WO2018006803A1 - 发动机及其凸轮轴、凸轮轴的制造方法 - Google Patents

发动机及其凸轮轴、凸轮轴的制造方法 Download PDF

Info

Publication number
WO2018006803A1
WO2018006803A1 PCT/CN2017/091722 CN2017091722W WO2018006803A1 WO 2018006803 A1 WO2018006803 A1 WO 2018006803A1 CN 2017091722 W CN2017091722 W CN 2017091722W WO 2018006803 A1 WO2018006803 A1 WO 2018006803A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
cam
camshaft
axial
cross
Prior art date
Application number
PCT/CN2017/091722
Other languages
English (en)
French (fr)
Inventor
奚勇
杨洲
朱松
张凤武
Original Assignee
上海尤顺汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610537009.5A external-priority patent/CN107587908A/zh
Priority claimed from CN201610899486.6A external-priority patent/CN107956526A/zh
Application filed by 上海尤顺汽车部件有限公司 filed Critical 上海尤顺汽车部件有限公司
Priority to US16/315,900 priority Critical patent/US10746274B2/en
Priority to EP17823615.4A priority patent/EP3483402A4/en
Priority to CN201780039788.9A priority patent/CN109415954A/zh
Publication of WO2018006803A1 publication Critical patent/WO2018006803A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H53/00Cams ; Non-rotary cams; or cam-followers, e.g. rollers for gearing mechanisms
    • F16H53/02Single-track cams for single-revolution cycles; Camshafts with such cams
    • F16H53/025Single-track cams for single-revolution cycles; Camshafts with such cams characterised by their construction, e.g. assembling or manufacturing features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0471Assembled camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0471Assembled camshafts
    • F01L2001/0473Composite camshafts, e.g. with cams or cam sleeve being able to move relative to the inner camshaft or a cam adjusting rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0475Hollow camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0476Camshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Definitions

  • the present invention relates to the field of automobile engines, and in particular to an engine, a camshaft thereof, and a method of manufacturing a camshaft.
  • the engine's valve train is responsible for supplying the cylinder with fresh air necessary for gasoline combustion work and discharging the burned exhaust gas.
  • the camshaft is a key component of the gas distribution structure.
  • the engine is equipped with an intake camshaft and an exhaust camshaft.
  • Each camshaft has a mandrel and a cam sleeved on the mandrel.
  • the mandrel and the engine crankshaft pass the chain or The belt drive is connected, and the mandrel rotates in synchronization with the cam.
  • the cam of the intake camshaft is used to drive the intake valve of the engine to open and close
  • the cam of the exhaust camshaft is used to drive the exhaust valve of the engine to open and close.
  • the cam has a large axial dimension and is generally formed by a casting process, which is costly.
  • methods for manufacturing camshafts include a conventional one-piece casting method, a forging method, and a combined method of manufacturing a camshaft.
  • the performance of each part of the camshaft cannot be maximized and utilized.
  • the performance requirements of cams, journals, mandrels, transmission units, etc. Very different, if a single material is used, the performance of each part cannot be maximized, the whole processing and manufacturing process is complicated, a large number of mechanical processing steps are required, production efficiency is not high, energy consumption is large, and environmental pollution is serious.
  • the manufacturing method of the combined camshaft includes a welding method, a pipe expanding method, a mechanical knurling method, and the like. Most of these methods are to decompose the camshaft into individual cam parts, intermediate mandrel parts, transmission parts, etc., and then use different manufacturing methods to join the parts together to form a single camshaft.
  • the mechanical knurling method is used to connect the cam and the mandrel through the processed splines.
  • the spline connection can ensure the accuracy of the cam angular position, the following disadvantages still exist: First, in order to form a spline on the inner circumferential surface of the cam and the outer circumferential surface of the mandrel, the structure of the part is complicated.
  • the spline connection between the cam and the mandrel can only connect one cam to the mandrel at a time, and multiple combinations are required to complete the combination of one camshaft.
  • the problem solved by the invention is that the structure of the existing camshaft is complicated, the manufacturing process is complicated, the time is long, and the cost is high. And the transmission torque is limited.
  • the present invention provides a camshaft comprising: a mandrel having an axial bore, the mandrel having a mating section, the mating section having a polygonal outer circumference of a cross section at any one of the axial positions a first cam and a second cam, wherein the first cam and the second cam are sleeved on the mating segments of the mandrel and are axially spaced apart, and inner circumferential surfaces of the first cam and the second cam are The cross section is polygonal, and the mating segment extends at least from the first cam to the second cam in the axial direction.
  • the adjacent two edges of the polygon are transitioned by a circular arc.
  • At least one of the first cam and the second cam includes a first portion and a second portion arranged in an axial direction; the first portion and the second portion are respectively sleeved on the mandrel, and The axial direction, the radial direction and the circumferential direction are both fixed to the mandrel; the first portion has a first axial end face, the second portion has a second axial end face, the first axial end face and the second axis Face to face and separate from each other.
  • At least one of the first cam and the second cam includes a first portion and a second portion arranged in an axial direction; the first portion and the second portion are respectively sleeved on the mandrel, and The axial direction, the radial direction and the circumferential direction are both fixed to the mandrel; the first portion has a first axial end face, the second portion has a second axial end face, the first axial end face and the second axis Face to face and contact each other.
  • At least one of the first cam and the second cam includes a first portion and a second portion arranged in an axial direction; the first portion and the second portion have the same shape except for the axial thickness.
  • At least one of the first cam and the second cam includes a first portion and a second portion arranged in an axial direction; the first portion and the second portion are identical in shape.
  • the dimension of the cross section of the inner peripheral surface of the first portion decreases in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • the present invention also provides an engine comprising: a first valve; a second valve; the camshaft of any of the above, wherein the first cam is for driving the first valve but not the second valve, The second cam is for driving the second valve but does not drive the first valve.
  • the present invention also provides a camshaft comprising: a mandrel; a cam sleeved on the mandrel, the cam comprising a first portion and a second portion arranged in an axial direction, the first portion and the second portion respectively Nested on the mandrel and fixed to the mandrel in the axial direction, the radial direction and the axial direction; the first portion has a first axial end face, and the second portion has a second axial end face, The first axial end surface and the second axial end surface face each other.
  • the first portion has a cam profile for engine braking and the second portion has a cam profile for normal operation of the engine.
  • the first portion and the second portion have the same shape except for the axial thickness.
  • the shapes of the first portion and the second portion are identical.
  • the dimension of the cross section of the inner peripheral surface of the first portion is oriented in the direction of the second portion in the axial direction The inch is decreasing.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • the invention also provides an engine comprising: a valve; the camshaft of any of the above, wherein the first portion and the second portion of the cam drive at least one of the valves.
  • the present invention also provides a camshaft comprising: a mandrel; a cam sleeved on the mandrel, the cam comprising a first portion and a second portion arranged in an axial direction, the first portion having a first axial direction An end surface, the second portion has a second axial end surface, the first axial end surface and the second axial end surface face each other; the first portion and the second portion have the same shape except for the axial thickness.
  • the shapes of the first portion and the second portion are identical.
  • the dimension of the cross section of the inner peripheral surface of the first portion decreases in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • the present invention also provides a method of manufacturing a camshaft, comprising: firstly arranging a cam on a mating section of a mandrel, wherein the outer circumference of the cross section of the mating section at any one of the axial positions is a polygon, the inside of the cam The cross section of the circumference is a polygon, the mandrel has an axial bore extending to the mating section; and then the extending portion of the mating section extending into the cam is expanded such that The outer diameter of the projecting portion is increased and pressed against the cam in the radial direction.
  • the step of expanding the extending portion of the engaging portion into the cam comprises: extending the expanding member into the hole such that the extending portion is radially expanded.
  • the size of the expansion member is greater than the size of the aperture in at least one direction in the radial direction.
  • the step of expanding the extending portion of the engaging portion into the cam comprises: introducing a fluid into the hole under pressure, so that the extending portion is radially expanded.
  • the adjacent two edges of the polygon are transitioned by a circular arc.
  • the cam includes a first portion and a second portion that are axially arranged on the mandrel.
  • the first portion and the second portion have the same shape except for the axial thickness.
  • the shapes of the first portion and the second portion are identical.
  • the dimension of the cross section of the inner peripheral surface of the first portion is in the direction of the gap in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • At least one of the first portion and the second portion is formed using a cold stamping process.
  • the present invention also provides a method of manufacturing a camshaft, comprising: firstly arranging a first portion and a second portion of the cam on a mating section of the mandrel, wherein the first portion and the second portion are arranged in an axial direction.
  • the mandrel has a hole in the axial direction, the hole extending to the mating segment; and then the extending portion of the engaging portion extending into the first portion and the second portion is expanded such that the extending portion The outer diameter is increased and pressed against the first portion and the second portion in the radial direction.
  • the step of expanding the extending portion of the engaging portion into the first portion and the second portion comprises: extending the expanding member into the hole such that the extending portion is radially expanded.
  • the size of the expansion member is greater than the size of the aperture in at least one direction in the radial direction.
  • the step of expanding the extending portion of the engaging portion into the first portion and the second portion comprises: introducing a fluid into the hole under pressure, so that the extending portion is along Radial expansion.
  • the first portion includes a cam profile for engine braking and the second portion includes a cam profile for conventional engine ignition.
  • the first portion and the second portion have the same shape except for the axial thickness.
  • the shapes of the first portion and the second portion are identical.
  • the dimension of the cross section of the inner peripheral surface of the first portion decreases in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • At least one of the first portion and the second portion is formed using a cold stamping process.
  • the present invention provides a camshaft comprising: a mandrel having a mating section, the outer peripheral surface of the mating section having the same cross-sectional profile at any axial position, the cross-sectional profile comprising: a linear zone and a circular arc zone,
  • the arc area belongs to a circle and includes a plurality of arcs
  • the line area belongs to a polygon and includes a plurality of straight lines, and the line and the arc are staggered in the circumferential direction and are connected to each other.
  • the circle and the polygon are concentric.
  • the method further includes: a bearing mounted on the mating section of the mandrel, the bearing having an inner hole that cooperates with the mandrel, the inner hole is circular and the diameter of the circle is The diameter of the circle to which the arc area belongs is the same.
  • a bearing is further included, the bearing having an inner bore, the inner bore including a curved surface that cooperates with a circular arc region of the mandrel.
  • the contour shape of the cross section of the inner circumferential surface of the cam coincides with the contour shape of the cross section of the outer circumferential surface of the fitting section.
  • the cam has a plurality of matching sections respectively sleeved on the mandrel, and is axially spaced apart.
  • the present invention also provides a camshaft comprising: a mandrel; a cam sleeved on the mandrel, the cross-sectional profile of the inner circumferential surface of the cam comprising: a linear zone and a circular arc zone, the arc zone It belongs to a circle and includes a plurality of arcs, which belong to a polygon and include a plurality of straight lines, and the straight lines and the circular arcs are staggered in the circumferential direction and are connected to each other to form the cross-sectional contour.
  • the circle and the polygon are concentric.
  • the present invention also provides a method of manufacturing a camshaft, comprising: forming at least one of a first portion and a second portion of a cam by a cold stamping process; respectively, positioning the first portion and the second portion on the mandrel .
  • the method further includes: fixing the first portion and the second portion respectively on the mandrel, and configured to drive the same valve.
  • the method further includes: expanding an extending portion of the mandrel into the first portion and the second portion, such that an outer diameter of the protruding portion is increased, and the first portion, the first portion The two parts are pressed against each other in the radial direction.
  • the mandrel has an axial hole
  • the step of expanding the protruding portion of the mandrel into the first portion and the second portion comprises: extending the expansion member into the axial hole, The projecting portion is caused to expand in the radial direction.
  • the mandrel has an axial hole
  • the step of expanding the protruding portion of the mandrel into the first portion and the second portion comprises: pressing the axial hole into the hole The fluid is introduced such that the projecting portion expands in the radial direction.
  • the present invention also provides a method of manufacturing a camshaft, comprising: forming a mandrel having an axial hole; and sleeved a cam on the mandrel; the step of forming the mandrel comprises: forming a cylindrical surface by cold drawing a tubular member; forming a plurality of circumferentially spaced planes on the outer cylindrical surface by cold drawing, the plane extending along an axial direction of the tubular member such that a contour of a cross section of the outer peripheral surface of the tubular member includes a straight line region and a circular arc area, which belongs to a circle and includes a plurality of arcs, the straight line area belongs to a polygon and includes a plurality of straight lines, and the straight line and the circular arc are alternately arranged in the circumferential direction and connected to each other Into the cross-sectional profile described.
  • the circle and the polygon are concentric.
  • the method further includes: forming a first portion and a second portion of the cam by a cold stamping process; and a cross section of the inner peripheral surface of the first portion and the second portion
  • the shape is consistent with the cross-sectional shape of the outer peripheral surface of the mandrel; when the cam is sleeved on the mandrel, the first portion and the second portion are respectively sleeved on the mandrel, and the mandrel is made
  • the outer peripheral surface matches the inner peripheral surface of the first portion and the second portion.
