WO2018008537A1 - Full-duplex communication device - Google Patents

Full-duplex communication device Download PDF

Info

Publication number
WO2018008537A1
WO2018008537A1 PCT/JP2017/024079 JP2017024079W WO2018008537A1 WO 2018008537 A1 WO2018008537 A1 WO 2018008537A1 JP 2017024079 W JP2017024079 W JP 2017024079W WO 2018008537 A1 WO2018008537 A1 WO 2018008537A1
Authority
WO
WIPO (PCT)
Prior art keywords
full
duplex communication
data
signal
sensor
Prior art date
Application number
PCT/JP2017/024079
Other languages
French (fr)
Japanese (ja)
Inventor
敏明 中村
和夫 小埜
都留 康隆
雅秀 林
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018008537A1 publication Critical patent/WO2018008537A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to a full-duplex communication device.
  • Full-duplex communication is a communication method that can send and receive data from both sides simultaneously in bidirectional communication, and full-duplex communication devices that employ such a communication method are used in various fields. Yes.
  • the full-duplex communication device is applied, for example, when performing vehicle control and measurement.
  • full-duplex communication is executed between a master on the ECU (electronic control unit) side and a slave on the measuring instrument side, and a sensor output of the sensor type indicated by the master is returned from the slave as a response.
  • the sensor type in this case is a sensor for vehicle acceleration and angular velocity, and is transmitted from the sensor side to the ECU, which is the main device, and used depending on the purpose of use such as prevention of skidding and safe driving assistance.
  • Patent Document 1 As a known example that is applied to a vehicle and performs full-duplex communication of inertial sensor output, devices as described in Patent Document 1 and Patent Document 2 are known.
  • Patent Document 1 discloses a “first signal that is a physical quantity measuring device that detects a predetermined physical quantity, detects the predetermined physical quantity, and is a signal according to the detected magnitude of the predetermined physical quantity.
  • a sensor element that outputs a signal, a detection circuit that generates a second signal according to the predetermined physical quantity based on the first signal, a drive signal, and a drive signal that is supplied to the sensor element
  • a third signal that is an internal signal from at least one of the drive circuit, the detection circuit, and the drive circuit, and a failure diagnosis for at least one of the detection circuit and the drive circuit based on the third signal
  • a failure diagnosis unit that outputs a fourth signal that is a signal corresponding to the result of the failure diagnosis, and receives a command and generates command request data that is data requested by the command
  • An interface unit that serially transmits response data including the command request data, and the interface unit is configured to transmit the command request data based on at least one of the second signal and the fourth signal.
  • Patent Document 2 includes “a transmission / reception function for performing bidirectional communication with a host, and a synchronization control unit, a frequency generator that generates a transmission signal, and a reference signal generation source that generates a reference signal.
  • the control unit detects a frequency error of the transmission signal with respect to the reception signal received from the host and outputs a frequency adjustment signal that reduces the error with respect to the reception signal, and the frequency generator is based on the reference signal.
  • the transmission / reception apparatus is characterized in that the frequency of the transmission signal is determined and the frequency of the transmission signal is adjusted by the frequency adjustment signal.
  • the sensor that detects the angular velocity, acceleration, etc. of the vehicle while traveling determines the type and number of sensor data to be transmitted from the sensor side to the main ECU, according to the purpose of use such as prevention of skidding and safe driving assistance. It is desirable that it can be appropriately changed.
  • the main device side outputs a communication clock, and the sensor side transmits the requested data and the communication error detection code in synchronization therewith.
  • the sensor side needs to transmit an error detection code at the end of communication. Therefore, it is necessary to fix the number of clocks for each communication with the main device in advance. For example, if the number of clocks for each communication is fixed to 32 clocks, for example, if the error detection code is 8 bits, the sensor side may transmit the error detection code at the 25th clock to the 32nd clock every time.
  • the main apparatus side cannot receive a plurality of sensor outputs at the same time at a time.
  • the main apparatus side must receive unnecessary data, and there is a problem that it takes time for communication.
  • Patent Document 1 shows an example in which the data length of full-duplex communication is always constant, and the output timing of CRC (error detection code: cyclic redundancy code) added to the end of communication data is always constant. ing.
  • CRC error detection code: cyclic redundancy code
  • Patent Document 2 shows an example in which the slave side has a function of counting the number of clocks output from the master side for the purpose of detecting the clock frequency.
  • the present invention has been made in view of such circumstances, and makes it possible to vary the data length or the number of communication clocks for each communication, and to transmit an error detection code at the end of communication even when the data length is variable. It is an object of the present invention to provide a full-duplex communication device.
  • a transmission signal including a clock signal and a command signal is given from the master unit to the slave unit, and the slave unit returns a response signal including the data type specified by the command signal to the master unit
  • a full-duplex communication device that continuously performs full-duplex communication in which a signal and a response signal are transmitted and received in both directions at the same time, and the command signal transmitted from the master unit is the data type and the length of the full-duplex communication
  • the slave unit determines the range of the clock for transmitting error detection data for detecting a communication error based on the received information for determining the period length for performing full-duplex communication, and inputs from the master unit In synchronization with a clock signal to be transmitted, data of a specified data type and error detection data are transmitted as a response signal
  • the present invention also provides a transmission signal including a clock signal and a command signal from the ECU to the sensor unit, and the sensor unit returns a response signal including the sensor type specified by the command signal to the ECU, and the command signal and the response signal are simultaneously transmitted.
  • a full-duplex communication device that continuously performs full-duplex communication that is transmitted and received in both directions, and a command signal transmitted from the ECU includes information that defines a sensor type and a period length for performing full-duplex communication.
  • the unit determines a clock range for transmitting error detection data for detecting a communication error based on the information for determining a period length for performing full-duplex communication, and synchronizes with a clock signal input from the master unit.
  • the data of the specified sensor type and error detection data are transmitted as a response signal.
  • full-duplex communication that makes it possible to change the data length or the number of communication clocks for each communication, and to send an error detection code at the end of communication even when the data length is variable. Can do.
  • FIG. 3 is a block diagram illustrating a specific configuration example of a command receiving unit 112.
  • FIG. 9 is a block diagram illustrating a specific circuit configuration example of a clock number storage unit 113 according to the second embodiment.
  • the block diagram which shows the specific circuit structural example of the CRC output period calculation part 114.
  • FIG. The figure explaining the view of full-duplex communication between the master part 106 and the slave part 105.
  • FIG. The time chart which shows a specific SPI communication format.
  • FIG. 1 is a block diagram of a full-duplex communication apparatus according to an embodiment of the present invention.
  • the full-duplex communication apparatus can be roughly classified into the master unit 106, the slave unit 105, and the sensor unit 100. However, when simply classifying the master and the slave, it can be called the slave unit including the sensor unit 100. .
  • the master unit 106 is a main device, or an ECU (electronic control unit) corresponds to this in the case of vehicle control.
  • ECU electronic control unit
  • the master unit 106 as an ECU in the case of vehicle control.
  • the master unit 106 which is an ECU, transmits and receives signals to and from the slave unit 105, which is a sensor unit, through SPI communication.
  • the master unit 106 provides the slave unit 105 with a transmission signal SS composed of a chip select signal SS1, a clock signal SS2, and a command signal SS3.
  • the master unit 106 includes a clock number setting unit 122 and a command transmission unit 121 in order to generate the transmission signal SS.
  • the master unit 106 also includes a response receiving unit 123 for receiving the response signal SR from the slave unit 105.
  • the clock number setting unit 122 sets the clock number of the response signal SR to, for example, 16, 32, 64, etc., and the command transmission unit 121 incorporates information on the number of clocks into the command signal SS3 and transmits it.
  • the sensor unit 100 includes a control unit 104 and a plurality of sensors 101, 102, and 103.
  • the angular velocity sensor (Yaw sensor) 101 detects an angular velocity (a changing speed of the rotation angle in the turning direction) when the rotation occurs around the vertical axis or the horizontal axis of the vehicle.
  • the acceleration sensor (xG sensor) 102 detects the acceleration when movement occurs in the left-right direction of the vehicle.
  • the acceleration sensor (yG sensor) 103 detects acceleration when movement occurs in the front-rear direction of the vehicle.
  • the control unit 104 corrects and diagnoses the operations of the three sensors 101 to 103 of different types and the temperature and noise of each sensor output.
  • the control unit 104 sends sensor data S2 to the slave unit 105 in response to the sensor type designation signal S1 from the slave unit 105.
  • the slave unit 105 is a core part of the present invention, and a sensor type designation signal S1 is sent to the sensor unit 100 in accordance with a transmission signal SS (chip select signal SS1, clock signal SS2, command signal SS3) from the master unit 106.
  • the response signal SR created by processing the sensor data S2 obtained from the sensor unit 100 is sent to the master unit 106.
  • the sensor output and the diagnostic output corrected by the control unit 104 are input as sensor data S2, processed according to a command received from the master unit 106, and output to the master unit 106 as a response signal SR. is doing.
  • FIG. 5 is a diagram for explaining the concept of full-duplex communication between the master unit 106 and the slave unit 105.
  • a chip select signal SS1, a clock signal SS2, a command signal SS3, and a response signal SR are described in order from the top.
  • the chip select signal SS1, the clock signal SS2, and the command signal SS3 are transmission signals SS given from the master unit 106 to the slave unit 105
  • the response signal SR is given from the slave unit 105 to the master unit 106.
  • a clock signal SS2 having a predetermined number of clocks is given in the periods TN, TN + 1, and TN + 2 determined by the chip select signal SS1, and the command signal SS3 and the response are sent in the periods TN, TN + 1, and TN + 2.
  • Signal SR is bidirectionally communicated. However, in bidirectional communication, the response signal SR in the current period TN + 1 is sensor data S2 formed in response to an instruction from the command signal SS3 in the previous period TN (sensor output and diagnostic output corrected by the control unit 104). It is supposed to reflect.
  • the response signal SR in the current period TN + 1 shows the output of the angular velocity sensor 101 obtained according to the instruction. Is included.
  • the response signal SR is transmitted from the slave unit 105 to the master unit 106 in accordance with the content of the command signal SS3.
  • the response signal SR is synchronized with the clock output from the master unit 106. Is output.
