WO2018007658A1 - Rueda mixta neumatica y no neumatica con seguridad aumentada - Google Patents

Rueda mixta neumatica y no neumatica con seguridad aumentada Download PDF

Info

Publication number
WO2018007658A1
WO2018007658A1 PCT/ES2017/000083 ES2017000083W WO2018007658A1 WO 2018007658 A1 WO2018007658 A1 WO 2018007658A1 ES 2017000083 W ES2017000083 W ES 2017000083W WO 2018007658 A1 WO2018007658 A1 WO 2018007658A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
elastic wall
deformation
radial
vehicle
Prior art date
Application number
PCT/ES2017/000083
Other languages
English (en)
French (fr)
Inventor
Ignacio Requena Rodriguez
Juan Manuel PEREZ VENTURA
Original Assignee
Advantaria, Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201600553A external-priority patent/ES2665819B2/es
Priority claimed from ES201600817A external-priority patent/ES2662695B2/es
Priority claimed from ES201700230A external-priority patent/ES2687105B1/es
Application filed by Advantaria, Sl filed Critical Advantaria, Sl
Priority to EP17823702.0A priority Critical patent/EP3482972A4/en
Publication of WO2018007658A1 publication Critical patent/WO2018007658A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/02Wheels with wire or other tension spokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B9/00Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
    • B60B9/26Wheels of high resiliency, e.g. with conical interacting pressure-surfaces comprising resilient spokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • B60C7/16Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form
    • B60C7/18Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form disposed radially relative to wheel axis

