WO2018008717A1 - Plant growth regulator - Google Patents

Plant growth regulator Download PDF

Info

Publication number
WO2018008717A1
WO2018008717A1 PCT/JP2017/024778 JP2017024778W WO2018008717A1 WO 2018008717 A1 WO2018008717 A1 WO 2018008717A1 JP 2017024778 W JP2017024778 W JP 2017024778W WO 2018008717 A1 WO2018008717 A1 WO 2018008717A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
alkyl group
hydrogen atom
general formula
Prior art date
Application number
PCT/JP2017/024778
Other languages
French (fr)
Japanese (ja)
Inventor
直行 打田
伸也 萩原
アスラ ジアディ
弘恵 加藤
綾人 佐藤
健一郎 伊丹
啓子 鳥居
Original Assignee
国立大学法人名古屋大学
ワシントン大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, ワシントン大学 filed Critical 国立大学法人名古屋大学
Priority to JP2018526434A priority Critical patent/JPWO2018008717A1/en
Publication of WO2018008717A1 publication Critical patent/WO2018008717A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/18Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds
    • A01N57/22Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing aromatic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]

Definitions

  • the present invention relates to a plant growth regulator, more specifically, a plant pore increasing agent, a plant growth promoter, a plant root elongation promoter, and the like.
  • Non-patent Document 1 The number of pores is regulated by two opposing peptides (stomagen and EPF2) competing for receptors (Non-patent Document 1). It is known that EPF2 functions to reduce the number of pores, whereas stomagen functions to increase the number of pores. From these facts, it is considered that the number of pores can be increased by applying stomagen to plants, or by genetic recombination so as to increase the expression level of stomagen or decrease the expression level of EPF2 (Patent Document). 1).
  • GMO genetically modified crops
  • Low molecular weight compounds can be synthesized at relatively low cost and can be synthesized at low cost for peptides that have problems in cost and genetic recombination that has problems in the length of time until realization, etc. Is considered more realistic to use in
  • an object of the present invention is to provide a plant growth regulator comprising a low molecular compound as an active ingredient.
  • a naphthalene derivative having a phosphono group has an effect of increasing plant growth, such as an effect of increasing the number of plant pores or an effect of promoting the elongation of plant roots. It was found to have The present invention has been completed as a result of further research based on this finding.
  • the present invention includes the following aspects.
  • R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group).
  • R 3 represents an optionally substituted 2-naphthyl group.
  • R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group.
  • a plant growth regulator comprising at least one selected from the group consisting of a compound represented by formula (I), a salt thereof, and a solvate of the compound or a salt thereof.
  • Item 2. The plant growth regulator according to Item 1, wherein R 1 is a hydrogen atom, an alkyl group, or —OH.
  • Item 3. Item 3.
  • Item 5 The plant growth regulator according to any one of Items 1 to 4, wherein R 3 is a 2-naphthyl group.
  • Item 6 The plant growth regulator according to any one of Items 1 to 5, wherein
  • Item 7. A method for regulating plant growth comprising applying the plant growth regulator according to any one of Items 1 to 6 to a plant.
  • Item 8. Item 5. The method according to Item 4, comprising contacting the plant growth regulator according to any one of Items 1 to 6 with the root of the plant.
  • Item 9. General formula (1):
  • R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group).
  • R 3 represents an optionally substituted 2-naphthyl group.
  • R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group.
  • a plant pore increasing agent comprising at least one selected from the group consisting of a compound represented by formula (I), a salt thereof, and a solvate of the compound or a salt thereof. Item 10.
  • R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group).
  • R 3 represents an optionally substituted 2-naphthyl group.
  • R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group.
  • a plant growth promoter comprising at least one selected from the group consisting of a compound represented by formula (I), a salt thereof, and a solvate of the compound or a salt thereof. Item 11.
  • R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group).
  • R 3 represents an optionally substituted 2-naphthyl group.
  • R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group.
  • a plant root elongation promoter comprising at least one selected from the group consisting of a compound represented by formula (I), a salt thereof, and a solvate of the compound or a salt thereof. Item 12.
  • R 7 represents an alkyl group having 1 to 5 carbon atoms.
  • R 10 to R 15 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • a plant growth regulator for example, a plant pore increasing agent, a plant growth promoter, a plant root elongation promoter, etc.
  • a low molecular compound as an active ingredient can be provided.
  • FIG. 2 is a photomicrograph in Example 1.
  • DMSO represents a DMSO addition group
  • Compound A represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 ⁇ M.
  • FIG. 3 is a box diagram showing the number of pores per certain area (mm 2 ) in Example 1. The vertical axis represents the number of pores per fixed area (mm 2 ), and the horizontal axis represents the final concentration ( ⁇ M) of 2-naphthylhydroxymethylphosphonic acid in the liquid medium.
  • 4 is a graph showing the presence / absence of pore cluster formation and the number of pores per cluster in Example 1.
  • the vertical axis represents the number of pores per fixed area (mm 2 ), and the horizontal axis represents the number of pores per cluster.
  • “DMSO” represents a DMSO addition group
  • “Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid was added to a final concentration of 50 ⁇ M.
  • 6 is a graph showing the number of pores per certain area (mm 2 ) when using compounds A and B in Example 2.
  • the vertical axis represents the number of pores per fixed area (mm 2 ), and the horizontal axis represents 2-naphthylhydroxymethylphosphonic acid (compound A: ⁇ ) or 2-naphthylmethylphosphonic acid (compound B: ⁇ ) in the liquid medium.
  • the final concentration ( ⁇ M) is indicated.
  • 4 is a photomicrograph in Example 3.
  • “+ DMSO” represents a DMSO addition group, and “+ Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 ⁇ M.
  • the arrow in each photograph shows the position of the meristemoid.
  • 4 is a photomicrograph in Example 4.
  • “DMSO” represents a DMSO addition group
  • “Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 ⁇ M.
  • the arrows indicate the positions of the pores.
  • Example 5 The observation photograph (Arabidopsis thaliana) in Example 5 is shown.
  • “DMSO” represents a DMSO addition group
  • “Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 ⁇ M.
  • the observation photograph (cucumber) in Example 5 is shown.
  • “DMSO” represents a DMSO addition group
  • “Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 ⁇ M.
  • 6 is a photomicrograph in Example 6.
  • “DMSO” represents a DMSO addition group
  • “Compound C” represents a group to which Compound C was added to a final concentration of 50 ⁇ M.
  • the present invention is represented by the general formula (1):
  • R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group).
  • R 3 represents an optionally substituted 2-naphthyl group.
  • R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group.
  • the present invention relates to a plant growth regulator (for example, a plant pore increasing agent, a plant growth promoting agent, a plant root elongation promoting agent, etc.) (in the present specification, sometimes referred to as “agent of the present invention”). This will be described below.
  • a plant growth regulator for example, a plant pore increasing agent, a plant growth promoting agent, a plant root elongation promoting agent, etc.
  • the alkyl group represented by R 1 or R 2 is not particularly limited, and has a linear, branched, or cyclic (preferably linear or branched) carbon number of 1 to 8, preferably 1 to 6, more preferably 1-4, and still more preferably 1-2 alkyl groups.
  • Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
  • R 2 is preferably a hydrogen atom.
  • R 1 is preferably a hydrogen atom, an alkyl group, or —OH, more preferably a hydrogen atom or —OH, and still more preferably a hydrogen atom.
  • the substituent that the “optionally substituted 2-naphthyl group” represented by R 3 may have, but is not particularly limited, for example, an alkyl group, an alkoxy group, an amino group (di (or mono) ( Alkyl) amino group etc.), halogen atom (fluorine atom, chlorine atom, bromine atom etc.), haloalkyl group, silyl group (tri (alkyl) silyl group etc.), acyl group, alkoxycarbonyl group, cyano group and the like.
  • an alkyl group, an alkoxy group, an amino group etc. are mentioned, More preferably, an alkyl group is mentioned.
  • R 3 is a substituent "optionally substituted naphthyl group” may have an alkyl group, and "optionally substituted 2-naphthyl group” represented by R 3 is Yes
  • the alkyl group in the other substituent structure which can be used is not particularly limited, and is linear, branched or cyclic (preferably linear or branched) having 1 to 10, preferably 1 to 5, more preferably an alkyl group having 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms, and still more preferably 1 carbon atom.
  • Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
  • the number of these substituents is preferably 0 to 6, more preferably 0 to 3, and still more preferably 0 to 1.
  • the 6-position of the naphthalene ring is preferable.
  • the 2-naphthyl group represented by R 3 is preferably not substituted. That is, R 3 is preferably a 2-naphthyl group.
  • the alkyl group represented by R 4 and R 5 is not particularly limited, and has a linear, branched, or cyclic (preferably linear or branched) carbon number of 1 to 8, preferably 1 to 6, more preferably 1-4, and still more preferably 1-2 alkyl groups.
  • Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
  • R 4 and R 5 are preferably both hydrogen atoms.
  • the compound represented by the general formula (1) is preferably the general formula (1a):
  • R 1 , R 4 and R 5 are the same as above.
  • R 6 is a hydrogen atom, a C1-5 alkyl group, a C1-5 alkoxy group, or a di (or mono) (C1-5 alkyl) amino group.
  • the compound represented by these is mentioned, More preferably, general formula (1b):
  • R 1 is the same as defined above.
  • R 6 is a hydrogen atom or a C1-5 alkyl group.
  • R 7 represents an alkyl group having 1 to 5 carbon atoms.
  • R 8 and R 9 are the same or different and each represents a hydrogen atom or an alkyl group.
  • the compound represented by these is mentioned.
  • the alkyl group having 1 to 5 carbon atoms represented by R 7 is a linear, branched, or cyclic (preferably linear or branched) alkyl group having 1 to 5 carbon atoms, preferably Examples thereof include an alkyl group having 1 to 3, more preferably 1 to 2, and even more preferably 1 carbon atom.
  • Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
  • the alkyl group represented by R 8 and R 9 is not particularly limited, and has a linear, branched, or cyclic (preferably linear or branched) carbon number of 1 to 8, preferably 1 to 6, more preferably 1-4, and still more preferably 1-2 alkyl groups.
  • Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
  • R 8 and R 9 are preferably both hydrogen atoms.
  • R 7 represents an alkyl group having 1 to 5 carbon atoms.
  • R 10 to R 15 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the compound represented by these is mentioned.
  • the alkyl group having 1 to 5 carbon atoms represented by R 10 to R 15 is a linear, branched or cyclic (preferably linear or branched) alkyl group having 1 to 5 carbon atoms.
  • An alkyl group having 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms, and still more preferably 1 carbon atom is preferable.
  • Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
  • R 10 to R 15 are preferably all hydrogen atoms.
  • the salt of the compound represented by the general formula (1) is not particularly limited as long as it is an agriculturally acceptable salt.
  • an acidic salt or a basic salt can be employed.
  • acidic salts include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate, phosphate; acetate, propionate, tartrate, fumarate, maleate, malic acid Organic salts such as salts, citrates, methanesulfonates, paratoluenesulfonates, and the like.
  • Examples of basic salts include alkali metal salts such as sodium salts and potassium salts; calcium salts, magnesium Alkaline earth metal salts such as salts; salts with ammonia; morpholine, piperidine, pyrrolidine, monoalkylamine, dialkylamine, trialkylamine, mono (hydroxyalkyl) amine, di (hydroxyalkyl) amine, tri (hydroxyalkyl) Examples thereof include salts with organic amines such as amines. Of these, basic salts are preferably employed.
  • the solvate of the compound represented by the general formula (1) or a salt thereof is not particularly limited as long as it is a solvate of the compound represented by the general formula (1) or a salt thereof and a solvent.
  • the solvent include ethanol, glycerol, acetic acid and the like.
  • the compound represented by the general formula (1) can be produced according to or according to a known synthesis method. For example, referring to Synthesis Examples 1 to 4 to be described later, it can be produced by combining a known reaction and a reaction according to it as necessary.
  • the compound represented by the general formula (2) is represented by the following general formula (2E) as the compound e in Synthesis Example 3.
  • R 7 is the same as defined above.
  • the compound represented by the general formula (3) is represented by the following general formula (3E) as the compound e in Synthesis Example 3.
  • R 7 and R 10 to R 15 are the same as defined above.
  • It can manufacture by using the compound represented by these.
  • the compounds represented by the general formula (1) at least compounds A, B, and D are known compounds, so they can be used as they are, or they can be used as a starting material for known reactions and to them. It can also be produced by combining similar reactions.
  • the active ingredient of the present invention can increase the number of plant pores when applied to plants. Moreover, the active ingredient of this invention can accelerate
  • the target plant of the agent of the present invention is not particularly limited as long as it is a plant having pores.
  • the agent of the present invention can be widely applied to plants such as angiosperms (dicotyledonous plants, monocotyledonous plants, etc.), gymnosperms, and ferns. From the viewpoint that the effect of increasing pores is more efficiently exhibited, the target plant is preferably a dicotyledonous plant.
  • eggplants such as tomatoes, peppers, peppers, eggplants and tobacco, cucumbers, pumpkins, melons, watermelons and other cucumbers, cabbage, broccoli, Chinese cabbage and other vegetables, celery, parsley, lettuce and other raw vegetables or Spicy vegetables
  • green onions such as leek, onion, garlic
  • beans such as soybeans, peanuts, green beans, peas, azuki bean
  • other fruit vegetables such as strawberries
  • straight roots such as radish, turnip, carrot, burdock, taro
  • cassava Potatoes such as potato, sweet potato and Chinese yam
  • soft vegetables such as asparagus, spinach and honey
  • florets such as eustoma, stock, carnation and chrysanthemum
  • grains such as rice, wheat, barley and corn, bentgrass and cucumber Turf, rapeseed, peanut and other oil crops
  • sugar cane Sugar crops such as peanuts, fiber crops such as cotton and rush, feed crops such as clover, sorghum and dent corn, decid
  • the agent of the present invention may comprise only the active ingredient of the present invention, but may contain various additives in addition to the active ingredient of the present invention, depending on the dosage form, application mode and the like described later.
  • the content ratio of the active ingredient of the present invention in the agent of the present invention can be appropriately determined according to the dosage form, application mode and the like described later, and examples include a range of 0.001 to 100% by mass. it can.
  • the dosage form of the agent of the present invention is not particularly limited as long as it is an agriculturally acceptable dosage form.
  • liquid agent, solid agent, powder agent, granule, granule, wettable powder, flowable agent, emulsion, paste agent, dispersant and the like can be mentioned.
  • the additive is not particularly limited as long as it is an agriculturally acceptable additive.
  • examples include carriers, surfactants, thickeners, extenders, binders, vitamins, antioxidants, pH adjusters, volatilization inhibitors, and dyes.
  • the application mode of the agent of the present invention is not particularly limited as long as it is a known mode of usage of agricultural chemicals or a mode based thereon. For example, spraying, dripping, application, mixing or dissolution in a plant growth environment (in soil, water, solid medium, liquid medium, etc.) can be mentioned.
  • the agent of the present invention can easily exert its action by being brought into contact with plant roots.
  • the method of contacting the plant root is not particularly limited.
  • the agent of the present invention can be used in an environment where the plant root exists (in the case of soil cultivation, in the soil, in the case of hydroponics). A method of mixing or dissolving in water).
  • Synthesis example 1 Compound A was synthesized according to the following reaction scheme.
  • Synthesis example 2 Compound B was synthesized according to the following reaction scheme.
  • reaction from compound e to compound f was performed as follows according to the method described in Organic Process Research & Development 2007, 11, 1004-1009.
  • a dry round bottom flask equipped with a solution of compound e (1.0 eq., 1 g, 5 mmol) in tetrahydrofuran (THF) and a stir bar was charged with diisobutylaluminum hydride (2.1 eq., 2 mL, 1M in THF) in a nitrogen atmosphere. Added below. The mixture was stirred at room temperature for about 2 hours. Completion of the reaction was confirmed by TLC (EtOAc: Hex .; 1: 3). The reaction mixture was quenched by slowly pouring into cold 4M aqueous HCl in an ice bath.
  • reaction from compound g to compound h was carried out as follows according to the method described in Bioorg. Med. Chem. Lett. 2009, 163-166.
  • a Schlenk tube equipped with a stir bar compound g (100 mg, 0.5 mg mmol), potassium carbonate (3.0 eq., 217 mg) and tetrabutylammonium iodide (1.0 eq, 194 mg) Diethyl acid and dimethyl acetal (DMA) were added.
  • the reaction mixture was stirred at room temperature for 64 hours.
  • the crude product was fractionated with water and ethyl acetate.
  • the aqueous layer was extracted with hexane and ethyl acetate.
  • Example 1 Evaluation of pore increasing effect 1
  • a 96-well plate with control liquid medium 2.2 g / L vitamin-mixed Murashige and Skoog basic salt (DuchefaBiochemie: M0222), 250 mg / L MES, pH 5.7 (KOH), 5 g / L Sucrose
  • the culture was carried out with shaking on a shaker (130 rpm) under a condition where constant brightness was maintained at 22 ° C.
  • FIG. 1 shows a micrograph
  • FIG. 2 shows a graph of the number of pores per fixed area
  • FIG. 3 shows a graph of the presence or absence of pore clusters and the number of pores per cluster.
  • FIGS. 1 and 2 indicate that Compound A increases the number of pores.
  • FIG. 3 shows that Compound A increases the number of pores per cluster.
  • FIG. 4 shows a graph of the number of pores per certain area when using compounds A and B.
  • FIG. 4 shows that Compound B has a tendency to have a pore increasing action stronger than Compound A. Further, although not shown in the figure, it was found that the compounds C and D also showed a pore increasing action like the compound A.
  • Example 3 Evaluation of effects on melistemoids
  • the Arabidopsis atml1 and hdg2 double mutants (Development 140, 1924-1935 (2013)) are known to stop the differentiation of some meristemoids into stomatal cells, resulting in an increase in the number of meristemoids. ing. Using this mutant, the effect of Compound A on the number of meristemoids was evaluated. Specifically, the test was conducted in the same manner as in Example 1 except that this mutant seed was used.
  • FIG. 5 shows a photomicrograph.
  • FIG. 5 shows that Compound A increases not only the number of pores but also the number of meristemoids.
  • Example 4 Evaluation of stomatal increase on other plants Raphanus sativus (var. Longipinnatus) seeds, Nicotiana benthamiana seeds, and Cucumis sativus seeds instead of Arabidopsis seeds and Cucumis sativus The seeds of the family were used, the radish was tested using a petri dish for 15 days, and the cucumber was tested in the same manner as in Example 1 except that the culture period was 24 days using a 6-well plate.
  • FIG. 6 shows a photomicrograph.
  • FIG. 6 shows that Compound A increases the stomatology of various plants that are evolutionarily separated.
  • Example 5 Evaluation of plant growth effect Arabidopsis seeds or cucumber seeds were used as seeds, and Arabidopsis thaliana was cultured in an agripot for 37 days using a medium solidified with gellan gum (composition is the same as in Example 1). The test was conducted in the same manner as in Example 1 except that the culture period was 18 days. An observation photograph is shown in FIGS.
  • Example 6 Evaluation of pore increasing effect 3
  • control liquid medium 2.2 g / L vitamin-mixed Murashige and Skoog basic salt (DuchefaBiochemie: M0222), 250 mg / L MES, pH 5.7 (KOH), 5 g / L Sucrose
  • seeds of Arabidopsis thaliana E994 strain were planted. The culture was carried out with shaking on a shaker (130 rpm) under a condition where constant brightness was maintained at 22 ° C.
  • FIG. 9 shows a photomicrograph.
  • FIG. 9 shows that the number of pores is increased by Compound C.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Molecular Biology (AREA)
  • Agronomy & Crop Science (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided is a plant growth regulator containing a low-molecular-weight compound as an active ingredient. This plant growth regulator contains at least one selected from the group consisting of a phosphono group-containing naphthalene derivative represented by general formula (1), a salt thereof, and a solvate of the compound or salt.