  • the projecting portion of the mandrel extending into the cam is expanded such that an outer diameter of the projecting portion is increased and pressed against the cam in a radial direction.
  • the step of expanding the protruding portion of the mandrel into the cam comprises: extending the expansion member into the axial hole such that the extending portion expands in a radial direction.
  • the step of expanding the protruding portion of the mandrel into the cam comprises: introducing a fluid into the axial hole under pressure, so that the extending portion is radially expanded .
  • the present invention also provides a method of manufacturing a camshaft, comprising: forming a first portion and a second portion of a cam by a cold stamping process, wherein a cross section of the inner peripheral surface of the first portion and the second portion includes a linear region and an arc Zone, the arc
  • a cross section of the inner peripheral surface of the first portion and the second portion includes a linear region and an arc Zone, the arc
  • the same area belongs to a circle and includes a plurality of arcs
  • the straight line area belongs to a polygon and includes a plurality of straight lines
  • the straight line and the circular arc are staggered in the circumferential direction and connected to each other to form the cross-sectional contour
  • the first portion and the second portion of the cam are respectively sleeved on the mandrel.
  • the method includes: the circle and the polygon are concentric.
  • a cross-sectional shape of the outer peripheral surface of the mandrel is consistent with a cross-sectional shape of the inner peripheral surface of the first portion and the second portion; and the first portion and the second portion are sleeved on the mandrel
  • the outer peripheral surface of the mandrel is matched with the inner peripheral surfaces of the first portion and the second portion.
  • the protruding portion of the mandrel extending into the first portion and the second portion is expanded such that an outer diameter of the protruding portion is increased, and along with the first portion and the second portion Radially pressed against each other.
  • the mandrel has an axial hole
  • the step of expanding the protruding portion of the mandrel into the first portion and the second portion comprises: extending the expansion member into the axial hole, The projecting portion is caused to expand in the radial direction.
  • the mandrel has an axial hole
  • the step of expanding the protruding portion of the mandrel into the first portion and the second portion comprises: pressing the axial hole into the hole The fluid is introduced such that the projecting portion expands in the radial direction.
  • the present invention also provides a method of manufacturing a tubular member, comprising: forming a tubular member having an outer cylindrical surface by cold drawing; forming a plurality of circumferentially spaced planes on the outer cylindrical surface by cold drawing, the plane along the tubular member
  • the axial extension such that the contour of the cross section of the outer peripheral surface of the tubular member comprises a linear region and a circular arc region, the circular arc region belonging to a circle and including a plurality of arcs, the linear regions belonging to a polygon and including A plurality of straight lines, the straight lines and the circular arcs are staggered in the circumferential direction and connected to each other to form the cross-sectional profile.
  • the pipe member is a mandrel of a camshaft.
  • the present invention also provides a method of manufacturing a cam, comprising: forming a first portion and a second portion of a cam by a cold stamping process, wherein inner peripheral surfaces of the first portion and the second portion comprise a linear region and a circular arc region,
  • the circular arc zone belongs to a circle and includes a plurality of arcs
  • the linear zone belongs to a polygon and includes a plurality of straight lines
  • the straight line and the circular arc are alternately arranged in a circumferential direction and are connected to each other to form the cross section. profile.
  • the present invention also provides a camshaft comprising: a mandrel having an axial bore, the mandrel having a mating section, the outer peripheral surface of the mating section having a polygonal cross section at any one of the axial positions; the first cam a second cam, the first cam and the second cam are respectively sleeved on the mating segments of the mandrel and disposed in the axial direction, and the inner peripheral surfaces of the first cam and the second cam are polygonal in cross section.
  • the mating segment extends at least from the first cam to the second cam in an axial direction.
  • a cross section of the outer circumferential surface of the mandrel mating segment and a cross section of the inner circumferential surface of the first cam and the second cam are the same polygons.
  • the cross section of the outer peripheral surface of the engaging section is the same as the cross section of the inner peripheral surface of the first cam and the second cam.
  • the gap between the mandrel mating segment and the first cam and the second cam is circumferential
  • the dimensions of each location are the same.
  • the adjacent two edges of the polygon are transitioned by a circular arc. That is to say, the adjacent two sides of the polygon are connected by a circular arc.
  • a center of a transition (or connecting) arc between adjacent two sides of the polygon of the cam coincides with a center of a polygon of the cam.
  • a center of a transition (or connecting) arc between adjacent two sides of the polygon of the mandrel coincides with a center of a polygon of the mandrel.
  • At least one of the first cam and the second cam includes a first portion and a second portion arranged in an axial direction;
  • the first portion and the second portion are respectively sleeved on the mandrel and are fixed to the mandrel in an axial direction, a radial direction and a circumferential direction; the first portion has a first axial end face, and the second portion has a second axial end surface, the first axial end surface and the second axial end surface face to face and separated from each other.
  • At least one of the first cam and the second cam includes a first portion and a second portion arranged in an axial direction; the first portion and the second portion are respectively sleeved on the mandrel, and The axial direction, the radial direction and the circumferential direction are both fixed to the mandrel; the first portion has a first axial end face, the second portion has a second axial end face, the first axial end face and the second axis Face to face and contact each other.
  • At least one of the first cam and the second cam includes a first portion and a second portion arranged in an axial direction; the first portion and the second portion have the same shape except for the axial thickness.
  • At least one of the first cam and the second cam includes a first portion and a second portion arranged in an axial direction; the first portion and the second portion are identical in shape.
  • the dimension of the cross section of the inner peripheral surface of the first portion decreases in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • the method further includes at least two bearings, the bearing sleeves are sleeved on the mating segments of the mandrel and are axially spaced apart, and the bearing is sleeved on a cross section of the inner circumferential surface of the mandrel In the polygonal shape, the outer peripheral surface of the bearing is a cylindrical surface.
  • the present invention also provides an engine comprising: a first valve; a second valve; the cam shaft having a first cam and a second cam, the first cam for driving the first valve, the second A cam is used to drive the second valve.
  • the engine includes at least three cylinders, wherein the number of sides of the polygon in the camshaft is the same as the number of cylinders of the engine.
  • the present invention also provides a camshaft comprising: a mandrel; a cam sleeved on the mandrel, the cam comprising a first portion and a second portion arranged in an axial direction, the first portion and the second portion Separatingly disposed on the mandrel and fixed to the mandrel in an axial direction, a radial direction and an axial direction; the first portion has a first axial end surface, and the second portion has a second axial end surface, The first axial end surface and the second axial end surface face each other.
  • the first portion has a cam profile for engine braking and the second portion has a cam profile for normal operation of the engine.
  • the first portion and the second portion have the same shape except for the axial thickness.
  • the shapes of the first portion and the second portion are identical.
  • the dimension of the cross section of the inner peripheral surface of the first portion decreases in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • the present invention also provides a camshaft comprising: a mandrel; a cam sleeved on the mandrel, the cam comprising a first portion and a second portion arranged in an axial direction, the first portion having a first axial direction An end surface, the second portion has a second axial end surface, the first axial end surface and the second axial end surface face each other; the first portion and the second portion have the same shape except for the axial thickness.
  • the shapes of the first portion and the second portion are identical.
  • the dimension of the cross section of the inner peripheral surface of the first portion decreases in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • the present invention also provides a method of manufacturing a camshaft, comprising: arranging a cam on a mating section of a mandrel, the outer peripheral surface of the mating section having a polygonal cross section at any one of the axial positions, the cam sleeve a cross section of the inner peripheral surface on the mandrel is a polygonal shape, the mandrel has an axial hole extending to the mating section; and the extension of the mandrel mating section into the cam The inlet portion is expanded such that the outer diameter of the projecting portion is increased and pressed against the cam in the radial direction.
  • the step of expanding the protruding portion of the mandrel engaging section into the cam comprises: extending the expanding member into the axial hole such that the extending portion is radially expanded.
  • the size of the expansion member is greater than the size of the axial bore in at least one direction in the radial direction.
  • the step of expanding the protruding portion of the mandrel engaging section into the cam comprises: introducing a fluid into the axial hole under pressure, so that the extending portion is along the diameter To expand.
  • the step of expanding the protruding portion of the mandrel engaging section into the cam comprises: forming an axial hole in the mandrel into a blind hole, and filling the blind hole with a fluid, An expansion member is pressed into the blind hole at the open end of the blind hole to increase the pressure of the fluid in the axial hole such that the projecting portion expands in the radial direction.
  • the expansion member is a steel ball.
  • the expansion member is more than two steel balls.
  • the two or more steel balls are arranged in series in the axial direction, and a spacer is disposed between the steel ball and the steel ball.
  • the two or more steel balls have different diameters.
  • the adjacent two edges of the polygon are transitioned (or connected) by a circular arc.
  • a transition (or connection) between two adjacent sides of the polygon is a circle center and a polygon The center coincides.
  • the cam includes a first portion and a second portion that are axially arranged on the mandrel.
  • the first portion and the second portion have the same shape except for the axial thickness.
  • the shapes of the first portion and the second portion are identical.
  • the dimension of the cross section of the inner peripheral surface of the first portion is in the direction of the gap in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • At least one of the first portion and the second portion is formed using a cold stamping process.
  • the present invention also provides a method of manufacturing a camshaft, comprising: respectively positioning a first portion and a second portion of the cam on a mating segment of the mandrel, wherein the first portion and the second portion are arranged in an axial direction,
  • the mandrel has an axial bore extending to the mating section; expanding the inwardly extending portion of the mandrel mating section into the first portion and the second portion such that the extending portion
  • the outer diameter is increased and pressed against the first portion and the second portion in the radial direction.
  • the step of expanding the protruding portion of the mandrel engaging section into the first portion and the second portion comprises: extending the expanding member into the axial hole such that the extending portion is along Radial expansion.
  • the size of the expansion member is greater than the size of the axial bore in at least one direction in the radial direction.
  • the step of expanding the extending portion of the engaging portion into the first portion and the second portion comprises: introducing a fluid into the axial hole under pressure, so that the extending portion Partially expands in the radial direction.
  • the first portion includes a cam profile for engine braking and the second portion includes a cam profile for conventional engine ignition.
  • the first portion and the second portion have the same shape except for the axial thickness.
  • the shapes of the first portion and the second portion are identical.
  • the dimension of the cross section of the inner peripheral surface of the first portion decreases in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • an inclination angle between the inner circumferential surface of the first portion relative to the central axis is greater than a self-locking angle between the first portion and the mandrel, and an inner circumferential surface of the second portion is opposite to the central axis The angle of inclination between the two is greater than the angle of self-locking between the second portion and the mandrel.
  • an inclination angle of the inner circumferential surface of the first portion and the second portion with respect to the central axis is greater than arctan 0.1.
  • At least one of the first portion and the second portion is formed using a cold stamping process.
  • the cross-sectional contour includes a straight line area and a circular arc area, and the circular arc area belongs to a circle and includes a plurality of arcs, and the straight line area belongs to a polygon and includes a plurality of straight lines, and the straight line and the circular arc are circumferentially staggered Arranged and interconnected to form the cross-sectional profile;
  • the plug is pressed into a central hole at both ends of the mandrel to seal the end of the mandrel.
  • the circle and the polygon are concentric.
  • the camshaft further includes:
  • journal has an outer cylindrical surface
  • the journal is used for rotating and supporting the entire camshaft, and the outer cylindrical surface of the journal is processed on the outer peripheral surface of the mandrel at a certain distance, and the outer cylinder
  • the surface is arc-connected to the arc area and the straight line area of the mandrel.
  • the camshaft further includes:
  • journal having an inner bore, the inner bore being circular and having a diameter that coincides with a diameter of the inner bore of the mandrel.
  • the transmission unit has an inner hole that cooperates with the mandrel, the inner hole is circular, and the diameter of the circle and the circle of the arc area belong to The diameter is consistent.
  • the transmission unit has an inner hole, and the inner hole includes a curved surface that cooperates with a circular arc area of the mandrel.
  • the outer cylindrical surface of one end of the plug is slightly larger than the inner hole of the mandrel, and the outer cylindrical surface of the plug is processed by knurling.
  • the contour shape of the cross section of the inner circumferential surface of the cam coincides with the contour shape of the cross section of the outer circumferential surface of the fitting section.
  • the cam has a plurality of mating segments respectively sleeved on the mandrel and are axially spaced apart.
  • Embodiments of the present invention provide a method of manufacturing a camshaft, including:
  • the cam is formed by a forging process, and the inner peripheral surface of the cam and the inner peripheral edge of both end faces are finished:
  • the cam and the transmission unit are sleeved on a mandrel having an axial hole;
  • the mandrel projecting cam and the projecting portion of the transmission unit are expanded such that the outer diameter of the projecting portion is increased and pressed against the cam in the radial direction.
  • the mandrel extending into the cam and the extending portion of the transmission unit is expanded, including:
  • An expansion member is inserted into the axial bore of the shaft core such that the projecting portion expands in the radial direction.
  • the mandrel extending into the cam and the extending portion of the transmission unit is expanded, including:
  • a fluid having an expansion pressure is introduced into the axial bore of the shaft core such that the projecting portion expands in the radial direction.
