表示パネルへ入射する光の透過率を制御して、表示装置の後方が透けて見える透過領域を含む透過光画像を表示する。そのため、画像を表示する時の光源の点灯及び消灯を制御することにより、カラー画像表示モードと、透過光画像表示モードとを切り替えることができる。その結果、表示装置において、画像の表示態様の多様性を実現することができる。また、第2の動作モードではフレームレートの変換処理が不要であるので、消費電力を低減することができる。 In the second configuration, light can be transmitted through the back surface, which is the surface facing the light exit surface of the light guide plate. In the first operation mode, the display panel displays a color image by controlling the transmittance of light incident on the display panel from the light source through the exit surface of the light guide plate. In the second operation mode, the light source is turned off, and the transmitted light including a transmissive region through which the rear of the display device can be seen is controlled by controlling the transmittance of light that is transmitted through the back surface of the light guide plate and incident on the display panel. Display an image. Therefore, the color image display mode and the transmitted light image display mode can be switched by controlling turning on and off of the light source when displaying an image. As a result, a variety of image display modes can be realized in the display device. Further, since the frame rate conversion process is unnecessary in the second operation mode, the power consumption can be reduced.
 第3の構成にかかる表示装置は、第1または第2の構成においてさらに、前記画像データが、前記表示すべき画像における各画素の階調値を含む。前記カラー画像の表示において画素に白色を表示させる前記画像データの階調値は、前記透過光画像の表示において前記導光板の背面からの光が画素を透過する透過率の階調値に対応するよう設定することができる。これにより、光源点灯時に表示されるカラー画像における白色に対応する領域は、光源消灯時に表示される透過光画像では、表示装置の後方を透けて見える透過領域となる。そのため、光源の点灯及び消灯を制御することにより、表示画像における白色に対応する領域を。白色に表示にしたり、透過領域にしたりすることができる。 In the display device according to the third configuration, in the first or second configuration, the image data further includes a gradation value of each pixel in the image to be displayed. The gradation value of the image data that causes the pixel to display white in the display of the color image corresponds to the gradation value of the transmittance at which light from the back of the light guide plate passes through the pixel in the display of the transmitted light image. It can be set as follows. Thereby, the region corresponding to white in the color image displayed when the light source is turned on becomes a transmissive region that can be seen through the back of the display device in the transmitted light image displayed when the light source is turned off. Therefore, an area corresponding to white in the display image is controlled by controlling turning on and off of the light source. It can be displayed in white or a transmissive region.
 第4の構成にかかる表示装置においては、前記第2または第3の構成に加えて、前記画像データ生成部は、前記第1の動作モードで光源を点灯して表示する画像のサブフィールド画像の生成処理と、前記第2の動作モードで光源を消灯して表示する画像のサブフィールド画像の生成処理とを異ならせることができる。これにより、光源の点灯時及び消灯時それぞれにおいて、表示画像に適したサブフィールド画像を生成することができる。 In the display device according to the fourth configuration, in addition to the second or third configuration, the image data generation unit is configured to display a subfield image of an image displayed by lighting a light source in the first operation mode. The generation process can be different from the generation process of the subfield image of the image displayed with the light source turned off in the second operation mode. Thereby, a subfield image suitable for a display image can be generated when the light source is turned on and off.
 第5の構成にかかる表示装置においては、前記第2~第3のいずれかの構成に加えて、前記画像データ生成部は、前記光源の複数の色それぞれに対応するサブフィールド画像に加えて、前記複数の色の混合色に対応するサブフィールド画像を生成する構成とすることができる。この場合、画像データ生成部は、前記光源を点灯して表示する画像のサブフィールド画像の生成処理では、各色に対応するサブフィールド画像の階調値を、前記混合色のサブフィールド画像の階調値に応じて変更する処理を実行することができる。また、前記光源を消灯して表示する画像のサブフィールド画像の処理では、各色に対応するサブフィールド画像の階調値を、前記混合色のサブフィールド画像の階調値に応じて変更する前記処理を実行しないように構成することができる。 In the display device according to the fifth configuration, in addition to any one of the second to third configurations, the image data generation unit includes a subfield image corresponding to each of the plurality of colors of the light source, A subfield image corresponding to the mixed color of the plurality of colors may be generated. In this case, in the generation processing of the subfield image of the image displayed by turning on the light source, the image data generation unit uses the gradation value of the subfield image corresponding to each color as the gradation of the subfield image of the mixed color. A process of changing according to the value can be executed. In the processing of the subfield image of the image displayed with the light source turned off, the processing of changing the gradation value of the subfield image corresponding to each color according to the gradation value of the subfield image of the mixed color Can be configured not to execute.
 上記構成により、光源点灯時のカラー画像表示においては、混合色に対応するサブフィールド画像を生成し、各色に対応するサブフィールド画像の階調値を変更することで、色割れを抑制することができる。光源消灯時の透過光領域を含む透過光画像の表示においては、各色に対応するサブフィールド画像の階調値を変更しないようにすることで、透過領域の透明度合いを向上させることができる。 With the above configuration, in color image display when the light source is turned on, subfield images corresponding to mixed colors are generated, and color gradation can be suppressed by changing the gradation values of the subfield images corresponding to each color. it can. In the display of the transmitted light image including the transmitted light region when the light source is turned off, the degree of transparency of the transmitted region can be improved by not changing the gradation value of the subfield image corresponding to each color.
 第6の構成にかかる表示装置においては、第2~第5のいずれかの構成においてさらに、前記表示パネルは、前記光源の消灯時に画像を表示する場合に、透過領域及び黒領域のみを含む透過光画像を表示することができる。これにより、カラー画像と透過光画像との表示態様の差を大きくすることができる。そのため、例えば、表示装置において、人目を引くような表示態様が可能になる。 In the display device according to the sixth configuration, in any one of the second to fifth configurations, the display panel includes a transmission region and a black region only when displaying an image when the light source is turned off. An optical image can be displayed. Thereby, the difference of the display mode of a color image and a transmitted light image can be enlarged. Therefore, for example, a display mode that draws attention is possible in the display device.
 第7の構成にかかる表示装置においては、第2~第6のいずれかの構成においてさらに、前記光源駆動部は、前記パネル駆動部が、同じ画像データに基づく画像を前記表示パネルに表示させている間に、前記光源の点灯と消灯を切り替えることができる。これにより、同じ画像データのコンテンツを表示しながら、カラー表示と透過光画像の表示を切り替えることができる。そのため、同じコンテンツで2通りの表示態様が可能になる。例えば、人目を引く表示態様が可能になる。 In the display device according to the seventh configuration, in any one of the second to sixth configurations, the light source driving unit causes the panel driving unit to display an image based on the same image data on the display panel. While the light source is on, the light source can be switched on and off. Accordingly, it is possible to switch between color display and transmitted light image display while displaying the content of the same image data. Therefore, two display modes are possible with the same content. For example, an eye-catching display mode is possible.
 第8の構成にかかる表示装置は、第1の構成においてさらに、前記第2の動作モードの際には、前記光源駆動部は前記光源を単色点灯させることができる。ここで、「単色点灯」とは、光源が発光可能な複数の色のそれぞれのみに限定されず、これら複数色の点灯割合を様々に組み合わせることによって、人間の目に、そのフレームでは単色の画像が視認されるようにする点灯状態を意味する。この構成によれば、第1の動作モードと第2の動作モードとにおいて互いに異なる態様で光源が駆動されるので、バックライト制御により画像の表示態様の多様性を実現できる。また、第1の動作モードでは、入力された画像データに対して、フレームメモリ等を用いたフレームレートの変換処理が必要であるが、第2の動作モードではこの変換処理が不要であるので、消費電力を低減することができる。 In the display device according to the eighth configuration, in the first configuration, in the second operation mode, the light source driving unit can light the light source in a single color. Here, “single color lighting” is not limited to each of a plurality of colors that the light source can emit, and by combining various lighting ratios of these colors, a single color image is displayed in the frame for the human eye. Means a lighting state in which is visually recognized. According to this configuration, since the light sources are driven in different modes in the first operation mode and the second operation mode, a variety of image display modes can be realized by backlight control. In the first operation mode, input image data requires frame rate conversion processing using a frame memory or the like, but in the second operation mode, this conversion processing is unnecessary. Power consumption can be reduced.
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. In addition, in order to make the explanation easy to understand, in the drawings referred to below, the configuration is shown in a simplified or schematic manner, or some components are omitted. Further, the dimensional ratio between the constituent members shown in each drawing does not necessarily indicate an actual dimensional ratio.
 <実施形態1>
 (表示装置の構成例)
 図1は、実施形態1にかかる表示装置の構成例を示す機能ブロック図である。図1に示す表示装置10は、外部の信号源5から供給される画像データに基づき画像を表示する。表示装置10は、表示パネル11と、光源19及び導光板18を含むバックライト12とを備える。導光板18は、光源19の光を表示パネル11の表示面へ導く。表示パネル11は、導光板18に重ねて設けられる。表示パネル11は、表示パネル11へ入射した光の透過率を複数の画素毎に制御することで画像を表示する。本実施形態では、一例として、表示装置10は、液晶の配向を制御することにより、画素毎に光の透過率を制御する液晶表示装置である場合について説明する。
<Embodiment 1>
(Configuration example of display device)
FIG. 1 is a functional block diagram illustrating a configuration example of the display device according to the first embodiment. The display device 10 shown in FIG. 1 displays an image based on image data supplied from an external signal source 5. The display device 10 includes a display panel 11 and a backlight 12 including a light source 19 and a light guide plate 18. The light guide plate 18 guides light from the light source 19 to the display surface of the display panel 11. The display panel 11 is provided so as to overlap the light guide plate 18. The display panel 11 displays an image by controlling the transmittance of light incident on the display panel 11 for each of a plurality of pixels. In the present embodiment, as an example, the case where the display device 10 is a liquid crystal display device that controls the light transmittance for each pixel by controlling the alignment of the liquid crystal will be described.
 表示パネル11及びバックライト12を制御する制御回路として、表示装置10は、画像データを処理して表示パネル11及びバックライト12を駆動するためのデータを出力する画像処理部4と、表示制御回路13、ゲートドライバ14、ソースドライバ15、及びバックライト制御回路16を備える。 As a control circuit for controlling the display panel 11 and the backlight 12, the display device 10 includes an image processing unit 4 that processes image data and outputs data for driving the display panel 11 and the backlight 12, and a display control circuit. 13, a gate driver 14, a source driver 15, and a backlight control circuit 16.
 表示パネル11は、m本のゲート線G1~Gm、n本のソース線S1~Sn、及び(m×n)個の画素回路17を含んでいる。ゲート線G1~Gmは、第1方向(図1の例では、表示画面の水平方向(横方向))に延びて形成される。ソース線S1~Snは、第1方向と交差する方向(図1の例では表示画面の垂直方向(縦方向))に延びて形成される。(m×n)個の画素回路17は、それぞれ、ゲート線G1~Gmとソース線S1~Snとの各交差点に対応して設けられる。なお、ゲート線は、走査線と呼ぶこともでき、ソース線は、データ線又は信号線と呼ぶこともできる。また、ゲートドライバは走査線駆動回路、ソースドライバは、データ線駆動回路と呼ぶこともできる。 The display panel 11 includes m gate lines G1 to Gm, n source lines S1 to Sn, and (m × n) pixel circuits 17. The gate lines G1 to Gm are formed extending in the first direction (in the example of FIG. 1, the horizontal direction (lateral direction) of the display screen). The source lines S1 to Sn are formed to extend in a direction intersecting the first direction (in the example of FIG. 1, the vertical direction (vertical direction) of the display screen). The (m × n) pixel circuits 17 are provided corresponding to the intersections of the gate lines G1 to Gm and the source lines S1 to Sn, respectively. Note that the gate line can also be called a scan line, and the source line can also be called a data line or a signal line. The gate driver can also be called a scanning line driver circuit, and the source driver can be called a data line driver circuit.
