WO2018008613A1 - Ophthalmic imaging device - Google Patents

Ophthalmic imaging device Download PDF

Info

Publication number
WO2018008613A1
WO2018008613A1 PCT/JP2017/024409 JP2017024409W WO2018008613A1 WO 2018008613 A1 WO2018008613 A1 WO 2018008613A1 JP 2017024409 W JP2017024409 W JP 2017024409W WO 2018008613 A1 WO2018008613 A1 WO 2018008613A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
scanning
unit
condition
Prior art date
Application number
PCT/JP2017/024409
Other languages
French (fr)
Japanese (ja)
Inventor
藤生賢士朗
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2018526382A priority Critical patent/JP6836212B2/en
Publication of WO2018008613A1 publication Critical patent/WO2018008613A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present disclosure relates to an ophthalmologic imaging apparatus that images an eye to be examined.
  • an ophthalmologic photographing apparatus that adjusts various conditions such as photographing conditions using an image of an eye to be examined is known.
  • Patent Document 1 discloses the following apparatus as a scanning laser ophthalmoscope which is a kind of ophthalmic imaging apparatus. That is, as a result of acquiring a plurality of fundus images while changing the diopter correction amount and comparing the image formation state of each fundus image, the diopter correction amount when obtaining a captured image is set to a suitable image formation state. An apparatus that adjusts to a value that yields is disclosed.
  • Patent Document 2 discloses the following apparatus as an optical coherence tomometer which is a kind of ophthalmic imaging apparatus. That is, a plurality of tomographic images are acquired while changing the optical path length difference between the measurement light and the reference light, and as a result of comparing the signal distributions in the depth direction in the tomographic images, the imaging range in the depth direction is obtained. An apparatus is disclosed in which the optical path length difference is adjusted to include the desired tissue.
  • the present disclosure has been made in view of the problems of the prior art, and an object of the present disclosure is to provide an ophthalmologic photographing apparatus in which the time required for adjusting the conditions is easily suppressed.
  • an ophthalmologic photographing apparatus includes an irradiation optical system that irradiates an eye to be examined while scanning light from a light source by a scanning unit, and a return from the eye to be examined.
  • a light receiving optical system having a light receiving element that receives at least light; an image forming unit that obtains a photographed image of an eye to be inspected based on a signal from the light receiving element; and a pixel compared to the photographed image
  • a second image having a smaller number or a shorter time required to form an image per frame than the captured image is formed on the image forming means, and at least one of the conditions relating to the captured image is set as the second image.
  • Condition setting means for setting based on the above and shooting execution means for capturing the shot image according to the set condition.
  • the time required for adjusting the conditions is likely to be suppressed.
  • the ophthalmologic photographing apparatus irradiates the eye to be examined with light from the light source, and photographs an image of the eye to be examined as a result of receiving the return light.
  • an apparatus for example, an anterior ocular segment imaging apparatus, a fundus imaging apparatus, or an apparatus capable of imaging both the anterior ocular segment and the fundus oculi may be used.
  • the ophthalmologic photographing apparatus may be, for example, a scanning type apparatus that scans light on the tissue of the eye to be examined, or a camera that receives return light from the eye to be examined by a light receiving element in which a plurality of pixels are arranged.
  • mold may be sufficient and the apparatus which has the characteristics of both may be sufficient.
  • scanning devices include SLO (Scanning Laser Ophthalmoscope), OCT (Optical Coherence Tomography), and the like.
  • the camera-type device include a fundus camera, an anterior eye camera, and an ophthalmic Shine-Pluke camera.
  • the apparatus may include, for example, a photographing optical system (irradiation optical system and light receiving optical system), an image forming unit, a condition adjusting unit, a condition setting unit, and a photographing execution unit. At least a part of the image forming unit, the condition adjusting unit, the condition setting unit, and the photographing execution unit may be shared by one unit such as a computer built in the apparatus.
  • the photographing optical system is a main optical system of this apparatus that is used for acquiring an image of the eye to be examined.
  • the photographing optical system includes at least an irradiation optical system and a light receiving optical system.
  • the irradiation optical system irradiates the eye to be examined with light from the light source.
  • the irradiation optical system includes, for example, at least a part of a light source and an optical member (for example, a lens and a mirror) for guiding light from the light source to the eye to be examined.
  • the irradiation optical system may be provided with a scanning unit (optical scanner).
  • the scanning unit is a unit for scanning the light emitted from the light source on the eye to be examined (more specifically, on the observation surface of the eye to be examined).
  • the SLO As the SLO, a two-dimensional scanning method in which spot-like light is scanned two-dimensionally (for example, raster scanning) on the observation surface, and a line scanning method in which line-shaped light is scanned in one direction on the observation surface.
  • the scanning unit includes an optical scanner for scanning light in the sub-scanning direction.
  • the present embodiment may be applied to either a two-dimensional scanning apparatus or a line scanning apparatus.
  • the light receiving optical system has at least a light receiving element.
  • the light receiving optical system receives at least return light from the eye to be examined by the light receiving element.
  • the light receiving element does not receive the fundus reflected light (a kind of return light) of the measurement light itself, but the light in a state where the fundus reflected light and the reference light interfere with each other,
  • the light receiving element may receive the light.
  • the present apparatus may be provided with another optical system separately from the photographing optical system or sharing at least a part of the photographing optical system.
  • a fixation optical system may be provided.
  • a reference optical system for obtaining reference light may be provided.
  • the image forming unit forms an image of the eye to be examined based on a signal from the light receiving element.
  • the image of the eye to be examined formed by the image forming unit may be a front image or a cross-sectional image (or tomographic image).
  • the image forming unit includes at least an image processing processor.
  • the image processor may be a processor that controls the operation of the entire apparatus. The same applies to other configurations that handle images.
  • the photographed image is an image of the eye to be examined that is captured based on the photographing trigger signal.
  • the captured image is stored in the memory.
  • the captured image may be a raw image of the image of the eye to be examined, which is formed by the image forming unit, or may be an image obtained by processing, correcting, or both of the raw image.
  • the capture is performed by the shooting execution unit.
  • the condition adjusting unit adjusts at least one of the conditions set for obtaining the shooting conditions.
  • the conditions adjusted by the condition adjustment unit may be hardware conditions (collectively referred to as imaging conditions) regarding the arrangement and operation of each part in the imaging optical system, or when forming a captured image from a light reception signal
  • Conditions in software processing referred to as image forming conditions in this embodiment may also be used.
  • the photographing condition may be an adjustable condition for each part of the photographing optical system, and may be a condition that affects a photographing result (that is, an image). For example, the output from the light source, the amplification factor (gain) of the signal from the light receiving element, the diopter correction amount (focus), the arrangement of other optical members on the optical path, or the parameters relating to the operation of the optical members, etc. Can be mentioned.
  • the condition adjusting unit can adjust at least a part of such shooting conditions.
  • the image forming condition may be, for example, a condition in processing in which the image forming unit forms an image (mainly an image of the eye to be examined) based on a signal from the light receiving element.
  • the correction amount of brightness a correction amount of at least one of brightness and contrast
  • the position correction amount of each part of the image and the like can be mentioned as conditions. That is, the condition adjustment unit adjusts each condition by controlling a part of the photographing optical system or by adjusting the content of the image forming process in the image forming unit.
  • the condition setting unit causes the image forming unit to form a second image having a smaller number of pixels than the captured image or a shorter time required to form an image per frame than the captured image.
  • the second image may be an image in which the subject's eye is a subject, such as a captured image, or may be an image in which the subject's eye is not a subject.
  • the conditions (conditions such as shooting conditions) set when shooting the second image are reflected in information (for example, luminance information, position information, etc.) included in the second image. Therefore, for example, the suitability of the condition can be determined by analyzing and evaluating the second image.
  • the analysis / evaluation method may be image quality evaluation of the second image or histogram evaluation.
  • an element correlated with at least one of various conditions may be evaluated.
  • the difference in the number of pixels between the shot image and the second image may reflect, for example, a difference in shooting range (shooting angle of view), a difference in pixel density with respect to the angle of view, or both.
  • the condition setting unit may make the operation of the scanning unit different when acquiring a captured image and when acquiring a second image.
  • the condition setting unit may change one of the scanning range and the scanning speed in the scanning unit in each case.
  • the scanning range when acquiring the second image may be narrower than when acquiring the captured image, and the scanning speed when acquiring the second image is higher than when acquiring the captured image. You can be fast. As the scanning speed increases, the interval between the pixel extraction points on the eye to be examined increases, so the number of pixels of the image per frame is reduced.
  • the difference in time required to form an image per frame between the captured image and the second image reflects a difference in exposure time in addition to a difference in scanning range and scanning speed. Also good.
  • the condition setting unit sets at least one of the conditions to be set when capturing the captured image based on the second image. For example, a plurality of second images may be generated under different conditions by sequentially forming second images by the image forming unit while changing at least one condition by the condition adjusting unit. Then, a condition for obtaining a good captured image may be searched by analyzing and evaluating a plurality of second images. Note that each second image may be associated with information indicating a condition for generating the image.
  • the condition setting unit may set the searched conditions as “conditions to be set when capturing a captured image”. As a result, the shooting execution unit captures a shot image according to the conditions set by the condition setting unit when capturing the shot image.
  • the second image has a smaller number of pixels than the captured image, for example, the time required for the detection operation of “conditions to be set for capturing the captured image” is easily suppressed. More specifically, as in the present embodiment, compared to the case where “conditions to be set for capturing a captured image” are detected from a plurality of images formed with the same number of pixels as the captured image. In addition, the second image can be processed in a shorter time because the number of pixels is smaller.
  • the time required to acquire an image per frame is controlled by the scanning unit so that the second image is shorter than the captured image.
  • the number of pixels is smaller than that of the captured image, the time required for generating the second image among the time required for the detection operation is suitably suppressed.
  • the scanning unit may be controlled so that the scanning range when acquiring the second image is narrower than when acquiring the captured image.
  • the narrowed scanning range is set near the center of the photographing optical axis. In the vicinity of the center of the photographing optical axis, vignetting is less likely to occur due to the pupil. Therefore, it is easy to satisfactorily detect “conditions to be set for capturing a photographed image” using the second image.
  • the scanning unit may be controlled so that the scanning speed when acquiring the second image is faster than when acquiring the captured image. For example, during the condition detection operation by the condition setting unit, and before and after the condition, the image of the subject's eye is continuously captured, and the captured image of the subject's eye is displayed on the monitor in real time. The display range of the captured image can always be kept constant.
  • the condition setting unit temporarily outputs at least a part of a period from when an adjustment start trigger for a shooting condition or an image forming condition is issued until a “condition to be set when a captured image is captured” is detected. Then, the second image is formed.
  • the second image is:
  • the number of pixels may be smaller than that of the eye image displayed in real time before and after the operation of the condition setting unit.
  • SLO 1 may be an apparatus integrated with other ophthalmic apparatuses such as an optical coherence tomography (OCT) and a perimeter.
  • OCT optical coherence tomography
  • the SLO 1 mainly includes a photographing unit 4.
  • the photographing unit 4 includes at least a main optical system (see FIG. 4) in the SLO1.
  • SLO1 may include an alignment mechanism.
  • the alignment mechanism in SLO1 is used, for example, to arrange a position where a turning point of laser light is formed at an appropriate position with respect to the eye E.
  • the alignment mechanism is a drive mechanism that adjusts the relative position between the eye to be examined and the imaging unit 4 (imaging optical system).
  • the alignment mechanism may adjust the positional relationship between the eye to be examined and the imaging unit 4 (imaging optical system) in each of the X (left and right), Y (up and down), and Z (front and back) directions.
  • the base 5, the moving base 6, and the Z drive mechanism 7 are used as alignment mechanisms in the horizontal direction (XZ direction) and the vertical direction (Y direction).
  • the movable table 6 can move in the XZ direction on the base 5 with the photographing unit 4 placed thereon.
  • the Y drive mechanism 7 is mounted on the movable table 6 and displaces the photographing unit 4 in the Z direction.
  • the alignment mechanism may have an actuator that performs a predetermined operation based on a control signal in each of the X, Y, and Z directions, and may realize the above operation by driving control of the actuator.
  • the SLO 1 includes an irradiation optical system 10 and a light receiving optical system 20 (collectively referred to as “imaging optical system”).
  • imaging optical system The SLO 1 takes a fundus image using these optical systems 10 and 20.
  • the irradiation optical system 10 includes at least a scanning unit 16 and an objective optical system 17. As shown in FIG. 4, the irradiation optical system 10 further includes a laser beam emitting unit 11, a collimating lens 12, a perforated mirror 13, and a lens 14 (in this embodiment, a part of the diopter adjusting unit 40). ) And the lens 15.
  • the laser beam emitting unit 11 is a light source of the irradiation optical system 10.
  • the laser light from the laser light emitting unit 11 is used as illumination light irradiated from the irradiation optical system 10 to the fundus Er.
  • the laser beam emitting unit 11 may include, for example, a laser diode (LD) and a super luminescent diode (SLD). Although a description of a specific structure is omitted, the laser beam emitting unit 11 emits light in at least one wavelength region. In the present embodiment, it is assumed that light of a plurality of colors is emitted from the laser light emitting unit 11 simultaneously or selectively.
  • a total of four colors of light ie, three colors in the visible range of blue, green, and red and one color in the infrared range, are emitted from the laser beam emitting unit 11.
  • the light of each color can be emitted simultaneously or alternately.
  • Three colors in the visible range of blue, green, and red are used for color photography, for example.
  • Laser light is guided to the fundus Er through the path of the light beam shown in FIG. That is, the laser light from the laser light emitting unit 11 passes through the collimating lens 12, the opening formed in the perforated mirror 13, passes through the lens 14 and the lens 15, and then proceeds to the scanning unit 16.
  • the laser light reflected by the scanning unit 16 passes through the objective optical system 17 and is then applied to the fundus Er of the eye E.
  • the laser light is reflected and scattered by the fundus oculi Er, or excites a fluorescent substance existing in the fundus oculi and generates fluorescence from the fundus. These lights (that is, reflected / scattered light, fluorescence, etc.) are emitted from the pupil as return light.
  • the lens 14 shown in FIG. 4 is a part of the diopter adjustment section 40 (the focus adjustment section in this embodiment).
  • the diopter adjustment unit 40 is used to correct (reduce) the diopter error of the eye E.
  • the lens 14 can be moved in the optical axis direction of the irradiation optical system 10 by the drive mechanism 14a.
  • the diopter of the irradiation optical system 10 and the light receiving optical system 20 changes.
  • the diopter adjustment unit 40 may be an optical system different from that shown in FIG. 4, such as a Badal optical system.
  • the scanning unit 16 (also referred to as “optical scanner”) is a unit for scanning the fundus with laser light emitted from a light source (laser light emitting unit 11).
  • the scanning unit 16 includes two optical scanners having different scanning directions of laser light. That is, an optical scanner 16a for main scanning (for example, scanning in the X direction) and an optical scanner 16b for sub-scanning (for example, scanning in the Y direction) are included.
  • the scanning period, scanning speed, etc. by each of the optical scanners 16a, 16b may be changeable.
  • the optical scanner 16a for main scanning is a resonant scanner and the optical scanner 16b for sub scanning is a galvanometer mirror.
  • the resonant scanner which is the optical scanner 16a for main scanning, is designed to vibrate the mirror section with a predetermined constant period and a constant scanning range (swing angle).
  • the scanning speed and scanning range of the optical scanner 16b for sub-scanning are variable.
  • other optical scanners may be applied to each of the optical scanners 16a and 16b.
  • an acousto-optic device that changes the traveling (deflection) direction of light, etc. May be applied.
  • the scanning unit 16 may be replaced with an optical scanner that scans line-shaped laser light in a direction intersecting the line.
  • This optical scanner is a sub-scanning optical scanner, and may be, for example, a galvanometer mirror or an acoustooptic device.
  • the objective optical system 17 is an SLO1 objective optical system.
  • the objective optical system 17 is used to guide the laser light scanned by the scanning unit 16 to the fundus oculi Er.
  • the objective optical system 17 forms a turning point P around which the laser light passed through the scanning unit 16 is turned.
  • the turning point P is formed on the optical axis L1 of the irradiation optical system 10 and at a position optically cooperating with the scanning unit 16 with respect to the objective optical system 17.
  • conjugate is not necessarily limited to a complete conjugate relationship, and includes “substantially conjugate”.
  • the objective optical system of SLO1 is not limited to a lens system, and may be a mirror system, a combination of a lens system and a mirror system, or other optical systems. There may be.
  • the laser light that has passed through the scanning unit 16 passes through the objective optical system 17 and is irradiated to the fundus Er through the turning point P. For this reason, the laser light that has passed through the objective optical system 17 is turned around the turning point P as the scanning unit 16 operates.
  • laser light is scanned two-dimensionally on the fundus oculi Er.