  • the command signal SS3 and the response signal SR are simultaneously transmitted and received with the same clock.
  • the response signal SR is returned after interpreting the contents of the command signal SS3, the response to the command N is the response N + 1 as the next communication. Will be output.
  • the slave unit 105 is configured and functions as follows in order to achieve the above-described bidirectional communication.
  • the chip select signal SS1 and the clock signal SS2 from the master unit 106 are taken into the counter 111.
  • the counter 111 counts the number of clocks of the clock signal SS2 input during a period (for example, TN, TN + 1, TN + 2) where the chip select signal SS1 input from the master unit 106 is L (low) level.
  • the chip is in a reset state while the chip select signal SS1 is at the H (high) level.
  • the clock number Sg1 is given to the comparison unit 115 described later.
  • the command receiving unit 112 receives the command signal SS3 input in synchronization with the clock signal SS2 from the master unit 116, distributes it to the control unit 104 and the clock number storage unit 113, and outputs it.
  • the command signal SS3 specifies at least the sensor type to be transmitted and the number of clocks at that time, and the sensor type to be transmitted is sent to the control unit 104 as the sensor type designation signal S1, and the number of clocks at that time Sg2 is distributed and sent to the clock number storage unit 113.
  • FIG. 2 is a block diagram illustrating a specific configuration example of the command receiving unit 112.
  • the command receiving unit 112 includes the serial / parallel conversion unit 201 as a main component.
  • a 16-bit signal from the head of the serial signal input as the command signal SS3 is output to the control unit 104 as 16-bit parallel information (sensor type designation signal S1) indicating the requested sensor type.
  • the subsequent 4-bit signal is output to the control unit 104 as 4-bit parallel information (clock number Sg2) indicating the clock number.
  • the clock number storage unit 113 is a register that stores the clock number Sg ⁇ b> 2 output from the command reception unit 112. The stored data is retained until the next input.
  • the clock number Sg2 given as 4-bit parallel information is normally designated as 16, 32, or 64 bits.
  • a CRC output period calculation unit 114 calculates a period for outputting a CRC, which is an error detection code, from the value of the number of input clocks.
  • FIG. 4 shows a specific circuit configuration example of the CRC output period calculation unit 114.
  • the CRC data length (for example, 8 bits) given by the constant setting unit 402 is subtracted by the subtraction unit 402 from the input clock number Sg2 (usually 16, 32, 64 bits).
  • the CRC output period calculation unit 114 outputs 25 as the clock number.
  • the comparison unit 115 counts the actual number of clocks Sg1 using the number of clocks 25 given by the CRC output period calculation unit 114 as a set value.
  • the output of the comparator 115 is given to the selector 118 of FIG.
  • the output of the CRC generator 117 is given to the output terminal Y when “1” is given as the output of the output, and the output of the response transmitter 116 is given the output terminal Y when “0” is given as the output of the comparator 115.
  • the comparison unit 115 compares the output of the counter 111 and the output of the CRC output period calculation unit 114, and sets “0” when the output of the counter 111 is equal to or less than the output of the CRC output period calculation unit 114.
  • the output of the counter 111 is larger than the output of the CRC output period calculation unit 114, “1” is output. In this way, for example, when the number of clocks is 32, “1” is output during a period from 25 to 32 count outputs.
  • the response transmission unit 116 selects output information from the three sensor outputs and diagnostic information according to the sensor type designation signal S1 from the control unit 104, converts the output information into serial data, and holds a part of the response signal. Yes.
  • the CRC generation unit 117 calculates the transmission data input from the response transmission unit 116 in order from the first clock to the 24th clock, and generates and holds 8-bit CRC data.
  • the held data of the response transmission unit 116 and the CRC generation unit 117 are given to the selector 118, and the selector 118 uses the period from the falling point of the chip select signal SS1 in FIG.
  • the output of the transmission unit 116 is sent out.
  • the CRC data of the CRC generation unit 117 is serially output sequentially during the period from the 25th clock to the 32nd clock.
  • the selector 118 switches between the input from the response transmission unit 116 and the input from the CRC generation unit 117 and outputs the result.
  • the response signal SR selects and outputs the input from the control unit 104 from the first clock to the 24th clock, but switches from the 25th clock to the output of the CRC code. It is said.
  • FIG. 6 is a time chart showing a specific SPI communication format. Specific examples of the command signal SS3 and the response signal SR are shown.
  • the first to fourth bits of the command signal SS3 are data types indicating which output of the three sensor outputs and the diagnostic output is desired to be transmitted.
  • the next 5th to 8th bits are the number of clocks of the current communication. Since the number of clocks is information necessary for the slave unit 105 to determine the timing to start outputting the CRC, it needs to be received before outputting the CRC. In the figure, since the 25th and subsequent bits of 32 bits are allocated to the CRC, the number of clocks of the current communication is set using the 5th to 8th bits having sufficient margin with respect to the time of the 25th bit. Giving.
  • the clock number storage unit 113 holds this information until the end of the current communication at the time after the 9th bit.
  • the CRC output period calculation unit 114 outputs 24, and the comparison unit 115 outputs “1” from the 25th clock to the 32nd clock. As a result, a CRC output is transmitted through the selector 118 during that period.
  • the response signal SR is formed in a form reflecting the command of the previous command signal SS3.
  • the first to fourth bits of the response signal SR are information on the designated data type.
  • the 5th to 20th bits are information about the designated sensor output and diagnostic output.
  • the data to be returned can use up to the 24th bit including the data type information, but here shows the case where the 20th bit is completed, up to the 25th bit when CRC output is started Is all “0”.
  • FIG. 7 is a time chart showing the operation of individually transmitting the sensor data S2.
  • “individual transmission” means performing data transmission of sensor types that differ for each period.
  • the command signal SS3 instructs transmission of the output Yaw of the angular velocity sensor 101 in the period TN, instructs transmission of the output xG of the acceleration sensor 102 in the period TN + 1, and outputs the output yG of the acceleration sensor 103 in the period TN + 2.
  • the transmission is instructed, and in the period TN + 3, the transmission of the diagnosis output is instructed.
  • the length of each period T is 32 bits.
  • This communication is an example in the case of realizing the conventional communication with a constant number of clocks. Communication of one sensor data is enabled by one communication.
  • the clock output from the master unit 106 is constant at 32 clocks per communication.
  • the head is the angular velocity (Yaw)
  • the next is the acceleration in the left-right direction (xG)
  • the next is the acceleration in the front-rear direction (yG)
  • the next is the diagnosis result.
  • the number of clocks in each command signal SS3 is 32. Therefore, the response signal SR transmitted from the slave unit 105 outputs data corresponding to the data type for each communication with a delay of one communication, and outputs a CRC every 25th clock to 32nd clock.
  • the data portion of the response signal SR is all “0”.
  • FIG. 8 is a time chart showing an operation of transmitting sensor data at a time.
  • “transmission at a time” is to perform all the prepared data transmission for each period T.
  • the command signal SS3 gives Yaw meaning all prepared data transmissions in any of the periods TN, TN + 1, and TN + 2, and as a result, prepared as the response signal SR in the next period. All the data (the output Yaw of the angular velocity sensor 101, the output xG of the acceleration sensor 102, the output yG of the acceleration sensor 103, and the diagnosis output) are transmitted. Note that the length of each period T is 64 clocks, but only the first is set to the shortest 16 clocks.
  • the master unit 106 can acquire three sensor data at the same time.
  • the first number of clocks output from the master unit 106 is 16 bits. This is to minimize the number of clocks since the first response signal SR is indefinite. Communication after the next is always constant at 64 clocks.
  • the head data type of the command signal SS3 is an angular velocity (Yaw), thereby instructing all communications.
  • the number of clocks in each command signal SS3 is all 64. Therefore, the response signal SR transmitted from the communication unit 105 outputs data corresponding to the data type for each communication with one communication delay, and outputs a CRC at the 57th clock to the 64th clock every time.
  • FIG. 9 is a time chart showing an operation of transmitting sensor data separately.
  • “separate transmission” means that a part of all data is transmitted every period T.
  • all the data are the output Yaw of the angular velocity sensor 101, the output xG of the acceleration sensor 102, the output yG of the acceleration sensor 103, and the diagnosis output.
  • the command signal SS3 gives Yaw in the period TN, and the next time In the period TN + 1, xG is given, and in the next period TN + 2, diagnosis is given.
  • the number of clocks is designated as the number of clocks in the current period, and is set to a variable number of clocks according to the length of data transmitted every period T.
  • the period TN + 1 only Yaw is used, so that it is 32 bits.
  • xG and yG are included, and therefore 48 bits.
  • only the first period TN is set to the shortest 16 clocks.
  • This communication is an embodiment in which the number of clocks is different for each communication.
  • the number of clocks output from the master unit 106 is 16 for the first time. This is to minimize the number of clocks since the first response is indefinite.
  • the number of clocks for the next communication is 32, and Yaw data and CRC data, which are requests in the previous communication, are output at 32 clocks. Further, the number of clocks for the next communication is 48, and xG data, yG data, and CRC data are output at 48 clocks.
  • the number of clocks in the period is obtained from the information on the number of clocks included in the command signal SS3.
  • the information on the number of clocks here uses a portion transmitted using 4 bits from the 5th bit to the 8th bit of the waveform of FIG.
  • the second embodiment is a method of obtaining the number of clocks in the period from the data type information from the first bit to the fourth bit. As a result, the grasping of the number of clocks can be completed at an earlier timing than in the first embodiment.
  • FIG. 3 is a block diagram showing a specific circuit configuration example of the clock number storage unit 113.
  • the request data number m included in the sensor type designation signal S1 is converted into the clock number.
  • the requested data number m is 1 for Yaw only, 2 for xG and yG, 1 for diagnosis only, 4 for all designations, and so on. This value is input as the number of data m that is input in FIG.
  • Example 2 a value obtained by multiplying the result of adding 1 to the number of data m by 16 is stored as the number of clocks.
  • the adder 301 adds the output “1” of the constant setting unit 302 to the input data number m.
  • the multiplier 303 multiplies the input (m + 1) from the adder 301 by the output “16” of the constant setting unit 304.
  • the register 305 holds the output of the multiplier 303 until the next data number is input.
  • 101 angular velocity sensor, 102, 103: acceleration sensor, 104: control unit, 105: slave unit, 106: master unit, 111: counter, 112: command receiving unit, 113: clock number storage unit, 114: CRC output period calculation , 115: comparison unit, 116: response transmission unit, 117: CRC generation unit, 118: selector, 121: command transmission unit, 122: clock number setting unit, 123: response reception unit, 201: serial / parallel conversion unit, 301 : Addition unit, 302: constant setting unit, 303: multiplication unit, 304: constant setting unit, 305: register, 401: subtraction unit, 402: constant setting unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

