WO2018006901A1 - Method and apparatus for determining a number of revolutions and an angular position of a component which can be rotated about an axis of rotation - Google Patents

Method and apparatus for determining a number of revolutions and an angular position of a component which can be rotated about an axis of rotation Download PDF

Info

Publication number
WO2018006901A1
WO2018006901A1 PCT/DE2017/100520 DE2017100520W WO2018006901A1 WO 2018006901 A1 WO2018006901 A1 WO 2018006901A1 DE 2017100520 W DE2017100520 W DE 2017100520W WO 2018006901 A1 WO2018006901 A1 WO 2018006901A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular position
rotation
determined
component
sensor
Prior art date
Application number
PCT/DE2017/100520
Other languages
German (de)
French (fr)
Inventor
Markus Dietrich
Jürgen GERHART
Paul WALDEN
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112017003411.6T priority Critical patent/DE112017003411A5/en
Publication of WO2018006901A1 publication Critical patent/WO2018006901A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/10AC or DC measuring bridges
    • G01R17/105AC or DC measuring bridges for measuring impedance or resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the invention relates to a method and a device for determining a number of revolutions and an angular position of a rotating about a rotation axis component with a magnetic element by means of at least one operating according to the GMR principle multiturn sensor with a spirally along or about the axis of rotation angeord- Neten electrical conductor with related two distinguishable half-bridge signals on one revolution of the magnetic element, the resistance of the conductor being detected via the angle of rotation for detecting the number of revolutions, and one revolution in each case being determined on the basis of the half-bridge signals.
  • So-called multi-turn sensors determine an absolute number of a component rotating around a rotational axis. For this purpose, for example, from the documents
  • Multiturn sensors which operate on the basis of the GMR principle (giant magnetoresistance, giant magnetoresistance). This means that in the measurement of the resistance of an electrically or helically arranged around a rotation axis electrical see conductor with alternately magnetically and non-magnetically formed in the nano range sections a difference in resistance in the magnetization by a twisted in the region of the conductor, on the rotating Component recorded magnetic element occurs.
  • the individual resistors are determined at half bridges of the conductor.
  • the object of the invention is the development of a method and a device with a multi-turn sensor.
  • the object of the invention is to propose a cost-effective device and a method that is easy to perform for determining the number of revolutions and the angular position of a rotating component.
  • object of the invention to provide an apparatus and a method for determining a number of revolutions of a rotating component of a Kupplungsbetuschistss- system and a clutch actuation system with these.
  • the proposed method is used to determine a number of revolutions and an angular position of a rotating about a rotation axis component.
  • the number of revolutions is determined by means of at least one multi-turn sensor operating according to the GMR principle, which forms an interaction with a magnetic element arranged on the rotating component as a function of its rotation.
  • the at least one multi-turn sensor has an electrical conductor arranged spirally along or about the axis of rotation.
  • the multi-turn sensor forms one revolution of the magnetic field in each case.
  • elements two distinguishable, each tapped on a half-bridge half-bridge signals for example, have a maximum of a resistor and a minimum of a resistor. From the sequence of maxima and minima, one revolution can be identified.
  • the angular position of the component in each case two semicircles, that is determined over an angle of 180 ° by means of a magnetic sensor operating according to the AMR principle.
  • the magnetic sensor generates depending on an angular position of the same or another, arranged on the rotating member magnetic element a well-resolved resistance signal with a maximum at 90 ° over the entire measurement range of 180 °.
  • a reference position of the rotating component ie at an angular position between 0 ° and 179 ° or 180 ° and 359 ° is determined based on the resistance signals of the multi-turn sensor. For example, at a maximum of the detected resistance of a half-bridge, the associated angular position determined by the magnetic sensor can be assigned to the range 0 ° to 179 ° and with a minimum of the detected resistance of a half-bridge the associated angular position determined by the magnetic sensor can be assigned to the range 180 ° to 359 ° or vice versa.
  • the angular positions determined by means of the two semicircles can be determined as a function of the determined half-bridge signal over an entire rotational speed absolute angular position of the component.
  • the proposed device for carrying out the proposed method has at least one multi-turn sensor and a magnetic sensor operating according to the AMR principle, which are arranged about an axis of rotation.
  • the multi-turn sensor and the magnetic sensor can be arranged around the axis of rotation behind one another, for example on different boards. It has proved to be advantageous if conductors of the multi-turn sensor and of the magnetic sensor are arranged on a circuit board which is adjacent to a magnetic element of the rotating component. On the board further evaluation elements, such as microprocessors and the like for detecting the measurement signals of the conductors, generators for generating an auxiliary voltage and the like may be provided. For example, a control and processing circuit may be provided on the board, so that from the device already standardized the number of revolutions and the associated angular position can be read out.