  • the laser light applied to the fundus Er is reflected at a condensing position (for example, the retina surface). Further, the laser light is scattered by the tissues before and after the condensing position.
  • the reflected light and scattered light are each emitted from the pupil as parallel light.
  • the light receiving optical system 20 has one or a plurality of light receiving elements. For example, as shown in FIG. 4, you may have several light receiving element 25,27,29. In this case, light from the fundus Er due to the laser light irradiated by the irradiation optical system 10 is received by the light receiving elements 25, 27, and 29.
  • each member arranged from the objective optical system 17 to the perforated mirror 13 may be shared with the irradiation optical system 10.
  • the light from the fundus is guided back to the perforated mirror 13 along the optical path of the irradiation optical system 10.
  • the perforated mirror 13 receives light from the fundus Er while removing at least a part of noise light reflected by the cornea of the eye to be examined and an optical system (for example, a lens surface of an objective optical system) inside the apparatus.
  • the light is guided to an independent optical path of the optical system 20.
  • the optical path branching member that branches the irradiation optical system 10 and the light receiving optical system 20 is not limited to the perforated mirror 13, and other beam splitters may be used.
  • the light receiving optical system 20 of the present embodiment has a lens 21, a pinhole plate 23, and a light separation unit (light separation unit) 30 in the reflected light path of the perforated mirror 13.
  • lenses 24, 26, and 28 are provided between the light separation unit 30 and the light receiving elements 25, 27, and 29.
  • the pinhole plate 23 is disposed on the fundus conjugate plane and functions as a confocal stop in the SLO1. That is, when the diopter is appropriately corrected by the diopter adjustment unit 40, the light from the fundus Er that has passed through the lens 21 is focused at the opening of the pinhole plate 23.
  • the pinhole plate 23 removes light from a position other than the condensing point (or focal plane) of the fundus Er, and the remainder (light from the condensing point) is mainly guided to the light receiving elements 25, 27, and 29. .
  • the light separation unit 30 separates light from the fundus Er.
  • the light from the fundus Er is light-selectively separated by the light separation unit 30.
  • the light separation unit 30 may also serve as a light branching unit that branches the optical path of the light receiving optical system 20.
  • the light separation unit 30 may include two dichroic mirrors (dichroic filters) 31 and 32 having different light separation characteristics (wavelength separation characteristics).
  • the optical path of the light receiving optical system 20 is branched into three by the two dichroic mirrors 31 and 32. Further, one of the light receiving elements 25, 27, and 29 is disposed at the tip of each branch optical path.
  • the light separation unit 30 separates the wavelength of light from the fundus Er and causes the three light receiving elements 25, 27, and 29 to receive light in different wavelength ranges.
  • the light receiving elements 25, 27, and 29 may receive light of three colors of blue, green, and red one by one. In this case, a color image can be obtained from the light reception results of the light receiving elements 25, the collars 27 and 29.
  • the light separation unit 30 causes infrared light used in infrared imaging to be received by at least one of the light receiving elements 25, 27, and 29.
  • fluorescence used in fluorescence imaging and infrared light used in infrared imaging may be received by different light receiving elements.
  • fundus reflection light by infrared light is received by the light receiving element 25.
  • the control unit 70 is a processing device (processor) having an electronic circuit that performs control processing of each unit of the SLO1 and arithmetic processing.
  • the control unit 70 is realized by a CPU (Central Processing Unit), a memory, and the like.
  • the control unit 70 is electrically connected to the storage unit 71 via a bus or the like.
  • the control unit 70 is also electrically connected to the laser beam emitting unit 11, the light receiving elements 25, 27, and 29, the driving unit 14 a, the scanning unit 16, the input interface 75, and the monitor 80.
  • the storage unit 71 stores various control programs and fixed data.
  • the storage unit 71 may store temporary data or the like.
  • the image obtained by SLO1 may be stored in the storage unit 71.
  • the present invention is not necessarily limited to this, and the image obtained in SLO1 may be stored in an external storage device (for example, a storage device connected to the control unit 70 via LAN and WAN).
  • control unit 70 also serves as an image processing unit (image forming unit).
  • image processing unit the control unit 70 forms a fundus image based on light reception signals output from the light receiving elements 25, 27, and 29, for example. More specifically, the control unit 70 forms a fundus image in synchronization with the optical scanning performed by the scanning unit 16. For example, each time the sub-scanning optical scanner 16b reciprocates n times (n is an integer of 1 or more), the control unit 70 displays the fundus image of at least one frame (in other words, one sheet) (the light receiving element). Every time). In the following description, for the sake of convenience, one frame of the fundus image is formed for each round trip of the sub-scanning optical scanner 16b unless otherwise specified.
  • control unit 70 uses a maximum of three types of images based on signals from the respective light receiving elements 25, 27, and 29 for sub-scanning. Is generated every time the optical scanner 16b reciprocates once.
  • the control unit 70 may cause the monitor 80 to display a plurality of frames of fundus images sequentially formed based on the operation of the apparatus as described above as an observation image in time series.
  • the observation image is a moving image including a fundus image acquired in real time.
  • the control unit 70 captures (captures) a part of a plurality of fundus images that are sequentially formed as a captured image (capture image).
  • the captured image is stored in a storage medium.
  • the storage medium for storing the captured image may be a non-volatile storage medium (for example, a hard disk, a flash memory, etc.).
  • a fundus image formed at a predetermined timing (or period) is captured after outputting a trigger signal (for example, a release operation signal).
  • the control unit 70 can form fundus images with different numbers of pixels.
  • a fundus image can be obtained with four types of pixels of 4096 ⁇ 4096, 2048 ⁇ 2048, 1024 ⁇ 1024, 512 ⁇ 512 (both “number of pixels in the main scanning direction” ⁇ “number of pixels in the sub scanning direction”). It may be formable.
  • the number of pixels of the fundus image may be switched by changing the swing angle of the optical scanners 16a and 16b according to the number of pixels.
  • the fundus image is obtained with any number of pixels.
  • the swing angle of each of the optical scanners 16a and 16b is assumed to be constant.
  • the scanning speed of the sub-scanning optical scanner 16b can be adjusted according to the number of pixels. In other words, the smaller the number of pixels of the acquired fundus image, the faster the sub-scanning optical scanner 16b is operated.
  • the cycle of the reciprocating operation and the scanning range (swing angle) are substantially constant, and it is difficult to control the scanning speed and the scanning range.
  • the number of pixels in the main scanning direction may be switched by adjusting the pixel sampling period. Sampling of the signal from the light receiving element is performed in synchronization with a clock, for example.
  • the clock cycle is variable, the number of pixels in the main scanning direction may be switched by switching the sampling cycle itself of the signal from the light receiving element.
  • the extraction interval (resampling interval) of the signal used for pixel formation is switched from the once sampled signal.
  • the number of pixels in the main scanning direction may be switched.
  • a signal (for example, a square wave) synchronized with the period of each forward scan is output from the driver of the optical scanner 16a (resonant scanner) for main scanning.
  • the generation timing of this signal or the timing when a predetermined time has elapsed from the generation timing is used as the acquisition timing of the first pixel in the pixel column (one of the first pixel column and the second pixel column) (in other words, Horizontal synchronization is obtained).
  • the timing at which a half cycle of reciprocating scanning has elapsed from this timing is further used as the acquisition timing of the first pixel in the remaining one of the first pixel column and the second pixel column.
  • the first pixel column is distinguished from the second pixel column, and a fundus image is constructed (details will be described later).
  • the input interface 75 is an operation unit that accepts an examiner's operation.
  • a touch panel, a mouse, a keyboard, and the like may be used as the input interface 75.
  • Such an input interface 75 may be a device separate from SLO1.
  • the control unit 70 controls each of the above members based on an operation signal output from the input interface 75 (operation unit).
  • the SLO 1 acquires (captures) a captured image of the fundus image after various adjustments are made.
  • a still image having a pixel number of 2048 ⁇ 2048 is acquired as a captured image unless otherwise specified.
  • an image having 1024 ⁇ 1024 pixels is acquired as an observation image.
  • the present invention is not necessarily limited to this, and the number of pixels of the photographed image may be appropriately selected according to the photographing mode, use of the photographed image, and the like.
  • the positional relationship between the apparatus and the eye to be examined is adjusted (aligned).
  • the alignment is performed in a state where the subject faces the SLO1 so that the eye to be examined is arranged in front of the examination window.
  • Various methods can be considered for the alignment.
  • a method using an observation image (moving image) of the eye to be examined is introduced.
  • an image (observation image) acquired through the photographing optical system 10 is used in alignment.
  • acquisition and display of an observation image are started by the control unit 70 (S2), and various processes for alignment are executed (S3).
  • an alignment projection optical system that projects an alignment index light beam onto the corneal surface may be provided in the SLO1.
  • the emission position of the index light beam may be a conjugate position with the center of the radius of curvature of the cornea and the midpoint of the corneal surface when the working distance is appropriate.
  • the index image by the index light beam is reflected in the image obtained through the photographing optical system at and around the proper working distance.
  • the control unit 70 may detect the alignment state with respect to at least one of the working distance direction and the direction intersecting the working distance direction based on an index image included in the observation image.
  • an anterior ocular segment observation image (not shown) acquired by an anterior ocular segment observation system (anterior segment camera) (not shown) may be used for alignment.
  • the device and the eye to be examined are adjusted to a positional relationship suitable for fundus photographing by moving the housing containing the photographing optical system with respect to the eye E while confirming the observation image of the anterior eye portion. May be.
  • Alignment as described above may be manual alignment that is manually adjusted by an examiner, or may be an automatic alignment method that is automatically adjusted by the control unit 70.
  • an actuator for adjusting the positional relationship between the imaging optical system 10 and the eye E so that the imaging optical system 10 and the eye E to be examined have a positional relationship suitable for imaging corresponds to the observation image.
  • the drive is controlled by the controller 70.
  • the control unit 70 switches the number of pixels of the fundus image formed as the observation image. More specifically, the number of pixels is set smaller than that of the captured image (S4).
  • the fundus image having the number of pixels of 512 ⁇ 512 is set so as to be obtained as an observation image. Accordingly, the fundus image per frame is acquired in a shorter time than the captured image. In this state, diopter correction processing is executed (S5).
  • the control unit 70 controls the lens 14 to change the diopter correction amount and controls an observation image acquired at any time based on signals from the light receiving elements 25, 27, and 29. The imaging state in each of these is evaluated.
  • control unit 70 may differentiate the image data of the observation image, and may evaluate the imaging state using differential histogram information based on the result of the differentiation process.
  • the differential histogram information may be acquired as a histogram of the contour image after converting the image data of the observation image into a contour image by applying a filter for edge extraction (for example, Laplacian conversion, SOBEL, etc.), for example.
  • FIG. 8 is a diagram showing an example of the differential histogram.
  • normalized values ((H (d) / H (dp)) of the number of pixels H (dp) in the differential value at which the number of pixels showed a peak are expressed in percentage (%).
  • the control unit 70 uses the maximum value of the luminance value (differential value) having the number of pixels equal to or higher than a predetermined ratio in the entire image in the histogram information acquired as described above (SLO fundus image formation state ( Focus state) Evaluation value is calculated.
  • the imaging state evaluation value C1 for evaluating the imaging state of the SLO fundus image the difference between the maximum value Dmax and the minimum value Dmin of the differential value at a threshold S1 (for example, 20%) or more in the differential histogram is obtained.
  • C1 Dmax ⁇ Dmin).
  • the threshold value S1 is set to a value such that the evaluation value C1 changes sensitively to changes in the imaging state of the SLO fundus image while avoiding the influence of noise.
  • only the maximum differential value Dmax above the threshold S1 may be set as the imaging state evaluation value C1.
  • the imaging state evaluation value C1 shows a high value when the lens 14 is in the in-focus position (when the photographing optical system is in focus), and decreases as the lens 14 deviates from the in-focus position. It can be used to determine the focus state (image formation state) in SLO1.
  • the control unit 70 samples the imaging state evaluation value C1 while moving the position of the lens 14, determines the in-focus state based on the sampling result, and drives the lens 14 to the in-focus position.
  • the control unit 70 drives and controls the drive mechanism 40a to move the lens 14 to a plurality of discretely set movement positions within the movable range of the lens 14. Acquire a fundus image at the moving position. For example, -12D to + 12D The lens 14 is moved within the range of. Then, the control unit 70 creates a differential histogram of each fundus image acquired for each movement position, and calculates an imaging state evaluation value C1. In this case, the control unit 70 may continuously move the lens 14 and continuously calculate the imaging state evaluation value C1.
  • the imaging state evaluation value C1 is a jump value for each position of the lens 14 on which sampling has been performed.
  • the control unit 70 may select a position having the largest imaging state evaluation value C1 as the in-focus position from the positions of the lens 14 where sampling has been performed.
  • the imaging state evaluation value C1 corresponding to the intermediate position of each lens 14 that has been sampled may be derived by performing interpolation processing such as curve approximation on the sampling result. Then, a more accurate in-focus position may be estimated from the result of the interpolation process.
  • a function approximation, a center of gravity, an average value calculation, or the like may be used as a method for detecting the in-focus position by the interpolation process as described above.
  • control unit 70 increases the number of pixels of the fundus image formed as the observation image when rough autofocus is executed.
  • the control unit 70 since the fundus image having 512 ⁇ 512 pixels is used in rough autofocus, for example, the control unit 70 has any number of pixels of 1024 ⁇ 1024, 2048 ⁇ 2048, 4096 ⁇ 4096. To form a fundus image.
  • the imaging state of each fundus image obtained with the movement of the lens 14 is evaluated (in this embodiment, the result is An image state evaluation value C1 is obtained).
  • the in-focus position may be detected again by comparing the image formation state of the fundus image at each position of the lens 14 with each other.
  • the focus adjustment in this embodiment is completed.
  • the control unit 70 sets the number of pixels of the observation image to 1024 ⁇ 1024 (S7).
  • the movement of the lens 14 may be stopped when the imaging state evaluation value C1 starts to decrease after the increase.
  • the diopter correction start trigger may be, for example, that the control unit 70 has automatically detected completion of alignment, or that a predetermined operation has been input by the examiner.
  • imaging conditions For example, an examiner's operation is input to specify imaging conditions. For example, an imaging method selected from infrared imaging, color imaging, IA (indocyanine green fluorescence imaging), FA (fluorescein fluorescence imaging), and FAF (fundus autofluorescence imaging) is selected, and the selected imaging method is selected.
  • the control unit 70 may set the shooting conditions corresponding to. Specific examples of imaging conditions include laser light wavelength, illumination light quantity, received light signal gain, and the like.
  • the control unit 70 captures a fundus image based on a trigger signal (for example, a release operation signal or the like).
  • the shooting conditions and image forming conditions at the time of capture reflect the results of various adjustments so far.
  • the in-focus position at the time of capture is a position set by adjustment by the process of S5.
  • a still image having the number of pixels: 2048 ⁇ 2048 is acquired as a result of the eyelid capture.
  • an image in which the shift is corrected may be acquired as a result of the capture.
  • the focus (the diopter of the apparatus) has been described as being adjusted based on the second image.
  • the present invention is not necessarily limited to this, and the second image is adjusted when other conditions are adjusted. May be used.
  • a positional shift between a pixel row by forward scanning and a pixel row by backward scanning may be detected based on the second image.
  • the positional relationship between the eye to be examined and the imaging optical system (SLO1 alignment state) may be detected based on the second image.
  • the control unit 70 may switch the image acquisition control so that the second image is temporarily acquired as an observation image when performing each detection. Thereby, each condition is easily adjusted in a short time.
  • the diopter adjustment unit 40 is driven when correcting the reading timing of the pixels in the forward scanning and the backward scanning using the reflected image of the lens. And shooting becomes difficult. Therefore, for example, the SLO 1 may further include a second correction control process for detecting and correcting a deviation between the first pixel row and the second pixel row based on the image of the eye to be examined.
  • the second correction control process may be repeatedly executed at regular intervals during the acquisition of the observation image.
  • the correction process using the reflected image of the lens is an imaging method in which imaging is performed continuously with a different imaging method when the apparatus is started up, when the subject is changed, and when the apparatus returns from the sleep state. It may be executed at the time of switching.
  • the detection and correction of the deviation need not be performed every time the image of the eye to be examined is acquired. No.
  • the image of the eye to be examined acquired in advance may be processed to detect and correct the deviation.
  • the correction amount of the shift in each eye image may be set based on a plurality of frames of the eye image obtained in time series.
  • the SLO 1 may be integrated with an optical coherence tomography (OCT).
  • OCT optical coherence tomography
  • the control unit 70 may reflect the above-described focus adjustment result of SLO1 on the OCT optical system.
  • the diopter adjustment unit 40 may be shared by the SLO1 photographing optical system and the OCT optical system.
  • the diopter adjustment unit in the OCT optical system is not limited thereto, and may be a separate body from the diopter adjustment unit 40 of SLO1.
  • the diopter adjusting unit in the OCT optical system is mechanically linked to the diopter adjusting unit 40 of SLO1 and the diopter adjusting unit 40 of SLO1 so that the diopter correction amounts are the same as each other. It may be.