 信号源5は、表示装置10に対して1フレーム期間ごとに表示すべき画像を示す画像データV1を供給する。表示装置10に供給された画像データV1は、画像処理部4に入力される。画像処理部4は、入力された画像データV1を処理して、表示制御回路13へ出力するとともに、画像の表示及びバックライト12における光源19の点灯のタイミング制御を行う。 The signal source 5 supplies the display device 10 with image data V1 indicating an image to be displayed every frame period. The image data V1 supplied to the display device 10 is input to the image processing unit 4. The image processing unit 4 processes the input image data V1 and outputs the processed image data V1 to the display control circuit 13, and controls the timing of displaying the image and lighting the light source 19 in the backlight 12.
 具体的には、表示制御回路13は、画像データに基づいてソースドライバ15及びゲートドライバ14を制御して、表示パネル11の画素毎の透過率を制御する信号を表示パネル11に出力させる。表示制御回路13は、ソースドライバ15に制御信号C1及び画像データV2を出力する。制御信号C1には、例えば、ソーススタートパルス及びソースクロックが含まれる。ソースドライバ15は、制御信号C2と画像データV2に基づいて、ソース線S1~Snを駆動する。表示制御回路13は、ゲートドライバ14に制御信号C2を出力する。ゲートドライバ14は、制御信号C2に基づき、ゲート線G1~Gmを駆動する。制御信号C2には、例えば、ゲートスタートパルスやゲートクロックが含まれる。 Specifically, the display control circuit 13 controls the source driver 15 and the gate driver 14 based on the image data, and causes the display panel 11 to output a signal for controlling the transmittance of each pixel of the display panel 11. The display control circuit 13 outputs a control signal C1 and image data V2 to the source driver 15. The control signal C1 includes, for example, a source start pulse and a source clock. The source driver 15 drives the source lines S1 to Sn based on the control signal C2 and the image data V2. The display control circuit 13 outputs a control signal C <b> 2 to the gate driver 14. The gate driver 14 drives the gate lines G1 to Gm based on the control signal C2. The control signal C2 includes, for example, a gate start pulse and a gate clock.
 ゲートドライバ14は、制御信号C2に従うタイミングで、ゲート線G1~Gmを1本ずつ順次選択する。選択されたゲート線には、1ライン期間にわたって選択電圧が印加される。ソースドライバ15は、制御信号C1に従うタイミングで、ソース線S1~Snに対して、画像データV2に応じたソース電圧を1ライン期間にわたって印加する。これにより、選択されたゲート線に接続されたn個の画素回路17に画像データV2に応じたソース電圧がそれぞれ書き込まれる。この動作が、ゲート線G1~Gmについて順次繰り返される。その結果、各画素回路17における画像データV2に応じたソース電圧が書き込まれ、各画素の透過率が制御される。表示パネル11は、画像データV2で示される画像を表示する。 The gate driver 14 sequentially selects the gate lines G1 to Gm one by one at a timing according to the control signal C2. A selection voltage is applied to the selected gate line over one line period. The source driver 15 applies a source voltage corresponding to the image data V2 to the source lines S1 to Sn at a timing according to the control signal C1 over one line period. As a result, the source voltage corresponding to the image data V2 is written to each of the n pixel circuits 17 connected to the selected gate line. This operation is sequentially repeated for the gate lines G1 to Gm. As a result, the source voltage corresponding to the image data V2 in each pixel circuit 17 is written, and the transmittance of each pixel is controlled. The display panel 11 displays an image indicated by the image data V2.
 このように、表示制御回路13、ゲートドライバ14、及びソースドライバ15は、表示パネル11に表示すべき画像を示す画像データV1、V2に基づいて、表示パネル11の画素毎の透過率を制御する信号を表示パネル11に出力するパネル駆動部として構成される。 As described above, the display control circuit 13, the gate driver 14, and the source driver 15 control the transmittance of each pixel of the display panel 11 based on the image data V <b> 1 and V <b> 2 indicating the image to be displayed on the display panel 11. The panel driving unit is configured to output a signal to the display panel 11.
 また、画像処理部4は、光源19を点灯させるか否かを示すバックライトデータC3を、バックライト制御回路16へ出力する。バックライト制御回路16は、バックライトデータC3に基づいて、光源の点灯及び消灯を制御する。バックライト制御回路16は、例えば、バックライトデータC3が1のときバックライト12を点灯し、バックライトデータC3が0のときバックライト12を消灯する。バックライト制御回路16は、光源19を駆動する光源駆動部の一例である。 Further, the image processing unit 4 outputs backlight data C3 indicating whether or not to turn on the light source 19 to the backlight control circuit 16. The backlight control circuit 16 controls turning on and off of the light source based on the backlight data C3. For example, the backlight control circuit 16 turns on the backlight 12 when the backlight data C3 is 1, and turns off the backlight 12 when the backlight data C3 is 0. The backlight control circuit 16 is an example of a light source driving unit that drives the light source 19.
 本実施形態では、表示装置10が、一例として、フィールドシーケンシャル方式でカラー画像を表示する場合について説明する。フィールドシーケンシャル方式では、1画面の表示期間すなわち1フレーム期間を分割してできる複数のサブフィールド毎に異なる色の画面を表示することによって、カラー画像を表示する。バックライト制御回路16は、カラー画像表示時には、表示制御回路13によって、異なる色のサブフィールド画像が表示パネル11に表示されるタイミングに合わせて、光源19の発光色を切り替える。 In the present embodiment, a case where the display device 10 displays a color image by a field sequential method will be described as an example. In the field sequential method, a color image is displayed by displaying different color screens for each of a plurality of subfields obtained by dividing one screen display period, that is, one frame period. The backlight control circuit 16 switches the light emission color of the light source 19 in accordance with the timing when the display control circuit 13 displays sub-field images of different colors on the display panel 11 when displaying a color image.
 また、バックライト制御部16は、例えば、1フレーム期間ごとにバックライト12の状態(例えば、点灯又は消灯)を制御することもできる。例えば、入力された画像データV1で示される画像を表示する時にバックライト12を点灯するか否か示す点灯制御データを、信号源5から受信し、この点灯制御データに基づいて、1つの画像を表示する1フレーム期間において、バックライト12を点灯するか否かを制御することができる。これにより、表示装置10は、後述するように、カラー画像を表示するカラー画像表示モードと、表示装置10の後ろが透けて見える透過領域を含むモノトーン画像を表示する透過光画像表示モードで動作することができる。 The backlight control unit 16 can also control the state of the backlight 12 (for example, lighting or extinguishing) for each frame period, for example. For example, lighting control data indicating whether or not to turn on the backlight 12 when displaying the image indicated by the input image data V1 is received from the signal source 5, and one image is obtained based on the lighting control data. It is possible to control whether or not the backlight 12 is lit in one frame period to be displayed. Thus, as will be described later, the display device 10 operates in a color image display mode for displaying a color image and a transmitted light image display mode for displaying a monotone image including a transmissive area through which the back of the display device 10 can be seen. be able to.
 バックライト12は、表示パネル11の背面に光を照射する。図2は、表示面に垂直な方向から見たバックライト12の構成例を示す図である。図2に示す例では、バックライト12は、エッジライト型である。すなわち、光源19は、導光板18の側面(図2の例では、下側の側面)に対向して配置される。光源19には、例えば、RGB3色の発光ダイオード(LED:Light Emitting Diode)等が設けられる。導光板18は、透明な材料で形成される。バックライト12のうち表示パネル11の表示画面、すなわち画素が配置される表示エリアと重なる部分は透明である。なお、図2では、光源19を導光板18の1つの側面に対向する位置に配置しているが、光源19を導光板18の複数の側面に対向する位置に配置することもできる。 The backlight 12 irradiates the back surface of the display panel 11 with light. FIG. 2 is a diagram illustrating a configuration example of the backlight 12 as viewed from a direction perpendicular to the display surface. In the example shown in FIG. 2, the backlight 12 is an edge light type. That is, the light source 19 is disposed so as to face the side surface (the lower side surface in the example of FIG. 2) of the light guide plate 18. The light source 19 is provided with, for example, RGB three-color light emitting diodes (LED: Light Emitting Diode). The light guide plate 18 is formed of a transparent material. The portion of the backlight 12 that overlaps the display screen of the display panel 11, that is, the display area where the pixels are arranged, is transparent. In FIG. 2, the light source 19 is disposed at a position facing one side surface of the light guide plate 18, but the light source 19 may be disposed at a position facing a plurality of side surfaces of the light guide plate 18.
 図3A及び図3Bは、表示装置10の表示面に垂直な面の断面図である。図3Aは、バックライト12を消灯して表示装置10の後方が透けて見える透過領域を含む透過光画像を表示する状態の例を示す。図3Bは、バックライト12を点灯してカラー画像を表示する状態の例を示す。 3A and 3B are cross-sectional views of a plane perpendicular to the display surface of the display device 10. FIG. 3A shows an example of a state in which a transmitted light image including a transmissive region in which the backlight 12 is turned off and the back of the display device 10 can be seen is displayed. FIG. 3B shows an example of a state in which the backlight 12 is turned on to display a color image.
 図3A及び図3Bに示す例では、表示パネル11は、バックライト12と、表示画面に垂直な方向において重なる位置に設けられる。表示パネル11は、2枚の第1基板25及び第2基板22と、これらの間に設けられる液晶24を有する。第1基板25の一方の面(例えば、バックライト12と反対側の面)に、ゲート線G1~Gm、ソース線S1~Sn、及び画素回路17等が設けられる。第1基板25の他方の面には、偏光板26が設けられる。第2基板22の一方の面(例えば、バックライト12側の面)には、共通電極(図示せず)が形成される。第2基板22の他方の面には、偏光板21が設けられる。第1基板25及び第2基板22は、例えば、ガラス又は樹脂で形成することができる。 3A and 3B, the display panel 11 is provided at a position overlapping the backlight 12 in the direction perpendicular to the display screen. The display panel 11 includes two first and second substrates 25 and 22 and a liquid crystal 24 provided therebetween. On one surface (for example, the surface opposite to the backlight 12) of the first substrate 25, gate lines G1 to Gm, source lines S1 to Sn, a pixel circuit 17, and the like are provided. A polarizing plate 26 is provided on the other surface of the first substrate 25. A common electrode (not shown) is formed on one surface of the second substrate 22 (for example, the surface on the backlight 12 side). A polarizing plate 21 is provided on the other surface of the second substrate 22. The first substrate 25 and the second substrate 22 can be formed of, for example, glass or resin.