  • conductors of the magnetic sensor and of the multi-turn sensor can be arranged with correspondingly tapped half bridges, with minima and maxima of the signals of the half bridges and maxima of the magnetic sensor being arranged at respectively identical angular positions of the component.
  • the proposed clutch actuation system includes an actuator displaced from a rotor of an electric motor via a gearbox rotating a translation into a translation, wherein the proposed device is disposed on a rotating component.
  • the transmission can be designed as a worm gear, recirculating ball gear with threads optionally formed by a spring, as a lever device of a lever actuator, as a crank or coupling gear or the like. forms his.
  • the device is arranged on the rotor of the electric motor as a rotating component.
  • FIG. 1 shows a diagram of the signal behavior of a multi-turn sensor and of a magnetic sensor operating according to the AMR principle
  • Figure 2 is a diagram of a device with a detail shown
  • Figure 3 is a schematically illustrated device with a multi-turn sensor and a working according to the AMR principle magnetic sensor.
  • FIG. 1 shows the diagram 1 with the two superimposed curves 2, 3 of the voltage Uout over the angle of rotation of a component rotating about an axis of rotation.
  • the rotating component has a magnetic element which magnetically influences a conductor rotating about the axis of rotation so that its resistance changes.
  • the curve 2 shows the signal behavior of a working according to the AMR principle magnetic sensor. Due to the anisotropic magnetoresistive effect, an angle-dependent magnetization occurs in the conductor due to the rotating magnetic element, which generates an angle-dependent change in resistance which leads to a change in the voltage Uout applied to the conductor.
  • the twist angle or the angular position can be detected discretely and angularly resolved over the entire measuring range.
  • the voltage Uout changes in a phase of 180 °, so that the detected angular position changes over a whole revolution. hung is not unique, but each measured value measured two 180 ° offset angular positions, for example, 90 ° and 270 ° can be assigned.
  • Curve 3 shows the signal behavior of a multi-turn sensor that operates on the GMR principle.
  • the phase is 360 °, so that theoretically each angular position can be assigned only a single measured value.
  • the number of repetitions of the traversed phases are the number of revolutions of the rotating component again. Due to the GMR principle, however, the detection of the measuring signal over one revolution is inherently faulty. For example, especially between the maxima and minima of the curve 3 hysteresis and other effects that allow a clear determination of maxima and minima and thus a clear determination of the number of revolutions, but do not allow a clear determination of the angular position at each angular position.
  • a magnetic sensor operating according to the AMR principle and a GMR principle is combined.
  • the magnetic sensor operating on the AMR principle takes over the detailed angular resolution for determining the angular position of the rotating component and the GMR principle magnetic sensor such as multi-turn sensor on the one hand the determination of the number of revolutions of the component and on the other hand the assignment in which of the two half phases such as semicircles There is a reference point of the rotating component, so how its angular position with respect to a complete revolution.
  • the determination of the angular position in the corresponding half-phase can be determined depending on a passed minimum or maximum or a large or small resistance or according to the voltage Uout.
  • the curve 5 provides over the measuring range a continuous voltage signal of the voltage L ROut with discretely assignable angular positions with a phase of 180 °.
  • the signal curves h1, m1, 11, h2, m2, 12 detected by means of the voltage profiles of the voltages U TOuti and U TOut2 show the regions 6 in which an angular position of the rotating component can be reliably detected.
  • regions 7 of the signal curves h1, m1, 11, h2, m2, 12 of a clockwise rotating component and in the regions 8 of a counterclockwise rotating component unambiguous detection of the angular position due to hysteresis, for example, is or is not possible.
  • phase shifting the curve 5 by the phase angle X ° maxima and minima of the regions 6 are synchronized to the phase of the curve 5.
  • the signal curves h1, h2 indicate signal states with high resistance, the waveforms m1, m2 with medium and the waveforms 11, 12 signal states with low resistance again.
  • the signal profiles h1, m1, 11 of the first half-bridge resulting from the voltage U TOuti over the angle of rotation are shifted by 180 ° with respect to the signal profiles h2, m2, 12 of the second half-bridge resulting from the voltage U TOUT2 via the torsional angle.
  • the assignment of the angular positions determined in curve 5 to the associated phase halves takes place by means of the regions 6 as well as the determination of the number of revolutions.
  • FIG. 3 schematically shows the device 10 with the circuit board 13 arranged on the component 1 1 rotating about the rotation axis d with the magnetic element 12, on which the multi-turn sensor 14 and the magnetic sensor 15 operating according to the AMR principle are arranged.
  • Both magnetic sensors can have on-site electronics, for example in the form of an ASIC, and transmit detected and optionally preprocessed data to the common processor 16.
  • the processor 16 processes the acquired data to a number of revolutions and an angular position of the component 1 1 and transmits them wirelessly or by means of a possibly data line to a higher-level control unit.
  • the device 10 can be integrated in a clutch actuation system, for example in a clutch actuator, wherein by means of the device 10, for example, rotational speed and angular position of a rotor of an electric motor or a component connected thereto are detected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