Definitions

  • Scope of the technique is framed within the field of wheels and tires, for all types of vehicles, with or without motor, and especially is within the field of improvements and innovations aimed at increasing the safety of the vehicle and improving control of the same.
  • the wheels for different types of vehicles have been divided into wheels of pneumatic and non-pneumatic type.
  • the pneumatic wheels have a greater capacity of absorption of the vibrations produced by the bearing, which allows to increase the comfort of the occupants of the vehicle and reduce the stress on the damping systems.
  • the wheels of non-pneumatic type have the advantage of not being exposed to problems arising from a puncture or sudden loss of pressure inside, being, in any case, its unadvisable use in vehicles at high speeds, due to to its lower capacity of absorption of vibrations.
  • the use of radial elements composed of elastomeric materials means that the combination of the weight of the vehicle with impacts due to irregularities in the terrain produces an elastic deformation of the radial elements that receive these stresses.
  • This elastic deformation does not occur instantaneously, but rather that Heva associated vibrations generated at the moment of impact that gradually diminish until disappearing after a certain period of time.
  • This speed of attenuation of the The vibrations in the radial element depend on the nature and geometry of the material and it is independent of the speed of rotation of the wheel.
  • the period elapsed between the reception of a first impact by a radal element within the zone of deformation in contact with the ground decreases, and the reception of a second impact by that same element, when He has not left that area yet.
  • the period of time that elapses between the receipt of these voltages in a radial element is internal to the period of attenuation of the vibrations caused by the first tension in that element, a decompensation is generated in the absorption of the vibrations, generating an uncoupling between the vibration frequencies of the pneumatic part and the non-pneumatic part.
  • This decompensation produces an oscillation in the vertical direction, which generates both a roll with vertical displacement of the outer contour of the pneumatic compartment, and a rebound effect on the entire wheel. Both effects are transmitted to the axle of the vehicle, increasing the effort on the damping systems and decreasing the comfort of the occupants.
  • the design of the invention seeks the development of a mixed wheel that maintains the advantages of the existing non-pneumatic or mixed wheels (disappearance of a problem by blowout or puncture, better safety against the presence of water in the road, less deformation in the curves and longer wheel life) eliminating the drawbacks mentioned above in the state of the art. That is, in this document we seek to develop a mixed wheel that is viable at all speeds. In the wheel of the invention the vertical rolling effect is eliminated, no rebound effect is produced and the general drcularity of the contour of the wheel is maintained at any speed of operation of the vehicle, allowing an adequate absorption of the vibrations praduckfás by the rotation on the land. That is, it seeks to solve the two objective technical problems:
  • the wheel design developed in the present invention incorporates an external ring band, of flexible and substantially inextensible character, which has, in its outer zone, a tread band intended to come into contact with the ground in conditions of rolling, and, in its inner area, with a surface that joins several radial elements.
  • each radial element is carried out, at one end, in points, or sets of points, uniformly distributed by the outer annular band, and at the other end, in points, or sets of points, uniformly distributed. by the elastic wall.
  • the axis of each radial element, whether it is a simple or complex element, is directed in the same direction of the radius, or in a direction that maintains a reduced angle with respect to this radius (typically less than 10 °).
  • Depenolendo that it is sought to eliminate only the problems of loss of circularity of the wheel contour and the first phenomenon of vertical oscillation, derived from the occurrence of resonance phenomena and phase difference between radial elements of different rings, or ferien that seeks to further improve the degree of circularity of the wheel and also eliminate the phenomenon of vertical oscillation and rebound of the wheel produced by the decoupling between the vibration frequencies of the pneumatic part and not pneumatic, you can choose between two configurations in relation to the degree of compression of the radial elements and their relationship with the variation of the volume radius of the sealed compartment.
  • radial elements have a resistance to deformation that is greater than that of the pressure-tight compartment, it is necessary to use either radial elements of a rigid nature or radial elements of a semi-rigid nature that have a minimum elastic limit or of buckling in which the product of the maximum permissible pressure without deformation in the direction of its axis multiplied by the area of least cross section of the radial element is greater than the product of the pressure of the sealed volume multiplied by the total area of contact between the elastic wall and this radial element.
  • the term "rigid radial element” is hereinafter used to refer to radial elements of a rigid nature and to radial elements of a semi-rigid nature with an high resistance to deformation, differing explicitly between both situations only when describing a preferred area.
  • the elastic wall also needs to have a much greater deformation capacity in the direction of the radius than in the directions perpendicular to it.
  • the moment produced by the tension transmitted on the end of this radial rigid element necessarily derives in a displacement of this element towards the interior of the watertight compartment, instead of in a displacement around the contour of the elastic wall.
  • This elastic and substantially inextensible nature of the contour of the elastic wall can be achieved by the inclusion of a reinforcement structure of metal structures or substantially knextensible fibers, or by the use of a sufficient thickness of material in the manufacture of this wall .
  • the wheel of the invention is designed so that in any solid angle of equal size to the solid angle of deformation, there are two or more radial elements.
  • the solid angle of deformation will depend on each wheel, calculated according to the conditions of rigidity of the outer annular band, the degree of flexibility of the elastic wall, the dimensions of the wheel (radius, width and proportion between pneumatic part and part). not pneumatic), as well as the weight of the vehicle and the operating pressure of the sealed compartment.
  • both the outer annular band and the elastic wall surrounding the sealed compartment are of a substantially inextensible character.
  • the section of the radial elements can be increased in their contact zones with the outer annular band and with the elastic wall. This greater surface presents greater resistance to torsion in these contact zones, and avoids the possibility of this rotation with respect to the radial direction.
  • a structural reinforcement layer inside the outer annular band and another layer of structural reinforcement inside the elastic wall can increase the resistance to deformation in the radial direction and decrease the size of the solid angle of deformation , so, depending on the characteristics of the vehicle, it may be desirable.
  • radial elements with great resistance to deformation, and with the ability to move in the direction of the radius, in a manner that is integral with the tread the possibility of an independent oscillation in the non-pneumatic part is eliminated, thus eliminating , the possibility of the occurrence of a decoupling problem between the vibration frequencies of the pneumatic part and the non-pneumatic part. In this way, the only possibility of oscillating occurs in the elastic wall that covers the volume of the sealed compartment.
  • the use of sufficiently rigid radial elements in the area between the outer annular band and the elastic wall which is a strip that undergoes successive deformations with the rotation of the wheel, does not affect the circular movement of rolling to be circumscribed dynamically to the interior of the solid angle of deformation, absorbing the vertical displacements of the radial elements in the pneumatic part.
  • the elastic wall alternately modifies its deformation zone during the rotation of the wheel, recovering its natural position in those areas that successively remain outside the solid angle of deformation.
  • the action of the internal pressure in the sealed compartment causes the pressure differences, produced by the successive displacements of the elastic wall, to be redistributed throughout the compartment, allowing to recover its circular contour in the areas where the tension of the rigid elements disappears and allowing to absorb the vibrations produced by irregularities or rugosities of the ground.
  • the design of the invention allows maintaining the advantages of non-pneumatic wheels, or mixed wheels, relative to a less deformation in curves, better behavior against water in the road, resistance to sharp objects in the terrain and longer wheel life. At the same time, it allows an adequate absorption of the vibrations at high speeds, while avoiding the loss of drcularity of the outer contour and eliminating the oscillation of vertical balance and the rebound effect that occur in the designs of existing mixed wheels in the state of the art.
  • the deformation of the circular contour of the wheel during rolling is also reduced, resulting in a decrease in the resistance to rotation, and thus decreasing the fuel consumption with respect to the mixed wheels disclosed to the wheel. moment.
  • the different wheel designs of the invention can be applied to different types of vehicles depending on their nature, distinguishing between vehicles in which the plane of symmetry of the wheel can vary its angle of inclination with respect to the horizontal of the terrain in the curves (bicycles, motorcycles, motorcycles and some three-wheeled vehicles), and the rest of vehicles with three, four, or more wheels in which the plane of symmetry of the wheel is usually maintained vertically and perpendicular to the horizontal of the ground .
  • additional design aspects are detailed to maintain the drcularity of the wheels in vehicles of the first type in the curves.
  • Figure 1A shows a cross section of a car wheel, mounted on a rim, with pairs of radial elements following a direction close to the radius, this cut being enhanced according to a plane containing the axis of rotation.
  • Figure 1B shows an external view of the wheel of figure 1A according to the direction of the axis of rotation, on its exterior side to the side of the vehicle.
  • Figure 2A shows a cross section similar to that of Figure 1A, also indicating the average cutting plane that defines Figure 2B.
  • Figure 2B shows a cross section of the wheel of figures 1A, 1B and 2A, this cut being made according to the average plane defined in figure 2A and this cutting plane being perpendicular to the axis of rotation.