 バックライト12の導光板18は、光源19からの光の入射面18aと、入射面18aから入った光源19の光を出射する18bとを有する。表示パネル11は、導光板18の出射面18bに重ねて設けられる。すなわち、バックライト12は、表示パネル11の一方の面に光を照射する照明部である。 The light guide plate 18 of the backlight 12 has an incident surface 18a for light from the light source 19 and 18b for emitting light from the light source 19 that has entered from the incident surface 18a. The display panel 11 is provided so as to overlap the light exit surface 18 b of the light guide plate 18. That is, the backlight 12 is an illumination unit that irradiates one surface of the display panel 11 with light.
 図3Aに示すように、導光板18の出射面18bと対向する面である背面18cにおいて、表示パネル11の画像が表示される表示エリアすなわち表示画面と重なる領域は、光が透過可能となっている。バックライト12は、表示パネル11の表示画面と重なる部分は光が透過可能になるよう構成される。例えば、バックライト12において、表示パネル11の表示エリアと表示画面と垂直な方向において重なる位置に設けられる部材は、透明な材料で形成される。 As shown in FIG. 3A, on the back surface 18c, which is the surface facing the exit surface 18b of the light guide plate 18, the display area on which the image of the display panel 11 is displayed, that is, the region overlapping the display screen, can transmit light. Yes. The backlight 12 is configured so that light can be transmitted through a portion overlapping the display screen of the display panel 11. For example, in the backlight 12, a member provided at a position overlapping in the direction perpendicular to the display area of the display panel 11 and the display screen is formed of a transparent material.
 具体的には、表示パネル11の背面には、表示画面に垂直な方向に光が透過可能な導光板18が配置される。すなわち、表示パネル11の背面に光を遮蔽する部材は配置されない。導光板18の背面側の部材には、アクリル板等の透明素材が用いられるか、又は、導光板18の背面に何も配置しない構成とすることができる。この構成により、表示パネル11において光が透過するように液晶24が制御された画素においては、表示装置10の後方から導光板18の背面を透過した光が、表示パネル11の当該画素を通って表示画面の前方へ透過する。 Specifically, a light guide plate 18 capable of transmitting light in a direction perpendicular to the display screen is disposed on the back surface of the display panel 11. That is, no member that shields light is disposed on the back surface of the display panel 11. A transparent material such as an acrylic plate is used for a member on the back side of the light guide plate 18, or nothing can be arranged on the back side of the light guide plate 18. With this configuration, in the pixel in which the liquid crystal 24 is controlled so that light is transmitted through the display panel 11, light transmitted from the back of the display device 10 through the back surface of the light guide plate 18 passes through the pixel of the display panel 11. Transparent to the front of the display screen.
 また、図3Bに示すように、導光板18は、導光板18を伝播する光源19からの光が、表示パネル11に対向する出射面18bから表示パネル11へ向けて出射しやすい構成となっている。例えば、導光板18の出射面18b及び背面18cには、入射した光を反射するドット(図示せず)を所定の間隔で形成することができる。導光板18の入射面18aから入った光源19の光は、導光板18内を全反射しながら進む。導光板18の背面18cのドットに入射した光源19からの光は、ドットに反射され、導光板18の出射面18bから表示パネル11へ向かって出射される。 As shown in FIG. 3B, the light guide plate 18 has a configuration in which light from the light source 19 propagating through the light guide plate 18 is easily emitted from the emission surface 18 b facing the display panel 11 toward the display panel 11. Yes. For example, dots (not shown) that reflect incident light can be formed at predetermined intervals on the exit surface 18 b and the back surface 18 c of the light guide plate 18. The light from the light source 19 that has entered from the incident surface 18 a of the light guide plate 18 travels while being totally reflected in the light guide plate 18. The light from the light source 19 that has entered the dots on the back surface 18 c of the light guide plate 18 is reflected by the dots and is emitted from the emission surface 18 b of the light guide plate 18 toward the display panel 11.
 ドットは、例えば、白色不透明インク(有機系の紫外線硬化型インク等)又は金属インク(アルミニウム又は金等)の印刷等によって形成される。また、印刷によるドットの代わりに、金型プレス又はレーザー加工により導光板18の表面を光が反射しやすい形状に加工することができる。また、導光板18の表面の形状による反射を利用する形態に限られず、光を反射しやすい材質によって導光板18を形成してもよい。このように、導光板18は、内部を進む光を反射して外部に出射する反射構造を備えることができる。 The dots are formed, for example, by printing with white opaque ink (such as organic ultraviolet curable ink) or metal ink (such as aluminum or gold). Further, instead of printing dots, the surface of the light guide plate 18 can be processed into a shape in which light is easily reflected by a die press or laser processing. In addition, the light guide plate 18 may be formed of a material that easily reflects light, without being limited to the form using the reflection due to the shape of the surface of the light guide plate 18. As described above, the light guide plate 18 may include a reflection structure that reflects light traveling inside and emits the light to the outside.
 このように、バックライト12の点灯時には、光源19から導光板18を通って表示パネル11に照射される光の量が、導光板18の背面18bを透過して表示パネル11に達する光の量に比べて多くなる。そのため、バックライト12の点灯時には、表示パネル11には、バックライト12の光による色が表示され、表示装置10の後方が透けて見えることがなくなる。 Thus, when the backlight 12 is turned on, the amount of light irradiated from the light source 19 through the light guide plate 18 to the display panel 11 passes through the back surface 18 b of the light guide plate 18 and reaches the display panel 11. More than For this reason, when the backlight 12 is turned on, the display panel 11 displays the color of the light from the backlight 12, and the back of the display device 10 is not seen through.
 本実施形態では、表示装置10は、カラー表示モードと、透過光画像表示モードを有する。カラー表示モードでは、バックライト12が点灯し、表示パネル11は、表示装置10の後方が透けて見える透過領域を含まないカラー画像を表示する。透過光画像表示モードでは、バックライト12が消灯し、表示パネル11は、透過領域を含むモノトーン画像(透過光画像)を表示する。 In the present embodiment, the display device 10 has a color display mode and a transmitted light image display mode. In the color display mode, the backlight 12 is turned on, and the display panel 11 displays a color image that does not include a transmissive area through which the back of the display device 10 can be seen. In the transmitted light image display mode, the backlight 12 is turned off, and the display panel 11 displays a monotone image (transmitted light image) including a transmissive area.
 表示パネル11は、カラー表示モードと、透過光画像表示モードのいずれにおいても、上記パネル駆動部の信号に基づいて表示パネル11に入射する光の透過率を画素毎に制御することで画像を表示する。カラー表示モードの場合すなわち、画像を表示する時にバックライト12を点灯する場合、表示パネル11は、光源19から導光板18内を伝播し出射面18bを通って表示パネル11へ入射する光の透過率を制御することになる。また、透過光画像表示モードの場合すなわち、画像を表示する時にバックライト12を消灯する場合、表示パネル11は、表示装置10の外側から導光板18の背面18cを透過して表示パネル11へ入射する光の透過率を制御することになる。これにより、透過領域を含む透過光画像を表示することができる。透過領域では、表示装置10の後方が透けて見える。 The display panel 11 displays an image by controlling the transmittance of light incident on the display panel 11 for each pixel based on the signal of the panel drive unit in both the color display mode and the transmitted light image display mode. To do. In the color display mode, that is, when the backlight 12 is turned on when displaying an image, the display panel 11 transmits light that propagates from the light source 19 through the light guide plate 18 and enters the display panel 11 through the emission surface 18b. Will control the rate. In the case of the transmitted light image display mode, that is, when the backlight 12 is turned off when displaying an image, the display panel 11 enters the display panel 11 through the back surface 18c of the light guide plate 18 from the outside of the display device 10. The transmittance of light to be controlled is controlled. Thereby, the transmitted light image including the transmissive region can be displayed. In the transmissive region, the back of the display device 10 can be seen through.
 図4は、カラー表示モードの表示画像の一例を示す図である。図5は、透過光画像表示モードの一例を示す図である。図4に示す例では、領域A1は赤色、領域A2は青色、領域A3は黄色、領域A4は白色、領域A5は緑色で表示される。図5に示す表示画像は、透過領域A6及び黒で表示される領域A7を含む。透過領域A6では、表示装置10の後方の物体B1が透けて見える。 FIG. 4 is a diagram illustrating an example of a display image in the color display mode. FIG. 5 is a diagram illustrating an example of a transmitted light image display mode. In the example shown in FIG. 4, the region A1 is displayed in red, the region A2 is displayed in blue, the region A3 is displayed in yellow, the region A4 is displayed in white, and the region A5 is displayed in green. The display image shown in FIG. 5 includes a transmissive area A6 and an area A7 displayed in black. In the transmissive area A6, the object B1 behind the display device 10 can be seen through.
 例えば、カラー表示モードでは、バックライト12から照射されるRGBそれぞれの光が、表示パネル11で調整される透過率に応じた色を表示する。透過光画像表示モードでは、バックライト12は消灯するので、透過率が十分に大きい画素の領域においては、図5に示す画像の領域A6のように、導光板18の背面を透過した光が表示画面の前方に出射する。そのため、そのような領域は、透過領域となって表示装置10の背景が透けて見える。これは、例えば、表示装置10の外からの光が背面から透過できる導光板18を表示パネル11の背面に配置することで可能になる。なお、透過領域は、透過率が最も高い画素の領域に限られない。例えば、後方が透けて見える程度の透過率となるように制御された画素の領域も、透過領域に含めることができる。 For example, in the color display mode, each RGB light emitted from the backlight 12 displays a color corresponding to the transmittance adjusted by the display panel 11. In the transmitted light image display mode, since the backlight 12 is turned off, light transmitted through the back surface of the light guide plate 18 is displayed in a pixel region having a sufficiently large transmittance, as in the region A6 of the image shown in FIG. Output to the front of the screen. Therefore, such a region becomes a transmissive region and the background of the display device 10 can be seen through. This can be achieved, for example, by arranging a light guide plate 18 that allows light from the outside of the display device 10 to be transmitted from the back side of the display panel 11. Note that the transmissive region is not limited to a pixel region having the highest transmittance. For example, a region of a pixel that is controlled to have a transmittance such that the rear can be seen through can be included in the transmissive region.
 例えば、カラー表示モードで、RGB全ての色の透過率が十分に大きい画素(例えば、透過率が最大の画素)の領域においては、図4に示す画像の領域A4のように、バックライト12の光によって白色が表示される。これに対して、透過光画像表示モードでは、透過率が十分に大きい画素では、透明度の高い透過領域となる。そのため、例えば、表示装置10では、信号源5から入力される画像データV1において、「白」を示す階調値の領域は、バックライト点灯時に白色表示となり、バックライト消灯時に透明表示とすることができる。透明表示は、表示装置10の背面が透過して目視できる状態である。これにより、例えば、バックライト点灯時はカラー表示となり,バックライト消灯時は,透明表示の領域と黒(又はグレースケール)の領域とを含むモノトーン表示となる演出を行うことができる。このように、表示装置10で可能な表示態様が多様化するので、画像による表現の幅を広げることができる。 For example, in the color display mode, in the region of pixels where the transmittance of all the colors of RGB is sufficiently large (for example, the pixel having the maximum transmittance), the backlight 12 is not like the region A4 of the image shown in FIG. White is displayed by light. On the other hand, in the transmitted light image display mode, a pixel having a sufficiently high transmittance becomes a highly transparent transmission region. Therefore, for example, in the display device 10, in the image data V <b> 1 input from the signal source 5, the gradation value region indicating “white” is displayed in white when the backlight is lit, and is transparent when the backlight is turned off. Can do. The transparent display is a state where the back surface of the display device 10 can be seen through. Thereby, for example, a color display can be performed when the backlight is turned on, and a monotone display including a transparent display area and a black (or gray scale) area can be performed when the backlight is turned off. In this way, the display modes possible with the display device 10 are diversified, so that the range of representation by images can be expanded.