Abstract

An SLO 1 has: an irradiation optical system 10 which irradiates a subject's eye with light from a light source 11 while a scanning part 16 is performing scanning with the light; and a light-receiving optical system 20 having light-receiving elements 25, 27, 29 that at least receive return light from the subject's eye. A control unit 70 of the SLO 1: acquires a photographed image of the subject's eye on the basis of signals from the light-receiving elements; causes a second image to be formed that has a smaller pixel count compared with the photographed image, or that requires a shorter time to form an image per frame compared with the photographed image; sets at least one condition concerning a photographed image on the basis of the second image; and captures a photographed image according to the set conditions.

Description

眼科撮影装置Ophthalmic imaging equipment
 本開示は、被検眼を撮影する眼科撮影装置に関する。 The present disclosure relates to an ophthalmologic imaging apparatus that images an eye to be examined.
 従来より、被検眼の画像を用いて、撮影条件などの各種条件の調整を行う眼科撮影装置が知られている。 Conventionally, an ophthalmologic photographing apparatus that adjusts various conditions such as photographing conditions using an image of an eye to be examined is known.
 例えば、特許文献1には、眼科撮影装置の一種である走査型レーザー検眼鏡として次のような装置が開示されている。即ち、視度の補正量を変えながら複数枚の眼底画像が取得され、各眼底画像の結像状態が比較された結果として、撮影画像を得る際の視度の補正量を好適な結像状態となる値に調整する装置、が開示されている。 For example, Patent Document 1 discloses the following apparatus as a scanning laser ophthalmoscope which is a kind of ophthalmic imaging apparatus. That is, as a result of acquiring a plurality of fundus images while changing the diopter correction amount and comparing the image formation state of each fundus image, the diopter correction amount when obtaining a captured image is set to a suitable image formation state. An apparatus that adjusts to a value that yields is disclosed.
 また、例えば、特許文献2には、眼科撮影装置の一種である光干渉断層計として次のような装置が開示されている。即ち、測定光と,参照光と,の光路長差を変えながら複数枚の断層画像が取得され、各断層画像における深さ方向の信号分布が比較された結果として、深さ方向の撮影範囲に所期する組織が含まれるように、光路長差が調整される装置が開示されている。 Further, for example, Patent Document 2 discloses the following apparatus as an optical coherence tomometer which is a kind of ophthalmic imaging apparatus. That is, a plurality of tomographic images are acquired while changing the optical path length difference between the measurement light and the reference light, and as a result of comparing the signal distributions in the depth direction in the tomographic images, the imaging range in the depth direction is obtained. An apparatus is disclosed in which the optical path length difference is adjusted to include the desired tissue.
特開2009-291253号公報JP 2009-291253 A 特開2012-213489号公報JP 2012-213489 A
 上記の調整手法では、ある条件を調整する際に、その条件が互いに異なる複数枚の被検眼の画像を取得する必要がある。また、条件に関する情報を検出する処理が、複数枚の被検眼の画像それぞれに対して行われる。このため、条件の調整に要する時間が長引きやすい。 In the above adjustment method, when a certain condition is adjusted, it is necessary to acquire images of a plurality of eyes to be examined whose conditions are different from each other. Moreover, the process which detects the information regarding conditions is performed with respect to each of the image of several eyes to be examined. For this reason, it is easy to prolong the time required for adjusting the conditions.
 本開示は、従来技術の問題点に鑑みてなされたものであり、条件の調整に要する時間が抑制されやすい眼科撮影装置を提供することを技術課題とする。 The present disclosure has been made in view of the problems of the prior art, and an object of the present disclosure is to provide an ophthalmologic photographing apparatus in which the time required for adjusting the conditions is easily suppressed.
 上記技術課題を解決するために、本開示の第1態様に係る眼科撮影装置は、光源からの光を走査部によって走査しつつ,被検眼に照射する照射光学系と、前記被検眼からの戻り光を少なくとも受光する受光素子を有する受光光学系と、を有する撮影光学系と、前記受光素子からの信号に基づいて被検眼の撮影画像を取得する画像形成手段と、前記撮影画像と比べて画素数が少ない,又は,前記撮影画像と比べて1フレーム当たりの画像の形成に要する時間が短い第2画像を前記画像形成手段に形成させ、前記撮影画像に関する条件の少なくとも1つを前記第2画像に基づいて設定する条件設定手段と、設定された前記条件による前記撮影画像をキャプチャーする撮影実行手段と、を備える。 In order to solve the above technical problem, an ophthalmologic photographing apparatus according to the first aspect of the present disclosure includes an irradiation optical system that irradiates an eye to be examined while scanning light from a light source by a scanning unit, and a return from the eye to be examined. A light receiving optical system having a light receiving element that receives at least light; an image forming unit that obtains a photographed image of an eye to be inspected based on a signal from the light receiving element; and a pixel compared to the photographed image A second image having a smaller number or a shorter time required to form an image per frame than the captured image is formed on the image forming means, and at least one of the conditions relating to the captured image is set as the second image. Condition setting means for setting based on the above and shooting execution means for capturing the shot image according to the set condition.
 本開示によれば、条件の調整に要する時間が抑制されやすい。 れ ば According to the present disclosure, the time required for adjusting the conditions is likely to be suppressed.
実施例に係るSLOの外観を示した図である。It is the figure which showed the external appearance of SLO which concerns on an Example. 実施例に係るSLOの光学系を示した図である。It is the figure which showed the optical system of SLO which concerns on an Example. 実施例に係るSLOの制御系を示した図である。It is the figure which showed the control system of SLO which concerns on an Example. 実施例に係るSLOの動作を示したフローチャートである。It is the flowchart which showed the operation | movement of SLO which concerns on an Example. 実施例のSLOにおけるオートフォーカスで利用される画像輝度の微分値のヒストグラムを示したグラフである。It is the graph which showed the histogram of the differential value of the image brightness | luminance utilized by the autofocus in SLO of an Example.
 まずは、本開示の第1実施形態を説明する。第1実施形態に係る眼科撮影装置は、光源からの光を被検眼に照射し、その戻り光の受光結果として、被検眼の画像を撮影する。このような装置としては、例えば、前眼部撮影装置であってもよいし、眼底撮影装置であってもよいし、前眼部、眼底の両方を撮影可能な装置であってもよい。 First, the first embodiment of the present disclosure will be described. The ophthalmologic photographing apparatus according to the first embodiment irradiates the eye to be examined with light from the light source, and photographs an image of the eye to be examined as a result of receiving the return light. As such an apparatus, for example, an anterior ocular segment imaging apparatus, a fundus imaging apparatus, or an apparatus capable of imaging both the anterior ocular segment and the fundus oculi may be used.
 また、眼科撮影装置は、例えば、被検眼の組織上で光を走査する走査型の装置であってもよいし、複数の画素が配列された受光素子によって被検眼からの戻り光を受光するカメラ型の装置であってもよいし、両者の特徴を併せ持つ装置であってもよい。走査型の装置としては、例えば、SLO(走査型レーザー検眼鏡:Scanning Laser Ophthalmoscope)、OCT(光干渉断層計:Optical Coherence Tomography)等が例示される。また、カメラ型の装置としては、眼底カメラ、前眼部カメラ、眼科用シャインプルークカメラ等が例示される。 Further, the ophthalmologic photographing apparatus may be, for example, a scanning type apparatus that scans light on the tissue of the eye to be examined, or a camera that receives return light from the eye to be examined by a light receiving element in which a plurality of pixels are arranged. The apparatus of a type | mold may be sufficient and the apparatus which has the characteristics of both may be sufficient. Examples of scanning devices include SLO (Scanning Laser Ophthalmoscope), OCT (Optical Coherence Tomography), and the like. Examples of the camera-type device include a fundus camera, an anterior eye camera, and an ophthalmic Shine-Pluke camera.
 以下、眼科撮影装置を、本装置と称する。本装置は、例えば、撮影光学系(照射光学系および受光光学系)と、画像形成部と、条件調整部と、条件設定部と、撮影実行部と、を有していてもよい。画像形成部,条件調整部,条件設定部,および,撮影実行部の少なくとも一部については、本装置に内蔵されたコンピュータ等の1つのユニットが兼用してもよい。 Hereinafter, the ophthalmologic photographing apparatus is referred to as this apparatus. The apparatus may include, for example, a photographing optical system (irradiation optical system and light receiving optical system), an image forming unit, a condition adjusting unit, a condition setting unit, and a photographing execution unit. At least a part of the image forming unit, the condition adjusting unit, the condition setting unit, and the photographing execution unit may be shared by one unit such as a computer built in the apparatus.
 <撮影光学系>
撮影光学系は、被検眼の画像の取得に利用される,本装置の主要な光学系である。撮影光学系は、照射光学系と、受光光学系と、を少なくとも含む。
<Photographing optical system>
The photographing optical system is a main optical system of this apparatus that is used for acquiring an image of the eye to be examined. The photographing optical system includes at least an irradiation optical system and a light receiving optical system.
 照射光学系は、光源からの光を被検眼に照射する。照射光学系は、例えば、光源と、光源からの光を被検眼に導くための光学部材(例えば、レンズ及びミラー等)と、の少なくとも一部を有する。また、走査型の装置(SLO及びOCT等)の場合、照射光学系には、走査部(光スキャナ)が設けられてもよい。走査部は、光源から発せられた光を、被検眼上(より詳細には、被検眼の観察面上)で走査するためのユニットである。 The irradiation optical system irradiates the eye to be examined with light from the light source. The irradiation optical system includes, for example, at least a part of a light source and an optical member (for example, a lens and a mirror) for guiding light from the light source to the eye to be examined. In the case of a scanning apparatus (SLO, OCT, etc.), the irradiation optical system may be provided with a scanning unit (optical scanner). The scanning unit is a unit for scanning the light emitted from the light source on the eye to be examined (more specifically, on the observation surface of the eye to be examined).
 SLOとしては、スポット状の光を観察面の上で2次元的に走査(例えば、ラスタースキャン)する2次元スキャン方式と、ライン状の光を観察面の上で一方向に走査するラインスキャン方式とが知られている。何れの方式においても、少なくとも走査部には、副走査方向に光を走査するための光スキャナが含まれる。本実施形態は、2次元スキャン方式の装置と、ラインスキャン方式の装置と、のいずれに適用されてもよい。 As the SLO, a two-dimensional scanning method in which spot-like light is scanned two-dimensionally (for example, raster scanning) on the observation surface, and a line scanning method in which line-shaped light is scanned in one direction on the observation surface. Is known. In any system, at least the scanning unit includes an optical scanner for scanning light in the sub-scanning direction. The present embodiment may be applied to either a two-dimensional scanning apparatus or a line scanning apparatus.
 受光光学系は、少なくとも受光素子を有する。受光光学系は、受光素子によって、被検眼からの戻り光を少なくとも受光する。例えば、OCTの場合、受光素子には、測定光の眼底反射光(戻り光の一種)そのものが受光素子で受光されるのではなく、眼底反射光と参照光とが干渉した状態の光が、受光素子で受光される場合がある。 The light receiving optical system has at least a light receiving element. The light receiving optical system receives at least return light from the eye to be examined by the light receiving element. For example, in the case of OCT, the light receiving element does not receive the fundus reflected light (a kind of return light) of the measurement light itself, but the light in a state where the fundus reflected light and the reference light interfere with each other, The light receiving element may receive the light.
 本装置は、撮影光学系とは別に、又は、撮影光学系の少なくとも一部を共用して、他の光学系が設けられていてもよい。例えば、固視光学系が設けられていてもよい。また、OCTの場合、参照光を得るための参照光学系が設けられていてもよい。 The present apparatus may be provided with another optical system separately from the photographing optical system or sharing at least a part of the photographing optical system. For example, a fixation optical system may be provided. In the case of OCT, a reference optical system for obtaining reference light may be provided.
 <画像形成部,撮影実行部>
画像形成部は、受光素子からの信号に基づいて被検眼の画像を形成する。画像形成部によって形成される被検眼の画像は、正面画像であってもよいし、断面画像(又は、断層画像)であってもよい。画像形成部は、少なくとも画像処理プロセッサを含む。この画像処理プロセッサは、本装置全体の動作を司るプロセッサであってもよい。このことは、画像を取り扱う他の構成においても同様である。
<Image forming unit, shooting execution unit>
The image forming unit forms an image of the eye to be examined based on a signal from the light receiving element. The image of the eye to be examined formed by the image forming unit may be a front image or a cross-sectional image (or tomographic image). The image forming unit includes at least an image processing processor. The image processor may be a processor that controls the operation of the entire apparatus. The same applies to other configurations that handle images.
 撮影画像は、撮影トリガ信号に基づいてキャプチャーされる被検眼の画像である。キャプチャーの結果として、撮影画像は、メモリに格納される。撮影画像は、画像形成部によって形成される,被検眼の画像の生画像であってもよいし、生画像を加工、補正、又はその両方を行った画像であってもよい。キャプチャーは、撮影実行部によって行われる。 The photographed image is an image of the eye to be examined that is captured based on the photographing trigger signal. As a result of the capture, the captured image is stored in the memory. The captured image may be a raw image of the image of the eye to be examined, which is formed by the image forming unit, or may be an image obtained by processing, correcting, or both of the raw image. The capture is performed by the shooting execution unit.
 <条件調整部>
 条件調整部は、撮影条件を得るうえで設定される条件の少なくとも1つを調整する。条件調整部によって調整される条件は、撮影光学系における各部の配置、動作に関するハード的な条件(まとめて、撮影条件と称す)であってもよいし、受光信号から撮影画像を形成する際のソフト処理における条件(本実施形態では、画像形成条件と称す)であってもよい。
<Condition adjustment section>
The condition adjusting unit adjusts at least one of the conditions set for obtaining the shooting conditions. The conditions adjusted by the condition adjustment unit may be hardware conditions (collectively referred to as imaging conditions) regarding the arrangement and operation of each part in the imaging optical system, or when forming a captured image from a light reception signal Conditions in software processing (referred to as image forming conditions in this embodiment) may also be used.
 撮影条件は、撮影光学系の各部についての調整可能な条件であって、撮影結果(つまり画像)に影響する条件であってもよい。例えば、光源からの出力、受光素子からの信号の増幅率(ゲイン)、視度の補正量(フォーカス)、光路上における,他の光学部材の配置,または,該光学部材の動作に関するパラメータ、等を挙げることができる。条件調整部は、このような撮影条件のうち、少なくとも一部を調整可能である。 The photographing condition may be an adjustable condition for each part of the photographing optical system, and may be a condition that affects a photographing result (that is, an image). For example, the output from the light source, the amplification factor (gain) of the signal from the light receiving element, the diopter correction amount (focus), the arrangement of other optical members on the optical path, or the parameters relating to the operation of the optical members, etc. Can be mentioned. The condition adjusting unit can adjust at least a part of such shooting conditions.