The invention relates to a method and an apparatus (10) for determining a number of revolutions and an angular position of a component (11), which rotates about an axis of rotation (d) and has a magnetic element (12), by means of at least one multi-turn sensor (14) which operates according to the GMR principle and has an electrical conductor which is arranged in a helical manner along or around the axis of rotation (d) and has two half-bridge signals which can be distinguished based on a revolution of the magnetic element (12), wherein, in order to capture the number of revolutions, the resistance of the conductor is captured via the torsional angle and a revolution is determined in each case on the basis of the half-bridge signals. In order to be able to consistently propose an angular position via a revolution in each case, the angular position of the component (11) in two semi-circles in each case is determined by means of a magnetic sensor (15) operating according to the AMR principle, and the multi-turn sensor (14) is used to determine in which of the semi-circles the angular position is determined.

Description

Verfahren und Vorrichtung zur Ermittlung einer Umdrehungszahl und einer Method and device for determining a number of revolutions and one
Winkelposition eines um eine Drehachse verdrehbaren Bauteils Angular position of a rotatable about a rotation axis component
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ermittlung einer Umdrehungszahl und einer Winkelposition eines um eine Drehachse drehenden Bauteils mit einem Magnetelement mittels zumindest eines gemäß dem GMR-Prinzip arbeitenden Multiturnsensors mit einem spiralförmig entlang der oder um die Drehachse angeord- neten elektrischen Leiter mit bezogen auf eine Umdrehung des Magnetelements zwei unterscheidbaren Halbbrückensignalen, wobei zur Erfassung der Umdrehungszahl der Widerstand des Leiters über den Verdrehwinkel erfasst und anhand der Halbbrückensignale jeweils eine Umdrehung ermittelt wird. The invention relates to a method and a device for determining a number of revolutions and an angular position of a rotating about a rotation axis component with a magnetic element by means of at least one operating according to the GMR principle multiturn sensor with a spirally along or about the axis of rotation angeord- Neten electrical conductor with related two distinguishable half-bridge signals on one revolution of the magnetic element, the resistance of the conductor being detected via the angle of rotation for detecting the number of revolutions, and one revolution in each case being determined on the basis of the half-bridge signals.
Sogenannte Multiturnsensoren ermitteln eine absolute Anzahl eines um eine Dreh- achse drehenden Bauteils. Hierzu sind beispielsweise aus den Dokumenten  So-called multi-turn sensors determine an absolute number of a component rotating around a rotational axis. For this purpose, for example, from the documents
WO 2015/038800 A1 , DE 10 2012 008 888 A1 und EP 2 549 237 A1 Multiturnsensoren bekannt, die auf Basis des GMR-Prinzips (Riesenmagnetowiderstand, giant mag- netoresistance) arbeiten. Dies bedeutet, dass bei der Messung des Widerstands eines spiral- beziehungsweise schraubenförmig um eine Drehachse angeordneten elektri- sehen Leiters mit abwechselnd magnetisch und nicht magnetisch im Nanobereich ausgebildeten Abschnitten ein Unterschied des Widerstands bei der Magnetisierung durch ein im Bereich des Leiters verdrehten, an dem drehenden Bauteil aufgenommenen Magnetelement auftritt. Die einzelnen Widerstände werden dabei an Halbbrücken des Leiters ermittelt. Prinzipbedingt treten dabei pro Umdrehung zwei unun- terscheidbare Signalzustände eines mittleren Widerstands auf, die sich mit einem Signalzustand hohen und niedrigen Zustande abwechseln, so dass eine Winkelauflö- sung über den Verdrehwinkel des Bauteils nur mit einer Auflösung von 360° ermittelt werden kann. Aus diesem Grund wird in den vorgenannten Dokumenten jeweils ein Multiturnsensor mit einem zusätzlichen Sensor, der den Verdrehwinkel absolut er- fasst, kombiniert. WO 2015/038800 A1, DE 10 2012 008 888 A1 and EP 2 549 237 A1 Multiturn sensors are known which operate on the basis of the GMR principle (giant magnetoresistance, giant magnetoresistance). This means that in the measurement of the resistance of an electrically or helically arranged around a rotation axis electrical see conductor with alternately magnetically and non-magnetically formed in the nano range sections a difference in resistance in the magnetization by a twisted in the region of the conductor, on the rotating Component recorded magnetic element occurs. The individual resistors are determined at half bridges of the conductor. Due to the principle, two indistinguishable signal states of a mean resistance occur per revolution, which alternate with a signal state of high and low state, so that an angular resolution can be determined by the angle of rotation of the component only with a resolution of 360 °. For this reason, a multiturn sensor with an additional sensor, which absolutely detects the angle of rotation, is combined in each of the abovementioned documents.
Aus der nicht vorveröffentlichten deutschen Anmeldung ist ein Verfahren zur Bestimmung einer Position eines Rotors eines Elektromotors eines Kupplungsbetätigungs- systems bekannt. From the non-prepublished German application, a method for determining a position of a rotor of an electric motor of a Kupplungsbetätigungs- system is known.
Aufgabe der Erfindung ist die Weiterbildung eines Verfahrens und einer Vorrichtung mit einem Multiturnsensor. Insbesondere ist Aufgabe der Erfindung, eine kostengüns- tige Vorrichtung und ein einfach durchzuführendes Verfahren zur Ermittlung der Umdrehungszahl und der Winkelposition eines drehenden Bauteils vorzuschlagen. Insbesondere ist Aufgabe der Erfindung, eine Vorrichtung und ein Verfahren zur Bestimmung einer Umdrehungszahl eines drehenden Bauteils eines Kupplungsbetätigungs- systems und ein Kupplungsbetätigungssystem mit diesen vorzuschlagen.  The object of the invention is the development of a method and a device with a multi-turn sensor. In particular, the object of the invention is to propose a cost-effective device and a method that is easy to perform for determining the number of revolutions and the angular position of a rotating component. In particular, object of the invention to provide an apparatus and a method for determining a number of revolutions of a rotating component of a Kupplungsbetätigungss- system and a clutch actuation system with these.
Die Aufgabe wird durch die Gegenstände der Ansprüche 1 , 3 und 7 gelöst. Die von diesen Ansprüchen abhängigen Ansprüche geben vorteilhafte Ausführungsformen der Gegenstände der Ansprüche 1 , 3, 7 wieder. The object is solved by the subject-matter of claims 1, 3 and 7. The dependent of these claims claims give advantageous embodiments of the subjects of claims 1, 3, 7 again.