 (画像処理部の詳細な構成例)
 図6は、図1に示す表示装置10の画像処理部4の詳細な構成例を示す機能ブロック図である。この例では、画像処理部4は、座標生成部41、判定部42、分離部43、画像データ生成部44、バックライトデータ生成部45、タイミング制御部46を備える。
(Detailed configuration example of the image processing unit)
FIG. 6 is a functional block diagram illustrating a detailed configuration example of the image processing unit 4 of the display device 10 illustrated in FIG. 1. In this example, the image processing unit 4 includes a coordinate generation unit 41, a determination unit 42, a separation unit 43, an image data generation unit 44, a backlight data generation unit 45, and a timing control unit 46.
 座標生成部41、判定部42及び分離部43は、入力した画像データV1に含まれるバックライト12の制御情報を検出する回路である。ここでは、1フレーム期間毎にバックライト12を点灯するか否かを制御するための情報を検出する場合について、説明する。画像データV1には、例えば、複数の画素それぞれのデータ(一例として、各画素のRGBそれぞれの階調値)が含まれる。座標生成部41は、入力された画像データにおける各画素の座標(X,Y)を示すデータを生成する。 The coordinate generation unit 41, the determination unit 42, and the separation unit 43 are circuits that detect the control information of the backlight 12 included in the input image data V1. Here, a case where information for controlling whether or not the backlight 12 is turned on every frame period is detected will be described. The image data V1 includes, for example, data for each of a plurality of pixels (for example, gradation values for each RGB of each pixel). The coordinate generation unit 41 generates data indicating the coordinates (X, Y) of each pixel in the input image data.
 座標生成部41は、例えば、水平総画素数Mと垂直総ライン数Nを保持するための、外部から書き換え可能なメモリ(レジスタ)を有する。座標生成部41は、画素のデータが入力される毎に水平カウンタ(変数)を1増加させる。水平カウンタがMと等しくなった場合、次の画素のデータ入力で垂直ラインカウンタ(変数)を1増加させ、水平カウンタを1に戻す。座標生成部41は、各画素のデータの入力時に、水平カウンタ及び垂直カウンタの値を、座標値(X,Y)として保存する。これにより、入力された画像データV1の各画素の座標(X,Y)を生成することができる。なお、この例では、画像データV1が示す画像における左上の画素を原点とし、Xを水平方向、Yを垂直方向とする。 The coordinate generation unit 41 has, for example, a memory (register) that can be rewritten from the outside to hold the total number of horizontal pixels M and the total number of vertical lines N. The coordinate generation unit 41 increments the horizontal counter (variable) by 1 each time pixel data is input. When the horizontal counter becomes equal to M, the vertical line counter (variable) is incremented by 1 at the next pixel data input, and the horizontal counter is returned to 1. The coordinate generation unit 41 stores the values of the horizontal counter and the vertical counter as coordinate values (X, Y) when data of each pixel is input. Thereby, the coordinates (X, Y) of each pixel of the input image data V1 can be generated. In this example, the upper left pixel in the image indicated by the image data V1 is the origin, X is the horizontal direction, and Y is the vertical direction.
 判定部42は、画像データに含まれる複数の画素のデータのうち、バックライト12の制御情報として用いるデータを特定する。本実施形態では、例えば、画像データにおける予め決められた特定の座標(一例として、座標(0,0)のデータ)の画素値を、バックライト12の制御情報を示す値、すなわちバックライト12の制御データ、として特定することができる。バックライト12の制御データは、バックライト12の点灯/消灯(非点灯)を示すデータである。判定部42は、判定値として、例えば、各座標の値が、表示する画像の階調値か、又は、バックライト12の制御データかを示す値を、分離部43へ通知することができる。 The determination unit 42 specifies data used as control information for the backlight 12 among a plurality of pixel data included in the image data. In the present embodiment, for example, a pixel value of specific coordinates (as an example, data of coordinates (0, 0)) in the image data is used as a value indicating control information of the backlight 12, that is, the backlight 12. Can be specified as control data. The control data of the backlight 12 is data indicating lighting / extinguishing (non-lighting) of the backlight 12. The determination unit 42 can notify the separation unit 43 of, for example, a value indicating whether the value of each coordinate is the gradation value of the image to be displayed or the control data of the backlight 12 as the determination value.
 画像データは、画像の表示期間に対応する部分とブランキング期間に対応する部分とを有する場合もある。この場合、バックライト12の制御データは、ブランキング期間に対応する部分に含ませることができる。1フレーム期間は、画像表示期間とブランキング期間に分けられる。これに対応して、1フレーム期間の画像データV1は、画像表示期間に対応する部分とブランキング期間に対する部分とを有する。画像表示期間に対応する部分には、各画素回路17に対応して、各画素のデータ(例えば、階調値)が含まれる。ブランキング期間に対応する部分には、当該フレーム期間においてバックライト12を点灯させるか否かを示すバックライト12の制御データが含まれる。 The image data may have a portion corresponding to the image display period and a portion corresponding to the blanking period. In this case, the control data of the backlight 12 can be included in a portion corresponding to the blanking period. One frame period is divided into an image display period and a blanking period. Correspondingly, the image data V1 for one frame period has a portion corresponding to the image display period and a portion for the blanking period. The portion corresponding to the image display period includes data (for example, gradation value) of each pixel corresponding to each pixel circuit 17. The portion corresponding to the blanking period includes control data of the backlight 12 indicating whether or not the backlight 12 is lit in the frame period.
 分離部43は、判定部42による判定に従って、画像データV1のうち表示すべき画像を示すデータと、バックライト12の制御データとを分離する。分離部43は、画像データV1に含まれる画像を示すデータを、画像データ生成部44に出力し、画像データV1に含まれるバックライト12の制御データをバックライトデータ生成部45に出力する。 The separation unit 43 separates the data indicating the image to be displayed from the image data V1 and the control data of the backlight 12 according to the determination by the determination unit 42. The separation unit 43 outputs data indicating an image included in the image data V1 to the image data generation unit 44, and outputs control data of the backlight 12 included in the image data V1 to the backlight data generation unit 45.
 画像データ生成部44は、1フレーム期間を分割してできる複数のサブフィールド期間のそれぞれに表示するための複数のサブフィールド画像を、入力された画像データに基づいて生成する。例えば、各画素におけるRGBそれぞれの色の階調値を含む画像データから、フィールドシーケンシャル表示を行うための表示データとして、RGBそれぞれの色に、混合色W(白色)を加えたWRGBのそれぞれの色に対応するサブフィールド画像を生成する。生成されたサブフィールド画像は、タイミング制御部46へ出力される。 The image data generation unit 44 generates a plurality of subfield images to be displayed in each of a plurality of subfield periods obtained by dividing one frame period based on the input image data. For example, as display data for performing field sequential display from image data including gradation values of RGB colors in each pixel, each color of WRGB obtained by adding a mixed color W (white) to each RGB color A subfield image corresponding to is generated. The generated subfield image is output to the timing control unit 46.
 また、バックライトデータ生成部45は、WRGBの各色に対応するサブフィールド期間において、それぞれ対応する色の光源19を発光させる制御データを生成しタイミング制御部46へ出力する。例えば、バックライトデータ生成部45及びタイミング制御部46は、W(白色)に対応するサブフィールド期間ではRGBの光源を同時に発光させ、Rに対応するサブフィールド期間にはRの光源、Gに対応するサブフィールド期間にはGの光源、Bに対応するサブフィールド期間にはBの光源がそれぞれ発光するよう制御する。 Further, the backlight data generation unit 45 generates control data for causing the light source 19 of the corresponding color to emit light in the subfield period corresponding to each color of WRGB, and outputs the control data to the timing control unit 46. For example, the backlight data generation unit 45 and the timing control unit 46 simultaneously emit RGB light sources in the subfield period corresponding to W (white), and correspond to the R light source and G in the subfield period corresponding to R. Control is performed so that the G light source emits light during the subfield period and the B light source emits light during the subfield period corresponding to B.
 また、バックライトデータ生成部45は、画像データV1で示される画像を表示する時にバックライト12を点灯するか否かを示す制御データに基づいて、フレーム毎にバックライト12を点灯させるか否かを示すバックライトデータを生成する。例えば、画像データに含まれる座標(0,0)のRGBそれぞれの階調値(R,G,B)が閾値より大きい場合は、その画像データを表示するフレーム期間においてバックライト12を点灯、上記(R、G、B)が閾値より小さい場合は、そのフレーム期間においてバックライト12を消灯するようにバックライトデータを生成することができる。画像データで示される階調の最大が255階調の場合、例えば、閾値を128とすることができる。この場合、階調値が(0,0,0)の場合は、バックライト消灯を指示するバックライトデータ、階調値が(255,255,255)の場合は、バックライト点灯を指示するバックライトデータを生成することができる。生成されたバックライトデータは、画像データ生成部44及びタイミング制御部46へ入力される。 Also, the backlight data generation unit 45 determines whether to turn on the backlight 12 for each frame based on control data indicating whether to turn on the backlight 12 when displaying the image indicated by the image data V1. The backlight data indicating is generated. For example, when the RGB gradation values (R, G, B) at coordinates (0, 0) included in the image data are larger than the threshold value, the backlight 12 is turned on during the frame period for displaying the image data. When (R, G, B) is smaller than the threshold value, the backlight data can be generated so that the backlight 12 is turned off during the frame period. When the maximum gradation indicated by the image data is 255 gradations, for example, the threshold value can be set to 128. In this case, when the gradation value is (0, 0, 0), the backlight data is instructed to turn off the backlight. When the gradation value is (255, 255, 255), the backlight is instructed to turn on the backlight. Write data can be generated. The generated backlight data is input to the image data generation unit 44 and the timing control unit 46.
 なお、バックライト12の制御データの検出処理は、上記例に限られない。上記例では、入力された画像データV1にバックライト12の制御データが含まれる形態であるが、バックライト12の制御データは、画像データV1に加えて、別途、入力されてもよい。例えば、画像データV1と同時に、又は画像データV1に対応づけられてバックライト12の制御データを入力することができる。この場合、画像処理部4は、制御データを、1フレーム期間の画像データV1と同期して又は1フレーム期間の画像データV1に対応付けて、バックライトデータ生成部45又はタイミング制御部46へ入力することができる。 In addition, the detection process of the control data of the backlight 12 is not limited to the above example. In the above example, the control data of the backlight 12 is included in the input image data V1, but the control data of the backlight 12 may be input separately in addition to the image data V1. For example, the control data of the backlight 12 can be input simultaneously with the image data V1 or in association with the image data V1. In this case, the image processing unit 4 inputs the control data to the backlight data generation unit 45 or the timing control unit 46 in synchronization with the image data V1 of one frame period or in association with the image data V1 of one frame period. can do.