  • Figure 3 shows an enlarged detail of a cross section according to a plane containing the axis of rotation of a vehicle wheel of 3 or more wheels, mounted on a rim, and containing a chamber with a gas or liquid under pressure.
  • Figure 4 shows a cut similar to that of Figure 2B where a wheel with radial elements with transverse buckling elasticity is observed which is deformed by the action of the weights of the wheel and the body of the vehicle, applied on the axle. and by the normal in the area of cash with the land, as well as the transmission of the stresses produced by this deformation and the distribution of pressure variations.
  • the cylindrical loss of both the lower outer contour of the wheel and the elastic wall surrounding the sealed compartment is appreciated. The stresses are mainly distributed under the central part of the rim.
  • Figure 5 shows an explanatory diagram of the transmission of stresses in a wheel design that has radial elements with much greater resistance to deformation than the volume of the sealed compartment.
  • the deformation caused by the weight of the vehicle and the normal reaction force, originating in the contact surface of the wheel with the ground, is imitated at a solid angle delimited by the axis of rotation and the edges of the contact zone enters the wheel and the terrain.
  • Figure 6 shows a cross section similar to the one given in figures 1A and 2A, in which a rigid reinforcement structure joined to the lanta is included to increase the effective diameter in case of rupture of the elastic wall.
  • This figure also shows the direction of transmission of the centrifugal force produced during the rotation of the vehicle and which has its point of application in the area of contact between the axle and the wheel, producing a moment of force with respect to the point of contact with the terrain.
  • Figure 7 shows a section of the car wheel with rigid radial elements coinciding with the direction of the radius, according to a plane containing the axis of rotation.
  • the rigid radial elements have a widening in their contact area with the elastic wall, which has a curvature similar to that of said wall, and through which holes which are common to both elements run.
  • the radial elements are anchored to the elastic wall and to the outer annular band by means of rivets or screws that are inserted through these holes.
  • Figure 8 shows a partial cut, during the circulation in a curve, of a motorcycle wheel having a curved elastic surface in its area of contact with the radial rigid elements.
  • the view is constituted by a cut according to the plane that contains the axis of rotation and the point of contact with the ground.
  • the forces in the event that the resultant centrifugal force and weight is outside the plane of symmetry of the motorcycle, and is directed to the outside of the curve. It is shown, on the one hand, the components of the resultant force projected in the direction parallel to the axis of rotation and in the direction perpendicular to it. The friction and normal soil forces are also shown.
  • Figure 9 shows a partial section of a wheel having an elastic surface with a concavity and two convexities in its area of contact with the elements of the outer ring. This wheel also has an air chamber.
  • Figure 10A shows a cross section of a motorcycle wheel, mounted on a rim, with rigid radial elements, this cut being made according to a plane containing the axis of rotation.
  • Figure 10B shows an external view of the wheel of figure 10A according to the direction of the axis of rotation, on its side exterior to the side of the motorcycle.
  • Figure 11 shows a cross section of a bicycle rrada with rigid radial elements, arranged in pairs and following a direction close to the radius.
  • This wheel is mounted on a rim and contains a chamber with pressurized gas.
  • the cutting plane is perpendicular to the axis of rotation.
  • Figure 12 shows an enlarged detail of a cross section according to a plane containing the axis of rotation of a bicycle wheel with rigid radial elements. This wheel is mounted on a rim and contains a camera inside.
  • Figures 1A, 1B, 2A, 2B, 3, 4, 5, 6, and 7 show different embodiments of the invention for a car wheel.
  • Figures 8, 9, 10A, and 10 B show embodiments for a motorcycle wheel.
  • Figures 11 and 12 show embodiments of the wheel of the invention for a bicycle.
  • a standard rim (2) for tires of pneumatic type and a valve (14) of the Schrader type are used in all cases, allowing their incorporation in replacement of tires of the pneumatic type with the same rim dimensions. You can also modify the designs to use another type of valve or rim.
  • This wheel has an outer annular band (1), located in the part furthest from the axis of rotation (8).
  • This external annular band has a tread band on its outside (9), and inside it can be braided by a metal reinforcement of structural reinforcement (10), flexible and sensibly inextensible, which is covered on its internal face (12) for a material e la turner.
  • this external annular band is, in turn, attached to a set of metallic radial elements (4), the which have elastic characteristics due to the transverse displacement capacity in its central part by buckling in stable equilibrium regime.
  • This elastic wall is formed by a surface (6) composed of an elastomeric material. which gives it a flexible, sensibly inextensible character and provides it with the rigidity necessary to allow it to fit on the sides of the rim (2).
  • this embodiment has limitations as to the maximum speed at which this wheel can be used because the improvement in the drcularity of its outer contour and the contour of the elastic wall, in areas far from the area of contact with the land, is not complete.
  • the phenomena of vertical oscillation, rabote effect and phase difference of vibration between the pneumatic part and the non-pneumatic part that have been mentioned above appear.
  • the wheel of figure 5 which has radial elements with much greater resistance to deformation than the volume of the sealed compartment.
  • This wheel has rigid radial elements separated by angles of 9 °, to add a total of 40 elements.
  • Radial rigid depending on the position of rotation of the wheel.
  • the deformations produced in the outer annular band are located within a solid angle delimited by the axis of rotation and the edges of the contact zone between the wheel and the ground.
  • the deformation angle can be slightly extended to the contact area of the next radial element with the elastic wall (typically lower than 10o).
  • the constituent materials are chosen so that, the maximum resistance to deformation, per unit area, in the radial direction, of the outer annular band, and the maximum resistance to deformation, per unit area, in the radial direction, of the elastic wall, are less than the pressure inside the sealed compartment.
  • FIG 6 there is shown a wheel like those of figures 1A and 2A, in which a reinforcing structure (64) has been included within the sealed volume to improve the structural behavior in the event of a puncture.
  • a rim needs to have a minimum width between its side bands to fadfat the fitting of a cover, or, as in the innovation, of an elastic wall that surrounds the compartment.
  • this space between the sides of the rim can be a problem in case of sudden pressure, since the radial elements can occupy the space between both sides, reducing the effective diameter of the wheel.
  • a reinforcing structure that has a circular surface with a radius (65) greater than the maximum radius of the rim (58), and lower than the minimum radius of the elastic wall (29) .
  • This reinforcing structure can be constituted by a rigid or elastic material, osloing fixed to the central area of the rim or inside its sides and contributes to maintain the effective diameter of the wheel in case of pressure loss in the internal volume, reducing it by a distance (63) that allows to maintain the performance of the vehicle.
  • the radial rigid elements have a widening in their contact area with the elastic wall having a curvature similar to the curvature of the said stop, and through which pass holes that are common to both.
  • the radial elements are anchored to the elastic wall and to the outer annular band by means of rivets or tomiuee (68, 73) which are inserted through these holes.
  • washers made of elastomer material (72, 75) with an inside diameter slightly lower than that of the rivet or tomiHo are used and to which a substance is added ad hentente sealing to ensure the tightness of these holes on both sides . In this way, the manufacturing process of the wheel is also facilitated.
  • racial elements with a widening in their area of contact with the elastic wall prevents torsion effects from occurring in these elements and facilitates the transmission of stresses in the direction of the radius.
  • Figure 8 shows the distribution of stresses in a motorcycle mixed wheel in the case of a preferred embodiment that incorporates a curvature in the area of contact between the elastic wall and the radial elements. This preferred embodiment shown in FIGS.
  • 10A and 10B has exterior dimensions similar to those of a tradition pneumatic type wheel ai and is mounted on a rim of standard dimensions.
  • This wheel has a tread of elastomeric material that has a curved outer contour, which allows to maintain the grip when the vehicle is tilted in a curve.
  • the outer geometry of this cover allows to maintain the grip up to a maximum inclination angle of 60 ° with respect to the vertical plane, showing in figure ⁇ a 45 ° inclination.
  • This annular band (1) surrounded by the tread band is joined to rigid radial rigid elements (41), made of a light metal, for example aluminum. These radial rigid elements are joined, in turn, closer to the axis of rotation with the elastic wall (80) that surrounds the tightly closed dining volume (7).
  • This wall has a curvature that makes that in the lateral zones, the points of union between the radial elements and the elastic wall, which are contained in a same plane that contains the axis of rotation, are at different distances from this axis. increasing the component of the area parallel to the plane of symmetry.
  • This geometry can also be described by indicating that the tangent line at these points to the curve contained in this plane forms an angle that is not 90 ° with the plane of symmetry of the wheel (77). The existence of a component of the area (88).
  • Figure 9 shows another alternative embodiment for motorcycle with air chamber incorporating a curvature in the contact zone that includes more than one concavity.
  • FIGS 11 and 12 an embodiment of the invention for a bicycle wheel incorporating a chamber under pressure inside it is shown.
  • a regular rim for bicycle wheels with a camera is used.
  • the chambers used have a cross tube diameter smaller than that corresponding to a chamber for a pneumatic type wheel.
  • the non-watertight closed compartment enclosed by the elastic wall has a much smaller volume than that intended for the air chamber in a pneumatic wheel with the same tire dimension.
  • the damping structural elements have been chosen in directions close to the radius of the wheel.