Das vorgeschlagene Verfahren dient der Ermittlung einer Umdrehungszahl und einer Winkelposition eines um eine Drehachse drehenden Bauteils. Die Umdrehungszahl wird mittels zumindest eines gemäß dem GMR-Prinzip arbeitenden Multiturnsensors ermittelt, der eine Wechselwirkung mit einem an dem drehenden Bauteil angeordneten Magnetelement abhängig von dessen Verdrehung ausbildet. Hierzu weist der zumindest eine Multiturnsensor einen spiralförmig entlang der oder um die Drehachse angeordneten elektrischen Leiter auf. Abhängig von der Verdrehung des Magnetele- ments bildet der Multiturnsensor bezogen auf jeweils eine Umdrehung des Magnet- elements zwei unterscheidbare, an jeweils einer Halbbrücke abgegriffene Halbbrückensignale aus, die beispielsweise ein Maximum eines Widerstands und ein Minimum eines Widerstands aufweisen. Aus der Folge von Maxima und Minima kann eine Umdrehung identifiziert werden. The proposed method is used to determine a number of revolutions and an angular position of a rotating about a rotation axis component. The number of revolutions is determined by means of at least one multi-turn sensor operating according to the GMR principle, which forms an interaction with a magnetic element arranged on the rotating component as a function of its rotation. For this purpose, the at least one multi-turn sensor has an electrical conductor arranged spirally along or about the axis of rotation. Depending on the rotation of the magnetic element, the multi-turn sensor forms one revolution of the magnetic field in each case. elements two distinguishable, each tapped on a half-bridge half-bridge signals, for example, have a maximum of a resistor and a minimum of a resistor. From the sequence of maxima and minima, one revolution can be identified.
Um aufgrund von Hysterese und/oder weiteren Unregelmäßigkeiten bedingte, nicht ausreichend mit dem Multiturnsensor ermittelbare Winkelpositionen zu ermitteln, wird mittels eines gemäß dem AMR-Prinzip arbeitenden Magnetsensors die Winkelposition des Bauteils in jeweils zwei Halbkreisen, das heißt über einen Winkel von 180° ermittelt. Der Magnetsensor erzeugt dabei abhängig von einer Winkelstellung desselben oder eines weiteren, an dem drehenden Bauteil angeordneten Magnetelements ein gut aufgelöstes Widerstandssignal mit einem Maximum bei 90° über den gesamten Messbereich von 180°. Zur Ermittlung, in welchem Halbkreis sich eine Referenzposition des drehenden Bauteils befindet, also bei einer Winkelposition zwischen 0° und 179° oder 180° und 359° wird anhand der Widerstandssignale des Multiturnsensors ermittelt. Beispielsweise kann bei einem Maximum des erfassten Widerstands einer Halbbrücke die vom Magnetsensor ermittelte, zugehörige Winkelposition dem Bereich 0° bis 179° und bei einem Minimum des erfassten Widerstands einer Halbbrücke die vom Magnetsensor ermittelte, zugehörige Winkelposition dem Bereich 180° bis 359° zugeordnet werden oder umgekehrt. In order to determine due to hysteresis and / or other irregularities, not sufficiently determined with the multi-turn sensor angular positions, the angular position of the component in each case two semicircles, that is determined over an angle of 180 ° by means of a magnetic sensor operating according to the AMR principle. The magnetic sensor generates depending on an angular position of the same or another, arranged on the rotating member magnetic element a well-resolved resistance signal with a maximum at 90 ° over the entire measurement range of 180 °. In order to determine in which semicircle a reference position of the rotating component is located, ie at an angular position between 0 ° and 179 ° or 180 ° and 359 ° is determined based on the resistance signals of the multi-turn sensor. For example, at a maximum of the detected resistance of a half-bridge, the associated angular position determined by the magnetic sensor can be assigned to the range 0 ° to 179 ° and with a minimum of the detected resistance of a half-bridge the associated angular position determined by the magnetic sensor can be assigned to the range 180 ° to 359 ° or vice versa.
Hierbei kann aufgrund der Eigenschaften des nach dem AMR-Prinzip arbeitenden Magnetsensors aus den mittels der beiden Halbkreise ermittelten Winkelpositionen abhängig von dem ermittelten Halbbrückensignal eine über jeweils eine ganze Umdrehungszahl absolute Winkelposition des Bauteils ermittelt werden. Die vorgeschlagene Vorrichtung zur Durchführung des vorgeschlagenen Verfahrens weist zumindest einen Multiturnsensor und einen nach dem AMR-Prinzip arbeitenden Magnetsensor auf, welche um eine Drehachse angeordnet sind. In this case, due to the properties of the magnetic sensor operating according to the AMR principle, the angular positions determined by means of the two semicircles can be determined as a function of the determined half-bridge signal over an entire rotational speed absolute angular position of the component. The proposed device for carrying out the proposed method has at least one multi-turn sensor and a magnetic sensor operating according to the AMR principle, which are arranged about an axis of rotation.
Hierbei können der Multiturnsensor und der Magnetsensor um die Drehachse hinter- einander beispielsweise auf verschiedenen Platinen angeordnet sein. Es hat sich als vorteilhaft erwiesen, wenn Leiter des Multiturnsensors und des Magnetsensors auf einer einem Magnetelement des drehenden Bauteils benachbarten Platine angeordnet sind. Auf der Platine können weitere Auswerteelemente, beispielsweise Mikroprozessoren und dergleichen zur Erfassung der Messsignale der Leiter, Generatoren zur Er- zeugung einer Hilfsspannung und dergleichen vorgesehen sein. Beispielsweise kann auf der Platine eine Steuerungs- und Verarbeitungsschaltung vorgesehen sein, so dass aus der Vorrichtung bereits standardisiert die Umdrehungszahl und die zugehörige Winkelposition ausgelesen werden können. In this case, the multi-turn sensor and the magnetic sensor can be arranged around the axis of rotation behind one another, for example on different boards. It has proved to be advantageous if conductors of the multi-turn sensor and of the magnetic sensor are arranged on a circuit board which is adjacent to a magnetic element of the rotating component. On the board further evaluation elements, such as microprocessors and the like for detecting the measurement signals of the conductors, generators for generating an auxiliary voltage and the like may be provided. For example, a control and processing circuit may be provided on the board, so that from the device already standardized the number of revolutions and the associated angular position can be read out.
Gemäß einer vorteilhaften Ausführungsform der Vorrichtung können Leiter des Mag- netsensors und des Multiturnsensors mit entsprechend abgegriffenen Halbbrücken derart angeordnet sein, wobei Minima und Maxima der Signale der Halbbrücken und Maxima des Magnetsensors bei jeweils gleichen Winkelpositionen des Bauteils angeordnet sind.  According to an advantageous embodiment of the device, conductors of the magnetic sensor and of the multi-turn sensor can be arranged with correspondingly tapped half bridges, with minima and maxima of the signals of the half bridges and maxima of the magnetic sensor being arranged at respectively identical angular positions of the component.