 タイミング制御部46は、WRGBそれぞれのサブフィールド画像の表示と、WRGBのバックライトの点灯を同期させるためのタイミング制御を行う。フィールドシーケンシャル方式の表示装置10では、バックライト12は、複数の色すなわちRGBそれぞれの色の光を発光する光源19を有する。タイミング制御部46は、RGBそれぞれの色及びこれらの混合色Wを照射するタイミングと、WRGBそれぞれのサブフィールド画像を表示するタイミングとを同期させるタイミング制御信号を、表示制御回路13及びバックライト制御回路16に出力する。 The timing control unit 46 performs timing control to synchronize the display of each subfield image of WRGB and lighting of the WRGB backlight. In the field sequential display device 10, the backlight 12 includes a light source 19 that emits light of a plurality of colors, that is, RGB colors. The timing control unit 46 generates a timing control signal that synchronizes the timing of irradiating each of the RGB colors and their mixed color W with the timing of displaying the subfield images of each of the WRGB, and the display control circuit 13 and the backlight control circuit. 16 is output.
 図7は、表示装置10における画像データの入力、サブフィールド画像表示、及びバックライト12点灯のタイミングの一例を表す図である。図7に示す例では、画像データは、60Hzで1フレーム期間毎に、信号源5から表示装置10へ入力される。 FIG. 7 is a diagram illustrating an example of the timing of image data input, subfield image display, and backlight 12 lighting on the display device 10. In the example shown in FIG. 7, the image data is input from the signal source 5 to the display device 10 every frame period at 60 Hz.
 図7に示す例では、フレームF1及びF2では、バックライト12を点灯させてフィールドシーケンシャル駆動によるカラー表示が行われている(カラー表示モード)。一方、フレームF3では、バックライト12を消灯して、透明/モノクロ表示が行われている(透過光画像表示モード)。 In the example shown in FIG. 7, in the frames F1 and F2, the backlight 12 is turned on to perform color display by field sequential driving (color display mode). On the other hand, in the frame F3, the backlight 12 is turned off, and transparent / monochrome display is performed (transmitted light image display mode).
 フレームF1及びF2のようにフィールドシーケンシャル駆動によるカラー表示を行うフレームでは、1フレーム期間は、第1~第4サブフィールド期間に分割される。第1~第4サブフィールド期間は、WRGBの各色に対応するサブフィールド画像がそれぞれ表示される。第1~第4サブフィールド期間は、240Hz、すなわち画像データの周波数の4倍の周波数で表示される。 In a frame that performs color display by field sequential driving as in frames F1 and F2, one frame period is divided into first to fourth subfield periods. In the first to fourth subfield periods, subfield images corresponding to the respective colors of WRGB are displayed. The first to fourth subfield periods are displayed at 240 Hz, that is, at a frequency that is four times the frequency of the image data.
 第1サブフィールド期間では、表示制御回路13は、ゲートドライバ14とソースドライバ15に、混合色Wのサブフィールド画像のデータに基づく信号を表示パネル11に出力させ、バックライト制御回路16は、バックライト12にRGBの光源を同時に発光させる。これにより、混合色Wすなわち白色の光が光源19から発光される。このようにして、第1サブフィールド期間に、W(白)フィールドが表示される。第2サブフィールド期間に、R(赤)の光源が発光してR(赤)フィールドが表示され、第3サブフィールド期間にG(緑)の光源が発光してG(緑)フィールドが表示され、第4サブフィールド期間に、B(青)の光源が発光してB(青)フィールドが表示される。 In the first subfield period, the display control circuit 13 causes the gate driver 14 and the source driver 15 to output a signal based on the data of the subfield image of the mixed color W to the display panel 11, and the backlight control circuit 16 The light 12 is caused to emit RGB light sources simultaneously. Thereby, the mixed color W, that is, white light is emitted from the light source 19. In this way, the W (white) field is displayed in the first subfield period. In the second subfield period, the R (red) light source emits light to display the R (red) field, and in the third subfield period, the G (green) light source emits light to display the G (green) field. In the fourth subfield period, the B (blue) light source emits light and the B (blue) field is displayed.
 一方、フレームF3(透過光画像表示モード)では、バックライト12は消灯したまま、入力画像データと同じ周波数(60Hz)で、画像が表示される。また、透過光画像表示モードでは、各画素において、最も透過率の高い階調(全透明)と、最も透過率の低い階調(黒)との間のいずれかの階調に対応する透過率で画像が表示される。そのため、透過光画像表示モードでは、透過領域を含む白黒画像(全透明-黒画像)が表示される。表示装置10は、透過光画像表示モードにおいて、例えば、全透明と黒との間のグレースケールの画像を表示することができる。或いは、表示装置10は、全透明と黒のみの画素を含んだ2値画像を表示することもできる。 On the other hand, in the frame F3 (transmitted light image display mode), the image is displayed at the same frequency (60 Hz) as the input image data while the backlight 12 remains off. In the transmitted light image display mode, in each pixel, the transmittance corresponding to any gradation between the gradation with the highest transmittance (total transparency) and the gradation with the lowest transmittance (black). Will display the image. Therefore, in the transmitted light image display mode, a black and white image (totally transparent-black image) including a transmissive area is displayed. In the transmitted light image display mode, the display device 10 can display, for example, a grayscale image between totally transparent and black. Alternatively, the display device 10 can also display a binary image including pixels that are completely transparent and black only.
 バックライト消灯時の透過光画像表示モードにおいて、例えば、入力される画像データV1を2値画像とすることで2値画像を表示することができる。或いは、入力された画像データV1を、画像処理部4で2値画像に変換することで、2値画像を表示することもできる。後者の場合は、画像データの処理が、カラー表示モードの場合と、透過光画像表示モードの場合とで異なるよう、画像処理部4が構成される。例えば、画像処理部4は、画像データV1に基づいてカラー画像を表示するための画像データを生成するカラー画像生成部と、画像データV1に基づいて、透明と黒の2値画像を生成する2値画像生成部と、バックライトの点灯を制御するデータに基づいて、カラー画像生成部の画像データ出力と2値画像生成部の画像データ出力とを切り替える切り替え部とを有する構成とすることができる。 In the transmitted light image display mode when the backlight is turned off, for example, a binary image can be displayed by setting the input image data V1 as a binary image. Alternatively, the input image data V1 can be converted into a binary image by the image processing unit 4 to display the binary image. In the latter case, the image processing unit 4 is configured so that the processing of the image data differs between the color display mode and the transmitted light image display mode. For example, the image processing unit 4 generates a color image generation unit that generates image data for displaying a color image based on the image data V1, and generates a transparent and black binary image based on the image data V2. A value image generating unit and a switching unit that switches between image data output of the color image generating unit and image data output of the binary image generating unit based on data for controlling lighting of the backlight can be used. .
 (画像データ生成部の詳細な構成例)
 画像データ生成部44は、カラー表示モードにおいては、フィールドシーケンシャル表示を行うためのサブフィールド画像の生成処理を行い、透過光画像表示モードにおいては、入力画像と同じフレームレートで表示するための、透明/モノクロ画像データを生成する。図8は、図6に示す画像データ生成部44の詳細な構成例を示す機能ブロック図である。
(Detailed configuration example of the image data generation unit)
In the color display mode, the image data generation unit 44 performs a subfield image generation process for performing field sequential display, and in the transmitted light image display mode, the image data generation unit 44 is transparent for displaying at the same frame rate as the input image. / Generate monochrome image data. FIG. 8 is a functional block diagram showing a detailed configuration example of the image data generation unit 44 shown in FIG.
 図8に示す例では、画像データ生成部44は、カラー表示モードで光源19を点灯して表示する画像のサブフィールド画像を生成する第1生成部441と、透過光画像表示モードで、光源19を消灯して表示する画像を生成する第2生成部442とを有する。画像データ生成部44は、切替部443をさらに備えている。切替部443は、バックライトデータ生成部45から出力されるバックライトデータを受け取り、バックライト12の点灯/消灯にしたがって、第1生成部441と第2生成部442とのどちらへ画像データV1を入力するかを切り替える。すなわち、切替部443は、バックライト12が点灯されるフレームの画像データV1は第1生成部441へ送り、バックライト12が消灯されるフレームの画像データV1は第2生成部442へ送る。 In the example illustrated in FIG. 8, the image data generation unit 44 includes a first generation unit 441 that generates a subfield image of an image to be displayed by lighting the light source 19 in the color display mode, and the light source 19 in the transmitted light image display mode. And a second generation unit 442 for generating an image to be displayed. The image data generation unit 44 further includes a switching unit 443. The switching unit 443 receives the backlight data output from the backlight data generation unit 45, and transfers the image data V1 to either the first generation unit 441 or the second generation unit 442 in accordance with the turning on / off of the backlight 12. Switch input. That is, the switching unit 443 sends the image data V1 of the frame in which the backlight 12 is turned on to the first generation unit 441, and sends the image data V1 of the frame in which the backlight 12 is turned off to the second generation unit 442.
 第1生成部441は、入力された画像データV1のRGB各色の階調値に基づいて、RGBを混合した混合色W(白色)に対応するサブフィールド画像を生成する。さらに、第1生成部441は、入力された画像データV1のRGBの各色の階調値に基づいて、RGB各色に対応するサブフィールド画像を生成する。その際、第1生成部441は、画像データV1のRGBの各色の階調値を、混合色Wのサブフィールド画像の階調値に応じて変更したものを、RGBの各色のサブフィールド画像の階調値とすることができる。 The first generation unit 441 generates a subfield image corresponding to the mixed color W (white) in which RGB is mixed based on the gradation values of the RGB colors of the input image data V1. Further, the first generation unit 441 generates a subfield image corresponding to each RGB color based on the gradation values of each RGB color of the input image data V1. At this time, the first generation unit 441 changes the gradation value of each color of RGB in the image data V1 according to the gradation value of the subfield image of the mixed color W, and converts the gradation value of the subfield image of each color of RGB. It can be a gradation value.
 第2生成部442は、入力された画像データV1のRGB各色の階調値に基づいて、透明/モノクロ表示用の画像を生成する。 The second generation unit 442 generates an image for transparent / monochrome display based on the gradation values of the RGB colors of the input image data V1.
 具体例として、第1生成部441は、入力された画像データV1のRGBの階調値(Rin、Gin、Bin)に対して、下記のように表示データのWRGBに対応する階調値(Wout、Rout、Gout、Bout)を決定することができる。下記において、min(Rin、Gin、Bin)は、RGBの階調値(Rin、Gin、Bin)のうち最も低い透過率を表す階調値を示す。
Wout = min (Rin , Gin, Bin)*α   (0≦α≦1)
Rout = Rin - Wout
Gout = Gin - Wout
Bout = Bin - Wout
As a specific example, the first generation unit 441 performs gradation values (Wout) corresponding to WRGB of display data as described below with respect to RGB gradation values (Rin, Gin, Bin) of input image data V1. , Rout, Gout, Bout) can be determined. In the following, min (Rin, Gin, Bin) represents a gradation value representing the lowest transmittance among RGB gradation values (Rin, Gin, Bin).