Abstract

Rueda mixta neumática y no neumática con seguridad aumentada que incorpora una banda anular externa flexible, sensiblemente inextensible (1), que entra en contacto con el terreno. Esta banda está unida, por su zona interna, a elementos radiales (2)( separados entre si, que en una parle intermedia a una llanta (8), se fijan a una pared elástica que rodea un compartimento estanco (7) encerrando un gas o líquido a presión. Esta innovación permite eliminar el balanceo vertical, el efecto de rebote en 3a rueda, las diferencias de fase y de frecuencia de vibración entre elementos radiales y entre la parte neumática y no neumática, que aparecen en las ruedas mixtas actuales a altas velocidades, reduciendo la deformación de la rueda y el consumo de combustible. La innovación mantiene las ventajas relativas a una menor deformación en curvas, mejor comportamiento con agua en la calzada y seguridad frente a pérdida de presión.

Description

RUEDA MIXTA NEUMATICA Y NO NEUMATICA CON SEGURIDAD AUMENTADA
Ambito de la técnica La invención se encuentra encuadrada dentro del campo de ruedas y neumáticos, para todo tipo de vehículos, con o sin motor, y especialmente se ubica dentro del campo de mejoras e Innovaciones destinadas a incrementar ia seguridad del vehículo y mejorar el control del mismo. Estado de la técnica
Históricamente las ruedas para distintos tipos de vehículos se han dividido entra ruedas de tipo neumático y de tipo no neumático. Las ruedas de tipo neumático cuentan con una mayor capacidad de absorción de las vibraciones producidas por el rodamiento, lo cual permite aumentar la comodidad de los ocupantes del vehículo y reducir los esfuerzos sobre los sistemas de amortiguamiento. Las ruedas de tipo no neumático, por otro lado, cuentan con la ventaja de no estar expuestas a problemas derivados de un pinchazo o pérdida brusca de presión en su interior, siendo, en todo caso, su utilización desaconsejable en vehículos a altas velocidades, debido a su menor capacidad de absorción de las vibraciones.
Esta división entre ruedas de tipo neumático y de tipo no neumático, con sus marcadas diferencias en cuanto a prestaciones y comportamiento, han hecho que se utilcen ruedas de un tipo u otro, en función de la aplicación final y la velocidad a la que ha de circular ei vehículo.
En esta sentido, se han producido algunos esfuerzos puntuales para desarrollar diseños que combinen las ventajas de ambos tipos de rueda, como por ejemplo la solicitud de patente US2012/0038207 desarrollada por Timothy L. WIHIams y otros, y asignada a Boeing. En este documento se describe una rueda con varias capas elásticas concéntricas conectadas a radios elásticos situados de forma alterna, que opoionalmente pueden rodear una cámara o volumen neumático en su zona de contacto con la llanta. El principal objetivo de esta divulgación es proporcionar una rueda para uso en vehículos militares que presente una mínima superficie lateral al Impacto de proyectiles y a la onda expansiva de una explosión, y que presente una resistencia estructural efectiva en caso de sufrir danos, incluyendo una redundancia de elementos que permita mantener el funcionamiento efectivo de la rueda, incluso en caso de que se hayan desprendido algunos radk» o porciones de las capas intermedias.
En las exigencias de diseño de esta divulgación no se considera prioritarios aspectos comunmente relevantes en los vehículos civiles, tales como el consumo de combustible, la comodidad de los ocupantes y la reducción de los esfuerzos soportados por los enemas de amortiguamiento, que se ven sacrificados en virtud de los objetivos detallados anteriormente.
Hay que destacar que la utJIzaeión de varias estructuras concéntricas en el añilo exterior de la rueda, con elementos elásticos deformables en la dirección del radio, puede producir la aparición de fenómenos de resonancia y desacople de fase entre los elementos radiales de las distintas capas, que vibran en la zona de contacto de la rueda con el terreno. Estos fenómenos producen una distorsión de la ckcularidad del contomo exterior de la rueda, en la zona que no se encuentra en contacto con el terreno, afectando al conecto funcionamiento de la misma, al generar una mayor resistencia ai giro y un primer fenómeno de balanceo vertical del eje del vehículo debido a esta pérdida dedreularidad.
Asimismo, se observa que esta distorsión de ta oircularidad del contorno que no se encuentra en contacto con el terreno, al generar una mayor resistencia al giro, aumenta, por tanto, el consumo de combustible con respecto a una rueda que no cuente con esta deformación.
Por otro lado, la utilización de elementos radiales compuestos por materiales elastómeros hace que la combinación del peso del vehículo con tos impactos debidos a las irregularidades del terreno produzcan una deformación elástica de tos elementos radiales que reciben estas tensiones. Esta deformación elástica no se produce de forma instantánea, si no que Heva asociadas unas vibraciones generadas en el momento del impacto que se van atenuando progresivamente hasta desaparecer trancurrido un cierto periodo de tiempo. Esta velocidad de atenuación de las vibraciones en el elemento radial depende de la naturaleza y geometría del material y es Independiente de la velocidad de giro de la rueda. Al aumentar esta velocidad de giro disminuye el periodo trascurrido entre la recepción de urr primer impacto por parte de un elemento radal dentro de la zona de deformación en contacto con el terreno, y la recepción de un segundo impacto por parte de ese mismo elemento, cuando todavía no ha abandonado dicha zona. Cuando el periodo de tiempo que transcurre entre la recepción de estes tensiones en un elemento radial es interior al periodo de atenuación de las vibraciones originadas por la primera tensión en ese elemento, se genera una descompensación en la absorción de las vibraciones, generándose un desacople entre las frecuencias de vibración de la parte neumática y de la parte no neumática. Esta descompensación produce una oscilación en la dirección vertical, que genera tanto un balanceo con desplazamiento vertical del contomo exterior del compartimento neumático, como un efecto de rebote sobre la totalidad de la rueda. Ambos efectos se transmitan al eje del vehiculo, incrementando el esfuerzo sobre tos sistemas de amortiguamiento y disminuyendo la comodidad de los ocupantes.
El periodo transcurrido entre la recepción de tensiones consecutivas en un mismo elemento radial, situado dentro de la zona de deformación de la rueda, disminuye de forma proporcional a la velocidad angular de la rueda, esto es, varía de forma inversamente proporcional a la velocidad lineal del vehículo. Por este motivo, este fenómeno de desacople, oscilación vertical y efecto rebote aumenta con la velocidad de circulación.
Se ha observado que en algunos vehículos estos fenómenos son relevantes para velocidades por encima de 50 Km/h, siendo mucho más acusadas para velocidades por encima de 80 Km/h.
Por este motivo, desde la empresa ADVANTARIA SL, se han realizado distintos desarro los mediante el diseño independiente de ruedas mixtas para mantener las ventajas propias de este tipo de ruedas buscando eliminar los inconvenientes existentes en el estado de la técnica en lo relativo a su uso a altas velocidades.
En resumen, se puede concluir que en el estado de la técnica aparecen dos problemas diferenciados: - En las ruedas mixtas divulgadas, a velocidades elevadas, aparece un efecto de balanceo vertical y se produce un efecto de rebote sobre la totaidad de la rueda disminuyendo la comodidad de los ocupantes y aumentando el esfuerzo sobre los sistemas de amortiguamiento del vehículo.
- En las ruedas mixtas divulgadas, a velocidades elevadas, aparece un efecto de deformación del contomo de la rueda, perdiendo su forma circular en la zona que no está en contacto con el terreno. Esta deformación presenta una mayor resistencia al gira, ineremantándose el consumo de combustible.
Descripción de la Invención
El diseno de la invención busca el desarrollo de una rueda mixta que mantiene las ventajas propias de las ruedas no neumáticas o mixtas existentes (desaparición de un problema por reventón o pinchazo, mejor seguridad frente a presencia de agua en la calzada, menor deformación en las curvas y mayor vida útil de la rueda) eliminando los inconvenientes mencionados anteriormente en el estado de la técnica. Esto es, en el presente documento se busca desarrollar una rueda mixta que sea viable a artas velocidades. En la rueda de la invención se elimina el efecto de balanceo vertical, no se produce efecto rebote y se mantiene la drcularidad general del contorno de la rueda a cualquier velocidad de operación del vehículo, permitiéndose una adecuada absorción de las vibraciones praduckfás por el giro sobre el terreno. Es decir, se busca resolver tos dos problemas técnicos objetivos:
- Por un lado, se busca la realización de una rueda mixta con componentes neumáticos y no neumáticos manteniendo todas las ventajas propias de este tipo de ruedas, y cuya utiizadón sea viable en vehículos a altas velocidades.
- Per otro lado, se busca la realización de una rueda mixta con componentes neumáticos y no neumáticos manteniendo todas las ventajas propias de este tipo de ruedas, y cuya utilización genere una menor resistencia al giro, disminuyendo el consumo de combustible. Para alcanzar estos objetivos se recurre a una combinación de aspectos relativos a los comportamientos rígidos o elásticos de los distintos materiales y elementos constitutivos de la rueda, así como a modificaciones en su diseño, disposición y geometría.
De este modo, el diseño de rueda desarrollado en la presente invención incorpora una banda anular extema, de carácter flexible y sensiblemente inextensfele, que cuenta, en su zona exterior, con una banda de rodadura destinada a entrar en contacto con el terreno en condiciones de rodadura, y, en su zona interior, con una superficie que se une a varios elementos radiales.
Estos elementos radiales que ocupan una zona interior a la banda anular extema, se fijan, en su zona más cercana al eje de la rueda, a una superficie de naturaleza elástica. Esta superficie elástica, se halla en contacto con los laterales de una llanta o estructura rígida de anclaje al eje del vehículo, formando una pared elástica que, conjuntamente con la llanta, envuelve un volumen que forma un compartimento cerrado en el que se introduce un gas o un liquido a una presión superior a la atmosférica. La introducción de gas o liquido a presión puede realizarse directamente en el interior del compartimento cenado si éste se diseña para que sea de carácter estanco, o en caso contrario, mediante la utilzaciórt de una cámara de aire (o con un liquido u otro gas a presión). Por simplicidad, utilizaremos a partir de ahora en este documento el término "compartimento estanco" para referimos al volumen cerrado que contiene un gas o líquido a presión, de forma indistinta a la utilización, o no de una cámara en su interior. La disposición de estos elementos radiales, simples o complejos, se realiza, por un extremo, en puntos, o conjuntos de puntos, distribuidos uniformemente por la banda anular extema, y en el otro extremo, en puntos, o conjuntos de puntos, distribuidos uniformemente por la pared elástica. El eje de cada elemento radial, ya se trate de un elemento simple o complejo, está dirigido en la misma dirección del radio, o en una dirección que mantiene un ángulo reducido con respecto a este radio (típicamente inferiora 10°).
Depenolendo de que se busque eliminar únicamente tos problemas de pérdida de circularidad del contomo de la rueda y el primer fenómeno de oscilación vertical, derivados de la aparición de fenómenos de resonancia y de diferencia de fase entre elementos radiales de distintos anillos, o ferien que se busque mejorar aún más el grado de circularidad de la rueda y eliminar además el fenómeno de oscilación vertical y de rebote de la rueda producidos por el desacople entre las frecuencias de vibración de la parte neumática y no neumática, se puede elegir entre dos Configuraciones en relación al grado de compresión de los elementos radiales y su relación con la variación del radio del volumen del compartimento estanco.