Das vorgeschlagene Kupplungsbetätigungssystem enthält ein von einem Rotor eines Elektromotors über ein eine Rotation in eine Translation wandelndes Getriebe verlagertes Betätigungsglied, wobei an einem drehenden Bauteil die vorgeschlagene Vorrichtung angeordnet ist. Das Getriebe kann als Schneckengetriebe, Kugelumlaufgetriebe mit gegebenenfalls durch eine Feder gebildeten Gewindegängen, als Hebeleinrichtung eines Hebelaktors, als Kurbel- oder Koppelgetriebe oder dergleichen ausge- bildet sein. In vorteilhafter Weise ist die Vorrichtung an dem Rotor des Elektromotors als drehendes Bauteil angeordnet. The proposed clutch actuation system includes an actuator displaced from a rotor of an electric motor via a gearbox rotating a translation into a translation, wherein the proposed device is disposed on a rotating component. The transmission can be designed as a worm gear, recirculating ball gear with threads optionally formed by a spring, as a lever device of a lever actuator, as a crank or coupling gear or the like. forms his. Advantageously, the device is arranged on the rotor of the electric motor as a rotating component.
Die Erfindung wird anhand des in den Figuren 1 bis 3 dargestellten Ausführungsbeispiels näher erläutert. Dabei zeigen:  The invention will be explained in more detail with reference to the embodiment shown in Figures 1 to 3. Showing:
Figur 1 ein Diagramm zum Signalverhalten eines Multiturnsensors und eines gemäß dem AMR-Prinzip arbeitenden Magnetsensors, FIG. 1 shows a diagram of the signal behavior of a multi-turn sensor and of a magnetic sensor operating according to the AMR principle,
Figur 2 ein Diagramm einer Vorrichtung mit einem detailliert dargestellten Figure 2 is a diagram of a device with a detail shown
Signalverhalten des Multiturnsensors  Signal behavior of the multi-turn sensor
und and
Figur 3 eine schematisch dargestellte Vorrichtung mit einem Multiturnsensor und einem gemäß dem AMR-Prinzip arbeitenden Magnetsensor. Figure 3 is a schematically illustrated device with a multi-turn sensor and a working according to the AMR principle magnetic sensor.
Die Figur 1 zeigt das Diagramm 1 mit den beiden übereinander angeordneten Kurven 2, 3 der Spannung Uout über den Verdrehwinkel eines um eine Drehachse drehenden Bauteils. Das drehende Bauteil weist ein Magnetelement auf, welches einen um die Drehachse drehenden Leiter magnetisch beeinflusst, so dass sich dessen Widerstand ändert. Die Kurve 2 zeigt dabei das Signalverhalten eines nach dem AMR-Prinzip arbeitenden Magnetsensors. Aufgrund des anisotropen magnetoresistiven Effekts tritt durch das sich drehende Magnetelement eine winkelabhängige Magnetisierung im Leiter auf, die eine winkelabhängige Widerstandsänderung erzeugt, die zur Änderung der an den Leiter angelegten Spannung Uout führt. Der Verdrehwinkel beziehungsweise die Winkelposition kann dabei über den gesamten Messbereich diskret und winkelaufgelöst erfasst werden. Allerdings ändert sich die Spannung Uout prinzipbedingt in einer Phase von 180°, so dass die erfasste Winkelposition über eine ganze Umdre- hung nicht eindeutig ist, sondern jedem erfassten Messwert zwei um 180° versetzte Winkelpositionen, beispielsweise 90° und 270° zugeordnet werden können. FIG. 1 shows the diagram 1 with the two superimposed curves 2, 3 of the voltage Uout over the angle of rotation of a component rotating about an axis of rotation. The rotating component has a magnetic element which magnetically influences a conductor rotating about the axis of rotation so that its resistance changes. The curve 2 shows the signal behavior of a working according to the AMR principle magnetic sensor. Due to the anisotropic magnetoresistive effect, an angle-dependent magnetization occurs in the conductor due to the rotating magnetic element, which generates an angle-dependent change in resistance which leads to a change in the voltage Uout applied to the conductor. The twist angle or the angular position can be detected discretely and angularly resolved over the entire measuring range. However, due to the principle, the voltage Uout changes in a phase of 180 °, so that the detected angular position changes over a whole revolution. hung is not unique, but each measured value measured two 180 ° offset angular positions, for example, 90 ° and 270 ° can be assigned.
Die Kurve 3 zeigt das Signalverhalten eines Multiturnsensors, der nach dem GMR- Prinzip arbeitet. Hierbei beträgt die Phase 360°, so dass theoretisch jeder Winkelposi- tion nur ein einziger Messwert zugeordnet werden kann. Die Anzahl der Wiederholungen der durchfahrenen Phasen gibt dabei die Umdrehungszahl des drehenden Bauteils wieder. Aufgrund des GMR-Prinzips ist allerdings prinzipbedingt die Erfassung des Messsignals über eine Umdrehung störungsbehaftet. Beispielsweise treten insbesondere zwischen den Maxima und Minima der Kurve 3 Hysterese und andere Effekte auf, die zwar eine eindeutige Ermittlung der Maxima und Minima und damit eine eindeutige Bestimmung der Umdrehungszahlen zulassen, aber eine eindeutige Bestimmung der Winkelposition bei jeder Winkelposition nicht zulassen. Curve 3 shows the signal behavior of a multi-turn sensor that operates on the GMR principle. Here, the phase is 360 °, so that theoretically each angular position can be assigned only a single measured value. The number of repetitions of the traversed phases are the number of revolutions of the rotating component again. Due to the GMR principle, however, the detection of the measuring signal over one revolution is inherently faulty. For example, especially between the maxima and minima of the curve 3 hysteresis and other effects that allow a clear determination of maxima and minima and thus a clear determination of the number of revolutions, but do not allow a clear determination of the angular position at each angular position.