Description

植物成長調整剤Plant growth regulator
 本発明は、植物成長調整剤、より具体的には植物気孔増加剤、植物成長促進剤、植物根伸長促進剤等に関する。 The present invention relates to a plant growth regulator, more specifically, a plant pore increasing agent, a plant growth promoter, a plant root elongation promoter, and the like.
 陸生高等植物は、葉の表皮に存在する気孔の開口調節を通じて、光合成に必要な二酸化炭素の取り込み量の調節を行っている。例えば、気孔は光に反応して開口され、光合成に必要な二酸化炭素の取り込みが促進されることが知られている。このため、気孔の数自体を増やすことにより、光合成の促進、成長促進等の効果が期待できる。 Terrestrial higher plants regulate the amount of carbon dioxide uptake required for photosynthesis through the regulation of the pores in the leaf epidermis. For example, it is known that pores are opened in response to light, and the uptake of carbon dioxide necessary for photosynthesis is promoted. For this reason, by increasing the number of pores itself, effects such as promotion of photosynthesis and promotion of growth can be expected.
 気孔の数は、2つの相反するペプチド(ストマジェンとEPF2)が競合的に受容体を奪い合うことにより調節されている(非特許文献1)。ストマジェンが気孔の数を増やす方向に機能するのに対して、EPF2は気孔の数を減らす方向に機能することが知られている。これらのことから、ストマジェンを植物に施用したり、ストマジェン発現量を増やすように或いはEPF2発現量を減らすように遺伝子組み換えすることにより、気孔の数を増やすことができると考えられている(特許文献1)。 The number of pores is regulated by two opposing peptides (stomagen and EPF2) competing for receptors (Non-patent Document 1). It is known that EPF2 functions to reduce the number of pores, whereas stomagen functions to increase the number of pores. From these facts, it is considered that the number of pores can be increased by applying stomagen to plants, or by genetic recombination so as to increase the expression level of stomagen or decrease the expression level of EPF2 (Patent Document). 1).
 しかし、ストマジェンは3つのジスルフィド結合により複雑な立体構造をとるペプチドであるため、その作成には多大なコストがかかり、安定性も十分ではない。そもそも、一般的に、ペプチド性物質は合成コストが高いため、畑や圃場で散布するなどの使用法は現実的な選択肢にはならない。また、遺伝子組換えには以下のような問題がある。
1.遺伝子組換え技術が確立していない生物種においては組換え技術の確立及び最適化が都度必要となる。
2.遺伝子組み換え作物(GMO)の作出に時間がかかる(例えばポプラはトランスジェニック当代の作出に約半年、イネにおいては次世代のGMO種子の獲得に半年以上それぞれ要する。)
3.作成したGMOに対して都度認可が必要となる。
However, since stomagen is a peptide having a complicated steric structure by three disulfide bonds, its production is very expensive and its stability is not sufficient. In the first place, in general, peptide substances are expensive to synthesize, so use such as spraying in fields or fields is not a realistic option. In addition, genetic recombination has the following problems.
1. For biological species for which genetic recombination technology has not been established, it is necessary to establish and optimize recombination technology each time.
2. It takes time to produce genetically modified crops (GMO) (for example, poplar takes about half a year to produce transgenic generations, and rice takes more than half a year to acquire the next generation GMO seeds).
3. Authorization is required for the created GMO each time.
国際公開第2011/071050号International Publication No. 2011/071050
 コスト面での問題があるペプチドや、実現までの期間の長さ等に問題がある遺伝子組み換えに対して、低分子化合物であれば、比較的、安価で大量合成が可能であり、農業の現場において使用することがより現実的であると考えられる。 Low molecular weight compounds can be synthesized at relatively low cost and can be synthesized at low cost for peptides that have problems in cost and genetic recombination that has problems in the length of time until realization, etc. Is considered more realistic to use in
 そこで、本発明は、低分子化合物を有効成分とする、植物成長調整剤を提供することを課題とする。 Therefore, an object of the present invention is to provide a plant growth regulator comprising a low molecular compound as an active ingredient.
 本発明者等は上記課題に鑑みて鋭意研究を行った結果、ホスホノ基を有するナフタレン誘導体が、植物の気孔の数を増やす作用や植物の根の伸長を促進する作用等の、植物成長調整作用を有することを見出した。本発明はこの知見に基づいてさらに研究を重ねた結果、完成されたものである。 As a result of diligent research in view of the above problems, the present inventors have found that a naphthalene derivative having a phosphono group has an effect of increasing plant growth, such as an effect of increasing the number of plant pores or an effect of promoting the elongation of plant roots. It was found to have The present invention has been completed as a result of further research based on this finding.
 即ち、本発明は、下記の態様を包含する。 That is, the present invention includes the following aspects.
 項1. 一般式(1): Item 1. General formula (1):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[一般式(1)中:Rは水素原子、アルキル基、又は-OR(式中:Rは水素原子又はアルキル基を示す)を示す。Rは置換されていてもよい2-ナフチル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
で表される化合物、その塩、及び該化合物又はその塩の溶媒和物からなる群より選択される少なくとも1種を含有する、植物成長調整剤.
 項2. 前記Rが水素原子、アルキル基、又は-OHである、項1に記載の植物成長調整剤.
 項3. 前記Rが水素原子である、項1又は2に記載の植物成長調整剤.
 項4. 前記R及び前記Rが共に水素原子である、項1~3のいずれかに記載の植物成長調整剤。
[In the general formula (1): R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group). R 3 represents an optionally substituted 2-naphthyl group. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. ]
A plant growth regulator comprising at least one selected from the group consisting of a compound represented by formula (I), a salt thereof, and a solvate of the compound or a salt thereof.
Item 2. Item 2. The plant growth regulator according to Item 1, wherein R 1 is a hydrogen atom, an alkyl group, or —OH.
Item 3. Item 3. The plant growth regulator according to Item 1 or 2, wherein R 1 is a hydrogen atom.
Item 4. Item 4. The plant growth regulator according to any one of Items 1 to 3, wherein R 4 and R 5 are both hydrogen atoms.
 項5. 前記Rが2-ナフチル基である、項1~4のいずれかに記載の植物成長調整剤。 Item 5. Item 5. The plant growth regulator according to any one of Items 1 to 4, wherein R 3 is a 2-naphthyl group.
 項6. 前記一般式(1)で表される化合物が、 Item 6. The compound represented by the general formula (1) is
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
である、項1~5のいずれかに記載の植物成長調整剤。 Item 6. The plant growth regulator according to any one of Items 1 to 5, wherein
 項7. 項1~6のいずれかに記載の植物成長調整剤を植物に施用することを含む、植物の成長を調整する方法.
 項8. 項1~6のいずれかに記載の植物成長調整剤を植物の根に接触させることを含む、項4に記載の方法.
 項9. 一般式(1):
Item 7. Item 7. A method for regulating plant growth comprising applying the plant growth regulator according to any one of Items 1 to 6 to a plant.
Item 8. Item 5. The method according to Item 4, comprising contacting the plant growth regulator according to any one of Items 1 to 6 with the root of the plant.
Item 9. General formula (1):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[一般式(1)中:Rは水素原子、アルキル基、又は-OR(式中:Rは水素原子又はアルキル基を示す)を示す。Rは置換されていてもよい2-ナフチル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
で表される化合物、その塩、及び該化合物又はその塩の溶媒和物からなる群より選択される少なくとも1種を含有する、植物気孔増加剤.
 項10. 一般式(1):
[In the general formula (1): R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group). R 3 represents an optionally substituted 2-naphthyl group. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. ]
A plant pore increasing agent, comprising at least one selected from the group consisting of a compound represented by formula (I), a salt thereof, and a solvate of the compound or a salt thereof.
Item 10. General formula (1):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[一般式(1)中:Rは水素原子、アルキル基、又は-OR(式中:Rは水素原子又はアルキル基を示す)を示す。Rは置換されていてもよい2-ナフチル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
で表される化合物、その塩、及び該化合物又はその塩の溶媒和物からなる群より選択される少なくとも1種を含有する、植物成長促進剤.
 項11. 一般式(1):
[In the general formula (1): R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group). R 3 represents an optionally substituted 2-naphthyl group. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. ]
A plant growth promoter comprising at least one selected from the group consisting of a compound represented by formula (I), a salt thereof, and a solvate of the compound or a salt thereof.
Item 11. General formula (1):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[一般式(1)中:Rは水素原子、アルキル基、又は-OR(式中:Rは水素原子又はアルキル基を示す)を示す。Rは置換されていてもよい2-ナフチル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
で表される化合物、その塩、及び該化合物又はその塩の溶媒和物からなる群より選択される少なくとも1種を含有する、植物根伸長促進剤.
 項12. 一般式(3):
[In the general formula (1): R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group). R 3 represents an optionally substituted 2-naphthyl group. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. ]
A plant root elongation promoter comprising at least one selected from the group consisting of a compound represented by formula (I), a salt thereof, and a solvate of the compound or a salt thereof.
Item 12. General formula (3):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[一般式(3)中:Rは炭素数1~5のアルキル基を示す。R10~R15は同一又は異なって、それぞれ水素原子又は炭素数1~5のアルキル基を示す。]
で表される化合物、その塩、又は該化合物若しくはその塩の溶媒和物.
[In the general formula (3): R 7 represents an alkyl group having 1 to 5 carbon atoms. R 10 to R 15 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. ]
Or a salt thereof, or a solvate of the compound or a salt thereof.
 本発明によれば、低分子化合物を有効成分とする植物成長調整剤(例えば、植物気孔増加剤、植物成長促進剤、植物根伸長促進剤等)を提供することができる。 According to the present invention, a plant growth regulator (for example, a plant pore increasing agent, a plant growth promoter, a plant root elongation promoter, etc.) containing a low molecular compound as an active ingredient can be provided.