Para eliminar los fenómenos de resonancia y diferencia de fase entre los elementos radiales cecéanos serla suficiente con utilizar una única estructura anular de elementos radiales, fabricados con materiales elásticos, o con materiales inextensibles que permitan una deformación elástica transversal por pandeo, y seleccionar adecuadamente, de forma experimental, la presión de operación del compartimento estanco y la elasticidad de k» elementes radiales, de forma que el codeóte entre la variación del radio exterior de la rueda y este radio exterior sin modificar, por un lado, y el cociente resultante de dividir la variación del radio de la pared elástica entre el valor de este radio sin variación sean similares. Se consideran similares ambos cocientes, a efectos de esta aplcadon, si ambos no difieren en una cantidad superior ai 20%.
Si, adicional mente, en una situación generalmente preferible, se busca incrementar en mayor grado la circularidad del contomo, y eliminar ademas el problema del balanceo vertical y el efecto de rebote de la rueda producidos por el desacople entre las frecuencias de vibración de la parte neumática y la parte no neumática, es necesario asegurar que la deformación de la banda anular extema y de la pared del compartimento estanco se circunscriben a un espado lo más reducido posible. Es dedr, se intenta que ambas deformaciones se encuentren situadas dentro de un ángulo sólido formado por el eje de giro y los limites de la zona de contacto de la banda de rodadura con el terreno.
En este sentido, es necesario fecordar que la distribución de presiones en el interior del volumen del compartimento estanco se rige por el Principia de Pascal que permite una redistribución uniforme de cualquier variación de presión originada por un desplazamiento de la pared elástica exterior a este volumen. Por el contrarío, el comportamiento frente a la deformación de los elementos radiales se rige por la fórmula de Hooke, en caso de que estén constituidos por un material elastamero, o por la teoría de Euier en el caso de que se trate de elementos inextensibles que permitan una deformación por pandeo transversal. En ambos casos, los elementos radiales desarrollan una resistencia frente a la deformación en la dirección del radio generando una tensión en esta misma dirección. De este modo, para reducir el área deformada, se necesita buscar elementos radiales que cuenten con una resistencia a la deformación muy superior a la resistencia a la deformación con la que cuenta el volumen del compartimento estanco a presión, de modo que estos elementos transmiten la practica totaldad de la tensión desde la banda de rodadura hasta el compartimento estanco produciéndote una deformación únicamente en la zona afectada de la pared elástica que rodea a este volumen. Esta zona deformada ae reequllibra dinámicamente, durante el giro de la rueda, por el efecto del principio de Pascal sobre el liquido o gas a presión en el compartimento.
Para lograr que los elementos radiales cuenten con una resistencia a la deformación que sea superior a la que posee el compartimento estanco a presión es necesario utiRzar, bien elementos radiales de naturaleza rígida, bien elementos radiales de naturaleza semirrígida que cuenten con un limite mínimo elástico o de pandeo en el que el producto de la presión máxima admisible sin deformación en la dirección de su eje multiplicada por el área de menor sección transversal del elemento radial sea superior al producto de la presión del volumen estanca multiplicada por la totalidad del área de contacto entre la pared elástica y este elemento radial.
Esta relación se expresa a través de la fórmula:
Figure imgf000009_0001
donde
Figure imgf000009_0002
En esta ecuación la presión máxima admisible en un elemento radial Piunm se determina experl mentalmente, seleccionándose el área transversal de dicho elemento radial en función de las necesidades de diseño y de la presión necesaria de operación para el compartimento estanco Pve
Dada esta mayor resistencia a la deformación de los elementos radiales en comparación con el compartimento estanco, se utiliza en adelante en el presente documento el termino "elemento rígido radial" para referirse indistintamente a elementos radiales de naturaleza rígida y a elementos radiales de naturaleza semirrígida con una alta resistencia a la deformación, diferenciándose explícitamente entre ambas situaciones únicamente al describir una rea Iza don preferida.
Por otro lado, la pared elástica necesita contar, asimismo, con una capacidad de deformación mucho mayor en la dirección del radto, que en las direcciones perpendiculares al mismo. De este modo, en caso de que un elemento rígido radial se encuentre formando un ángulo agudo con la banda de rodadura en su zona de contacto con el terreno, el momento producido por la tensión transmitida sobre el extremo de este elemento rígido radial deriva necesariamente en un desplazamiento de este elemento hada el Interior del compartimento estanco, en lugar de en un desplazamiento alrededor del contomo de la pared elástica. Este carácter elástico y sensiblemente inextensible del contorno de la pared elástica se puede conseguir mediante la inclusión de una estructura de refuerzo de hflos metálicos o fibras sensiblemente knextensibles, o mediante la utilización de un grosor suficiente de material el as tornero en la fabricación de esta pared.
Mediante este diseño se consigue que toda la deformación de la rueda se produzca dentro un ángulo sólido determinado, que es igual o ligeramente superior (hasta 10") al ángulo sol Ido definida por los dos planos que pasan por el eje de giro y que con llenen, cada uno, a los puntos de frontera de los dos bordes de la zona de contacto de la banda da rodadura con el terreno.
De este modo, se diserla la rueda de la invención, para que en cualquier ángulo sólido de igual tamaño que el ángulo sólido de deformación, existan dos o más elementos radiales. El hecho de que dentro de cada ángulo sólido del tamaño del ángulo sólido de deformación, existan al manos dos elementos rígidos radiales permite que, en cualquier posición de gira, la rueda esté apoyada, bien sobre un elemento rígido radial si este se encuentra cercano a la vertical del eje, o bien simultanea mente sobre dos elementos rígidos radiales si se encuentran alejados de esta vertical. De este modo se asegura que la rueda cuenta en todo momento con un adecuado soporte.y que la transmisión de la tensión desde la superficie de contacto se hace en la dirección del radio que coincide con el eje de un elemento radial que se encuentra en el interior de este ángulo sólido de deformación.
El ángulo sóido de deformación dependerá de cada rueda, calculándose en función de las condiciones de rigidez de la banda anular extema, del grado de flexibildad de la pared elástica, de las dimensiones de la rueda (radio, anchura y proporción entre parte neumática y parte no neumática), asf como del peso del vehículo y de la presión de operación del compartimento estanco.
Por otro lado, y para evitar que los esfuerzos debidos a la fuerza normal del terreno y transmitidos por la banda anular extema a los elementos rígidos radiales, en caso de llevar una dirección oblicua a los mismos, produzca un movimiento de rotación de estos elementos rígidos radiales con respecto a la dirección del radio, se necesita, como se ha mencionado, que tanto la banda anular extema, como la pared elástica que rodea el compartimento estanco sean de carácter sensiblemente inextensibie. Asimismo, puede aumentarse la sección de los elementos radiales en sus zonas de contacto con la banda anular extema y con la pared elástica. Esta mayor superficie presenta mayor resistencia a la torsión en estas zonas de contacto, y evita la posibiidad de esta rotación con respecto a la dirección radial.
La Inclusión de una capa de refuerzo estructural en el interior de la banda anular extema y de otra capa de refuerzo estructural en el interior de la pared elástica puede aumentar la resistencia a la deformación en la dirección radial y disminuir el tamaño del ángulo sólido de deformación, por lo que, dependiendo de las características del vehículo, puede resultar deseable. Mediante la utllzación de elementos radiales con gran resistencia a la deformación, y con capacidad de desplazamiento en la dirección del radio, de modo solidario a ta banda de rodadura, se elimina la posibilidad de una oscilación independiente en la parte no neumática, eliminándose, asimismo, la posibilidad de aparición de un problema de desacople entre las frecuencias de vibración de la parte neumática y de la parte no neumática. De este modo, la única posibildad de osrilacjón se produce en la pared elástica que recubre el volumen del compartimento estanco. Hay que destacar que la utilización de elementos radiales suficientemente rígidos en la zona situada entre la banda anular extema y la pared elástica, que es una franja que sufre deformaciones sucesivas con el giro de la rueda, no afecta al movimiento circular de rodadura al circunscribirse dinámicamente al interior del ángulo sóido de deformación, absorbiéndose los desplazamientos verticales de los elementos radiales en la parte neumática. Como se ha señalado anteriormente, la pared elástica modifica alternativamente su zona de deformación durante el giro de la rueda, recuperando su posición natural en aquellas zonas que sucesivamente van quedando fuera del ángulo sólido de deformación. La acción de la presión interior en el compartimento estanco hace que las diferencias de presión, producidas por los sucesivos desplazamientos de la pared elástica, se redistribuyan por todo el compartimento, permitiendo recuperar su contomo circular en las zonas donde desaparece la tensión de los elementos rígidos raciales, y permitiendo absorber las vibraciones producidas por las irregularidades o rugosidades del terreno.
De este modo, el diserlo de la invención, permite mantener las ventajas propias de las ruedas de tipo no neumático, o mixtas, relativas a una menor deformación en curvas, mejor comportamiento frente a agua en la calzada, resistencia frente a objetos punzantes en el terreno y mayor vida útil de la rueda. Al mismo tiempo, permite realizar una adecuada absorción de las vibraciones a altas velocidades, al tiempo que se evita la pérdida de drcularidad del contomo exterior y se eliminan la oscilación de balancea vertical y el efecto rebote que se producen en los disenos de ruedas mixtas existentes en el estado de la técnica.
Tal y como se ha mencionado, también se reduce la deformación del contomo circular de la rueda durante la rodadura, produciéndose una disminución de la resistencia al giro, y disminuyendo, por tanto, el consumo de combustible con respecto a las ruedas mixtas divulgadas hasta el momento. Los diferentes diseños de rueda de la invención pueden aplcarse a distintos tipos de vehículos en función de su naturaleza, distinguiéndose entre vehículos en los cuales el plano de simetría de la rueda puede variar su ángulo de inclinación con respecto a la horizontal del terreno en las curvas (bicicletas, motocicletas, cicla moto res y algunos vehículos de tres ruedas), y el resto de vehículos de tres, cuatro, o más ruedas en los cuales el plano de simetría de la rueda se mantiene habítualmente vertical y perpendicular a la horizontal del terreno. De este modo, en el apartado de descripción de una realzación preferida se detallan aspectos de diseños adicionales para mantener en las curvas la drcularídad de las ruedas en vehículos del primer tipo.
Descripción de loa dibujos En las siguientes figuras se muestre un esquema con el funcionamiento de La rueda de la invención, asi como varios modos de realización de la misma.
La figura 1A muestra un corte transversal de una rueda de automóvil, montada sobre una llanta, con pares de elementos radiales que siguen una dirección cercana al radio, realzándose este corte según un plano que contiene al eje de giro.
La figura 1B muestra una vista extema de la rueda de la figura 1A según la dirección del eje de rotación, en su cara exterior al lateral del vehículo. La figura 2A muestra un corte transversal similar al de la figura 1A, indicando, asimismo, el plano medio de corta que define a la figura 2B.
La figura 2B muestra un corte transversal de la rueda de las figuras 1A, 1B y 2A, realizándose este corte según el plano medio definido en la figura 2A y siendo este plano de corte perpendieular al eje de giro.