Es wird daher in einer vorgeschlagenen Vorrichtung ein nach dem AMR-Prinzip und ein nach dem GMR-Prinzip arbeitender Magnetsensor kombiniert. Hierbei übernimmt der nach dem AMR-Prinzip arbeitende Magnetsensor die detaillierte Winkelauflösung zur Ermittlung der Winkelposition des drehenden Bauteils und der nach dem GMR- Prinzip arbeitende Magnetsensor wie Multiturnsensor einerseits die Ermittlung der Umdrehungszahl des Bauteils und andererseits die Zuordnung, in welcher der beiden Halbphasen wie Halbkreisen sich ein Referenzpunkt des drehenden Bauteils befindet, also wie dessen Winkelposition bezogen auf eine ganze Umdrehung ist. Hierzu kann beispielsweise die Bestimmung der Winkelposition in der entsprechenden Halbphase abhängig von einem durchschrittenen Minimum oder Maximum beziehungsweise einem großen oder kleinen Widerstand oder entsprechend der Spannung Uout festgelegt werden. Die Figur 2 zeigt das Diagramm 4 mit der Kurve 5 und den Signalverläufen h1 , m1 , 11 , h2, m2, 12 zweier Halbbrücken eines Leiters eines gemäß dem GMR-Prinzip arbeitenden Multiturnsensors über den Verdrehwinkel über eineinhalb Umdrehungen eines drehenden Bauteils. Die Kurve 5 liefert über den Messbereich ein kontinuierliches Spannungssignal der Spannung L ROut mit diskret zuordenbaren Winkelpositionen mit einer Phase von 180°. Therefore, in a proposed device, a magnetic sensor operating according to the AMR principle and a GMR principle is combined. In this case, the magnetic sensor operating on the AMR principle takes over the detailed angular resolution for determining the angular position of the rotating component and the GMR principle magnetic sensor such as multi-turn sensor on the one hand the determination of the number of revolutions of the component and on the other hand the assignment in which of the two half phases such as semicircles There is a reference point of the rotating component, so how its angular position with respect to a complete revolution. For this purpose, for example, the determination of the angular position in the corresponding half-phase can be determined depending on a passed minimum or maximum or a large or small resistance or according to the voltage Uout. FIG. 2 shows the diagram 4 with the curve 5 and the signal curves h1, m1, 11, h2, m2, 12 of two half-bridges of a conductor of a multi-turn sensor operating according to the GMR principle over the angle of rotation over one and a half revolutions of a rotating component. The curve 5 provides over the measuring range a continuous voltage signal of the voltage L ROut with discretely assignable angular positions with a phase of 180 °.
Die mittels der Spannungsverläufe der Spannungen U TOuti und U TOut2 erfassten Signalverläufe h1 , m1 , 11 , h2, m2, 12 zeigen die Bereiche 6, in denen eine Winkelposition des drehenden Bauteils zuverlässig erfasst werden kann. In den Bereichen 7 der Sig- nalverläufe h1 , m1 , 11 , h2, m2, 12 eines im Uhrzeigersinn drehenden Bauteils und in den Bereichen 8 eines im Gegenuhrzeigersinn drehenden Bauteils ist eine eindeutige Erfassung der Winkelposition beispielsweise aufgrund von Hysterese fehlerbehaftet beziehungsweise nicht möglich. Durch Phasenverschiebung der Kurve 5 um den Phasenwinkel X° werden Maxima und Minima der Bereiche 6 auf die Phase der Kurve 5 synchronisiert. Die Signalverläufe h1 , h2 geben dabei Signalzustände mit hohem Widerstand, die Signalverläufe m1 , m2 mit mittlerem und die Signalverläufe 11 , 12 Signalzustände mit geringem Widerstand wieder. Die sich aus der Spannung U TOuti über den Verdrehwinkel ergebenden Signalverläufe h1 , m1 , 11 der ersten Halbbrücke sind dabei um 180° gegenüber den sich aus der Spannung U TOUT2 über den Verdrehwin- kel ergebenden Signalverläufen h2, m2, 12 der zweiten Halbbrücke verschoben. Die Zuordnung der in Kurve 5 ermittelten Winkelpositionen auf die zugehörigen Phasenhälften erfolgt mittels der Bereiche 6 ebenso wie die Ermittlung der Umdrehungszahl. Die Figur 3 zeigt schematisch die Vorrichtung 10 mit der an dem um die Drehachse d drehenden Bauteil 1 1 mit dem Magnetelement 12 angeordneten Platine 13, auf der der Multiturnsensor 14 und der gemäß dem AMR-Prinzip arbeitende Magnetsensor 15 angeordnet sind. Beiden Magnetsensoren können eine Vorortelektronik, beispielsweise in Form eines ASICs aufweisen und erfasste und gegebenenfalls vorverarbeitete Daten auf den gemeinsamen Prozessor 16 übertragen. Der Prozessor 16 verarbeitet die erfassten Daten zu einer Umdrehungszahl und einer Winkelposition des Bauteils 1 1 und überträgt diese drahtlos oder mittels gegebenenfalls einer Datenleitung auf ein übergeordnetes Steuergerät. Die Vorrichtung 10 kann in ein Kupplungsbetätigungs- system, beispielsweise in einen Kupplungsaktor integriert sein, wobei mittels der Vorrichtung 10 beispielsweise Umdrehungszahl und Winkelposition eines Rotors eines Elektromotors oder eines mit diesem verbundenen Bauteils erfasst werden. The signal curves h1, m1, 11, h2, m2, 12 detected by means of the voltage profiles of the voltages U TOuti and U TOut2 show the regions 6 in which an angular position of the rotating component can be reliably detected. In the regions 7 of the signal curves h1, m1, 11, h2, m2, 12 of a clockwise rotating component and in the regions 8 of a counterclockwise rotating component, unambiguous detection of the angular position due to hysteresis, for example, is or is not possible. By phase shifting the curve 5 by the phase angle X °, maxima and minima of the regions 6 are synchronized to the phase of the curve 5. The signal curves h1, h2 indicate signal states with high resistance, the waveforms m1, m2 with medium and the waveforms 11, 12 signal states with low resistance again. The signal profiles h1, m1, 11 of the first half-bridge resulting from the voltage U TOuti over the angle of rotation are shifted by 180 ° with respect to the signal profiles h2, m2, 12 of the second half-bridge resulting from the voltage U TOUT2 via the torsional angle. The assignment of the angular positions determined in curve 5 to the associated phase halves takes place by means of the regions 6 as well as the determination of the number of revolutions. FIG. 3 schematically shows the device 10 with the circuit board 13 arranged on the component 1 1 rotating about the rotation axis d with the magnetic element 12, on which the multi-turn sensor 14 and the magnetic sensor 15 operating according to the AMR principle are arranged. Both magnetic sensors can have on-site electronics, for example in the form of an ASIC, and transmit detected and optionally preprocessed data to the common processor 16. The processor 16 processes the acquired data to a number of revolutions and an angular position of the component 1 1 and transmits them wirelessly or by means of a possibly data line to a higher-level control unit. The device 10 can be integrated in a clutch actuation system, for example in a clutch actuator, wherein by means of the device 10, for example, rotational speed and angular position of a rotor of an electric motor or a component connected thereto are detected.
Bezuqszeichenliste LIST OF REFERENCES
1 Diagramm 1 diagram
2 Kurve  2 curve
3 Kurve  3 curve
4 Diagramm  4 diagram
5 Kurve  5 curve
6 Bereich  6 area
7 Bereich  7 area
8 Bereich  8 area
10 Vorrichtung  10 device
1 1 Bauteil  1 1 component
12 Magnetelement  12 magnetic element
13 Platine  13 board
14 Multiturnsensor  14 multi-turn sensor
15 Magnetsensor  15 magnetic sensor
16 Prozessor  16 processor
d Drehachse d rotation axis
h1 Signalverlauf h1 waveform
h2 Signalverlauf h2 waveform
11 Signalverlauf  11 signal course
12 Signalverlauf  12 waveform
m1 Signalverlauf m1 waveform
m2 Signalverlauf m2 signal course
UAMROut Spannung  UAMROut tension
UMTOUH Spannung  UMTOUH tension
U|VlTOut2 Spannung  U | VlTOut2 voltage
Uout Spannung  Uout tension
X° Phasenwinkel  X ° phase angle