Wout = min (Rin, Gin, Bin) * α (0 ≦ α ≦ 1)
Rout = Rin-Wout
Gout = Gin-Wout
Bout = Bin-Wout
 すなわち、第1生成部441は、入力された画像データV1における各画素の階調値(Rin、Gin、Bin)を比較して、各画素において最も低い階調値min(Rin、Gin、Bin)を決定し、これを混合色Wの階調値Woutとする。なお、ここで、min(Rin、Gin、Bin)よりさらに低い階調値を、混合色Wの階調値Woutとすることもできる。第1生成部441は、画像データV1における各画素のRGBの階調値(Rin、Gin、Bin)から混合色Wの階調値Woutを引いた値を、RGB各色のサブフィールドの階調値として算出する。 That is, the first generation unit 441 compares the gradation values (Rin, Gin, Bin) of each pixel in the input image data V1, and the lowest gradation value min (Rin, Gin, Bin) in each pixel. This is determined as the gradation value Wout of the mixed color W. Here, a gradation value lower than min (Rin, Gin, Bin) can be set as the gradation value Wout of the mixed color W. The first generation unit 441 subtracts the gradation value Wout of the mixed color W from the RGB gradation values (Rin, Gin, Bin) of each pixel in the image data V1 to obtain the gradation value of each RGB subfield. Calculate as
 第2生成部442は、入力された画像データV1のRGBの階調値(Rin、Gin、Bin)に基づき、例えば下記のように表示データの輝度Yを決定することができる。ただし、これはあくまでも一例である。
Y = 0.183*Rin + 0.614*Gin + 0.062*Bin + 16
The second generation unit 442 can determine the brightness Y of the display data based on the RGB gradation values (Rin, Gin, Bin) of the input image data V1, for example, as follows. However, this is only an example.
Y = 0.183 * Rin + 0.614 * Gin + 0.062 * Bin + 16
 上記の構成によれば、バックライト12を点灯してカラー画像を表示するカラー表示モードでは、混合色Wのサブフィールドが挿入され、これに応じてRGBのサブフィールドの階調が変更されるので、色割れ(カラーブレークアップ)を低減することができる。 According to the above configuration, in the color display mode in which the backlight 12 is turned on to display a color image, the subfield of the mixed color W is inserted, and the gradation of the RGB subfield is changed accordingly. , Color breakup (color breakup) can be reduced.
 なお、カラー表示モードに適したサブフィールド画像の生成は、上記例に限られない。例えば、第1生成部441は、上記のmin(Rin、Gin、Bin)よりさらに低い階調値を、混合色Wの階調値とすることもできる。 Note that generation of a subfield image suitable for the color display mode is not limited to the above example. For example, the first generation unit 441 can set a gradation value lower than the above-described min (Rin, Gin, Bin) as the gradation value of the mixed color W.
 カラー表示モードでは、入力される画像データV1(60Hz)に対して、サブフィールドの画像を240Hzで出力する必要があるため、フレームメモリ446を用いてフレームレートの変換を行う。すなわち、第1生成部441から出力された画像データをフレームメモリ書き込み部445によりフレームメモリ446へ書き込む。フレームメモリ読出し部447は、フレームメモリ446から画像データを240Hzで読み出して、タイミング制御部46へ送る。 In the color display mode, since it is necessary to output the subfield image at 240 Hz for the input image data V1 (60 Hz), the frame rate is converted using the frame memory 446. That is, the image data output from the first generation unit 441 is written into the frame memory 446 by the frame memory writing unit 445. The frame memory reading unit 447 reads the image data from the frame memory 446 at 240 Hz and sends it to the timing control unit 46.
 一方、透過光画像表示モードでは、入力される画像データV1と同じフレームレートで良いので、フレームメモリを用いたフレームレート変換処理は不要である。これにより、消費電力をさらに低減させることができる。 On the other hand, in the transmitted light image display mode, the same frame rate as that of the input image data V1 may be used, so that frame rate conversion processing using a frame memory is unnecessary. Thereby, power consumption can be further reduced.
 <実施形態2>
 図9は、実施形態2におけるカラー表示モードの表示画像の一例を示す図である。図10は、透過光画像表示モードの一例を示す図である。図9の表示画像と図10の表示画像の基となった画像データV1は同じであり、図9ではバックライト12が点灯し、図10ではバックライト12が消灯している。そのため、図9に示す例では、図4と同様に、領域A1は赤色、領域A2は青色、領域A3は黄色、領域A4は白色、領域A5は緑色で表示される。図10に示す表示画像は、領域A1、A2、A3、A5は、RGBの階調値に対応するグレースケールで表示され、領域A4は透明になる。すなわち、領域A4は、透過領域となり、表示装置10の後方のものB1が透けて見える。この例では、バックライト12点灯時は「白色表示」となる領域がバックライト12消灯時は「透明表示」となる。ここで、白色表示の階調値、及び、透明表示の階調値は、いずれも、RGBの全ての色で透過率を最も高くする階調値に相当する。
<Embodiment 2>
FIG. 9 is a diagram illustrating an example of a display image in the color display mode according to the second embodiment. FIG. 10 is a diagram illustrating an example of a transmitted light image display mode. The image data V1 that is the basis of the display image of FIG. 9 and the display image of FIG. 10 is the same, and the backlight 12 is turned on in FIG. 9, and the backlight 12 is turned off in FIG. Therefore, in the example shown in FIG. 9, similarly to FIG. 4, the region A1 is displayed in red, the region A2 is displayed in blue, the region A3 is displayed in yellow, the region A4 is displayed in white, and the region A5 is displayed in green. In the display image shown in FIG. 10, the areas A1, A2, A3, and A5 are displayed in a gray scale corresponding to the RGB gradation values, and the area A4 is transparent. That is, the region A4 becomes a transmissive region, and the thing B1 behind the display device 10 can be seen through. In this example, an area that is “white display” when the backlight 12 is turned on is “transparent display” when the backlight 12 is turned off. Here, the gradation value for white display and the gradation value for transparent display both correspond to the gradation value that maximizes the transmittance of all the RGB colors.
 このように、本実施形態では、バックライト制御回路16は、表示制御回路13が、同じ画像データに基づく画像を複数のフレーム期間にわたって連続して表示パネル11に表示させている間に、バックライト12に点灯と消灯を切り替えさせることができる。 As described above, in the present embodiment, the backlight control circuit 16 includes the backlight while the display control circuit 13 continuously displays images based on the same image data on the display panel 11 over a plurality of frame periods. 12 can be switched on and off.
 例えば、表示装置10は、静止画像の画像データV1と、静止画像に対応するバックライト12の制御データの入力を受けることができる。この場合、表示制御回路13は、同じ画像データV1の画像を、複数フレーム期間にわたって表示パネル11に表示させる。この複数フレーム期間のそれぞれにおいて、各フレーム期間のバックライト12の点灯又は消灯の指示が、バックライト制御回路16からバックライト12へ出力される。 For example, the display device 10 can receive input of image data V1 of a still image and control data of the backlight 12 corresponding to the still image. In this case, the display control circuit 13 causes the display panel 11 to display the same image data V1 image over a plurality of frame periods. In each of the plurality of frame periods, an instruction to turn on or off the backlight 12 in each frame period is output from the backlight control circuit 16 to the backlight 12.
 本実施形態の表示装置10では、バックライト12の消灯時に透明となる導光板18を液晶24の背面に配置し,入力画像データにおいて「白」を示す画素領域がバックライト12点灯時は白色表示となり,バックライト12消灯時は透明表示となる。このような表示装置10において、バックライト12点灯時とバックライト12消灯時に同一コンテンツ(表示装置10へ入力される画像データは同じ)を用いて、バックライト12点灯時はカラー表示を行い、バックライト12消灯時は、バックライト12点灯時に白色表示となる領域が透明表示となる表示をすることができる。これにより、アイキャッチ効果を高めることが可能となる。 In the display device 10 of the present embodiment, a light guide plate 18 that is transparent when the backlight 12 is turned off is disposed on the back surface of the liquid crystal 24, and a pixel region indicating “white” in the input image data is displayed in white when the backlight 12 is lit. When the backlight 12 is turned off, the display is transparent. In such a display device 10, the same content (the same image data is input to the display device 10) is used when the backlight 12 is turned on and when the backlight 12 is turned off. When the light 12 is turned off, an area that is displayed in white when the backlight 12 is turned on can be displayed transparently. Thereby, the eye catching effect can be enhanced.
 従来の表示装置では,バックライト点灯時にカラー表示となり,バックライトを消灯すると、全く表示が見えなくなってしまうか、モノクロ表示となっていた。これに対して、本実施形態のように、バックライト点灯時に「白表示」となっている領域がバックライト消灯時に「透明表示」となるディスプレイでは、白表示部が透明表示となり,ディスプレイの背面にある物体を目視できるようになる。これにより、例えば、表示装置10を用いたデジタルサイネージ等で、アイキャッチ効果を高める演出が可能となる。 In a conventional display device, color display is performed when the backlight is turned on, and when the backlight is turned off, the display is completely invisible or monochrome display. On the other hand, as in the present embodiment, in a display in which a region that is “white display” when the backlight is lit is “transparent display” when the backlight is turned off, the white display portion is transparent and the back of the display You can see the object in Thereby, for example, a digital signage using the display device 10 can produce an effect that enhances the eye catching effect.
 また,図9に示す画像において,領域A4を上下左右に動かして表示する場合、従来のディスプレイでは,単に白い四角形が動いているだけに見える。これに対して、本実施形態のように,バックライト12消灯時に白色表示部(A4)が透明表示になる構成の場合、表示装置10によって遮蔽されている背面の異なる部分(透明表示が動くことで,目視できる領域が変化する)を目視できるようになり,演出効果を高めることが可能となる。 In addition, in the image shown in FIG. 9, when the area A4 is moved up and down and left and right for display, the conventional display appears to simply move the white square. On the other hand, when the backlight 12 is turned off as in the present embodiment, the white display portion (A4) is transparently displayed, so that different portions on the back side that are shielded by the display device 10 (the transparent display moves). Thus, the visible area changes), and the production effect can be enhanced.
 また、実施形態1と同様に、透過光画像表示モードでは、入力される画像データV1と同じフレームレートで良いので、フレームメモリを用いたフレームレート変換処理は不要である。これにより、消費電力をさらに低減させることができる。 Also, as in the first embodiment, in the transmitted light image display mode, the same frame rate as the input image data V1 may be used, so that frame rate conversion processing using a frame memory is unnecessary. Thereby, power consumption can be further reduced.
 <実施形態3>
 以下、本発明の実施形態3について説明する。なお、前記の各実施形態で説明した構成と同様の機能を有する部材については、同じ参照符号を付記し、説明を省略する。
<Embodiment 3>
Hereinafter, Embodiment 3 of the present invention will be described. In addition, about the member which has the same function as the structure demonstrated in each said embodiment, the same referential mark is attached and description is abbreviate | omitted.
 実施形態1及び実施形態2にかかる表示装置10は、動作モードとして、バックライト12を点灯させてフィールドシーケンシャル駆動を行うことによるカラー表示モードと、バックライト12を消灯した状態で透明/モノクロ表示を行う透過光画像表示モードとを有するものである。 The display device 10 according to the first embodiment and the second embodiment performs, as an operation mode, a color display mode in which the backlight 12 is turned on and field sequential driving is performed, and a transparent / monochrome display with the backlight 12 turned off. And a transmitted light image display mode to be performed.
 これに対して、実施形態3にかかる表示装置は、動作モードとして、バックライト12を点灯させてフィールドシーケンシャル駆動を行うことによるフルカラー表示モード(実施形態1,2におけるカラー表示モードと同じ)と、単色表示モードとを有している。 On the other hand, the display device according to the third embodiment has a full-color display mode (same as the color display mode in the first and second embodiments) by operating the field sequential drive by turning on the backlight 12 as an operation mode. And a monochrome display mode.