La figura 3 muestre un detalle ampliado de un corte transversal según un plano que contiene al eje de giro de una rueda de vehículo de 3 o más ruedas, montada sobre una llanta, y que contiene una cámara con un gas o líquido a presión. La figura 4 muestra un corte similar al de la figura 2B donde se observa una rueda con elementos radiales con elasticidad transversal per pandeo que se deforma por la acción de los pesos de la rueda y el cuerpo del vehículo, aplicados sobre el eje. y por la normal en la zona de contado con el terreno, asi como la transmisión de las tensiones producidas por esta deformación y la distribución de las variaciones de presión. En este dibujo se aprecia la pérdida de forma cilindrica tanto del contomo exterior inferior de la rueda, como de la pared elástica que rodea al compartimento estanco. Las tensiones se distribuyen principalmente bajo ta parte central de la llanta. En la figura 5 se muestra un esquema explicativo de la transmisión de tensiones en un diseñé de rueda que cuenta con elementos radiales con mucha mayor resistencia a la deformación que el volumen del compartimento estanco. La deformación producida por el peso del vehículo y la fuerza normal de reacción, originada en la superficie de contacto de la rueda con el terreno, queda Imitada a un ángulo sóido delimitado por el eje de giro y loa bordes de la zona de contacto entra la rueda y el terreno.
La figura 6 muestra un corte transversal similar al da las figuras 1A y 2A en el que se incluye una estructura rígida de refuerzo unida a la lanta para aumentar el diámetro efectivo en caso de rotura de la pared elástica. En esta figura se muestra también la dirección de transmisión de la fuerza centrifuga producida durante el giro del vehículo y que tiene su punto de aplicación en la zona de contacto entre el eje y la rueda, produciendo un momento de fuerza con respecto al punto de contacto con el terreno.
La figura 7 muestra un corte de la rueda de automóvl con elementos rígidos radiales coincidentes con la dirección del radio, según un plano que contiene al eje de giro. En esta ruada los elementos rígidos radiales cuentan en su zona de contacto con ta pared elástica con un ensanchamiento que posee una curvatura similar a la de dicha pared, y por el que discurren unos orificios que son comunes a ambos elementos. Los elementos radiales se anclan a la pared elástica y a la banda anular extema mediante remaches o tornillos que se insertan por estos orificios.
La figura 8 muestra un corta parcial, durante la circulación en una curva, de una rueda de motocicleta que tiene una superficie elástica curva en su zona de contacto con los elementos rígidos radiales. La vista está constituida por üri corte según el plano que contiene el eje de giro y el punto de contacto con el terreno. Asimismo, se muestran las fuerzas en eJ caso de que la resultante de la fuerza centrífuga y el peso, se encuentre fuera del plano de simetría de la motocicleta, y esté dirigida hada el exterior de la curva. Se muestra, por un lado, las componentes de la fuerza resultante proyectadas en la dirección paralela al eje de giro y en la dirección perpendicular al mismo. También se muestran las fuerzas de rozamiento y normal del suelo.
La figura 9 muestra un corte parcial de una rueda que tiene una superficie elástica con una concavidad y dos convexidades en su zona de contacto con los elementos del anillo exterior. Esta rueda dispone, además, de una cámara de aire.
La figura 10A muesfrs una corta transversal de una rueda de motocicleta, montada sobre una llanta, con elementos rígidos radiales, realizándose este corte según un plano que contiene al eje de giro. La figura 10B muestra una vista extema de la rueda de la figura 10A según la dirección del eje de rotación, en su cara exterior al lateral de la motocicleta.
La figura 11 muestra un corte transversal de una ruada de bicicleta con elementos rígidos radiales, dispuestos de dos en dos y que siguen una dirección cercana al radio. Esta rueda se encuentra montada sobre una llanta y contiene una cámara con gas a presión. El plano de corte es perpendicular al eje de giro.
La figura 12 muestra un detalle ampiado de un corte transversal según un plano que contiene al eje de giro de una rueda de bicicleta con elementos rígidos radiales. Esta rueda se encuentra montada sobre una llanta y contiene una cámara en su interior.
A continuación se Hstan los distintos componentes que aparecen en los dibujos:
1 -fianda anular extema de naturaleza flexble y sensiblemente inextensible.
2 - Llanta estándar para ruedas de tipo neumático, utilizada en la rueda de la invención.
3 - Pared elástica que rodea al compartimento estanco.
4 - Elemento radial con comportamiento elástico por pandeo transversal, fijado a la banda anular extema y a la pared elástica que rodea al compartimento estanco.
5 - Pared de la llanta más cercana al eje de rotación.
6 - Cara interna de la pared elástica que rodea al compartimento estanco. 7 - Compartimento estanco.
8 - Dirección del eje de giro de la rueda.
9 - Superficie exterior de contacto de la rueda. Banda de rodadura.
10 - Refuerzo estructural de la banda anular extema elástica.
11 - Refuerzo estructural de la pared elástica que rodea al compartimento estanco.
12 - Cara interna de la banda anular externa elástica.
13 - Zona lateral de encastre de la pared elástica que rodea al compartimento estanco.
14 - Válvula de Inflado/desinflado.
15 - Zona lateral extema de la pared elástica que rodea al cQppartimento estanco. 16 - Espacio entre la llanta y el eje.
17 - Borde de IB llanta en su zona más alejada del eje de giro.
18 - Espacio extemo entre dos elementos estructurales de amortiguamiento entre la banda anular extema y la pared elástica que rodea al compartimento estanco.
19 - Espacio Interno entre dos elementos estructurales de amortiguamiento entre la banda anular extema y la pared elástica que rodea al compartimento estanco.
20 - Plano de corte transversal de las figuras 1 A y 2A.
21 - Plano de corte transversal de la figura 2B.
22 - Zona lateral de la llanta para encastre de la pared elástica.
23 - Cara extema de la pared elástica que rodea al compartimento estanco.
24 - Cámara de aire.
25 - Interior de la cámara de aire.
26 - Zona de entrada de aire desde la válvula al interior de la cámara.
27 - Transmisión de la diferencia de presión producida por la deformación de la rueda en la dirección perpendicular al radio.
28 - Distancia desde el eje de giro al perímetro de la rueda.
29 - Distancia desde el eje de giro a la cara interna de la pared elástica que rodea al compartimento estanco.
30 - Distancia desde el eje de giro a la superficie interna de la llanta.
31 - Transmisión de la diferencia de presión producida por la deformación de la rueda en la dirección del radio.
32 - Dirección de la tensión producida por la deformación de la rueda transmitida por el perímetro de la pared elástica.
33 - Circunferencia del contomo de la pared elástica que rodea al compartimento estanco sin deformar.
34 - Zona de la pared elástica en la que se aplica principalmente la deformación. 35 - Dirección de la tensión producida por la deformación de la rueda transmitida por el elemento radial que no sufre una deformación relevante.
36 - Dirección de la tensión producida por la deformación de la rueda transmitida por el elemento radial que sufre una deformación elástica relevante.
37 - Zona de contacto entre la rueda y la superficie de rodadura.
38 - Dirección de la tensión producida por la deformación de la rueda transmitida por el perímetro exterior de la misma.
39 - Circunferencia del contorno de la rueda sin deformar.
40 - Fuerza normal de reacción de la superficie rígida del terreno.
41 - Elemento rígido radial.
42 - Angulo dolido en el que se produce la deformación de la banda anular extema y de la pared elástica.
43 - Distancia entre el eje y el con tomo interior de la llanta.
44 - Zona de la pared elástica que se deforma por la acción de la tensión transmitida a través de los elementos rígidos radiales entre la banda anular externa y la pared elástica.
45 - Distancia entre el contorno interior de la Han ta y el punto de la pared elástica deformada más cercano al eje de la rueda.
46 - Distancia entre la posición natural de la pared elástica y su postójófl de máxima deformación.
47 - Dirección de la tensión transmitida por los elementos rígidos radiales dentro del ángulo sólido de detbrmación.
48 - Elemento rígido redial dentro del ángulo sólido de deformación, que se encuentra situado en la zona central de este ángulo sólido.
49 - Distancia entre la posición natural de la parad elástica y la posición de máxima deformación de la banda anular extama.
50 - Contomo de la banda anular externa sin deformación.
51 - Distancia entre la posición natural de la banda anular extema y su posición de máxima deformación.
52 - Superficie del terreno.
53 - Limite exterior de la zona deformada de la banda anular elástica.
54 - Límite exterior de la zona deformada de la pared elástica.
55 - Zona de la pared elástica con deformación cóncava hacia el interior del compartimento estanco.
56 - Contomo da la parad elástica sin deformar. 57 - Zona de contacto entre la rueda y el terreno.
58 - Distancia desde el eje al borde de la llanta en su zona más alejada del eje.
59 - Dirección de transmisión de la fuerza centrífuga aplicada sobre el eje de la rueda.
60 - Dirección de la tensión transmitida a la pared elástica por los elementos radiales. 61 - Zona de contacto y punto de aplicación del momento de fuerza.
62 - Dirección paralela al eje de giro en la pared elástica.
63 - Distancia entre la cara Interna de la pared elástica que rodea al compartimento estanco y la estructura de refuerzo.
64 - Estructura de refuerzo dentro del compartimento estanco.
65 - Distancia desde el eje de giro al extremo extemo de la estructura de refuerzo.
66 - Remache de sujeción de la banda anular extema ai elemento rígido radial.
67 - Zona de anclaje del elemento rígido radial a la pared elástica, con una curvatura similar a la de esta pared.
68 - Tuerca de anclaje del elemento rígido radial a la pared elástica.
69 - Zona central de la llanta alrededor del eje.
70 - Orificio en la llanta para el eje de ta rueda.
71 - Orificios en la llanta paca los tomillos de sujeción al vehículo.
72 - Arandela interior de anclaje del elemento rígido radial a la pared elástica.
73 - Tornillo roscado de anclaje del elemento rígido radial a la pared elástica.
74 - Ensanchamiento del elemento rígido radial con orificios para su fijación a ta pared elástica.
75 - Arandela exterior de anclaje del elemento rígido radial a la pared elástica.
76 - Surcos en la banda de rodadura.
77 - Planada simetría de la moto.
78 - Radio de llanta de motocicleta.
79 - Dirección de la resultante de la fuerza centrífuga y el peso cuando la resultante no está contenida en el plano de simetría de la rueda.
80 - Fuerza sobre la pared elástica curva por efecto de la presión en el compartimento estanco.
81 - Resultante de la fuerza centrífuga y el peso cuando la resultante no está contenida en el plano de simetría de la rueda.
82 - Componente de la resultante de la fuerza centrífuga y el peso, dirigida según una dirección perpendicular al plano de simetría de la rueda.
83 - Componente de la resultante de la fuerza centrífuga y el peso, dirigida según una dirección paralela al plano de simetría de la rueda. 84 - Fuerza de rozamiento que se opone a la fuerza centrifuga.
85 - Fuerza normal opuesta al peso que ejerce el suelo sobre la rueda.
86 - Resultante de la fuerza de rozamiento y la fuerza normal.
87 - Dirección de la resultante de la fuerza de rozamiento y la fuerza normal.
88 - Zona do la pared elástica sobre la que se ejerce una fuerza paralela al eje de giro debido a la presión del compartimento estanco.
89 - Convexidad en el compartí menta estanco.
90 - Concavidad en el compartimento estanco.
91 - Radio de llantas de bicicleta.
92 - Llanta de bicicleta.
93 - Zona de contacto de la pared elástica con el lateral de la llanta de bicicleta.
94 - Lateral de llanta de bicicleta.
Descripción de una realización preterida
Las figuras 1A, 1B, 2A, 2B, 3, 4, 5, 6, y 7 muestran distintos modos de realización de la invención para una rueda de automóvil. Las figuras 8, 9, 10A, y10 B muestran realizaciones para una rueda de motocicleta. Las figuras 11 y 12 muestran realizaciones de la rueda de la Invención para una bicicleta.