  • the mandrel is formed as follows:
  • the contour of the cross section of the outer peripheral surface of the tubular member comprises a linear region and a circular arc region, wherein the circular arc region belongs to a circle and includes a plurality of arcs, and the linear region belongs to the same
  • the polygon includes a plurality of straight lines, and the straight lines and the circular arcs are alternately arranged in a circumferential direction and connected to each other to form the cross-sectional profile.
  • an outer cylindrical surface having a predetermined distance interval is formed on the outer peripheral surface of the mandrel to form a journal.
  • the journal is used for rotating and supporting the entire camshaft, wherein the outer cylindrical surface is connected to the arc zone and the straight zone of the mandrel.
  • the outer circumferential surface of the mandrel engagement section of the camshaft is set to a polygonal shape
  • the inner circumferential surfaces of the first cam and the second cam are also set to be polygonal
  • the core shaft and the first cam and the second cam are A press fit is provided between the outer peripheral surface of the polygon and the inner peripheral surface of the polygon to achieve a fixed, anti-rotational connection therebetween.
  • the cam includes a first cam and a second cam which are separated from each other and arranged on the mandrel in the axial direction.
  • the axial dimensions of the first cam and the second cam are reduced, and a stamping process may be employed. Formed, the cost is lower.
  • the dimension of the cross section of the inner peripheral surface of the first portion decreases in the axial direction toward the second portion.
  • the dimension of the cross section of the inner peripheral surface of the second portion decreases in the axial direction toward the first portion.
  • the outer peripheral contour of the mandrel includes a straight line area and a circular arc area which are staggered, and the straight line area belongs to the same polygon, and the arc area belongs to the same circle.
  • the outer peripheral contour of the mandrel includes a straight line area and a circular arc area which are staggered, and the straight line area belongs to the same polygon, and the arc area belongs to the same circle.
  • Figure 1 is a front elevational view showing the cam shaft of the first embodiment of the present invention
  • Figure 2 is a schematic view showing the expansion of the cam shaft by the expansion member in the first embodiment of the present invention
  • Figure 3 is a schematic cross-sectional view showing a mandrel of a cam shaft according to a first embodiment of the present invention
  • Figure 4 is a cross-sectional view showing the first cam and the second cam of the camshaft according to the first embodiment of the present invention
  • Figure 5 is a front view showing the structure of a cam shaft according to a second embodiment of the present invention.
  • FIG. 6 is a schematic front view showing the first portion and the second portion of the cam in a state of not being sleeved on the mandrel;
  • Figure 7 is a cross-sectional view showing a first cam and a second cam of a cam shaft according to a second embodiment of the present invention.
  • Figure 8 shows the force of the inner peripheral surface of the first cam when expanding
  • Figure 9 is a cross-sectional structural view showing a cam shaft according to a first embodiment of the present invention.
  • Figure 10 is a schematic cross-sectional view showing a mandrel of a cam shaft according to a first embodiment of the present invention
  • Figure 11 is a schematic cross-sectional view showing a cam of a cam shaft according to a first embodiment of the present invention
  • Figure 12 is a schematic view of a cam shaft corresponding to the manufacturing method of the second embodiment of the present invention.
  • Figure 13 is a front elevational view showing the first portion and the second portion of the cam in a state of not being sleeved on the mandrel;
  • Figure 14 is a cross-sectional structural view showing a cam shaft according to a second embodiment of the present invention, showing the expansion process of the mandrel:
  • FIG. 15 is a cross-sectional structural view of a camshaft according to an embodiment of the present invention.
  • 16 is a schematic cross-sectional view of a mandrel of a camshaft according to an embodiment of the present invention.
  • 17 is a perspective view of a mandrel of a camshaft according to an embodiment of the present invention.
  • FIG. 18 is a schematic view of a cam of a camshaft according to an embodiment of the present invention.
  • 19 is a schematic view of a transmission unit of a camshaft and a plug at both ends according to an embodiment of the present invention.
  • 20 is a schematic view showing the manufacturing structure of a camshaft according to an embodiment of the present invention.
  • 21 is a cross-sectional structural diagram of a camshaft mandrel expansion according to an embodiment of the present invention.
  • FIG. 22 is a cross-sectional structural view showing another expansion of a camshaft mandrel according to an embodiment of the present invention.
  • An embodiment of the present invention provides a camshaft, as shown in FIG. 1, including a mandrel 10 and a plurality of cams sleeved outside the mandrel 10.
  • the first cam 21 and the second cam 22 are included in the plurality of cams.
  • the first cam 21 and the second cam 22 are respectively sleeved outside the mandrel 10 and spaced apart in the axial direction.
  • a camshaft having six cams is exemplarily shown in FIG. 1.
  • Each cam on the camshaft corresponds to one cylinder, and the first cam 21 and the second cam 22 are respectively rotatably connected to the spindle 10, and the two are synchronized.
  • the first cam 21 and the second cam 22 are respectively used to drive different valves.
  • the first cam 21 and the second cam 22 are adjacent, and there are no other cams therebetween.
  • other cams may be disposed between the first cam 21 and the second cam 22.
  • the mandrel 10 has an axial bore 11 with a mating section 101.
  • the outer circumference of the cross section of the engaging section 101 at any one of the axial positions is a polygon, specifically a hexagon.
  • the mating segment 101 is located between the adjacent two cams in addition to the first cam 21 and the second cam 22, that is, the mating segment 101 extends from the first cam 21 to the second cam 22.
  • the inner peripheral surface 20a of the first cam 21 and the second cam 22 has a polygonal cross section, and the polygons of the first cam 21 and the second cam 22 have the same shape as the polygonal shape of the mandrel 10. It is also a hexagon.
  • cross section refers to a section perpendicular to the axial direction.
  • the cam shaft of this embodiment can be installed according to the following steps: first, the first cam 21 and the second cam 22 are sleeved on the outside of the mandrel 10, and then the expansion member 30 is inserted into the hole 11 of the mandrel 10.
  • the mandrel 10 is expanded to apply pressure to the inner wall of the hole 11, thereby expanding the outer diameter of the mandrel 11 and pressing against the inner peripheral surface of the cam to achieve a fixed, anti-rotational relationship therebetween.
  • the expansion member 30 is a steel ball having a diameter larger than the diameter of the hole 11.
  • the expansion member 30 enters the hole 11 from one end of the mandrel 10 in the projecting direction D, and moves in the hole 11 in the axial direction toward the other end. At the portion where the expansion member 30 passes, the diameter of the hole 11 is enlarged, and the outer diameter of the mandrel 10 becomes large and is pressed against the corresponding cam.
  • the expansion member 30 can also be a rigid member of other shapes having a diameter at least in one direction that is greater than the diameter of the aperture 11, or the expansion member 30 can also be a fluid, such as a liquid, a gas, or the like.
  • the outer peripheral surface of the mandrel of the camshaft is set to a polygonal shape
  • the inner peripheral surface of the first cam and the second cam are also set to a polygon corresponding to the mandrel, the mandrel and the first cam and the second
  • the cams are press-fitted between the outer peripheral surface of the polygon and the inner peripheral surface of the polygon to achieve a fixed, anti-rotational connection between the two.
  • the torque transmitted is larger and the structure is simpler.
  • the polygon can also be other polygons.
  • the number of sides of the polygon may be an integral multiple of the number of cylinders of the engine, such as double, double, and the like.
  • the above polygon may be a hexagon; for a four-cylinder engine, the above polygon may be a quadrilateral.
  • the phase difference between the first cam 21 and the second cam 22 is n*(360°/N), where N is the number of sides of the polygon or the number of cylinders of the engine cylinder, and n is an integer of 1 or greater.
  • the present embodiment provides a camshaft.
  • the camshaft of the present embodiment changes the structure of the first cam 21 and the second cam 22 on the basis of the first embodiment.
  • At least one of the first cam 21 and the second cam 22 includes a first portion 201 and a second portion 202 arranged in the axial direction, and the first portion 201 and the second portion 202 are respectively sleeved on the mandrel 10. And being fixed to the mandrel 10 in the axial direction, the radial direction and the axial direction, that is, the first portion 201, the second portion 202 and the mandrel 10 are completely fixed, and after the installation is completed, the axial direction, the radial direction and the axial direction are not Relative movement occurs with the mandrel 10.
  • all of the cams disposed on the mandrel 10 may include the first portion and the second portion; and a portion of the cam sleeved on the mandrel may include the first portion and the second portion, and
  • the remaining cams can be integrally formed cams.
  • first cam 21 and the second cam 22 sleeved on the mandrel 10 each include the first portion 201 and the second portion 202. Only the first portion and the second portion of one of the first cams 21 are labeled in FIG.
  • the first portion 201 and the second portion 202 are independent of each other and are respectively sleeved on the mandrel 10. As shown in FIG. 6, the first portion 201 has a first axial end surface 201a, and the second portion 202 has a second axial end surface 202a, and the first axial end surface 201a and the second axial end surface 202a are disposed face to face. It can be seen that, before installation, the first portion 201 and the second portion 202 are two separate components. The first portion 201 and the second portion 202 are respectively manufactured and coaxially sleeved outside the mandrel 10 by assembly.
  • first axial end surface 201a of the first portion 201 and the second axial end surface 202a of the second portion 202 may be separated from each other, that is, not in contact with each other; or the first axial end surface 201a and the second axial end surface 202a They can also be in contact with each other.
  • the cam in this embodiment is divided into the first portion 201 and the second portion 202 which are arranged in the axial direction, and the axial thickness of each portion is smaller, so that punching, for example, cold stamping, can be employed.
  • the process is manufactured at a lower cost.
  • the first portion 201 and the second portion 202 of the same cam can only drive the same valve or the same set of valves, but cannot drive different valves.
  • the first portion 201 and the second portion 202 may have identical shapes, such as the same shape of the cross section, the same shape of the axial section, the same axial thickness, and the like. Alternatively, the first portion 201 and the second portion 202 may have different axial thicknesses while remaining the same shape.
  • the "axial section” refers to a section obtained by cutting in a direction parallel to the axial direction.
  • the shapes of the first portion 201 and the second portion 202 are different.
  • the first portion 201 includes a cam profile for engine braking and the second portion 202 includes a cam profile for conventional engine operation.
  • the valve movement is driven by the second portion 202 when the engine is normally operative to provide a driving force to the wheel; the valve movement is driven by the first portion 201 when engine braking is required.
  • the dimension of the cross section of the inner peripheral surface 20a of the first portion 201 is reduced in the axial direction toward the second portion 202.
  • the inner peripheral surface of the first portion 201 has a sloped shape that is inclined toward the second portion 202, and is not parallel to the axial direction.
  • the mandrel 10 and the first portion 201 gradually collide with each other, thereby The one-step portion 201 will be subjected to a pressing force F perpendicular to the inner peripheral surface on the inner peripheral surface.
  • the pressing force F can be decomposed into a radially outward radial component force f1 and an axial component force f2 in the axial direction toward the second portion 202.
  • the first portion 201 will move toward the second portion 202 as the mandrel 10 and the first portion 201 are pressed against each other, so that the first portion 201 and the second portion 202 are axially fitted. close.
  • the second portion 202 can also be disposed such that the cross-sectional dimension of the inner peripheral surface 20a of the second portion 202 decreases in the axial direction toward the first portion 201.
  • the second portion 202 will move toward the first portion 201 as the mandrel 10 and the second portion 202 are pressed against each other, further increasing the first portion. 201.
  • the second portion 202 is more closely fitted in the axial direction.
  • the inclination angle of the slope relative to the central axis is preferably larger than the self-locking angle between the first portion 201 and the mandrel 10;
  • the inclination angle of the slope relative to the central axis is preferably larger than the self-locking angle between the second portion 202 and the mandrel 10.
  • the inclination angle of the inner circumferential surface of the first portion 201 and the second portion 202 with respect to the central axis is greater than arctan 0.1.
  • each cam on the basis of retaining the first portion and the second portion including the axial arrangement, it is also possible to provide: in the axial direction, the first portion and the second portion The cross section of the inner peripheral surface of the portion is uniform in size, and the inner peripheral surface of the first portion and the second portion is parallel to the axial direction.
  • the inner peripheral surface of the cam and the outer peripheral surface of the mandrel are cross-sectioned on the basis of retaining the first portion and the second portion arranged in the axial direction.
  • the shape may be set to other shapes, and is not limited to a polygon, and may be other shapes such as a circle.
  • the embodiment provides an engine including the cam shaft according to the first embodiment or the second embodiment, and the first valve and the second valve, wherein the first cam 21 is used to drive the first valve but does not drive the first
  • the second valve 22 is used to drive the second valve but does not drive the first valve.
  • the first valve and the second valve may be valves of the same cylinder or valves of different cylinders.
  • the cam includes the first portion 201 and the second portion 202
  • the first portion 201 and the second portion 202 of the same cam drive at least the same valve.
  • the embodiment of the present invention provides a method for manufacturing a camshaft.
  • the structure of the camshaft of the present embodiment can be referred to FIG. 1 and FIG. 3.
  • the mandrel 10 has a mating section 101 and a cross section of the mating section 101 at any axial position.
  • the outer circumference is polygonal, and the mandrel 10 has an axial bore 11 that extends axially to the mating section 101.
