WO2018008646A1 - Gcs1改変植物種子のスクロース含有破砕液 - Google Patents
Gcs1改変植物種子のスクロース含有破砕液 Download PDFInfo
- Publication number
- WO2018008646A1 WO2018008646A1 PCT/JP2017/024531 JP2017024531W WO2018008646A1 WO 2018008646 A1 WO2018008646 A1 WO 2018008646A1 JP 2017024531 W JP2017024531 W JP 2017024531W WO 2018008646 A1 WO2018008646 A1 WO 2018008646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sucrose
- gcs1
- plant
- seeds
- liquid
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/10—Processes for modifying non-agronomic quality output traits, e.g. for industrial processing; Value added, non-agronomic traits
- A01H1/101—Processes for modifying non-agronomic quality output traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine or caffeine
- A01H1/102—Processes for modifying non-agronomic quality output traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine or caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13B—PRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
- C13B10/00—Production of sugar juices
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13B—PRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
- C13B40/00—Drying sugar
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a plant sucrose-containing crushed liquid and a method for producing sugar, ethanol and the like using the same.
- Biorefinery technology is a technology for producing biofuels from biological resources.
- a technique is known in which a sugar raw material such as glucose or sucrose is obtained from a plant body as a raw material, and a biofuel such as bioethanol is produced from the sugar raw material.
- Sugarcane and sugar beet are said to be useful as raw materials for the biorefinery technology because sugar raw materials can be obtained by simple processing (for example, juice).
- simple processing for example, juice
- these grow well only in a limited climate sucrose: high temperature region, sugar beet: cold region
- Corn, rice, wheat, etc. are seeds that grow well in warm regions, but because they are starchy, a complicated and high energy cost process such as saccharification treatment is required to obtain a sugar raw material.
- a complicated and high energy cost process such as saccharification treatment is required to obtain a sugar raw material.
- cellulosic materials such as rice straw, building waste, and thinned wood as raw materials for the biorefinery technology. High process is required.
- the GCS1 (GENERATIVE CELL SPECIFIC 1) gene has been found as an essential gene for fertilization of plants and is known to exist in various plants such as angiosperms and gymnosperms. However, the relationship between this gene and sugar metabolism in plants is not known.
- An object of the present invention is to provide a sugar raw material derived from a plant, which can be obtained more simply and efficiently.
- the present invention includes the following embodiments: Item 1. A sucrose-containing disruption solution of plant seeds modified so that the expression level of GCS1 decreases.
- Item 3 The sucrose-containing crushing liquid according to Item 1 or 2, wherein the plant is a grain-producing plant.
- Item 4. The sucrose-containing crushing liquid according to Item 3, wherein the grain-producing plant is rice, corn, wheat, or sorghum.
- Item 5. The sucrose-containing crushing liquid according to Item 3 or 4, wherein the grain-producing plant is rice.
- Item 6. The sucrose-containing disruption solution according to Item 1 or 2, wherein the plant is eggplant.
- Item 7. The sucrose-containing disruption solution according to any one of Items 1 to 6, wherein the plant is a plant in which a gene encoding GCS1 is disrupted.
- Item 8 A method for producing a sucrose-containing crushed product according to any one of Items 1 to 7, comprising crushing plant seeds modified so that the expression level of GCS1 is reduced and recovering an internal liquid.
- Item 9 (A) obtaining seeds of a plant modified so that the expression level of GCS1 decreases, and (b) crushing the seeds obtained in step (a) and recovering an internal liquid. 9. The method according to 8.
- Item 10 The method according to Item 8 or 9, further comprising a step of removing solid content.
- Item 11 For producing ethanol or sugar, comprising at least one selected from the group consisting of plant seeds modified so that the expression level of GCS1 decreases, and the sucrose-containing crushed liquid according to any one of Items 1 to 7 material.
- Item 12. A method for producing ethanol, comprising ethanol-fermenting sucrose in the sucrose-containing crushed liquid according to any one of items 1 to 7.
- Item 13 A method for producing sugar, comprising drying the sucrose-containing crushed liquid according to any one of items 1 to 7.
- Item 14 A method for suppressing starch accumulation in plant seeds, which comprises modifying a plant so that the expression level of GCS1 decreases.
- a sugar raw material can be obtained simply and efficiently by crushing GCS1 modified plant seeds and collecting the liquid inside. Moreover, in one preferable aspect of the present invention, it becomes possible to provide a sugar raw material that is more easily and efficiently obtained from a plant that can grow even in a temperate zone by adopting rice or the like as a modification target. By using the sugar raw material of the present invention, ethanol, sugar and the like can be produced simply and efficiently.
- a photograph of seeds of a rice GCS1 gene (Os09g0525700) homozygous mutant and a wild strain is shown (Example 1).
- a shows seeds with rice husks attached
- b shows seeds with rice husks removed
- c shows the result of crushing the seeds of b by hand.
- the left side shows relatively soft seeds (soft seeds) of the mutant strain
- the right side shows wild type seeds.
- the percentage of soft seeds in the rice GCS1 gene (Os09g0525700) homozygous mutant and wild strain is shown (Example 1).
- shaft shows the ratio of a soft seed.
- gcs1 / gcs1 indicates a mutant strain
- Nipponbare indicates a wild strain.
- Example 1 which shows the measurement result of the sugar composition of the liquid inside the soft seed of the rice GCS1 gene (Os09g0525700) homozygous mutant.
- the vertical axis indicates the concentration of each sugar in the measurement solution
- the horizontal axis indicates the type of sugar.
- the result of dripping the liquid (water rice stock solution, 1/5 solution, and 1/10 solution) inside the soft seed of the rice GCS1 gene (Os09g0525700) homozygous mutant was dripped onto the sucrose test paper.
- Example 2 which shows the result of having crushed the soft seed of the rice GCS1 gene (Os05g0269500) homozygous mutant by hand.
- the result of dripping the liquid (water rice stock solution) inside the soft seed of the rice GCS1 gene (Os05g0269500) homozygous mutant was dripped onto maltose test paper and sucrose test paper is shown.
- Example 4 which shows the result of the genotyping of the tomato transformant produced using the empty vector.
- Hyp represents a PCR band with a primer set targeting the vector-derived hygromycin resistance gene.
- Example 1 and 2 show the case where DNA extracted from the transformant was used as a template
- 3 shows the case where DNA extracted from a wild strain was used as a template
- 4 shows the case where a vector containing a hygromycin resistance gene was used as a template. The case where it is used is shown.
- Example 4 which shows the result of the genotyping of the tomato transformant produced using the 1114 target vector. The meaning of each symbol is the same as in FIG.
- identity refers to the degree of amino acid sequences of two or more comparable amino acid sequences with respect to each other. Therefore, the higher the identity of two amino acid sequences, the higher the identity or similarity of those sequences.
- the level of amino acid sequence identity is determined, for example, using FASTA, a sequence analysis tool, using default parameters.
- FASTA a sequence analysis tool
- the algorithm BLAST by Karlin and Altschul Karlin and Altschul (KarlinS, Altschul SF. “Methods for assessing the statisticalsignificance of molecular sequence features by using general scoringschemes” Proc. Natl Acad Sci USA. 87: 2264-2268 (SF), Karlin, Sul.
- conservative substitution means that an amino acid residue is substituted with an amino acid residue having a similar side chain.
- substitution with amino acid residues having basic side chains such as lysine, arginine, and histidine is a conservative substitution technique.
- amino acid residues having acidic side chains such as aspartic acid and glutamic acid
- amino acid residues having non-charged polar side chains such as glycine, asparagine, glutamine, serine, threonine, tyrosine, and cysteine
- Amino acid residues with non-polar side chains such as proline, phenylalanine, methionine and tryptophan
- amino acid residues with ⁇ -branched side chains such as threonine, valine and isoleucine
- aromatic side chains such as tyrosine, phenylalanine, tryptophan and histidine
- substitutions between amino acid residues are conservative substitutions.
- Sucrose-containing disruption liquid The present invention relates to a seed sucrose-containing disruption liquid (herein referred to as “GCS1-altered plant” in this specification) that has been modified so that the expression level of GCS1 is reduced.
- GCS1-altered plant a seed sucrose-containing disruption liquid
- the sucrose-containing crushed liquid of the present invention or the saccharide raw material of the present invention may be indicated. This will be described below.
- GCS1 GCS1 (GENERATIVE CELL SPECIFIC 1), which is the target of reducing the expression level, is an expression product (protein) of the GCS1 gene.
- the GCS1 gene is a gene found as an essential gene responsible for fertilization in a specific plant (Non-patent Document 1), and is present in various plants regardless of angiosperms or gymnosperms.
- the amino acid sequences of GCS1 derived from various plants are known.