En estas realizaciones se utiliza en todos los casos una llanta estándar (2) para ruedas de tipo neumático, y una válvula (14) de tipo Schrader, permitiendo su incorporación en sustitución de ruedas de tipo neumático con las mismas dimensiones de llanta. También se pueden modificar los disenos para utilizar otro tipo de válvula o llanta.
Esta rueda cuenta con una banda anular extema (1), situada en la parte más alejada al eje de giro (8). Esta banda anular extema, cuenta con una banda de rodadura en su parte exterior (9), y en su interior can un trenzado metáloe de refuerzo estructural (10), flexible y sensiblemente inextensible, que se encuentra recubierto en su cara interna (12) por un material e las tornero.
En las realizaciones de las figuras 1A. 1B, 2A, 2B y 4, esta banda anular extema se encuentra, a su vez, unida a un conjunto de elementos radiales metálicos (4), los cuales poseen características elásticas debido a la capacidad de desplazamiento transversal en su parte central por pandeo en régimen de equilibrio estable.
Estos elementos estructurales de amortiguamiento se encuentran en contacto con una pared elástica (3) que rodea el volumen (7) destinado a contener un gas o liquido a una presión superior a la atmosférica. Esta pared elástica esta formada por una superficie (6) compuesta por un material elastómero. que le confiere un carácter flexible, sensiblemente inextensible y le proporciona la rigidez necesaria para permitir su encastre en los laterales de la llanta (2).
En la rueda de la figura 4, se muestra un diseño que busca eliminar únicamente los fenómenos de resonancia y las diferencia de fase entre elementos radiales cercanos. La selección de la presión de operación del compartimento estanco se realiza en combinación con la selección del grosor de los elementos radiales metálicos. De este modo, mediante la elección de una presión y un grosor adecuado de los elementos radiales, se consigue que la deformación en la rueda producida por el peso del vehículo se reparta propefctonalmente entre la estructura no neumática y las paredes del compartimento a presión. Para ello se busca que el cociente entre la variación del radio exterior de la rueda y este radio exterior sin modificar (28) sea slmlar ai cociente resultante de dividir la variación del radio de la pared elástica entre el valor de este radio (29) sin variación. Se consideran estos cocientes similares si la variación entre ambos es inferior al 20%.
Tal y como se ha descrito, esta realización tiene limitaciones en cuanto a la velocidad máxima a la que puede utilizarse esta rueda debido a que la mejora en la drcularidad de su contorno exterior y del contomo de la pared elástica, en zonas alejadas de la zona de contacto con el terreno, no es completa. Además, aparecen los fenómenos de oscilación vertical, efecto rabote y diferencia de fase de vibración entre la parte neumática y la parte no neumática que se han mencionado anteriormente.
Para evitar estos problemas se desarrolla la rueda de la figura 5, que cuenta con elementos radiales con mucha mayor reaisten da a la deformación que el volumen del compartimento estanco. Esta rueda cuenta con elementos radiales rígidos separados por ángulos de 9°, hasta sumar un total de 40 elementos. De este modo, en cada ángulo sóido de deformación para esta rueda (38a) se Incluyen entre 4 o 5 elementos rígidos radiales, dependiendo de la posición de giro de la rueda. La deformación producida por el peso del vehículo y la acción de la fuerza normal de reacción originada en la superficie de contacto de la rueda con el terreno, se transmite a través de los elementes rígidos radiales. La deformaciones producidas en la banda anular externa se encuentran situadas dentro de un ángulo solida delimitado por el eje de giro y los bordes de la zona de contacto entre la rueda y el terreno. En el caso de la pared elástica que rodea al compartimento estanca, la deformación se produce en el interior de este mismo ángulo sóido de deformación, pudendo ampliarse levemente el ángulo de deformación hasta la zona de contacto del siguiente elemento radial con la pared elástica (típicamente inferior a 10º).
Los materiales constituyentes se eligen de modo que, la resistencia máxima a la deformación, por unidad de área, en la dirección radial, de la banda anular extema, y la resistencia máxima a la deformación, por unidad da área, en la dirección radial, de la pared elástica, sean Inferiores a la presión en el interior del compartimento estanco.
En la figura 6 se muestra una rueda como las de las figuras 1A y 2A, en la que se ha incluido dentro del volumen estanco una estructura de refuerzo (64) para mejorar el comportamiento estructural en caso de pinchazo. Habitualmente una llanta necesita contar con una anchura mínima entre sus bandas laterales para fadftar el encastre de una cubierta, o, como en la innovación, de una pared elástica que rodea el compartimento. En determinadas ocasiones, este espacio entre los laterales de la llanta puede suponer un problema en caso de ponida brusca de presión, ya que los elementos radiales pueden ocupar el espacio situado entre ambos laterales, reduciendo el diámetro efectivo de la rueda. Para evitar esta circunstancia puede elegirse fijar a la lanta, una estructura de refuerzo que cuenta con una superficie circular con un radio (65) superior al radio máximo de la llanta (58), e inferior al radio mínimo da la pared elástica (29). Esta estructura de refuerzo puede estar constituida por un material rígido o elástico, oslando fijada a la zona central de la llanta o al interior de sus laterales y contribuye a mantener el diámetro efectivo de la rueda en caso de pérdida de presión en el volumen Interno, reduciéndose el mismo en una distancia (63) que permite mantener la efectuación del vehículo.
En todas estas realizaciones aparece una dificultad en relación a la unión de los elementos radiales con la banda anular externa y con la pared elástica, especialmente en el caso de que loa elementos radiales no estén fabricados con un material etastómero. Debido a esta diferente naturaleza ente los materiales constituyentes de los elementos radiales y de la pared elástica, compuesta habttualmente por un etastómero vulcanizado, la unión de estos dos componentes no puede realzarse exclusivamente mediante la utiHzación de sustancias adhesivas, puesto que se comprueba que la naturaleza de la unión generada de este modo no es capaz de resistir los esfuerzos transversales generados por la acción conjunta del giro del eje y de la fuerza de rozamiento generada sobre la banda de rodadura por la superficie de contacto con el terreno.
Para conseguir una unión eficaz, tal y como se muestra en el corta de la rueda de automóvil de la figura 7, los elementos rígidos radiales cuentan en su zona de contacto con la pared elástica con un ensanchamiento que posee una curvatura similar a la curvatura de dicha parad, y por el que discurren unos orificios que son comunes a ambos. Los elementos radiales se anclan a la pared elástica y a la banda anular extema mediante remaches o tomiüee (68, 73) que se insertan por estos orificios. Asimismo, para asegurar la estanqueidad se utilizan arandelas de material elastómero (72, 75) con un diámetro interior ligeramente inferior al del remache o tomiHo y a las que se les añade una sustancia ad he rente sellante para asegurar la estanqueidad da estos orificios por ambos lados. De este modo, se facilta además el procesa de fabricación de la rueda.
Asimismo, la utilización de elementos raciales con un ensanchamientos en su zona de contacto con la pared elástica impide que se produzcan efectos de torsión en estos elementos y facilta que la transmisión de tensiones se efectué en la dirección del radio.
En el caso de vehículos de dos ruedas, y algunos de tres ruedas, la inclinación que se produce en las curvas para contrarrestar el efecto de la fuerza centrífuga, obliga a desarrollar un perfil especial en la geometría de la pared elástica para incrementar la resistencia al deaplazamiento lateral de los elementos radiales con respecto a esta pared. Este fenómeno es relevante en las situaciones en las que el plano de simetría de la rueda posee un Importante grado de inclinación con respecto a la horizontal. De este modo, en la figura figura 8 se muestra la distribución de tensiones en una rueda mixta de motocicleta en el caso de una realización preferida que incorpora una curvatura en la zona de contacto entre la pared elástica y los elementos radiales. Esta realización preferida que se muestra en las figuras 8, 10A y 10B posee unas dimensiones exteriores similares a las de una rueda de tipo neumático tradición ai y se monta en una llanta de dimensiones estándar. Esta rueda cuenta con una banda de rodadura de material elastómero que posee un contomo exterior curvo, que permite mantener el agarre al inclinarse el vehículo en una curva. La geometría exterior de esta cubierta permite mantener el agarre hasta un ángulo máximo de inclinación de 60° con respecto al plano vertical, mostrándose en la figura Θ una inclinación de 45°. Esta banda anular (1) rodeada por la banda de rodadura se encuentra unida a elementos rígidos radiales (41) rígidos, fabricados en un metal ligera, cerno por ejemplo el aluminio. Estos elementos rígidos radiales se unen, por su parte más cercana al eje de giro con la pared elástica (80) que rodea al volumen cenado estanco (7). Esta pared posee una curvatura que hace que en las zonas laterales, los puntos de unión entre los elementos radiales y la pared elástica, que se encuentran contenidos en un mismo plano que contiene al eje de giro se encuentren a distintas distancias de este eje. aumentando la componente del área paralela al plano de simetría. Esta geometría se puede describir también indicando que la recta tangente en estos puntos a la curva contenida en este plano, forma un ángulo que no es de 90° con el plano de simetría de la rueda (77). La existencia de una componente del área (88). en la zona de contacto, que es paralela al plano de simetría, hace que al generarse un esfuerzo perpendicular (82) a este plano, la presión del volumen estanco aplcada sobre este área de la pared elástica, genera una fuerza de oposición que evita que se produzca un desplazamiento transversal de los elementos radiales.
En la figura 9 se muestra otra realización alternativa para motocicleta con cámara de aire que incorpora una curvatura en la zona de contacto que incluye más de una concavidad.
En el caso de la realización de la figura 9, al existir varias cavidades, cada una de las cuales cuenta con una componente del área (88) proyectada sobre el plano de simetría, se incrementa la fuerza de oposición generada al desplazamiento lateral. Dado que la presión es Independiente de esta geometría, un aumento del ¿rea total lleva asociado un aumento proporcional de la tuerza producida. En este caso, aparece una fuerza adicional, por cada cavidad que se incorpora. El número de cavidades puede ser muy superior al de las dos cavidades incluidas en este ejemplo. Estos cambios de curvatura con variaciones de concavidad a convexidad pueden definirse matemáticamente mediante cambios en el signo de la segunda derivada de la curva de contacto en el plano que contiene al eje de giro.
En las figuras 11 y 12 se muestra una realización de la invención para una rueda de bicicleta que incorpora una cámara a presión en su interior. En este diseno se utiliza una llanta habitual para ruedas de bicicleta con cámara. Las cámaras utilizadas tienen un diámetro transversal de tubo inferior al correspondiente a un cámara para una rueda de tipo neumático. En este sentido, el compartimento cerrado no estanco envuelto por la pared elástica posee un volumen bastante más reducido que el destinado para la cámara de aire en una rueda neumática con la misma dimensión de llanta. En esta realización, los elementos estructurales de amortiguamiento se han elegido en direcciones cercanas al radio de la rueda.
Estas realizaciones del diseño de rueda de la innovación pueden temblón adaptarse, mediante la modificación de sus dimensiones y requerimientos de presión, para su utilización en otro tipo de vehículos, tales como aviones, helicópteros, maquinaria especializada, vehículos de limpieza viaria, vehículos especializados, remolques, vehículos auxiliares, etc.