The present invention provides a full-duplex communication device capable of enabling a data length or a communication clock count to be changed for each communication and transmitting an error correction code at the end of the communication even when the data length is variable. The present invention is a full-duplex communication device for continuously carrying out full-duplex communication whereby a transmission signal including a clock signal and a command signal is transmitted from a master unit to a slave unit, and a response signal including a data type specified by the command signal is returned to the master unit from the slave unit in such a manner that the command signal and the response signal are allowed to be exchanged in both directions at the same time, and is characterized in that the command signal transmitted from the master unit includes information for defining the data type and a time length of full-duplex communication to be carried out, and the slave unit, upon determining a clock range during which error detection data for detecting a communication error is to be transmitted on the basis of the received information defining the time length of full-duplex communication to be carried out, transmits data of the specified data type and the error detection data as the response signal in a synchronized manner with the clock signal input from the master unit.

Description

全二重通信装置Full duplex communication device
 本発明は、全二重通信装置に関する。 The present invention relates to a full-duplex communication device.
 全二重通信は、双方向通信において同時に双方からデータを送信したり、受信したりすることができる通信方式であり、係る通信方式を採用した全二重通信装置は、各方面で使用されている。 Full-duplex communication is a communication method that can send and receive data from both sides simultaneously in bidirectional communication, and full-duplex communication devices that employ such a communication method are used in various fields. Yes.
 全二重通信装置は、例えば車の制御、計測を行う場合に適用されている。この利用形態では、ECU(エレクトロニックコントロールユニット)側のマスタと、計測器側のスレーブとの間で全二重通信が実行され、マスタが指示するセンサ種別のセンサ出力がスレーブからレスポンス返送される。この場合のセンサ種別とは、車の加速度や角速度についてのセンサであり、車の横滑り防止や安全運転支援などの利用目的に応じて、センサ側から主装置であるECU側へ送信され、使用される。 The full-duplex communication device is applied, for example, when performing vehicle control and measurement. In this usage mode, full-duplex communication is executed between a master on the ECU (electronic control unit) side and a slave on the measuring instrument side, and a sensor output of the sensor type indicated by the master is returned from the slave as a response. The sensor type in this case is a sensor for vehicle acceleration and angular velocity, and is transmitted from the sensor side to the ECU, which is the main device, and used depending on the purpose of use such as prevention of skidding and safe driving assistance. The
 車に適用され、慣性センサ出力の全二重通信を行う公知の事例としては、特許文献1、特許文献2に記載のような装置が知られている。 As a known example that is applied to a vehicle and performs full-duplex communication of inertial sensor output, devices as described in Patent Document 1 and Patent Document 2 are known.
 このうち特許文献1には、「所定の物理量を検出する物理量測定装置であって、前記所定の物理量を検出し、検出された前記所定の物理量の大きさに応じた信号である第1の信号を出力するセンサ素子と、前記第1の信号に基づいて、前記所定の物理量に応じた第2の信号を生成する検出回路と、駆動信号を生成し、前記駆動信号を前記センサ素子に供給する駆動回路と、前記検出回路および前記駆動回路の少なくとも1つから内部信号である第3の信号を受け取り、前記第3の信号に基づいて前記検出回路および前記駆動回路の少なくとも1つについての故障診断を行い、前記故障診断の結果に応じた信号である第4の信号を出力する故障診断部と、コマンドを受け取り、前記コマンドが要求するデータであるコマンド要求データを生成し、前記コマンド要求データを含む応答データをシリアルに送信するインターフェース部と、を含み、前記インターフェース部は、前記第2の信号および前記第4の信号のうち少なくとも1つの信号に基づいて前記コマンド要求データを生成し、前記応答データに、エラーの発生の有無を表すエラーフラグを含め、前記エラーフラグに、前記コマンドについて通信中にエラーが発生したか否かを表すコマンドエラーフラグを少なくとも含める物理量測定装置。」が記載されている。 Among them, Patent Document 1 discloses a “first signal that is a physical quantity measuring device that detects a predetermined physical quantity, detects the predetermined physical quantity, and is a signal according to the detected magnitude of the predetermined physical quantity. A sensor element that outputs a signal, a detection circuit that generates a second signal according to the predetermined physical quantity based on the first signal, a drive signal, and a drive signal that is supplied to the sensor element A third signal that is an internal signal from at least one of the drive circuit, the detection circuit, and the drive circuit, and a failure diagnosis for at least one of the detection circuit and the drive circuit based on the third signal A failure diagnosis unit that outputs a fourth signal that is a signal corresponding to the result of the failure diagnosis, and receives a command and generates command request data that is data requested by the command An interface unit that serially transmits response data including the command request data, and the interface unit is configured to transmit the command request data based on at least one of the second signal and the fourth signal. A physical quantity measuring device including an error flag indicating whether or not an error has occurred in the response data, and including at least a command error flag indicating whether or not an error has occurred during communication for the command in the error flag Is described.
 また特許文献2は、「ホストとの双方向通信を行う送受信機能を備え、同期制御ユニット、送信信号を生成する周波数発生器及び基準信号を生成する基準信号生成源を具備して成り、前記同期制御ユニットは、前記ホストから受信した受信信号に対する前記送信信号の周波数誤差を検出すると共に、前記受信信号に対する前記誤差を低減する周波数調整信号を出力し、前記周波数発生器は、前記基準信号に基づいて前記送信信号の周波数を決定すると共に、前記周波数調整信号によって前記送信信号の周波数を調整することを特徴とする送受信装置。」が記載されている。 Further, Patent Document 2 includes “a transmission / reception function for performing bidirectional communication with a host, and a synchronization control unit, a frequency generator that generates a transmission signal, and a reference signal generation source that generates a reference signal. The control unit detects a frequency error of the transmission signal with respect to the reception signal received from the host and outputs a frequency adjustment signal that reduces the error with respect to the reception signal, and the frequency generator is based on the reference signal. The transmission / reception apparatus is characterized in that the frequency of the transmission signal is determined and the frequency of the transmission signal is adjusted by the frequency adjustment signal. "
特開2012-181677公報JP 2012-181677 A 特開2007-135189公報JP 2007-135189 A
 走行中における車の角速度、加速度等を検出するセンサは、車の横滑り防止や安全運転支援などの利用目的に応じて、センサ側から主装置であるECU側へ送信するセンサデータの種類と数を適宜変更可能であることが望まれる。 The sensor that detects the angular velocity, acceleration, etc. of the vehicle while traveling determines the type and number of sensor data to be transmitted from the sensor side to the main ECU, according to the purpose of use such as prevention of skidding and safe driving assistance. It is desirable that it can be appropriately changed.
 しかしながら主装置とセンサ間でSPI(serial peripheral interface)通信等の全二重通信を行う場合、通常、1回の通信で送信するデータ長は一定である。この理由として、例えばSPI通信の場合、主装置側が通信クロックを出力し、それに同期してセンサ側が要求されたデータおよび通信の誤り検出符号を送信する。ここで、センサ側は誤り検出符号を通信の最後に送信する必要がある。そのため、主装置との間で通信毎のクロック数を前もって固定しておく必要がある。例えば通信毎のクロック数を32クロックに固定しておけば、例えば誤り検出符号が8ビットの場合、センサ側は、毎回25クロック目から32クロック目に誤り検出符号を送信すれば良い。 However, when full-duplex communication such as SPI (serial peripheral interface) communication is performed between the main device and the sensor, the data length transmitted in one communication is usually constant. For this reason, for example, in the case of SPI communication, the main device side outputs a communication clock, and the sensor side transmits the requested data and the communication error detection code in synchronization therewith. Here, the sensor side needs to transmit an error detection code at the end of communication. Therefore, it is necessary to fix the number of clocks for each communication with the main device in advance. For example, if the number of clocks for each communication is fixed to 32 clocks, for example, if the error detection code is 8 bits, the sensor side may transmit the error detection code at the 25th clock to the 32nd clock every time.
 しかし、このような場合、例えば一回の通信で1つのセンサ出力を送信するようにしたケースでは、主装置側は、同時点の複数のセンサ出力を一度に受信できないことになる。
一方、複数のセンサ出力を毎回同時に送信するようにしたケースでは、主装置側は、不要なデータも受信せねばならず、通信に時間がかかる等の問題がある。
However, in such a case, for example, in a case where one sensor output is transmitted by one communication, the main apparatus side cannot receive a plurality of sensor outputs at the same time at a time.
On the other hand, in the case where a plurality of sensor outputs are transmitted simultaneously each time, the main apparatus side must receive unnecessary data, and there is a problem that it takes time for communication.
 この点に関し、特許文献1では、全二重通信のデータ長は常に一定であり、通信データの最後に付加するCRC(誤り検出符号:cyclic redundancy code)の出力タイミングは常に一定の例が示されている。 In this regard, Patent Document 1 shows an example in which the data length of full-duplex communication is always constant, and the output timing of CRC (error detection code: cyclic redundancy code) added to the end of communication data is always constant. ing.
 特許文献2では、クロックの周波数を検出する目的で、スレーブ側がマスタ側から出力されるクロック数を計数する機能を有する例が示されている。 Patent Document 2 shows an example in which the slave side has a function of counting the number of clocks output from the master side for the purpose of detecting the clock frequency.
 本発明はこのような事情に鑑みてなされたものであり、通信毎にデータ長または通信クロック数を可変とすること、およびデータ長可変の場合でも誤り検出符号を通信の最後に送出できることを可能とする全二重通信装置を提供することが本発明の目的である。 The present invention has been made in view of such circumstances, and makes it possible to vary the data length or the number of communication clocks for each communication, and to transmit an error detection code at the end of communication even when the data length is variable. It is an object of the present invention to provide a full-duplex communication device.
 以上のことから本発明においては、マスタ部からクロック信号とコマンド信号を含む送信信号をスレーブ部に与え、スレーブ部ではコマンド信号が指定するデータ種別を含むレスポンス信号をマスタ部に返送するとともに、コマンド信号とレスポンス信号が同時に双方向に送受信される全二重通信を継続的に行う全二重通信装置であって、マスタ部から送信するコマンド信号は、データ種別と全二重通信を行う期間長を定める情報を含み、スレーブ部は、受信した全二重通信を行う期間長を定める情報を基に、通信の誤りを検出する誤り検出データを送信するクロックの範囲を決定し、マスタ部から入力するクロック信号に同期して、指定されたデータ種別のデータおよび誤り検出データをレスポンス信号として送信することを特徴とする。 From the above, in the present invention, a transmission signal including a clock signal and a command signal is given from the master unit to the slave unit, and the slave unit returns a response signal including the data type specified by the command signal to the master unit, A full-duplex communication device that continuously performs full-duplex communication in which a signal and a response signal are transmitted and received in both directions at the same time, and the command signal transmitted from the master unit is the data type and the length of the full-duplex communication The slave unit determines the range of the clock for transmitting error detection data for detecting a communication error based on the received information for determining the period length for performing full-duplex communication, and inputs from the master unit In synchronization with a clock signal to be transmitted, data of a specified data type and error detection data are transmitted as a response signal