- rice Oryza sativa Japonica Group
- Os05g0269500 the expression product of Os09g0525700 is a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 (NCBINCReference Sequence: NM_001070257.1)
- NCBINCReference Sequence: NM_001070257.1 As an expression product of Os05g0269500, a protein (NCBI Reference Sequence: NM_001061589.1) having the amino acid sequence shown in SEQ ID NO: 2 can be mentioned.
- GCS1 or GCS1 gene of other species are as follows: maize (NM_001148401.1), wheat (GenBank: AK335792.1), tomato (XP_010325429.1, LOC101265357), soybean ( GenBank: CM000848.2), potato (XM_015314157.1), date palm (XM_008814721.1), sorghum (XM_002462654.1), lotus (XM_010280264.1), red pepper (XM_016712053.1), European grape (XM_010662804.1), Lily (GenBank: AB206810.1), Orange (XP_015385165.1), Apple (XP_008369499.1), Sesame (XP_011072209.1), Cucumber (XP_004143990.1), Oilseed rape (XP_013714073.1), Amamo (GenBank: KMZ69226.1), cacao (XP_007040136.1), peach (XP_
- GCS1 which is a target for reducing the expression level, may have mutations such as amino acid substitution, deletion, addition, and insertion as long as the sucrose content in the seed increases due to the decrease in the expression level.
- the mutation preferably includes substitution, more preferably conservative substitution, from the viewpoint that its function is less likely to be impaired.
- GCS1 which is a target for reducing the expression level
- the identity is preferably 95% or more, more preferably 97% or more, still more preferably 99% or more, and still more preferably 99.5% or more.
- whether or not to increase the sucrose content in the seed by reducing the expression level can be determined according to or according to a known method. For example, if the sucrose content in the seed of a plant lacking the target gene is higher than the sucrose content in the seed of the wild type plant, the protein derived from the target gene may be expressed as “sucrose in the seed due to a decrease in the expression level”. It can be determined that the protein has an increased content.
- (b ′) one or more amino acids are substituted, deleted, added, or inserted into the amino acid sequence shown in any one of SEQ ID NOS: And a protein that increases the sucrose content in seeds by decreasing the expression level.
- the plurality is, for example, 2 to 40, preferably 2 to 20, more preferably 2 to 10, even more preferably 2 to 5, More preferably, it is 2 or 3.
- the expression level of GCS1 is reduced means that the expression level of GCS1 is lower than the expression level of GCS1 in an unmodified plant such as a wild type plant.
- Specific examples of such a state include a case where the number of molecules of GCS1 per cell (preferably male progenitor cells) is decreased. In this case, it is not necessary that the number of molecules in all cells (preferably male cells) is decreased, and the number of molecules may be decreased in some cells (preferably male cells). . It is desirable that the expression level of GCS1 is reduced to 50% or less, preferably 30% or less, more preferably 10% or less per cell (preferably male progenitor cells) as compared to an unmodified plant.
- the “decrease” includes the case where GCS1 is completely lost.
- the phrase “modified so that the expression level of GCS1 decreases” is not particularly limited as long as it is modified so that “the expression level of GCS1 decreases” as described above.
- the GCS1 gene on the chromosome It means a state in which the gene is not expressed (or the expression level of the gene is reduced) by modifying the transcription control region of the gene itself or the gene. This modification may occur only in one of the alleles (heteromutation), or may occur in both alleles (homomutation).
- the GCS1 gene is a gene encoding GCS1 described above. There is no particular limitation. Such modification is performed according to a known method, for example, by destroying the GCS1 gene or modifying a transcription control region such as a promoter sequence.
- Another example of the gene modification method is a method using retrotransposon Tos17.
- the rice endogenous retrotransposon Tos17 is activated only under cell culture conditions and propagates its copy into the genomic sequence. During growth, when Tos17 is transferred to another gene region, the gene is destroyed. Mutant strains using this gene disruption phenomenon have been created and are widely used in rice research. Using this method, mutants in which the rice GCS1 gene (Os09g0525700) was disrupted were transferred to the National Agriculture and Food Research Organization (Agricultural Research Organization) (https://tos.nias.affrc.go.jp). ) Can be sold more.
- Tos17 sequence itself is a sequence that rice originally has, the mutant obtained by inserting Tos17 is a mutant that does not contain any foreign gene. Therefore, Tos17 mutant lines are not considered genetically modified plants and are not subject to restrictions on genetic recombination.
- the plant to be modified is not particularly limited as long as it is a plant that expresses GCS1.
- Examples of the plant include angiosperms and gymnosperms, and preferably angiosperms. More specifically, for example, rice, corn, wheat, sorghum, barley, rye, oats, oats, oats, millet, millet, millet, barnyard millet, tef, fonio, etc .; , Mung bean, cowpea, kidney bean, ground bean, peanut, pea, broad bean, lentil, chickpea, safflower beans, black bean, moss bean, tepary bean, takeazuki, wisteria bean, horsegram, bambara bean, zeocarpa bean, bean pea, bean pea Grain-producing plants of leguminous family such as winged bean, peppercorn, locust bean, lupine and tamarind; grain producing plants such as buckw
- Seeds of GCS1-modified plants are particularly limited as long as they are formed from pollen of pollen of GCS1-modified plants, and more specifically, formed from ovules by pollinating pollen of GCS1-modified plants. In addition, seeds in which no embryo is formed are also included in the seeds. If the plant is self-pollinated, the GCS1-modified plant seed can be obtained by cultivating the GCS1-modified plant according to a standard method and collecting the seed from the plant.
- the GCS1 modified plant seed is only cross-pollinated, the GCS1 modified plant is cultivated according to a standard method, and the pollen of the plant (naturally or artificially) It can be obtained by pollinating a plant before modification and collecting seeds from the pollinated plant.
- the seed of the GCS1 modified plant contains sucrose (usually dissolved in a liquid), and the amount thereof is larger (for example, 5 times, preferably 10 times) than the seed of the plant before modification. Times, more preferably 100 times, even more preferably 1000 times, and even more preferably 10000 times). For example, even if most of the seeds are starchy before modification, such as rice, a large amount of sucrose can be contained in the rice by modifying GCS1. For this reason, the sucrose-containing crushed liquid (or squeezed liquid) of the present invention can be produced by simply crushing the seeds of the GCS1-modified plant and recovering the internal liquid.
- the sucrose content is not increased in all the seeds of the GCS1 modified plant to be harvested, but the sucrose content is increased in a certain percentage of seeds.
- all seeds including seeds with increased sucrose content may be subjected to crushing, or the properties of seeds with increased sucrose content (such as relatively soft properties) may be used. The seeds may be selected and then subjected to crushing.
- the crushing method is not particularly limited as long as it is a method by which the sucrose solution in the seed of the GCS1 modified plant can be taken out of the seed, and a known method can be adopted.
- “crushing” is not particularly limited as long as the continuity of the seed coat of the seed is partially impaired. Examples of the crushing method include a method of compressing the seed (for example, juice), a method of impacting the seed, a method of shearing the seed, a method of colliding the seeds, and making a hole in the seed Methods and the like.
- a device that suppresses one ear is prepared, and countless injection needles are provided from the outside of the device. It can be performed by implanting something like This method may have less loss than the methods of squeezing and colliding.
- ⁇ Methods other than the method of making a hole in the seed can be performed using various devices such as a juicer and a crusher.
- a device is not particularly limited, but, for example, jaw crusher, gyratory crusher, impact crusher, cone crusher, roll crusher, cutter mill, stamp mill, millstone type, mortar, rake machine, ring mill, roller mill, Examples include jet mills, hammer mills, pin mills, rotary mills, vibration mills, planetary mills, attritors, and bead mills.
- the crushing method, the means to be used (for example, the type of apparatus) and the like can be appropriately selected according to the size, shape, hardness, etc. of the seed.
- One type of crushing method may be used, or two or more types may be combined.
- the crushing may be performed by crushing only the seeds of the GCS1 modified plant, or by crushing the plant body (or a part of the tissue piece) itself holding the seeds of the GCS1 modified plant.
- the method for recovering the liquid is not particularly limited, and a known method can be adopted.
- the liquid can be recovered by simply squeezing the crushed material, or the liquid portion can be recovered if the liquid and the solid content are separated to some extent in the crushing step.
- the liquid can be recovered by sucking the contents from the hole.
- the recovered liquid may contain a solid content.
- One type of recovery method may be used, or a combination of two or more types may be used.
- the solid content removal method is not particularly limited, and examples thereof include pressing, filtration, sedimentation separation (preferably centrifugation) and the like.
- the filter medium used for filtration, the conditions for sedimentation separation, and the like can be appropriately selected according to the particle size of the solid content.
- the removal method may be one kind alone, or a combination of two or more kinds.
- a solvent may be added as necessary.
- the liquid can be more easily and efficiently added by adding a solvent in the crushing step and / or the liquid recovery step. It can be recovered.
- the loss of sucrose in each process can also be reduced by adding a solvent.
- the solvent is not particularly limited as long as it can dissolve sucrose, and examples thereof include water, formic acid, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetic acid.