実施例1における顕微鏡写真である。「DMSO」はDMSO添加群を示し、「化合物A」は2-ナフチルヒドロキシメチルホスホン酸(化合物A)を終濃度50μMになるように添加した群を示す。2 is a photomicrograph in Example 1. “DMSO” represents a DMSO addition group, and “Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 μM. 実施例1における、一定面積(mm2)当たりの気孔数を示す箱髭図である。縦軸は、一定面積(mm2)当たりの気孔数を示し、横軸は、液体培地中の2-ナフチルヒドロキシメチルホスホン酸の終濃度(μM)を示す。FIG. 3 is a box diagram showing the number of pores per certain area (mm 2 ) in Example 1. The vertical axis represents the number of pores per fixed area (mm 2 ), and the horizontal axis represents the final concentration (μM) of 2-naphthylhydroxymethylphosphonic acid in the liquid medium. 実施例1における、気孔のクラスター形成の有無及び1クラスター当たりの気孔数を示すグラフである。縦軸は、一定面積(mm2)当たりの気孔数を示し、横軸中、1クラスター当たりの気孔数を示す。グラフ中、「DMSO」はDMSO添加群を示し、「化合物A」は2-ナフチルヒドロキシメチルホスホン酸を終濃度50μMになるように添加した群を示す。4 is a graph showing the presence / absence of pore cluster formation and the number of pores per cluster in Example 1. The vertical axis represents the number of pores per fixed area (mm 2 ), and the horizontal axis represents the number of pores per cluster. In the graph, “DMSO” represents a DMSO addition group, and “Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid was added to a final concentration of 50 μM. 実施例2における、化合物A及びBを用いた場合の、一定面積(mm2)当たりの気孔数を示すグラフである。縦軸は、一定面積(mm2)当たりの気孔数を示し、横軸は、液体培地中の2-ナフチルヒドロキシメチルホスホン酸(化合物A:◆)又は2-ナフチルメチルホスホン酸(化合物B:●)の終濃度(μM)を示す。6 is a graph showing the number of pores per certain area (mm 2 ) when using compounds A and B in Example 2. The vertical axis represents the number of pores per fixed area (mm 2 ), and the horizontal axis represents 2-naphthylhydroxymethylphosphonic acid (compound A: ◆) or 2-naphthylmethylphosphonic acid (compound B: ●) in the liquid medium. The final concentration (μM) is indicated. 実施例3における顕微鏡写真である。「+DMSO」はDMSO添加群を示し、「+化合物A」は2-ナフチルヒドロキシメチルホスホン酸(化合物A)を終濃度50μMになるように添加した群を示す。各写真中の矢印はメリステモイドの位置を示す。4 is a photomicrograph in Example 3. “+ DMSO” represents a DMSO addition group, and “+ Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 μM. The arrow in each photograph shows the position of the meristemoid. 実施例4における顕微鏡写真である。「DMSO」はDMSO添加群を示し、「化合物A」は2-ナフチルヒドロキシメチルホスホン酸(化合物A)を終濃度50μMになるように添加した群を示す。中段(Nicotiana benthamiana)の写真中、矢印は気孔の位置を示す。4 is a photomicrograph in Example 4. “DMSO” represents a DMSO addition group, and “Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 μM. In the photograph of the middle row (Nicotianahambenthamiana), the arrows indicate the positions of the pores. 実施例5における観察写真(シロイヌナズナ)を示す。「DMSO」はDMSO添加群を示し、「化合物A」は2-ナフチルヒドロキシメチルホスホン酸(化合物A)を終濃度50μMになるように添加した群を示す。The observation photograph (Arabidopsis thaliana) in Example 5 is shown. “DMSO” represents a DMSO addition group, and “Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 μM. 実施例5における観察写真(キュウリ)を示す。「DMSO」はDMSO添加群を示し、「化合物A」は2-ナフチルヒドロキシメチルホスホン酸(化合物A)を終濃度50μMになるように添加した群を示す。The observation photograph (cucumber) in Example 5 is shown. “DMSO” represents a DMSO addition group, and “Compound A” represents a group to which 2-naphthylhydroxymethylphosphonic acid (Compound A) was added to a final concentration of 50 μM. 実施例6における顕微鏡写真である。「DMSO」はDMSO添加群を示し、「化合物C」は化合物Cを終濃度50μMになるように添加した群を示す。6 is a photomicrograph in Example 6. “DMSO” represents a DMSO addition group, and “Compound C” represents a group to which Compound C was added to a final concentration of 50 μM.
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 In this specification, the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
 本発明は、一般式(1): The present invention is represented by the general formula (1):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[一般式(1)中:Rは水素原子、アルキル基、又は-OR(式中:Rは水素原子又はアルキル基を示す)を示す。Rは置換されていてもよい2-ナフチル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
で表される化合物、その塩、及び該化合物又はその塩の溶媒和物からなる群より選択される少なくとも1種(本明細書において、「本発明の有効成分」と示すこともある)を含有する、植物成長調整剤(例えば、植物気孔増加剤、植物成長促進剤、植物根伸長促進剤等)(本明細書において、「本発明の剤」と示すこともある)に関する。以下、これについて説明する。
[In the general formula (1): R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group). R 3 represents an optionally substituted 2-naphthyl group. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. ]
Containing at least one selected from the group consisting of a compound represented by the formula (I), a salt thereof, and a solvate of the compound or a salt thereof (sometimes referred to as “the active ingredient of the present invention”). The present invention relates to a plant growth regulator (for example, a plant pore increasing agent, a plant growth promoting agent, a plant root elongation promoting agent, etc.) (in the present specification, sometimes referred to as “agent of the present invention”). This will be described below.
 R又はRで表されるアルキル基は、特に制限はなく、直鎖状、分岐鎖状、又は環状(好ましくは直鎖状又は分岐鎖状)の炭素数1~8、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~2のアルキル基が挙げられる。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロブチル基等が挙げられる。 The alkyl group represented by R 1 or R 2 is not particularly limited, and has a linear, branched, or cyclic (preferably linear or branched) carbon number of 1 to 8, preferably 1 to 6, more preferably 1-4, and still more preferably 1-2 alkyl groups. Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
 Rは、好ましくは水素原子である。 R 2 is preferably a hydrogen atom.
 Rは、好ましくは水素原子、アルキル基、又は-OHであり、より好ましくは水素原子又は-OHであり、さらに好ましくは水素原子である。 R 1 is preferably a hydrogen atom, an alkyl group, or —OH, more preferably a hydrogen atom or —OH, and still more preferably a hydrogen atom.
 Rで表される「置換されていてもよい2-ナフチル基」が有し得る置換基としては、特に制限はないが、例えば、アルキル基、アルコキシ基、アミノ基(ジ(又はモノ)(アルキル)アミノ基等)、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、ハロアルキル基、シリル基(トリ(アルキル)シリル基等)、アシル基、アルコキシカルボニル基、シアノ基等が挙げられる。これらの中でも、好ましくはアルキル基、アルコキシ基、アミノ基等が挙げられ、より好ましくはアルキル基が挙げられる。 The substituent that the “optionally substituted 2-naphthyl group” represented by R 3 may have, but is not particularly limited, for example, an alkyl group, an alkoxy group, an amino group (di (or mono) ( Alkyl) amino group etc.), halogen atom (fluorine atom, chlorine atom, bromine atom etc.), haloalkyl group, silyl group (tri (alkyl) silyl group etc.), acyl group, alkoxycarbonyl group, cyano group and the like. Among these, Preferably an alkyl group, an alkoxy group, an amino group etc. are mentioned, More preferably, an alkyl group is mentioned.
 Rで表される「置換されていてもよい2-ナフチル基」が有し得る置換基であるアルキル基、及びRで表される「置換されていてもよい2-ナフチル基」が有し得るその他の置換基構造内のアルキル基は、特に制限はなく、直鎖状、分岐鎖状、又は環状(好ましくは直鎖状又は分岐鎖状)の炭素数1~10、好ましくは1~5、より好ましくは炭素数1~3、さらに好ましくは1~2、よりさらに好ましくは1のアルキル基が挙げられる。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロブチル基等が挙げられる。 Represented by R 3 is a substituent "optionally substituted naphthyl group" may have an alkyl group, and "optionally substituted 2-naphthyl group" represented by R 3 is Yes The alkyl group in the other substituent structure which can be used is not particularly limited, and is linear, branched or cyclic (preferably linear or branched) having 1 to 10, preferably 1 to 5, more preferably an alkyl group having 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms, and still more preferably 1 carbon atom. Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
 これらの置換基の数は、0~6個が好ましく、0~3個がより好ましく、0~1個がさらに好ましい。置換基の位置としては、ナフタレン環の6位が好ましい。 The number of these substituents is preferably 0 to 6, more preferably 0 to 3, and still more preferably 0 to 1. As the position of the substituent, the 6-position of the naphthalene ring is preferable.
 Rで表される2-ナフチル基は置換されていないことが好ましい。すなわち、Rは、好ましくは2-ナフチル基である。 The 2-naphthyl group represented by R 3 is preferably not substituted. That is, R 3 is preferably a 2-naphthyl group.
 R及びRで表されるアルキル基は、特に制限はなく、直鎖状、分岐鎖状、又は環状(好ましくは直鎖状又は分岐鎖状)の炭素数1~8、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~2のアルキル基が挙げられる。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロブチル基等が挙げられる。 The alkyl group represented by R 4 and R 5 is not particularly limited, and has a linear, branched, or cyclic (preferably linear or branched) carbon number of 1 to 8, preferably 1 to 6, more preferably 1-4, and still more preferably 1-2 alkyl groups. Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
 R及びRは、好ましくは共に水素原子である。 R 4 and R 5 are preferably both hydrogen atoms.
 一般式(1)で表される化合物としては、好ましくは一般式(1a): The compound represented by the general formula (1) is preferably the general formula (1a):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[一般式(1)中:R、R及びRは前記に同じである。Rは水素原子、C1-5アルキル基、C1-5アルコキシ基、又はジ(又はモノ)(C1-5アルキル)アミノ基である。]
で表される化合物が挙げられ、より好ましくは一般式(1b):
[In the general formula (1): R 1 , R 4 and R 5 are the same as above. R 6 is a hydrogen atom, a C1-5 alkyl group, a C1-5 alkoxy group, or a di (or mono) (C1-5 alkyl) amino group. ]
The compound represented by these is mentioned, More preferably, general formula (1b):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[一般式(1)中:Rは前記に同じである。Rは水素原子、又はC1-5アルキル基である。]
で表される化合物が挙げられ、さらに好ましくは下記式:
[In General Formula (1): R 1 is the same as defined above. R 6 is a hydrogen atom or a C1-5 alkyl group. ]
And more preferably a compound represented by the following formula:
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
で表される化合物A~D等が挙げられ、よりさらに好ましくは化合物A、化合物B、化合物C等が挙げられる。 Compounds A to D and the like represented by general formula (I) are exemplified, and still more preferably, compounds A, B, and C are exemplified.
 一般式(1)で表される化合物の他の好ましい態様としては、一般式(2): As another preferable embodiment of the compound represented by the general formula (1), the general formula (2):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[一般式(2)中:Rは炭素数1~5のアルキル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
で表される化合物が挙げられる。
[In the general formula (2): R 7 represents an alkyl group having 1 to 5 carbon atoms. R 8 and R 9 are the same or different and each represents a hydrogen atom or an alkyl group. ]
The compound represented by these is mentioned.
 Rで表される炭素数1~5アルキル基は、直鎖状、分岐鎖状、又は環状(好ましくは直鎖状又は分岐鎖状)の炭素数1~5のアルキル基であり、好ましくは炭素数1~3、より好ましくは1~2、さらに好ましくは1のアルキル基が挙げられる。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロブチル基等が挙げられる。 The alkyl group having 1 to 5 carbon atoms represented by R 7 is a linear, branched, or cyclic (preferably linear or branched) alkyl group having 1 to 5 carbon atoms, preferably Examples thereof include an alkyl group having 1 to 3, more preferably 1 to 2, and even more preferably 1 carbon atom. Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
 R及びRで表されるアルキル基は、特に制限はなく、直鎖状、分岐鎖状、又は環状(好ましくは直鎖状又は分岐鎖状)の炭素数1~8、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~2のアルキル基が挙げられる。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロブチル基等が挙げられる。 The alkyl group represented by R 8 and R 9 is not particularly limited, and has a linear, branched, or cyclic (preferably linear or branched) carbon number of 1 to 8, preferably 1 to 6, more preferably 1-4, and still more preferably 1-2 alkyl groups. Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
 R及びRは、好ましくは共に水素原子である。 R 8 and R 9 are preferably both hydrogen atoms.
 一般式(1)で表される化合物の他の好ましい態様としては、一般式(3): As another preferable embodiment of the compound represented by the general formula (1), the general formula (3):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[一般式(3)中:Rは炭素数1~5のアルキル基を示す。R10~R15は同一又は異なって、それぞれ水素原子又は炭素数1~5のアルキル基を示す。]