 また本発明は、ECUからクロック信号とコマンド信号を含む送信信号をセンサ部に与え、センサ部ではコマンド信号が指定するセンサ種別を含むレスポンス信号をECUに返送するとともに、コマンド信号とレスポンス信号が同時に双方向に送受信される全二重通信を継続的に行う全二重通信装置であって、ECUから送信するコマンド信号は、センサ種別と全二重通信を行う期間長を定める情報を含み、センサ部は、受信した全二重通信を行う期間長を定める情報を基に、通信の誤りを検出する誤り検出データを送信するクロックの範囲を決定し、マスタ部から入力するクロック信号に同期して、指定されたセンサ種別のデータおよび誤り検出データをレスポンス信号として送信することを特徴とする。 The present invention also provides a transmission signal including a clock signal and a command signal from the ECU to the sensor unit, and the sensor unit returns a response signal including the sensor type specified by the command signal to the ECU, and the command signal and the response signal are simultaneously transmitted. A full-duplex communication device that continuously performs full-duplex communication that is transmitted and received in both directions, and a command signal transmitted from the ECU includes information that defines a sensor type and a period length for performing full-duplex communication. The unit determines a clock range for transmitting error detection data for detecting a communication error based on the information for determining a period length for performing full-duplex communication, and synchronizes with a clock signal input from the master unit. The data of the specified sensor type and error detection data are transmitted as a response signal.
 本発明によれば、通信毎にデータ長または通信クロック数を可変とすること、およびデータ長可変の場合でも誤り検出符号を通信の最後に送出できることを可能とする全二重通信を提供することができる。 According to the present invention, there is provided full-duplex communication that makes it possible to change the data length or the number of communication clocks for each communication, and to send an error detection code at the end of communication even when the data length is variable. Can do.
本発明の実施例に係る全二重通信装置のブロック図。The block diagram of the full-duplex communication apparatus which concerns on the Example of this invention. コマンド受信部112の具体的な構成例を示すブロック図。FIG. 3 is a block diagram illustrating a specific configuration example of a command receiving unit 112. 実施例2に係るクロック数格納部113の具体的な回路構成例を示すブロック図。FIG. 9 is a block diagram illustrating a specific circuit configuration example of a clock number storage unit 113 according to the second embodiment. CRC出力期間算出部114の具体的な回路構成例を示すブロック図。The block diagram which shows the specific circuit structural example of the CRC output period calculation part 114. FIG. マスタ部106とスレーブ部105の間の全二重通信の考え方を説明する図。The figure explaining the view of full-duplex communication between the master part 106 and the slave part 105. FIG. 具体的なSPI通信フォーマットを示すタイムチャート。The time chart which shows a specific SPI communication format. センサデータS2を個別に送信する動作を示すタイムチャート。The time chart which shows the operation | movement which transmits sensor data S2 separately. センサデータS2を一度に送信する動作を示すタイムチャート。The time chart which shows the operation | movement which transmits sensor data S2 at once. センサデータS2を分けて送信する動作を示すタイムチャート。The time chart which shows the operation | movement which transmits sensor data S2 separately.
 以下、本発明の実施例について図を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の実施例に係る全二重通信装置のブロック図である。 FIG. 1 is a block diagram of a full-duplex communication apparatus according to an embodiment of the present invention.
 全二重通信装置は、マスタ部106とスレーブ部105とセンサ部100に大別して把握することができるが、単にマスタとスレーブという区分けをする時には、センサ部100も含めてスレーブ部ということができる。 The full-duplex communication apparatus can be roughly classified into the master unit 106, the slave unit 105, and the sensor unit 100. However, when simply classifying the master and the slave, it can be called the slave unit including the sensor unit 100. .
 このうちマスタ部106は、主装置であり、あるいは車両制御の場合にはECU(エレクトロニックコントロールユニット)がこれに相当する。なお、以下の実施例の説明においては、マスタ部106が車両制御の場合におけるECUであることを念頭に置いて説明を行う。 Of these, the master unit 106 is a main device, or an ECU (electronic control unit) corresponds to this in the case of vehicle control. In the following description of the embodiments, the description will be made with the master unit 106 as an ECU in the case of vehicle control.
 ECUであるマスタ部106は、センサ部であるスレーブ部105との間で、SPI通信により信号の送受信を行う。このためにマスタ部106は、チップセレクト信号SS1、クロック信号SS2、コマンド信号SS3で構成された送信信号SSをスレーブ部105に与える。マスタ部106は、送信信号SSを作成するためにクロック数設定部122とコマンド送信部121を備えている。またマスタ部106は、スレーブ部105からのレスポンス信号SR受信のために、レスポンス受信部123を備えている。クロック数設定部122は、レスポンス信号SRのクロック数を例えば16、32、64などに設定するものであり、コマンド送信部121はコマンド信号SS3に当該クロック数の情報を組み入れて送信する。 The master unit 106, which is an ECU, transmits and receives signals to and from the slave unit 105, which is a sensor unit, through SPI communication. For this purpose, the master unit 106 provides the slave unit 105 with a transmission signal SS composed of a chip select signal SS1, a clock signal SS2, and a command signal SS3. The master unit 106 includes a clock number setting unit 122 and a command transmission unit 121 in order to generate the transmission signal SS. The master unit 106 also includes a response receiving unit 123 for receiving the response signal SR from the slave unit 105. The clock number setting unit 122 sets the clock number of the response signal SR to, for example, 16, 32, 64, etc., and the command transmission unit 121 incorporates information on the number of clocks into the command signal SS3 and transmits it.
 センサ部100は、制御部104と複数のセンサ101、102、103により構成されている。このうち、角速度センサ(Yawセンサ)101は、車の垂直軸または水平軸を中心に回転が生じたときの角速度(旋回方向への回転角の変化速度)を検出する。加速度センサ(xGセンサ)102は、車の左右方向に移動が生じたときの加速度を検出する。加速度センサ(yGセンサ)103は、車の前後方向に移動が生じたときの加速度を検出する。制御部104は、異なる種別の3つのセンサ101~103の動作および各センサ出力の温度やノイズの補正および診断を行う。また制御部104は、スレーブ部105からのセンサ種別指定信号S1に応じてセンサデータS2をスレーブ部105に送る。 The sensor unit 100 includes a control unit 104 and a plurality of sensors 101, 102, and 103. Among these, the angular velocity sensor (Yaw sensor) 101 detects an angular velocity (a changing speed of the rotation angle in the turning direction) when the rotation occurs around the vertical axis or the horizontal axis of the vehicle. The acceleration sensor (xG sensor) 102 detects the acceleration when movement occurs in the left-right direction of the vehicle. The acceleration sensor (yG sensor) 103 detects acceleration when movement occurs in the front-rear direction of the vehicle. The control unit 104 corrects and diagnoses the operations of the three sensors 101 to 103 of different types and the temperature and noise of each sensor output. In addition, the control unit 104 sends sensor data S2 to the slave unit 105 in response to the sensor type designation signal S1 from the slave unit 105.
 スレーブ部105は本発明の中核をなす部分であり、マスタ部106からの送信信号SS(チップセレクト信号SS1、クロック信号SS2、コマンド信号SS3)に応じて、センサ部100にセンサ種別指定信号S1を与え、センサ部100から得たセンサデータS2を加工して作成したレスポンス信号SRをマスタ部106に送出している。このようにスレーブ部105では、制御部104で補正されたセンサ出力および診断出力をセンサデータS2として入力し、マスタ部106から受信した命令に応じて加工し、レスポンス信号SRとしてマスタ部106に出力している。 The slave unit 105 is a core part of the present invention, and a sensor type designation signal S1 is sent to the sensor unit 100 in accordance with a transmission signal SS (chip select signal SS1, clock signal SS2, command signal SS3) from the master unit 106. The response signal SR created by processing the sensor data S2 obtained from the sensor unit 100 is sent to the master unit 106. As described above, in the slave unit 105, the sensor output and the diagnostic output corrected by the control unit 104 are input as sensor data S2, processed according to a command received from the master unit 106, and output to the master unit 106 as a response signal SR. is doing.
 図5は、マスタ部106とスレーブ部105の間の全二重通信の考え方を説明する図である。図5には、上部から順にチップセレクト信号SS1、クロック信号SS2、コマンド信号SS3、およびレスポンス信号SRが記述されている。このうちチップセレクト信号SS1、クロック信号SS2、コマンド信号SS3が、マスタ部106からスレーブ部105に与えられる送信信号SSであり、レスポンス信号SRはスレーブ部105からマスタ部106に与えられる。 FIG. 5 is a diagram for explaining the concept of full-duplex communication between the master unit 106 and the slave unit 105. In FIG. 5, a chip select signal SS1, a clock signal SS2, a command signal SS3, and a response signal SR are described in order from the top. Among these, the chip select signal SS1, the clock signal SS2, and the command signal SS3 are transmission signals SS given from the master unit 106 to the slave unit 105, and the response signal SR is given from the slave unit 105 to the master unit 106.
 この信号の関係によれば、チップセレクト信号SS1で定まる期間TN、TN+1、TN+2内に、所定のクロック数のクロック信号SS2が与えられ、かつこの期間TN、TN+1、TN+2内にコマンド信号SS3とレスポンス信号SRが双方向通信されている。但し双方向通信では、今回の期間TN+1におけるレスポンス信号SRは、前回の期間TNにおけるコマンド信号SS3による指示を受ける形で形成されたセンサデータS2(制御部104で補正されたセンサ出力および診断出力)を反映したものとされている。例えば、前回の期間TNにおけるコマンド信号SS3による指示が、角速度センサ101出力を送ることを要求したものである場合に、今回の期間TN+1におけるレスポンス信号SRは、当該指示に従って求めた角速度センサ101出力を含むものである。 According to this signal relationship, a clock signal SS2 having a predetermined number of clocks is given in the periods TN, TN + 1, and TN + 2 determined by the chip select signal SS1, and the command signal SS3 and the response are sent in the periods TN, TN + 1, and TN + 2. Signal SR is bidirectionally communicated. However, in bidirectional communication, the response signal SR in the current period TN + 1 is sensor data S2 formed in response to an instruction from the command signal SS3 in the previous period TN (sensor output and diagnostic output corrected by the control unit 104). It is supposed to reflect. For example, when the instruction by the command signal SS3 in the previous period TN is a request to send the output of the angular velocity sensor 101, the response signal SR in the current period TN + 1 shows the output of the angular velocity sensor 101 obtained according to the instruction. Is included.
 このように図5によれば、コマンド信号SS3の内容に対応してスレーブ部105からマスタ部106にレスポンス信号SRが送信されるが、レスポンス信号SRはマスタ部106が出力するクロックに同期して出力される。これにより、コマンド信号SS3とレスポンス信号SRが同じクロックで同時に送受信されるが、コマンド信号SS3の内容を解釈してからレスポンス信号SRを返すため、コマンドNに対する応答は次の通信であるレスポンスN+1で出力することになる。 As described above, according to FIG. 5, the response signal SR is transmitted from the slave unit 105 to the master unit 106 in accordance with the content of the command signal SS3. The response signal SR is synchronized with the clock output from the master unit 106. Is output. As a result, the command signal SS3 and the response signal SR are simultaneously transmitted and received with the same clock. However, since the response signal SR is returned after interpreting the contents of the command signal SS3, the response to the command N is the response N + 1 as the next communication. Will be output.