 単色表示モードとは、実施形態1で説明した透明/モノクロ表示用の出力データを用いる点では実施形態1の透過光画像表示モードと同じであるが、バックライト12を消灯させずに単色点灯させることにより、単色の画像が見えるようにするものである。ただし、「単色点灯」とは、バックライト12のRGB光源の点灯割合を様々に組み合わせることによって、人間の目に、そのフレームでは単色の画像が視認されるようにする点灯状態を意味し、単に、RGB光源の一色のみが点灯されている状態だけを意味するものではない。例えば、R光源とG光源とを同時に、または、時分割して連続して点灯することにより、人間の目には、イエローの単色の光が視認される。このような状態も、「単色点灯」に含まれる。 The single color display mode is the same as the transmitted light image display mode of the first embodiment in that the output data for transparent / monochrome display described in the first embodiment is used, but the single color display mode is turned on without turning off the backlight 12. In this way, a monochrome image can be seen. However, “single color lighting” means a lighting state in which a monochrome image is visually recognized in the frame by human eyes by variously combining lighting ratios of the RGB light sources of the backlight 12. It does not mean that only one color of the RGB light source is lit. For example, when the R light source and the G light source are turned on simultaneously or in a time-division manner, yellow monochromatic light is visually recognized by human eyes. Such a state is also included in “single color lighting”.
 このため、実施形態3にかかる表示装置は、図1に示した画像処理部4の代わりに、図11に示す画像処理部6を備えている点において、実施形態1にかかる表示装置10と異なっている。 Therefore, the display device according to the third embodiment is different from the display device 10 according to the first embodiment in that the image processing unit 6 illustrated in FIG. 11 is provided instead of the image processing unit 4 illustrated in FIG. ing.
 実施形態3にかかる表示装置の画像処理部6は、図11に示すように、座標生成部41、判定部62、分離部43、画像データ生成部44、バックライトデータ生成部65、タイミング制御部66を備えている。 As shown in FIG. 11, the image processing unit 6 of the display device according to the third embodiment includes a coordinate generation unit 41, a determination unit 62, a separation unit 43, an image data generation unit 44, a backlight data generation unit 65, and a timing control unit. 66.
 判定部62は、画像データV1に含まれる複数の画素のデータのうち、バックライト12の制御情報として用いるデータを特定する。本実施形態では、例えば、画像データにおける予め決められた特定の座標(一例として、座標(0,0)および座標(1,0)のデータ)の画素値を、バックライト12の制御データとして特定することができる。バックライト12の制御データは、バックライト12の点灯状態を示すデータである。判定部42は、判定値として、例えば、各座標の値が、表示する画像の階調値か、又は、バックライト12の制御データかを示す値を、分離部43へ通知することができる。 The determination unit 62 identifies data used as control information for the backlight 12 among a plurality of pixel data included in the image data V1. In the present embodiment, for example, pixel values of predetermined specific coordinates (for example, data of coordinates (0, 0) and coordinates (1, 0)) in the image data are specified as control data of the backlight 12. can do. The control data of the backlight 12 is data indicating the lighting state of the backlight 12. The determination unit 42 can notify the separation unit 43 of, for example, a value indicating whether the value of each coordinate is the gradation value of the image to be displayed or the control data of the backlight 12 as the determination value.
 バックライトデータ生成部65は、バックライト12の制御データに基づき、フレーム毎にバックライト12をどのように点灯させるかを示すバックライトデータを生成する。例えば、画像データに含まれる座標(0,0)のRGBそれぞれの階調値(R,G,B)が閾値より大きい場合は、その画像データを表示するフレーム期間においてバックライト12をフルカラー表示に対応する点灯状態とし、上記(R、G、B)が閾値より小さい場合は、そのフレーム期間においてバックライト12が単色点灯されるように、バックライトデータを生成することができる。画像データで示される階調の最大が255階調の場合、例えば、閾値を128とすることができる。この場合、階調値が(0,0,0)の場合は、単色点灯を指示するバックライトデータ、階調値が(255,255,255)の場合は、フルカラー表示に対応する点灯を指示するバックライトデータ、をそれぞれ生成することができる。生成されたバックライトデータは、画像データ生成部44及びタイミング制御部66へ入力される。 The backlight data generation unit 65 generates backlight data indicating how to turn on the backlight 12 for each frame based on the control data of the backlight 12. For example, if the RGB gradation values (R, G, B) at coordinates (0, 0) included in the image data are larger than the threshold value, the backlight 12 is displayed in full color during the frame period for displaying the image data. When the corresponding lighting state is set and (R, G, B) is smaller than the threshold value, the backlight data can be generated so that the backlight 12 is lit in a single color during the frame period. When the maximum gradation indicated by the image data is 255 gradations, for example, the threshold value can be set to 128. In this case, when the gradation value is (0, 0, 0), backlight data instructing single color lighting, and when the gradation value is (255, 255, 255), lighting corresponding to full color display is instructed. Backlight data to be generated can be generated. The generated backlight data is input to the image data generation unit 44 and the timing control unit 66.
 例えば、バックライトデータ生成部65及びタイミング制御部66は、フルカラー表示モードにおいては、W(白色)に対応するサブフィールド期間ではRGBの光源を同時に発光させ、Rに対応するサブフィールド期間にはRの光源、Gに対応するサブフィールド期間にはGの光源、Bに対応するサブフィールド期間にはBの光源がそれぞれ発光するよう制御する。 For example, in the full color display mode, the backlight data generation unit 65 and the timing control unit 66 simultaneously emit RGB light sources in the subfield period corresponding to W (white), and R in the subfield period corresponding to R. In the subfield period corresponding to G, the G light source is controlled to emit light in the subfield period corresponding to G, and the B light source is controlled to emit light in the subfield period corresponding to B.
 一方、単色表示モードにおいては、バックライトデータ生成部65及びタイミング制御部66は、光源19のRGBの三色の光源の点灯割合を様々に組み合わせることにより、任意の色を作成することができる。例えば、R,G,Bの光源のいずれか一つのみをそのフレームにおいて点灯しても良い。また、図12に示すように、単色表示モードのフレームF3において、例えば、R光源とG光源のみを点灯させることにより、イエローの単色表示を実現することができる。あるいは、図13に示すように、単色表示モードのフレームF3において、例えば、R光源とG光源とを時分割で交互に点灯させることによっても、人間の目にはイエローの画像を視認させることができる。このように、各サブフィールドで表示する光源の組み合わせを様々に組み合わせることにより、任意の単色を作成することができる。なお、光源の組み合わせやそれぞれの点灯期間のバリエーションが多岐にわたる場合は、画像データV1に含まれる複数の画素のデータのうち、バックライト12の制御情報として用いるデータの数を増やすか、あるいは、画像データV1とは別のデータとして、バックライトの制御データを入力するように構成すれば良い。 On the other hand, in the single color display mode, the backlight data generation unit 65 and the timing control unit 66 can create an arbitrary color by variously combining the lighting ratios of the three light sources of RGB of the light source 19. For example, only one of R, G, and B light sources may be lit in the frame. Further, as shown in FIG. 12, in the frame F3 in the single color display mode, for example, by turning on only the R light source and the G light source, it is possible to realize yellow single color display. Alternatively, as shown in FIG. 13, for example, by turning on the R light source and the G light source alternately in a time division manner in the frame F <b> 3 in the single color display mode, a yellow image can be visually recognized by the human eye. it can. In this way, an arbitrary single color can be created by combining various combinations of light sources displayed in each subfield. When the combinations of light sources and the variations of the respective lighting periods are diverse, the number of data used as control information for the backlight 12 among the data of a plurality of pixels included in the image data V1 is increased, or the image What is necessary is just to comprise so that the control data of a backlight may be input as data different from the data V1.
 以上のように、本実施形態によれば、フルカラー表示モードにおいては、入力される画像V1の周波数(60Hz)に対して4倍の周波数(240Hz)でフィールドシーケンシャル駆動を行うのに対して、単色表示モードにおいては、入力画像V1と同じ周波数で画像表示を行う。 As described above, according to the present embodiment, in the full color display mode, the field sequential drive is performed at a frequency (240 Hz) that is four times the frequency (60 Hz) of the input image V1, whereas the single color is used. In the display mode, image display is performed at the same frequency as the input image V1.
 したがって、単色表示モードにおいては、実施形態1の透明/モノクロ表示と同様に、フレームメモリを用いたフレームレートの変換処理が不要となるので、消費電力の削減が可能となる。 Therefore, in the single color display mode, as in the transparent / monochrome display of the first embodiment, the frame rate conversion process using the frame memory is not necessary, and the power consumption can be reduced.
 なお、本実施形態においては、フルカラー表示モードと、単色表示モードとを有する表示装置を説明したが、動作モードとしてさらに、実施形態1,2で説明した透過光画像表示モードも合わせ持っても良い。 In the present embodiment, the display device having the full color display mode and the single color display mode has been described. However, the transmitted light image display mode described in the first and second embodiments may also be included as the operation mode. .
 <変形例>
 (直下型バックライトの構成例)
 表示装置10は、上記のエッジライト型のバックライト12に代えて、直下型のバックライトを備えることができる。図15は、上記実施形態1、2の変形例である、直下型のバックライト41を用いた表示装置の構成例を示す断面図である。図15に示す例では、バックライト41の表示パネル11の表示エリアに重なる部分は透明である。バックライト41は、透明な光源と透明な基板を用いて構成される。透明な光源として、例えば、有機EL(Electroluminescence)又は無機ELを用いることができる。また、透明表示のための光が透過する程度に薄く小さいLEDをガラスやプラスチックなどの基板上に多数配置して、ほぼ透明なLEDバックライトを構成することもできる。透明な基板の構成としては、例えば、基板自身が透明な材料で形成される構成、及び、基板を薄膜(例えば、厚さ数nm以下)で構成して光が透過可能とする構成等が挙げられる。このように、表示パネル11の表示エリアに重なる部分が透明な直下型バックライト4を用いることができる。
<Modification>
(Configuration example of direct type backlight)
The display device 10 can include a direct type backlight instead of the edge light type backlight 12 described above. FIG. 15 is a cross-sectional view showing a configuration example of a display device using a direct type backlight 41, which is a modification of the first and second embodiments. In the example shown in FIG. 15, the portion of the backlight 41 that overlaps the display area of the display panel 11 is transparent. The backlight 41 is configured using a transparent light source and a transparent substrate. As the transparent light source, for example, organic EL (Electroluminescence) or inorganic EL can be used. In addition, a substantially transparent LED backlight can be configured by arranging a large number of thin and small LEDs on a substrate such as glass or plastic to transmit light for transparent display. Examples of the configuration of the transparent substrate include a configuration in which the substrate itself is formed of a transparent material, and a configuration in which the substrate is configured with a thin film (for example, a thickness of several nm or less) so that light can be transmitted. It is done. As described above, the direct type backlight 4 having a transparent portion overlapping the display area of the display panel 11 can be used.