で表される化合物が挙げられる。
[In the general formula (3): R 7 represents an alkyl group having 1 to 5 carbon atoms. R 10 to R 15 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. ]
The compound represented by these is mentioned.
 R10~R15で表される炭素数1~5アルキル基は、直鎖状、分岐鎖状、又は環状(好ましくは直鎖状又は分岐鎖状)の炭素数1~5のアルキル基であり、好ましくは炭素数1~3、より好ましくは1~2、さらに好ましくは1のアルキル基が挙げられる。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロブチル基等が挙げられる。 The alkyl group having 1 to 5 carbon atoms represented by R 10 to R 15 is a linear, branched or cyclic (preferably linear or branched) alkyl group having 1 to 5 carbon atoms. An alkyl group having 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms, and still more preferably 1 carbon atom is preferable. Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a cyclobutyl group. Can be mentioned.
 R10~R15は、好ましくは全て水素原子である。 R 10 to R 15 are preferably all hydrogen atoms.
 一般式(1)で表される化合物の塩は、農学的に許容される塩である限り、特に制限されるものではない。該塩としては、酸性塩、塩基性塩のいずれも採用することができる。酸性塩の例としては、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩等の無機酸塩; 酢酸塩、プロピオン酸塩、酒石酸塩、フマル酸塩、マレイン酸塩、リンゴ酸塩、クエン酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩等の有機酸塩が挙げられ、塩基性塩の例としては、ナトリウム塩、及びカリウム塩等のアルカリ金属塩; 並びにカルシウム塩、マグネシウム塩等のアルカリ土類金属塩; アンモニアとの塩; モルホリン、ピペリジン、ピロリジン、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、モノ(ヒドロキシアルキル)アミン、ジ(ヒドロキシアルキル)アミン、トリ(ヒドロキシアルキル)アミン等の有機アミンとの塩等が挙げられる。これらの中でも、塩基性塩が好ましく採用できる。 The salt of the compound represented by the general formula (1) is not particularly limited as long as it is an agriculturally acceptable salt. As the salt, either an acidic salt or a basic salt can be employed. Examples of acidic salts include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate, phosphate; acetate, propionate, tartrate, fumarate, maleate, malic acid Organic salts such as salts, citrates, methanesulfonates, paratoluenesulfonates, and the like. Examples of basic salts include alkali metal salts such as sodium salts and potassium salts; calcium salts, magnesium Alkaline earth metal salts such as salts; salts with ammonia; morpholine, piperidine, pyrrolidine, monoalkylamine, dialkylamine, trialkylamine, mono (hydroxyalkyl) amine, di (hydroxyalkyl) amine, tri (hydroxyalkyl) Examples thereof include salts with organic amines such as amines. Of these, basic salts are preferably employed.
 一般式(1)で表される化合物又はその塩の溶媒和物としては、一般式(1)で表される化合物又はその塩と、溶媒との溶媒和物である限り特に限定されない。溶媒としては、例えばエタノール、グリセロール、酢酸等が挙げられる。 The solvate of the compound represented by the general formula (1) or a salt thereof is not particularly limited as long as it is a solvate of the compound represented by the general formula (1) or a salt thereof and a solvent. Examples of the solvent include ethanol, glycerol, acetic acid and the like.
 一般式(1)で表される化合物は、公知の合成方法に従って又は準じて製造することができる。例えば、後述の合成例1~4を参照して、必要に応じて公知の反応及びそれに準じた反応を組み合わせることによって、製造することができる。例えば、一般式(1)で表される化合物の内、一般式(2)で表される化合物については、合成例3において、化合物eとして下記一般式(2E): The compound represented by the general formula (1) can be produced according to or according to a known synthesis method. For example, referring to Synthesis Examples 1 to 4 to be described later, it can be produced by combining a known reaction and a reaction according to it as necessary. For example, among the compounds represented by the general formula (1), the compound represented by the general formula (2) is represented by the following general formula (2E) as the compound e in Synthesis Example 3.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[一般式(2E)中:Rは前記に同じである。]
で表される化合物を用い、P(O)H(OEt)としてP(O)H(OR)(OR)を用いることによって製造することができる。別の例として、一般式(1)で表される化合物の内、一般式(3)で表される化合物については、合成例3において、化合物eとして下記一般式(3E):
[In General Formula (2E): R 7 is the same as defined above. ]
It can manufacture by using P (O) H (OR < 8 >) (OR < 9 >) as P (O) H (OEt) 2 using the compound represented by these. As another example, among the compounds represented by the general formula (1), the compound represented by the general formula (3) is represented by the following general formula (3E) as the compound e in Synthesis Example 3.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[一般式(3E)中:R及びR10~R15は前記に同じである。]
で表される化合物を用いることによって、製造することができる。なお、一般式(1)で表される化合物の内、少なくとも化合物A、B、及びDは公知化合物であるので、これらをそのまま用いることもできるし、これらを出発物質として、公知の反応及びそれに準じた反応を組み合わせることによって、製造することもできる。
[In the general formula (3E): R 7 and R 10 to R 15 are the same as defined above. ]
It can manufacture by using the compound represented by these. Of the compounds represented by the general formula (1), at least compounds A, B, and D are known compounds, so they can be used as they are, or they can be used as a starting material for known reactions and to them. It can also be produced by combining similar reactions.
 本発明の有効成分は、植物に施用することによって、植物の気孔の数を増加させることができる。また、本発明の有効成分は、植物に施用することによって、植物の成長(特に根の伸長)を促進することができる。よって、本発明の有効成分は、植物成長調整剤(植物気孔増加剤、植物成長促進剤、植物根伸長促進剤等に利用することができる。 The active ingredient of the present invention can increase the number of plant pores when applied to plants. Moreover, the active ingredient of this invention can accelerate | stimulate the growth (especially root elongation) of a plant by applying to a plant. Therefore, the active ingredient of the present invention can be used as a plant growth regulator (plant pore increasing agent, plant growth promoter, plant root elongation promoter, etc.).
 本発明の剤の対象植物は、気孔を有する植物である限り特に限定されない。本発明の剤は、例えば、被子植物(双子葉植物、単子葉植物等)、裸子植物、シダ植物等の植物に対して広く適用できる。気孔増加効果がより効率的に発揮されるという観点から、対象植物は双子葉植物が好ましい。具体例としては、トマト、ピーマン、トウガラシ、ナス、タバコ等のナス類、キュウリ、カボチャ、メロン、スイカ等のウリ類、キャベツ、ブロッコリー、ハクサイ等の菜類、セルリー、パセリー、レタス等の生菜又は香辛菜類、ネギ、タマネギ、ニンニク等のネギ類、ダイズ、ラッカセイ、インゲン、エンドウ、アズキ等の豆類、イチゴ等のその他果菜類、ダイコン、カブ、ニンジン、ゴボウ等の直根類、サトイモ、キャッサバ、バレイショ、サツマイモ、ナガイモ等のイモ類、アスパラガス、ホウレンソウ、ミツバ等の柔菜類、トルコギキョウ、ストック、カーネーション、キク等の花卉類、イネ、コムギ、オオムギ、トウモロコシ等の穀物類、ベントグラス、コウライシバ等の芝類、ナタネ、ラッカセイ等の油料作物類、サトウキビ、テンサイ等の糖料作物類、ワタ、イグサ等の繊維料作物類、クローバー、ソルガム、デントコーン等の飼料作物類、リンゴ、ナシ、ブドウ、モモ等の落葉性果樹類、ウンシュウミカン、レモン、グレープフルーツといった柑橘類、サツキ、ツツジ、スギ等の木本類等が挙げられる。 The target plant of the agent of the present invention is not particularly limited as long as it is a plant having pores. The agent of the present invention can be widely applied to plants such as angiosperms (dicotyledonous plants, monocotyledonous plants, etc.), gymnosperms, and ferns. From the viewpoint that the effect of increasing pores is more efficiently exhibited, the target plant is preferably a dicotyledonous plant. Specific examples include eggplants such as tomatoes, peppers, peppers, eggplants and tobacco, cucumbers, pumpkins, melons, watermelons and other cucumbers, cabbage, broccoli, Chinese cabbage and other vegetables, celery, parsley, lettuce and other raw vegetables or Spicy vegetables, green onions such as leek, onion, garlic, beans such as soybeans, peanuts, green beans, peas, azuki bean, other fruit vegetables such as strawberries, straight roots such as radish, turnip, carrot, burdock, taro, cassava Potatoes such as potato, sweet potato and Chinese yam, soft vegetables such as asparagus, spinach and honey, florets such as eustoma, stock, carnation and chrysanthemum, grains such as rice, wheat, barley and corn, bentgrass and cucumber Turf, rapeseed, peanut and other oil crops, sugar cane, Sugar crops such as peanuts, fiber crops such as cotton and rush, feed crops such as clover, sorghum and dent corn, deciduous fruit trees such as apples, pears, grapes and peaches, citrus mandarin, lemon and grapefruit Examples include citrus, satsuki, azalea, and cedar wood.
 本発明の剤は、本発明の有効成分のみからなるものでもよいが、本発明の有効成分に加えて、後述の剤形、施用態様等に応じて種々の添加剤を含んでいてもよい。本発明の剤中の本発明の有効成分の含有割合は、後述の剤形、施用態様等に応じて適宜決定することができるが、例えば0.001~100質量%の範囲を例示することができる。 The agent of the present invention may comprise only the active ingredient of the present invention, but may contain various additives in addition to the active ingredient of the present invention, depending on the dosage form, application mode and the like described later. The content ratio of the active ingredient of the present invention in the agent of the present invention can be appropriately determined according to the dosage form, application mode and the like described later, and examples include a range of 0.001 to 100% by mass. it can.
 本発明の剤の剤形は、農学的に許容される剤形である限り特に限定されない。例えば、液剤、固形剤、粉剤、顆粒剤、粒剤、水和剤、フロアブル剤、乳剤、ペースト剤、分散剤等が挙げられる。 The dosage form of the agent of the present invention is not particularly limited as long as it is an agriculturally acceptable dosage form. For example, liquid agent, solid agent, powder agent, granule, granule, wettable powder, flowable agent, emulsion, paste agent, dispersant and the like can be mentioned.
 添加剤は、農学的に許容される添加剤である限り特に限定されない。例えば、担体、界面活性剤、増粘剤、増量剤、結合剤、ビタミン類、酸化防止剤、pH調整剤、揮散抑制剤、色素等が挙げられる。 The additive is not particularly limited as long as it is an agriculturally acceptable additive. Examples include carriers, surfactants, thickeners, extenders, binders, vitamins, antioxidants, pH adjusters, volatilization inhibitors, and dyes.
 本発明の剤の施用態様は、農薬の使用態様として公知の態様又はそれに準じた態様である限り特に限定されない。例えば、散布、滴下、塗布、植物生育環境中(土壌中、水中、固形培地中、液体培地中等)への混合又は溶解等が挙げられる。本発明の剤は、植物の根に接触させることによって、簡便に、その作用を発揮させることができる。植物の根に接触させる方法としては、特に限定されないが、例えば、本発明の剤を、植物の根が存在する環境中に(土壌栽培である場合は土壌中に、水耕栽培である場合は水中に)混合又は溶解する方法が挙げられる。 </ RTI> The application mode of the agent of the present invention is not particularly limited as long as it is a known mode of usage of agricultural chemicals or a mode based thereon. For example, spraying, dripping, application, mixing or dissolution in a plant growth environment (in soil, water, solid medium, liquid medium, etc.) can be mentioned. The agent of the present invention can easily exert its action by being brought into contact with plant roots. The method of contacting the plant root is not particularly limited. For example, the agent of the present invention can be used in an environment where the plant root exists (in the case of soil cultivation, in the soil, in the case of hydroponics). A method of mixing or dissolving in water).
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 合成例1
 以下の反応スキームに従って、化合物Aを合成した。
Synthesis example 1
Compound A was synthesized according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 化合物a(500 mg, 3.20 mmol, 1.00 equiv)、炭酸ナトリウム(407.16 mg, 3.84 mmol, 1.20 equiv)、及び亜リン酸ジエチル(530.54 mg, 3.84 mmol, 1.20 equiv)を混合し、30分間撹拌した。水でクエンチし、酢酸エチルで抽出した。塩水で洗浄し、酢酸エチルで抽出した。Na2SO4で乾燥させ、メタノールで洗浄した後、溶媒を蒸発させた。得られた生成物を、カラムクロマトグラフィー(酢酸エチル:ヘキサン=2:1、Rf=0.3)で精製し、化合物b(1H NMR及び31P NMR(400 MHz)で確認済み)を得た(673 mg, 収率71.43%)。 Compound a (500 mg, 3.20 mmol, 1.00 equiv), sodium carbonate (407.16 mg, 3.84 mmol, 1.20 equiv), and diethyl phosphite (530.54 mg, 3.84 mmol, 1.20 equiv) were mixed and stirred for 30 minutes. Quenched with water and extracted with ethyl acetate. Washed with brine and extracted with ethyl acetate. After drying over Na 2 SO 4 and washing with methanol, the solvent was evaporated. The resulting product was purified by column chromatography (ethyl acetate: hexane = 2: 1, Rf = 0.3) to obtain compound b (confirmed by 1 H NMR and 31 P NMR (400 MHz)) ( 673 mg, yield 71.43%).
 化合物b(2.00 g, 6.80 mmol, 1.00 equiv)、ヨウ化ナトリウム(NaI)(1.12 g, 7.48 mmol, 1.10 equiv)、アセトニトリル(MeCN)、及びクロロトリメトキシシラン(TMSCl)(2.21 g, 20.39 mmol, 3.00 equiv)を混合し、室温で約3.5日間撹拌した。アセトニトリルを除去することにより反応をクエンチし、酢酸エチルに再溶解した後、1M 炭酸水素ナトリウム溶液で抽出した。塩酸を用いて水層のpHをpH 1に調整し、酢酸エチルで抽出した。塩水で洗浄後、Na2SO4で乾燥させ、溶媒を蒸発させた。クロロホルムでTriturationして、白色/淡黄色固体として化合物A(1H NMR及び31P NMR(400 MHz)で確認済み)を得た(260 mg, 収率16.06%)。 Compound b (2.00 g, 6.80 mmol, 1.00 equiv), sodium iodide (NaI) (1.12 g, 7.48 mmol, 1.10 equiv), acetonitrile (MeCN), and chlorotrimethoxysilane (TMSCl) (2.21 g, 20.39 mmol, 3.00 equiv) was mixed and stirred at room temperature for about 3.5 days. The reaction was quenched by removing acetonitrile, redissolved in ethyl acetate, and extracted with 1M sodium bicarbonate solution. The pH of the aqueous layer was adjusted to pH 1 using hydrochloric acid, and extracted with ethyl acetate. After washing with brine, it was dried over Na 2 SO 4 and the solvent was evaporated. Trituration with chloroform gave Compound A (confirmed by 1 H NMR and 31 P NMR (400 MHz)) as a white / pale yellow solid (260 mg, 16.06% yield).
 合成例2
 以下の反応スキームに従って、化合物Bを合成した。
Synthesis example 2
Compound B was synthesized according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 化合物c(500 mg, 2.83 mmol, 1.00 equiv)、炭酸カリウム(1.17 g, 8.49 mmol, 3.00 equiv)、亜リン酸ジエチル(390.91 mg, 2.83 mmol, 1.00 equiv)、テトラブチルアンモニウムヨージド(1.05 g, 2.83 mmol, 1.00 equiv)、及びジメチルアセトアミド(DMA)を混合し、室温下で約64時間撹拌した(乳白色の懸濁液が得られた)。反応液を分けて水と酢酸エチルにそれぞれ溶かした。水層はヘキサンで抽出した後、酢酸エチルで抽出した。有機層と結合し、水及び塩水で洗浄した。Na2SO4で乾燥させ、溶媒を蒸発させた。得られた生成物を、カラムクロマトグラフィー(10:1(酢酸エチル:ヘキサン)→酢酸エチル)で精製し、酢酸エチルのみで溶出した画分から、無色油状の化合物d(1H NMR及び31P NMR(400 MHz)で確認済み)を得た(76 mg, 収率9.65%)。 Compound c (500 mg, 2.83 mmol, 1.00 equiv), potassium carbonate (1.17 g, 8.49 mmol, 3.00 equiv), diethyl phosphite (390.91 mg, 2.83 mmol, 1.00 equiv), tetrabutylammonium iodide (1.05 g, 2.83 mmol, 1.00 equiv) and dimethylacetamide (DMA) were mixed and stirred at room temperature for about 64 hours (a milky white suspension was obtained). The reaction solution was divided and dissolved in water and ethyl acetate. The aqueous layer was extracted with hexane and then with ethyl acetate. Combine with the organic layer and wash with water and brine. Dry with Na 2 SO 4 and evaporate the solvent. The obtained product was purified by column chromatography (10: 1 (ethyl acetate: hexane) → ethyl acetate). From a fraction eluted with only ethyl acetate, colorless oily compound d ( 1 H NMR and 31 P NMR was obtained. (Confirmed at 400 MHz)) (76 mg, yield 9.65%).
 化合物d(70 mg, 251.54μmol, 1.00 equiv)、ヨウ化ナトリウム(NaI)(188.52 mg, 1.26 mmol, 5.00 equiv)、アセトニトリル(MeCN)、及びクロロトリメトキシシラン(TMSCl)(273.27 mg, 2.52 mmol, 10.00 equiv)を混合し、室温で約16時間撹拌した。アセトニトリルを除去することにより反応をクエンチし、ジエチルエーテルに再溶解した後、1M 炭酸水素ナトリウム溶液で抽出した。塩酸を用いて水層のpHをpH 1に調整し、ジエチルエーテルで抽出した。有機層を0.2 M Na2SO4/塩水で洗浄後、Na2SO4で乾燥させ、溶媒を蒸発させた。クロロホルムでTriturationして、白色粉末として化合物B(1H NMR及び31P NMR(400 MHz)で確認済み)を得た(19 mg, 収率34%)。 Compound d (70 mg, 251.54 μmol, 1.00 equiv), sodium iodide (NaI) (188.52 mg, 1.26 mmol, 5.00 equiv), acetonitrile (MeCN), and chlorotrimethoxysilane (TMSCl) (273.27 mg, 2.52 mmol, 10.00 equiv) was mixed and stirred at room temperature for about 16 hours. The reaction was quenched by removing acetonitrile, redissolved in diethyl ether and extracted with 1M sodium bicarbonate solution. The pH of the aqueous layer was adjusted to pH 1 using hydrochloric acid, and extracted with diethyl ether. The organic layer was washed with 0.2 M Na 2 SO 4 / brine, then dried over Na 2 SO 4 and the solvent was evaporated. Trituration with chloroform gave Compound B (confirmed by 1 H NMR and 31 P NMR (400 MHz)) as a white powder (19 mg, 34% yield).
 合成例3
 以下の反応スキームに従って、化合物Cを合成した。
Synthesis example 3
Compound C was synthesized according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 化合物eから化合物fへの反応をOrganic Process Research & Development 2007, 11, 1004-1009に記載の方法に従って、次のように行った。化合物e (1.0 eq., 1 g, 5 mmol)のテトラヒドロフラン(THF)溶液及び攪拌子を備えた乾燥丸底フラスコに、水素化ジイソブチルアルミニウム (2.1 eq., 2 mL, 1M in THF) を窒素雰囲気下で添加した。混合物を室温で約2時間攪拌した。反応完了をTLC (EtOAc:Hex.; 1:3) により確認した。反応混合物を氷浴中の冷4M HCl 水溶液にゆっくり注ぐことによりクエンチした。混合物をジエチルエーテルで抽出し、4M HCl水溶液、5% NaHCO3水溶液、及び塩水で洗浄した。溶媒を減圧下で蒸発させた。ヘキサンを0℃で添加し、溶液を2時間攪拌した。生成物をろ過により回収し、減圧下で乾燥させ、白色固体として化合物fを得た(584 mg, 収率68%)。 The reaction from compound e to compound f was performed as follows according to the method described in Organic Process Research & Development 2007, 11, 1004-1009. A dry round bottom flask equipped with a solution of compound e (1.0 eq., 1 g, 5 mmol) in tetrahydrofuran (THF) and a stir bar was charged with diisobutylaluminum hydride (2.1 eq., 2 mL, 1M in THF) in a nitrogen atmosphere. Added below. The mixture was stirred at room temperature for about 2 hours. Completion of the reaction was confirmed by TLC (EtOAc: Hex .; 1: 3). The reaction mixture was quenched by slowly pouring into cold 4M aqueous HCl in an ice bath. The mixture was extracted with diethyl ether and washed with 4M aqueous HCl, 5% aqueous NaHCO 3 , and brine. The solvent was evaporated under reduced pressure. Hexane was added at 0 ° C. and the solution was stirred for 2 hours. The product was collected by filtration and dried under reduced pressure to give compound f as a white solid (584 mg, 68% yield).
 化合物fから化合物gへの反応をOrganic Process Research & Development 2007, 11, 1004-1009に記載の方法に従って、次のように行った。攪拌子、化合物f (250 mg, 1.5 mmol) 及び塩化亜鉛 (3mol%, 0.03 mmol) を備える乾燥丸底フラスコに、ジメチルエーテル(DME)を5℃で添加した。塩化チオニル (2.0 eq., 3.0 mmol) を25℃未満でゆっくりと添加した。混合物を3時間攪拌し、反応完了をTLCで確認した。溶媒を減圧下で蒸発させ、ヘキサンを添加した。混合物を-15℃で2時間攪拌し、沈殿物をろ過により回収し、白色固体として化合物gを得た(215 mg, 収率78%)。  The reaction from compound f to compound g was carried out as follows according to the method described in Organic Process Research & Development 2007, 11 and 1004-1009. Dimethyl ether (DME) was added at 5 ° C. to a dry round bottom flask equipped with a stir bar, compound f (250 mg, 1.5 mmol) and zinc chloride (3 mol%, 0.03 mmol). Thionyl chloride (2.0 eq., 3.0 mmol) was slowly added below 25 ° C. The mixture was stirred for 3 hours and complete reaction was confirmed by TLC. The solvent was evaporated under reduced pressure and hexane was added. The mixture was stirred at −15 ° C. for 2 hours, and the precipitate was collected by filtration to give compound g as a white solid (215 mg, yield 78%).
 化合物gから化合物hへの反応をBioorg. Med. Chem. Lett. 2009, 163-166.に記載の方法に従って、次のように行った。攪拌子、化合物g (100 mg, 0.5 mmol)、炭酸カリウム (3.0 eq., 217 mg) 及びテトラブチルアンモニウムヨージド (1.0 eq., 194 mg) を備えるシュレンクチューブに、窒素雰囲気下で、亜リン酸ジエチル及びジメチルアセタール(DMA)を添加した。反応混合物を室温で64時間攪拌した。粗生成物を水と酢酸エチルで分画した。水層をヘキサン及び酢酸エチルで抽出した。その後、有機層を水及び塩水で洗浄し、硫酸ナトリウムで乾燥して、溶媒を減圧下で蒸発させた。カラムクロマトグラフィー (10:1, Hex.:EtOAc) で精製して、無色液体として化合物hを得た(76 mg, 収率50%)。 The reaction from compound g to compound h was carried out as follows according to the method described in Bioorg. Med. Chem. Lett. 2009, 163-166. A Schlenk tube equipped with a stir bar, compound g (100 mg, 0.5 mg mmol), potassium carbonate (3.0 eq., 217 mg) and tetrabutylammonium iodide (1.0 eq, 194 mg) Diethyl acid and dimethyl acetal (DMA) were added. The reaction mixture was stirred at room temperature for 64 hours. The crude product was fractionated with water and ethyl acetate. The aqueous layer was extracted with hexane and ethyl acetate. The organic layer was then washed with water and brine, dried over sodium sulfate, and the solvent was evaporated under reduced pressure. Purification by column chromatography (10: 1, Hex.:EtOAc) gave compound h as a colorless liquid (76 mg, 50% yield).
 化合物hから化合物Cへの反応をBioorg. Med. Chem. Lett. 2009, 163-166.に記載の方法に従って、次のように行った。攪拌子、化合物h (50 mg, 0.17 mmol) 及びヨウ化ナトリウム (2.2 eq., 113 mg)を備える乾燥丸底フラスコに、アセトニトリル及びクロロトリメチルシラン(3.5 eq., 65 mg) を窒素雰囲気下で添加し、室温で16時間攪拌した。溶媒を除去し、粗混合物を1M NaOH 及びジエチルエーテルで抽出した。水層を濃塩酸でpH 1にまで酸性化し、ジエチルエーテルで抽出した。有機層を0.2M Na2S2O3 及び塩水で洗浄し、硫酸ナトリウムで乾燥し、減圧下で濃縮して、黄色固体として化合物Cを得た(13 mg, 収率32%)。1H-NMR (400 MHz, CHCl3-D and DMSO-d6; 5:1) δ7.75-7.63 (m, 3H), 7.54 (s, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.27 (d, J = 7.9 Hz, 1H), 3.18 (d, J = 21.4 Hz, 2H), 2.48 (s, 3H); 13C-NMR (500 MHz, , CHCl3-D and DMSO-d6; 5:1) δ 134.1, 131.4, 130.8, 129.5, 127.8, 127.4, 127.2, 126.5, 126.1, 125.6, 34.8 (d, J=132 Hz), 20.8; 31P-NMR (400 MHz, CHCl3-D and DMSO-d6; 5:1) δ 29.357。 The reaction from compound h to compound C was carried out as follows according to the method described in Bioorg. Med. Chem. Lett. 2009, 163-166. A dry round bottom flask equipped with a stir bar, compound h (50 mg, 0.17 mmol) and sodium iodide (2.2 eq., 113 mg) was charged with acetonitrile and chlorotrimethylsilane (3.5 eq., 65 mg) under a nitrogen atmosphere. Added and stirred at room temperature for 16 hours. The solvent was removed and the crude mixture was extracted with 1M NaOH and diethyl ether. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and extracted with diethyl ether. The organic layer was washed with 0.2M Na 2 S 2 O 3 and brine, dried over sodium sulfate, and concentrated under reduced pressure to give Compound C as a yellow solid (13 mg, 32% yield). 1 H-NMR (400 MHz, CHCl 3 -D and DMSO-d 6 ; 5: 1) δ7.75-7.63 (m, 3H), 7.54 (s, 1H), 7.41 (d, J = 7.9 Hz, 1H ), 7.27 (d, J = 7.9 Hz, 1H), 3.18 (d, J = 21.4 Hz, 2H), 2.48 (s, 3H); 13 C-NMR (500 MHz,, CHCl 3 -D and DMSO-d 6 ; 5: 1) δ 134.1, 131.4, 130.8, 129.5, 127.8, 127.4, 127.2, 126.5, 126.1, 125.6, 34.8 (d, J = 132 Hz), 20.8; 31 P-NMR (400 MHz, CHCl 3- D and DMSO-d 6 ; 5: 1) δ 29.357.
 合成例4
 以下の反応スキームに従って、化合物Dを合成した。
Synthesis example 4
Compound D was synthesized according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 化合物iから化合物jへの反応をTetrahedron, 62, 2006, 7911-7925.に記載の方法に従って、次のように行った。攪拌子及び還流凝縮器を備える乾燥丸底フラスコに、化合物i (1 g, 6.4 mmol)、NBS (N-bromo succinimide, 1.1 eq., 1.25g) 及び過酸化ベンゾイル (1mol%, 16mg) を添加した。1,1,1,1-テトラクロロ メタンを窒素雰囲気下で添加し、混合物を還流させた。反応の完了はTLC(ヘキサン)で判定した。反応物をろ過し、ろ液を濃縮して、茶色固体として化合物jを得た(1.2 g, 収率82%)。 The reaction from compound i to compound j was performed as follows according to the method described in Tetrahedron, 62, 2006, 7911-7925. Compound i (1 g, 6.4 及 び mmol), NBS (N-bromo succinimide, 1.1 eq., 1.25g) and benzoyl peroxide (1mol%, 16mg) was added to a dry round bottom flask equipped with a stir bar and reflux condenser. did. 1,1,1,1-Tetrachloro methane was added under a nitrogen atmosphere and the mixture was refluxed. Completion of the reaction was judged by TLC (hexane). The reaction was filtered and the filtrate was concentrated to give compound j as a brown solid (1.2 g, yield 82%).
 化合物jから化合物kへの反応をJournal of Physical Chemistry B, 112(46), 14539-14547; 2008.に記載の方法に従って、次のように行った。攪拌子を備える乾燥シュレンクチューブ内で、化合物j (100mg, 0.4 mmol) 及び亜リン酸トリエチル (1.5 eq., 106 mg) を混合し、混合物を16時間還流させた。余分な亜リン酸トリエチルの蒸発により、所望の最終生成物(化合物k)を黄白色固体として得た(130 mg, 収率70%)。 The reaction from Compound j to Compound k was performed as follows according to the method described in Journal of Physical Chemistry B, 112 (46), 14539-14547; 2008. In a dry Schlenk tube equipped with a stir bar, compound j (100 mg, 0.4 mmol) and triethyl phosphite (1.5 eq., 106 mg) 混合 were mixed, and the mixture was refluxed for 16 hours. Evaporation of excess triethyl phosphite gave the desired final product (compound k) as a pale yellow solid (130 mg, 70% yield).
 化合物kから化合物Dへの反応をBioorg. Med. Chem. Lett. 2009, 163-166.に記載の方法に従って、次のように行った。攪拌子を備える乾燥丸底フラスコ内で、化合物k (100mg, 0.34 mmol) 及びヨウ化ナトリウム (2.2 eq., 113 mg) を混合した。アセトニトリル及びクロロトリメチルシラン (3.5 eq., 130 mg) を窒素雰囲気下で添加し、混合物を室温で16時間攪拌した。溶媒を除去し、粗混合物を1M NaOH及びジエチルエーテルで抽出した。 水層を濃塩酸でpH 1にまで酸性化し、時得ているエーテルで抽出した。有機層を0.2M Na2S2O3 及び塩水で洗浄し、硫酸ナトリウムで乾燥し、減圧下で濃縮して、黄色固体として化合物Dを得た(19 mg, 収率23%)。 The reaction from compound k to compound D was performed as follows according to the method described in Bioorg. Med. Chem. Lett. 2009, 163-166. Compound k (100 mg, 0.34 mmol) and sodium iodide (2.2 eq., 113 mg) were mixed in a dry round bottom flask equipped with a stir bar. Acetonitrile and chlorotrimethylsilane (3.5 eq., 130 mg) were added under a nitrogen atmosphere and the mixture was stirred at room temperature for 16 hours. The solvent was removed and the crude mixture was extracted with 1M NaOH and diethyl ether. The aqueous layer was acidified with concentrated hydrochloric acid to pH 1 and extracted with ether as obtained. The organic layer was washed with 0.2M Na 2 S 2 O 3 and brine, dried over sodium sulfate, and concentrated under reduced pressure to give Compound D as a yellow solid (19 mg, 23% yield).
 実施例1.気孔増加作用の評価1
 96ウェルプレートに、コントロール液体培地(2.2 g/L ビタミン混合済Murashige and Skoog基本塩(DuchefaBiochemie:M0222)、250 mg/L MES、pH5.7(KOH)、5 g/L Sucrose)を満たし、そこへシロイヌナズナの種子を植えた。22℃、一定の明るさが保たれた条件下で、シェーカー(130 rpm)で振とう培養した。培養開始から1日後に、液体培地に、化合物AのDMSO溶液を終濃度12.5μM、25μM、又は50μMになるように添加し、或いはネガティブコントロールとしてDMSOを添加し、更に振とう培養を続けた。培養開始から9日後に、葉を採取し、ニュートラルレッドで染色した。顕微鏡で観察し、一定面積当たりの気孔の数、及び気孔のクラスター形成の有無(さらには1クラスター当たりの気孔数)を計測した(n=5)。図1に顕微鏡写真を、図2に一定面積当たりの気孔の数のグラフを、図3に気孔のクラスター形成の有無及び1クラスター当たりの気孔数のグラフを示す。
Example 1 . Evaluation of pore increasing effect 1
Fill a 96-well plate with control liquid medium (2.2 g / L vitamin-mixed Murashige and Skoog basic salt (DuchefaBiochemie: M0222), 250 mg / L MES, pH 5.7 (KOH), 5 g / L Sucrose) He planted seeds of Arabidopsis thaliana. The culture was carried out with shaking on a shaker (130 rpm) under a condition where constant brightness was maintained at 22 ° C. One day after the start of the culture, a DMSO solution of Compound A was added to the liquid medium to a final concentration of 12.5 μM, 25 μM, or 50 μM, or DMSO was added as a negative control, and shaking culture was continued. Nine days after the start of culture, leaves were collected and stained with neutral red. Observed with a microscope, the number of pores per fixed area and the presence or absence of pore cluster formation (and the number of pores per cluster) were measured (n = 5). FIG. 1 shows a micrograph, FIG. 2 shows a graph of the number of pores per fixed area, and FIG. 3 shows a graph of the presence or absence of pore clusters and the number of pores per cluster.
 図1~2より、化合物Aによって、気孔の数が増加することが示された。また、図3より、化合物Aによって、1クラスター当たりの気孔数が増加することが示された。 FIGS. 1 and 2 indicate that Compound A increases the number of pores. In addition, FIG. 3 shows that Compound A increases the number of pores per cluster.
 実施例2.気孔増加作用の評価2
 被検化合物として、化合物A~Dを用いる以外は、実施例1と同様に試験した(n=15)。図4に、化合物A及びBを用いた場合の、一定面積当たりの気孔の数のグラフを示す。
Example 2 . Evaluation of pore increasing effect 2
The test was performed in the same manner as in Example 1 except that compounds A to D were used as test compounds (n = 15). FIG. 4 shows a graph of the number of pores per certain area when using compounds A and B.
 図4より、化合物Bは、化合物Aよりも気孔増加作用が強い傾向が示された。また、図には示していないが、化合物C及びDについても、化合物Aと同様に気孔増加作用を示すことが分かった。 FIG. 4 shows that Compound B has a tendency to have a pore increasing action stronger than Compound A. Further, although not shown in the figure, it was found that the compounds C and D also showed a pore increasing action like the compound A.
 実施例3.メリステモイドに対する影響の評価
 シロイヌナズナのatml1及びhdg2ダブル変異体(Development 140, 1924-1935 (2013))は、一部のメリステモイドについて気孔への分化が停止し、結果としてメリステモイド数が増加することが知られている。この変異体を用いて、化合物Aの、メリステモイドの数に対する影響を評価した。具体的には、この変異体の種子を用いる以外は、実施例1と同様に試験した。図5に顕微鏡写真を示す。
Example 3 . Evaluation of effects on melistemoids The Arabidopsis atml1 and hdg2 double mutants (Development 140, 1924-1935 (2013)) are known to stop the differentiation of some meristemoids into stomatal cells, resulting in an increase in the number of meristemoids. ing. Using this mutant, the effect of Compound A on the number of meristemoids was evaluated. Specifically, the test was conducted in the same manner as in Example 1 except that this mutant seed was used. FIG. 5 shows a photomicrograph.
 図5より、化合物Aによって、気孔の数のみならず、メリステモイドの数も増加することが示された。 FIG. 5 shows that Compound A increases not only the number of pores but also the number of meristemoids.
 実施例4.他の植物に対する気孔増加作用の評価
 シロイヌナズナの種子に代えて、Raphanus sativus(var. longipinnatus)(ダイコン:アブラナ科)の種子、Nicotiana benthamiana(タバコ:ナス科)の種子、及びCucumis sativus(キュウリ:ウリ科)の種子を用い、ダイコンについてはシャーレを用いて培養期間を15日間とし、キュウリについては6ウェルプレートを用いて培養期間を24日間とする以外は、実施例1と同様に試験した。図6に顕微鏡写真を示す。
Example 4 . Evaluation of stomatal increase on other plants Raphanus sativus (var. Longipinnatus) seeds, Nicotiana benthamiana seeds, and Cucumis sativus seeds instead of Arabidopsis seeds and Cucumis sativus The seeds of the family were used, the radish was tested using a petri dish for 15 days, and the cucumber was tested in the same manner as in Example 1 except that the culture period was 24 days using a 6-well plate. FIG. 6 shows a photomicrograph.
 図6より、化合物Aによって、進化的に離れた多様な植物の気孔が増えることが示された。 FIG. 6 shows that Compound A increases the stomatology of various plants that are evolutionarily separated.
 実施例5.植物成長作用の評価
 種子としてシロイヌナズナの種子又はキュウリの種子を用い、シロイヌナズナについてはゲランガムで固形化した培地(組成は実施例1と同じ)を用いてアグリポットで37日間培養し、キュウリについてはシャーレを用いて培養期間を18日間とする以外は、実施例1と同様に試験した。図7及び8に観察写真を示す。
Example 5 . Evaluation of plant growth effect Arabidopsis seeds or cucumber seeds were used as seeds, and Arabidopsis thaliana was cultured in an agripot for 37 days using a medium solidified with gellan gum (composition is the same as in Example 1). The test was conducted in the same manner as in Example 1 except that the culture period was 18 days. An observation photograph is shown in FIGS.
 図7及び8より、化合物Aによって、植物の成長(特に根の伸長)が促進されることが示された。 7 and 8, it was shown that plant growth (particularly root elongation) was promoted by Compound A.
 実施例6.気孔増加作用の評価3
 96ウェルプレートに、コントロール液体培地(2.2 g/L ビタミン混合済Murashige and Skoog基本塩(DuchefaBiochemie:M0222)、250 mg/L MES、pH5.7(KOH)、5 g/L Sucrose)を100μL入れ、そこへ、シロイヌナズナE994株(成熟した気孔においてのみGFPが発現する株)の種子を植えた。22℃、一定の明るさが保たれた条件下で、シェーカー(130 rpm)で振とう培養した。培養開始から1日後に、液体培地に、化合物CのDMSO溶液(化合物濃度:10 mM)を終濃度50μMになるように添加し、或いはネガティブコントロールとして同量のDMSOを添加し、更に振とう培養を続けた。培養開始から9日後に、子葉を採取し、GFP由来の蛍光を蛍光顕微鏡で観察した。図9に顕微鏡写真を示す。
Example 6 . Evaluation of pore increasing effect 3
In a 96-well plate, add 100 μL of control liquid medium (2.2 g / L vitamin-mixed Murashige and Skoog basic salt (DuchefaBiochemie: M0222), 250 mg / L MES, pH 5.7 (KOH), 5 g / L Sucrose), There, seeds of Arabidopsis thaliana E994 strain (a strain that expresses GFP only in mature pores) were planted. The culture was carried out with shaking on a shaker (130 rpm) under a condition where constant brightness was maintained at 22 ° C. One day after the start of culture, add a DMSO solution of compound C (compound concentration: 10 mM) to the liquid medium to a final concentration of 50 μM, or add the same amount of DMSO as a negative control, and further shake culture Continued. Nine days after the start of the culture, cotyledons were collected, and fluorescence derived from GFP was observed with a fluorescence microscope. FIG. 9 shows a photomicrograph.
 図9より、化合物Cによって、気孔の数が増加することが示された。 FIG. 9 shows that the number of pores is increased by Compound C.