 スレーブ部105は、上記の双方向通信を達成すべく、その各部が以下のように構成され機能している。 The slave unit 105 is configured and functions as follows in order to achieve the above-described bidirectional communication.
 まず、マスタ部106からのチップセレクト信号SS1とクロック信号SS2は、カウンタ111に取り込まれる。カウンタ111は、マスタ部106から入力するチップセレクト信号SS1がL(ロウ)レベルの期間(例えばTN、TN+1、TN+2)に入力されるクロック信号SS2のクロックの数を計数する。チップセレクト信号SS1がH(ハイ)レベルである期間はリセット状態となる。クロック数Sg1は、後述する比較部115に与えられる。 First, the chip select signal SS1 and the clock signal SS2 from the master unit 106 are taken into the counter 111. The counter 111 counts the number of clocks of the clock signal SS2 input during a period (for example, TN, TN + 1, TN + 2) where the chip select signal SS1 input from the master unit 106 is L (low) level. The chip is in a reset state while the chip select signal SS1 is at the H (high) level. The clock number Sg1 is given to the comparison unit 115 described later.
 コマンド受信部112は、マスタ部116からクロック信号SS2に同期して入力されるコマンド信号SS3を受信し、制御部104およびクロック数格納部113に分配して出力する。なおコマンド信号SS3は、送信してほしいセンサ種別と、その時のクロック数を少なくとも指定したものであり、送信してほしいセンサ種別がセンサ種別指定信号S1として制御部104に送られ、その時のクロック数Sg2がクロック数格納部113に分配して送られている。 The command receiving unit 112 receives the command signal SS3 input in synchronization with the clock signal SS2 from the master unit 116, distributes it to the control unit 104 and the clock number storage unit 113, and outputs it. The command signal SS3 specifies at least the sensor type to be transmitted and the number of clocks at that time, and the sensor type to be transmitted is sent to the control unit 104 as the sensor type designation signal S1, and the number of clocks at that time Sg2 is distributed and sent to the clock number storage unit 113.
 図2はコマンド受信部112の具体的な構成例を示すブロック図である。コマンド受信部112は、シリアルパラレル変換部201を主たる構成要素として構成されている。ここでは、コマンド信号SS3として入力されるシリアル信号の先頭から16ビット分の信号を、要求するセンサ種類を示す16ビットのパラレル情報(センサ種別指定信号S1)として制御部104に出力する。また、その後に続く4ビット分の信号を、クロック数を示す4ビットのパラレル情報(クロック数Sg2)として制御部104に出力する。 FIG. 2 is a block diagram illustrating a specific configuration example of the command receiving unit 112. The command receiving unit 112 includes the serial / parallel conversion unit 201 as a main component. Here, a 16-bit signal from the head of the serial signal input as the command signal SS3 is output to the control unit 104 as 16-bit parallel information (sensor type designation signal S1) indicating the requested sensor type. Further, the subsequent 4-bit signal is output to the control unit 104 as 4-bit parallel information (clock number Sg2) indicating the clock number.
 図1に戻り、クロック数格納部113は、コマンド受信部112から出力されたクロック数Sg2を格納するレジスタである。次の入力があるまで格納したデータは保持される。なお4ビットのパラレル情報として与えられるクロック数Sg2は、通常は16、32、64ビットのいずれかが指定されている。 Returning to FIG. 1, the clock number storage unit 113 is a register that stores the clock number Sg <b> 2 output from the command reception unit 112. The stored data is retained until the next input. Note that the clock number Sg2 given as 4-bit parallel information is normally designated as 16, 32, or 64 bits.
 図1において、CRC出力期間算出部114は、入力するクロック数の値から誤り検出符号であるCRCを出力する期間を算出する。図4は、CRC出力期間算出部114の具体的な回路構成例を示している。ここでは、入力したクロック数Sg2(通常は16、32、64ビット)に対して、定数設定部402が与えるCRCのデータ長(例えば8ビット)を、減算部402において減算する。この実施例でのCRCのデータ長が8ビットであり、例えばクロック数が32ビットの場合は、32-8+1=25として、25クロック目からCRCの出力期間が始まるようにする。これによりクロック数が32ビットの場合、CRC出力期間算出部114は、クロック数として25を出力する。同様にクロック数が64ビットの場合は、64-8+1=57として、57クロック目からCRCの出力期間が始まるようにする。 In FIG. 1, a CRC output period calculation unit 114 calculates a period for outputting a CRC, which is an error detection code, from the value of the number of input clocks. FIG. 4 shows a specific circuit configuration example of the CRC output period calculation unit 114. Here, the CRC data length (for example, 8 bits) given by the constant setting unit 402 is subtracted by the subtraction unit 402 from the input clock number Sg2 (usually 16, 32, 64 bits). In this embodiment, when the CRC data length is 8 bits and the number of clocks is 32 bits, for example, 32−8 + 1 = 25, and the CRC output period starts from the 25th clock. Accordingly, when the clock number is 32 bits, the CRC output period calculation unit 114 outputs 25 as the clock number. Similarly, when the number of clocks is 64 bits, it is assumed that 64−8 + 1 = 57, and the CRC output period starts from the 57th clock.
 比較部115では、CRC出力期間算出部114が与えるクロック数25を設定値として、実際のクロックSg1の個数をカウントする。図5のチップセレクト信号SS1の立下り時点から、25個目のクロックに至った時点で、比較部115の出力が図1のセレクタ118に与えられ、セレクタ118はその選択端子Sに比較部115の出力として”1”が与えられるときに、CRC生成部117の出力を出力端子Yに与え、比較部115の出力として”0”が与えられるときに、レスポンス送信部116の出力を出力端子Yに与える。 The comparison unit 115 counts the actual number of clocks Sg1 using the number of clocks 25 given by the CRC output period calculation unit 114 as a set value. When the 25th clock is reached after the falling edge of the chip select signal SS1 of FIG. 5, the output of the comparator 115 is given to the selector 118 of FIG. The output of the CRC generator 117 is given to the output terminal Y when “1” is given as the output of the output, and the output of the response transmitter 116 is given the output terminal Y when “0” is given as the output of the comparator 115. To give.
 より具体的に述べると、比較部115は、カウンタ111の出力とCRC出力期間算出部114の出力を比較し、カウンタ111の出力がCRC出力期間算出部114の出力以下のときに”0”を出力し、カウンタ111の出力がCRC出力期間算出部114の出力より大きいときに”1”を出力する。このようにすることで、例えばクロック数が32の場合、カウント出力が25から32までの期間は”1”を出力する。 More specifically, the comparison unit 115 compares the output of the counter 111 and the output of the CRC output period calculation unit 114, and sets “0” when the output of the counter 111 is equal to or less than the output of the CRC output period calculation unit 114. When the output of the counter 111 is larger than the output of the CRC output period calculation unit 114, “1” is output. In this way, for example, when the number of clocks is 32, “1” is output during a period from 25 to 32 count outputs.
 他方においてレスポンス送信部116は、制御部104からのセンサ種別指定信号S1に応じて3つのセンサ出力と診断情報から出力情報を選択し、シリアルデータに変換してレスポンス信号の一部を保持している。またCRC生成部117は、レスポンス送信部116から入力する送信データを、1クロック目から24クロック目まで順番に演算し、8ビットのCRCデータを生成して保持している。 On the other hand, the response transmission unit 116 selects output information from the three sensor outputs and diagnostic information according to the sensor type designation signal S1 from the control unit 104, converts the output information into serial data, and holds a part of the response signal. Yes. The CRC generation unit 117 calculates the transmission data input from the response transmission unit 116 in order from the first clock to the 24th clock, and generates and holds 8-bit CRC data.
 これらの保持されたレスポンス送信部116とCRC生成部117のデータは、セレクタ118に与えられ、セレクタ118では図5のチップセレクト信号SS1の立下り時点から24クロック目までの期間を利用してレスポンス送信部116の出力を送出する。さえらに、25クロック目から32クロック目までの期間に、CRC生成部117のCRCデータを、シリアルに順次出力する。このように、セレクタ118はレスポンス送信部116からの入力と、CRC生成部117からの入力を切り替えて出力する。これによりレスポンス信号SRは、クロック数が32の場合、1クロック目から24クロック目までは制御部104からの入力を選択し出力するが、25クロック目からはCRC符号の出力に切り替わる内容のものとされる。 The held data of the response transmission unit 116 and the CRC generation unit 117 are given to the selector 118, and the selector 118 uses the period from the falling point of the chip select signal SS1 in FIG. The output of the transmission unit 116 is sent out. Further, the CRC data of the CRC generation unit 117 is serially output sequentially during the period from the 25th clock to the 32nd clock. As described above, the selector 118 switches between the input from the response transmission unit 116 and the input from the CRC generation unit 117 and outputs the result. As a result, when the number of clocks is 32, the response signal SR selects and outputs the input from the control unit 104 from the first clock to the 24th clock, but switches from the 25th clock to the output of the CRC code. It is said.
 図6は、具体的なSPI通信フォーマットを示すタイムチャートである。コマンド信号SS3とレスポンス信号SRの具体的な事例を示している。この例では、コマンド信号SS3の1ビット目から4ビット目までが、3つのセンサ出力と診断出力のうち、どの出力を送信して欲しいかを示すデータ種別である。次の5ビット目から8ビット目は現通信のクロック数である。クロック数は、スレーブ部105がCRCを出力開始するタイミングを決定するために必要な情報であるから、CRCの出力前に受信する必要がある。図示では、32ビットのうち25ビット目以降をCRCに割り振っているので、25ビット目の時刻に対して十分な余裕時間を有する5ビット目から8ビット目を用いて、現通信のクロック数を与えている。 FIG. 6 is a time chart showing a specific SPI communication format. Specific examples of the command signal SS3 and the response signal SR are shown. In this example, the first to fourth bits of the command signal SS3 are data types indicating which output of the three sensor outputs and the diagnostic output is desired to be transmitted. The next 5th to 8th bits are the number of clocks of the current communication. Since the number of clocks is information necessary for the slave unit 105 to determine the timing to start outputting the CRC, it needs to be received before outputting the CRC. In the figure, since the 25th and subsequent bits of 32 bits are allocated to the CRC, the number of clocks of the current communication is set using the 5th to 8th bits having sufficient margin with respect to the time of the 25th bit. Giving.
 クロック数格納部113では、9ビット目以降の時点において、この情報を現通信の終了まで保持する。次に、例えばクロック数が32の場合、CRC出力期間演算部114は24を出力し、比較部115は25クロック目から32クロック目まで”1”を出力する。その結果、セレクタ118を介して、その期間はCRC出力を送信する。 The clock number storage unit 113 holds this information until the end of the current communication at the time after the 9th bit. Next, for example, when the number of clocks is 32, the CRC output period calculation unit 114 outputs 24, and the comparison unit 115 outputs “1” from the 25th clock to the 32nd clock. As a result, a CRC output is transmitted through the selector 118 during that period.
 他方レスポンス信号SRについてみると、これは前回のコマンド信号SS3のコマンドを反映した形で形成されており、例えばレスポンス信号SRの1ビット目から4ビット目までが指定されたデータ種別の情報であり、5ビット目から20ビット目までが指定されたセンサ出力と診断出力についての情報である。返信すべきデータは、データ種別の情報を含めて最長24ビット目までを利用可能であるが、ここでは20ビット目までで終了した事例を示しており、CRC出力が開始される25ビット目まではオール”0”としている。 On the other hand, the response signal SR is formed in a form reflecting the command of the previous command signal SS3. For example, the first to fourth bits of the response signal SR are information on the designated data type. The 5th to 20th bits are information about the designated sensor output and diagnostic output. The data to be returned can use up to the 24th bit including the data type information, but here shows the case where the 20th bit is completed, up to the 25th bit when CRC output is started Is all “0”.
 図7から図9には、各種のデータ通信方法を例示している。 7 to 9 illustrate various data communication methods.