Claims

Patentansprüche claims
1 . Verfahren zur Ermittlung einer Umdrehungszahl und einer Winkelposition eines um eine Drehachse (d) drehenden Bauteils (1 1 ) mit einem Magnetelement (12) mittels zumindest eines gemäß dem GMR-Prinzip arbeitenden Multiturnsensors (14) mit einem spiralförmig entlang der oder um die Drehachse (d) angeordneten elektrischen Leiter mit bezogen auf eine Umdrehung des Magnetelements (12) zwei unterscheidbaren Halbbrückensignalen, wobei zur Erfassung der Umdrehungszahl der Widerstand des Leiters über den Verdrehwinkel erfasst und anhand der Halbbrückensignale jeweils eine Umdrehung ermittelt wird, dadurch gekennzeichnet, dass mittels eines gemäß dem AMR-Prinzip arbeitenden Magnetsensors (15) die Winkelposition des Bauteils (1 1 ) in jeweils zwei Halbkreisen ermittelt wird und mittels des Multiturnsensors (14) ermittelt wird, in welchem der Halbkreise die Ermittlung der Winkelposition erfolgt. 1 . Method for determining a number of revolutions and an angular position of a component (11) rotating about a rotation axis (d) with a magnetic element (12) by means of at least one multi-turn sensor (14) operating in accordance with the GMR principle with a spiral along or about the axis of rotation ( d) arranged electrical conductors with respect to a revolution of the magnetic element (12) two distinguishable half-bridge signals, wherein detected for detecting the number of revolutions of the resistance of the conductor over the angle of rotation and based on the half-bridge signals in each case one revolution is determined, characterized in that by means of a AMR principle working magnetic sensor (15) the angular position of the component (1 1) is determined in two semicircles and by means of the multi-turn sensor (14) is determined in which of the semicircles, the determination of the angular position.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass aus aus den beiden Halbkreisen ermittelten Winkelpositionen abhängig von dem ermittelten Halbbrückensignal eine über jeweils eine ganze Umdrehungszahl absolute Winkelposition des Bauteils (1 1 ) ermittelt wird. 2. The method according to claim 1, characterized in that determined from each of the two half circles angular positions depending on the detected half-bridge signal over a whole number of revolutions absolute angular position of the component (1 1) is determined.
3. Vorrichtung (10) zur Durchführung des Verfahrens gemäß der Ansprüche 1 und 2, dadurch gekennzeichnet, dass jeweils zumindest ein Multiturnsensor (14) und ein nach dem AMR-Prinzip arbeitender Magnetsensor (15) um eine Drehachse (d) angeordnet sind. # 3. Device (10) for carrying out the method according to the claims 1 and 2, characterized in that in each case at least one multi-turn sensor (14) and a working according to the AMR principle magnetic sensor (15) about an axis of rotation (d) are arranged. #
4. Vorrichtung (10) nach Anspruch 3, dadurch gekennzeichnet, dass der Multiturnsensor (14) und der Magnetsensor (15) um die Drehachse (d) hintereinander angeordnet sind. 4. Device (10) according to claim 3, characterized in that the multi-turn sensor (14) and the magnetic sensor (15) about the rotational axis (d) are arranged one behind the other.
5. Vorrichtung (10) nach Anspruch 3, dadurch gekennzeichnet, dass Leiter des Multiturnsensors (14) und des Magnetsensors (15) auf einer einem Magnetelement (12) des drehenden Bauteils (1 1 ) benachbarten Platine (13) angeordnet sind. 5. Device (10) according to claim 3, characterized in that conductors of the multi-turn sensor (14) and the magnetic sensor (15) on a magnetic element (12) of the rotating member (1 1) adjacent board (13) are arranged.
6. Vorrichtung (10) nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass Leiter des Magnetsensors (15) und der Halbbrücken des Multiturnsensors (14) derart angeordnet sind, dass Minima und Maxima der Signale dieser bei jeweils gleichen Winkelpositionen des Bauteils (1 1 ) angeordnet sind. 6. Device (10) according to any one of claims 3 to 5, characterized in that conductors of the magnetic sensor (15) and the half-bridges of the multi-turn sensor (14) are arranged such that minima and maxima of the signals at each same angular positions of the component ( 1 1) are arranged.
7. Kupplungsbetätigungssystem mit einem von einem Rotor eines Elektromotors über ein eine Rotation in eine Translation wandelndes Getriebe verlagerten Betätigungsglied, wobei an einem drehenden Bauteil (1 1 ) mittels der Vorrichtung (10) Umdrehungszahl und Winkelposition bestimmt werden. 7. clutch actuation system with one of a rotor of an electric motor via a rotation in a translation converting gear shifted actuator, wherein on a rotating member (1 1) by means of the device (10) speed and angular position are determined.
8. Kupplungsbetätigungssystem nach Anspruch 7, dadurch gekennzeichnet, dass das drehende Bauteil (1 1 ) der Rotor ist. 8. clutch actuating system according to claim 7, characterized in that the rotating member (1 1) is the rotor.
PCT/DE2017/100520 2016-07-05 2017-06-20 Method and apparatus for determining a number of revolutions and an angular position of a component which can be rotated about an axis of rotation WO2018006901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017003411.6T DE112017003411A5 (en) 2016-07-05 2017-06-20 Method and device for determining a number of revolutions and an angular position of a component rotatable about an axis of rotation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016212173.1A DE102016212173A1 (en) 2016-07-05 2016-07-05 Method and device for determining a number of revolutions and an angular position of a component rotatable about an axis of rotation
DE102016212173.1 2016-07-05

Publications (1)

Publication Number Publication Date
WO2018006901A1 true WO2018006901A1 (en) 2018-01-11

Family

ID=59520704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100520 WO2018006901A1 (en) 2016-07-05 2017-06-20 Method and apparatus for determining a number of revolutions and an angular position of a component which can be rotated about an axis of rotation

Country Status (2)