Claims (12)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中:Rは水素原子、アルキル基、又は-OR(式中:Rは水素原子又はアルキル基を示す)を示す。Rは置換されていてもよい2-ナフチル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
    で表される化合物、その塩、及び該化合物又はその塩の溶媒和物からなる群より選択される少なくとも1種を含有する、植物成長調整剤。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1): R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group). R 3 represents an optionally substituted 2-naphthyl group. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. ]
    The plant growth regulator containing at least 1 sort (s) selected from the group which consists of the compound represented by these, its salt, and the solvate of this compound or its salt.
  2. 前記Rが水素原子、アルキル基、又は-OHである、請求項1に記載の植物成長調整剤。 The plant growth regulator according to claim 1, wherein R 1 is a hydrogen atom, an alkyl group, or -OH.
  3. 前記Rが水素原子である、請求項1又は2に記載の植物成長調整剤。 The plant growth regulator according to claim 1 or 2, wherein the R 1 is a hydrogen atom.
  4. 前記R及び前記Rが共に水素原子である、請求項1~3のいずれかに記載の植物成長調整剤。 The plant growth regulator according to any one of claims 1 to 3, wherein both R 4 and R 5 are hydrogen atoms.
  5. 前記Rが2-ナフチル基である、請求項1~4のいずれかに記載の植物成長調整剤。 The plant growth regulator according to any one of claims 1 to 4, wherein R 3 is a 2-naphthyl group.
  6. 前記一般式(1)で表される化合物が、
    Figure JPOXMLDOC01-appb-C000002
    である、請求項1~5のいずれかに記載の植物成長調整剤。
    The compound represented by the general formula (1) is
    Figure JPOXMLDOC01-appb-C000002
    The plant growth regulator according to any one of claims 1 to 5, wherein
  7. 請求項1~6のいずれかに記載の植物成長調整剤を植物に施用することを含む、植物の成長を調整する方法。 A method for regulating plant growth, comprising applying the plant growth regulator according to any one of claims 1 to 6 to a plant.
  8. 請求項1~6のいずれかに記載の植物成長調整剤を植物の根に接触させることを含む、請求項7に記載の方法。 A method according to claim 7, comprising contacting the plant growth regulator according to any one of claims 1 to 6 with the roots of the plant.
  9. 一般式(1):
    Figure JPOXMLDOC01-appb-C000003
    [一般式(1)中:Rは水素原子、アルキル基、又は-OR(式中:Rは水素原子又はアルキル基を示す)を示す。Rは置換されていてもよい2-ナフチル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
    で表される化合物、その塩、及び該化合物又はその塩の溶媒和物からなる群より選択される少なくとも1種を含有する、植物気孔増加剤。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000003
    [In the general formula (1): R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group). R 3 represents an optionally substituted 2-naphthyl group. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. ]
    The plant pore increasing agent containing at least 1 sort (s) selected from the group which consists of the compound represented by these, its salt, and the solvate of this compound or its salt.
  10. 一般式(1):
    Figure JPOXMLDOC01-appb-C000004
    [一般式(1)中:Rは水素原子、アルキル基、又は-OR(式中:Rは水素原子又はアルキル基を示す)を示す。Rは置換されていてもよい2-ナフチル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
    で表される化合物、その塩、及び該化合物又はその塩の溶媒和物からなる群より選択される少なくとも1種を含有する、植物成長促進剤。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000004
    [In the general formula (1): R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group). R 3 represents an optionally substituted 2-naphthyl group. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. ]
    The plant growth promoter containing at least 1 sort (s) selected from the group which consists of the compound represented by these, its salt, and the solvate of this compound or its salt.
  11. 一般式(1):
    Figure JPOXMLDOC01-appb-C000005
    [一般式(1)中:Rは水素原子、アルキル基、又は-OR(式中:Rは水素原子又はアルキル基を示す)を示す。Rは置換されていてもよい2-ナフチル基を示す。R及びRは同一又は異なって、それぞれ水素原子又はアルキル基を示す。]
    で表される化合物、その塩、及び該化合物又はその塩の溶媒和物からなる群より選択される少なくとも1種を含有する、植物根伸長促進剤。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000005
    [In the general formula (1): R 1 represents a hydrogen atom, an alkyl group, or —OR 2 (in the formula: R 2 represents a hydrogen atom or an alkyl group). R 3 represents an optionally substituted 2-naphthyl group. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. ]
    A plant root elongation promoter comprising at least one selected from the group consisting of a compound represented by the formula: salt thereof, and a solvate of the compound or salt thereof.
  12. 一般式(3):
    Figure JPOXMLDOC01-appb-C000006
    [一般式(3)中:Rは炭素数1~5のアルキル基を示す。R10~R15は同一又は異なって、それぞれ水素原子又は炭素数1~5のアルキル基を示す。]
    で表される化合物、その塩、又は該化合物若しくはその塩の溶媒和物。
     