Claims

REIVINDICACIONES
1- - Rueda para vehículo, que cuenta con:
a) una banda anular externa de naturaleza flexfcle, sensiblemente inextensible, con una banda de rodadura en su superficie exterior;
b) una llanta para fijar la rueda al vehículo, permitiendo su movimiento circular;
c) una pared elástica que se encuentra en contado con los laterales de la llanta;
d) un volumen rodeado por la pared elástica y por la llanta, que forma un compartimento cenado destinado a contener un gas o liquido a una presión superior a la atmosféfk»;
caracterizada por que:
e) la banda anular extema se encuentra separada de la pared elástica, ocupando esta pared elástica una zona en la rueda situada más cerca del eje de giro;
f) la banda anular externa está unida, por su parte más cercana al eje de la rueda, a un conjunto de elementos radiales;
g) estos elementos radiales se encuentran unidos, por su otro extremo, a la pared elástica, en la zona de esta pared más alejada del eje de giro;
h) la pared elástica mantiene su contacto con la llanta al someterse el interior del volumen cerrado a una presión superior a la atmosférica;
i) los elementos radiales no ocupan la totalidad del volumen situado entre la banda anular extema y la pared elástica, de modo que estos elementos pueden desplazarse en determinadas direcciones ocupando parte de este volumen Ubre; j) el ángulo sóido de deformación, definido por dos planos que contienen el eje de giro de la rueda y los puntos de frontera de la zona de contacto de la banda de rodadura con el terreno, contiene en su Interior aos o más elementos radiales;
k) el desplazamiento de los extremos de tos elementos radiales en contacto con la banda anular elástica, debido a la deformación de la rueda por el peso del vehículo, se realiza únicamente en el interior de un ángulo sólido con el mismo plano de simetría que el ángulo sólido de deformación, y que es superior al mismo en 10° por cada uno de sus dos laterales;
I) el desplazamiento de tos extremos de los elementos radiales en contacto con la pared elástica, debido a la deformación de la rueda por el peso del vehículo, se realiza únicamente en el interior de un ángulo sólido con el mismo plano de simetría que el ángulo sóido de deformación, y que es superior al mismo en 10° por cada uno de sus dos laterales;
2. - Rueda para vehículo según la reiyjndicacióh 1 caracterizada por que los elementos radiales son de carácter semirrígido y cuentan con un límite de resistencia ante una deformación elástica o de pandeo, en el cual el producto de la presión máxima admisible sin deformación en ta dirección de su eje multiplicada por el área de menor sección transversal del elemento radial, es superior al producto de la presión de operación del compartimento cerrado multiplicada por la totalidad del área de contacto entre la pared elástica y este elemento radial.
3. - Rueda para vehículo según la reMndteación 1 caracterizada por que los elementos radiales son de carácter rígido, fnextensMe, no elástico y no flexible.
4. - Rueda para vehículo según la reivindicación 1 caracterizada por que la deformación de la banda anular extema, debida al peso del vehículo, se produce únicamente en el interior del ángulo solido de deformación, manteniendo el resto de la banda anular su forma circular.
5. - Rueda para vehículo según la reivindicación 1 caracterizada por que la deformación de la pared elástica, debida al peso del vehículo, se produce únicamente en el Interior de un ángulo solido con el mismo piano de simetría que el ángulo sólido de deformación, y que es superior al mismo en 10" por cada uno de sus dos laterales, manteniendo el resto del contomo de la pared elástica su forma circular.
6. - Rueda para vehfculo según la reivindicación 1 caracterizada por que en cada ángulo sóido mayor de 9a, el número de elementos estructurales de amortiguamiento unidos a la banda anular extema es superior a la unidad.
7. - Rueda para vehfculo según la reivindicación 1 caracterizada por que los elementos radiales se encuentran dispuestos hacia el eje de giro con una dirección que forma un ángulo inferior a 10° con el radio, medido en un plano perpendicular al eje.
8. - Rueda para vehículo según la reivindicación 1 caracterizada por que los elementos radiales, en su zona de contacto con la pared elástica que rodea al compartimento cerrado, cuentan con una sección transversal superior a la sección transversal central del cuerpo del elemento radial.
9. - Rueda para vehículo según la reivindicación 1 caracterizada por que loa elementos radiales, en su zona de contacto con la pared elástica que rodea al compartimento cerrado, cuentan con una sección transversal superior a la sección transversal central del cuerpo del elemento radial.
10 - Rueda para vehículo según la reivindicación 1 caracterizada por que los elementos radiales, en su zona de contacto con la pared elástica que rodea al compartimento cerrado, cuentan con orificios que son comunes a esta pared elástica, y por los que discurren elementos de anclaje como tornillos o varillas.
11. - Rueda para vehículo según la reivindicación 1 caracterizada por que en el interior del volumen cenado existe una estructura sólida, cuya superficie más alejada del eje de rotación es concéntrica con el mismo, hallándose esta estructura anclada a la llanta.
12. - Rueda para vehículo según la reivindicación 1 caracterizada por que el volumen cenado formado por la Danta y la pared elástica está adaptado para contener una cámara de aire, una cámara para otro gas o una cámara para contener un liquido, a una presión superior a la atmosférica.
13. - Rueda para vehículo según la reivindicación 12 caracterizada por que el diámetro de la cámara da aire, cámara con otro gas o cámara para contener un liquido, tiene un diámetro transversal de tubo inferior al correspondiente a un cámara para una rueda de tipo exclusivamente neumático con dimensiones de llanta similares.
14. - Rueda para vehículo de dos ruedas según la reivindicación 1 caracterizada por que el cociente entre la variación del radio exterior de la rueda y este radio exterior sin modificar se diferencia del cociente resultante de dividir la variación del radio de la pared elástica entre el valor de este radio sin modificar en menos de un 20%.
15. - Rueda para vehículo según la reivindicación 1 caracterizada por que la zona de contacto entre tos ota montos radiales y la pared elástica, en su intersección con un plano que contiene al eje de giro, forma una curva cuya tangente en algunos puntos de la misma forma un ángulo distinto de 90° con respecto al plano de simetría de la rueda.
16. - Ruada para vehículo de dos ruedas según la reivindicadón 15 caracterizada por qua la zona de contacto entre los elementos radiales y la pared elástica, en su intersección con un plano que contiene al eje de giro, forma una curva cuya segunda derivada cambia de signo en al menos dos puntos.
PCT/ES2017/000083 2016-07-06 2017-07-05 Rueda mixta neumatica y no neumatica con seguridad aumentada WO2018007658A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17823702.0A EP3482972A4 (en) 2016-07-06 2017-07-05 PNEUMATIC AND NON-PNEUMATIC MIXED WHEEL WITH INCREASED SAFETY

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ES201600553A ES2665819B2 (es) 2016-07-06 2016-07-06 Rueda con estructura mixta de amortiguamiento y seguridad aumentada
ESP201600553 2016-07-06
ES201600817A ES2662695B2 (es) 2016-10-04 2016-10-04 Rueda mixta con estructura de anillo exterior rígido y seguridad aumentada
ESP201600817 2016-10-04
ESP201700230 2017-03-21
ES201700230A ES2687105B1 (es) 2017-03-21 2017-03-21 Rueda mixta para vehículos de dos ruedas con seguridad aumentada

Publications (1)

Publication Number Publication Date
WO2018007658A1 true WO2018007658A1 (es) 2018-01-11

Family

ID=60912412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/000083 WO2018007658A1 (es) 2016-07-06 2017-07-05 Rueda mixta neumatica y no neumatica con seguridad aumentada

Country Status (2)

Country Link
EP (1) EP3482972A4 (es)
WO (1) WO2018007658A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031104A1 (ja) * 2017-08-09 2019-02-14 本田技研工業株式会社 非空気入りタイヤ
KR20210034736A (ko) * 2019-09-20 2021-03-31 한국타이어앤테크놀로지 주식회사 차량용 비공기입 타이어 및 이의 제조방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021202112A1 (de) * 2021-03-04 2022-09-08 Continental Reifen Deutschland Gmbh Verfahren zur Herstellung eines Fahrzeugreifens
DE102021202113A1 (de) * 2021-03-04 2022-09-08 Continental Reifen Deutschland Gmbh Fahrzeugreifen
DE102021206922A1 (de) * 2021-07-01 2023-01-05 Continental Reifen Deutschland Gmbh Fahrzeugrad

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007422A1 (en) * 2003-07-14 2005-01-27 Societe De Technologie Michelin Compliant wheel
US20090211674A1 (en) * 2008-02-25 2009-08-27 The Yokohama Rubber Co., Ltd. Non-pneumatic tire
US20100132858A1 (en) * 2008-11-28 2010-06-03 Toyo Tire & Rubber Co., Ltd. Non-Pneumatic Tire
EP2418099A2 (en) * 2010-08-12 2012-02-15 The Boeing Company Non-pneumatic tire and wheel assembly
WO2014201368A1 (en) * 2013-06-15 2014-12-18 Ronald Thompson Annular ring and non-pneumatic tire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US633848A (en) * 1899-01-21 1899-09-26 Axel A Johnsson Pneumatic tire.
US1058151A (en) * 1912-07-01 1913-04-08 John H Cebolt Resilient tire.
US6050312A (en) * 1998-10-05 2000-04-18 Hsu; Shut Chen Inner tube with multiple air cells and breakers for protection against piercing of an external pointed object
EP2658733B1 (en) * 2010-12-28 2017-05-17 Wasfi Alshdaifat Semi-pneumatic tire (intire)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007422A1 (en) * 2003-07-14 2005-01-27 Societe De Technologie Michelin Compliant wheel
US20090211674A1 (en) * 2008-02-25 2009-08-27 The Yokohama Rubber Co., Ltd. Non-pneumatic tire
US20100132858A1 (en) * 2008-11-28 2010-06-03 Toyo Tire & Rubber Co., Ltd. Non-Pneumatic Tire
EP2418099A2 (en) * 2010-08-12 2012-02-15 The Boeing Company Non-pneumatic tire and wheel assembly
WO2014201368A1 (en) * 2013-06-15 2014-12-18 Ronald Thompson Annular ring and non-pneumatic tire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3482972A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031104A1 (ja) * 2017-08-09 2019-02-14 本田技研工業株式会社 非空気入りタイヤ
KR20210034736A (ko) * 2019-09-20 2021-03-31 한국타이어앤테크놀로지 주식회사 차량용 비공기입 타이어 및 이의 제조방법
KR102312931B1 (ko) 2019-09-20 2021-10-18 한국타이어앤테크놀로지 주식회사 차량용 비공기입 타이어 및 이의 제조방법

Also Published As

Publication number Publication date
EP3482972A4 (en) 2020-02-19
EP3482972A1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
WO2018007658A1 (es) Rueda mixta neumatica y no neumatica con seguridad aumentada
KR101796231B1 (ko) 비공기입 타이어
CN103260909B (zh) 半气动式轮胎(内胎)
JP6538853B2 (ja) 交差スポークの非空気式タイヤ
US9975386B2 (en) Tire/wheel assembly and tread ring
KR101839537B1 (ko) 비공기입 타이어
US9481208B2 (en) Tire
WO2018010444A1 (zh) 一种变辐车轮
CN106004223A (zh) 无气轮胎及汽车
JP2009126262A (ja) ランフラットタイヤ
CN105109279B (zh) 免充气轮胎
JP6827880B2 (ja) 非空気入りタイヤ
WO2018207460A1 (ja) 非空気入りタイヤ
CN102874403A (zh) 一种具有刚性实心轮胎和缓冲支架组合的飞机轮系
CN109720148A (zh) 柱体支撑式免充气轮胎
US20130248069A1 (en) Tire with inner core
KR102183211B1 (ko) 비공기압 타이어
ES2658357T3 (es) Neumático para vehículo de superficie
ES2256503T3 (es) Neumatico con flancos no simetricos y reforzados.
ES2662695B2 (es) Rueda mixta con estructura de anillo exterior rígido y seguridad aumentada
KR101495100B1 (ko) 비공기압 타이어
ES2665819B2 (es) Rueda con estructura mixta de amortiguamiento y seguridad aumentada
CN216184245U (zh) 一种防扎和爆胎的免充气轮胎
KR101818664B1 (ko) 비공기입 타이어
ES2889423T3 (es) Estructura de neumático y estructura de combinación de la misma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017823702

Country of ref document: EP

Effective date: 20190206