 このうち図7は、センサデータS2を個別に送信する動作を示すタイムチャートである。図7の場合に、「個別に送信」とは、期間ごとに相違するセンサ種別のデータ送信を行うことを意味している。図示の例では、コマンド信号SS3は期間TNでは、角速度センサ101の出力Yawの送信を指示し、期間TN+1では加速度センサ102の出力xGの送信を指示し、期間TN+2では加速度センサ103の出力yGの送信を指示し、期間TN+3では診断の出力の送信を指示するといった具合である。なお、期間Tの長さはいずれも32ビットである。 Of these, FIG. 7 is a time chart showing the operation of individually transmitting the sensor data S2. In the case of FIG. 7, “individual transmission” means performing data transmission of sensor types that differ for each period. In the illustrated example, the command signal SS3 instructs transmission of the output Yaw of the angular velocity sensor 101 in the period TN, instructs transmission of the output xG of the acceleration sensor 102 in the period TN + 1, and outputs the output yG of the acceleration sensor 103 in the period TN + 2. The transmission is instructed, and in the period TN + 3, the transmission of the diagnosis output is instructed. Note that the length of each period T is 32 bits.
 この通信は従来のクロック数一定の通信を実現する場合の実施例である。1回の通信で1つのセンサデータの通信を可能にする。マスタ部106から出力するクロックは毎通信32クロックで一定である。データ種別の情報としては、先頭が角速度(Yaw)、次が左右方向の加速度(xG)、次が前後方向の加速度(yG)、次が診断結果と続く。各コマンド信号SS3中のクロック数は全て32である。したがって、スレーブ部105から送信するレスポンス信号SRは、通信毎のデータ種別に対応したデータを1通信遅れで出力し、毎回25クロック目から32クロック目にCRCを出力する。なお、最初の期間TNでは、前回のコマンド信号SS3によるセンサ種別指定の情報がないことを想定しているので、レスポンス信号SRのデータ部分はオール”0”としている。 This communication is an example in the case of realizing the conventional communication with a constant number of clocks. Communication of one sensor data is enabled by one communication. The clock output from the master unit 106 is constant at 32 clocks per communication. As data type information, the head is the angular velocity (Yaw), the next is the acceleration in the left-right direction (xG), the next is the acceleration in the front-rear direction (yG), and the next is the diagnosis result. The number of clocks in each command signal SS3 is 32. Therefore, the response signal SR transmitted from the slave unit 105 outputs data corresponding to the data type for each communication with a delay of one communication, and outputs a CRC every 25th clock to 32nd clock. In the first period TN, since it is assumed that there is no information for sensor type designation by the previous command signal SS3, the data portion of the response signal SR is all “0”.
 図8は、センサデータを一度に送信する動作を示すタイムチャートである。図8の場合に、「一度に送信」とは、期間Tごとに、準備した全てのデータ送信を行うものである。
  図示の例では、コマンド信号SS3は期間TN、TN+1、TN+2のいずれの場合にも、準備した全てのデータ送信を意味するYawを与えており、この結果次回の期間ではレスポンス信号SRとして、準備した全てのデータ(角速度センサ101の出力Yaw、加速度センサ102の出力xG、加速度センサ103の出力yG、診断の出力)の全てを送信してくる。なお、期間Tの長さはいずれも64クロックであるが、最初だけは最短の16クロックに設定されている。
FIG. 8 is a time chart showing an operation of transmitting sensor data at a time. In the case of FIG. 8, “transmission at a time” is to perform all the prepared data transmission for each period T.
In the example shown in the figure, the command signal SS3 gives Yaw meaning all prepared data transmissions in any of the periods TN, TN + 1, and TN + 2, and as a result, prepared as the response signal SR in the next period. All the data (the output Yaw of the angular velocity sensor 101, the output xG of the acceleration sensor 102, the output yG of the acceleration sensor 103, and the diagnosis output) are transmitted. Note that the length of each period T is 64 clocks, but only the first is set to the shortest 16 clocks.
 この方式によれば、一回の通信で全てのセンサデータを送るため、マスタ部106は、同一時点での3つのセンサデータの取得が可能である。マスタ部106から出力するクロック数は最初の一回目は16ビットである。これは1回目のレスポンス信号SRはデータ不定であることから、クロック数を最小にするためである。次以降の通信は常に64クロックで一定である。コマンド信号SS3の先頭のデータ種別は角速度(Yaw)であり、これにより全通信を指示する。各コマンド信号SS3中のクロック数は全て64である。
  したがって、通信部105から送信するレスポンス信号SRは、通信毎のデータ種別に対応したデータを1通信遅れで出力し、毎回57クロック目から64クロック目にCRCを出力する。
According to this method, since all the sensor data is sent in one communication, the master unit 106 can acquire three sensor data at the same time. The first number of clocks output from the master unit 106 is 16 bits. This is to minimize the number of clocks since the first response signal SR is indefinite. Communication after the next is always constant at 64 clocks. The head data type of the command signal SS3 is an angular velocity (Yaw), thereby instructing all communications. The number of clocks in each command signal SS3 is all 64.
Therefore, the response signal SR transmitted from the communication unit 105 outputs data corresponding to the data type for each communication with one communication delay, and outputs a CRC at the 57th clock to the 64th clock every time.
 図9は、センサデータを分けて送信する動作を示すタイムチャートである。図9の場合に、「分けて送信」とは、期間Tごとに、全データの一部の送信を行うものである。図示の例では、全データは角速度センサ101の出力Yaw、加速度センサ102の出力xG、加速度センサ103の出力yG、診断の出力であるが、コマンド信号SS3は期間TNではYawを与えており、次回の期間TN+1ではxGを与えており、次次回の期間TN+2では診断を与えている。これにより、次回の期間TN+1ではYaw、次次回の期間TN+2ではxG、yG、図示していないが次次次回の期間TN+3では診断のデータをレスポンス信号SRに含めて送信することになる。図7の方式では全てのデータの送信に4回の通信を必要とするが、図9の方式では3回の通信でよいことになる。この方式では、クロック数は今回期間におけるクロック数が指定されており、期間Tごとに送信するデータの長さに応じて可変のクロック数に設定されている。期間TN+1ではYawのみなので32ビット、期間TN+2ではxG、yGを含むので48ビットとされる。但し、最初の期間TNだけは最短の16クロックに設定されている。 FIG. 9 is a time chart showing an operation of transmitting sensor data separately. In the case of FIG. 9, “separate transmission” means that a part of all data is transmitted every period T. In the illustrated example, all the data are the output Yaw of the angular velocity sensor 101, the output xG of the acceleration sensor 102, the output yG of the acceleration sensor 103, and the diagnosis output. However, the command signal SS3 gives Yaw in the period TN, and the next time In the period TN + 1, xG is given, and in the next period TN + 2, diagnosis is given. As a result, Yaw is transmitted in the next period TN + 1, xG, yG in the next period TN + 2, and diagnosis data is transmitted in the response signal SR in the next period TN + 3 (not shown). In the method of FIG. 7, four times of communication are required for transmission of all data, but in the method of FIG. 9, three times of communication are sufficient. In this method, the number of clocks is designated as the number of clocks in the current period, and is set to a variable number of clocks according to the length of data transmitted every period T. In the period TN + 1, only Yaw is used, so that it is 32 bits. In the period TN + 2, xG and yG are included, and therefore 48 bits. However, only the first period TN is set to the shortest 16 clocks.
 この通信はクロック数が通信毎に異なる場合の実施例である。マスタ側で、一回の通信でそれぞれYawのみ、同時点のxGとyGの出力を一度に要求する場合への対応が可能である。マスタ部106から出力するクロック数は最初の一回目は16である。これは1回目のレスポンスはデータ不定であるから、クロック数を最小にするためである。次の通信のクロック数は32であり、前の通信での要求であるYawデータとCRCデータを32クロックで出力する。さらに次の通信のクロック数は48であり、xGデータとyGデータおよびCRCデータを48クロックで出力する。 This communication is an embodiment in which the number of clocks is different for each communication. On the master side, it is possible to deal with a case where only Yaw is requested at one time and output of xG and yG at the same time is requested at a time. The number of clocks output from the master unit 106 is 16 for the first time. This is to minimize the number of clocks since the first response is indefinite. The number of clocks for the next communication is 32, and Yaw data and CRC data, which are requests in the previous communication, are output at 32 clocks. Further, the number of clocks for the next communication is 48, and xG data, yG data, and CRC data are output at 48 clocks.
 実施例1では、当該期間のクロック数をコマンド信号SS3に含まれるクロック数の情報から得ている。ここでのクロック数の情報は、図6の波形の5ビット目から8ビット目までの4ビットを用いて送信されてきた部分を利用している。 In the first embodiment, the number of clocks in the period is obtained from the information on the number of clocks included in the command signal SS3. The information on the number of clocks here uses a portion transmitted using 4 bits from the 5th bit to the 8th bit of the waveform of FIG.
 これに対し実施例2では、1ビット目から4ビット目までのデータ種別の情報から当該期間のクロック数を得る手法である。この結果、実施例1よりも早いタイミングでクロック数の把握を完了することができる。 On the other hand, the second embodiment is a method of obtaining the number of clocks in the period from the data type information from the first bit to the fourth bit. As a result, the grasping of the number of clocks can be completed at an earlier timing than in the first embodiment.
 図3はクロック数格納部113の具体的な回路構成例を示すブロック図である。ここでは、図2に示すように、コマンド受信部112が与える出力のうち、実施例1におけるクロック数Sg2の代わりに、センサ種別指定信号S1に含まれる要求データ数mから、クロック数に変換した値を格納するものである。要求データ数mは、Yawのみなら1、xGとyGなら2、診断のみなら1、全指定であれば4といった具合である。図3の入力であるデータ数mとしては、この値が入力されている。 FIG. 3 is a block diagram showing a specific circuit configuration example of the clock number storage unit 113. Here, as shown in FIG. 2, out of the outputs given by the command receiving unit 112, instead of the clock number Sg2 in the first embodiment, the request data number m included in the sensor type designation signal S1 is converted into the clock number. Stores a value. The requested data number m is 1 for Yaw only, 2 for xG and yG, 1 for diagnosis only, 4 for all designations, and so on. This value is input as the number of data m that is input in FIG.
 実施例2では、データ数mに1を加算した結果を16倍した値をクロック数とし格納する。加算器301は入力するデータ数mに定数設定部302の出力”1”を加算する。乗算器303は加算器301からの入力(m+1)に定数設定部304の出力”16”を乗算する。レジスタ305は乗算器303の出力を次のデータ数が入力されるまで保持する。上記のような演算を実行することにより、データ数が1の場合のクロック数は(1+1)・16=32ビット、データ数が2の場合はクロック数は(2+1)・16=48ビットを格納することになる。 In Example 2, a value obtained by multiplying the result of adding 1 to the number of data m by 16 is stored as the number of clocks. The adder 301 adds the output “1” of the constant setting unit 302 to the input data number m. The multiplier 303 multiplies the input (m + 1) from the adder 301 by the output “16” of the constant setting unit 304. The register 305 holds the output of the multiplier 303 until the next data number is input. By performing the above operation, the number of clocks when the number of data is 1 is (1 + 1) · 16 = 32 bits, and when the number of data is 2, the number of clocks is (2 + 1) · 16 = 48 bits Will do.
101:角速度センサ、102、103:加速度センサ、104:制御部、105:スレーブ部、106:マスタ部、111:カウンタ、112:コマンド受信部、113:クロック数格納部、114:CRC出力期間算出部、115:比較部、116:レスポンス送信部、117:CRC生成部、118:セレクタ、121:コマンド送信部、122:クロック数設定部、123:レスポンス受信部、201:シリアルパラレル変換部、301:加算部、302:定数設定部、303:乗算部、304:定数設定部、305:レジスタ、401:減算部、402:定数設定部 101: angular velocity sensor, 102, 103: acceleration sensor, 104: control unit, 105: slave unit, 106: master unit, 111: counter, 112: command receiving unit, 113: clock number storage unit, 114: CRC output period calculation , 115: comparison unit, 116: response transmission unit, 117: CRC generation unit, 118: selector, 121: command transmission unit, 122: clock number setting unit, 123: response reception unit, 201: serial / parallel conversion unit, 301 : Addition unit, 302: constant setting unit, 303: multiplication unit, 304: constant setting unit, 305: register, 401: subtraction unit, 402: constant setting unit