  • the structure of the cam can be referred to the structure of the first cam 21 and the second cam 22 shown in Figs. 1, 4, and the inner peripheral surface of the cam has a polygonal cross section.
  • the outer diameter of the mating segment 101 Prior to expansion, the outer diameter of the mating segment 101 is slightly smaller than the inner diameter of the cam. After the mating segment 101 is inserted into the cam, there may be a slight radial gap between the outer peripheral surface of the mating segment 101 and the inner peripheral surface of the cam. After expansion, the outer diameter of the extending portion of the engaging portion 101 into the cam is increased, and the radial gap between the cam and the extending portion is eliminated, so that the cam fits closely with the extending portion of the engaging portion 101 to The cam is fixed to the mandrel 10 in the axial direction, the radial direction, and the axial direction.
  • step S12 when the projecting portion of the mating segment 101 into the cam is expanded, the step of expanding includes extending the projecting member into the hole of the mandrel such that the projecting portion of the mating segment 101 expands in the radial direction.
  • the expansion member is a rigid member, then, in at least one direction in the radial direction, the size of the expansion member should be larger than the size of the hole, otherwise it will not be able to expand.
  • the expansion member is a rigid spherical member having a diameter greater than the diameter of the bore 11.
  • the expansion member is a fluid that expands the projecting portion of the mating section into the cam: fluid is introduced into the bore 11 under pressure so that the extended portion of the mating segment expands radially .
  • the aperture 11 should be closed at one end when expanding with a fluid. If the hole 11 is a blind hole, the fluid can be directly introduced. If the hole 11 is a through hole, one end of the hole 11 is first closed, and then fluid is introduced into the hole 11 from the other end of the hole 11, and the hole 11 of the mandrel 10 is expanded by the pressure of the fluid.
  • the adjacent two sides of the polygon are transitioned by a circular arc to reduce the distance between the two sides. Form sharp areas and reduce stress concentration.
  • each cam can be integrally formed and can be manufactured by a casting process.
  • the embodiment provides a method for manufacturing a camshaft.
  • the structure of the cam can be as shown in FIG. 5, including the first portion 201 and the second portion 202.
  • the mandrel 10 has a hole 11 in the axial direction.
  • step S22 when the hole 11 of the mandrel 10 is expanded, the expansion method is the same as that of the fourth embodiment, and details are not described herein again.
  • At least one of the first portion 201 and the second portion 202 is formed by a cold stamping process.
  • the shapes of the first portion 201 and the second portion 202 can be different.
  • the first portion 201 includes a cam profile for engine braking and the second portion 202 includes a cam profile for conventional engine operation.
  • the valve movement is driven by the second portion 202 when the engine is normally operative to provide a driving force to the wheel; the valve movement is driven by the first portion 201 when engine braking is required.
  • first portion 201 and the second portion 202 have identical shapes. Or the other shapes are the same except for the difference in axial thickness. In this embodiment, the first portion 201 and the second portion 202 are disposed to have the same axial dimension for ease of processing.
  • the dimension of the cross section of the inner peripheral surface 20a of the first portion 201 is reduced in the axial direction toward the second portion 202.
  • the shape of the first portion 201 can be referred to as shown in FIG. 7. In the axial direction, the inner peripheral surface of the first portion 201 has a sloped shape that is inclined toward the second portion 202.
  • the first portion 201 and the second portion 202 axially abut each other, and the two are in contact with each other or have a certain axial pressing force.
  • the first portion 201 will be moved toward the second portion 202 as the mandrel 10 and the first portion 201 are pressed against each other, so that the first portion 201 and the second portion 202 are axially fitted. close.
  • the dimension of the cross section of the inner peripheral surface 20a of the second portion 202 is reduced in the axial direction toward the first portion 201.
  • the second portion 202 will move toward the first portion 201 as the mandrel 10 and the second portion 202 are pressed against each other, so that the first portion 201 and the second portion 202 are axially fitted. More closely.
  • the inclination angle of the slope relative to the central axis is preferably larger than the self-locking angle between the first portion 201 and the mandrel 10;
  • the inclination angle of the slope relative to the central axis is preferably larger than the self-locking angle between the second portion 202 and the mandrel 10.
  • the inclination angle of the inner circumferential surface of the first portion 201 and the second portion 202 with respect to the central axis is greater than arctan 0.1.
  • the cross-section of the inner peripheral surface of the first portion 201 and the second portion 202 of the cam and the cross-sectional shape of the outer peripheral surface of the engaging portion 101 are not limited, and may be circular or polygonal.
  • An embodiment of the present invention provides a camshaft, as shown in FIG. 9, including a mandrel 10 and a cam 20 sleeved on the mandrel 10.
  • the cam 20 has a plurality of sleeves respectively disposed on the mandrel 10 and spaced apart in the axial direction.
  • Each cam 20 is used to drive a different engine valve.
  • the mandrel 10 has a mating segment 101 for mating with the cam 20, the cam being sleeved over the mating segment 101.
  • Reference map 10, FIG. 10 shows a cross-sectional profile of the mandrel 10 at the position of the mating segment 101.
  • the cross-sectional profile of the outer peripheral surface of the mating segment 101 includes a linear region 10a and a circular arc region 10b.
  • the arc zone 10a belongs to a circle and includes a plurality of arcs.
  • the linear zone 10a belongs to a polygon and includes a plurality of straight lines. The straight lines and the arcs are alternately arranged in the circumferential direction and connected to each other to form a cross-sectional profile of the outer peripheral surface. .
  • the polygon is a hexagon.
  • the outer peripheral surface of the engaging section 101 has the same contour in the cross section at any one of the axial positions.
  • any one of the contours having the arcuate region and the straight line region is stretched in the axial direction, that is, the outer peripheral surface of the mating segment 101 is formed.
  • cross section refers to a section perpendicular to the axial direction.
  • the contour shape of the cross section of the inner circumferential surface of the cam 20 coincides with the contour shape of the cross section of the outer circumferential surface of the fitting section 101 on the mandrel 10. That is, the cross-sectional profile of the inner circumferential surface of the cam 20 also includes a linear region 20a and a circular arc region 20b, which belong to a circle and include a plurality of arcs, and the linear region 20a belongs to the same
  • the polygon includes a plurality of straight lines, and the straight line and the circular arc are staggered in the circumferential direction. 11 shows only partial linear regions 20a and circular arc regions 20b in the cam 20.
  • the arcuate region 10b can engage the arcuate region 20b of the inner bore of the cam 20.
  • the shape of the arcuate region 10b coincides with the arcuate region 20b of the inner hole of the cam 20 such that the arcuate region 10b of the outer peripheral surface of the mandrel 10 (FIG. 10) and the arcuate region 20b of the inner bore of the cam 20 (FIG. 11) )fit.
  • the outer peripheral surface contour of the mandrel in the camshaft of the present scheme includes a straight line area and a circular arc area which are staggered, and the straight line area belongs to the same polygon, and the arc area belongs to the same circle.
  • the concentric assembly between the two can be achieved by the arc area corresponding to the circular arc area corresponding to the inner hole of the cam, and the fixing between the two is achieved by the straight line area corresponding to the inner hole of the cam line.
  • anti-rotation connection Compared to existing camshafts with splined connections, the torque transmitted is larger and the structure is simpler.
  • the circle where the arc area 10b (or 20b) is located is concentric with the polygon where the straight line segment 10a (or 20a) is located, that is, the geometric centers of the two coincide.
  • the camshaft further includes a bearing 30 mounted to the mating section 101 of the mandrel 10, the bearing 30 having an inner bore (not shown) that mates with the mandrel 10, the inner bore being circular And the diameter of the inner hole coincides with the diameter of the circle to which the circular arc region 10b belongs.
  • the inner bore of the bearing 30 may not be circular, but the inner bore of the bearing 30 need to include at least a curved surface that can engage the arcuate region 10b of the mandrel 10. That is, the shape of the cross section of the inner hole 30 of the bearing 30 may be a combination of polylines in which at least one or more line segments can be combined with the portion corresponding to the circular arc portion 10b of the mandrel 10. The corresponding arc area 10b is matched.
  • the polygon may be other polygons in addition to the hexagon.
  • the number of sides of the polygon may be an integral multiple of the number of cylinders of the engine, such as double, double, and the like.
  • the above polygon may be a hexagon; for a four-cylinder engine, the above polygon may be a quadrilateral.
  • the phase difference between the two cams corresponding to the two cylinders adjacent to the engine is n*(360°/N), where N is the number of cylinders of the engine cylinder, and n is an integer of 1 or greater.
  • only the cross-sectional profile of the inner circumferential surface of the cam may be set to the above-described shape including the linear region and the circular arc region, and the contour shape of the outer circumferential surface of the mandrel may not be limited, and may be a cylinder. shape.
  • the embodiment provides a method for manufacturing a camshaft, the method comprising the following steps:
  • At least one cam 20 includes a first portion 21 and a second portion 22 which are axially arranged, and the first portion 21 and the second portion 22 are respectively sleeved on the mandrel 10 and are axial, radial and axial.
  • the directions are both fixed to the mandrel 10.
  • the first portion 21, the second portion 22 and the mandrel 10 are completely fixed, and after the installation is completed, no relative movement between the mandrel 10 and the mandrel 10 occurs in the axial direction, the radial direction, and the axial direction.
  • all of the cams disposed on the mandrel 10 may include the first portion and the second portion; and a portion of the cam sleeved on the mandrel may include the first portion and the second portion, and
  • the remaining cams can be integrally formed cams.
  • the cams 20 that are sleeved on the mandrel 10 each include the first portion 21 and the second portion 22. Only the first portion and the second portion of one of the first cams 21 are labeled in FIG.
  • the manufacturing method of the embodiment further includes step S13.
  • Step S13 The first portion 21 and the second portion 22 of the cam 20 are respectively fixed to the mandrel 10 and configured to drive the same engine valve.
  • first portion 21 and the second portion 22 are independent of each other and are respectively sleeved on the mandrel 10.
  • the first portion 21 has a first axial end surface 201a
  • the second portion 22 has a second axial end surface 202a
  • the first axial end surface 201a and the second axial end surface 202a are disposed face to face.
  • the first portion 21 and the second portion 22 are two separate components.
  • the first portion 21 and the second portion 22 are respectively manufactured and coaxially sleeved outside the mandrel 10 by assembly.
  • the first axial end surface 201a of the first portion 21 and the second axial end surface 202a of the second portion 22 may be separated from each other, that is, not in contact with each other; or the first axial end surface 201a and the second axial end surface 202a can also be in contact with each other.
  • the lubricating oil can be lubricated by the use of a gap between the first portion and the second portion.
  • the cam in this embodiment is divided into the first portion 21 and the second portion 22 which are arranged in the axial direction, and the axial thickness of each portion is smaller, so that punching, for example, cold stamping, can be employed.
  • the process is manufactured at a lower cost.
  • the first portion 21 and the second portion 22 may have identical shapes, such as the same shape of the cross section, the same shape of the axial section, the same axial thickness, and the like. Alternatively, the first portion 21 and the second portion 22 may have different axial thicknesses while remaining the same shape.
  • the "axial section” refers to a section obtained by cutting in a direction parallel to the axial direction.
  • the shapes of the first portion 21 and the second portion 22 are different.
  • the first portion 21 includes a cam profile for engine braking and the second portion 22 includes a cam profile for conventional engine operation.
  • the valve movement is driven by the second portion 22 when the engine is normally operated to provide a driving force to the wheel; the valve movement is driven by the first portion 21 when engine braking is required.
  • step S14 Further, the method of this embodiment further includes step S14.
  • Step S14 expanding the protruding portion of the mandrel 10 into the first portion 21 and the second portion 21 such that the outer diameter of the protruding portion is increased and radial with the first portion 21 and the second portion 22 Pressing against each other.
  • the outer diameter of the fitting section 101 may be slightly smaller than the inner diameter of the cam 20. After the fitting section 101 is inserted into the cam 20, there may be a slight radial gap between the outer peripheral surface of the engaging section 101 and the inner peripheral surface of the cam 20. . After expansion, the outer diameter of the extending portion of the engaging portion 101 into the cam 20 is increased, and the cam 20 and the extending portion of the engaging portion 101 are enlarged. The intervening radial clearance is eliminated such that the cam 20 mates with the extended portion of the mating segment 101 to secure the cam 20 to the mandrel 10 in the axial, radial, and axial directions.
  • the mandrel 10 has an axial hole 11.
  • the axial hole 11 may be a through hole or a blind hole, and the number of the holes 11 may be one, or two of which are respectively opened toward the axial ends of the mandrel. It should be noted, however, that the axial bore 11 should extend to each location where expansion is desired.
  • the step of expanding includes extending the projecting member S into the axial bore 11 of the mandrel 10 such that the extending portion of the mating segment 101 Expanded in the radial direction.
  • the expansion member S is a rigid member, then, in at least one direction in the radial direction, the size of the expansion member S should be larger than the size of the axial hole 11, otherwise it will not be able to expand.
  • the expansion member 30 is a rigid ball, such as a steel ball.
  • the diameter of the steel ball is larger than the diameter of the axial hole 11.