 また、画像形成条件は、例えば、画像形成部が、受光素子からの信号に基づいて画像(主には、被検眼の画像)を形成する処理における条件であってもよい。例えば、輝度の補正量(ブライトネス,及び,コントラストのうち少なくともいずれかの補正量)、画像の各部の位置補正量、等を条件として挙げることができる。つまり、条件調整部は、撮影光学系の一部を制御することにより、又は、画像形成部における画像形成処理の内容を調整することにより、各条件の調整を行う。 Further, the image forming condition may be, for example, a condition in processing in which the image forming unit forms an image (mainly an image of the eye to be examined) based on a signal from the light receiving element. For example, the correction amount of brightness (a correction amount of at least one of brightness and contrast), the position correction amount of each part of the image, and the like can be mentioned as conditions. That is, the condition adjustment unit adjusts each condition by controlling a part of the photographing optical system or by adjusting the content of the image forming process in the image forming unit.
 OCTに適用される場合では、フォーカス、測定光と参照光との光路長差、ポラライザによる偏光、等が、上記の条件として例示される。 In the case of application to OCT, focus, optical path length difference between measurement light and reference light, polarization by a polarizer, etc. are exemplified as the above conditions.
 <条件設定部>
条件設定部は、撮影画像と比べて画素数が少ない,又は,撮影画像と比べて1フレーム当たりの画像の形成に要する時間が短い第2画像を、画像形成部に形成させる。第2画像は、撮影画像のように被検眼を被写体とする画像であってもよいし、被検眼が被写体ではない画像であってもよい。
<Condition setting section>
The condition setting unit causes the image forming unit to form a second image having a smaller number of pixels than the captured image or a shorter time required to form an image per frame than the captured image. The second image may be an image in which the subject's eye is a subject, such as a captured image, or may be an image in which the subject's eye is not a subject.
 第2画像を撮影する際に設定されていた条件(撮影条件等の条件)は、第2画像に含まれる情報(例えば、輝度情報、位置情報等)に反映される。このため、例えば、第2画像を解析・評価することで、条件の適否を判定できる。解析・評価方法としては、第2画像の画質評価であってもよいし、ヒストグラムの評価であってもよい。この他、各種の条件のうち、少なくとも1つと相関のある要素が評価されてもよい。 The conditions (conditions such as shooting conditions) set when shooting the second image are reflected in information (for example, luminance information, position information, etc.) included in the second image. Therefore, for example, the suitability of the condition can be determined by analyzing and evaluating the second image. The analysis / evaluation method may be image quality evaluation of the second image or histogram evaluation. In addition, an element correlated with at least one of various conditions may be evaluated.
 撮影画像と、第2画像とにおける画素数の違いは、例えば、撮影範囲(撮影画角)の違い、画角に対する画素密度の違い、または、その両方が反映されたものであってもよい。本装置が走査型の装置である場合、条件設定部は、撮影画像を取得する場合と、第2画像を取得する場合と、で走査部の動作を互いに異ならせてもよい。 The difference in the number of pixels between the shot image and the second image may reflect, for example, a difference in shooting range (shooting angle of view), a difference in pixel density with respect to the angle of view, or both. When this apparatus is a scanning-type apparatus, the condition setting unit may make the operation of the scanning unit different when acquiring a captured image and when acquiring a second image.
 例えば、条件設定部は、走査部における走査範囲および走査速度のうち一方を、それぞれの場合で互いに異ならせてもよい。即ち、第2画像を取得する際における走査範囲を、撮影画像を取得する際と比べ、狭くしてもよいし、第2画像を取得する際における走査速度を、撮影画像を取得する際と比べ、速くしてもよい。走査速度が速くなるほど、被検眼上での画素の抽出点の間隔が拡がるので、1フレームあたりの画像の画素数が低減される。 For example, the condition setting unit may change one of the scanning range and the scanning speed in the scanning unit in each case. In other words, the scanning range when acquiring the second image may be narrower than when acquiring the captured image, and the scanning speed when acquiring the second image is higher than when acquiring the captured image. You can be fast. As the scanning speed increases, the interval between the pixel extraction points on the eye to be examined increases, so the number of pixels of the image per frame is reduced.
 また、撮影画像と、第2画像との間における、1フレーム当たりの画像の形成に要する時間の違いは、走査範囲および走査速度の違いの他、露光時間の違いが反映されたものであってもよい。 In addition, the difference in time required to form an image per frame between the captured image and the second image reflects a difference in exposure time in addition to a difference in scanning range and scanning speed. Also good.
 条件設定部は、撮影画像をキャプチャーする際に設定されるべき条件の少なくとも1つを、第2画像に基づいて設定する。例えば、少なくとも1つの条件を条件調整部によって変更しながら、画像形成部によって次々に第2画像が形成されることで、複数枚の第2画像が互いに異なる条件で生成されてもよい。そして、複数枚の第2画像を解析・評価することで、良好な撮影画像を得るための条件が探索されてもよい。なお、各々の第2画像には、その画像を生成する際の条件を示す情報が対応づけられていてもよい。 The condition setting unit sets at least one of the conditions to be set when capturing the captured image based on the second image. For example, a plurality of second images may be generated under different conditions by sequentially forming second images by the image forming unit while changing at least one condition by the condition adjusting unit. Then, a condition for obtaining a good captured image may be searched by analyzing and evaluating a plurality of second images. Note that each second image may be associated with information indicating a condition for generating the image.
 条件設定部は、探索した条件を、「撮影画像をキャプチャーする際に設定されるべき条件」として、設定してもよい。その結果として、撮影実行部は、撮影画像をキャプチャーする際に、条件設定部によって設定された条件による撮影画像を、キャプチャーする。 The condition setting unit may set the searched conditions as “conditions to be set when capturing a captured image”. As a result, the shooting execution unit captures a shot image according to the conditions set by the condition setting unit when capturing the shot image.
 第2画像が、撮影画像と比べて画素数が少ないことにより、例えば、「撮影画像をキャプチャーするために設定されるべき条件」の検出動作に要する時間が抑制されやすくなる。より詳細には、撮影画像と同じ画素数で形成される,複数枚の画像の中から、「撮影画像をキャプチャーするために設定されるべき条件」を検出する場合と比べ、本実施形態のように、第2画像を利用する方が、画素数が少ない分、短時間で処理可能になる。 Since the second image has a smaller number of pixels than the captured image, for example, the time required for the detection operation of “conditions to be set for capturing the captured image” is easily suppressed. More specifically, as in the present embodiment, compared to the case where “conditions to be set for capturing a captured image” are detected from a plurality of images formed with the same number of pixels as the captured image. In addition, the second image can be processed in a shorter time because the number of pixels is smaller.
 また、第2画像を生成する際に、1フレームあたりの画像の取得に要する時間が、撮影画像よりも第2画像の方が短くなるように走査部が制御された結果として、第2画像の画素数が撮影画像よりも少なくなっている場合では、上記の検出動作に要する時間のうち、第2画像の生成に要する時間が、好適に抑制される。 In addition, when the second image is generated, the time required to acquire an image per frame is controlled by the scanning unit so that the second image is shorter than the captured image. When the number of pixels is smaller than that of the captured image, the time required for generating the second image among the time required for the detection operation is suitably suppressed.
 このとき、第2画像を取得する際における走査範囲が、撮影画像を取得する際と比べて狭くなるように走査部が制御されてもよい。この場合、狭くされた走査範囲は、撮影光軸の中心付近に設定されることが好ましい。撮影光軸の中心付近は、瞳によるケラレの影響が生じにくいので、第2画像を用いて、「撮影画像をキャプチャーするために設定されるべき条件」を良好に検出しやすくなる。 At this time, the scanning unit may be controlled so that the scanning range when acquiring the second image is narrower than when acquiring the captured image. In this case, it is preferable that the narrowed scanning range is set near the center of the photographing optical axis. In the vicinity of the center of the photographing optical axis, vignetting is less likely to occur due to the pupil. Therefore, it is easy to satisfactorily detect “conditions to be set for capturing a photographed image” using the second image.
 また、第2画像を取得する際における走査速度が、撮影画像を取得する際と比べて速くなるように走査部が制御されてもよい。例えば、条件設定部による条件の検出動作中、および,その前と後とにおいて、被検眼の画像を連続的に撮像し、撮像された被検眼の画像を、リアルタイムにモニタに表示する場合において、撮影画像の表示範囲を常に一定に維持できる。 Further, the scanning unit may be controlled so that the scanning speed when acquiring the second image is faster than when acquiring the captured image. For example, during the condition detection operation by the condition setting unit, and before and after the condition, the image of the subject's eye is continuously captured, and the captured image of the subject's eye is displayed on the monitor in real time. The display range of the captured image can always be kept constant.
 条件設定部は、撮影条件または画像形成条件の調整開始トリガが発せられてから、「撮影画像をキャプチャーする際に設定されるべき条件」が検出されるまでの期間の少なくとも一部において、一時的に、第2画像を形成させる。 The condition setting unit temporarily outputs at least a part of a period from when an adjustment start trigger for a shooting condition or an image forming condition is issued until a “condition to be set when a captured image is captured” is detected. Then, the second image is formed.
 また、条件設定部の動作の前と後とにおいて、被検眼の画像が連続的に撮像され、撮像された被検眼の画像が、リアルタイムにモニタに表示される装置の場合、第2画像は、条件設定部の動作の前と後とにおいてリアルタイムに表示される被検眼の画像と比べ、画素数が少ないものであってもよい。 Further, in the case of an apparatus in which the image of the eye to be examined is continuously captured before and after the operation of the condition setting unit and the captured image of the eye to be displayed is displayed on the monitor in real time, the second image is: The number of pixels may be smaller than that of the eye image displayed in real time before and after the operation of the condition setting unit.
 <実施例>
次に、上記実施形態の技術が適用された一実施例を示す。ここでは、SLOへ適用した例を示す。便宜上、実施例に係るSLO1は、スポット状の光を眼底上で2次元的にスキャンさせる構成として説明する。SLO1は、光干渉断層計(OCT:Optical Coherence Tomography)、視野計などの他の眼科装置と一体化された装置であってもよい。
<Example>
Next, an example in which the technique of the above embodiment is applied will be described. Here, an example applied to SLO is shown. For convenience, the SLO 1 according to the embodiment will be described as a configuration in which spot-like light is scanned two-dimensionally on the fundus. SLO1 may be an apparatus integrated with other ophthalmic apparatuses such as an optical coherence tomography (OCT) and a perimeter.
 <外観構成>
はじめに、図3から図8を参照して、SLO1の概略構成を説明する。図3に示すように、SLO1は、撮影ユニット4を、主に備える。撮影ユニット4には、SLO1における主要な光学系(図4参照)が、少なくとも含まれる。
<Appearance configuration>
First, a schematic configuration of the SLO 1 will be described with reference to FIGS. As shown in FIG. 3, the SLO 1 mainly includes a photographing unit 4. The photographing unit 4 includes at least a main optical system (see FIG. 4) in the SLO1.
 SLO1は、アライメント機構を備えていてもよい。SLO1におけるアライメント機構は、例えば、レーザー光の旋回点が形成される位置を、被検眼Eに対して適正な位置に配置するために利用される。アライメント機構は、被検眼と撮影ユニット4(撮影光学系)との相対位置を調節する駆動機構である。アライメント機構は、X(左右),Y(上下),Z(前後)の各方向に関し、被検眼と撮影ユニット4(撮影光学系)との位置関係を調整してもよい。図3に示す具体例では、基台5,移動台6,および,Z駆動機構7が、水平方向(XZ方向)および上下方向(Y方向)に関するアライメント機構として利用される。即ち、移動台6は、撮影ユニット4を載せた状態で、基台5上をXZ方向に移動可能である。また、Y駆動機構7は、移動台6に載置されており、撮影ユニット4をZ方向に変位させる。これにより、被検眼と撮影ユニット4(撮影光学系)とのXYZ方向の位置関係が調整される。アライメント機構は、X,Y,Zの各方向に関し、制御信号に基づいて所定の動作を行うアクチュエータを持ち、アクチュエータの駆動制御によって、上記の動作を実現してもよい。 SLO1 may include an alignment mechanism. The alignment mechanism in SLO1 is used, for example, to arrange a position where a turning point of laser light is formed at an appropriate position with respect to the eye E. The alignment mechanism is a drive mechanism that adjusts the relative position between the eye to be examined and the imaging unit 4 (imaging optical system). The alignment mechanism may adjust the positional relationship between the eye to be examined and the imaging unit 4 (imaging optical system) in each of the X (left and right), Y (up and down), and Z (front and back) directions. In the specific example shown in FIG. 3, the base 5, the moving base 6, and the Z drive mechanism 7 are used as alignment mechanisms in the horizontal direction (XZ direction) and the vertical direction (Y direction). That is, the movable table 6 can move in the XZ direction on the base 5 with the photographing unit 4 placed thereon. The Y drive mechanism 7 is mounted on the movable table 6 and displaces the photographing unit 4 in the Z direction. As a result, the positional relationship between the eye to be examined and the imaging unit 4 (imaging optical system) in the XYZ directions is adjusted. The alignment mechanism may have an actuator that performs a predetermined operation based on a control signal in each of the X, Y, and Z directions, and may realize the above operation by driving control of the actuator.
 <光学構成>
 次に、図4を参照して、SLO1に設けられた光学系を説明する。図4に示すように、SLO1は、照射光学系10と、受光光学系20と、を有する(まとめて、「撮影光学系」と称す)。SLO1は、これらの光学系10,20を用いて眼底画像を撮影する。
<Optical configuration>
Next, the optical system provided in the SLO 1 will be described with reference to FIG. As shown in FIG. 4, the SLO 1 includes an irradiation optical system 10 and a light receiving optical system 20 (collectively referred to as “imaging optical system”). The SLO 1 takes a fundus image using these optical systems 10 and 20.
 照射光学系10は、少なくとも走査部16と、対物光学系17と、を含む。また、図4に示すように、照射光学系10は、更に、レーザー光出射部11、コリメーティングレンズ12、穴開きミラー13、レンズ14(本実施例において、視度調節部40の一部)、および、レンズ15を有してもよい。 The irradiation optical system 10 includes at least a scanning unit 16 and an objective optical system 17. As shown in FIG. 4, the irradiation optical system 10 further includes a laser beam emitting unit 11, a collimating lens 12, a perforated mirror 13, and a lens 14 (in this embodiment, a part of the diopter adjusting unit 40). ) And the lens 15.
 レーザー光出射部11は、照射光学系10の光源である。本実施例では、レーザー光出射部11からのレーザー光が、照射光学系10から眼底Erへ照射される照明光として利用される。レーザー光出射部11は、例えば、レーザーダイオード(LD)、および、スーパールミネッセントダイオード(SLD)等を含んでいてもよい。具体的な構造についての説明は省略するが、レーザー光出射部11は、少なくとも1種類以上の波長域の光を出射する。本実施例では、複数色の光が、同時に、又は選択的に、レーザー光出射部11から出射されるものとする。例えば、本実施例では、レーザー光出射部11から、青,緑,赤の可視域の3色と、赤外域の1色と、の計4色の光が出射される。各色の光は、同時に、又は、交互に出射可能である。青,緑,赤の可視域の3色は、例えば、カラー撮影に利用される。 The laser beam emitting unit 11 is a light source of the irradiation optical system 10. In the present embodiment, the laser light from the laser light emitting unit 11 is used as illumination light irradiated from the irradiation optical system 10 to the fundus Er. The laser beam emitting unit 11 may include, for example, a laser diode (LD) and a super luminescent diode (SLD). Although a description of a specific structure is omitted, the laser beam emitting unit 11 emits light in at least one wavelength region. In the present embodiment, it is assumed that light of a plurality of colors is emitted from the laser light emitting unit 11 simultaneously or selectively. For example, in this embodiment, a total of four colors of light, ie, three colors in the visible range of blue, green, and red and one color in the infrared range, are emitted from the laser beam emitting unit 11. The light of each color can be emitted simultaneously or alternately. Three colors in the visible range of blue, green, and red are used for color photography, for example.
 レーザー光は、図4に示した光線の経路にて眼底Erに導かれる。つまり、レーザー光出射部11からのレーザー光は、コリメーティングレンズ12を経て穴開きミラー13に形成された開口部を通り、レンズ14およびレンズ15を介した後、走査部16に向かう。走査部16によって反射されたレーザー光は、対物光学系17を通過した後、被検眼Eの眼底Erに照射される。その結果、レーザー光は、眼底Erで反射・散乱される、或いは、眼底に存在する蛍光物質を励起させ、眼底からの蛍光を生じさせる。これらの光(つまり、反射・散乱光および蛍光等)が、戻り光として、瞳孔から出射される。 Laser light is guided to the fundus Er through the path of the light beam shown in FIG. That is, the laser light from the laser light emitting unit 11 passes through the collimating lens 12, the opening formed in the perforated mirror 13, passes through the lens 14 and the lens 15, and then proceeds to the scanning unit 16. The laser light reflected by the scanning unit 16 passes through the objective optical system 17 and is then applied to the fundus Er of the eye E. As a result, the laser light is reflected and scattered by the fundus oculi Er, or excites a fluorescent substance existing in the fundus oculi and generates fluorescence from the fundus. These lights (that is, reflected / scattered light, fluorescence, etc.) are emitted from the pupil as return light.
 本実施例において、図4に示すレンズ14は、視度調節部40(本実施例におけるフォーカス調節部)の一部である。視度調節部40は、被検眼Eの視度の誤差を矯正(軽減)するために利用される。例えば、レンズ14は、駆動機構14aによって、照射光学系10の光軸方向へ移動可能である。レンズ14の位置に応じて、照射光学系10および受光光学系20の視度が変わる。このため、レンズ14の位置が調節されることで、被検眼Eの視度の誤差が軽減され、その結果として、レーザー光の集光位置が、眼底Erの観察部位(例えば、網膜表面)に設定可能となる。なお、視度調節部40は、例えば、バダール光学系など、図4とは異なる光学系が適用されてもよい。 In this embodiment, the lens 14 shown in FIG. 4 is a part of the diopter adjustment section 40 (the focus adjustment section in this embodiment). The diopter adjustment unit 40 is used to correct (reduce) the diopter error of the eye E. For example, the lens 14 can be moved in the optical axis direction of the irradiation optical system 10 by the drive mechanism 14a. Depending on the position of the lens 14, the diopter of the irradiation optical system 10 and the light receiving optical system 20 changes. For this reason, by adjusting the position of the lens 14, the diopter error of the eye E to be examined is reduced. As a result, the condensing position of the laser light is applied to the observation site (for example, the retina surface) of the fundus Er. It becomes possible to set. Note that the diopter adjustment unit 40 may be an optical system different from that shown in FIG. 4, such as a Badal optical system.
 走査部16(「光スキャナ」ともいう)は、光源(レーザー光出射部11)から発せられたレーザー光を、眼底上で走査するためのユニットである。本実施例において、走査部16は、レーザー光の走査方向が互いに異なる2つの光スキャナを含むものとする。即ち、主走査用(例えば、X方向への走査用)の光スキャナ16aと、副走査用(例えば、Y方向への走査用)の光スキャナ16bと、を含む。各光スキャナ16a,16bによる走査の周期、走査速度等は、変更可能であってもよい。 The scanning unit 16 (also referred to as “optical scanner”) is a unit for scanning the fundus with laser light emitted from a light source (laser light emitting unit 11). In this embodiment, the scanning unit 16 includes two optical scanners having different scanning directions of laser light. That is, an optical scanner 16a for main scanning (for example, scanning in the X direction) and an optical scanner 16b for sub-scanning (for example, scanning in the Y direction) are included. The scanning period, scanning speed, etc. by each of the optical scanners 16a, 16b may be changeable.
 以下では、主走査用の光スキャナ16aはレゾナントスキャナであり、副走査用の光スキャナ16bはガルバノミラーであるものとして説明する。本実施例において、主走査用の光スキャナ16aであるレゾナントスキャナは、予め定められた一定の周期,一定の走査範囲(振り角)でミラー部を振動させるように設計されている。一方、副走査用の光スキャナ16bは、走査の速度、走査の範囲が可変である。但し、各光スキャナ16a,16bには、他の光スキャナが適用されてもよい。例えば、各光スキャナ16a,16bに対し、他の反射ミラー(ガルバノミラー、ポリゴンミラー、レゾナントスキャナ、および、MEMS等)の他、光の進行(偏向)方向を変化させる音響光学素子(AOM)等が適用されてもよい。 In the following description, it is assumed that the optical scanner 16a for main scanning is a resonant scanner and the optical scanner 16b for sub scanning is a galvanometer mirror. In the present embodiment, the resonant scanner, which is the optical scanner 16a for main scanning, is designed to vibrate the mirror section with a predetermined constant period and a constant scanning range (swing angle). On the other hand, the scanning speed and scanning range of the optical scanner 16b for sub-scanning are variable. However, other optical scanners may be applied to each of the optical scanners 16a and 16b. For example, for each of the optical scanners 16a and 16b, in addition to other reflecting mirrors (galvano mirror, polygon mirror, resonant scanner, MEMS, etc.), an acousto-optic device (AOM) that changes the traveling (deflection) direction of light, etc. May be applied.
 なお、SLO1にラインスキャンタイプの装置を適用した場合、走査部16は、ライン状のレーザー光をラインと交差する方向に走査する光スキャナに置き換えられてもよい。この光スキャナは、副走査用の光スキャナであり、例えば、ガルバノミラーおよび音響光学素子等のいずれかであってもよい。 When a line scan type apparatus is applied to SLO1, the scanning unit 16 may be replaced with an optical scanner that scans line-shaped laser light in a direction intersecting the line. This optical scanner is a sub-scanning optical scanner, and may be, for example, a galvanometer mirror or an acoustooptic device.
 対物光学系17は、SLO1の対物光学系である。対物光学系17は、走査部16によって走査されるレーザー光を、眼底Erに導くために利用される。そのために、対物光学系17は、走査部16を経たレーザー光が旋回される旋回点Pを形成する。旋回点Pは、照射光学系10の光軸L1上であって、対物光学系17に関して走査部16と光学的に共 役な位置に形成される。なお、本開示において「共役」とは、必ずしも完全な共役関係に限定されるものではなく、「略共役」を含むものとする。即ち、眼底画像の利用目的(例えば、観察、解析等)との関係で許容される範囲で、完全な共役位置からズレて配置される場合も、本開示における「共役」に含まれる。但し、SLO1の対物光学系は、レンズ系に限定されるものではなく、ミラー系であってもよいし、レンズ系とミラー系とを組み合わせたものでもあってもよいし、その他の光学系であってもよい。 The objective optical system 17 is an SLO1 objective optical system. The objective optical system 17 is used to guide the laser light scanned by the scanning unit 16 to the fundus oculi Er. For this purpose, the objective optical system 17 forms a turning point P around which the laser light passed through the scanning unit 16 is turned. The turning point P is formed on the optical axis L1 of the irradiation optical system 10 and at a position optically cooperating with the scanning unit 16 with respect to the objective optical system 17. In the present disclosure, “conjugate” is not necessarily limited to a complete conjugate relationship, and includes “substantially conjugate”. In other words, the case where the fundus image is arranged so as to deviate from the complete conjugate position within the range allowed in relation to the purpose of use of the fundus image (for example, observation, analysis, etc.) is also included in “conjugate” in the present disclosure. However, the objective optical system of SLO1 is not limited to a lens system, and may be a mirror system, a combination of a lens system and a mirror system, or other optical systems. There may be.
 走査部16を経たレーザー光は、対物光学系17を通過することによって、旋回点Pを経て、眼底Erに照射される。このため、対物光学系17を通過したレーザー光は、走査部16の動作に伴って旋回点Pを中心に旋回される。その結果として、本実施例では、眼底Er上でレーザー光が2次元的に走査される。眼底Erに照射されたレーザー光は、集光位置(例えば、網膜表面)にて反射される。また、レーザー光は、集光位置の前後の組織にて散乱される。反射光および散乱光は、平行光としてそれぞれ瞳孔から出射する。 The laser light that has passed through the scanning unit 16 passes through the objective optical system 17 and is irradiated to the fundus Er through the turning point P. For this reason, the laser light that has passed through the objective optical system 17 is turned around the turning point P as the scanning unit 16 operates. As a result, in this embodiment, laser light is scanned two-dimensionally on the fundus oculi Er. The laser light applied to the fundus Er is reflected at a condensing position (for example, the retina surface). Further, the laser light is scattered by the tissues before and after the condensing position. The reflected light and scattered light are each emitted from the pupil as parallel light.
 次に、受光光学系20について説明する。受光光学系20は、1つ又は複数の受光素子を持つ。例えば、図4に示すように、複数の受光素子25,27,29を有してもよい。この場合、照射光学系10によって照射されたレーザー光による眼底Erからの光は、受光素子25,27,29によって受光される。 Next, the light receiving optical system 20 will be described. The light receiving optical system 20 has one or a plurality of light receiving elements. For example, as shown in FIG. 4, you may have several light receiving element 25,27,29. In this case, light from the fundus Er due to the laser light irradiated by the irradiation optical system 10 is received by the light receiving elements 25, 27, and 29.
 図4に示すように、本実施例における受光光学系20は、対物光学系17から穴開きミラー13までに配置された各部材を、照射光学系10と共用してもよい。この場合、眼底からの光は、照射光学系10の光路を遡って、穴開きミラー13まで導かれる。穴開きミラー13は、被検眼の角膜,および,装置内部の光学系(例えば対物光学系のレンズ面等)での反射によるノイズ光の少なくとも一部を取り除きつつ、眼底Erからの光を、受光光学系20の独立光路へ導く。 As shown in FIG. 4, in the light receiving optical system 20 in this embodiment, each member arranged from the objective optical system 17 to the perforated mirror 13 may be shared with the irradiation optical system 10. In this case, the light from the fundus is guided back to the perforated mirror 13 along the optical path of the irradiation optical system 10. The perforated mirror 13 receives light from the fundus Er while removing at least a part of noise light reflected by the cornea of the eye to be examined and an optical system (for example, a lens surface of an objective optical system) inside the apparatus. The light is guided to an independent optical path of the optical system 20.
 なお、照射光学系10と受光光学系20とを分岐させる光路分岐部材は、穴開きミラー13に限られるものではなく、その他のビームスプリッターが利用されてもよい。 The optical path branching member that branches the irradiation optical system 10 and the light receiving optical system 20 is not limited to the perforated mirror 13, and other beam splitters may be used.
 本実施例の受光光学系20は、穴開きミラー13の反射光路に、レンズ21、ピンホール板23、および、光分離部(光分離ユニット)30を有する。また、光分離部30と各受光素子25,27,29との間に、レンズ24,26,28が設けられている。 The light receiving optical system 20 of the present embodiment has a lens 21, a pinhole plate 23, and a light separation unit (light separation unit) 30 in the reflected light path of the perforated mirror 13. In addition, lenses 24, 26, and 28 are provided between the light separation unit 30 and the light receiving elements 25, 27, and 29.
 ピンホール板23は、眼底共役面に配置されており、SLO1における共焦点絞りとして機能する。すなわち、視度調節部40によって視度が適正に補正される場合において、レンズ21を通過した眼底Erからの光は、ピンホール板23の開口において焦点を結ぶ。ピンホール板23によって、眼底Erの集光点(あるいは、焦点面)以外の位置からの光が取り除かれ、残り(集光点からの光)が主に受光素子25,27,29へ導かれる。 The pinhole plate 23 is disposed on the fundus conjugate plane and functions as a confocal stop in the SLO1. That is, when the diopter is appropriately corrected by the diopter adjustment unit 40, the light from the fundus Er that has passed through the lens 21 is focused at the opening of the pinhole plate 23. The pinhole plate 23 removes light from a position other than the condensing point (or focal plane) of the fundus Er, and the remainder (light from the condensing point) is mainly guided to the light receiving elements 25, 27, and 29. .
 光分離部30は、眼底Erからの光を分離させる。本実施例では、光分離部30によって、眼底Erからの光が波長選択的に光分離される。また、光分離部30は、受光光学系20の光路を分岐させる光分岐部を兼用していてもよい。例えば、図4に示すように、光分離部30は、光分離特性(波長分離特性)が互いに異なる2つのダイクロイックミラー(ダイクロイックフィルター)31,32を含んでいてもよい。受光光学系20の光路は、2つのダイクロイックミラー31,32によって、3つに分岐される。また、それぞれの分岐光路の先には、受光素子25,27,29の1つがそれぞれ配置される。 The light separation unit 30 separates light from the fundus Er. In the present embodiment, the light from the fundus Er is light-selectively separated by the light separation unit 30. The light separation unit 30 may also serve as a light branching unit that branches the optical path of the light receiving optical system 20. For example, as illustrated in FIG. 4, the light separation unit 30 may include two dichroic mirrors (dichroic filters) 31 and 32 having different light separation characteristics (wavelength separation characteristics). The optical path of the light receiving optical system 20 is branched into three by the two dichroic mirrors 31 and 32. Further, one of the light receiving elements 25, 27, and 29 is disposed at the tip of each branch optical path.
 例えば、光分離部30は、眼底Erからの光の波長を分離させ、3つの受光素子25,27,29に、互いに異なる波長域の光を受光させる。例えば、青,緑,赤の3色の光を、受光素子25,27,29に1色ずつ受光させてもよい。この場合、各受光素子25, 27,29の受光結果から、カラー画像を得ることができる。 For example, the light separation unit 30 separates the wavelength of light from the fundus Er and causes the three light receiving elements 25, 27, and 29 to receive light in different wavelength ranges. For example, the light receiving elements 25, 27, and 29 may receive light of three colors of blue, green, and red one by one. In this case, a color image can be obtained from the light reception results of the light receiving elements 25, the collars 27 and 29.
 また、光分離部30は、赤外撮影で使用される赤外域の光を、受光素子25,27,29の少なくとも1つに受光させる。この場合において、例えば、蛍光撮影で使用される蛍光と、赤外撮影で使用される赤外域の光とが、互いに異なる受光素子に受光されてもよい。なお、本実施例では、受光素子25において赤外光による眼底反射光が受光される。 In addition, the light separation unit 30 causes infrared light used in infrared imaging to be received by at least one of the light receiving elements 25, 27, and 29. In this case, for example, fluorescence used in fluorescence imaging and infrared light used in infrared imaging may be received by different light receiving elements. In the present embodiment, fundus reflection light by infrared light is received by the light receiving element 25.
<制御系の構成>
 次に、図5を参照して、SLO1の制御系を説明する。SLO1は、制御部70によっての各部の制御が行われる。制御部70は、SLO1の各部の制御処理と、演算処理とを行う電子回路を有する処理装置(プロセッサ)である。制御部70は、CPU(Central Processing Unit)およびメモリ等で実現される。制御部70は、記憶部71と、バス等を介して電気的に接続されている。また、制御部70は、レーザー光出射部11、受光素子25,27,29、駆動部14a、走査部16、入力インターフェイス75、およびモニタ80等の各部とも電気的に接続されている。
<Control system configuration>
Next, the control system of SLO1 will be described with reference to FIG. In SLO1, each part is controlled by the control unit 70. The control unit 70 is a processing device (processor) having an electronic circuit that performs control processing of each unit of the SLO1 and arithmetic processing. The control unit 70 is realized by a CPU (Central Processing Unit), a memory, and the like. The control unit 70 is electrically connected to the storage unit 71 via a bus or the like. The control unit 70 is also electrically connected to the laser beam emitting unit 11, the light receiving elements 25, 27, and 29, the driving unit 14 a, the scanning unit 16, the input interface 75, and the monitor 80.
 記憶部71には、各種の制御プログラムおよび固定データ等が格納される。また、記憶部71には、一時データ等が記憶されてもよい。SLO1で得られた画像は、記憶部71に記憶されていてもよい。但し、必ずしもこれに限られるものではなく、外部の記憶装置(例えば、LANおよびWANで制御部70に接続される記憶装置)へSLO1で得られた画像が記憶されてもよい。 The storage unit 71 stores various control programs and fixed data. The storage unit 71 may store temporary data or the like. The image obtained by SLO1 may be stored in the storage unit 71. However, the present invention is not necessarily limited to this, and the image obtained in SLO1 may be stored in an external storage device (for example, a storage device connected to the control unit 70 via LAN and WAN).