- the solvents may be used alone or in combination of two or more.
- the sucrose-containing crushing liquid of the present invention may be obtained through other purification steps such as a step of increasing the sucrose concentration in addition to the above steps.
- a relatively high-purity liquid sucrose-containing liquid can be contained inside the seeds of the GCS1 variant. Therefore, in such a case, a liquid having a relatively high purity and containing sucrose can be obtained without requiring another purification step.
- the solid content concentration (% (w / w)) in the sucrose-containing crushed liquid of the present invention is, for example, 40% or less, preferably 20%, more preferably 10% or less, still more preferably 5% or less, and still more preferably 1%. % Or less, particularly preferably 0.1% or less.
- the sucrose-containing crushing liquid of the present invention may contain sugars other than sucrose (for example, glucose, fructose, etc.).
- sugars other than sucrose for example, glucose, fructose, etc.
- the ratio of sucrose in the total sugar is, for example, 50% or more, preferably 70% or more, more preferably 80% or more, and still more preferably It is 90% or more, more preferably 95% or more, and particularly preferably 97% or more.
- the sucrose-containing disrupted liquid of the present invention can be used as a raw material for sucrose, a substance obtained by chemically or biologically converting sucrose, or a composition containing these (for example, ethanol, sugar, etc.). That is, in one aspect of the present invention, plant seeds modified so that the expression level of GCS1 is reduced, and the sucrose-containing disrupted liquid of the present invention can be suitably used as a material for producing ethanol or sugar. it can.
- ethanol can be obtained by a method including ethanol fermentation of sucrose in the sucrose-containing crushed liquid of the present invention.
- the method of ethanol fermentation is not particularly limited as long as it is a method capable of converting sucrose into ethanol, and for example, a known method for producing ethanol from a sugar raw material such as sugar cane can be employed.
- sugar can be obtained by a method including drying the sucrose-containing crushed liquid of the present invention.
- the drying method is not particularly limited as long as it can reduce the liquid component and obtain a solid content containing sucrose (preferably crystalline sucrose).
- sucrose preferably crystalline sucrose
- a known method can be employed. Examples of the method include natural drying and heating. In addition, since sucrose burns above a certain temperature, it is desirable to adjust the temperature when heating. Industrially, drying is preferably performed using, for example, a multi-effect can or a vacuum crystal can.
- sedimentation separation preferably centrifugation
- purification can be performed using activated carbon, an ion exchange resin, a vacuum crystal can, or the like.
- Example 1 Analysis of GCS1 modified plant seeds 1
- a GCS1 gene (Os09g0525700) homozygous mutant (NC0320, NC0196) of a rice mutant line (Tos17) was obtained from National Institute for Agrobiological Sciences. The mutant and wild strains were cultivated according to a conventional method, and seeds were harvested.
- the sugar composition of the liquid inside the soft seed of the mutant strain was measured. Specifically, the liquid inside the soft seed is taken out and diluted with ultrapure water at 1/100 dilution and 1/1000 dilution, and then poured into LC-MS (liquid chromatography mass spectrometer), and the column (Unison UK-Amino column (Imtakt ), 60 ° C, 1 mM ammonium acetate buffer (pH 7.0) and acetonitrile (1: 9, v / v) (500 ⁇ l min -1 , isocratic)) after separation of monosaccharides (sucrose, glucose, fructose) And a mass spectrometer (ionization method: electrospray ionization method, polarity: negative ion mode). Sugar was quantified by purchasing a commercially available sugar and preparing a calibration curve. As a result, it was revealed that most of the sugar in the liquid inside the soft seed of the mutant was sucrose (Fig. 3
- liquid stock solution, 1/5 dilution solution, and 1/10 dilution solution inside the soft seed of the mutant strain were added to the control solution (10% sucrose aqueous solution, 1% sucrose aqueous solution, 0.1% sucrose aqueous solution, and water).
- sucrose test paper a product (not for sale) that has been sampled for general use at Tohoku Bunkyo University, http://www.t-bunkyo.jp/seika/).
- the vector used at this time is a binary vector having a Hygromycin resistance gene, a 35Sp :: Cas9 protein gene, and U6p :: guideRNA (including the target sequence site), and the target sequence site is the base sequence of the amino acid coding region of Os05g0269500.
- Modified. Recombinant callus was redifferentiated in a medium supplemented with Kinetin and 1-Naphthaleneacetic acid after Hygromycin drug selection, and a mutant strain was obtained. The obtained mutant strain was cultivated according to a conventional method, and seeds were harvested.
- Example 3 Analysis of GCS1 modified plant seeds 3 Genes that are expressed in these ovules by next-generation sequencers after seeds (unfertilized seeds) formed by homozygous mutants of the Arabidopsis GCS1 gene (AT4G11720) are sampled at 12, 24, and 48 hours after pollination Was analyzed.
- Sucrose-proton-symporter 1 AT1G71880
- Sucrose synthase 4 AT3G43190
- Sucrose-phosphate synthase family protein AT4G10120
- Sucrose synthase 3 AT4G02280
- Example 4 Production of tomato transformants 1 ⁇ Example 4-1. Determination of target genes> Based on the amino acid sequence of the rice (Oryza sativa ssp. Japonica) GCS1 gene (Os05g0269500), the Tomato (Solanum lycopersicum) gene was searched to obtain the base sequence of the GCS1 gene homologue (LOC101265357) in tomato. The following region on the base sequence was designed as a target sequence (SEQ ID NO: 3) for CRISPR / Cas9 genome editing. 1114_gtgccgctatattgcgtgca (SEQ ID NO: 3) -PAM * The number indicates the position on the gene from the start codon.
- Example 4-3 Transformation to tomato> Tomato variety S. lycopersicum was used as a transformation host. Self-propagated seeds sterilized with hypochlorous acid were sown in MS medium (1xMS, 1.5% sucrose, 0.3% gellan gum) and germinated in the dark at 25 ° C. Germinated seeds are grown at 25 ° C under light-dark cycle conditions (light conditions 16 hours and dark conditions 8 hours), the cotyledons are cut out from the seedlings before and after the main leaves are visible, and the resulting cotyledons are infected with Agrobacterium. It was.
- Infection was performed by immersing in a liquid medium (1 ⁇ MS, 100 ⁇ M acetosyringone) in which Agrobacterium was suspended for 5 minutes or more.
- a liquid medium (1 ⁇ MS, 100 ⁇ M acetosyringone) in which Agrobacterium was suspended for 5 minutes or more.
- the one introduced with the target sequence (1114) vector (1114 target vector) prepared in Example 4-2 and the one introduced with the empty vector (pKI1.1R) were used. .
- the plant pieces after infection were cultured in a co-culture medium (1xMS, 1xMS organic, 2% sucrose, 0.8% agar, 50 ⁇ M acetosyringone) at 25 ° C in the dark for 48 hours. Thereafter, the plant pieces are transferred to selective medium 1 to which 1.5 ⁇ g / ml zeatin, 100 ⁇ g / ml meropen, and 50 ⁇ g / ml hygromycin are added, at 25 ° C. under light / dark cycle conditions (light conditions for 16 hours and dark conditions). 8 hours) and cultured for 2 weeks or more.
- a co-culture medium (1xMS, 1xMS organic, 2% sucrose, 0.8% agar, 50 ⁇ M acetosyringone
- the obtained callus was transferred to selective medium 2 (medium having the same composition as selective medium 1 except that the zeatin concentration was 1 ⁇ g / ml) and cultured for 2 weeks or more to induce adventitious bud development.
- the adventitious shoots thus obtained were transferred to a rooting medium (a medium having the same composition as the selective medium 1 except that 2 ⁇ g / ml indolebutyric acid was used instead of zeatin), and rooting was promoted to obtain a transformed plant strain.
- Genotyping> Total DNA was extracted from the leaf sample according to the CTAB method in order to confirm the success of the production of the transformed plant strain. Using the DNA as a template, PCR was performed with a primer set targeting a vector-derived hygromycin resistance gene and a primer set targeting the GCS1 gene.
- Example 5 Production of tomato transformant 2
- the following regions on the base sequence of the GCS1 gene homologue (LOC101265357) in tomato were designed as target sequences (SEQ ID NO: 4 and SEQ ID NO: 5) for CRISPR / Cas9 genome editing. 1755_ gaacatctgcatcagttggg (SEQ ID NO: 4) -PAM 1967_ gaagtcataagaatgagcca (SEQ ID NO: 5) -PAM A transformant was produced in the same manner as in Example 4 except that the above target sequence was employed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
植物由来の、より簡便且つ効率的得られる糖原料を提供すること。 GCS1の発現量が低下するように改変された植物の種子のスクロース含有破砕液。
Description
本発明は、植物のスクロース含有破砕液、及びそれを用いた砂糖、エタノール等の製造方法に関する。
「持続可能な開発」という理念の下、バイオリファイナリー技術の開発が進められている。バイオリファイナリー技術とは、生物資源を原料に、バイオ燃料等を製造する技術である。バイオリファイナリー技術の具体例としては、植物体を原料としてグルコースやスクロース等の糖原料を得て、該糖原料からバイオエタノール等のバイオ燃料を製造する技術が知られている。これらの技術は、バイオマスから糖原料を得ることを根幹としており、この効率を高めることが重要な課題となっている。
サトウキビやテンサイは、簡便な処理(例えば搾汁)により糖原料を得ることができるので、上記バイオリファイナリー技術の原料として有用であるとされている。ただ、これらは限られた気候(サトウキビ:高温地域、テンサイ:寒冷地域)でのみ良好に生育するものであり、農業の中心である温暖地域で良好に生育するものではない。
トウモロコシ、コメ、ムギ等は、温暖地域で良好に生育する種であるものの、デンプン質であるが故に、糖原料を得るために糖化処理等の煩雑且つエネルギーコストの高い工程を要する。また、稲わら、建築廃材、間伐材等のセルロース系原料を上記バイオリファイナリー技術の原料として用いる試みも行われているが、これらも糖原料を得るためにトウモロコシ等と同様に煩雑且つエネルギーコストの高い工程を要する。
GCS1(GENERATIVE CELL SPECIFIC 1)遺伝子は植物の受精の必須遺伝子として見出されたものであり、被子植物、裸子植物等の種々の植物に存在することが知られている。しかし、この遺伝子と植物内の糖代謝との関連については知られていない。
Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T., "GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization.", Nat Cell Biol. 2006 Jan;8(1):64-71. Epub 2005 Dec 25.
本発明は、植物由来の、より簡便且つ効率的得られる糖原料を提供することを課題とする。好ましくは、温暖地域でも生育可能な植物由来の、より簡便且つ効率的に得られる糖原料を提供することをも課題とする。
本発明者等は上記課題に鑑みて鋭意研究をした結果、GCS1改変植物種子内により多くのスクロースが含まれていることを見出した。この知見に基づいてさらに研究を進めた結果、本発明が完成した。
即ち、本発明は、下記の態様を包含する:
項1. GCS1の発現量が低下するように改変された植物の種子のスクロース含有破砕液。
項1. GCS1の発現量が低下するように改変された植物の種子のスクロース含有破砕液。
項2. 固形分が除去されている、項1に記載のスクロース含有破砕液。
項3. 前記植物が穀物生産植物である、項1又は2に記載のスクロース含有破砕液。
項4. 前記穀物生産植物がイネ、トウモロコシ、コムギ、又はソルガムである、項3に記載のスクロース含有破砕液。
項5. 前記穀物生産植物がイネである、項3又は4に記載のスクロース含有破砕液。
項6. 前記植物がナス類である、項1又は2に記載のスクロース含有破砕液。
項7. 前記植物が、GCS1をコードする遺伝子が破壊されている植物である、項1~6のいずれかに記載のスクロース含有破砕液。
項8. GCS1の発現量が低下するように改変された植物の種子を破砕して内部の液体を回収することを含む、項1~7のいずれかに記載のスクロース含有破砕物を製造する方法。
項9. (a)GCS1の発現量が低下するように改変された植物の種子を得ること、及び(b)工程(a)で得られた種子を破砕して内部の液体を回収することを含む、項8に記載の方法。
項10. さらに固形分を除去する工程を含む、項8又は9に記載の方法。
項11. GCS1の発現量が低下するように改変された植物の種子、及び項1~7のいずれかに記載のスクロース含有破砕液からなる群より選択される少なくとも1種を含む、エタノール又は砂糖の製造用材料。
項12. 項1~7のいずれかに記載のスクロース含有破砕液中のスクロースをエタノール発酵することを含む、エタノールの製造方法。
項13. 項1~7のいずれかに記載のスクロース含有破砕液を乾燥することを含む、砂糖の製造方法。
項14. 植物を、GCS1の発現量が低下するように改変することを含む、植物種子におけるデンプン蓄積を抑制する方法。
本発明によれば、GCS1改変植物種子を破砕して内部の液体を回収することにより、簡便且つ効率的に糖原料を得ることができる。また、本発明の好ましい一態様においては、改変対象としてイネ等を採用することによって、温帯でも生育可能な植物由来の、より簡便且つ効率的得られる糖原料を提供することが可能となる。本発明の糖原料を用いることにより、簡便且つ効率的にエタノールや砂糖等を製造することが可能となる。
本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
本明細書において、アミノ酸配列の『同一性』とは、2以上の対比可能なアミノ酸配列の、お互いに対する同一のアミノ酸配列の程度をいう。従って、ある2つのアミノ酸配列の同一性が高いほど、それらの配列の同一性または類似性は高い。アミノ酸配列の同一性のレベルは、例えば、配列分析用ツールであるFASTAを用い、デフォルトパラメータを用いて決定される。若しくは、KarlinおよびAltschulによるアルゴリズムBLAST(KarlinS,Altschul SF.“Methods for assessing the statisticalsignificance of molecular sequence features by using general scoringschemes”Proc.Natl Acad Sci USA.87:2264-2268(1990)、KarlinS,Altschul SF.“Applications and statisticsfor multiple high-scoringsegments in molecular sequences.”NatlAcad Sci USA.90:5873-7(1993))を用いて決定できる。このようなBLASTのアルゴリズムに基づいたBLASTXと呼ばれるプログラムが開発されている。これらの解析方法の具体的な手法は公知であり、NationalCenter of BiotechnologyInformation(NCBI)のウェエブサイト(http://www.ncbi.nlm.nih.gov/)を参照すればよい。
本明細書において、保存的置換とは、アミノ酸残基が類似の側鎖を有するアミノ酸残基に置換されることを意味する。例えば、リジン、アルギニン、ヒスチジンといった塩基性側鎖を有するアミノ酸残基同士で置換されることが、保存的な置換技術にあたる。その他、アスパラギン酸、グルタミン酸といった酸性側鎖を有するアミノ酸残基;グリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システインといった非帯電性極性側鎖を有するアミノ酸残基;アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファンといった非極性側鎖を有するアミノ酸残基;スレオニン、バリン、イソロイシンといったβ-分枝側鎖を有するアミノ酸残基、チロシン、フェニルアラニン、トリプトファン、ヒスチジンといった芳香族側鎖を有するアミノ酸残基同士での置換も同様に、保存的な置換にあたる。
1.スクロース含有破砕液
本発明は、GCS1の発現量が低下するように改変された植物(本明細書において、「GCS1改変植物」と示すこともある。)の種子のスクロース含有破砕液(本明細書において、「本発明のスクロース含有破砕液」又は「本発明の糖原料」と示すこともある。)に関する。以下、これについて説明する。
本発明は、GCS1の発現量が低下するように改変された植物(本明細書において、「GCS1改変植物」と示すこともある。)の種子のスクロース含有破砕液(本明細書において、「本発明のスクロース含有破砕液」又は「本発明の糖原料」と示すこともある。)に関する。以下、これについて説明する。
発現量を低下させる対象であるGCS1(GENERATIVE CELL SPECIFIC 1)は、GCS1遺伝子の発現産物(タンパク質)である。GCS1遺伝子は、特定の植物において受精を担う必須遺伝子として見出された遺伝子であり(非特許文献1)、被子植物、裸子植物を問わず、種々の植物に存在する。
種々の植物由来のGCS1のアミノ酸配列は公知である。例えば、イネ(Oryza sativa Japonica Group)には2種類のGCS1遺伝子(Os09g0525700及びOs05g0269500)があり、Os09g0525700の発現産物としては配列番号1に示されるアミノ酸配列からなるタンパク質(NCBI Reference Sequence:NM_001070257.1)が挙げられ、Os05g0269500の発現産物としては配列番号2に示されるアミノ酸配列からなるタンパク質(NCBI Reference Sequence:NM_001061589.1)が挙げられる。その他の各生物種のGCS1又はGCS1遺伝子の配列情報の例は、次のとおりである:トウモロコシ(NM_001148401.1)、コムギ(GenBank: AK335792.1)、トマト(XP_010325429.1、LOC101265357)、ダイズ(GenBank: CM000848.2)、ジャガイモ(XM_015314157.1)、ナツメヤシ(XM_008814721.1)、ソルガム(XM_002462654.1)、ハス(XM_010280264.1)、トウガラシ(XM_016712053.1)、ヨーロッパブドウ(XM_010662804.1)、テッポウユリ(GenBank: AB206810.1)、オレンジ(XP_015385165.1)、セイヨウリンゴ(XP_008369499.1)、ゴマ(XP_011072209.1)、キュウリ(XP_004143990.1)、セイヨウアブラナ(XP_013714073.1)、アマモ(GenBank: KMZ69226.1)、カカオ(XP_007040136.1)、モモ(XP_007208862.1)、アズキ(GenBank: BAU00520.1)、キャッサバ(GenBank: OAY56559.1)、リョクトウ(XP_014520557.1)、インゲンマメ(XP_007158461.1)、ワタ(GenBank: KJB39630.1)、ラッカセイ(XP_015964244.1)、タチバナ(XP_006440551.1)、ビート(XP_010673764.1)、ニンジン(GenBank: KZN05919.1)。
発現量を低下させる対象であるGCS1は、発現量の低下により種子内のスクロース含量が増加する限りにおいて、アミノ酸の置換、欠失、付加、挿入等の変異を有していてもよい。変異としては、その機能がより損なわれ難いという観点から、好ましくは置換、より好ましくは保存的置換が挙げられる。
発現量を低下させる対象であるGCS1の好ましい具体例としては、下記(a)に記載するタンパク質及び下記(b)に記載するタンパク質:
(a)配列番号1~2のいずれかに示されるアミノ酸配列からなるタンパク質、及び (b)配列番号1~2のいずれかに示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、且つ発現量の低下により種子内のスクロース含量を増加させるタンパク質
からなる群より選択される少なくとも1種が挙げられる。
(a)配列番号1~2のいずれかに示されるアミノ酸配列からなるタンパク質、及び (b)配列番号1~2のいずれかに示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、且つ発現量の低下により種子内のスクロース含量を増加させるタンパク質
からなる群より選択される少なくとも1種が挙げられる。
上記(b)において、同一性は、好ましくは95%以上、より好ましくは97%以上、さらに好ましくは99%以上、よりさらに好ましくは99.5%以上である。
上記(b)において、発現量の低下により種子内のスクロース含量を増加させるか否かは、公知の方法に従って又は準じて判定することができる。例えば、対象遺伝子を欠失した植物の種子内のスクロース含量が、野生型の植物の種子内のスクロース含量よりも高ければ、該対象遺伝子由来のタンパク質は、「発現量の低下により種子内のスクロース含量を増加させるタンパク質」であると判定できる。
上記(b)に記載するタンパク質の一例としては、例えば
(b’)配列番号1~2のいずれかに示されるアミノ酸配列に対して1若しくは複数個のアミノ酸が置換、欠失、付加、又は挿入されたアミノ酸配列からなり、且つ発現量の低下により種子内のスクロース含量を増加させるタンパク質が挙げられる。
(b’)配列番号1~2のいずれかに示されるアミノ酸配列に対して1若しくは複数個のアミノ酸が置換、欠失、付加、又は挿入されたアミノ酸配列からなり、且つ発現量の低下により種子内のスクロース含量を増加させるタンパク質が挙げられる。
上記(b’)において、複数個とは、例えば2~40個であり、好ましくは2~20個であり、より好ましくは2~10個であり、よりさらに好ましくは2~5個であり、よりさらに好ましくは2又は3個である。
「GCS1の発現量が低下」とは、GCS1の発現量が、非改変植物、例えば野生型の植物におけるGCS1の発現量よりも低くなった状態を意味する。このような状態として、具体的には、例えば細胞(好ましくは雄原細胞)当たりのGCS1の分子数が低下した場合等が挙げられる。なお、この場合においては、全ての細胞(好ましくは雄原細胞)における分子数が低下している必要はなく、一部の細胞(好ましくは雄原細胞)において分子数が低下していればよい。GCS1の発現量は、非改変植物と比較して、細胞(好ましくは雄原細胞)当たり50%以下、好ましくは30%以下、より好ましくは10%以下に低下されていることが望ましい。なお、「低下」には、GCS1が完全に消失した場合も含まれる。
「GCS1の発現量が低下するように改変された」とは、上記したように「GCS1の発現量が低下」するように改変された状態である限り特に限定されず、例えば染色体上のGCS1遺伝子そのもの或いは該遺伝子の転写制御領域を改変することにより、該遺伝子が発現しないように(或いは該遺伝子の発現量が低下するように)した状態等を意味する。この改変は、対立遺伝子の一方にのみ起こっている場合(ヘテロ変異)でもよく、対立遺伝子の両方に起こっている場合(ホモ変異)でもよいGCS1遺伝子としては、上記したGCS1をコードする遺伝子である限り特に限定されない。このような改変は、公知の方法に従って、例えば、GCS1遺伝子を破壊したり、プロモーター配列等の転写制御領域を改変することにより行われる。
より具体的には、例えば、GCS1遺伝子又はそのプロモータ配列内の配列を標的とするguide RNA、及びCasリボヌクレアーゼを発現する発現コンストラクトを、アグロバクテリウムを用いて改変対象植物のカルスに導入することによって、改変することができる。このような遺伝子破壊の方法は既に確立されており、各種市販されているキットを用いて行うことができる。
また、他の遺伝子改変法の例として、レトロトランスポゾンTos17を用いる方法が挙げられる。イネの内在性レトロトランスポゾンTos17は細胞培養条件下によってのみ活性化され、自身のコピーをゲノム配列中に増殖させる。増殖にあたり、Tos17 が他の遺伝子領域へ転移するとその遺伝子が破壊される。この遺伝子破壊現象を利用した突然変異系統が作出されており、イネ研究に広く使われている。この方法を用いてイネGCS1遺伝子(Os09g0525700)が破壊された変異体を、国立研究開発法人農業・食品産業技術総合研究機構(農研機構)(https://tos.nias.affrc.go.jp)より分譲してもらうことができる。Tos17配列自体はイネが元来有する配列であるため、Tos17挿入によって得られる突然変異体は、外来遺伝子を一切含まない変異体である。そのため、Tos17による突然変異系統は遺伝子組換え植物とはみなされず、遺伝子組換えに関する制約を受けない。
改変対象である植物は、GCS1を発現する植物である限り特に制限されない。該植物としては、例えば被子植物、裸子植物等が挙げられ、好ましくは被子植物が挙げられる。該植物として、より具体的には、例えばイネ、トウモロコシ、コムギ、ソルガム、オオムギ、ライムギ、カラスムギ、エンバク、ハトムギ、キビ、アワ、ヒエ、テフ、フォニオ等のイネ科の穀物生産植物; ダイズ、アズキ、リョクトウ、ササゲ、インゲンマメ、ライマメ、ラッカセイ、エンドウ、ソラマメ、レンズマメ、ヒヨコマメ、ベニバナインゲン、ケツルアズキ、モスビーン、テパリービーン、タケアズキ、フジマメ、ホースグラム、バンバラマメ、ゼオカルパマメ、キマメ、ナタマメ、タチナタマメ、グラスピー、クラスタマメ、シカクマメ、ハッショウマメ、イナゴマメ、ルピナス、タマリンド等のマメ科の穀物生産植物; ソバ等の穀物産生植物の他、トマト、ピーマン、トウガラシ、ナス等のナス類(ナス科)(好ましくはナス属); キュウリ、カボチャ、メロン、スイカ等のウリ類; キャベツ、ブロッコリー、ハクサイ等の菜類; セルリー、パセリー、レタス等の生菜・香辛菜類; ネギ、タマネギ、ニンニク等のネギ類; ダイズ、ラッカセイ、インゲン、エンドウ、アズキ等の豆類; イチゴ等のその他果菜類; ダイコン、カブ、ニンジン、ゴボウ等の直根類; サトイモ、キャッサバ、バレイショ、サツマイモ、ナガイモ等のイモ類; アスパラガス、ホウレンソウ、ミツバ等の柔菜類; トルコギキョウ、ストック、カーネーション、キク等の花卉類; ベントグラス、コウライシバ等の芝類; ナタネ、ラッカセイ等の油料作物類; ワタ、イグサ等の繊維料作物類; クローバー、ソルガム、デントコーン等の飼料作物類; リンゴ、ナシ、ブドウ、モモ等の落葉性果樹類; ウンシュウミカン、レモン、グレープフルーツ等の柑橘類; サツキ、ツツジ、スギ等の木本類等が挙げられる。これらの具体例の中でも、好ましくは穀類産生植物が挙げられ、より好ましくはイネ科の穀類産生植物が挙げられ、さらに好ましくはイネ、トウモロコシ、コムギ、ソルガム等が挙げられ、よりさらに好ましくはイネが挙げられる。
GCS1改変植物の種子は、GCS1改変植物の花粉を受粉して得られる種子、より具体的にはGCS1改変植物の花粉を受粉することにより胚珠から発達して形成されるものである限り特に制限されず、内部に胚が形成されていないものも種子に包含される。GCS1改変植物の種子は、該植物が自家受粉する場合であれば、GCS1改変植物を定法に従って栽培し、該植物から種子を採取することにより得ることができる。一方、GCS1改変植物の種子は、該植物が他家受粉しかしない場合であれば、GCS1改変植物を定法に従って栽培し、該植物の花粉を(自然に或いは人工的に)他のGCS1改変植物或いは改変前の植物に受粉させ、受粉した植物から種子を採取することにより得ることができる。
GCS1改変植物の種子内にはスクロースが(通常は、液体に溶解した状態で)含まれており、その量は、改変前の植物の種子に比べて、より多く(例えば5倍、好ましくは10倍、より好ましくは100倍、さらに好ましくは1000倍、よりさらに好ましくは10000倍に)なっている。例えば、コメのように改変前は大部分がデンプン質の種子であっても、GCS1を改変することによって、コメ内には多量のスクロースが含まれ得る。このため、GCS1改変植物の種子を単に破砕して内部の液体を回収することによって、本発明のスクロース含有破砕液(或いは搾汁液)を製造することができる。
なお、本発明の一態様においては、収穫されるGCS1改変植物の種子全部において、スクロース含量が増加しているわけではなく、一定割合の種子においてスクロース含量が増加している。このような場合は、スクロース含量が増加している種子を含む種子全部を破砕に供してもよいし、スクロース含量が増加している種子の性質(比較的軟質である等の性質)を利用して該種子を選別してから破砕に供してもよい。
破砕の方法は、GCS1改変植物の種子内のスクロース溶液を種子外に取り出すことができる方法である限り特に限定されず、公知の方法を採用することができる。なお、本発明において、「破砕」とは、該種子の種皮の連続性が一部でも損なわれる態様である限り特に制限されない。破砕の方法としては、例えば、該種子を圧縮する方法(例えば搾汁等)、該種子に衝撃を加える方法、該種子をせん断する方法、該種子同士を衝突させる方法、該種子に穴を空ける方法等が挙げられる。
種子に穴を空ける方法は、種子が多数密集して存在する場合(例えばトウモロコシ等の場合)であれば、例えば一つの穂を抑え込むような装置を用意し、その装置の外側から無数の注射針のようなものを種子に打ち込むことにより行うことができる。この方法は絞ったり衝突させる方法に比べてロスが少ないことも考えられる。
種子に穴を空ける方法以外の方法は、例えば搾汁機や破砕機等の各種装置を用いて行うことができる。このような装置としては、特に制限されないが、例えばジョークラッシャー、ジャイレトリークラッシャー、インパクトクラッシャー、コーンクラッシャー、ロールクラッシャー、カッターミル、スタンプミル、石臼型、乳鉢、らいかい機、リングミル、ローラーミル、ジェットミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミル等が挙げられる。破砕の方法、使用する手段(例えば装置の種類)等は、種子の大きさ、形状、硬さ等に応じて、適宜選択することができる。破砕の方法は1種単独でもよいし、2種以上の組み合わせであってもよい。
破砕は、GCS1改変植物の種子のみを破砕することによりおこなってもよく、或いはGCS1改変植物の種子を保持する植物体(又はその一部の組織片)そのものを破砕することにより行ってもよい。
液体を回収する方法は、特に限定されず、公知の方法を採用することができる。例えば、破砕物を単に絞ることによって液体を回収することができるし、或いは破砕工程において液体と固形分とがある程度分離されていればその液体部分を回収することができる。また、種子に穴を開けた場合であれば、そこから内容物を吸引することにより液体を回収することができる。なお、回収される液体には、固形分が含まれていてもよい。回収方法は1種単独でもよいし、2種以上の組み合わせであってもよい。
上記工程後、微細な固形分が残っている場合は、さらに固形分を除去することが望ましい。固形分の除去方法としては、特に制限されないが、例えば圧搾、ろ過、沈降分離(好ましくは遠心分離)等が挙げられる。ろ過に用いるろ材、沈降分離の条件等は、固形分の粒径に応じて適宜選択することができる。除去方法は1種単独でもよいし、2種以上の組み合わせであってもよい。
上記破砕工程、液体の回収工程、固形分の除去工程においては、必要に応じて溶媒を添加して行ってもよい。特に種子における固形分が示す割合が大きい場合は、液体の回収が困難となり得るので、その場合は破砕工程及び/又は液体の回収工程において溶媒を添加することにより、より簡便且つ効率的に液体を回収することができる。また、溶媒を添加することにより、各工程におけるスクロースのロスを低減することもできる。
溶媒としては、スクロースを溶解できるものである限り特に限定されず、例えば水、ギ酸、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、酢酸等が挙げられる。溶媒はは1種単独でもよいし、2種以上の組み合わせであってもよい。
本発明のスクロース含有破砕液は、上記工程に加えて、他の精製工程、例えばスクロース濃度を上げる工程等を経て得られたものであってもよい。なお、例えばイネに代表される穀物生産植物を採用した場合、GCS1改変体の種子内部には、比較的高純度の液状のスクロース含有液が含まれ得る。よって、このような場合であれば、他の精製工程を要さず、比較的高純度でスクロースを含有する液体を得ることができる。
本発明のスクロース含有破砕液における固形分濃度(%(w/w))は、例えば40%以下、好ましくは20%、より好ましくは10%以下、さらに好ましくは5%以下、よりさらに好ましくは1%以下、特に好ましくは0.1%以下である。
本発明のスクロース含有破砕液には、スクロース以外の他の糖(例えば、グルコース、フルクトース等)が含まれていてもよい。この場合、本発明のスクロース含有破砕液において、糖全体に占めるスクロースの割合(%(w/w))は、例えば50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、よりさらに好ましくは95%以上、特に好ましくは97%以上である。
2.用途
本発明のスクロース含有破砕液は、スクロース、スクロースを化学的又は生物学的に変換してなる物質、或いはこれらを含む組成物(例えば、エタノール、砂糖等)の原料として用いることができる。すなわち、本発明の一態様においては、GCS1の発現量が低下するように改変された植物の種子や、本発明のスクロース含有破砕液は、エタノール又は砂糖の製造用材料として好適に使用することができる。
本発明のスクロース含有破砕液は、スクロース、スクロースを化学的又は生物学的に変換してなる物質、或いはこれらを含む組成物(例えば、エタノール、砂糖等)の原料として用いることができる。すなわち、本発明の一態様においては、GCS1の発現量が低下するように改変された植物の種子や、本発明のスクロース含有破砕液は、エタノール又は砂糖の製造用材料として好適に使用することができる。
一例として、エタノールについては、本発明のスクロース含有破砕液中のスクロースをエタノール発酵することを含む方法により得ることができる。
エタノール発酵の方法は、スクロースをエタノールに変換できる方法であれば特に制限されず、例えばサトウキビ等の糖原料からエタノールを製造する際の公知の方法を採用することができる。
エタノール発酵後は、必要に応じて、濃縮、蒸留、精製、脱水等が行われる。これらの方法も特に制限されず、例えばサトウキビ等の糖原料から砂糖を製造する際の公知の方法を採用することができる。
別の一例として、砂糖については、本発明のスクロース含有破砕液を乾燥することを含む方法により得ることができる。
乾燥方法は、液体成分を減少させ、スクロース(好ましくは結晶状態のスクロース)を含む固形分を得ることができる方法であれば特に制限されず、例えばサトウキビ等の糖原料から砂糖を製造する際の公知の方法を採用することができる。該方法としては、例えば自然乾燥、加熱等が挙げられる。なお、スクロースは一定温度以上で焦げてしまうので、加熱する場合は、温度を調節することが望ましい。乾燥は、工業的には、例えば多重効用缶や真空結晶缶等を用いて行うことが好ましい。
乾燥後は、必要に応じて、沈降分離(好ましくは遠心分離)、精製等が行われる。これらの方法も特に制限されず、例えばサトウキビ等の糖原料から砂糖を製造する際の公知の方法を採用することができる。例えば、精製は、活性炭やイオン交換樹脂、真空結晶缶等を用いて行うことができる。
以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1.GCS1改変植物種子の解析1
国立研究開発法人農業生物資源研究所より、イネ突然変異系統(Tos17)のGCS1遺伝子(Os09g0525700)ホモ変異株(NC0320, NC0196)を入手した。該変異株及び野生株を定法に従って栽培し、種子を収穫した。
国立研究開発法人農業生物資源研究所より、イネ突然変異系統(Tos17)のGCS1遺伝子(Os09g0525700)ホモ変異株(NC0320, NC0196)を入手した。該変異株及び野生株を定法に従って栽培し、種子を収穫した。
まず、変異株の種子を観察したところ、比較的軟質な種子(本明細書において、単に「軟質種子」と示すこともある。)が一定割合で含まれており、この種子を手でつぶすことにより破砕すると内部から液体が出てくることが明らかとなった(図1a~cの左側)。また、変異株及び野生株それぞれについて、5つの個体における軟質種子の割合を測定したところ、種子全体に対して約40%であることが分かった(図2)。
次に、変異株の軟質種子内部の液体の糖組成を測定した。具体的には、軟質種子内部の液体を取り出し超純水で1/100希釈液および1/1000希釈後LC-MS(液体クロマトグラフィー質量分析計)に打ち込み、カラム(Unison UK-Amino column( Imtakt)、60℃、1 mM 酢酸アンモニウムバッファー (pH 7.0)およびアセトニトリル (1:9, v/v) (500 μl min-1, アイソクラティック))で単糖(スクロース、グルコース、フルクトース)を分離後、質量分析計(イオン化法:エレクトロスプレーイオン化法、極性:ネガティブイオンモード)でそれぞれ検出した。糖の定量は市販品の糖を購入し検量線を作成することで行った。その結果、変異株の軟質種子内部の液体における糖は、大半がスクロースであることが明らかとなった(図3)。
さらに、変異株の軟質種子内部の液体の原液、1/5希釈液、及び1/10希釈液を、コントロール液(10%ショ糖水溶液、1%ショ糖水溶液、0.1%ショ糖水溶液、及び水)と共に、ショ糖試験紙(東北文教大学で一般向けに試供されている製品(非売品)、http://www.t-bunkyo.jp/seika/)に滴下した。その結果、変異株の軟質種子内部の液体(原液)には、5~20%の濃度のショ糖が含まれていることが明らかとなった(図4)。
実施例2.GCS1改変植物種子の解析2
野生型イネ(日本晴)のGCS1遺伝子(Os05g0269500)の両方のアレルを、CRISPR-Cas9システムにより破壊した。具体的には次のように行った。イネ標準系統日本晴の登熟種子を2,4-Dichlorophenoxyacetic acid添加培地で培養することで得たカルスに対して、CRISPR-Cas9システムを組み込んだベクターを導入したアグロバクテリウムを用いて形質転換を行った。この時用いたベクターは、Hygromycin耐性遺伝子、35Sp::Cas9タンパク質遺伝子、およびU6p:: guideRNA(標的配列部位を含む)をもつバイナリーベクターであり、標的配列部位はOs05g0269500のアミノ酸コード領域の塩基配列に改変した。遺伝子組み換えカルスはHygromycin薬剤選抜ののちKinetinと1-Naphthaleneacetic acid添加培地で再分化させ、変異株を得た。得られた変異株を定法に従って栽培し、種子を収穫した。
野生型イネ(日本晴)のGCS1遺伝子(Os05g0269500)の両方のアレルを、CRISPR-Cas9システムにより破壊した。具体的には次のように行った。イネ標準系統日本晴の登熟種子を2,4-Dichlorophenoxyacetic acid添加培地で培養することで得たカルスに対して、CRISPR-Cas9システムを組み込んだベクターを導入したアグロバクテリウムを用いて形質転換を行った。この時用いたベクターは、Hygromycin耐性遺伝子、35Sp::Cas9タンパク質遺伝子、およびU6p:: guideRNA(標的配列部位を含む)をもつバイナリーベクターであり、標的配列部位はOs05g0269500のアミノ酸コード領域の塩基配列に改変した。遺伝子組み換えカルスはHygromycin薬剤選抜ののちKinetinと1-Naphthaleneacetic acid添加培地で再分化させ、変異株を得た。得られた変異株を定法に従って栽培し、種子を収穫した。
変異株の種子を観察したところ、実施例1と同様に、比較的軟質な種子が一定割合で含まれており、この種子を手でつぶすことにより破砕すると内部から液体が出てくることが明らかとなった(図5)。さらに、変異株の軟質種子内部の液体の原液を、1%ショ糖水溶液と共に、麦芽糖試験紙及びショ糖試験紙に滴下した。その結果、変異株の軟質種子内部の液体(原液)にはショ糖が含まれていることが明らかとなった(図6)。
実施例3.GCS1改変植物種子の解析3
シロイヌナズナのGCS1遺伝子(AT4G11720)のホモ変異株が形成する種子(未受精種子)を、受粉後12時間、24時間、48時間でサンプリングして次世代シーケンサーによりこれらの胚珠で発現している遺伝子群を解析した。
シロイヌナズナのGCS1遺伝子(AT4G11720)のホモ変異株が形成する種子(未受精種子)を、受粉後12時間、24時間、48時間でサンプリングして次世代シーケンサーによりこれらの胚珠で発現している遺伝子群を解析した。
その結果、糖形成、糖輸送に関わるSucrose-proton symporter 1(AT1G71880)、Sucrose synthase 4(AT3G43190)、Sucrose-phosphate synthase family protein(AT4G10120)、Sucrose synthase 3(AT4G02280)の4つの遺伝子が受精していないにもかかわらず種子内で発現していることが明らかとなった。また、胚乳形成を示唆するAGL62遺伝子(AT5G60440)の発現が未受精種子には認められなかったことから、実験に用いた未受精種子は胚乳を形成していないことが遺伝学的にも証明できた。胚乳が形成されていないということは、ショ糖トランスポーターが未受精の種子内にショ糖を供給することは出来ても、そのショ糖をデンプンにして蓄積していないことを示唆している。これらのことは肥大種子内で未受精にもかかわらずショ糖が存在している可能性が非常に高いことを示唆している。
実施例4.トマト形質転換体の作出1
<実施例4-1.標的となる遺伝子の決定>
イネ(Oryza sativa ssp. Japonica)GCS1遺伝子(Os05g0269500)のアミノ酸配列を基に、トマト(Solanum lycopersicum)の遺伝子を探索して、トマトにおけるGCS1遺伝子ホモログ(LOC101265357)の塩基配列を取得した。該塩基配列上の以下の領域を、CRISPR/Cas9ゲノム編集の標的配列(配列番号3)として設計した。
1114_ gtgccgctatattgcgtgca(配列番号3)-PAM ※数字は開始コドンより遺伝子上の位置を示す。
<実施例4-1.標的となる遺伝子の決定>
イネ(Oryza sativa ssp. Japonica)GCS1遺伝子(Os05g0269500)のアミノ酸配列を基に、トマト(Solanum lycopersicum)の遺伝子を探索して、トマトにおけるGCS1遺伝子ホモログ(LOC101265357)の塩基配列を取得した。該塩基配列上の以下の領域を、CRISPR/Cas9ゲノム編集の標的配列(配列番号3)として設計した。
1114_ gtgccgctatattgcgtgca(配列番号3)-PAM ※数字は開始コドンより遺伝子上の位置を示す。
<実施例4-2.ゲノム編集用形質転換ベクターの作製>
上記の配列を標的配列とするように、CRISPR/Cas9用ベクター pKI1.1R(https://www.addgene.org/85808/ )を改変した。これをアグロバクテリウムLBA4404株に導入した。
上記の配列を標的配列とするように、CRISPR/Cas9用ベクター pKI1.1R(https://www.addgene.org/85808/ )を改変した。これをアグロバクテリウムLBA4404株に導入した。
<実施例4-3.トマトへの形質転換>
形質転換宿主としてトマト品種マイクロトム(S. lycopersicum)を用いた。次亜塩素酸で滅菌処理した自殖種子を、MS培地(1xMS, 1.5% sucrose, 0.3% ゲランガム)に播種して、25℃、暗所で発芽させた。発芽種子を、25℃、明暗サイクル条件下(明条件16時間及び暗条件8時間)で育成し、本葉が見える前後の幼苗から子葉を切り出して、得られた子葉にアグロバクテリウムを感染させた。感染は、アグロバクテリウムを懸濁した液体培地(1xMS, 100μMアセトシリンゴン)に5分以上浸すことによって行なった。感染に用いたアグロバクテリウムとしては、実施例4-2で作製された標的配列(1114)ベクター(1114標的ベクター)を導入したもの、及び空ベクター(pKI1.1R)を導入したものを用いた。
形質転換宿主としてトマト品種マイクロトム(S. lycopersicum)を用いた。次亜塩素酸で滅菌処理した自殖種子を、MS培地(1xMS, 1.5% sucrose, 0.3% ゲランガム)に播種して、25℃、暗所で発芽させた。発芽種子を、25℃、明暗サイクル条件下(明条件16時間及び暗条件8時間)で育成し、本葉が見える前後の幼苗から子葉を切り出して、得られた子葉にアグロバクテリウムを感染させた。感染は、アグロバクテリウムを懸濁した液体培地(1xMS, 100μMアセトシリンゴン)に5分以上浸すことによって行なった。感染に用いたアグロバクテリウムとしては、実施例4-2で作製された標的配列(1114)ベクター(1114標的ベクター)を導入したもの、及び空ベクター(pKI1.1R)を導入したものを用いた。
感染後の植物片を、共存培地(1xMS, 1xMS organic, 2% sucrose, 0.8% agar, 50μMアセトシリンゴン)上、25℃、暗所で、48時間培養した。その後、植物片を、1.5μg/mlのゼアチン、100μg/mlのメロペン、及び50μg/mlのハイグロマイシンを加えた選抜培地1に移し、25℃、明暗サイクル条件下(明条件16時間及び暗条件8時間)で、2週間以上培養した。
得られたカルスを、選抜培地2(ゼアチン濃度が1μg/mlである以外は選抜培地1と同じ組成の培地)へと移し、2週間以上培養して不定芽の発達を誘導した。得られた不定芽を、発根培地(ゼアチンに代えて2μg/mlインドール酪酸を含む以外は選抜培地1と同じ組成の培地)に移し、発根を促して、形質転換植物株を得た。
<実施例4-4.ジェノタイピング>
形質転換植物株の作出の成否の確認のため、葉サンプルよりCTAB法に従いtotal DNAを抽出した。該DNAを鋳型として用い、ベクター由来のハイグロマイシン耐性遺伝子を標的としたプライマーセット、及びGCS1遺伝子を標的としたプライマーセットにより、PCRを行なった。
形質転換植物株の作出の成否の確認のため、葉サンプルよりCTAB法に従いtotal DNAを抽出した。該DNAを鋳型として用い、ベクター由来のハイグロマイシン耐性遺伝子を標的としたプライマーセット、及びGCS1遺伝子を標的としたプライマーセットにより、PCRを行なった。
結果を図7及び図8に示す。空ベクター及び1114標的ベクターのいずれを導入した場合においても、形質転換体特異的に、ベクター由来のハイグロマイシン耐性遺伝子の導入が確認された。すなわち、GCS1遺伝子破壊のためのCRISPR/Cas9用ベクターが導入された形質転換体の作出に成功したことが分かった。
実施例5.トマト形質転換体の作出2
トマトにおけるGCS1遺伝子ホモログ(LOC101265357)の塩基配列上の以下の領域を、CRISPR/Cas9ゲノム編集の標的配列(配列番号4、及び配列番号5)として設計した。
1755_ gaacatctgcatcagttggg(配列番号4)-PAM
1967_ gaagtcataagaatgagcca(配列番号5)-PAM
上記標的配列を採用する以外は、実施例4と同様にして形質転換体を作出した。
トマトにおけるGCS1遺伝子ホモログ(LOC101265357)の塩基配列上の以下の領域を、CRISPR/Cas9ゲノム編集の標的配列(配列番号4、及び配列番号5)として設計した。
1755_ gaacatctgcatcagttggg(配列番号4)-PAM
1967_ gaagtcataagaatgagcca(配列番号5)-PAM
上記標的配列を採用する以外は、実施例4と同様にして形質転換体を作出した。
Claims (14)
- GCS1の発現量が低下するように改変された植物の種子のスクロース含有破砕液。
- 固形分が除去されている、請求項1に記載のスクロース含有破砕液。
- 前記植物が穀物生産植物である、請求項1又は2に記載のスクロース含有破砕液。
- 前記穀物生産植物がイネ、トウモロコシ、コムギ、又はソルガムである、請求項3に記載のスクロース含有破砕液。
- 前記穀物生産植物がイネである、請求項3又は4に記載のスクロース含有破砕液。
- 前記植物がナス類である、請求項1又は2に記載のスクロース含有破砕液。
- 前記植物が、GCS1をコードする遺伝子が破壊されている植物である、請求項1~6のいずれかに記載のスクロース含有破砕液。
- GCS1の発現量が低下するように改変された植物の種子を破砕して内部の液体を回収することを含む、請求項1~7のいずれかに記載のスクロース含有破砕物を製造する方法。
- (a)GCS1の発現量が低下するように改変された植物の種子を得ること、及び
(b)工程(a)で得られた種子を破砕して内部の液体を回収すること
を含む、請求項8に記載の方法。 - さらに固形分を除去する工程を含む、請求項8又は9に記載の方法。
- GCS1の発現量が低下するように改変された植物の種子、及び請求項1~7のいずれかに記載のスクロース含有破砕液からなる群より選択される少なくとも1種を含む、エタノール又は砂糖の製造用材料。
- 請求項1~7のいずれかに記載のスクロース含有破砕液中のスクロースをエタノール発酵することを含む、エタノールの製造方法。
- 請求項1~7のいずれかに記載のスクロース含有破砕液を乾燥することを含む、砂糖の製造方法。
- 植物を、GCS1の発現量が低下するように改変することを含む、植物種子におけるデンプン蓄積を抑制する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018526399A JPWO2018008646A1 (ja) | 2016-07-06 | 2017-07-04 | Gcs1改変植物種子のスクロース含有破砕液 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-134202 | 2016-07-06 | ||
JP2016134202 | 2016-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018008646A1 true WO2018008646A1 (ja) | 2018-01-11 |
Family
ID=60912709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/024531 WO2018008646A1 (ja) | 2016-07-06 | 2017-07-04 | Gcs1改変植物種子のスクロース含有破砕液 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018008646A1 (ja) |
WO (1) | WO2018008646A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006014659A (ja) * | 2004-07-01 | 2006-01-19 | Ebara Corp | 植物を用いた有用物質の生産方法 |
JP2011505869A (ja) * | 2007-12-18 | 2011-03-03 | コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ | スクロース代謝能を有する遺伝子組み換え微生物 |
-
2017
- 2017-07-04 JP JP2018526399A patent/JPWO2018008646A1/ja active Pending
- 2017-07-04 WO PCT/JP2017/024531 patent/WO2018008646A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006014659A (ja) * | 2004-07-01 | 2006-01-19 | Ebara Corp | 植物を用いた有用物質の生産方法 |
JP2011505869A (ja) * | 2007-12-18 | 2011-03-03 | コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ | スクロース代謝能を有する遺伝子組み換え微生物 |
Non-Patent Citations (5)
Title |
---|
DATABASE Database DDBJ/EMBL/GenBan [O] 5 January 2016 (2016-01-05), Database accession no. XP_151696431 * |
DRESSELHAUS, T. ET AL.: "Fertilization: a sticky sperm protein in plants", CURRENT BIOLOGY, vol. 24, no. 4, 2014, pages R164 - R166, XP028615636, ISSN: 0960-9822 * |
MORI, T. ET AL.: "GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization", NATURE CELL BIOLOGY, vol. 8, no. 1, 2006, pages 64 - 71, XP055452526, ISSN: 1465-7392 * |
RUSSE LL, S.D. ET AL.: "Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage", NEW PHYTOLOGIST, vol. 195, 2012, pages 560 - 573, XP055452519, ISSN: 0028-646X * |
VON BESSER, K. ET AL.: "Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization", DEVELOPMENT, vol. 133, 2006, pages 4761 - 4769, XP055452518, ISSN: 0888-6067 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018008646A1 (ja) | 2019-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230041449A1 (en) | Isolated Novel Nucleic Acid and Protein Molecules From Soy and Methods of Using Those Molecules to Generate Transgenic Plants With Enhanced Agronomic Traits | |
US9062323B2 (en) | Identification and use of KRP mutants in wheat | |
US20230031657A1 (en) | Compositions and methods for deterring feeding by psyllids | |
EA008669B1 (ru) | Способ увеличения содержания общих или растворимых углеводов или сахаристости эндогенных углеводов путем каталитического превращения эндогенного сахара в чужеродный сахар | |
US9340795B2 (en) | Genetically modified plant capable of biosynthesizing capsinoid | |
Haq et al. | Progresses of CRISPR/Cas9 genome editing in forage crops | |
WO2017022859A1 (ja) | 変異型サイクリンF-box遺伝子を有する植物 | |
US20220356482A1 (en) | Controlling Plant Flowering | |
WO2018008646A1 (ja) | Gcs1改変植物種子のスクロース含有破砕液 | |
US11965168B2 (en) | Leghemoglobin in soybean | |
US20220315940A1 (en) | Germacrene a synthase mutants | |
WO2022063136A1 (zh) | 抗除草剂乙酰辅酶a羧化酶突变体及其应用 | |
NL2027897B1 (en) | Use of gmaap protein and gmaap gene in breeding soybeans | |
Nair et al. | The Improvement of sugarcane (Saccharum officinarum L.) for sugar, ethanol and biofuel production through innovative biotechnology: A perspective view on its scope, importance & challenges | |
FR3081473A1 (fr) | Promoteurs meiotiques et leurs utilisations | |
JP2006051023A (ja) | スターチシンターゼIIIa型の機能解明と新規デンプン作出法 | |
Wong et al. | Genome editing towards sorghum improvement | |
US20210040494A1 (en) | Non-transgenic plants with mutated glutamate decarboxlases for agronomic benefits | |
CN104762279A (zh) | 一种水稻Bel基因的定点敲除系统及其应用 | |
KURIA et al. | Maize bioengineering with c-repeat binding factor 1 (CBF1) as a technique for drought tolerance | |
Rai et al. | Crispr and food security: Applications in cereal crops | |
US20220195448A1 (en) | Polypeptide and nucleic acid capable of changing amylose content (ac) in plant, and use thereof | |
Abu-Zaitoon et al. | Contribution of the IAM pathway to IAA pool in developing rice grains | |
WO2024023763A1 (en) | Decreasing gene expression for increased protein content in plants | |
WO2024023764A1 (en) | Increasing gene expression for increased protein content in plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018526399 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17824249 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17824249 Country of ref document: EP Kind code of ref document: A1 |