  • the expansion member may be a fluid that expands into the projecting portion of the mating section into the cam: fluid is introduced into the axial bore 11 under pressure so that the extending portion of the mating segment is along Radial expansion.
  • the axial bore 11 should be closed at one end when expanding with a fluid. If the axial bore 11 is a blind bore, the fluid can be passed directly. If the axial hole 11 is a through hole, one end of the axial hole 11 is first closed, and then the fluid is introduced into the axial hole 11 from the other end of the axial hole 11, and the shaft of the mandrel 10 is expanded by the pressure of the fluid. To the hole 11.
  • the embodiment provides a method for manufacturing a camshaft, and the manufacturing method includes:
  • step S21 when the mandrel is formed, the following sub-steps are included:
  • S212 forming a plurality of circumferentially spaced planes on the outer cylindrical surface by cold drawing, the plane extending along an axial direction of the pipe member, such that a contour of a cross section of the outer peripheral surface of the pipe member includes a straight line region and a circle
  • the arc area belongs to a circle and includes a plurality of arcs
  • the line area belongs to a polygon and includes a plurality of straight lines, and the line and the arc are staggered in the circumferential direction.
  • cross-sectional shape of the pipe member can be referred to FIG.
  • the manufacturing method of the embodiment adopts a cold drawing process to form a pipe member, and forms the plane on the outer cylindrical surface of the pipe member by a cold drawing process, thereby ensuring high precision of the arc zone and the straight zone of the pipe fitting, thereby not Rework is required to reduce the manufacturing cost of the camshaft.
  • the circle where the arc area is located and the polygon where the straight line area is located are concentric.
  • the number of sides of the polygon is set to be the same as that of the sixth embodiment.
  • the method further includes the step S23 of forming the first portion and the second portion of the cam by a cold stamping process. There is no timing relationship between step S23 and step S21.
  • the structure of the first portion and the second portion of the cam in this embodiment is the same as that of the seventh embodiment, and reference can be made to Figs. 12 and 13 .
  • the cross section of the inner peripheral surface of the first portion and the second portion forming the cam includes a linear area and a circular arc area, the circular arc area belonging to a circle and including a plurality of arcs, the straight line area It belongs to a polygon and includes a plurality of straight lines, and the straight line and the circular arc are staggered in the circumferential direction.
  • the circle where the circular arc region is located and the polygon where the linear region is located may be concentric.
  • step S22 "setting the cam to the mandrel"
  • the method further includes the step of expanding the extending portion of the mandrel into the cam. This step is the same as that of the seventh embodiment, and details are not described herein again. .
  • step S21 in the method of manufacturing the camshaft, step S21 can also be performed by using the existing method without using the method used in steps S211 to S212 of the embodiment.
  • step S23 of the present embodiment is employed to manufacture the cam.
  • steps S211 to S212 may be used to manufacture other tubular members than the mandrel.
  • Step S24 can also be used to make other cams for use outside of the camshaft.
  • An embodiment of the present invention provides a camshaft, as shown in FIG. 15, including a mandrel 10 and a cam 20 sleeved on the mandrel 10.
  • the cam 20 has a plurality of sleeves respectively disposed on the mandrel 10 and spaced apart in the axial direction.
  • a camshaft having six cams 20 is exemplarily shown in Fig. 15, each cam 20 on the camshaft corresponding to a cylinder of an engine, each cam 20 being rotatably coupled to the mandrel 10, respectively. .
  • Each cam 20 is used to drive a different engine valve.
  • the mandrel 10 has a mating segment 101 for mating with the cam 20, the cam being sleeved over the mating segment 101.
  • Figure 16 shows a cross-sectional profile of the mandrel 10 at the position of the mating segment 101.
  • the cross-sectional profile of the outer peripheral surface of the mating segment 101 includes a linear region 10a and a circular arc region 10b.
  • the arc zone 10a belongs to a circle and includes a plurality of arcs.
  • the linear zone 10a belongs to a polygon and includes a plurality of straight lines. The straight lines and the arcs are alternately arranged in the circumferential direction and connected to each other to form a cross-sectional profile of the outer peripheral surface. .
  • the polygon is a dodecagonal shape.
  • the outer peripheral surface of the engaging section 101 has the same contour in the axial position, and the contours of the arc area and the straight line section are axially stretched, that is, the mating section 101 is formed.
  • the contour shape of the cross section of the inner circumferential surface of the cam 20 coincides with the contour shape of the cross section of the outer circumferential surface of the fitting section 101 on the mandrel 10. That is, the cross-sectional profile of the inner circumferential surface of the cam 20 also includes a linear region 20a and a circular arc region 20b, which belong to a circle and include a plurality of arcs, and the linear region 20a belongs to the same
  • the polygon includes a plurality of straight lines, and the straight line and the circular arc are staggered in the circumferential direction. 18 shows only partial linear regions 20a and circular arc regions 20b in the cam 20.
  • the arcuate region 10b can engage the arcuate region 20b of the inner bore of the cam 20.
  • the shape of the circular arc portion 10b coincides with the circular arc portion 20b of the inner hole of the cam 20, so that the circular arc portion 10b of the outer peripheral surface of the mandrel 10 (see FIG. 16) and the circular arc portion 20b of the inner hole of the cam 20 (see Figure 18) Fit.
  • the outer peripheral surface contour of the mandrel in the cam shaft in this embodiment includes a linear area and a circular arc area which are staggered, and the straight line area belongs to the same polygon, and the circular arc area belongs to the same circle.
  • the concentric assembly between the two can be achieved by the arc area corresponding to the circular arc area corresponding to the inner hole of the cam, and the fixing between the two is achieved by the straight line area corresponding to the inner hole of the cam line. , anti-rotation connection.
  • the torque transmitted is larger and the structure is simpler.
  • the circle where the arc area 10b (or 20b) is located is concentric with the polygon where the straight line segment 10a (or 20a) is located, that is, the geometric centers of the two coincide.
  • the cam shaft further includes a journal 60 which is machined into an outer cylindrical surface at a predetermined distance on the outer peripheral surface of the mandrel 10 to form a journal 60 for rotating, the journal 60
  • the entire camshaft is supported, and the outer cylindrical surface is excessively connected with the circular arc zone and the linear zone of the mandrel.
  • the camshaft further includes a transmission unit 40 that is fitted to one end of the mandrel.
  • the cross-section of the face has the same contour shape.
  • the camshaft further includes two end plugs 30 and 50, the outer cylindrical surface of one end of the plugs 30 and 50 having a diameter slightly larger than the inner bore of the mandrel, and the outer cylindrical surface of the plug The knurling process is performed; the plugs 30 and 50 are pressed into the inner holes of both ends of the mandrel.
  • the polygon may be other polygons in addition to the dodecagonal shape.
  • the number of sides of the polygon may be an integral multiple of the number of cylinders of the engine, such as double, double, and the like.
  • the above polygon may be a hexagon; for a four-cylinder engine, the above polygon may be a quadrilateral.
  • the phase difference between the two cams corresponding to the two cylinders adjacent to the engine is n*(360°/N), where N is the number of cylinders of the engine cylinder, and n is an integer of 1 or greater.
  • only the cross-sectional profile of the inner circumferential surface of the cam may be set to the above-described shape including the linear region and the circular arc region, and the contour shape of the outer circumferential surface of the mandrel may not be limited, and may be a cylinder. shape.
  • the embodiment provides a method for manufacturing a camshaft, the method comprising the following steps:
  • At least one cam 20 and a transmission unit 40 are sleeved on the mandrel 10 and are fixed to the mandrel 10 in the axial direction, the radial direction, and the axial direction.
  • the cam 20, the transmission unit 40 and the mandrel 10 are completely fixed, and after the installation is completed, the relative movement between the cam shaft 10 and the mandrel 10 cannot be performed in the axial direction, the radial direction, and the axial direction.
  • the manufacturing method of the embodiment further includes the step S'13.
  • Step S'13 the mandrel 10 is extended into the cam 20, and the extending portion of the transmission unit 40 is expanded, so that the outer diameter of the extending portion is increased, and the cam 20 and the transmission unit 40 are pressed against each other in the radial direction. .
  • the outer diameter of the engaging section 101 may be slightly smaller than the inner diameter of the cam 20 and the transmission unit 40. After the engaging section 101 is inserted into the cam 20 and the transmission unit 40, the outer peripheral surface of the engaging section 101 and the cam 20 and the transmission unit 40 are engaged. There may be a slight radial gap between the inner peripheral faces.
  • the outer diameter of the extending portion of the engaging portion 101 into the cam 20 and the transmission unit 40 is increased, and the radial gap between the cam 20, the transmission unit 40 and the extending portion of the engaging portion 101 is eliminated, thereby
  • the cam 20 and the transmission unit 40 are closely matched with the extending portion of the engaging section 101 to fix the cam 20 and the transmission unit 40 to the mandrel 10 in the axial direction, the radial direction and the axial direction.
  • the mandrel 10 has an axial hole 11.
  • the axial hole 11 can be a pass
  • the holes may also be blind holes, the number of which may be one, or two which are respectively open toward the axial ends of the mandrel. It should be noted, however, that the axial bore 11 should extend to each location where expansion is desired.
  • the step of expanding includes: the cam 20, the transmission unit 40 is fitted on the mandrel 10, the cam 20, and the transmission unit 40 Then, the axial positioning is performed by the upper mold M1 and the lower mold M2, and the angular positioning is positioned by the polygonal shape of the outer peripheral surface of the mandrel 10, and the expansion member S is extended into the axial hole 11 of the mandrel 10, so that the extension of the engaging section 101 is extended.
  • the inward portion expands in the radial direction.
  • the expansion member S is a rigid member, then, in at least one direction in the radial direction, the size of the expansion member S should be larger than the size of the axial hole 11, otherwise it will not be able to expand.
  • the expansion member S is a rigid spherical member, such as a steel ball.
  • the diameter of the steel ball is larger than the diameter of the axial hole 11.
  • the cam 20 and the transmission unit 40 are sleeved on the mandrel 10, and the upper mold 100 and the lower mold 110 are placed on the table 90.
  • the cam 20 and the transmission unit 40 pass through the upper mold 100 and the lower portion.
  • the mold 110 is axially positioned, and the angular positioning is positioned by the polygonal shape of the outer peripheral surface of the mandrel 10.
  • the expansion member may be a fluid, and the extending portion of the engaging portion extending into the cam is expanded: both ends of the mandrel 10
  • the piston plugs 80, 120 are used for sealing, and as the high-pressure liquid is pressed into the tube through the pipe 70, the fluid is continuously pressurized into the axial hole 11 under pressure, and the piston plugs 80 and 120 are continuously pressed against the mandrel.
  • the both ends of the 10 are sealed, and an internal high pressure is formed in the mandrel tube so that the extending portion of the engaging section expands in the radial direction.
  • the axial bore 11 should be closed at both ends when expanding with fluid. If the axial bore 11 is a blind bore, the fluid can be passed directly. If the axial hole 11 is a through hole, one end of the axial hole 11 is first closed, and then the fluid is introduced into the axial hole 11 from the other end of the axial hole 11, and the shaft of the mandrel 10 is expanded by the pressure of the fluid. To the hole 11.
  • the plugs 30, 50 are pressed into the two ends of the mandrel 10; the plugs 30, 50 can be mechanically processed in advance.
  • the knurling is processed on the outer cylindrical surface of one end of the plug, and then the knurled outer cylindrical surface is pressed into both ends of the mandrel 10, and the plugs 30, 50 can be used as a positioning reference for subsequent grinding processing. .
  • the embodiment provides a method for manufacturing a camshaft, and the manufacturing method includes:
  • step S'21 when the mandrel is formed, the following substeps are included:
  • S'212 forming a plurality of circumferentially spaced planes on the outer cylindrical surface by cold drawing, the plane extending along an axial direction of the pipe member, such that a contour of a cross section of the outer peripheral surface of the pipe member includes a straight line region
  • the arc area belongs to a circle and includes a plurality of arcs
  • the line area belongs to a polygon and includes a plurality of straight lines, and the straight line and the arc are staggered in the circumferential direction.
  • cross-sectional shape of the pipe member can be referred to FIG.
  • the manufacturing method of the embodiment adopts a cold drawing process to form a pipe member, and forms the plane on the outer cylindrical surface of the pipe member by a cold drawing process, thereby ensuring high precision of the arc zone and the straight zone of the pipe fitting, thereby not Need to add machine Work, thereby reducing the manufacturing cost of the camshaft.
  • the circle where the arc area is located and the polygon where the straight line area is located are concentric.
  • the number of sides of the polygon is set to be the same as that of the ninth embodiment.
  • step S'22 "setting the cam and the transmission unit to the mandrel", further comprising the step S'23: forming the cam by a forging process, the inner circumferential surface and the end surfaces of the cam Finishing is performed at the edge of the inner peripheral surface, and the transmission unit is formed by a machining process. There is no timing relationship between step S'23 and step S'21.
  • the cam structure in this embodiment is the same as that of the tenth embodiment, and reference can be made to FIG.