 本実施例では、制御部70が画像処理部(画像形成部)を兼用する。画像処理部として、制御部70は、例えば、受光素子25,27,29から出力される受光信号を基に眼底画像を形成する。より詳細には、制御部70は、走査部16による光走査と同期して眼底画像を形成する。例えば、制御部70は、副走査用の光スキャナ16bがn回(nは、1以上の整数)往復する度に、少なくとも1フレーム(換言すれば、1枚)の眼底画像を、(受光素子毎に)形成する。なお、以下では、特段の断りが無い限り、便宜上、副走査用の光スキャナ16bの1往復につき、その1往復に基づく1フレームの眼底画像が形成されるものとする。本実施例では、3つの受光素子25,27,29が設けられているので、制御部70は、それぞれの受光素子25,27,29からの信号に基づく最大3種類の画像を、副走査用の光スキャナ16bが1往復する度に生成する。 In this embodiment, the control unit 70 also serves as an image processing unit (image forming unit). As the image processing unit, the control unit 70 forms a fundus image based on light reception signals output from the light receiving elements 25, 27, and 29, for example. More specifically, the control unit 70 forms a fundus image in synchronization with the optical scanning performed by the scanning unit 16. For example, each time the sub-scanning optical scanner 16b reciprocates n times (n is an integer of 1 or more), the control unit 70 displays the fundus image of at least one frame (in other words, one sheet) (the light receiving element). Every time). In the following description, for the sake of convenience, one frame of the fundus image is formed for each round trip of the sub-scanning optical scanner 16b unless otherwise specified. In this embodiment, since the three light receiving elements 25, 27, and 29 are provided, the control unit 70 uses a maximum of three types of images based on signals from the respective light receiving elements 25, 27, and 29 for sub-scanning. Is generated every time the optical scanner 16b reciprocates once.
 制御部70は、上記のような装置の動作に基づいて逐次形成される複数フレームの眼底画像を、観察画像として時系列にモニタ80へ表示させてもよい。観察画像は、リアルタイムに取得された眼底画像からなる動画像である。また、制御部70は、逐次形成される複数の眼底画像のうち一部を、撮影画像(キャプチャ画像)として取り込む(キャプチャする)。その際、撮影画像は記憶媒体に記憶される。撮影画像が記憶される記憶媒体は、不揮発性の記憶媒体(例えば、ハードディスク,フラッシュメモリ等)であってもよい。本実施例では、例えば、トリガ信号(例えば、レリーズ操作信号等)の出力後、所定のタイミング(又は,期間)に形成される眼底画像がキャプチャされる。 The control unit 70 may cause the monitor 80 to display a plurality of frames of fundus images sequentially formed based on the operation of the apparatus as described above as an observation image in time series. The observation image is a moving image including a fundus image acquired in real time. Further, the control unit 70 captures (captures) a part of a plurality of fundus images that are sequentially formed as a captured image (capture image). At that time, the captured image is stored in a storage medium. The storage medium for storing the captured image may be a non-volatile storage medium (for example, a hard disk, a flash memory, etc.). In this embodiment, for example, a fundus image formed at a predetermined timing (or period) is captured after outputting a trigger signal (for example, a release operation signal).
 制御部70は、眼底画像を、互いに異なる画素数で形成できる。例えば、4096×4096,2048×2048,1024×1024,512×512(いずれも、「主走査方向の画素数」×「副走査方向の画素数」)の4種類の画素数で、眼底画像を形成可能であってもよい。例えば、光スキャナ16a,16bの振り角が画素数に応じて変更されることで、眼底画像の画素数が切換えられてもよいが、本実施例では、いずれの画素数で眼底画像を得る場合においても、各光スキャナ16a,16bの振り角は一定であるものとする。 The control unit 70 can form fundus images with different numbers of pixels. For example, a fundus image can be obtained with four types of pixels of 4096 × 4096, 2048 × 2048, 1024 × 1024, 512 × 512 (both “number of pixels in the main scanning direction” × “number of pixels in the sub scanning direction”). It may be formable. For example, the number of pixels of the fundus image may be switched by changing the swing angle of the optical scanners 16a and 16b according to the number of pixels. However, in this embodiment, the fundus image is obtained with any number of pixels. Also, the swing angle of each of the optical scanners 16a and 16b is assumed to be constant.
 本実施例において、副走査用の光スキャナ16bの走査速度は、画素数に応じて調整さ れる。即ち、取得する眼底画像の画素数が少ないほど、副走査用の光スキャナ16bをより高速に動作させる。 In this embodiment, the scanning speed of the sub-scanning optical scanner 16b can be adjusted according to the number of pixels. In other words, the smaller the number of pixels of the acquired fundus image, the faster the sub-scanning optical scanner 16b is operated.
 本実施例では、主走査用の光スキャナ16a(レゾナントスキャナ)については、往復動作の周期,走査範囲(振り角)が略一定であり、走査速度,走査範囲の制御が難しい。このため、画素のサンプリング周期が調整されることで、主走査方向の画素数が切換えられてもよい。受光素子からの信号のサンプリングは、例えば、クロックと同期して行われる。クロックの周期が可変である場合は、受光素子からの信号のサンプリング周期そのものが切り替えられることで、主走査方向の画素数が切換えられてもよい。一方、クロックの周期が一定であり、受光素子からの信号のサンプリング周期が一定である場合は、一旦サンプリングした信号から、画素形成に利用する信号の抽出間隔(リサンプリングの間隔)が切換えられることによって、主走査方向の画素数が切換えられてもよい。 In this embodiment, for the main scanning optical scanner 16a (resonant scanner), the cycle of the reciprocating operation and the scanning range (swing angle) are substantially constant, and it is difficult to control the scanning speed and the scanning range. For this reason, the number of pixels in the main scanning direction may be switched by adjusting the pixel sampling period. Sampling of the signal from the light receiving element is performed in synchronization with a clock, for example. When the clock cycle is variable, the number of pixels in the main scanning direction may be switched by switching the sampling cycle itself of the signal from the light receiving element. On the other hand, when the clock period is constant and the sampling period of the signal from the light receiving element is constant, the extraction interval (resampling interval) of the signal used for pixel formation is switched from the once sampled signal. Thus, the number of pixels in the main scanning direction may be switched.
 また、本実施例では、主走査用の光スキャナ16a(レゾナントスキャナ)のドライバから、各往路走査の周期と同期した信号(例えば、方形波)が出力される。この信号の発生タイミングが、或いは、該発生タイミングから所定時間経過したタイミングが、画素列(第1画素列,及び,第2画素列の一方)における先頭画素の取得タイミングとして利用される(換言すれば、水平同期が得られる)。また、例えば、該タイミングから、往復走査の半周期分が経過したタイミングが、更に、第1画素列,及び,第2画素列のうち、残り一方における先頭画素の取得タイミングとして利用される。その結果として、第1画素列と、第2画素列と、が区別され、眼底画像が構築される(詳細は後述する)。 In this embodiment, a signal (for example, a square wave) synchronized with the period of each forward scan is output from the driver of the optical scanner 16a (resonant scanner) for main scanning. The generation timing of this signal or the timing when a predetermined time has elapsed from the generation timing is used as the acquisition timing of the first pixel in the pixel column (one of the first pixel column and the second pixel column) (in other words, Horizontal synchronization is obtained). Further, for example, the timing at which a half cycle of reciprocating scanning has elapsed from this timing is further used as the acquisition timing of the first pixel in the remaining one of the first pixel column and the second pixel column. As a result, the first pixel column is distinguished from the second pixel column, and a fundus image is constructed (details will be described later).
 入力インターフェイス75は、検者の操作を受け付ける操作部である。例えば、タッチパネル、マウス、および、キーボード等が、入力インターフェイス75として利用されてもよい。このような入力インターフェイス75は、SLO1とは別体のデバイスであってもよい。制御部70は、入力インターフェイス75(操作部)から出力される操作信号に基づいて、上記の各部材を制御する。 The input interface 75 is an operation unit that accepts an examiner's operation. For example, a touch panel, a mouse, a keyboard, and the like may be used as the input interface 75. Such an input interface 75 may be a device separate from SLO1. The control unit 70 controls each of the above members based on an operation signal output from the input interface 75 (operation unit).
 <動作説明>
 次に、図6を参照しつつ、実施例に係るSLO1の動作を説明する。SLO1は、各種の調整が行われた後、眼底画像の撮影画像を取得(キャプチャー)する。便宜上、以下の説明では、特に断りが無い限り、撮影画像として画素数:2048×2048の静止画像を取得するものとする。また、観察画像として画素数1024×1024の画像を取得するものとする。但し、必ずしもこれに限られるものではなく、撮影モード、撮影画像の用途等に応じて、撮影画像の画素数を適宜選択可能であってもよい。
<Description of operation>
Next, the operation of the SLO 1 according to the embodiment will be described with reference to FIG. The SLO 1 acquires (captures) a captured image of the fundus image after various adjustments are made. For convenience, in the following description, it is assumed that a still image having a pixel number of 2048 × 2048 is acquired as a captured image unless otherwise specified. In addition, an image having 1024 × 1024 pixels is acquired as an observation image. However, the present invention is not necessarily limited to this, and the number of pixels of the photographed image may be appropriately selected according to the photographing mode, use of the photographed image, and the like.
 まず、本実施例では、装置と被検眼との位置関係が調整(アライメント)される。本実施例において、アライメントは、被検眼が検査窓の前に配置されるよう、被検者をSLO1に向き合わせた状態で行われる。アライメントは、種々の方法が考えられるが、ここでは、被検眼の観察画像(動画像)を利用する方法を紹介する。例えば、本実施例では、撮影光学系10を介して取得される画像(観察画像)がアライメントにおいて利用される。この場合、制御部70によって、観察画像の取得および表示が開始され(S2)、アライメントのための各種処理が実行される(S3)。この場合、例えば、角膜面にアライメント用の指標光束を投影するアライメント投影光学系が、SLO1に設けられていてもよい。指標光束の出射位置は、適正作動距離である場合において、角膜の曲率半径の中心,および,角膜面の中間点,と共役な位置であってもよい。そのような構成では、適正作動距離およびその前後で、撮影光学系を介して得られる画像に、指標光束による指標像が映り込む。観察画像上で指標像が形成される位置に応じて、装置と被検眼との位置関係を、作動距離方向と交差する方向に関して調整することで、上下左右方向のアライメントを行うことができる。また、指標像のぼけ具合に応じて、装置と被検眼との位置関係を、作動距離方向に関して調整することで、作動距離方向のアライメントを行うことができる。より詳細については、本出願人による「特開2016-022261号公報」等を参照されたい。制御部70は、作動距離方向,および,作動距離方向とは交差する方向の少なくともいずれかに関し、アライメント状態を、観察画像に含まれる指標像に基づいて検出してもよい。 First, in this embodiment, the positional relationship between the apparatus and the eye to be examined is adjusted (aligned). In the present embodiment, the alignment is performed in a state where the subject faces the SLO1 so that the eye to be examined is arranged in front of the examination window. Various methods can be considered for the alignment. Here, a method using an observation image (moving image) of the eye to be examined is introduced. For example, in this embodiment, an image (observation image) acquired through the photographing optical system 10 is used in alignment. In this case, acquisition and display of an observation image are started by the control unit 70 (S2), and various processes for alignment are executed (S3). In this case, for example, an alignment projection optical system that projects an alignment index light beam onto the corneal surface may be provided in the SLO1. The emission position of the index light beam may be a conjugate position with the center of the radius of curvature of the cornea and the midpoint of the corneal surface when the working distance is appropriate. In such a configuration, the index image by the index light beam is reflected in the image obtained through the photographing optical system at and around the proper working distance. By adjusting the positional relationship between the apparatus and the eye to be examined with respect to the direction intersecting the working distance direction according to the position where the index image is formed on the observation image, alignment in the vertical and horizontal directions can be performed. Moreover, alignment in the working distance direction can be performed by adjusting the positional relationship between the apparatus and the eye to be examined with respect to the working distance direction according to the degree of blurring of the index image. For more details, refer to “Japanese Unexamined Patent Application Publication No. 2016-022261” by the present applicant. The control unit 70 may detect the alignment state with respect to at least one of the working distance direction and the direction intersecting the working distance direction based on an index image included in the observation image.
 なお、必ずしもこれに限定されるものではなく、アライメントには、図示無き前眼部観察系(前眼部カメラ)で取得される前眼部の観察画像が利用されてもよい。前眼部の観察画像を確認しながら、撮影光学系が内蔵された筐体を、被検眼Eに対して移動させることで、装置と被検眼とが、眼底撮影に適した位置関係に調整されてもよい。  Note that the present invention is not necessarily limited to this, and an anterior ocular segment observation image (not shown) acquired by an anterior ocular segment observation system (anterior segment camera) (not shown) may be used for alignment. The device and the eye to be examined are adjusted to a positional relationship suitable for fundus photographing by moving the housing containing the photographing optical system with respect to the eye E while confirming the observation image of the anterior eye portion. May be.
 以上のようなアライメントは、検者によって手動で調整が行われるマニュアルアライメントであってもよいし、制御部70によって自動的に調整が行われるオートアライメント方式であってもよい。オートアライメント方式では、撮影光学系10と被検眼Eとが撮影に適した位置関係となるように、撮影光学系10と被検眼Eとの位置関係を調整するためのアクチュエータが、観察画像に応じて制御部70によって駆動制御される。 Alignment as described above may be manual alignment that is manually adjusted by an examiner, or may be an automatic alignment method that is automatically adjusted by the control unit 70. In the auto alignment method, an actuator for adjusting the positional relationship between the imaging optical system 10 and the eye E so that the imaging optical system 10 and the eye E to be examined have a positional relationship suitable for imaging corresponds to the observation image. The drive is controlled by the controller 70.
 次に、オートフォーカス(撮影光学系の視度補正)が行われる。まず、制御部70は、観察画像として形成する眼底画像の画素数を切換える。より詳細には、撮影画像よりも少ない画素数に設定する(S4)。ここでは、画素数:512×512の眼底画像が観察画像として得られるように設定される。これにより、1フレーム枚当たりの眼底画像が、撮影画像と比べて短時間で取得されるようになる。この状態で、視度補正処理が実行される(S5)。 Next, autofocus (diopter correction of the photographing optical system) is performed. First, the control unit 70 switches the number of pixels of the fundus image formed as the observation image. More specifically, the number of pixels is set smaller than that of the captured image (S4). Here, the fundus image having the number of pixels of 512 × 512 is set so as to be obtained as an observation image. Accordingly, the fundus image per frame is acquired in a shorter time than the captured image. In this state, diopter correction processing is executed (S5).
 視度補正処理(S5)において、制御部70は、レンズ14を駆動制御して視度の補正量を変化させながら、受光素子25,27,29からの信号に基づいて随時取得される観察画像の各々における結像状態を評価する。 In the diopter correction process (S5), the control unit 70 controls the lens 14 to change the diopter correction amount and controls an observation image acquired at any time based on signals from the light receiving elements 25, 27, and 29. The imaging state in each of these is evaluated.
 例えば、制御部70は、観察画像の画像データを微分処理し、微分処理した結果に基づく微分ヒストグラム情報を利用して、結像状態を評価してもよい。微分ヒストグラム情報は、例えば、観察画像の画像データにエッジ抽出用(例えば、ラプラシアン変換、SOBEL等)のフィルタを掛けて輪郭画像に変換した後、輪郭画像のヒストグラムとして取得してもよい。 For example, the control unit 70 may differentiate the image data of the observation image, and may evaluate the imaging state using differential histogram information based on the result of the differentiation process. The differential histogram information may be acquired as a histogram of the contour image after converting the image data of the observation image into a contour image by applying a filter for edge extraction (for example, Laplacian conversion, SOBEL, etc.), for example.
 図8は、微分ヒストグラムの一例を示す図である。図8において、横軸は微分の絶対値(以下、微分値と省略する)d(d=1、2、・・・254)、縦軸は各微分値における対応する画素数H(d)を、それぞれ、画素数がピークを示した微分値における画素数H(dp)で正規化したもの((H(d)/H(dp))を百分率(%)で表記している。なお、図8のヒストグラムにおいては、端点(d=0、d=255)の2点のデータを除外している。ここで、微分値dは、輪郭画像における輝度値を255階調で表したものである。 FIG. 8 is a diagram showing an example of the differential histogram. In FIG. 8, the horizontal axis represents the absolute value of differentiation (hereinafter abbreviated as differential value) d (d = 1, 2,... 254), and the vertical axis represents the corresponding number of pixels H (d) in each differential value. In addition, normalized values ((H (d) / H (dp)) of the number of pixels H (dp) in the differential value at which the number of pixels showed a peak are expressed in percentage (%). The histogram of 8 excludes the data of the two end points (d = 0, d = 255), where the differential value d represents the luminance value in the contour image in 255 gradations. .
 ここで、制御部70は、前述のように取得されたヒストグラム情報において画像全体で所定の割合以上の画素数を持つ輝度値(微分値)の最大値を用いてSLO眼底像の結像状態(フォーカス状態)評価値を算出する。例えば、SLO眼底像の結像状態を評価するための結像状態評価値C1として、微分ヒストグラムにおける閾値S1(例えば、20%)以上での微分値の最大値Dmaxと最小値Dminの差を求める(C1=Dmax-Dmin)。なお、閾値S1は、ノイズによる影響を回避しつつ、SLO眼底像の結像状態の変化に対して評価値C1が敏感に変化するような値に設定される。また、上記において、閾値S1以上での微分値の最大値Dmaxのみを結像状態評価値C1として設定するようにしてもよい。 Here, the control unit 70 uses the maximum value of the luminance value (differential value) having the number of pixels equal to or higher than a predetermined ratio in the entire image in the histogram information acquired as described above (SLO fundus image formation state ( Focus state) Evaluation value is calculated. For example, as the imaging state evaluation value C1 for evaluating the imaging state of the SLO fundus image, the difference between the maximum value Dmax and the minimum value Dmin of the differential value at a threshold S1 (for example, 20%) or more in the differential histogram is obtained. (C1 = Dmax−Dmin). The threshold value S1 is set to a value such that the evaluation value C1 changes sensitively to changes in the imaging state of the SLO fundus image while avoiding the influence of noise. In the above description, only the maximum differential value Dmax above the threshold S1 may be set as the imaging state evaluation value C1.
 結像状態評価値C1は、レンズ14が合焦位置にあるとき(撮影光学系のフォーカスが合っているとき)に高い値を示し、レンズ14が合焦位置からずれるに従って低くなっていくため、SLO1におけるフォーカス状態(結像状態)の判定に用いることができる。 The imaging state evaluation value C1 shows a high value when the lens 14 is in the in-focus position (when the photographing optical system is in focus), and decreases as the lens 14 deviates from the in-focus position. It can be used to determine the focus state (image formation state) in SLO1.
 制御部70は、レンズ14の位置を移動させながら結像状態評価値C1をサンプリングし、サンプリング結果により合焦状態を判定し、レンズ14を合焦位置に駆動させる。 The control unit 70 samples the imaging state evaluation value C1 while moving the position of the lens 14, determines the in-focus state based on the sampling result, and drives the lens 14 to the in-focus position.
 例えば、制御部70は、適正なフォーカス位置を探索するべく、駆動機構40aを駆動 制御して、レンズ14の移動可能範囲において離散的に設定された複数の移動位置にレンズ14を移動させ、各移動位置での眼底画像を取得する。例えば、-12Dから+12D
の範囲で、レンズ14を移動させる。そして、制御部70は、移動位置毎に取得された眼底画像のそれぞれの微分ヒストグラムを作成し、結像状態評価値C1をそれぞれ算出する。この場合、制御部70は、レンズ14を連続的に移動させていき、連続的に結像状態評価値C1を算出するようにしてもよい。
For example, in order to search for an appropriate focus position, the control unit 70 drives and controls the drive mechanism 40a to move the lens 14 to a plurality of discretely set movement positions within the movable range of the lens 14. Acquire a fundus image at the moving position. For example, -12D to + 12D
The lens 14 is moved within the range of. Then, the control unit 70 creates a differential histogram of each fundus image acquired for each movement position, and calculates an imaging state evaluation value C1. In this case, the control unit 70 may continuously move the lens 14 and continuously calculate the imaging state evaluation value C1.
 結像状態評価値C1は、サンプリングが行われたレンズ14の位置毎の飛び飛びの値である。制御部70は、サンプリングが実行されたレンズ14の位置の中から、結像状態評価値C1が最も大きな位置を、合焦位置として選択してもよい。但し、必ずしもこれに限られるものではない。例えば、サンプリングが行われた各レンズ14の位置の中間的な位置と対応する結像状態評価値C1を、サンプリング結果に対して曲線近似等の補間処理を行うことで導出してもよい。そして、補間処理の結果から、より正確な合焦位置を推定してもよい。なお、上記のような補間処理によって合焦位置を検出する手法としては、関数近似、重心、平均値の算出等を用いたものであってもよい。 The imaging state evaluation value C1 is a jump value for each position of the lens 14 on which sampling has been performed. The control unit 70 may select a position having the largest imaging state evaluation value C1 as the in-focus position from the positions of the lens 14 where sampling has been performed. However, it is not necessarily limited to this. For example, the imaging state evaluation value C1 corresponding to the intermediate position of each lens 14 that has been sampled may be derived by performing interpolation processing such as curve approximation on the sampling result. Then, a more accurate in-focus position may be estimated from the result of the interpolation process. In addition, as a method for detecting the in-focus position by the interpolation process as described above, a function approximation, a center of gravity, an average value calculation, or the like may be used.
 以上のようにして、比較的少ない画素数からなる眼底画像を用いてオートフォーカスがラフに行われる。更に、本実施例では、その後、より多くの画素数からなる眼底画像を用いて、より精密なオートフォーカスが行われてもよい。即ち、制御部70は、ラフなオートフォーカスの実行時に対し、観察画像として形成する眼底画像の画素数を増大させる。本実施例の場合、ラフなオートフォーカスでは、画素数512×512の眼底画像が用いられたので、例えば、制御部70は、1024×1024,2048×2048,4096×4096のいずれかの画素数で眼底画像を形成させる。そして、ラフなオートフォーカスによって求められた合焦位置の近傍で、レンズ14を移動させつつ、レンズ14の移動に伴って得られる各眼底画像の結像状態を評価する(本実施例では、結像状態評価値C1を求める)。そして、例えば、レンズ14の各位置における眼底画像の結像状態を相互に比較することで、合焦位置を再度、検出してもよい。この合焦位置にレンズ14を移動させることによって、本実施形態におけるフォーカス調整が終了される。本実施例では、フォーカス調整の完了後、制御部70は、観察画像の画素数が、1024×1024に設定される(S7)。 As described above, autofocus is roughly performed using a fundus image having a relatively small number of pixels. Further, in this embodiment, after that, more precise autofocus may be performed using a fundus image having a larger number of pixels. That is, the control unit 70 increases the number of pixels of the fundus image formed as the observation image when rough autofocus is executed. In the case of the present embodiment, since the fundus image having 512 × 512 pixels is used in rough autofocus, for example, the control unit 70 has any number of pixels of 1024 × 1024, 2048 × 2048, 4096 × 4096. To form a fundus image. Then, while moving the lens 14 in the vicinity of the in-focus position obtained by rough autofocus, the imaging state of each fundus image obtained with the movement of the lens 14 is evaluated (in this embodiment, the result is An image state evaluation value C1 is obtained). Then, for example, the in-focus position may be detected again by comparing the image formation state of the fundus image at each position of the lens 14 with each other. By moving the lens 14 to this in-focus position, the focus adjustment in this embodiment is completed. In this embodiment, after the focus adjustment is completed, the control unit 70 sets the number of pixels of the observation image to 1024 × 1024 (S7).
 なお、上記のように結像状態評価値C1をサンプリングする場合、結像状態評価値C1が上昇後、下降に転じた時点でレンズ14の移動を停止するようにしてもよい。 Note that when the imaging state evaluation value C1 is sampled as described above, the movement of the lens 14 may be stopped when the imaging state evaluation value C1 starts to decrease after the increase.
 視度補正の開始トリガは、例えば、制御部70がアライメント完了を自動検出したことであってもよいし、所定の操作が検者によって入力されたことであってもよい。 The diopter correction start trigger may be, for example, that the control unit 70 has automatically detected completion of alignment, or that a predetermined operation has been input by the examiner.
 その後、その他の撮影条件が設定される(S8)。例えば、撮影条件を指定するために検者の操作が入力される。例えば、赤外撮影、カラー撮影、IA(インドシアニングリーン蛍光造影)、FA(フルオレセイン蛍光造影)、FAF(眼底自発蛍光撮影)のいずれかの撮影方法が検者によって選択され、選択された撮影方法と対応する撮影条件を、制御部70が設定してもよい。撮影条件の具体例としては、レーザー光の波長、照明光の光量、受光信号のゲイン、等が例示される。 Thereafter, other shooting conditions are set (S8). For example, an examiner's operation is input to specify imaging conditions. For example, an imaging method selected from infrared imaging, color imaging, IA (indocyanine green fluorescence imaging), FA (fluorescein fluorescence imaging), and FAF (fundus autofluorescence imaging) is selected, and the selected imaging method is selected. The control unit 70 may set the shooting conditions corresponding to. Specific examples of imaging conditions include laser light wavelength, illumination light quantity, received light signal gain, and the like.
 制御部70は、トリガ信号(例えば、レリーズ操作信号等)に基づいて、眼底画像をキャプチャーする。キャプチャー時の撮影条件および画像形成条件は、これまでの各種調整の結果が反映される。例えば、本実施例では、キャプチャー時における合焦位置は、S5の処理による調整によって設定された位置である。前述したように、本実施例では、画素数:2048×2048の静止画像が、 キャプチャーの結果として取得される。 The control unit 70 captures a fundus image based on a trigger signal (for example, a release operation signal or the like). The shooting conditions and image forming conditions at the time of capture reflect the results of various adjustments so far. For example, in the present embodiment, the in-focus position at the time of capture is a position set by adjustment by the process of S5. As described above, in the present embodiment, a still image having the number of pixels: 2048 × 2048 is acquired as a result of the eyelid capture.
 なお、眼底画像において、往路走査による画素列と復路走査による画素列との間におけるズレが問題となる場合は、そのズレが補正された画像が、キャプチャーの結果として取得されてもよい。 In the fundus image, when a shift between the pixel row by the forward scan and the pixel row by the backward scan becomes a problem, an image in which the shift is corrected may be acquired as a result of the capture.
 以上、実施形態に基づいて説明を行ったが、本開示を実施するうえで、実施形態の内容を適宜変更することができる。 As mentioned above, although it demonstrated based on embodiment, when implementing this indication, the content of embodiment can be changed suitably.
 例えば、実施例では、フォーカス(装置の視度)が、第2画像に基づいて調整されるものとして説明したが、必ずしもこれに限られるものではなく、他の条件を調整する際に第2画像が利用されてもよい。例えば、往路走査による画素列と、復路走査による画素列と、の位置ズレが、第2画像に基づいて検出されてもよい。また、被検眼と撮影光学系との位置関係(SLO1のアライメント状態)が、第2画像に基づいて検出されてもよい。制御部70は、各々の検出を行う際に、一時的に第2画像が観察画像として取得されるように画像取得制御を切換えてもよい。これにより、各々の条件が短時間で調整されやすくなる。 For example, in the embodiment, the focus (the diopter of the apparatus) has been described as being adjusted based on the second image. However, the present invention is not necessarily limited to this, and the second image is adjusted when other conditions are adjusted. May be used. For example, a positional shift between a pixel row by forward scanning and a pixel row by backward scanning may be detected based on the second image. Further, the positional relationship between the eye to be examined and the imaging optical system (SLO1 alignment state) may be detected based on the second image. The control unit 70 may switch the image acquisition control so that the second image is temporarily acquired as an observation image when performing each detection. Thereby, each condition is easily adjusted in a short time.
 また、例えば、上記実施例では、レンズの反射像を用いて、往路走査と復路走査との画素の読み取りタイミングを補正する際に、視度調節部40が駆動するので、その間、被検眼の観察および撮影が困難になる。そこで、例えば、第1画素列と、第2画素列と、のズレを、被検眼の画像に基づいて検出および補正する第2の補正制御処理を、SLO1は、更に有していてもよい。例えば、第2の補正制御処理は、観察画像の取得中に一定時間ごとに繰り返し実行されてもよい。一方、レンズの反射像を用いた補正処理は、装置起動時、被検者が交代される際、装置がスリープ状態から復帰する際、異なる撮影方法で続けて撮影が行われる場合の撮影方法の切換時、等に実行されてもよい。 Further, for example, in the above embodiment, the diopter adjustment unit 40 is driven when correcting the reading timing of the pixels in the forward scanning and the backward scanning using the reflected image of the lens. And shooting becomes difficult. Therefore, for example, the SLO 1 may further include a second correction control process for detecting and correcting a deviation between the first pixel row and the second pixel row based on the image of the eye to be examined. For example, the second correction control process may be repeatedly executed at regular intervals during the acquisition of the observation image. On the other hand, the correction process using the reflected image of the lens is an imaging method in which imaging is performed continuously with a different imaging method when the apparatus is started up, when the subject is changed, and when the apparatus returns from the sleep state. It may be executed at the time of switching.
 第1画素列と、第2画素列と、のズレを、被検眼の画像に基づいて検出および補正する場合、ズレの検出および補正は、必ずしも被検眼の画像が取得される都度行われる必要は無い。例えば、取得された画像を表示したり、解析したりする際に、予め取得された被検眼の画像を処理して、ズレの検出および補正を行ってもよい。この場合において、各被検眼画像におけるズレの補正量は、時系列に得られた複数フレームの被検眼の画像に基づいて設定されてもよい。 When the deviation between the first pixel row and the second pixel row is detected and corrected based on the image of the eye to be examined, the detection and correction of the deviation need not be performed every time the image of the eye to be examined is acquired. No. For example, when the acquired image is displayed or analyzed, the image of the eye to be examined acquired in advance may be processed to detect and correct the deviation. In this case, the correction amount of the shift in each eye image may be set based on a plurality of frames of the eye image obtained in time series.
 例えば、前述したように、実施例に係るSLO1は、光干渉断層計(OCT)と一体化されていてもよい。この場合、制御部70は、上記したSLO1のフォーカス調整結果を、OCT光学系へ反映させてもよい。具体的には、SLO1の撮影光学系と、OCT光学系とにおいて、少なくとも視度調節部40が共用されていてもよい。また、これに限らず、OCT光学系における視度調節部は、SLO1の視度調節部40と別体であってもよい。この場合、例えば、OCT光学系における視度調節部は、SLO1の視度調節部40と、視度補正量が互いに同じ値となるように、SLO1の視度調節部40とメカニカルに連動する構造であってもよい。 For example, as described above, the SLO 1 according to the embodiment may be integrated with an optical coherence tomography (OCT). In this case, the control unit 70 may reflect the above-described focus adjustment result of SLO1 on the OCT optical system. Specifically, at least the diopter adjustment unit 40 may be shared by the SLO1 photographing optical system and the OCT optical system. In addition, the diopter adjustment unit in the OCT optical system is not limited thereto, and may be a separate body from the diopter adjustment unit 40 of SLO1. In this case, for example, the diopter adjusting unit in the OCT optical system is mechanically linked to the diopter adjusting unit 40 of SLO1 and the diopter adjusting unit 40 of SLO1 so that the diopter correction amounts are the same as each other. It may be.
10   照射光学系
11   光源
16   走査部
20   受光光学系
25,27,29   受光素子
70   制御部
 
DESCRIPTION OF SYMBOLS 10 Irradiation optical system 11 Light source 16 Scan part 20 Light reception optical system 25,27,29 Light receiving element 70 Control part

Claims (8)

  1.  光源からの光を走査部によって走査しつつ,被検眼に照射する照射光学系と、前記被検眼からの戻り光を少なくとも受光する受光素子を有する受光光学系と、を有する撮影光学系と、
     前記受光素子からの信号に基づいて被検眼の撮影画像を取得する画像形成手段と、
     前記撮影画像と比べて画素数が少ない,又は,前記撮影画像と比べて1フレーム当たりの画像の形成に要する時間が短い第2画像を前記画像形成手段に形成させ、前記撮影画像に関する条件の少なくとも1つを前記第2画像に基づいて設定する条件設定手段と、
     設定された前記条件による前記撮影画像をキャプチャーする撮影実行手段と、を備える眼科撮影装置。
    An imaging optical system having an irradiation optical system that irradiates the eye to be examined while scanning light from a light source by a scanning unit, and a light receiving optical system that has at least a light receiving element that receives return light from the eye to be examined;
    Image forming means for acquiring a captured image of the eye to be examined based on a signal from the light receiving element;
    A second image having a smaller number of pixels than the captured image or a time required for forming an image per frame compared to the captured image is formed in the image forming means, and at least a condition regarding the captured image is set. Condition setting means for setting one based on the second image;
    An ophthalmic imaging apparatus comprising: an imaging execution unit that captures the captured image according to the set condition.
  2.  前記条件設定手段は、前記条件の調整開始トリガが発せられてから、一時的に、前記少なくとも1つの条件を異ならせながら複数枚の前記第2画像を形成させ、前記複数枚の前記第2画像に基づいて前記条件を設定する請求項1記載の眼科撮影装置。 The condition setting means forms a plurality of the second images while temporarily changing the at least one condition after the condition adjustment start trigger is issued, and the plurality of the second images. The ophthalmologic photographing apparatus according to claim 1, wherein the condition is set based on the condition.
  3.  前記条件設定手段は、前記走査部の動作を前記撮影画像の取得時に対して異ならせることにより,前記第2画像を前記画像形成手段に取得させる請求項1又は2記載の眼科撮影装置。 3. The ophthalmologic photographing apparatus according to claim 1, wherein the condition setting unit causes the image forming unit to acquire the second image by making the operation of the scanning unit different from that at the time of acquiring the captured image.
  4.  前記条件は、眼科撮影装置のフォーカス調整量であることを特徴とする請求項1から3のいずれかに記載の眼科撮影装置。 4. The ophthalmic imaging apparatus according to claim 1, wherein the condition is a focus adjustment amount of the ophthalmic imaging apparatus.
  5.  前記条件は、前記光源からの光の出力、および、前記受光素子からの信号の増幅率の少なくとも一方であることを特徴とする請求項1から3のいずれかに記載の眼科撮影装置。
     
    4. The ophthalmologic photographing apparatus according to claim 1, wherein the condition is at least one of an output of light from the light source and an amplification factor of a signal from the light receiving element.
  6.  前記条件設定手段は、前記走査部における走査範囲および走査速度の少なくとも一方を、前記撮影画像の取得時に対して異ならせることにより,前記第2画像を前記画像形成手段に取得させる請求項3記載の眼科撮影装置。 The said condition setting means makes the said image formation means acquire the said 2nd image by making at least one of the scanning range and scanning speed in the said scanning part differ with respect to the time of acquisition of the said picked-up image. Ophthalmic photography device.
  7.  前記走査部は、前記被検眼上で前記光を副走査方向に走査するための光スキャナを少なくとも含み、
     前記条件設定手段は、副走査方向に関しての走査範囲および走査速度の少なくとも一方を調整することにより,前記第2画像を前記画像形成手段に取得させる請求項6記載の眼科撮影装置。
    The scanning unit includes at least an optical scanner for scanning the light in the sub-scanning direction on the eye to be examined.
    The ophthalmologic photographing apparatus according to claim 6, wherein the condition setting unit causes the image forming unit to acquire the second image by adjusting at least one of a scanning range and a scanning speed in the sub-scanning direction.
  8.  前記条件設定手段は、副走査方向に関しての走査速度を調整することにより,前記第2画像を形成させるものであって、
     更に、前記条件設定手段は、前記条件のラフな調整を、第2画像に基づいて行い、その後、微調整を、前記画像形成手段によって形成され,前記第2画像に対して画素数が多い第3画像に基づいて行う請求項7記載の眼科撮影装置。
    The condition setting means forms the second image by adjusting a scanning speed in the sub-scanning direction,
    Further, the condition setting unit performs rough adjustment of the condition based on the second image, and then performs fine adjustment by the image forming unit, and has a larger number of pixels than the second image. The ophthalmologic photographing apparatus according to claim 7, which is performed based on three images.
PCT/JP2017/024409 2016-07-04 2017-07-03 Ophthalmic imaging device WO2018008613A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018526382A JP6836212B2 (en) 2016-07-04 2017-07-03 Ophthalmologic imaging equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016132693 2016-07-04
JP2016-132693 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018008613A1 true WO2018008613A1 (en) 2018-01-11

Family

ID=60912127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024409 WO2018008613A1 (en) 2016-07-04 2017-07-03 Ophthalmic imaging device

Country Status (2)

Country Link
JP (1) JP6836212B2 (en)
WO (1) WO2018008613A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016103A (en) * 2014-07-08 2016-02-01 キヤノン株式会社 Ophthalmologic apparatus and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115301A (en) * 2009-12-02 2011-06-16 Nidek Co Ltd Fundus imaging apparatus
JP6606640B2 (en) * 2015-04-10 2019-11-20 株式会社トーメーコーポレーション Ophthalmic apparatus and control method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016103A (en) * 2014-07-08 2016-02-01 キヤノン株式会社 Ophthalmologic apparatus and control method thereof

Also Published As

Publication number Publication date
JPWO2018008613A1 (en) 2019-04-25
JP6836212B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US9386920B2 (en) Ophthalmologic image processing apparatus
JP5179265B2 (en) Ophthalmic imaging equipment
JP7195769B2 (en) Imaging device and its operating method
JP2015066242A (en) Ophthalmology imaging apparatus
JP6531369B2 (en) Fundus imaging device
JP2019201951A (en) Imaging apparatus and control method thereof
JP6319616B2 (en) Scanning laser ophthalmoscope
JP7098964B2 (en) Fundus photography device
JP2018000620A (en) Ophthalmological imaging apparatus
JPWO2019172062A1 (en) Fundus photography device
JP6739183B2 (en) Ophthalmic equipment
JP6713297B2 (en) Ophthalmic equipment
EP3603487B1 (en) Fundus imaging apparatus and method of producing composite image composed of fundus images
JP6464565B2 (en) Fundus photographing device
JP6836212B2 (en) Ophthalmologic imaging equipment
JP7056242B2 (en) Fundus photography device
JP6848207B2 (en) Ophthalmologic imaging equipment
JP6957842B2 (en) Fundus photography device
JP7119287B2 (en) Tomographic imaging device and tomographic imaging program
JP7355194B2 (en) fundus imaging device
JP6617790B2 (en) Ophthalmic imaging equipment
JP6349879B2 (en) Fundus photographing device
JP2023030467A (en) Ophthalmology imaging apparatus and ophthalmology imaging program
JP2018099631A (en) Scanning laser ophthalmoscope
JP2020044452A (en) Ophthalmic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018526382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824216

Country of ref document: EP

Kind code of ref document: A1