Claims (11)

  1.  マスタ部からクロック信号とコマンド信号を含む送信信号をスレーブ部に与え、スレーブ部ではコマンド信号が指定するデータ種別を含むレスポンス信号をマスタ部に返送するとともに、コマンド信号とレスポンス信号が同時に双方向に送受信される全二重通信を継続的に行う全二重通信装置であって、
     マスタ部から送信するコマンド信号は、前記データ種別と全二重通信を行う期間長を定める情報を含み、
     スレーブ部は、受信した前記全二重通信を行う期間長を定める情報を基に、通信の誤りを検出する誤り検出データを送信するクロックの範囲を決定し、マスタ部から入力する前記クロック信号に同期して、指定されたデータ種別のデータおよび前記誤り検出データを前記レスポンス信号として送信することを特徴とする全二重通信装置。
    A transmission signal including a clock signal and a command signal is given from the master unit to the slave unit, and the slave unit returns a response signal including the data type specified by the command signal to the master unit, and the command signal and the response signal are simultaneously transmitted in both directions. A full-duplex communication device that continuously performs full-duplex communication to be transmitted and received,
    The command signal transmitted from the master unit includes information that defines the data type and a period length for performing full-duplex communication,
    The slave unit determines a clock range for transmitting error detection data for detecting a communication error based on the received information for determining a period length for performing the full-duplex communication, and determines the clock signal input from the master unit. A full-duplex communication apparatus that transmits data of a specified data type and the error detection data as the response signal in synchronization.
  2.  請求項1に記載の全二重通信装置であって、
     前記の全二重通信を行う期間長を定める情報は、この期間におけるクロック数であり、
     スレーブ部は、受信した前記クロック数を基に、通信の誤りを検出する誤り検出データを送信するクロックの範囲を決定し、マスタ部から入力する前記クロック信号に同期して、指定されたデータ種別のデータおよび前記誤り検出データを前記レスポンス信号として送信することを特徴とする全二重通信装置。
    The full-duplex communication device according to claim 1,
    The information that defines the period length for performing the full-duplex communication is the number of clocks in this period,
    The slave unit determines a clock range for transmitting error detection data for detecting a communication error based on the received number of clocks, and is in synchronization with the clock signal input from the master unit to specify a specified data type And the error detection data are transmitted as the response signal.
  3.  請求項1に記載の全二重通信装置であって、
     前記の全二重通信を行う期間長を定める情報は、前記データ種別の個数であり、
     スレーブ部は、前記データ種別の個数を基に、通信の誤りを検出する誤り検出データを送信するクロックの範囲を決定し、マスタ部から入力する前記クロック信号に同期して、指定されたデータ種別のデータおよび前記誤り検出データを前記レスポンス信号として送信することを特徴とする全二重通信装置。
    The full-duplex communication device according to claim 1,
    The information that defines the period length for performing the full-duplex communication is the number of the data types,
    The slave unit determines a clock range for transmitting error detection data for detecting a communication error based on the number of the data types, and the specified data type is synchronized with the clock signal input from the master unit. And the error detection data are transmitted as the response signal.
  4.  請求項1から請求項3のいずれか1項に記載の全二重通信装置であって、
     スレーブ部は、今回受信したコマンド信号に含まれる前記全二重通信を行う期間長を定める情報に従って、今回の全二重通信の期間を定め、今回受信したコマンド信号に含まれる前記データ種別のデータを次回の全二重通信の前記レスポンス信号に含めて送信することを特徴とする全二重通信装置。
    The full-duplex communication device according to any one of claims 1 to 3,
    The slave unit determines the current full-duplex communication period according to information defining the full-duplex communication period length included in the command signal received this time, and the data type data included in the command signal received this time Included in the response signal of the next full-duplex communication and transmitted.
  5.  請求項1から請求項4のいずれか1項に記載の全二重通信装置であって、
     マスタ部は、前記全二重通信を行う期間長を定める情報を可変に設定可能とされていることを特徴とする全二重通信装置。
    The full-duplex communication device according to any one of claims 1 to 4,
    The full-duplex communication apparatus, wherein the master unit can variably set information for determining a period length for performing the full-duplex communication.
  6.  請求項1から請求項5のいずれか1項に記載の全二重通信装置であって、
     マスタ部は、前記コマンド信号に含めて送信する複数の前記データ種別について、全二重通信の都度異なる1つのデータ種別を設定することを特徴とする全二重通信装置。
    The full-duplex communication device according to any one of claims 1 to 5,
    The full-duplex communication apparatus, wherein the master unit sets a different data type for each of the plurality of data types to be transmitted included in the command signal for each full-duplex communication.
  7.  請求項1から請求項5のいずれか1項に記載の全二重通信装置であって、
     マスタ部は、前記コマンド信号に含めて送信する複数の前記データ種別について、全二重通信の都度全てのデータ種別を設定することを特徴とする全二重通信装置。
    The full-duplex communication device according to any one of claims 1 to 5,
    The full-duplex communication apparatus, wherein the master unit sets all data types for each of the plurality of data types to be transmitted by being included in the command signal every time full-duplex communication is performed.
  8.  請求項1から請求項5のいずれか1項に記載の全二重通信装置であって、
     マスタ部は、前記コマンド信号に含めて送信する複数の前記データ種別について、全二重通信の都度適宜の組み合わせのデータ種別を設定することを特徴とする全二重通信装置。
    The full-duplex communication device according to any one of claims 1 to 5,
    The full-duplex communication apparatus, wherein the master unit sets an appropriate combination of data types for each of the plurality of data types to be transmitted included in the command signal for each full-duplex communication.
  9.  ECUからクロック信号とコマンド信号を含む送信信号をセンサ部に与え、センサ部ではコマンド信号が指定するセンサ種別を含むレスポンス信号をECUに返送するとともに、コマンド信号とレスポンス信号が同時に双方向に送受信される全二重通信を継続的に行う全二重通信装置であって、
     ECUから送信するコマンド信号は、前記センサ種別と全二重通信を行う期間長を定める情報を含み、
     センサ部は、受信した前記全二重通信を行う期間長を定める情報を基に、通信の誤りを検出する誤り検出データを送信するクロックの範囲を決定し、マスタ部から入力する前記クロック信号に同期して、指定されたセンサ種別のデータおよび前記誤り検出データを前記レスポンス信号として送信することを特徴とする全二重通信装置。
    A transmission signal including a clock signal and a command signal is given from the ECU to the sensor unit. The sensor unit returns a response signal including the sensor type specified by the command signal to the ECU, and the command signal and the response signal are simultaneously transmitted and received in both directions. A full-duplex communication device that continuously performs full-duplex communication,
    The command signal transmitted from the ECU includes information for determining a period length for performing full-duplex communication with the sensor type,
    The sensor unit determines a clock range for transmitting error detection data for detecting a communication error based on the received information for determining a period length for performing the full-duplex communication, and outputs the clock signal input from the master unit to the clock signal. A full-duplex communication apparatus that transmits data of a specified sensor type and the error detection data as the response signal in synchronization.
  10.  請求項9に記載の全二重通信装置であって、
     前記センサ部は、検出器である加速度センサ及び角速度センサを備え、その検出値を指定されたセンサ種別のデータとして、前記レスポンス信号として送信することを特徴とする全二重通信装置。
    A full-duplex communication device according to claim 9,
    The full-duplex communication apparatus, wherein the sensor unit includes an acceleration sensor and an angular velocity sensor, which are detectors, and transmits the detected value as data of a specified sensor type as the response signal.
  11.  請求項10に記載の全二重通信装置であって、
     前記指定されたセンサ種別のデータには、前記検出器、及び検出値の診断データを含むことを特徴とする全二重通信装置。
    A full-duplex communication device according to claim 10,
    The full-duplex communication apparatus according to claim 1, wherein the data of the designated sensor type includes the detector and diagnostic data of a detected value.
PCT/JP2017/024079 2016-07-08 2017-06-30 Full-duplex communication device WO2018008537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016135660A JP6542720B2 (en) 2016-07-08 2016-07-08 Full duplex communication device
JP2016-135660 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008537A1 true WO2018008537A1 (en) 2018-01-11