  • the cross-sectional shape of the inner circumferential surface of the cam and the transmission unit coincides with the cross-sectional shape of the outer circumferential surface of the mandrel, and the shape of the cross section of the inner circumferential surface of the cam and the transmission unit can be referred to FIGS. 18 and 5.
  • an outer circumferential surface of the mandrel is matched with an inner circumferential surface of the cam.
  • the cross section of the inner peripheral surface forming the cam and the transmission unit includes a linear area and a circular arc area
  • the circular arc area belongs to a circle and includes a plurality of arcs
  • the linear area belongs to the same One polygon and including a plurality of straight lines, the straight lines and the circular arcs are staggered in the circumferential direction.
  • the circle where the arc area is located and the polygon where the straight line area is located may be concentric.
  • step S'22 "setting the cam to the mandrel", further comprising the step of expanding the projecting portion of the mandrel into the cam and the transmission unit, the step is the same as that of the tenth embodiment, I will not repeat them here.
  • step S'21 in the method of manufacturing the camshaft, step S'21 may be performed by an existing method without using the method used in steps S'211 to S'212 of the present embodiment.
  • step S'23 of this embodiment is employed to manufacture the cam.
  • steps S'211 through S'212 may be used to manufacture other tubular members than the mandrel.
  • Step S'24 can also be used to make other cams for use outside of the camshaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

发动机及其凸轮轴、凸轮轴的制造方法,凸轮轴包括芯轴,具有轴向的孔,所述芯轴具有配合段,所述配合段在任意一个轴向位置的外周横截面均为多边形;第一凸轮、第二凸轮,所述第一凸轮、第二凸轮分別套设于所述芯轴的配合段且沿轴向间隔设置。本结构能够传递的扭矩更大,结构更简单、制造工艺简化、制造耗时减小、成本降低。

Description

发动机及其凸轮轴、凸轮轴的制造方法
本申请要求于2016年6月8日提交中国专利局、申请号为201610537009.5,发明名称为“发动机及其凸轮轴、凸轮轴的制造方法”的中国专利申请的优先权;要求于2016年10月14日提交中国专利局、申请号为201610899486.6,发明名称为“凸轮轴及凸轮轴、管件和凸轮的制造方法”的中国专利申请的优先权;要求于2017年5月26日提交中国专利局、申请号为201710387766.3,发明名称为“一种凸轮轴及凸轮轴的制造方法”的中国专利申请的优先权其全部内容通过引用结合在本申请中。
技术领域
本发明涉及汽车发动机领域,具体涉及一种发动机及其凸轮轴、凸轮轴的制造方法。
背景技术
发动机的配气机构负责向气缸提供汽油燃烧做功所必须的新鲜空气,并将燃烧后的废气排出。
凸轮轴是配气结构的关键部件,发动机上配备有进气凸轮轴和排气凸轮轴,每一凸轮轴都具有芯轴和套设于芯轴上的凸轮,芯轴与发动机曲轴通过链条或皮带传动连接,芯轴与凸轮同步转动。其中,进气凸轮轴的凸轮用于驱动发动机的进气门进行开闭,排气凸轮轴的凸轮则用于驱动发动机的排气门进行开闭。
现有发动机中,组装式凸轮轴的凸轮与芯轴通过花键连接。虽然花键连接可以保证凸轮角位置的精度,但是仍旧存在下列缺点:
第一,为了在凸轮的内周面、芯轴的外周面形成花键,零件的结构复杂。并且,需要用专用设备来加工形成花键,且需要经过渗碳处理来保证零件的性能,制造工艺复杂、耗时长、成本高。
第二,凸轮的轴向尺寸较大,一般采用铸造工艺来形成,成本较高。
第三,花键连接所能传递的扭矩有限。
除此之外,目前,制造凸轮轴的方法有:传统整体式的铸造法、锻造法,以及组合式制造凸轮轴的方法。其中,应用铸造法、锻造法来制造凸轮轴存在诸多缺点,例如:不能对凸轮轴各个部位进行性能最大化设计和利用,对于凸轮、轴颈、芯轴、传动单元等各部分的性能要求有很大的不同,若用单一材料,不能把每个部分的性能做到最大化,整个加工制造工艺复杂,需要大量的机械加工工序,生产效率不高,能耗大、环境污染严重。
组合式凸轮轴的制造方法有:焊接法、扩管法、机械滚花法等。这些方法大部分都是将凸轮轴分解成单个的凸轮零件、中间芯轴零件、传动零件等等,再应用不同的制造工艺方法将各个零件连接起来组合成一个整体的凸轮轴。其中,应用机械滚花法将凸轮与芯轴通过加工出的花键进行连接。虽然花键连接可以保证凸轮角位置的精度,但是仍旧存在下列缺点:第一,为了在凸轮的内周面、芯轴的外周面形成花键,零件的结构复杂。并且,需要用专用设备来加工形成花键,制造工艺复杂、耗时长、成本高。第二,凸轮与芯轴之间的花键连接,每次只能连接一个凸轮到芯轴上,需要多次组合才能完成一根凸轮轴的组合。
发明内容
本发明解决的问题是现有凸轮轴的结构复杂、制造工艺复杂、耗时长、成本高, 且传递扭矩有限。
为解决上述问题,本发明提供一种凸轮轴,包括:芯轴,具有轴向的孔,所述芯轴具有配合段,所述配合段在任意一个轴向位置的横截面的外周均为多边形;第一凸轮、第二凸轮,所述第一凸轮、第二凸轮分别套设于所述芯轴的配合段且沿轴向间隔设置,所述第一凸轮、第二凸轮的内周面的横截面为多边形,所述配合段沿轴向至少从所述第一凸轮延伸至所述第二凸轮。
可选的,所述多边形中相邻的两条边之间通过圆弧过渡。
可选的,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;所述第一部分、第二部分分别套设于所述芯轴,且在轴向、径向和周向均固定于所述芯轴;所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面且相互分离。
可选的,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;所述第一部分、第二部分分别套设在所述芯轴,且在轴向、径向和周向均固定于所述芯轴;所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面且相互接触。
可选的,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;除轴向厚度之外,所述第一部分、第二部分的形状相同。
可选的,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
本发明还提供一种发动机,包括:第一气门;第二气门;上述任一项所述的凸轮轴,所述第一凸轮用于驱动所述第一气门但不驱动所述第二气门,所述第二凸轮用于驱动所述第二气门但不驱动所述第一气门。
本发明还提供一种凸轮轴,包括:芯轴;凸轮,套设于所述芯轴,所述凸轮包括沿轴向排布的第一部分和第二部分,所述第一部分、第二部分分别套设于所述芯轴,且在轴向、径向和轴向均固定于所述芯轴;所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面。
可选的,所述第一部分具有用于发动机制动的凸轮轮廓,所述第二部分具有用于发动机常规工作的凸轮轮廓。
可选的,除轴向厚度之外,所述第一部分、第二部分的形状相同。
可选的,所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺 寸呈减小趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
本发明还提供一种发动机,包括:气门;上述任一项所述的凸轮轴,所述凸轮的第一部分和第二部分驱动至少同一个所述气门。
本发明还提供一种凸轮轴,包括:芯轴;凸轮,套设于所述芯轴,所述凸轮包括沿轴向排布的第一部分和第二部分,所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面;除轴向厚度外,所述第一部分、第二部分的形状相同。
可选的,所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
本发明还提供一种凸轮轴的制造方法,包括:先将凸轮套设于芯轴的配合段,所述配合段在任意一个轴向位置的横截面的外周均为多边形,所述凸轮的内周面的横截面为多边形,所述芯轴具有轴向的孔,所述孔延伸至所述配合段;然后对所述配合段伸入所述凸轮内的伸入部分进行扩张,使得所述伸入部分的外径增大、并与所述凸轮沿径向相互压紧。
可选的,对所述配合段伸入所述凸轮内的伸入部分进行扩张的步骤包括:将扩张件伸入所述孔,使得所述伸入部分沿径向扩张。
可选的,沿径向至少在一个方向上,所述扩张件的尺寸大于所述孔的尺寸。
可选的,对所述配合段伸入所述凸轮内的伸入部分进行扩张的步骤包括:在压力作用下向所述孔中通入流体,使得所述伸入部分沿径向扩张。
可选的,所述多边形中相邻的两条边之间通过圆弧过渡。
可选的,所述凸轮包括沿轴向排布在所述芯轴的第一部分、第二部分。
可选的,除轴向厚度之外,所述第一部分、第二部分的形状相同。
可选的,所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈间隙趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
可选的,利用冷冲压工艺制成所述第一部分、第二部分中的至少之一。
本发明还提供一种凸轮轴的制造方法,包括:先将凸轮的第一部分、第二部分分别套设在芯轴的配合段上,所述第一部分、第二部分沿轴向排布,所述芯轴具有沿轴向的孔,所述孔延伸至所述配合段;然后对所述配合段伸入所述第一部分、第二部分内的伸入部分进行扩张,使得所述伸入部分的外径增大,并与所述第一部分、第二部分沿径向相互压紧。
可选的,对所述配合段伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:将扩张件伸入所述孔,使得所述伸入部分沿径向扩张。
可选的,沿径向至少在一个方向上,所述扩张件的尺寸大于所述孔的尺寸。
可选的,对所述配合段伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:在压力作用下向所述孔中通入流体,使得所述伸入部分沿径向扩张。
可选的,所述第一部分包括用于发动机制动的凸轮轮廓,所述第二部分包括用于发动机常规点火的凸轮轮廓。
可选的,除轴向厚度之外,所述第一部分、第二部分的形状相同。
可选的,所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
可选的,利用冷冲压工艺制成所述第一部分、第二部分中的至少之一。
本发明提供一种凸轮轴,包括:具有配合段的芯轴,所述配合段的外周面在任一轴向位置的横截面轮廓均相同,所述横截面轮廓包括:直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓;凸轮,套设于所述芯轴的配合段。
可选的,所述圆和所述多边形同心。
可选的,还包括:轴承,安装于所述芯轴的配合段,所述轴承具有与所述芯轴配合的内孔,所述内孔为圆形且所述圆形的直径与所述圆弧区所属的圆的直径一致。
可选的,还包括轴承,所述轴承具有内孔,所述内孔包括与所述芯轴的圆弧区配合的弧面。
可选的,所述凸轮的内周面的横截面的轮廓形状与所述配合段的外周面的横截面的轮廓形状一致。
可选的,所述凸轮具有分别套设于所述芯轴的配合段的多个,且沿轴向间隔设置。
本发明还提供一种凸轮轴,包括:芯轴;凸轮,套设于所述芯轴,所述凸轮的内周面的横截面轮廓包括:直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓。
可选的,所述圆和所述多边形同心。
本发明还提供一种凸轮轴的制造方法,包括:利用冷冲压工艺制成凸轮的第一部分、第二部分的至少之一;将所述第一部分、第二部分分别套设于所述芯轴。
可选的,还包括:将所述第一部分、第二部分分别固定在所述芯轴上,并被配置成用于驱动同一气门。
可选的,还包括:对所述芯轴伸入所述第一部分、第二部分内的伸入部分进行扩张,使得所述伸入部分的外径增大,并与所述第一部分、第二部分沿径向相互压紧。
可选的,所述芯轴具有轴向孔,对所述芯轴伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:将扩张件伸入所述轴向孔,使得所述伸入部分沿径向扩张。
可选的,所述芯轴具有轴向孔,对所述芯轴伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:在压力作用下向所述轴向孔中通入流体,使得所述伸入部分沿径向扩张。
本发明还提供一种凸轮轴的制造方法,包括:形成具有轴向孔的芯轴;将凸轮套设于所述芯轴;所述芯轴的形成步骤包括:采用冷拔形成具有外圆柱面的管件;利用冷拔在所述外圆柱面形成若干沿周向间隔分布的平面,所述平面沿所述管件的轴向延伸,使得所述管件的外周面的横截面的轮廓包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓。
可选的,所述圆和所述多边形同心。
可选的,在将凸轮套设于所述芯轴之前,还包括:利用冷冲压工艺形成所述凸轮的第一部分、第二部分;所述第一部分、第二部分的内周面的横截面形状与所述芯轴的外周面的横截面形状一致;将凸轮套设于所述芯轴时,分别将所述第一部分、第二部分套设于所述芯轴,并使得所述芯轴的外周面与所述第一部分、第二部分的内周面相匹配。
可选的,对所述芯轴伸入所述凸轮内的伸入部分进行扩张,使得所述伸入部分的外径增大、并与所述凸轮沿径向相互压紧。
可选的,对所述芯轴伸入所述凸轮内的伸入部分进行扩张的步骤包括:将扩张件伸入所述轴向孔,使得所述伸入部分沿径向扩张。
可选的,对所述芯轴伸入所述凸轮内的伸入部分进行扩张的步骤包括:在压力作用下向所述轴向孔中通入流体,使得所述伸入部分沿径向扩张。
本发明还提供一种凸轮轴的制造方法,包括:采用冷冲压工艺制成凸轮的第一部分、第二部分,所述第一部分、第二部分的内周面的横截面包括直线区和圆弧区,所述圆弧 区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓;将所述凸轮的第一部分、第二部分分别套设于芯轴。
可选的,包括:所述圆和所述多边形同心。
可选的,所述芯轴的外周面的横截面形状与所述第一部分、第二部分的内周面的横截面形状一致;将所述第一部分、第二部分套设于所述芯轴时,所述芯轴的外周面与所述第一部分、第二部分的内周面相匹配。
可选的,对所述芯轴伸入所述第一部分、第二部分内的伸入部分进行扩张,使得所述伸入部分的外径增大、并与所述第一部分、第二部分沿径向相互压紧。
可选的,所述芯轴具有轴向孔,对所述芯轴伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:将扩张件伸入所述轴向孔,使得所述伸入部分沿径向扩张。
可选的,所述芯轴具有轴向孔,对所述芯轴伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:在压力作用下向所述轴向孔中通入流体,使得所述伸入部分沿径向扩张。
本发明还提供一种管件的制造方法,包括:采用冷拔形成具有外圆柱面的管件;利用冷拔在所述外圆柱面形成若干沿周向间隔分布的平面,所述平面沿所述管件的轴向延伸,使得所述管件的外周面的横截面的轮廓包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓。
可选的,所述管件为凸轮轴的芯轴。
本发明还提供一种凸轮的制造方法,包括:采用冷冲压工艺制成凸轮的第一部分、第二部分,所述第一部分、第二部分的内周面包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓。
本发明还提供一种凸轮轴,包括:芯轴,具有轴向孔,所述芯轴具有配合段,所述配合段的外周面在任意一个轴向位置的横截面均为多边形;第一凸轮、第二凸轮,所述第一凸轮、第二凸轮分别套设于所述芯轴的配合段且沿轴向设置,所述第一凸轮、第二凸轮的内周面的横截面为多边形,所述配合段沿轴向至少从所述第一凸轮延伸至所述第二凸轮。
可选的,所述芯轴配合段的外周面的横截面与第一凸轮、第二凸轮的内周面的横截面为边数相同的多边形。换言之,配合段的外周面的横截面与第一凸轮、第二凸轮的内周面的横截面的形状相同。
可选的,当所述的芯轴配合段的多边形与第一凸轮、第二凸轮的内周面的多边形同心时,芯轴配合段与第一凸轮、第二凸轮之间的间隙在周向各个位置的尺寸相同。
可选的,所述多边形中相邻的两条边之间通过圆弧过渡。也就是说,多边形中相邻两边之间通过圆弧连接。
可选的,所述凸轮的所述多边形中相邻的两条边之间的过渡(或连接)圆弧的圆心与该凸轮的多边形的中心重合。
可选的,所述芯轴的所述多边形中相邻的两条边之间的过渡(或连接)圆弧的圆心与该芯轴的多边形的中心重合。
可选的,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;
所述第一部分、第二部分分别套设于所述芯轴,且在轴向、径向和周向均固定于所述芯轴;所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面且相互分离。
可选的,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;所述第一部分、第二部分分别套设在所述芯轴,且在轴向、径向和周向均固定于所述芯轴;所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面且相互接触。
可选的,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;除轴向厚度之外,所述第一部分、第二部分的形状相同。
可选的,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
可选的,还包括至少两个轴承,所述的轴承套设于所述芯轴的配合段且沿轴向间隔设置,所述轴承套设在所述芯轴上的内周面的横截面为多边形,所述轴承的外周面为圆柱面。
本发明还提供一种发动机,其包括:第一气门;第二气门;上述具有第一凸轮、第二凸轮的凸轮轴,所述第一凸轮用于驱动所述第一气门,所述第二凸轮用于驱动所述第二气门。
可选的,所述发动机包括至少三个气缸,其中凸轮轴中多边形的边数与发动机气缸的个数相同。
本发明还提供一种凸轮轴,其包括:芯轴;凸轮,套设于所述芯轴,所述凸轮包括沿轴向排布的第一部分和第二部分,所述第一部分、第二部分分别套设于所述芯轴,且在轴向、径向和轴向均固定于所述芯轴;所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面。
可选的,所述第一部分具有用于发动机制动的凸轮轮廓,所述第二部分具有用于发动机常规工作的凸轮轮廓。
可选的,除轴向厚度之外,所述第一部分、第二部分的形状相同。
可选的,所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
本发明还提供一种凸轮轴,包括:芯轴;凸轮,套设于所述芯轴,所述凸轮包括沿轴向排布的第一部分和第二部分,所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面;除轴向厚度外,所述第一部分、第二部分的形状相同。
可选的,所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
本发明还提供一种凸轮轴的制造方法,包括:将凸轮套设于芯轴的配合段,所述配合段的外周面在任意一个轴向位置的横截面均为多边形,所述凸轮套设于芯轴上的内周面的横截面为多边形,所述芯轴具有轴向孔,所述轴向孔延伸至所述配合段;对所述芯轴配合段伸入所述凸轮内的伸入部分进行扩张,使得所述伸入部分的外径增大、并与所述凸轮沿径向相互压紧。
可选的,对所述芯轴配合段伸入所述凸轮内的伸入部分进行扩张的步骤包括:将扩张件伸入所述轴向孔,使得所述伸入部分沿径向扩张。
可选的,沿径向至少在一个方向上,所述扩张件的尺寸大于所述轴向孔的尺寸。
可选的,对所述芯轴配合段伸入所述凸轮内的伸入部分进行扩张的步骤包括:在压力作用下向所述轴向孔中通入流体,使得所述伸入部分沿径向扩张。
可选的,对所述芯轴配合段伸入所述凸轮内的伸入部分进行扩张的步骤包括:将芯轴内的轴向孔做成盲孔,向所述盲孔中注满流体,在盲孔的开口端往盲孔内压入扩张件,增加所述轴向孔内流体的压力,使得所述伸入部分沿径向扩张。
可选的,所述的扩张件为一个钢球。
可选的,所述的扩张件为两个以上的钢球。
可选的,所述两个以上的钢球沿轴向串联式地排列,钢球与钢球之间设置有隔垫。
可选的,所述的两个以上的钢球具有不同的直径。
可选的,所述多边形中相邻的两条边之间通过圆弧过渡(或连接)。
可选的,所述多边形中相邻的两条边之间的过渡(或连接)圆弧的圆心与多边形的 中心重合。
可选的,所述凸轮包括沿轴向排布在所述芯轴的第一部分、第二部分。
可选的,除轴向厚度之外,所述第一部分、第二部分的形状相同。
可选的,所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈间隙趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
可选的,利用冷冲压工艺制成所述第一部分、第二部分中的至少之一。
本发明还提供一种凸轮轴的制造方法,包括:将凸轮的第一部分、第二部分分别套设在芯轴的配合段上,所述第一部分、第二部分沿轴向排布,所述芯轴具有轴向孔,所述轴向孔延伸至所述配合段;对所述芯轴配合段伸入所述第一部分、第二部分内的伸入部分进行扩张,使得所述伸入部分的外径增大,并与所述第一部分、第二部分沿径向相互压紧。
可选的,对所述芯轴配合段伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:将扩张件伸入所述轴向孔,使得所述伸入部分沿径向扩张。
可选的,沿径向至少在一个方向上,所述扩张件的尺寸大于所述轴向孔的尺寸。
可选的,对所述配合段伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:在压力作用下向所述轴向孔中通入流体,使得所述伸入部分沿径向扩张。
可选的,所述第一部分包括用于发动机制动的凸轮轮廓,所述第二部分包括用于发动机常规点火的凸轮轮廓。
可选的,除轴向厚度之外,所述第一部分、第二部分的形状相同。
可选的,所述第一部分、第二部分的形状完全相同。
可选的,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
可选的,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
可选的,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
可选的,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
可选的,利用冷冲压工艺制成所述第一部分、第二部分中的至少之一。
本发明实施例提供了一种凸轮轴,包括:
具有配合段的芯轴,所述配合段的外周面在轴向位置的横截面轮廓均相同,所述横 截面轮廓包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓;
套设于所述芯轴配合段的凸轮及传动单元;
堵头,所述堵头压入芯轴两端的中心孔中,对所述芯轴的端头进行密封。
根据本发明实施例的一种具体实现方式,所述圆和所述多边形同心。
根据本发明实施例的一种具体实现方式,所述凸轮轴还包括:
轴颈,所述轴颈具有外圆柱面,所述轴颈用于回转、支撑整根凸轮轴,所述轴颈的外圆柱面,每隔一定距离被加工于芯轴外周面上,外圆柱面与所述芯轴的圆弧区和直线区进行圆弧相连。
根据本发明实施例的一种具体实现方式,所述凸轮轴还包括:
轴颈,所述轴颈具有内孔,所述内孔为圆形且所述圆形的直径与所述芯轴的内孔直径一致。
根据本发明实施例的一种具体实现方式,所述传动单元具有与所述芯轴配合的内孔,所述内孔为圆形且所述圆形的直径与所述圆弧区所属圆的直径一致。
根据本发明实施例的一种具体实现方式,所述传动单元具有内孔,所述内孔包括与所述芯轴的圆弧区配合的弧面。
根据本发明实施例的一种具体实现方式,所述堵头一端的外圆柱面直径略大于芯轴内孔,所述堵头的外圆柱面由滚花加工而成。
根据本发明实施例的一种具体实现方式,所述凸轮的内周面的横截面的轮廓形状与所述配合段的外周面的横截面的轮廓形状一致。
根据本发明实施例的一种具体实现方式,所述凸轮具有分别套设于所述芯轴的多个配合段,且沿轴向间隔设置。
本发明实施例提供了一种凸轮轴制造方法,包括:
利用锻造工艺制成凸轮,对所述凸轮的内周面以及两端面的内周面边缘处进行精加工:
利用机械加工工艺制成传动单元,对所述传动单元的内周面以及两端面的内周面边缘处进行精加工;
将所述凸轮及所述传动单元套设于具有轴向孔的芯轴上;
对所述芯轴伸入凸轮和传动单元的伸入部分进行扩张,使得所述伸入部分的外径增大,并与所述凸轮沿径向相互压紧。
根据本发明实施例的一种具体实现方式,所述对所述芯轴伸入凸轮和传动单元的伸入部分进行扩张,包括:
将扩张件伸入所述轴芯的轴向孔,使得所述伸入部分沿径向扩张。
根据本发明实施例的一种具体实现方式,所述对所述芯轴伸入凸轮和传动单元的伸入部分进行扩张,包括:
向所述轴芯的轴向孔中通入具有扩张压力的流体,使得所述伸入部分沿径向扩张。
根据本发明实施例的一种具体实现方式,所述芯轴通过如下方式形成:
采用冷拔的方式形成具有外圆柱面的管件;