Country Link
DE (2) DE102016212173A1 (en)
WO (1) WO2018006901A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219211A1 (en) 2016-10-04 2018-04-05 Schaeffler Technologies AG & Co. KG Method for absolute position determination, electric motor and actuating device for a friction clutch
DE102017109403B4 (en) 2017-05-03 2023-06-22 Schaeffler Technologies AG & Co. KG Method and device for determining the absolute position of a component of an actuator, in particular a clutch actuator, rotating about an axis of rotation
WO2018224081A1 (en) 2017-06-07 2018-12-13 Schaeffler Technologies AG & Co. KG Method and device for determining the absolute position of a component of an actuator rotating about a rotational axis, in particular a clutch actuator
DE102021103900A1 (en) 2021-02-18 2022-08-18 Schaeffler Technologies AG & Co. KG sensor arrangement
DE102021112380A1 (en) 2021-05-12 2022-05-12 Schaeffler Technologies AG & Co. KG Steering actuator for a vehicle and method of operating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037975A1 (en) * 2007-08-27 2009-03-05 Institut Für Photonische Technologien E.V. Magnetic revolution counter
DE102008063226A1 (en) * 2008-12-23 2010-07-01 Institut Für Photonische Technologien E.V. Magnetic revolution counter for unambiguous determining revolutions of rotating element, has resistance unit providing measurement for magnetic domain corresponding to loop segments and definite condition of revolution of rotating element
EP2549237A2 (en) 2011-07-17 2013-01-23 Bourns, Inc. High-resolution non-contacting multi-turn sensing systems and methods
DE102012008888A1 (en) 2012-04-30 2013-10-31 Fritz Kübler GmbH Zähl- und Sensortechnik Energy-self-sufficient multi turn rotation transducer for acquisition of number of complete 360 degree rotations of encoder shaft, has evaluation unit providing quadrant value to history buffer when resetting pulse is carried-out
WO2015038800A1 (en) 2013-09-11 2015-03-19 Bourns, Inc. Devices and methods related to high-resolution multi-turn sensors
WO2015165456A1 (en) * 2014-04-30 2015-11-05 Schaeffler Technologies AG & Co. KG Method for identifying the position of a rotor of an electric motor, target for determining the position of a rotor of the electric motor and electric motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140710A1 (en) * 2001-05-21 2003-01-02 Ruf Electronics Gmbh Angle sensor with magneto-resistive sensor elements
US20090115405A1 (en) * 2007-11-01 2009-05-07 Magic Technologies, Inc. Magnetic field angular sensor with a full angle detection
EP2923103B1 (en) * 2012-11-22 2016-07-13 Schaeffler Technologies AG & Co. KG Method for determining and/or controlling a position of an electric motor
US9618589B2 (en) * 2013-10-18 2017-04-11 Infineon Technologies Ag First and second magneto-resistive sensors formed by first and second sections of a layer stack
US9435662B2 (en) * 2014-04-08 2016-09-06 Infineon Technologies Ag Magneto-resistive angle sensor and sensor system using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037975A1 (en) * 2007-08-27 2009-03-05 Institut Für Photonische Technologien E.V. Magnetic revolution counter
DE102008063226A1 (en) * 2008-12-23 2010-07-01 Institut Für Photonische Technologien E.V. Magnetic revolution counter for unambiguous determining revolutions of rotating element, has resistance unit providing measurement for magnetic domain corresponding to loop segments and definite condition of revolution of rotating element
EP2549237A2 (en) 2011-07-17 2013-01-23 Bourns, Inc. High-resolution non-contacting multi-turn sensing systems and methods
DE102012008888A1 (en) 2012-04-30 2013-10-31 Fritz Kübler GmbH Zähl- und Sensortechnik Energy-self-sufficient multi turn rotation transducer for acquisition of number of complete 360 degree rotations of encoder shaft, has evaluation unit providing quadrant value to history buffer when resetting pulse is carried-out
WO2015038800A1 (en) 2013-09-11 2015-03-19 Bourns, Inc. Devices and methods related to high-resolution multi-turn sensors
WO2015165456A1 (en) * 2014-04-30 2015-11-05 Schaeffler Technologies AG & Co. KG Method for identifying the position of a rotor of an electric motor, target for determining the position of a rotor of the electric motor and electric motor

Also Published As

Publication number Publication date
DE112017003411A5 (en) 2019-03-21
DE102016212173A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2018006901A1 (en) Method and apparatus for determining a number of revolutions and an angular position of a component which can be rotated about an axis of rotation
EP2113742B1 (en) Measuring device with dual channel scanning
EP2449346B1 (en) Angle sensor
DE102008006865B4 (en) Inductive torque sensor
EP1049908A1 (en) System for detecting the angle of rotation of a rotatable element
WO2011141179A1 (en) Sensor assembly for motor vehicle steering systems
DE102012202634A1 (en) Sensor arrangement for detecting e.g. steering angle of rotary component e.g. steering column in vehicle, has sensor that is provided to determine distance traveled by transmitter which represents rotational angle of rotary component
WO2020030334A1 (en) Inductive position sensor, in particular for capturing at least one rotation characteristic of a rotating element
EP3936828B1 (en) Encoding system for a transmission
DE102012202657A1 (en) Sensor arrangement for detecting rotational angles of rotary component installed in vehicle, has sensor that determines current position of movement transducer in translation region which represents rotation angle of rotary component
DE112008000430T5 (en) Linear position sensor
EP1752361B1 (en) Shaft torque and position sensor
DE102013225930A1 (en) Method for detecting a torque applied to a shaft
DE102021112380A1 (en) Steering actuator for a vehicle and method of operating the same
WO2005111383A1 (en) Hysteresis brake, especially for an electric camshaft adjuster
EP3833936B1 (en) Sensor system for determining at least one rotation characteristic of a rotating element
WO2017148625A1 (en) Method and device for rotor position diagnosis in an electric-motor drive
WO2017162232A1 (en) Method for the adjusted fastening of a magnetic sensor device to an actuator, and actuator having an electric motor and a magnetic sensor device
DE102004009839A1 (en) Rotation angle sensor
DE102018200234A1 (en) Sensor system for determining at least one rotational property of a rotating element
DE102016211802A1 (en) Method and device for determining a number of revolutions
DE102010043939B4 (en) Geared cam limit switch
WO2021213744A1 (en) Control device for controlling an electrical machine and sensor arrangement for determining a rotor position of an electrical machine
EP3128294A2 (en) Sensor for determining the angular position of a motor, and a motor having a sensor for determining the angular position
DE102020108981A1 (en) Sensor arrangement for detecting the absolute angular position of a steering element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17748382

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112017003411

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17748382

Country of ref document: EP

Kind code of ref document: A1