 (液晶表示装置以外の適用例)
 また、本発明を適用できる表示装置は、液晶表示装置に限られない。表示パネルの一方の面に光を照射する照明部を備え、表示画面の後方を透けて見せる機能を有する他の表示装置(液晶表示装置以外の表示装置)にも、本発明を適用することができる。例えば、2次元状に配置され、光を通過させるオン状態と、光を遮断するオフ状態を画素ごとに制御可能な複数のシャッター素子を含む表示パネルと、バックライトとを備え、1フレーム期間において複数回、画像データの各ビットに応じてシャッター素子のオン状態とオフ状態を切り替える表示装置にも適用することができる。
(Application examples other than liquid crystal display devices)
A display device to which the present invention can be applied is not limited to a liquid crystal display device. The present invention can also be applied to other display devices (display devices other than liquid crystal display devices) that include a lighting unit that irradiates light on one surface of the display panel and has a function of showing through the back of the display screen. it can. For example, the display panel includes a display panel including a plurality of shutter elements that are two-dimensionally arranged and capable of controlling an on state in which light is transmitted and an off state in which light is blocked for each pixel, and a backlight. The present invention can also be applied to a display device that switches an ON state and an OFF state of a shutter element in accordance with each bit of image data a plurality of times.
4 画像処理部
10 表示装置
11 表示パネル
12 バックライト
13 表示制御回路
16 バックライト制御回路
18 導光板
19 光源
4 Image processing unit 10 Display device 11 Display panel 12 Backlight 13 Display control circuit 16 Backlight control circuit 18 Light guide plate 19 Light source

Claims (8)

  1.  光源と、
     前記光源からの光の入射面と、前記入射面から入った前記光源の光を出射する出射面とを有する導光板と、
     前記導光板の前記出射面に重ねて設けられ、入射した光の透過率を複数の画素毎に制御することで画像を表示する表示パネルと、
     表示パネルに表示すべき画像を示す画像データに基づいて、前記表示パネルの画素毎の透過率を制御する信号を前記表示パネルに出力するパネル駆動部と、
     前記光源を駆動する光源駆動部と、
     前記画像データに基づいて、第1の動作モードに対応して、1フレーム期間を分割してできる複数のサブフィールド期間のそれぞれに表示するための複数のサブフィールド画像を生成する第1生成部と、第2の動作モードに対応して、1フレーム期間を分割せずに表示するための画像を生成する第2生成部とを備えた画像処理部とを備え、
     前記光源は、互いに異なる複数の色を発光可能であり、
     前記光源駆動部は、前記画像データで示される画像を表示する時に前記光源の点灯状態を制御する点灯制御データに基づいて、前記光源を駆動し、
     前記第1の動作モードの際には、前記パネル駆動部は、1フレーム期間における複数のサブフィールド期間毎に、前記第1生成部で生成された画像を順次表示させる信号を前記表示パネルに出力し、前記光源駆動部は、前記サブフィールド期間毎に発光する色を切り替え、
     前記第2の動作モードの際には、前記パネル駆動部は、前記第2生成部で生成された画像を表示させる信号を前記表示パネルに出力し、前記光源駆動部は、前記第1の動作モードの際とは異なる態様で光源を駆動する、表示装置。
    A light source;
    A light guide plate having an incident surface for light from the light source and an exit surface for emitting light from the light source that has entered from the incident surface;
    A display panel that is provided so as to overlap the light exit surface of the light guide plate and displays an image by controlling the transmittance of incident light for each of a plurality of pixels;
    Based on image data indicating an image to be displayed on the display panel, a panel drive unit that outputs a signal for controlling the transmittance of each pixel of the display panel to the display panel;
    A light source driving unit for driving the light source;
    A first generation unit configured to generate a plurality of subfield images to be displayed in each of a plurality of subfield periods obtained by dividing one frame period in accordance with the first operation mode based on the image data; An image processing unit including a second generation unit that generates an image for display without dividing one frame period in correspondence with the second operation mode;
    The light source can emit a plurality of colors different from each other,
    The light source driving unit drives the light source based on lighting control data for controlling a lighting state of the light source when displaying an image indicated by the image data;
    In the first operation mode, the panel driving unit outputs a signal for sequentially displaying the images generated by the first generation unit to the display panel for each of a plurality of subfield periods in one frame period. The light source driving unit switches the color of light emitted every subfield period,
    In the second operation mode, the panel drive unit outputs a signal for displaying the image generated by the second generation unit to the display panel, and the light source drive unit performs the first operation. A display device that drives the light source in a mode different from that in the mode.
  2.  前記導光板の前記出射面と対向する面である背面を光が透過可能となっており、
     前記第1の動作モードの際には、前記表示パネルは、前記パネル駆動部の信号に基づいて、前記光源から前記導光板の前記出射面を通って前記表示パネルへ入射する光の透過率を画素毎に制御することでカラー画像を表示し、
     前記第2の動作モードの際には、前記光源駆動部は前記光源を消灯し、前記表示パネルは、前記パネル駆動部の信号に基づいて、前記導光板の前記背面を透過して前記表示パネルへ入射する光の透過率を画素毎に制御することで、前記表示装置の後方が透けて見える透過領域を含む透過光画像を表示する、請求項1に記載の表示装置。
    Light can be transmitted through the back surface, which is the surface facing the exit surface of the light guide plate,
    In the first operation mode, the display panel has a transmittance of light incident on the display panel from the light source through the emission surface of the light guide plate based on a signal from the panel driving unit. Display color images by controlling each pixel,
    In the second operation mode, the light source driving unit turns off the light source, and the display panel transmits the back surface of the light guide plate based on a signal from the panel driving unit. The display device according to claim 1, wherein a transmitted light image including a transmissive region through which the rear of the display device can be seen is displayed by controlling a transmittance of light incident on the pixel for each pixel.
  3.  前記画像データは、前記表示すべき画像における各画素の階調値を含み、
     前記カラー画像の表示において画素に白色を表示させる前記画像データの階調値は、前記透過光画像の表示において前記導光板の背面からの光が画素を透過する透過率の階調値に対応する、請求項2に記載の表示装置。
    The image data includes a gradation value of each pixel in the image to be displayed,
    The gradation value of the image data that causes the pixel to display white in the display of the color image corresponds to the gradation value of the transmittance at which light from the back of the light guide plate passes through the pixel in the display of the transmitted light image. The display device according to claim 2.
  4.  前記画像データ生成部は、前記第1の動作モードで表示する前記カラー画像のサブフィールド画像の生成処理と、前記第2の動作モードで表示する前記透過光画像のサブフィールド画像の生成処理とを異ならせる、請求項2または3のいずれか1項に記載表示装置。 The image data generation unit includes a generation process of a subfield image of the color image displayed in the first operation mode and a generation process of a subfield image of the transmitted light image displayed in the second operation mode. The display device according to claim 2, wherein the display device is made different.
  5.  前記画像データ生成部は、前記光源の複数の色それぞれに対応するサブフィールド画像に加えて、前記複数の色の混合色に対応するサブフィールド画像を生成し、
     前記第1の動作モードで表示する画像のサブフィールド画像の生成処理では、各色に対応するサブフィールド画像の階調値を、前記混合色のサブフィールド画像の階調値に応じて変更する処理を実行し、
     前記第2の動作モードで表示する画像のサブフィールド画像の処理では、各色に対応するサブフィールド画像の階調値を、前記混合色のサブフィールド画像の値に応じて変更する前記処理を実行しない、請求項2~4のいずれか1項に記載の表示装置。
    The image data generation unit generates a subfield image corresponding to a mixed color of the plurality of colors in addition to the subfield image corresponding to each of the plurality of colors of the light source;
    In the generation process of the subfield image of the image displayed in the first operation mode, a process of changing the gradation value of the subfield image corresponding to each color according to the gradation value of the subfield image of the mixed color Run,
    In the processing of the subfield image of the image displayed in the second operation mode, the processing for changing the gradation value of the subfield image corresponding to each color according to the value of the subfield image of the mixed color is not executed. The display device according to any one of claims 2 to 4.
  6.  前記表示パネルは、前記第2の動作モードで画像を表示する場合に、前記透過領域及び黒領域のみを含む前記透過光画像を表示する、請求項2~5のいずれか1項に記載の表示装置。 The display according to claim 2, wherein the display panel displays the transmitted light image including only the transmissive area and the black area when displaying an image in the second operation mode. apparatus.
  7.  前記パネル駆動部が、同じ画像データに基づく画像を前記表示パネルに表示させている間に、第1の動作モードと第2の動作モードとを切り替える、請求項2~6のいずれか1項に記載の表示装置。 7. The method according to claim 2, wherein the panel driving unit switches between the first operation mode and the second operation mode while displaying an image based on the same image data on the display panel. The display device described.
  8.  前記第2の動作モードの際には、前記光源駆動部は前記光源を単色点灯させる、請求項1に記載の表示装置。
     
    The display device according to claim 1, wherein, in the second operation mode, the light source driving unit turns on the light source in a single color.
PCT/JP2017/024804 2016-07-07 2017-07-06 Display device WO2018008720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016135009 2016-07-07
JP2016-135009 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018008720A1 true WO2018008720A1 (en) 2018-01-11

Family

ID=60912135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024804 WO2018008720A1 (en) 2016-07-07 2017-07-06 Display device

Country Status (1)

Country Link
WO (1) WO2018008720A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127269A1 (en) * 2020-12-18 2022-06-23 合肥维信诺科技有限公司 Display panel and display device
US11862079B2 (en) * 2021-12-07 2024-01-02 Lg Display Co., Ltd. Display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280601A (en) * 2002-03-20 2003-10-02 Matsushita Electric Ind Co Ltd Liquid crystal display device
WO2006030868A1 (en) * 2004-09-15 2006-03-23 Citizen Watch Co., Ltd. Liquid crystal display device
WO2016104340A1 (en) * 2014-12-26 2016-06-30 シャープ株式会社 Display device and method for driving same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280601A (en) * 2002-03-20 2003-10-02 Matsushita Electric Ind Co Ltd Liquid crystal display device
WO2006030868A1 (en) * 2004-09-15 2006-03-23 Citizen Watch Co., Ltd. Liquid crystal display device
WO2016104340A1 (en) * 2014-12-26 2016-06-30 シャープ株式会社 Display device and method for driving same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127269A1 (en) * 2020-12-18 2022-06-23 合肥维信诺科技有限公司 Display panel and display device
US11862079B2 (en) * 2021-12-07 2024-01-02 Lg Display Co., Ltd. Display device

Similar Documents

Publication Publication Date Title
WO2016104340A1 (en) Display device and method for driving same
JP6284555B2 (en) Image display device
JP5059434B2 (en) Field sequential video display device and driving method thereof
US10460676B2 (en) Display device
JP2009505130A (en) Liquid crystal display with scan backlight
JP5000203B2 (en) Color display device
US9548013B2 (en) Image display device and drive method therefor
KR102582841B1 (en) Display device
KR20080093876A (en) Display device, method of driving display device, and electronic apparatus
JP5157231B2 (en) Display device and electronic device
US9620044B2 (en) Image display device and drive method therefor
WO2011148663A1 (en) Liquid crystal display device and television receiver
CN110085179B (en) Display device
CN109727581B (en) Field-sequential image display device and image display method
WO2018008720A1 (en) Display device
EP1619655A2 (en) Liquid crystal display device with coloured back light sources and white balance correction
JP5088671B2 (en) Display device and electronic device
US20120293563A1 (en) Display device
US20160086550A1 (en) Display apparatus and a method of driving the same
JP5708104B2 (en) Display device and projector
WO2017030033A1 (en) Display device and method for driving same
WO2016059847A1 (en) Display device
WO2022009467A1 (en) Display device and display method
WO2022009466A1 (en) Display device and display method
WO2019031479A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP