WO2018008622A1 - Light irradiation probe and method for manufacturing same - Google Patents

Light irradiation probe and method for manufacturing same Download PDF

Info

Publication number
WO2018008622A1
WO2018008622A1 PCT/JP2017/024445 JP2017024445W WO2018008622A1 WO 2018008622 A1 WO2018008622 A1 WO 2018008622A1 JP 2017024445 W JP2017024445 W JP 2017024445W WO 2018008622 A1 WO2018008622 A1 WO 2018008622A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
light diffuser
transparent tube
tube
Prior art date
Application number
PCT/JP2017/024445
Other languages
French (fr)
Japanese (ja)
Inventor
荒井 恒憲
恵美悠 小川
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Publication of WO2018008622A1 publication Critical patent/WO2018008622A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the present invention relates to a light irradiation probe used for photodynamic therapy and the like and a method for manufacturing the same.
  • Photodynamic therapy (also referred to as PDT or photochemical treatment) is used for cancer treatment, tachyarrhythmia treatment, and the like.
  • Photodynamic therapy is a method of injecting a photosensitizer (photosensitizer) into a living body and irradiating light such as laser light with a wavelength in the target living tissue to generate active oxygen from the photosensitizer.
  • This is a technique for treating lesions such as cancer and infectious diseases.
  • a photosensitive substance is administered by intravenous injection, etc., and after selectively absorbing and accumulating in the cancer tissue, the accumulated cancer tissue is irradiated with light such as laser light of a specific wavelength.
  • a photochemical reaction is caused to generate active oxygen and radicals in the target tissue, and necrosis of cancer cells is attempted to treat diseases such as cancer.
  • laser light is irradiated onto tissues inside a living body by inserting a catheter including an optical fiber that transmits light into a luminal organ such as a digestive organ or a blood vessel, It is carried out by bringing it close to a living tissue.
  • a laser beam irradiation probe provided with such an optical fiber, one that emits laser beam only from the tip of the fiber and performs pinpoint irradiation has been the mainstream.
  • a laser beam irradiation probe that emits laser light only from the tip of the fiber, if the irradiation area of the laser beam is narrow and the volume of the lesion to be treated is large, the point irradiated with the pinpoint is connected. It was necessary to obtain a linear or planar treatment area.
  • a concave groove structure is provided on the peripheral side surface of the tip portion of the fiber constituting the core so that the laser light transmitted through the fiber is diffused from the peripheral side surface of the tip portion in a direction bent with respect to the optical axis direction of the core.
  • a laser beam diffusion irradiation probe is proposed (for example, Patent Document 1).
  • Patent Document 1 since the laser light is diffused from the peripheral side surface of the tip portion in a direction that bends with respect to the optical axis direction of the core, it is possible to irradiate the range in which the laser light is diffused and Is large, for example, even when the volume of a lesion such as a tumor to be treated is large, the laser beam can be irradiated more uniformly.
  • the laser beam irradiation probe of Patent Document 1 is formed by coating a core glass with a diameter of 0.5 mm with a jacket with a diameter of 2 mm, for example, passing through a lumen having a diameter of about 1 to 2 mm of an endoscope or a catheter.
  • the outer diameter was too large to be used.
  • the laser beam irradiation probe of Patent Document 1 is made of glass, the core and the clad are easily broken when used as a laser beam irradiation probe with a small diameter, and a practical laser beam irradiation probe with a small diameter is manufactured. I could't.
  • a laser beam irradiation probe having a diameter of 0.9 mm or less including the outer cover is not known.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a small-diameter light that can be used by being inserted into a lumen of an endoscope or a catheter or a thin luminal organ of a living body.
  • An object is to provide an irradiation probe and a manufacturing method thereof.
  • Another object of the present invention is to provide a light irradiation probe having a small diameter in which heat generation in a light diffuser during photodynamic treatment is suppressed and a method for producing the same.
  • the above-described problem is a light irradiation probe comprising: a plastic optical fiber that transmits light from a light source; and a light diffuser continuously provided at the tip of the optical fiber.
  • a transparent tube covering the light diffuser and the optical fiber, and a gap is formed between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber, Is fixed in the longitudinal direction of the optical fiber with respect to the transparent tube on the end side on the light diffuser side, and is positioned and fixed at a position closer to the central axis than the outer periphery of the transparent tube.
  • the tip of the light diffuser is disposed at a position closer to the central axis than the outer periphery of the transparent tube, and is not fixed to the transparent tube.
  • proximal means the outside of the living body, that is, the practitioner side in a state where the light irradiation probe is inserted into the living body
  • distal means the distal end side of the portion inserted into the living body. That is, it refers to the tissue to be treated or diagnosed.
  • the end portion side of the optical fiber on the light diffuser side is the end portion side on the distal side of the optical fiber.
  • the tip side of the light diffuser is the distal side of the light diffuser.
  • a gap is formed between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber, even when the temperature of the transparent tube rises, the gap exhibits a heat insulating effect.
  • the temperature of the light diffuser and the optical fiber can be prevented from rising.
  • a thin plastic optical fiber is very soft and easily stretched by a tensile force in the longitudinal direction to change the characteristics of light irradiation. In the present invention, the surroundings of the light diffuser and the optical fiber are changed.
  • the gap is a gap, it is possible to suppress an external force from being applied to the light diffuser and the optical fiber, and to suppress a change in the light irradiation characteristics of the light diffuser. Furthermore, since the optical fiber made of a small-diameter plastic is very soft, it is difficult to pass through the transparent tube, but a gap is provided between the inner surface of the transparent tube and the light diffuser and the outer surface of the optical fiber. The process of inserting the optical fiber through the transparent tube is facilitated.
  • the average distance between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber is preferably 50 ⁇ m or more.
  • the said edge part side by the side of the said light diffuser of the said optical fiber is good to be fixed by the fastening member which winds up the said light irradiation probe.
  • the end portion of the optical fiber on the light diffuser side is fixed by the winding member, it is possible to easily fix the proximal side of the light diffuser in the longitudinal direction of the optical fiber. . Further, it is possible to easily position and fix at a position closer to the central axis than the outer periphery of the transparent tube without strictly adjusting the radial fixing position.
  • a cap having a depression on the inner surface may be fixed to the distal end of the transparent tube, and the distal end side of the light diffusing body may be disposed inside the depression.
  • the distal end side of the light diffuser distal side can be arranged at a position closer to the central axis than the outer periphery of the transparent tube without being fixed to the transparent tube with a simple configuration.
  • the outer diameter of the light irradiation probe is preferably 900 ⁇ m or less.
  • the light irradiation probe of the present invention is inserted into lumens having a diameter of 2 mm or less, such as endoscope forceps ports, suction ports, and air flow / water flow lumens of endoscopes and catheters.
  • a conventionally known light irradiation probe having a diameter of about 1 mm cannot be inserted into a lumen having a diameter of more than 1 mm, such as an air flow lumen of a respiratory endoscope, but the light irradiation probe of the present invention.
  • the outer diameter is 900 ⁇ m or less, it can be inserted. Furthermore, it can be used for a narrow part in a living body.
  • the object includes a plastic optical fiber that transmits light from a light source, and a light diffuser that is continuously provided at the tip of the optical fiber.
  • a method of manufacturing a light irradiation probe comprising: connecting a wire to a tip of the optical fiber opposite to the light diffuser; inserting the wire from one end of a transparent tube; and from the other end of the transparent tube Pulling out, storing the optical fiber and the light diffuser in the transparent tube, and arranging the tip of the light diffuser at a position aligned with the other end of the transparent tube; and the light irradiation probe, A step of tightening by a tightening member on an end side of the optical fiber on the light diffuser side, and a cap having the recess on an inner surface so that the tip of the light diffuser is located inside the recess. It is carried out and fixing the one end of the transparent tube, sequentially, is solved by.
  • the step of connecting a wire to the tip of the optical fiber opposite to the light diffuser the wire is inserted from one end of the transparent tube, and pulled out from the other end of the transparent tube, the optical fiber
  • the optical fiber can be inserted into the transparent tube.
  • the step of tightening the light irradiation probe by a tightening member on the end side of the optical fiber on the light diffuser side, and the tip of the light diffuser is positioned inside the recess.
  • the proximal side of the light diffuser is fixed and the distal tip is a free end or a simple support end, so that there is no tension on the light diffuser and it is closer to the central axis side than the outer periphery in the transparent tube. It is possible to form a gap around the light diffuser by positioning at the position.
  • the gap since a gap is formed between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber, the gap exhibits a heat insulating effect even when the temperature of the transparent tube rises. And it can control that the temperature of a light diffuser and an optical fiber rises. As a result, it is possible to protect the light diffuser and the optical fiber from heat generation by suppressing the temperature rise of the plastic light diffuser and the optical fiber having a low melting point and low heat resistance.
  • a thin plastic optical fiber is very soft and easily stretched by a tensile force in the longitudinal direction to change the characteristics of light irradiation. In the present invention, the surroundings of the light diffuser and the optical fiber are changed.
  • the gap is a gap, it is possible to suppress an external force from being applied to the light diffuser and the optical fiber, and to suppress a change in the light irradiation characteristics of the light diffuser. Furthermore, since the optical fiber made of a small-diameter plastic is very soft, it is difficult to pass through the transparent tube, but a gap is provided between the inner surface of the transparent tube and the light diffuser and the outer surface of the optical fiber. The process of inserting the optical fiber through the transparent tube is facilitated.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a graph which shows the result of the confirmation test of the temperature rise inhibitory effect of the light irradiation probe which concerns on one Example of this invention.
  • the light irradiation probe 1 includes a long optical fiber cable 2, a light diffuser 3 that is continuously provided integrally with the tip of the optical fiber cable 2, and a light A tube 4 (corresponding to a transparent tube) through which the fiber cable 2 and the light diffuser 3 are inserted, and a cap 5 provided at the tip of the tube 4 are main components.
  • the optical fiber cable 2 is configured by covering a long cylindrical core 21 with a cladding 22.
  • the core 21 is made of polymethyl methacrylate, polystyrene, polycarbonate or the like
  • the cladding 22 is made of a fluorinated polymer or the like and has a diameter of 200 ⁇ m or more and 300 ⁇ m or less, preferably 230 ⁇ m or more and 300 ⁇ m or less, more preferably
  • the optical fiber cable 2 is made of a plastic optical fiber that is resistant to bending, and is made of a plastic optical fiber having a diameter of 250 ⁇ m or more and 275 ⁇ m or less.
  • the operability of the catheter or endoscope is used, and the light irradiation probe 1 itself is operated. Sex is not necessary. However, operability may be imparted to the light irradiation probe 1, or the light irradiation probe 1 may be formed from a shape memory material.
  • the light diffuser 3 is formed by removing the clad 22 and exposing the core 21 from the tip of the optical fiber cable 2 to a predetermined length L.
  • the light diffuser 3 is formed integrally with the core 21 and is formed by sandblasting the core 21, and the emitted light to the side having an angle with respect to the length direction of the light diffuser 3 is made uniform. Yes.
  • the configuration of the light diffuser 3 is not limited to this, and the light diffuser 3 is formed by providing a hollow portion at the center and providing a light reflecting mirror on the inner surface, or providing a notch on the inner surface.
  • the emitted light to the side may be made uniform.
  • the length of the light diffuser 3 serving as a light emitting region is 5 mm to 50 mm.
  • the light diffuser 3 is not limited to the one shown in FIG.
  • the light diffusing body 3 can be broadly divided into a case where the light diffusing body 3 is formed by extending the core 21 of the optical fiber cable 2 and a case where a light diffusing body 3 separate from the core 21 is provided. And can be used as the light diffuser 3 of the present embodiment.
  • the core 21 may or may not constitute the diffusing material itself.
  • a transmission light leakage method (a method in which a small scratch is applied to the cladding 22 and a part of the core 21 is exposed, a method in which leakage is formed by bending, etc.) and a method using a diffusing substance are roughly classified.
  • Transmission light leakage methods include scratch processing (sand blasting, stamping, solvent processing, etc.), fiber bragg grating (FBG), and microbending.
  • a method using a diffusing material a method of putting a diffusing material in the core 21 / cladding 22, removing the cladding 22, exposing the core 21, and putting the diffusing material in a coating (not shown) that covers the core 21.
  • Sand blasting is a method of spraying fine particles, and therefore applies to a method using this diffusing substance.
  • the latter case where the light diffuser 3 separate from the core 21 is provided is the case where an optical element different from the core 21 is used as the light diffuser 3.
  • an optical element such as a polyhedral prism, a SELFOC (registered trademark) lens (a gradient index lens) is used.
  • the tube 4 is made of a soft tube made of a fluororesin that has optical transparency, has a high melting point of 200 ° C. or higher, and is difficult to melt and tear even when the temperature rises in vivo.
  • a fluororesin is preferably used, and in particular, a fluorinated carbon resin such as polytetrafluoroethylene (PTFE) is preferably used.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 2 shows the relationship between the diameter of the tube 4 and the core 21 or the light diffuser 3 and the clad 22.
  • the outer diameter of the tube 4 of this embodiment is 900 ⁇ m or less, preferably 600 ⁇ m or more and 850 ⁇ m or less, more preferably 700 ⁇ m or more and 810 ⁇ m or less.
  • the diameter of the core 21 and the light diffuser 3 is 250 to 300 ⁇ m, and the cladding
  • the thickness of 22 is 10 ⁇ m or less, preferably 3 to 7 ⁇ m.
  • the tube 4, the core 21, the cladding 22, and the light diffuser 3 are arranged substantially coaxially, and a cylindrical gap 6 is formed between the outer surface of the cladding 22 or the light diffuser 3 and the inner surface of the tube 4.
  • the gap 6 has an average of the entire circumference of at least 50 ⁇ m or more, preferably 75 ⁇ m or more, and more preferably 100 ⁇ m or more.
  • the light diffuser 3 is physically tensioned by contacting with the heat insulating material. , The light diffuser 3 is partially expanded. As a result, the light irradiation characteristics of the light diffuser 3 vary depending on the location and become non-uniform.
  • the gap 6 that is an air layer, no physical pressure is applied to the light diffuser 3, The light irradiation probe 1 having uniform characteristics can be achieved.
  • the gap 6 has a substantially cylindrical shape surrounding the light diffuser 3 when no external force is applied to the light irradiation probe 1.
  • the light irradiation probe 1 bends in various directions and angles in various lumens such as endoscopes and catheters and in living body lumens.
  • the body 3 may temporarily contact the inner wall of the tube 4, the light diffuser 3 may not be in contact with the inner wall of the tube 4 at all times. This is because the surface contact does not occur unless the contact is always made, and the transfer of heat from the tube 4 side to the light diffuser 3 is not problematic.
  • a cap 5 is fixed to the distal end of the tube 4 so as to close the opening of the distal end of the tube 4.
  • the cap 5 is formed with a cylindrical recess 5h having a diameter slightly larger than the surface of the distal end tip 3e of the light diffuser 3 on one cylindrical bottom surface.
  • the cap 5 is made of a soft material made of the same fluororesin as that of the tube 4, and is welded and fixed so as to close the opening at the tip of the tube 4 by heating the cap 5.
  • the cap 5 is made of a transparent body for applications that require forward irradiation from the distal tip 3e of the light diffuser 3, and forward from the distal tip 3e of the light diffuser 3. When irradiation is unnecessary, it is configured using a cloudy material.
  • the distal tip 3e of the light diffuser 3 is disposed in the internal space of the recess 5h.
  • the tip 3 e is a free end or a simple support end, and is not fixed to the recess 5 h of the cap 5.
  • the tip 3e is located in a space formed by the inner surface of the recess 5h.
  • the tube 4 is wound in the direction of reducing the diameter of the tube 4 by an annular winding member 7 on the proximal side of the light diffuser 3.
  • the winding member 7 is wound around the outer periphery of the tube 4, and the tube 4 and the optical fiber cable 2 are fixed to each other so as not to be displaced in the longitudinal direction.
  • the winding member 7 is preferably formed from a material that also functions as an X-ray opaque marker, such as platinum (Pt). In addition, it is preferable to install the X-ray opaque marker on the outer periphery of the cap 5.
  • the optical fiber cable 2 is positioned at a predetermined position on the central axis side from the outer periphery of the tube 4, that is, on the central axis side in the region surrounded by the outer periphery of the tube 4. And is positioned near the center. As a position in the vicinity of the center of the tube 4, it is possible to set it to a position where it can be substantially identified with the center of the tube 4.
  • the tube 4 having flexibility When the winding member 7 is tightened, the tube 4 having flexibility may be twisted. In such a case, the tube 4 is not the center of the tube 4 but can be substantially equated with the center of the tube 4. It will be fixed in position. In the present specification, the term “a position that can be substantially identified with the center of the tube 4” is used as a meaning including the center of the tube 4.
  • the length from the position where the optical fiber cable 2 is wound by the winding member 7 to the tip 3e of the optical fiber cable 2 and the light diffuser 3 is, for example, When the length is sufficiently long, such as 8 mm or more, the tip 3e side that is a free end or a simple support end hangs down due to gravity, and abuts on any part of the inner surface forming the recess 5h on the side surface near the tip 3e. However, when the length of the optical fiber cable 2 and the light diffuser 3 from the position where the optical fiber cable 2 is wound by the winding member 7 to the tip 3e is short, or when the rigidity of the light diffuser 3 is high, etc.
  • the tip 3e does not hang down, and the side surface in the vicinity of the tip 3e of the light diffuser 3 is not in contact with the inner surface of the recess 5h, but is held in the vicinity of the center with a gap between the inner surface of the recess 5h. Can be.
  • the manufacturing method of the light irradiation probe 1 of this embodiment is demonstrated.
  • the cladding 22 is removed from the distal end portion of the plastic optical fiber cable 2 having a diameter of 300 ⁇ m or less over a predetermined length L to form a light diffuser 3 as shown in FIG.
  • a wire (not shown) is connected to the tip of the optical diffuser 3 opposite to the proximal side of the optical fiber cable 2 with an adhesive or an adhesive tape.
  • the optical fiber cable 2 is inserted into a soft tube 4 made of light-transmitting fluororesin.
  • the tube 4 has an inner diameter such that an average gap of 50 ⁇ m or more is provided between the outer periphery of the optical fiber cable 2 and the outer diameter is 900 ⁇ m or less.
  • the tip 3 e of the light diffuser 3 on the distal side of the optical fiber cable 2 is arranged so as to be aligned with the end of the tube 4.
  • the periphery of the tube 4 is tightened with a tightening member 7, and the optical fiber cable 2 and the tube 4 are mutually connected.
  • the wire is removed from the optical fiber cable 2 by cutting at the proximal end of the optical fiber cable 2.
  • the cap 5 is welded and fixed to the tip of the tube 4 so that the tip 3 e of the light diffuser 3 is disposed in the space of the recess 5 h on the inner surface of the cap 5.
  • the distal end 3e on the distal side of the light diffuser 3 is not fixed to the recess 5h, but is a free end or a simple support end.
  • the simple support end means a simple support end where the position of the optical fiber cable 2 wound by the winding member 7 is a fulcrum of simple support. Since the position of the optical fiber cable 2 wound by the winding member 7 becomes a fixed point for simple support, a moment is generated. However, since the tip 3e is a free end or a simple support end, no moment is generated. Thus, the light irradiation probe 1 is completed.
  • the light diffuser 3 hangs down in accordance with the gravity just by inserting the optical fiber cable 2 into the tube 4 and abuts the inner surface of the tube 4 on the lower side.
  • the light diffuser 3 and the inner surface of the tube 4 are in surface contact.
  • the gap 6 between the tube 4 and the entire periphery of the light diffuser 3 cannot be maintained. Therefore, in the present embodiment, the distal end 3e on the distal side of the light diffuser 3 is disposed in the space of the recess 5h provided at the radial center of the tube 4, and at the proximal side of the light diffuser 3.
  • the ultra-thin plastic optical fiber cable 2 having a diameter of 300 ⁇ m or less is highly flexible and has a property of expanding and contracting depending on the presence or absence of a tensile force applied in the longitudinal direction. Therefore, when the plastic optical fiber cable 2 is fixed to the tube 4 side at a plurality of locations in the length direction, the portion sandwiched between the fixed locations is stretched or twisted as the tube 4 moves. As a result, the light irradiation characteristics of the light diffuser 3 change. Therefore, in the present embodiment, the distal end 3e and the concave portion 5h on the distal side of the light diffuser 3 are not fixed, and the fixing portion between the plastic optical fiber cable 2 and the tube 4 is fixed to the proximal side of the light diffuser 3. The light diffuser 3 is prevented from expanding and contracting by using only one portion of the winding member 7.
  • the core 21 and the clad 22 are each made of PMMA (polymethyl methacrylate resin), and the clad 22 has a thickness of about 5 ⁇ m and a diameter of 250 ⁇ m from the tip of the optical fiber cable 2 (manufactured by Nissei Electric Co., Ltd.) to a predetermined length L.
  • An optical fiber cable 2 from which the cladding 22 was removed was produced.
  • a transparent, soft tube 4 manufactured by Nissei Electric Co., Ltd.
  • the probe 1 was produced with a diffusion length of 50 mm, and the light irradiation probe 1 of Example 1 was obtained.
  • Cylindrical® Diffuser manufactured by Medlight was used as the light irradiation probe of Comparative Example 1.
  • the light irradiation probe of Comparative Example 1 has a plastic optical fiber covered with a tube, and has a diameter of 0.98 mm, a core diameter of 500 ⁇ m, a diffusion length of 50 mm, and a minimum bending radius of 10 mm.
  • the tube covering the fiber was not transparent but clouded. There was no gap between the tube and the fiber, and the tube and the fiber were in close contact. Therefore, neither the fixing mechanism in the longitudinal direction nor the radial direction of the fiber by the concave portion 5h of the cap 5 and the winding member 7 in FIG.
  • the light irradiation probes of Example 1 and Comparative Example 1 are placed in the air, the input power to the light irradiation probe is 500 mW, the irradiation time is 500 seconds, irradiation is performed from each light irradiation probe, and light is irradiated using a thermography camera.
  • the probe surface temperature was measured.
  • the distance between the light irradiation probe and the thermographic camera was about 15 cm, and the ambient temperature was 22 ° C., which is room temperature.
  • the measurement results are shown in FIG.
  • the maximum temperature rise at the irradiation time of 500 seconds was 5.6 ° C. with the light irradiation probe of Comparative Example 1, whereas it was 1.94 ° C. with the light irradiation probe of Example 1.
  • the advantage was low.
  • the light irradiation probe of Example 1 it turned out that the temperature rise of the light irradiation probe by the light radiation from a light diffuser is suppressed.

Abstract

Provided are a small-diameter light irradiation probe capable of being inserted and used in an endoscope or catheter lumen or a thin hollow organ, and a method for manufacturing the same. A light irradiation probe 1 provided with a plastic optical fiber 2 for transmitting light from a light source, and a light diffuser 3 provided continuously with a distal end of the optical fiber 2. A transparent tube 4 for covering the light diffuser 3 and the optical fiber 2 is provided, and a gap 6 is formed between an inner surface of the transparent tube 4 and an outer surface of the light diffuser 3 and the optical fiber 2. On an end-part side of the optical fiber 2 toward the light diffuser 3, the optical fiber 2 is fixed to the transparent tube 4 in the long direction of the optical fiber 2, and is fixed in position at a position closer to a center axis than the external periphery of the transparent tube 4. A distal-end side of the light diffuser 3 is disposed in a position closer to the center axis than the external periphery of the transparent tube 4, and is not fixed to the transparent tube 4.

Description

光照射プローブ及びその製造方法Light irradiation probe and manufacturing method thereof
 本発明は、光線力学的療法等に用いられる光照射プローブ及びその製造方法に関する。 The present invention relates to a light irradiation probe used for photodynamic therapy and the like and a method for manufacturing the same.
 癌治療や頻脈性不整脈の治療等に、光線力学的治療(Photodynamic Therapy:PDT、光化学治療ともいう)が、用いられている。光線力学的治療とは、生体内に光感受性物質(光増感剤)を注入し、標的となる生体組織にある波長のレーザ光等の光を照射して光感受性物質から活性酸素を生じ、これによって癌や感染症などの病巣を治療する術式である。
 例えば、癌の光線力学的治療では、光感受性物質を静脈注射等により投与し、癌組織に選択的に吸収・集積させた後、集積された癌組織に特定波長のレーザ光等の光線を照射することによって光化学反応を起こさせ、標的組織中に活性酸素やラジカルを生成させ、癌細胞を壊死させて癌等の疾患を治療しようとするものである。
Photodynamic therapy (also referred to as PDT or photochemical treatment) is used for cancer treatment, tachyarrhythmia treatment, and the like. Photodynamic therapy is a method of injecting a photosensitizer (photosensitizer) into a living body and irradiating light such as laser light with a wavelength in the target living tissue to generate active oxygen from the photosensitizer. This is a technique for treating lesions such as cancer and infectious diseases.
For example, in photodynamic therapy of cancer, a photosensitive substance is administered by intravenous injection, etc., and after selectively absorbing and accumulating in the cancer tissue, the accumulated cancer tissue is irradiated with light such as laser light of a specific wavelength. Thus, a photochemical reaction is caused to generate active oxygen and radicals in the target tissue, and necrosis of cancer cells is attempted to treat diseases such as cancer.
 光線力学的療法において、レーザ光の生体内部の組織への照射は、光線を伝送する光ファイバを含むカテーテルを、消化器や血管等の管腔臓器内に挿入し、光ファイバの光線射出部位を生体組織に近接させることにより行われる。
 このような光ファイバを備えたレーザ光照射プローブとして、従来は、ファイバの先端からのみレーザ光を放出し、ピンポイント照射を行うものが主流であった。しかし、ファイバの先端からのみレーザ光を放射するタイプのレーザ光照射プローブでは、レーザ光の照射領域が狭く、治療すべき病変部の体積が大きい場合には、ピンポイントで照射した点を繋ぐことにより線状又は面状の治療域を得る必要があった。
In photodynamic therapy, laser light is irradiated onto tissues inside a living body by inserting a catheter including an optical fiber that transmits light into a luminal organ such as a digestive organ or a blood vessel, It is carried out by bringing it close to a living tissue.
Conventionally, as a laser beam irradiation probe provided with such an optical fiber, one that emits laser beam only from the tip of the fiber and performs pinpoint irradiation has been the mainstream. However, with a laser beam irradiation probe that emits laser light only from the tip of the fiber, if the irradiation area of the laser beam is narrow and the volume of the lesion to be treated is large, the point irradiated with the pinpoint is connected. It was necessary to obtain a linear or planar treatment area.
 そこで、コアを構成するファイバの先端部の周側面に凹溝構造を備え、ファイバを通して伝送されるレーザ光を先端部の周側面からコアの光軸方向に対して折曲する方向に拡散させるようにしたレーザ光拡散照射プローブが提案されている(例えば、特許文献1)。 Therefore, a concave groove structure is provided on the peripheral side surface of the tip portion of the fiber constituting the core so that the laser light transmitted through the fiber is diffused from the peripheral side surface of the tip portion in a direction bent with respect to the optical axis direction of the core. A laser beam diffusion irradiation probe is proposed (for example, Patent Document 1).
 特許文献1では、レーザ光を先端部の周側面からコアの光軸方向に対して折曲する方向に拡散させるため、レーザ光が拡散する範囲に一括で照射できると共に、治療対象となる生体組織が大きい場合、例えば、治療すべき腫瘍等の病変部の体積が大きい場合にも、レーザ光線をより均一に照射できる。 In Patent Document 1, since the laser light is diffused from the peripheral side surface of the tip portion in a direction that bends with respect to the optical axis direction of the core, it is possible to irradiate the range in which the laser light is diffused and Is large, for example, even when the volume of a lesion such as a tumor to be treated is large, the laser beam can be irradiated more uniformly.
特開2001-204831号公報JP 2001-204831 A
 しかし、特許文献1のレーザ光照射プローブは、直径0.5mmのコアガラスが直径2mmのジャケットで被覆されてなり、例えば、内視鏡やカテーテルの直径1~2mm程度のルーメンに通して用いる用途には、外径が大きすぎて用いることができなかった。更に、特許文献1のレーザ光照射プローブは、コア及びクラッドがガラスからなるため、細径のレーザ光照射プローブとして用いた場合に折れやすく、実用的な細径のレーザ光照射プローブを作製することはできなかった。
 外側のカバーも含めた径が0.9mm以下のレーザ光照射プローブは、知られていない。
However, the laser beam irradiation probe of Patent Document 1 is formed by coating a core glass with a diameter of 0.5 mm with a jacket with a diameter of 2 mm, for example, passing through a lumen having a diameter of about 1 to 2 mm of an endoscope or a catheter. The outer diameter was too large to be used. Furthermore, since the laser beam irradiation probe of Patent Document 1 is made of glass, the core and the clad are easily broken when used as a laser beam irradiation probe with a small diameter, and a practical laser beam irradiation probe with a small diameter is manufactured. I couldn't.
A laser beam irradiation probe having a diameter of 0.9 mm or less including the outer cover is not known.
 本発明は、上記の課題に鑑みてなされたものであり、本発明の目的は、内視鏡やカテーテルのルーメンや、生体の細い管腔臓器に挿入して用いることが可能な細径の光照射プローブ及びその製造方法を提供することにある。
 本発明の他の目的は、光線力学的治療中の光拡散体における発熱が抑制される細径の光照射プローブ及びその製造方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a small-diameter light that can be used by being inserted into a lumen of an endoscope or a catheter or a thin luminal organ of a living body. An object is to provide an irradiation probe and a manufacturing method thereof.
Another object of the present invention is to provide a light irradiation probe having a small diameter in which heat generation in a light diffuser during photodynamic treatment is suppressed and a method for producing the same.
 前記課題は、本発明の光照射プローブによれば、光源からの光を伝送するプラスチック製光ファイバと、該光ファイバの先端に連続して設けられた光拡散体と、を備えた光照射プローブであって、前記光拡散体及び前記光ファイバを被覆する透明チューブを備え、該透明チューブの内面と前記光拡散体及び前記光ファイバの外面との間には、隙間が形成され、前記光ファイバは、前記光拡散体側の端部側で、前記透明チューブに対して、前記光ファイバの長尺方向において固定されると共に、前記透明チューブの外周よりも中心軸側の位置に位置決め固定されており、前記光拡散体の先端側は、前記透明チューブの外周よりも中心軸側の位置に配置され、前記透明チューブに対して固定されないこと、により解決される。
 なお、本明細書において、近位とは、光照射プローブを生体内に挿入した状態において、生体外側、つまり、施術者側をいい、遠位とは、生体内に挿入された部分の先端側,つまり、治療又は診断対象組織側をいう。
 従って、本発明において、光ファイバの光拡散体側の端部側とは、光ファイバの遠位側の端部側である。また、光拡散体の先端側とは、光拡散体の遠位側である。
According to the light irradiation probe of the present invention, the above-described problem is a light irradiation probe comprising: a plastic optical fiber that transmits light from a light source; and a light diffuser continuously provided at the tip of the optical fiber. A transparent tube covering the light diffuser and the optical fiber, and a gap is formed between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber, Is fixed in the longitudinal direction of the optical fiber with respect to the transparent tube on the end side on the light diffuser side, and is positioned and fixed at a position closer to the central axis than the outer periphery of the transparent tube. The tip of the light diffuser is disposed at a position closer to the central axis than the outer periphery of the transparent tube, and is not fixed to the transparent tube.
In this specification, the term “proximal” means the outside of the living body, that is, the practitioner side in a state where the light irradiation probe is inserted into the living body, and the term “distal” means the distal end side of the portion inserted into the living body. That is, it refers to the tissue to be treated or diagnosed.
Accordingly, in the present invention, the end portion side of the optical fiber on the light diffuser side is the end portion side on the distal side of the optical fiber. The tip side of the light diffuser is the distal side of the light diffuser.
 このように、透明チューブの内面と光拡散体及び光ファイバの外面との間には、隙間が形成されているため、透明チューブの温度が上昇したときでも、隙間が、断熱効果を発揮して、光拡散体及び光ファイバの温度が上昇することを抑制できる。その結果、融点が低く耐熱性の低いプラスチック製の光拡散体及び光ファイバの温度上昇を抑制して、光拡散体及び光ファイバを発熱から保護することができる。
 また、細径のプラスチック製の光ファイバは、非常に軟らかく、長尺方向の引張力によって容易に伸長して、光照射の特性が変化するが、本発明では、光拡散体及び光ファイバの周囲が隙間となっているため、光拡散体及び光ファイバに外力が掛かることを抑制して、光拡散体の光照射の特性が変化することを抑制できる。
 更に、細径のプラスチック製の光ファイバは、非常に軟らかいため、透明チューブに挿通させることが難しいが、透明チューブの内面と光拡散体及び光ファイバの外面との間に、隙間を設けるため、光ファイバを透明チューブに挿通する工程が容易になる。
Thus, since a gap is formed between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber, even when the temperature of the transparent tube rises, the gap exhibits a heat insulating effect. The temperature of the light diffuser and the optical fiber can be prevented from rising. As a result, it is possible to protect the light diffuser and the optical fiber from heat generation by suppressing the temperature rise of the plastic light diffuser and the optical fiber having a low melting point and low heat resistance.
In addition, a thin plastic optical fiber is very soft and easily stretched by a tensile force in the longitudinal direction to change the characteristics of light irradiation. In the present invention, the surroundings of the light diffuser and the optical fiber are changed. Since the gap is a gap, it is possible to suppress an external force from being applied to the light diffuser and the optical fiber, and to suppress a change in the light irradiation characteristics of the light diffuser.
Furthermore, since the optical fiber made of a small-diameter plastic is very soft, it is difficult to pass through the transparent tube, but a gap is provided between the inner surface of the transparent tube and the light diffuser and the outer surface of the optical fiber. The process of inserting the optical fiber through the transparent tube is facilitated.
 このとき、前記透明チューブの内面と前記光拡散体及び前記光ファイバの外面との間の平均距離は、50μm以上であるとよい。
 このように構成しているため、外部からの光拡散体及び光ファイバへの熱伝達の抑制が充分果たされると共に、透明チューブ内へ光拡散体及び光ファイバを挿通する作業において、充分な作業性を確保できる。
At this time, the average distance between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber is preferably 50 μm or more.
With this configuration, heat transfer from the outside to the light diffuser and the optical fiber is sufficiently suppressed, and sufficient workability is achieved in inserting the light diffuser and the optical fiber into the transparent tube. Can be secured.
 また、前記光ファイバの前記光拡散体側の前記端部側は、前記光照射プローブを巻締める巻締め部材によって固定されているとよい。
 このように、巻締め部材によって、光ファイバの光拡散体側の端部側を固定するので、簡易に、光拡散体の近位側を、光ファイバの長尺方向において固定することが可能となる。更に、径方向の固定位置を厳密に調整しなくても、簡易に、透明チューブの外周よりも中心軸側の位置に位置決め固定することが可能となる。
Moreover, the said edge part side by the side of the said light diffuser of the said optical fiber is good to be fixed by the fastening member which winds up the said light irradiation probe.
As described above, since the end portion of the optical fiber on the light diffuser side is fixed by the winding member, it is possible to easily fix the proximal side of the light diffuser in the longitudinal direction of the optical fiber. . Further, it is possible to easily position and fix at a position closer to the central axis than the outer periphery of the transparent tube without strictly adjusting the radial fixing position.
 前記透明チューブの先端には、内側の面に窪みを備えたキャップが固定され、前記光拡散体の前記先端側は、前記窪みの内部に配置されていてもよい。
 このように構成すると、簡易な構成で、光拡散体遠位側の先端側を、透明チューブに対して固定せずに透明チューブの外周よりも中心軸側の位置に配置することができる。
A cap having a depression on the inner surface may be fixed to the distal end of the transparent tube, and the distal end side of the light diffusing body may be disposed inside the depression.
With this configuration, the distal end side of the light diffuser distal side can be arranged at a position closer to the central axis than the outer periphery of the transparent tube without being fixed to the transparent tube with a simple configuration.
 また、光照射プローブの外径が900μm以下であるとよい。
 このように構成しているため、内視鏡の鉗子口,吸引口や、内視鏡やカテーテルの空気流通・水流通ルーメンなど、直径2mm以下のルーメン内に、本発明の光照射プローブを挿通して用いることが可能となる。特に、呼吸器内視鏡の空気流通ルーメンのように、直径が1mm強のルーメンには、従来知られていた直径1mm程度の光照射プローブは挿入することができないが、本発明の光照射プローブは、外径が900μm以下であるため、挿入可能となったものである。更に、生体内の狭小な部位にも用いることが可能である。
The outer diameter of the light irradiation probe is preferably 900 μm or less.
With this configuration, the light irradiation probe of the present invention is inserted into lumens having a diameter of 2 mm or less, such as endoscope forceps ports, suction ports, and air flow / water flow lumens of endoscopes and catheters. Can be used. In particular, a conventionally known light irradiation probe having a diameter of about 1 mm cannot be inserted into a lumen having a diameter of more than 1 mm, such as an air flow lumen of a respiratory endoscope, but the light irradiation probe of the present invention. Since the outer diameter is 900 μm or less, it can be inserted. Furthermore, it can be used for a narrow part in a living body.
 前記課題は、本発明の光照射プローブの製造方法によれば、光源からの光を伝送するプラスチック製光ファイバと、該光ファイバの先端に連続して設けられた光拡散体と、を備えた光照射プローブの製造方法であって、前記光ファイバの前記光拡散体逆側の先端に、ワイヤを連結する工程と、前記ワイヤを、透明チューブの一端から挿通し、前記透明チューブの他端から引き出して、前記光ファイバ及び前記光拡散体を前記透明チューブ内に格納し、前記光拡散体の先端を、前記透明チューブの前記他端に並ぶ位置に配置する工程と、前記光照射プローブを、前記光ファイバの前記光拡散体側の端部側で、巻締め部材によって巻締める工程と、前記光拡散体の前記先端が、窪みの内部に位置するように、前記窪みを内面に有するキャップを、前記透明チューブの前記一端に固定する工程と、を順次行うこと、により解決される。 According to the method of manufacturing a light irradiation probe of the present invention, the object includes a plastic optical fiber that transmits light from a light source, and a light diffuser that is continuously provided at the tip of the optical fiber. A method of manufacturing a light irradiation probe, comprising: connecting a wire to a tip of the optical fiber opposite to the light diffuser; inserting the wire from one end of a transparent tube; and from the other end of the transparent tube Pulling out, storing the optical fiber and the light diffuser in the transparent tube, and arranging the tip of the light diffuser at a position aligned with the other end of the transparent tube; and the light irradiation probe, A step of tightening by a tightening member on an end side of the optical fiber on the light diffuser side, and a cap having the recess on an inner surface so that the tip of the light diffuser is located inside the recess. It is carried out and fixing the one end of the transparent tube, sequentially, is solved by.
 このように、前記光ファイバの前記光拡散体逆側の先端に、ワイヤを連結する工程と、前記ワイヤを、透明チューブの一端から挿通し、前記透明チューブの他端から引き出して、前記光ファイバ及び前記光拡散体を前記透明チューブ内に格納し、前記光拡散体の先端を、前記透明チューブの前記他端に並ぶ位置に配置する工程と、を備えているため、非常に軟質のプラスチック製光ファイバを、透明チューブ内に挿通することが可能となる。
 また、前記光照射プローブを、前記光ファイバの前記光拡散体側の端部側で、巻締め部材によって巻締める工程と、前記光拡散体の前記先端が、窪みの内部に位置するように、前記窪みを内面に有するキャップを、前記透明チューブの前記一端に固定する工程と、を備えているため、光拡散体の近位側を、センタリングしながら長尺方向及び径方向において固定すると共に、光拡散体の遠位側を、固定せずにセンタリングすることが可能となる。その結果、光拡散体の近位側が固定されると共に遠位側の先端が自由端又は単純支持端となるため、光拡散体にテンションを掛けずに透明チューブ内の外周よりも中心軸側の位置に位置決めし、光拡散体の周囲に隙間を形成することが可能となる。
Thus, the step of connecting a wire to the tip of the optical fiber opposite to the light diffuser, the wire is inserted from one end of the transparent tube, and pulled out from the other end of the transparent tube, the optical fiber And the step of storing the light diffuser in the transparent tube, and disposing the tip of the light diffuser at a position aligned with the other end of the transparent tube. The optical fiber can be inserted into the transparent tube.
Further, the step of tightening the light irradiation probe by a tightening member on the end side of the optical fiber on the light diffuser side, and the tip of the light diffuser is positioned inside the recess. And a step of fixing a cap having a depression on the inner surface to the one end of the transparent tube, so that the proximal side of the light diffuser is fixed in the longitudinal direction and the radial direction while being centered, and the light The distal side of the diffuser can be centered without being fixed. As a result, the proximal side of the light diffuser is fixed and the distal tip is a free end or a simple support end, so that there is no tension on the light diffuser and it is closer to the central axis side than the outer periphery in the transparent tube. It is possible to form a gap around the light diffuser by positioning at the position.
 本発明によれば、透明チューブの内面と光拡散体及び光ファイバの外面との間には、隙間が形成されているため、透明チューブの温度が上昇したときでも、隙間が、断熱効果を発揮して、光拡散体及び光ファイバの温度が上昇することを抑制できる。その結果、融点が低く耐熱性の低いプラスチック製の光拡散体及び光ファイバの温度上昇を抑制して、光拡散体及び光ファイバを発熱から保護することができる。
 また、細径のプラスチック製の光ファイバは、非常に軟らかく、長尺方向の引張力によって容易に伸長して、光照射の特性が変化するが、本発明では、光拡散体及び光ファイバの周囲が隙間となっているため、光拡散体及び光ファイバに外力が掛かることを抑制して、光拡散体の光照射の特性が変化することを抑制できる。
 更に、細径のプラスチック製の光ファイバは、非常に軟らかいため、透明チューブに挿通させることが難しいが、透明チューブの内面と光拡散体及び光ファイバの外面との間に、隙間を設けるため、光ファイバを透明チューブに挿通する工程が容易になる。
According to the present invention, since a gap is formed between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber, the gap exhibits a heat insulating effect even when the temperature of the transparent tube rises. And it can control that the temperature of a light diffuser and an optical fiber rises. As a result, it is possible to protect the light diffuser and the optical fiber from heat generation by suppressing the temperature rise of the plastic light diffuser and the optical fiber having a low melting point and low heat resistance.
In addition, a thin plastic optical fiber is very soft and easily stretched by a tensile force in the longitudinal direction to change the characteristics of light irradiation. In the present invention, the surroundings of the light diffuser and the optical fiber are changed. Since the gap is a gap, it is possible to suppress an external force from being applied to the light diffuser and the optical fiber, and to suppress a change in the light irradiation characteristics of the light diffuser.
Furthermore, since the optical fiber made of a small-diameter plastic is very soft, it is difficult to pass through the transparent tube, but a gap is provided between the inner surface of the transparent tube and the light diffuser and the outer surface of the optical fiber. The process of inserting the optical fiber through the transparent tube is facilitated.
本発明の一実施形態に係る光照射プローブの縦断面説明図である。It is longitudinal section explanatory drawing of the light irradiation probe which concerns on one Embodiment of this invention. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 本発明の一実施例に係る光照射プローブの温度上昇抑制効果の確認試験の結果を示すグラフである。It is a graph which shows the result of the confirmation test of the temperature rise inhibitory effect of the light irradiation probe which concerns on one Example of this invention.
 以下、本発明の光照射プローブの一実施形態に係る光照射プローブ1について、図1~図2を参照しながら説明する。 Hereinafter, a light irradiation probe 1 according to an embodiment of the light irradiation probe of the present invention will be described with reference to FIGS.
 本実施の形態に係る光照射プローブ1は、図1で示すように、長尺の光ファイバケーブル2と、光ファイバケーブル2の先端に連続して一体に設けられた光拡散体3と、光ファイバケーブル2及び光拡散体3を内部に挿通するチューブ4(透明チューブに該当)と、チューブ4の先端に設けられたキャップ5と、を主要構成要素としている。 As shown in FIG. 1, the light irradiation probe 1 according to the present embodiment includes a long optical fiber cable 2, a light diffuser 3 that is continuously provided integrally with the tip of the optical fiber cable 2, and a light A tube 4 (corresponding to a transparent tube) through which the fiber cable 2 and the light diffuser 3 are inserted, and a cap 5 provided at the tip of the tube 4 are main components.
 光ファイバケーブル2は、図1に示すように、長尺円柱状のコア21の周囲がクラッド22で被覆されて構成されている。コア21は、ポリメタクリル酸メチル,ポリスチレン,ポリカーボネート等から構成され、クラッド22は、フッ素化ポリマー等から構成された直径200μm以上、300μm以下、好ましくは、直径230μm以上、300μm以下、更に好ましくは、直径250μm以上、275μm以下のプラスチック製の光ファイバから構成されており、光ファイバケーブル2は、曲げに強いプラスチック製の光ファイバで構成されている。
 光照射プローブ1を、不図示のカテーテルや内視鏡の鉗子口等に挿通して使用する場合には、カテーテルや内視鏡の持つ操作性を利用することとなり、光照射プローブ1自体に操作性は必要ない。但し、光照射プローブ1に操作性を付与してもよいし、光照射プローブ1を形状記憶素材から形成してもよい。
As shown in FIG. 1, the optical fiber cable 2 is configured by covering a long cylindrical core 21 with a cladding 22. The core 21 is made of polymethyl methacrylate, polystyrene, polycarbonate or the like, and the cladding 22 is made of a fluorinated polymer or the like and has a diameter of 200 μm or more and 300 μm or less, preferably 230 μm or more and 300 μm or less, more preferably The optical fiber cable 2 is made of a plastic optical fiber that is resistant to bending, and is made of a plastic optical fiber having a diameter of 250 μm or more and 275 μm or less.
When the light irradiation probe 1 is used by being inserted through a catheter (not shown) or a forceps opening of an endoscope, the operability of the catheter or endoscope is used, and the light irradiation probe 1 itself is operated. Sex is not necessary. However, operability may be imparted to the light irradiation probe 1, or the light irradiation probe 1 may be formed from a shape memory material.
 光拡散体3は、図1のように、光ファイバケーブル2の先端から所定長Lに亘り、クラッド22が除去されて、コア21が露出してなる。
 光拡散体3は、コア21と一体からなり、コア21にサンドブラスト加工を施して形成され、光拡散体3の長さ方向に対して角度を持った側方への出射光が均一化されている。なお、光拡散体3の構成はこれに限定されるものではなく、光拡散体3は、中央に中空部を設けてその内面に光反射ミラーを設けたり、内面に刻み目を設けたりすることによって、側方への出射光が均一化されていてもよい。
 発光領域となる光拡散体3の長さは、5mm~50mmである。
As shown in FIG. 1, the light diffuser 3 is formed by removing the clad 22 and exposing the core 21 from the tip of the optical fiber cable 2 to a predetermined length L.
The light diffuser 3 is formed integrally with the core 21 and is formed by sandblasting the core 21, and the emitted light to the side having an angle with respect to the length direction of the light diffuser 3 is made uniform. Yes. The configuration of the light diffuser 3 is not limited to this, and the light diffuser 3 is formed by providing a hollow portion at the center and providing a light reflecting mirror on the inner surface, or providing a notch on the inner surface. The emitted light to the side may be made uniform.
The length of the light diffuser 3 serving as a light emitting region is 5 mm to 50 mm.
 なお、光拡散体3は、図1の方式のものに限られず、他の方式のものを用いることもできる。
 光拡散体3を構成する方式としては、大きく分けて、光ファイバケーブル2のコア21を延長させて光拡散体3を構成する場合と、コア21とは別体の光拡散体3を設ける場合と、に大別され、いずれも、本実施形態の光拡散体3として用いることができる。
 前者では、コア21が拡散物質自体を構成する場合と構成しない場合とがある。具体的には、伝送光漏洩方式(クラッド22に細かい傷をつけて一部コア21を露出する方式、曲げにより漏洩を構成する方式など)と、拡散物質を用いる方式に大別される。
 伝送光漏洩方式としては、キズ加工(サンドブラスト、スタンピング、溶剤処理など)、ファイバーブラッググレーティング(Fiber Bragg Grating:FBG)、マイクロベンディングなどがある。
Note that the light diffuser 3 is not limited to the one shown in FIG.
The light diffusing body 3 can be broadly divided into a case where the light diffusing body 3 is formed by extending the core 21 of the optical fiber cable 2 and a case where a light diffusing body 3 separate from the core 21 is provided. And can be used as the light diffuser 3 of the present embodiment.
In the former, the core 21 may or may not constitute the diffusing material itself. Specifically, a transmission light leakage method (a method in which a small scratch is applied to the cladding 22 and a part of the core 21 is exposed, a method in which leakage is formed by bending, etc.) and a method using a diffusing substance are roughly classified.
Transmission light leakage methods include scratch processing (sand blasting, stamping, solvent processing, etc.), fiber bragg grating (FBG), and microbending.
 また、拡散物質を用いる方式としては、コア21/クラッド22内に拡散物質を入れる方式、クラッド22を除去してコア21を露出させ、コア21を被覆する不図示の被覆内に拡散物質を入れる方式などがある。なお、サンドブラストは、細かい粒子を吹き付ける方法であるため、この拡散物質を用いる方式にも当てはまる。
 後者の、コア21とは別体の光拡散体3を設ける場合としては、光拡散体3として、コア21とは別の光学素子を用いる場合が当てはまる。例えば、光拡散体3として、多面体プリズム、セルフォック(登録商標)レンズ(屈折率分布型レンズ)等の光学素子を用いる場合である。
Further, as a method using a diffusing material, a method of putting a diffusing material in the core 21 / cladding 22, removing the cladding 22, exposing the core 21, and putting the diffusing material in a coating (not shown) that covers the core 21. There are methods. Sand blasting is a method of spraying fine particles, and therefore applies to a method using this diffusing substance.
The latter case where the light diffuser 3 separate from the core 21 is provided is the case where an optical element different from the core 21 is used as the light diffuser 3. For example, as the light diffuser 3, an optical element such as a polyhedral prism, a SELFOC (registered trademark) lens (a gradient index lens) is used.
 チューブ4は、光透過性を有すると共に、融点が200℃以上と高く、生体内で温度が上がったときにも融解しにくく破れにくいフッ素樹脂製の軟質チューブからなる。
 チューブ4の材料としては、フッ素樹脂が好適に用いられ、特に、ポリテトラフルオロエチレン(PTFE)等のフッ素化炭素樹脂が好適に用いられる。
 図1のA-A断面図を図2に示す。図2では、コア21又は光拡散体3,クラッド22と、チューブ4の径の関係を示している。
 本実施形態のチューブ4の外径は、900μm以下、好ましくは、600μm以上で850μm以下、更に好ましくは、700μm以上で810μm以下であり、コア21及び光拡散体3の径は250~300μm、クラッド22の厚みは10μm以下、好ましくは3~7μmである。
The tube 4 is made of a soft tube made of a fluororesin that has optical transparency, has a high melting point of 200 ° C. or higher, and is difficult to melt and tear even when the temperature rises in vivo.
As the material of the tube 4, a fluororesin is preferably used, and in particular, a fluorinated carbon resin such as polytetrafluoroethylene (PTFE) is preferably used.
FIG. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 2 shows the relationship between the diameter of the tube 4 and the core 21 or the light diffuser 3 and the clad 22.
The outer diameter of the tube 4 of this embodiment is 900 μm or less, preferably 600 μm or more and 850 μm or less, more preferably 700 μm or more and 810 μm or less. The diameter of the core 21 and the light diffuser 3 is 250 to 300 μm, and the cladding The thickness of 22 is 10 μm or less, preferably 3 to 7 μm.
 チューブ4とコア21,クラッド22及び光拡散体3は、略同軸状に配置されており、クラッド22又は光拡散体3の外面とチューブ4の内面との間は、円筒状の隙間6が形成されている。隙間6は、全周の平均が少なくとも50μm以上、好ましくは75μm以上、更に好ましくは100μm以上である。
 生体の組織内や管腔臓器内に光照射プローブ1を導入してレーザ光照射を行ったとき、光拡散体3及び光ファイバケーブル2における発熱は極僅かであるが、光照射プローブ1の外側に熱源があると、チューブ4への伝熱が生じる。本実施形態では、チューブ4と光拡散体3及び光ファイバケーブル2との間に円筒状の隙間6が形成されているため、チューブ4の熱が、チューブ4よりも融点が低く耐熱性の低い光拡散体3に伝達することを抑制できる。
The tube 4, the core 21, the cladding 22, and the light diffuser 3 are arranged substantially coaxially, and a cylindrical gap 6 is formed between the outer surface of the cladding 22 or the light diffuser 3 and the inner surface of the tube 4. Has been. The gap 6 has an average of the entire circumference of at least 50 μm or more, preferably 75 μm or more, and more preferably 100 μm or more.
When the light irradiation probe 1 is introduced into a living tissue or a luminal organ and laser light irradiation is performed, heat generation in the light diffuser 3 and the optical fiber cable 2 is very small, but the outside of the light irradiation probe 1. If there is a heat source, heat transfer to the tube 4 occurs. In the present embodiment, since the cylindrical gap 6 is formed between the tube 4 and the light diffuser 3 and the optical fiber cable 2, the heat of the tube 4 has a lower melting point and lower heat resistance than the tube 4. Transmission to the light diffuser 3 can be suppressed.
 光拡散体3とチューブ4との間に、透明の断熱材を挿入することも可能だが、断熱材を挿入すると、断熱材と接触することにより、光拡散体3には物理的なテンションが掛かり、光拡散体3が部分的に伸長してしまう。その結果、光拡散体3の光照射の特性が、場所によって変化し、不均一となる。それに対し、本実施形態では、空気層である隙間6によって、チューブ4から光拡散体3への熱の伝達を抑制する断熱効果を得るため、光拡散体3に物理的な圧力が掛からず、均一な特性の光照射プローブ1を達成できる。 Although it is possible to insert a transparent heat insulating material between the light diffuser 3 and the tube 4, when the heat insulating material is inserted, the light diffuser 3 is physically tensioned by contacting with the heat insulating material. , The light diffuser 3 is partially expanded. As a result, the light irradiation characteristics of the light diffuser 3 vary depending on the location and become non-uniform. On the other hand, in this embodiment, in order to obtain a heat insulation effect that suppresses the transfer of heat from the tube 4 to the light diffuser 3 by the gap 6 that is an air layer, no physical pressure is applied to the light diffuser 3, The light irradiation probe 1 having uniform characteristics can be achieved.
 また、円筒状の隙間6が形成されているため、チューブ4内に光ファイバケーブル2を円滑に挿入可能となる。
 なお、隙間6は、光照射プローブ1に外力が掛かっていないときには、光拡散体3の周囲を囲む略円筒状となっている。光照射プローブ1の使用時には、内視鏡,カテーテル等の各種ルーメン内や生体管腔内で、種々の方向,角度で湾曲するため、光照射プローブ1が配置されている状態によっては、光拡散体3がチューブ4内壁に一時的に接触するときもあるが、光拡散体3がチューブ4内壁に常時接触しなければよい。常時接触しなければ、面接触とはならず、チューブ4側からの熱の光拡散体3への伝達は、問題にならない程度であるためである。
Further, since the cylindrical gap 6 is formed, the optical fiber cable 2 can be smoothly inserted into the tube 4.
The gap 6 has a substantially cylindrical shape surrounding the light diffuser 3 when no external force is applied to the light irradiation probe 1. When the light irradiation probe 1 is used, it bends in various directions and angles in various lumens such as endoscopes and catheters and in living body lumens. Although the body 3 may temporarily contact the inner wall of the tube 4, the light diffuser 3 may not be in contact with the inner wall of the tube 4 at all times. This is because the surface contact does not occur unless the contact is always made, and the transfer of heat from the tube 4 side to the light diffuser 3 is not problematic.
 チューブ4の遠位側の先端には、チューブ4の先端の開口を塞ぐように、キャップ5が固定されている。
 キャップ5は、円筒形状の一方の底面に、光拡散体3の遠位側の先端3eの面より僅かに大きな径の円筒状の凹部5hが形成されてなる。キャップ5は、チューブ4と同じフッ素樹脂製の軟質素材からなり、キャップ5を加熱してチューブ4の先端の開口を塞ぐよう、溶着固定されている。
 キャップ5は、光拡散体3の遠位側の先端3eから前方への照射が必要な用途の場合には、透明体から構成され、光拡散体3の遠位側の先端3eから前方への照射が不要な場合には、白濁した材料を用いて構成される。
A cap 5 is fixed to the distal end of the tube 4 so as to close the opening of the distal end of the tube 4.
The cap 5 is formed with a cylindrical recess 5h having a diameter slightly larger than the surface of the distal end tip 3e of the light diffuser 3 on one cylindrical bottom surface. The cap 5 is made of a soft material made of the same fluororesin as that of the tube 4, and is welded and fixed so as to close the opening at the tip of the tube 4 by heating the cap 5.
The cap 5 is made of a transparent body for applications that require forward irradiation from the distal tip 3e of the light diffuser 3, and forward from the distal tip 3e of the light diffuser 3. When irradiation is unnecessary, it is configured using a cloudy material.
 光照射プローブ1が組み立てられた状態において、光拡散体3の遠位側の先端3eは、凹部5hの内部空間に配置されている。先端3eは、自由端又は単純支持端であり、キャップ5の凹部5hに固定されない。先端3eは凹部5hの内面によって形成される空間内に位置する。 In the assembled state of the light irradiation probe 1, the distal tip 3e of the light diffuser 3 is disposed in the internal space of the recess 5h. The tip 3 e is a free end or a simple support end, and is not fixed to the recess 5 h of the cap 5. The tip 3e is located in a space formed by the inner surface of the recess 5h.
 また、光照射プローブ1が組み立てられた状態において、チューブ4は、光拡散体3よりも近位側で、環状の巻締め部材7により、チューブ4の径を縮める方向に巻締められている。巻締め部材7は、チューブ4の外周に巻回されており、この巻締め部材7により、チューブ4と光ファイバケーブル2とが、長尺方向において、ずれないように相互に固定されている。 Further, in a state where the light irradiation probe 1 is assembled, the tube 4 is wound in the direction of reducing the diameter of the tube 4 by an annular winding member 7 on the proximal side of the light diffuser 3. The winding member 7 is wound around the outer periphery of the tube 4, and the tube 4 and the optical fiber cable 2 are fixed to each other so as not to be displaced in the longitudinal direction.
 巻締め部材7は、白金(Pt)等、X線不透視マーカーとしても機能する素材から形成すると好適である。なお、X線不透視マーカーは、キャップ5の外周にも設置するのが好ましい。
 チューブ4が巻締め部材7によって巻締められることにより、光ファイバケーブル2は、チューブ4の外周よりも中心軸側の所定の位置、つまり、チューブ4の外周に囲まれた領域内の中心軸側の位置であって、中央近傍の位置に位置決めされている。チューブ4の中央近傍の位置としては、実質的にチューブ4の中心と同一視できる位置とすることも可能である。巻締め部材7で巻締めた際に、軟性を備えたチューブ4が撚れる場合もあり、このような場合には、チューブ4の中心ではないが、実質的にチューブ4の中心と同一視できる位置に固定されることとなる。なお、本明細書において、「実質的にチューブ4の中心と同一視できる位置」との用語は、チューブ4の中心も含む意味として用いている。
The winding member 7 is preferably formed from a material that also functions as an X-ray opaque marker, such as platinum (Pt). In addition, it is preferable to install the X-ray opaque marker on the outer periphery of the cap 5.
When the tube 4 is tightened by the tightening member 7, the optical fiber cable 2 is positioned at a predetermined position on the central axis side from the outer periphery of the tube 4, that is, on the central axis side in the region surrounded by the outer periphery of the tube 4. And is positioned near the center. As a position in the vicinity of the center of the tube 4, it is possible to set it to a position where it can be substantially identified with the center of the tube 4. When the winding member 7 is tightened, the tube 4 having flexibility may be twisted. In such a case, the tube 4 is not the center of the tube 4 but can be substantially equated with the center of the tube 4. It will be fixed in position. In the present specification, the term “a position that can be substantially identified with the center of the tube 4” is used as a meaning including the center of the tube 4.
 光拡散体3は、剛性が低いため、光ファイバケーブル2と光拡散体3とのうち、巻締め部材7で光ファイバケーブル2が巻回されている位置から先端3eまでの長さが、例えば、8mm以上など、十分長い場合などには、自由端又は単純支持端となった先端3e側が重力によって垂れ下がり、先端3e近傍の側面において、凹部5hを形成する内面のいずれかの部分に当接する。但し、巻締め部材7で光ファイバケーブル2が巻回されている位置から先端3eまでの光ファイバケーブル2と光拡散体3の長さが短い場合や、光拡散体3の剛性が高い場合などには、先端3eが垂れ下がらず、光拡散体3の先端3e近傍の側面は、凹部5h内面に当接しないで、凹部5hの内面との間に隙間をもって中央近傍に保持される状態にもなり得る。 Since the light diffuser 3 has low rigidity, the length from the position where the optical fiber cable 2 is wound by the winding member 7 to the tip 3e of the optical fiber cable 2 and the light diffuser 3 is, for example, When the length is sufficiently long, such as 8 mm or more, the tip 3e side that is a free end or a simple support end hangs down due to gravity, and abuts on any part of the inner surface forming the recess 5h on the side surface near the tip 3e. However, when the length of the optical fiber cable 2 and the light diffuser 3 from the position where the optical fiber cable 2 is wound by the winding member 7 to the tip 3e is short, or when the rigidity of the light diffuser 3 is high, etc. The tip 3e does not hang down, and the side surface in the vicinity of the tip 3e of the light diffuser 3 is not in contact with the inner surface of the recess 5h, but is held in the vicinity of the center with a gap between the inner surface of the recess 5h. Can be.
<光照射プローブの製造方法>
 次に、本実施形態の光照射プローブ1の製造方法について説明する。
 まず、300μm以下の直径のプラスチック製の光ファイバケーブル2の遠位側の先端部分を、所定長Lに亘って、クラッド22を除去し、図1に示すように、光拡散体3とする。
 次いで、光ファイバケーブル2の近位側である光拡散体3逆側の先端に、不図示のワイヤを接着剤又は粘着テープで連結する。
 光ファイバケーブル2を、光透過性のフッ素樹脂製の軟質のチューブ4に挿通する。チューブ4は、光ファイバケーブル2の外周との間に50μm以上の平均隙間が空くような内径を有しており、外径が900μm以下である。
 光ファイバケーブル2遠位側の光拡散体3の先端3eを、チューブ4の端部と並ぶように配置する。
<Production method of light irradiation probe>
Next, the manufacturing method of the light irradiation probe 1 of this embodiment is demonstrated.
First, the cladding 22 is removed from the distal end portion of the plastic optical fiber cable 2 having a diameter of 300 μm or less over a predetermined length L to form a light diffuser 3 as shown in FIG.
Next, a wire (not shown) is connected to the tip of the optical diffuser 3 opposite to the proximal side of the optical fiber cable 2 with an adhesive or an adhesive tape.
The optical fiber cable 2 is inserted into a soft tube 4 made of light-transmitting fluororesin. The tube 4 has an inner diameter such that an average gap of 50 μm or more is provided between the outer periphery of the optical fiber cable 2 and the outer diameter is 900 μm or less.
The tip 3 e of the light diffuser 3 on the distal side of the optical fiber cable 2 is arranged so as to be aligned with the end of the tube 4.
 光拡散体3よりも近位側、つまり、光ファイバケーブル2の光拡散体3に隣接する位置で、チューブ4の周囲を巻締め部材7で巻締め、光ファイバケーブル2とチューブ4とを相互に固定する。
 光ファイバケーブル2の近位側の先端で切断することによって、光ファイバケーブル2から、ワイヤを除去する。
 光拡散体3の先端3eが、キャップ5の内面の凹部5hの空間内に配置されるようにして、チューブ4の先端にキャップ5を溶着固定する。
 このとき、光拡散体3の遠位側の先端3eは、凹部5hに固定せず、自由端或いは単純支持端とする。ここで、単純支持端とは、光ファイバケーブル2の、巻締め部材7で巻回された位置が、単純支持の支点となった、単純支持端を意味する。光ファイバケーブル2の巻締め部材7で巻回された位置は、単純支持の固定点になるため、モーメントが発生するが、先端3eは自由端或いは単純支持端となるのでモーメントは発生しない。
 以上で、光照射プローブ1を完成する。
At a position closer to the light diffuser 3, that is, at a position adjacent to the light diffuser 3 of the optical fiber cable 2, the periphery of the tube 4 is tightened with a tightening member 7, and the optical fiber cable 2 and the tube 4 are mutually connected. Secure to.
The wire is removed from the optical fiber cable 2 by cutting at the proximal end of the optical fiber cable 2.
The cap 5 is welded and fixed to the tip of the tube 4 so that the tip 3 e of the light diffuser 3 is disposed in the space of the recess 5 h on the inner surface of the cap 5.
At this time, the distal end 3e on the distal side of the light diffuser 3 is not fixed to the recess 5h, but is a free end or a simple support end. Here, the simple support end means a simple support end where the position of the optical fiber cable 2 wound by the winding member 7 is a fulcrum of simple support. Since the position of the optical fiber cable 2 wound by the winding member 7 becomes a fixed point for simple support, a moment is generated. However, since the tip 3e is a free end or a simple support end, no moment is generated.
Thus, the light irradiation probe 1 is completed.
 プラスチック製光ファイバは非常に軟らかいため、チューブ4内に光ファイバケーブル2を挿通しただけでは、光拡散体3は、重力に従って低い方に垂れ落ち、低い側のチューブ4の内面に当接して、光拡散体3とチューブ4の内面とが面接触する。この状態では、光拡散体3の全周囲にチューブ4との間の隙間6を維持することができない。
 そこで、本実施形態では、光拡散体3の遠位側の先端3eを、チューブ4の径方向の中心に設けられた凹部5hの空間内に配置すると共に、光拡散体3の近位側で光ファイバケーブル2を巻締め部材7でチューブ4の径方向の中心に固定することにより、光拡散体3をチューブ4の径方向中心に位置決めし、光拡散体3の周囲に隙間6を維持可能としている。
Since the optical fiber made of plastic is very soft, the light diffuser 3 hangs down in accordance with the gravity just by inserting the optical fiber cable 2 into the tube 4 and abuts the inner surface of the tube 4 on the lower side. The light diffuser 3 and the inner surface of the tube 4 are in surface contact. In this state, the gap 6 between the tube 4 and the entire periphery of the light diffuser 3 cannot be maintained.
Therefore, in the present embodiment, the distal end 3e on the distal side of the light diffuser 3 is disposed in the space of the recess 5h provided at the radial center of the tube 4, and at the proximal side of the light diffuser 3. By fixing the optical fiber cable 2 to the radial center of the tube 4 with the fastening member 7, the light diffuser 3 can be positioned at the radial center of the tube 4, and the gap 6 can be maintained around the light diffuser 3. It is said.
 また、径300μm以下の極細いプラスチック製光ファイバケーブル2は、柔軟性が高く、長尺方向に掛かる引張力の有無により伸縮する性質がある。従って、プラスチック製光ファイバケーブル2を長さ方向の複数箇所でチューブ4側に固定すると、チューブ4の動きに伴って、固定箇所に挟まれた部分が引きつったり、撚れたりすることにより伸縮し、その結果、光拡散体3による光照射特性が変化してしまう。
 そこで、本実施形態では、光拡散体3の遠位側の先端3eと凹部5hとは固定せず、プラスチック製光ファイバケーブル2とチューブ4との固定箇所を、光拡散体3の近位側の巻締め部材7の一箇所のみとすることによって、光拡散体3が伸縮しないようにしている。
The ultra-thin plastic optical fiber cable 2 having a diameter of 300 μm or less is highly flexible and has a property of expanding and contracting depending on the presence or absence of a tensile force applied in the longitudinal direction. Therefore, when the plastic optical fiber cable 2 is fixed to the tube 4 side at a plurality of locations in the length direction, the portion sandwiched between the fixed locations is stretched or twisted as the tube 4 moves. As a result, the light irradiation characteristics of the light diffuser 3 change.
Therefore, in the present embodiment, the distal end 3e and the concave portion 5h on the distal side of the light diffuser 3 are not fixed, and the fixing portion between the plastic optical fiber cable 2 and the tube 4 is fixed to the proximal side of the light diffuser 3. The light diffuser 3 is prevented from expanding and contracting by using only one portion of the winding member 7.
 以下、具体的実施例により、本発明をより詳細に説明する。但し、本発明の技術的範囲は、以下の具体的実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the technical scope of the present invention is not limited to the following specific examples.
<試験1 温度上昇抑制効果の確認試験>
 本試験では、光照射プローブの光拡散体から光放射を行って、光放射による光照射プローブの温度上昇を計測し、本発明の実施例の光照射プローブ1による温度上昇抑制効果を確認した。
 本試験で用いた実施例1及び比較例1の光照射プローブは、以下の通りである。
 つまり、コア21及びクラッド22がそれぞれPMMA(ポリメタクリル酸メチル樹脂)からなり、クラッド22の厚みが約5μmの径250μmの光ファイバケーブル2(日星電気株式会社製)の先端から所定長Lに亘りクラッド22を除去した光ファイバケーブル2を作製した。
 この光ファイバケーブル2と、内径が400μm,外径が800μmで、フッ素樹脂製の透明,軟質のチューブ4(日星電気株式会社製)とを用いて、図1に示す実施の形態の光照射プローブ1を、拡散長50mmとして作製し、実施例1の光照射プローブ1とした。
<Test 1 Confirmation test of temperature rise suppression effect>
In this test, light was emitted from the light diffuser of the light irradiation probe, the temperature increase of the light irradiation probe due to the light emission was measured, and the temperature increase suppression effect by the light irradiation probe 1 of the example of the present invention was confirmed.
The light irradiation probes of Example 1 and Comparative Example 1 used in this test are as follows.
That is, the core 21 and the clad 22 are each made of PMMA (polymethyl methacrylate resin), and the clad 22 has a thickness of about 5 μm and a diameter of 250 μm from the tip of the optical fiber cable 2 (manufactured by Nissei Electric Co., Ltd.) to a predetermined length L. An optical fiber cable 2 from which the cladding 22 was removed was produced.
Using this optical fiber cable 2 and a transparent, soft tube 4 (manufactured by Nissei Electric Co., Ltd.) made of fluororesin having an inner diameter of 400 μm and an outer diameter of 800 μm, the light irradiation of the embodiment shown in FIG. The probe 1 was produced with a diffusion length of 50 mm, and the light irradiation probe 1 of Example 1 was obtained.
 また、Medlight社製のCylindrical Diffuserを、比較例1の光照射プローブとした。比較例1の光照射プローブは、プラスチック製光ファイバの周囲がチューブで被覆されてなり、径が0.98mm,コア径が500μm,拡散長50mm,最小曲げ半径が10mmである。ファイバを被覆するチューブは、透明でなく白濁しており、チューブとファイバとの間には、隙間がなく、チューブとファイバとは密着していた。従って、図1のキャップ5の凹部5hと巻締め部材7によるファイバの長尺方向及び径方向への固定機構も備えていなかった。 Further, Cylindrical® Diffuser manufactured by Medlight was used as the light irradiation probe of Comparative Example 1. The light irradiation probe of Comparative Example 1 has a plastic optical fiber covered with a tube, and has a diameter of 0.98 mm, a core diameter of 500 μm, a diffusion length of 50 mm, and a minimum bending radius of 10 mm. The tube covering the fiber was not transparent but clouded. There was no gap between the tube and the fiber, and the tube and the fiber were in close contact. Therefore, neither the fixing mechanism in the longitudinal direction nor the radial direction of the fiber by the concave portion 5h of the cap 5 and the winding member 7 in FIG.
 実施例1及び比較例1の光照射プローブを空気中に置き、光照射プローブへの入力パワーを500mW、照射時間500秒として、各光照射プローブから照射を行い、サーモグラフィカメラを用いて、光照射プローブ表面温度を測定した。光照射プローブとサーモグラフィカメラとの間の距離は、約15cmとし、環境温度は、室温の22℃であった。
 測定結果を、図3に示す。
 図3に示すように、500秒の照射時間における最大温度上昇は、比較例1の光照射プローブでは5.6℃であったのに対し、実施例1の光照射プローブでは1.94℃であり、優位に低くなっていた。実施例1の光照射プローブでは、光拡散体からの光放射による光照射プローブの温度上昇が抑制されることが分かった。
The light irradiation probes of Example 1 and Comparative Example 1 are placed in the air, the input power to the light irradiation probe is 500 mW, the irradiation time is 500 seconds, irradiation is performed from each light irradiation probe, and light is irradiated using a thermography camera. The probe surface temperature was measured. The distance between the light irradiation probe and the thermographic camera was about 15 cm, and the ambient temperature was 22 ° C., which is room temperature.
The measurement results are shown in FIG.
As shown in FIG. 3, the maximum temperature rise at the irradiation time of 500 seconds was 5.6 ° C. with the light irradiation probe of Comparative Example 1, whereas it was 1.94 ° C. with the light irradiation probe of Example 1. Yes, the advantage was low. In the light irradiation probe of Example 1, it turned out that the temperature rise of the light irradiation probe by the light radiation from a light diffuser is suppressed.
L 所定長
1 光照射プローブ
2 光ファイバケーブル
3 光拡散体
3e 先端
4 チューブ
5 キャップ
5h 凹部
6 隙間
7 巻締め部材
21 コア
22 クラッド
L Predetermined length 1 Light irradiation probe 2 Optical fiber cable 3 Light diffuser 3e Tip 4 Tube 5 Cap 5h Recess 6 Gap 7 Tightening member 21 Core 22 Clad

Claims (6)

  1.  光源からの光を伝送するプラスチック製光ファイバと、該光ファイバの先端に連続して設けられた光拡散体と、を備えた光照射プローブであって、
     前記光拡散体及び前記光ファイバを被覆する透明チューブを備え、
     該透明チューブの内面と前記光拡散体及び前記光ファイバの外面との間には、隙間が形成され、
     前記光ファイバは、前記光拡散体側の端部側で、前記透明チューブに対して、前記光ファイバの長尺方向において固定されると共に、前記透明チューブの外周よりも中心軸側の位置に位置決め固定されており、
     前記光拡散体の先端側は、前記透明チューブの外周よりも中心軸側の位置に配置され、前記透明チューブに対して固定されないことを特徴とする光照射プローブ。
    A light irradiation probe comprising: a plastic optical fiber that transmits light from a light source; and a light diffuser provided continuously at the tip of the optical fiber,
    A transparent tube covering the light diffuser and the optical fiber;
    A gap is formed between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber,
    The optical fiber is fixed in the longitudinal direction of the optical fiber with respect to the transparent tube on the end portion side on the light diffuser side, and is positioned and fixed at a position closer to the central axis than the outer periphery of the transparent tube. Has been
    The light irradiating probe is characterized in that a distal end side of the light diffuser is disposed at a position closer to a central axis than an outer periphery of the transparent tube and is not fixed to the transparent tube.
  2.  前記透明チューブの内面と前記光拡散体及び前記光ファイバの外面との間の平均距離は、50μm以上であることを特徴とする請求項1記載の光照射プローブ。 The light irradiation probe according to claim 1, wherein an average distance between the inner surface of the transparent tube and the outer surface of the light diffuser and the optical fiber is 50 µm or more.
  3.  前記光ファイバの前記光拡散体側の前記端部側は、前記光照射プローブを巻締める巻締め部材によって固定されていることを特徴とする請求項1記載の光照射プローブ。 The light irradiation probe according to claim 1, wherein the end portion side of the optical fiber on the light diffuser side is fixed by a tightening member for tightening the light irradiation probe.
  4.  前記透明チューブの先端には、内側の面に窪みを備えたキャップが固定され、
     前記光拡散体の前記先端側は、前記窪みの内部に配置されることを特徴とする請求項1記載の光照射プローブ。
    At the tip of the transparent tube, a cap with a depression on the inner surface is fixed,
    The light irradiation probe according to claim 1, wherein the distal end side of the light diffuser is disposed inside the recess.
  5.  外径が900μm以下であることを特徴とする請求項1記載の光照射プローブ。 The light irradiation probe according to claim 1, wherein the outer diameter is 900 μm or less.
  6.  光源からの光を伝送するプラスチック製光ファイバと、該光ファイバの先端に連続して設けられた光拡散体と、を備えた光照射プローブの製造方法であって、
     前記光ファイバの前記光拡散体逆側の先端に、ワイヤを連結する工程と、
     前記ワイヤを、透明チューブの一端から挿通し、前記透明チューブの他端から引き出して、前記光ファイバ及び前記光拡散体を前記透明チューブ内に格納し、前記光拡散体の先端を、前記透明チューブの前記他端に並ぶ位置に配置する工程と、
     前記光照射プローブを、前記光ファイバの前記光拡散体側の端部側で、巻締め部材によって巻締める工程と、
     前記光拡散体の前記先端が、窪みの内部に位置するように、前記窪みを内面に有するキャップを、前記透明チューブの前記一端に固定する工程と、を順次行うことを特徴とする光照射プローブの製造方法。
    A method of manufacturing a light irradiation probe comprising: a plastic optical fiber that transmits light from a light source; and a light diffuser continuously provided at the tip of the optical fiber,
    Connecting a wire to a tip of the optical fiber opposite to the light diffuser;
    The wire is inserted from one end of the transparent tube, pulled out from the other end of the transparent tube, the optical fiber and the light diffuser are stored in the transparent tube, and the tip of the light diffuser is connected to the transparent tube. Arranging at a position aligned with the other end of
    A step of tightening the light irradiation probe by a tightening member on an end side of the optical fiber on the light diffuser side;
    And a step of fixing a cap having the depression on the inner surface to the one end of the transparent tube so that the tip of the light diffuser is located inside the depression. Manufacturing method.
PCT/JP2017/024445 2016-07-04 2017-07-04 Light irradiation probe and method for manufacturing same WO2018008622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-132738 2016-07-04
JP2016132738A JP2018000624A (en) 2016-07-04 2016-07-04 Optical irradiation probe and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2018008622A1 true WO2018008622A1 (en) 2018-01-11

Family

ID=60912755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024445 WO2018008622A1 (en) 2016-07-04 2017-07-04 Light irradiation probe and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2018000624A (en)
WO (1) WO2018008622A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069379A (en) * 2018-10-25 2020-05-07 住友電気工業株式会社 Medical laser light guide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105329U (en) * 1980-12-20 1982-06-29
JPH10146684A (en) * 1996-11-20 1998-06-02 Ishikawajima Harima Heavy Ind Co Ltd Laser beam irradiation equipment
JP2000214343A (en) * 1999-01-27 2000-08-04 Matsushita Electric Works Ltd Production of air clad optical fiber
JP2008501444A (en) * 2004-06-07 2008-01-24 エドワーズ ライフサイエンシーズ コーポレイション Method and device for directional resection of tissue
US20080292255A1 (en) * 2007-04-27 2008-11-27 Vnus Medical Technologies, Inc. Systems and methods for treating hollow anatomical structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105329U (en) * 1980-12-20 1982-06-29
JPH10146684A (en) * 1996-11-20 1998-06-02 Ishikawajima Harima Heavy Ind Co Ltd Laser beam irradiation equipment
JP2000214343A (en) * 1999-01-27 2000-08-04 Matsushita Electric Works Ltd Production of air clad optical fiber
JP2008501444A (en) * 2004-06-07 2008-01-24 エドワーズ ライフサイエンシーズ コーポレイション Method and device for directional resection of tissue
US20080292255A1 (en) * 2007-04-27 2008-11-27 Vnus Medical Technologies, Inc. Systems and methods for treating hollow anatomical structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069379A (en) * 2018-10-25 2020-05-07 住友電気工業株式会社 Medical laser light guide
JP7210377B2 (en) 2018-10-25 2023-01-23 タツタ電線株式会社 medical laser light guide

Also Published As

Publication number Publication date
JP2018000624A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US5997571A (en) Non-occluding phototherapy probe stabilizers
US20080021416A1 (en) Thin tube which can be hyperflexed by light
JPH06343651A (en) Fiberoptic probe for laser operation of pulpy tissue
JP2018000867A (en) Catheter tube
WO2015012116A1 (en) Medical device and light-emitting probe mounting kit for medical device
US20220047884A1 (en) Light irradiation device and light irradiation system
WO2018008622A1 (en) Light irradiation probe and method for manufacturing same
CN113017825A (en) Device for laser interstitial thermotherapy system
US20160089203A1 (en) Irradiation device
KR101808675B1 (en) Catheter module and Catheter system including the module
JP6498028B2 (en) Endoscopic photodynamic therapy device
CN110339489B (en) Novel blood vessel optic fibre seal wire
US6315775B1 (en) Light diffusing device for photodynamic treatment of organs
JP2008224979A (en) Optical irradiation fiber and method for manufacturing optical irradiation fiber
JP3526082B2 (en) Medical tubing
WO2024062901A1 (en) Optical fiber probe
RU175240U1 (en) ENDOSCOPE FIBER
WO2020115843A1 (en) Light irradiation treatment tool
JPH08155031A (en) Catheter installed with cable and catheter with functional parts using the same
JPH08131549A (en) Catheter for medical use
WO2023281918A1 (en) Light-emitting medical apparatus
JP7466653B2 (en) Light irradiation device and light irradiation system
JP4067178B2 (en) Laser beam irradiation device
WO2023281917A1 (en) Light-emitting medical apparatus
WO2022123920A1 (en) Light emission medical apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824225

Country of ref document: EP

Kind code of ref document: A1