    General formula (3):
    Figure JPOXMLDOC01-appb-C000006
    [In the general formula (3): R 7 represents an alkyl group having 1 to 5 carbon atoms. R 10 to R 15 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. ]
    Or a salt thereof, or a solvate of the compound or a salt thereof.
PCT/JP2017/024778 2016-07-08 2017-07-06 Plant growth regulator WO2018008717A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018526434A JPWO2018008717A1 (en) 2016-07-08 2017-07-06 Plant growth regulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662360064P 2016-07-08 2016-07-08
US62/360064 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008717A1 true WO2018008717A1 (en) 2018-01-11

Family

ID=60912742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024778 WO2018008717A1 (en) 2016-07-08 2017-07-06 Plant growth regulator

Country Status (2)

Country Link
JP (1) JPWO2018008717A1 (en)
WO (1) WO2018008717A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210570A1 (en) * 2022-04-26 2023-11-02 国立大学法人東海国立大学機構 Plant stomatal opening regulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223514A (en) * 1961-05-10 1965-12-14 Tenneco Chem Process for the control of plant growth
JPS4927787B1 (en) * 1968-03-28 1974-07-20
JPS50145531A (en) * 1974-05-10 1975-11-21
JPS57130991A (en) * 1981-02-05 1982-08-13 Sumitomo Chem Co Ltd Naphthylmethylphosphonic acid ester derivative, its preparation and herbicide containing said derivative as active component
WO2012019106A2 (en) * 2010-08-06 2012-02-09 Board Of Regents Of The University Of Nebraska Positive and negative modulators of nmda receptors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223514A (en) * 1961-05-10 1965-12-14 Tenneco Chem Process for the control of plant growth
JPS4927787B1 (en) * 1968-03-28 1974-07-20
JPS50145531A (en) * 1974-05-10 1975-11-21
JPS57130991A (en) * 1981-02-05 1982-08-13 Sumitomo Chem Co Ltd Naphthylmethylphosphonic acid ester derivative, its preparation and herbicide containing said derivative as active component
WO2012019106A2 (en) * 2010-08-06 2012-02-09 Board Of Regents Of The University Of Nebraska Positive and negative modulators of nmda receptors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOLE H K. ET AL: "Phosphonate inhibitors of protein-tyrosine and serine/threonine phosphatases", BIOCHEMICAL JOURNAL, vol. 311, no. 3, 1995, pages 1025 - 31, XP002359826 *
VELDSTRA H. ET AL: "Researches on plant growth regulators XXII. Structure/activity VII: Sulphonic acids and related compounds", RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS ET DE LA BELGIQUE, vol. 73, no. 1, 1954, pages 23 - 34 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210570A1 (en) * 2022-04-26 2023-11-02 国立大学法人東海国立大学機構 Plant stomatal opening regulator

Also Published As

Publication number Publication date
JPWO2018008717A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP5389677B2 (en) Plant growth regulator composition
JP4877679B2 (en) Plant growth regulator
WO1999045774A1 (en) Plant growth regulating agents
EA024266B1 (en) Haloalkylmethylenoxyphenyl-substituted ketoenols and use thereof
JPS6328881B2 (en)
JP7065835B2 (en) Plant growth regulator
JP2021518358A (en) Plant growth regulator
WO2018008717A1 (en) Plant growth regulator
JPS5890559A (en) Azolyl-alkenones and -ols
JP2023164356A (en) Inhibitor for activity of auxin and anthranilic acid
JP6843379B2 (en) Root growth promoter
JP6842082B2 (en) Plant growth regulator
WO2020130145A1 (en) Agent for improving heat resistance or salt tolerance of plants
JP2012515197A (en) Compositions and methods for blocking ethylene response in crops using 3- (cyclopropyl-1-enyl) -propane sodium salt
JP3646733B2 (en) Brassinosteroid-containing composition and aqueous dispersion thereof
JP6931365B2 (en) Plant growth regulator compound
JP6902748B2 (en) Plant growth regulator
CN106749254B (en) A kind of adenine ethylnaphthalene acetate compounds and its purposes as plant growth regulator
AU595269B2 (en) Plant growth promotion
JP7325429B2 (en) Plant salt tolerance improver
WO2023210570A1 (en) Plant stomatal opening regulator
JP5082474B2 (en) Novel quinazoline derivatives
CN116874541B (en) Plant growth regulator and preparation method thereof
JPWO2019026575A1 (en) Flower timing regulator, pesticide composition and method for controlling flower timing of plant
RU2186768C1 (en) (+)-cis-[2s,5r-1,5-dimethyl-2-(1-hydroxy-3-propyl)]- -pyrrolidinium (+)-hydrotartrate tetrahydrate eliciting morphogenetic and growth-regulating activity

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526434

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824320

Country of ref document: EP

Kind code of ref document: A1