Family

ID=60912778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024079 WO2018008537A1 (en) 2016-07-08 2017-06-30 Full-duplex communication device

Country Status (2)

Country Link
JP (1) JP6542720B2 (en)
WO (1) WO2018008537A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086876A (en) * 2012-10-23 2014-05-12 Seiko Epson Corp Serial communication circuit, integrated circuit device, physical amount measurement device, electronic apparatus, mobile, and serial communication method
JP2015226117A (en) * 2014-05-27 2015-12-14 横河電機株式会社 Synchronization control device and synchronization control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086876A (en) * 2012-10-23 2014-05-12 Seiko Epson Corp Serial communication circuit, integrated circuit device, physical amount measurement device, electronic apparatus, mobile, and serial communication method
JP2015226117A (en) * 2014-05-27 2015-12-14 横河電機株式会社 Synchronization control device and synchronization control method

Also Published As

Publication number Publication date
JP6542720B2 (en) 2019-07-10
JP2018005804A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6210187B2 (en) Integrated circuit device, physical quantity measuring device, electronic device, and moving object
JP6361589B2 (en) Communications system
JP2015228171A (en) Sensor system, sensor, and sensor signal output method
WO2003032567A1 (en) Serial data transferring apparatus
WO2018079298A1 (en) Detection data collection device
JP2010145274A (en) Inertial sensor
WO2018008537A1 (en) Full-duplex communication device
JP2008011123A (en) Communication device performing redundant data communication
JP6232733B2 (en) Communication circuit, physical quantity measuring device, electronic device, mobile object, communication method
WO2013111454A1 (en) Physical quantity-detecting device
JP3846330B2 (en) Collected data synchronization method and data processing system
US20130038891A1 (en) Communication system for transmitting multiple pulse signals, transmission circuit, reception circuit, and image forming apparatus
JP5423573B2 (en) Signal processing device
KR20150089305A (en) Apparatus for driving gyro sensor and controlling method thereof
JP6420177B2 (en) Control system, receiving apparatus and control method thereof
JP2009292168A (en) Electronic control device, electronic control system, and control method regarding communication
JP2012181677A (en) Physical quantity measuring device
JP6806748B2 (en) Communication system, transmitter, communication method, and transmission method
JP7277274B2 (en) Encoder and data transmission method
JP2010136142A (en) Serial communication equipment, image forming apparatus, and program
KR102143080B1 (en) Communication system for vehicle and operating method thereof
US20190141417A1 (en) Method for Transmitting a Value Measured by a Sensor, Method for Receiving the Measured Value, Sensor, Control Device
WO2019054196A1 (en) Sensor system
US20210194964A1 (en) Method and Device for Transmitting and Receiving Measurement Values
JPS60209110A (en) Gyro-interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824142

Country of ref document: EP

Kind code of ref document: A1