利用冷拔的方式在所述外圆柱面形成若干沿周向间隔分布的平面,所述平面沿所述 管件的轴向延伸,使得所述管件的外周面的横截面的轮廓包括直线区和圆弧区,其中,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓。
根据本发明实施例的一种具体实现方式,在将凸轮套设于所述芯轴之前,在所述芯轴的外周面上,加工具有预设距离间隔的外圆柱面,形成轴颈,所述轴颈用于回转、支撑整根凸轮轴,其中,所述外圆柱面与所述芯轴的圆弧区和直线区进行相连。
与现有技术相比,本发明的技术方案具有以下优点:
本发明的凸轮轴中,将凸轮轴中芯轴配合段的外周面设置为多边形,将第一凸轮、第二凸轮的内周面也设置为多边形,芯轴与第一凸轮、第二凸轮之间通过多边形的外周面和多边形的内周面之间压紧配合,从而实现两者之间的固定的、抗转动地连接。相比于现有采用花键连接的凸轮轴,传递的扭矩更大、结构更简单、制造工艺简化、制造耗时减小、成本降低。
进一步,凸轮包括相互分离且沿轴向排布于芯轴上的第一凸轮、第二凸轮,相比于一体式凸轮,第一凸轮、第二凸轮的轴向尺寸减小,可以采用冲压工艺形成,成本更低。
进一步,沿轴向朝向第二部分的方向,第一部分的内周面的横截面的尺寸呈减小趋势。沿轴向朝向第一部分的方向,第二部分的内周面的横截面的尺寸呈减小趋势。在扩张时,第一部分、第二部分能够发生相对移动,使得两者之间沿轴向压紧。在制造时,可以在扩张前将第一部分、第二部分套于芯轴外并沿轴向相抵或者使两者具有微小的轴向间隙,通过在扩张时第一部分、第二部分之间的相对移动来增大轴向压紧力或消除轴向间隙,从而减小了凸轮轴的制造难度。
凸轮轴中,芯轴的外周面轮廓包括交错排列的直线区和圆弧区,并且直线区所属同一多边形,圆弧区所属同一圆。当与凸轮配合时,能够通过圆弧区与凸轮内孔的配合实现两者之间的固定的、抗转动地连接。本方案能够简化现有凸轮轴的结构和制造工艺,缩短凸轮轴制造过程的耗时、降低成本,同时保证足够大的传递扭矩。
凸轮轴中,芯轴的外周面轮廓包括交错排列的直线区和圆弧区,并且直线区所属同一多边形,圆弧区所属同一圆。当与凸轮配合时,能够通过圆弧区与凸轮内孔的配合实现两者之间的固定的、抗转动地连接。本方案能够简化现有凸轮轴的结构和制造工艺,缩短凸轮轴制造过程的耗时、降低成本,同时保证足够大的传递扭矩。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明第一实施例的凸轮轴的主视结构图;
图2示出了本发明第一实施例中,通过扩张件对凸轮轴进行扩张的示意图;
图3是本发明第一实施例的凸轮轴的芯轴的横截面示意图;
图4是本发明第一实施例的凸轮轴的第一凸轮、第二凸轮的横截面示意图;
图5是本发明第二实施例的凸轮轴的主视结构示意图;
图6示出了凸轮的第一部分、第二部分在未套设于芯轴状态下的主视结构示意图;
图7是本发明第二实施例的凸轮轴的第一凸轮、第二凸轮的剖视图;
图8示出了在扩张时,第一凸轮的内周面的受力情况;
图9是本发明第一实施例的凸轮轴的剖视结构图;
图10是本发明第一实施例的凸轮轴的芯轴的横截面示意图;
图11是本发明第一实施例的凸轮轴的凸轮的横截面示意图;
图12是本发明第二实施例的制造方法对应的凸轮轴的示意图;
图13示出了凸轮的第一部分、第二部分在未套设于芯轴状态下的主视结构示意图;
图14是本发明第二实施例的凸轮轴的剖面结构示意图,其中示出了芯轴的扩张过程:
图15是本发明实施例提供的一种凸轮轴的剖视结构图;
图16是本发明实施例提供的一种凸轮轴的芯轴的横截面示意图;
图17是本发明实施例提供的一种凸轮轴的芯轴的立体示意图;
图18是本发明实施例提供的一种凸轮轴的凸轮的示意图;
图19是本发明实施例提供的凸轮轴的传动单元、两端堵头示意图
图20是本发明实施例提供的凸轮轴制造结构示意图;
图21是本发明实施例提供的一种凸轮轴芯轴扩张的剖面结构示意图;
图22是本发明实施例提供的另一种凸轮轴芯轴扩张的剖面结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
第一实施例
本发明实施例提供一种凸轮轴,如图1所示,包括芯轴10以及套设在芯轴10外的多个凸轮。多个凸轮中包括第一凸轮21、第二凸轮22。其中,第一凸轮21、第二凸轮22分别套设于芯轴10外且沿轴向间隔设置。
如图1示例性地示出了具有六个凸轮的凸轮轴,凸轮轴上的每个凸轮对应一个气缸,第一凸轮21、第二凸轮22分别与芯轴10抗转动地连接,两者同步转动。第一凸轮21、第二凸轮22分别用于驱动不同的气门。图1所示的实施例中,第一凸轮21、第二凸轮22相邻,两者之间没有其他凸轮。在其他实施例中,第一凸轮21、第二凸轮22之间还可以设有其他凸轮。
芯轴10具有轴向的孔11,芯轴10具有配合段101。参照图3所示,该配合段101在任意一个轴向位置的横截面的外周均为多边形,具体为六边形。配合段101除了位于第一凸轮21、第二凸轮22内,还位于相邻两个凸轮之间,即配合段101从第一凸轮21延伸至第二凸轮22。
相应地,参照图4所示,第一凸轮21、第二凸轮22的内周面20a的横截面为多边形,并且第一凸轮21、第二凸轮22的多边形与芯轴10的多边形的形状相同,也为六边形。
其中,“横截面”指的是沿垂直于轴向方向的截面。
如图2,本实施例的凸轮轴可按照下面的步骤进行安装:先将第一凸轮21、第二凸轮22套于芯轴10外,然后用扩张件30伸入芯轴10的孔11内对芯轴10进行扩张处理,以向孔11的内壁施加压力,从而将芯轴11的外径撑大,并与凸轮的内周面相互压紧,实现两者之间固定的、抗转动的配合。图2所示的实施例中,扩张件30为直径大于孔11的直径的钢球。图2中,在扩张件30沿伸入方向D从芯轴10的一端进入孔11,并在孔11中沿轴向向另一端移动。在扩张件30经过的部位,孔11的直径被撑大,芯轴10的外径变大并与相应的凸轮相互压紧。
在其他实施例中,扩张件30还可以是其他形状的刚性件,其至少在一个方向的直径大于孔11的直径,或者扩张件30还可以是流体,例如液体、气体等。
由此可见,本方案将凸轮轴中芯轴的外周面设置为多边形,将第一凸轮、第二凸轮的内周面也设置为与芯轴相应的多边形,芯轴与第一凸轮、第二凸轮之间通过多边形的外周面和多边形的内周面之间压紧配合,从而实现两者之间的固定的、抗转动地连接。相比于现有采用花键连接的凸轮轴,传递的扭矩更大、结构更简单。
其中多边形除了六边形外,还也可以是其他多边形。多边形的边数可以是发动机缸数的整数倍,例如一倍、两倍等。例如对于三缸或六缸发动机而言,上述多边形可以是六边形;对于四缸发动机而言,上述多边形可以是四边形。第一凸轮21和第二凸轮22之间的相位差为n*(360°/N),其中N为多边形的边数或者发动机气缸的缸数,n为1或大于1的整数。
如图3、图4所示,对于芯轴10的外周面10a以及第一凸轮21、第二凸轮22的内周面20a,多边形中相邻的两条边之间通过圆弧过渡。这样可以避免在两条边之间形成尖锐区域,减小应力集中。
第二实施例
本实施例提供一种凸轮轴,本实施例的凸轮轴在第一实施例的基础上,对第一凸轮21、第二凸轮22的结构作了改变。
参照图5所示,第一凸轮21、第二凸轮22的至少之一包括沿轴向排布的第一部分201和第二部分202,第一部分201、第二部分202分别套设于芯轴10且在轴向、径向和轴向均固定于芯轴10,即第一部分201、第二部分202与芯轴10之间完全固定,安装完成后,在轴向、径向和轴向均不能与芯轴10之间发生相对移动。其中,可以设置套设在芯轴10上的所有凸轮均包括所述第一部分、第二部分;也可以设置套设在芯轴上的部分凸轮包括所述第一部分和所述第二部分,而其余凸轮则可以是一体成型的凸轮。
在图5所示的实施例中,套设在芯轴10上的第一凸轮21、第二凸轮22均包括所述第一部分201和所述第二部分202。图5中只对其中一个第一凸轮21的第一部分、第二部分作了标注。
第一部分201、第二部分202相互独立且分别固套于芯轴10。如图6所示,第一部分201具有第一轴向端面201a,第二部分202具有第二轴向端面202a,所述第一轴向端面201a和所述第二轴向端面202a面对面设置。可见,安装前,第一部分201、第二部分202是相互独立的两个部件,第一部分201、第二部分202分别制造,并通过装配而同轴地套设在芯轴10外。
其中,装配完成后,第一部分201的第一轴向端面201a、第二部分202的第二轴向端面202a可以相互分离,即相互不接触;或者第一轴向端面201a、第二轴向端面202a 也可以相互接触。
相比于一体成型的凸轮而言,本实施例中凸轮分为沿轴向排布的第一部分201、第二部分202,每一部分的轴向厚度更小,因此可以采用冲压,例如冷冲压的工艺来制造,成本更低。
在本发明中,同一个凸轮的第一部分201和第二部分202只能驱动同一气门或同一组气门,而不能驱动不同的气门。第一部分201、第二部分202可以具有完全相同的形状,例如横截面的形状相同、轴向截面的形状相同,轴向厚度相同等等。或者,第一部分201、第二部分202也可以在保留其余形状相同外,具有不同的轴向厚度。其中,“轴向截面”指的是沿与轴向平行的方向切开所获得的截面。
在本实施的另一些变形例中,第一部分201、第二部分202的形状不同。第一部分201包括用于发动机制动的凸轮轮廓,第二部分202则包括用于发动机常规工作的凸轮轮廓。当发动机常规工作用于向车轮提供驱动力时,由第二部分202驱动气门运动;当需要发动机制动时,由第一部分201驱动气门运动。
进一步,如图7所示,沿轴向朝向第二部分202的方向,第一部分201的内周面20a的横截面的尺寸呈减小趋势。沿轴向方向,第一部分201的内周面呈朝向第二部分202倾斜的斜面状,与轴向不平行。
如图8,当扩张件进入孔11内对芯轴10进行扩张处理时,随着芯轴10外径的扩张,芯轴10与第一部分201之间将逐渐发生相互挤压,由此,第一步部分201在内周面将受到一个垂直于内周面的挤压力F。该挤压力F可以分解为一个沿径向向外的径向分力f1,以及沿轴向朝向第二部分202的轴向分力f2。受轴向分力f2作用,第一部分201将随着芯轴10与第一部分201之间的相互挤压朝向第二部分202移动,使得第一部分201、第二部分202之间沿轴向配合更紧密。
同理,第二部分202也可以设置为:沿轴向朝向第一部分201的方向,第二部分202的内周面20a的横截面的尺寸呈减小趋势。由此,当扩张件进入孔11内对芯轴10进行扩张处理时,第二部分202将随着芯轴10与第二部分202之间的相互挤压朝向第一部分201移动,进一步增加第一部分201、第二部分202之间沿轴向配合更紧密。
需要注意的是,当第一部分201的内周面为与轴向不平行的斜面时,该斜面相对于中心轴线的倾斜角优选为大于第一部分201与芯轴10之间的自锁角;同样的,当第二部分202的内周面为与轴向不平行的斜面时,该斜面相对于中心轴线的倾斜角优选为大于第二部分202与芯轴10之间的自锁角。如此,在扩张处理时,可以避免第一部分201、第二部分202由于自锁效应而无法发生轴向移动。
可选择的,第一部分201、第二部分202的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
在本实施例的一些变形例中,对于每个凸轮而言,在保留包括沿轴向排布的第一部分和第二部分的基础上,还可以设置:沿轴向方向,第一部分、第二部分的内周面的横截面的尺寸均一,第一部分、第二部分的内周面与轴向平行。
在本实施例的一些变形例中,对于每个凸轮而言,在保留包括沿轴向排布的第一部分和第二部分的基础上,凸轮的内周面以及芯轴的外周面的横截面的形状可以设置为其他形状,而不限定为多边形,例如也可以是圆形等其他形状。
第三实施例
本实施例提供一种发动机,包括上述第一实施例或第二实施例所述的凸轮轴,以及第一气门、第二气门,其中,第一凸轮21用于驱动第一气门但不驱动第二气门,第二凸轮22用于驱动第二气门但不驱动第一气门。
第一气门、第二气门可以分别是同一气缸的气门,也可以是不同气缸的气门。
当凸轮包括第一部分201、第二部分202时,同一凸轮的第一部分201、第二部分202驱动至少同一个气门。
第四实施例
本实施例提供一种凸轮轴的制造方法,本实施例的凸轮轴的结构可参照图1、图3所示,芯轴10具有配合段101,配合段101在任意一个轴向位置的横截面的外周均为多边形,并且,芯轴10具有轴向的孔11,孔11沿轴向延伸至配合段101。凸轮的结构可以参照图1、图4中所示第一凸轮21、第二凸轮22的结构,凸轮的内周面的横截面为多边形。
本实施例的控制方法包括以下步骤:
S11:将凸轮套设于芯轴的配合段。
S12:对配合段101伸入凸轮内的伸入部分进行扩张,使得该伸入部分的外径增大、并至与凸轮沿径向相互压紧。
在扩张前,配合段101的外径略小于凸轮的内径,将配合段101插入凸轮内后,配合段101的外周面与凸轮的内周面之间可以有微小的径向间隙。扩张后,配合段101伸入凸轮内的伸入部分的外径增大,凸轮与伸入部分之间的径向间隙被消除,从而使得凸轮与配合段101的伸入部分紧密配合,以将凸轮在轴向、径向、轴向均固定在芯轴10上。
对于步骤S12,在对配合段101伸入凸轮内的伸入部分进行扩张时,扩张的步骤包括:将扩张件伸入芯轴的孔,使得配合段101的伸入部分沿径向扩张。
其中,扩张件为刚性件,那么,沿径向至少在一个方向上,扩张件的尺寸应当大于孔的尺寸,否则将无法起到扩张作用。
在一些实施例中,扩张件为刚性的球状件,球状件的直径大于孔11的直径。凸轮套设于在芯轴10上后,将钢球从芯轴10的轴向一端伸入孔11,然后推动钢球沿轴向在孔11内移动。在与钢球接触的部位,芯轴10被撑大。由此,当钢球移动至配合段的伸入部分时,伸入部分将被扩张。
在另一些实施例中,扩张件为流体,对配合段伸入凸轮内的伸入部分进行扩张时:在压力作用下向孔11中通入流体,使得配合段的伸入部分沿径向扩张。
需要注意的是,在用流体进行扩张时,孔11在一端应当是封闭的。如果孔11为盲孔,则可以直接通入流体。如果孔11为通孔,则先将孔11的一端封闭,再从孔11的另一端向孔11中通入流体,通过流体的压力来扩张芯轴10的孔11。
本实施例中,对于芯轴10的外周面的横截面、以及凸轮内周面的横截面来说,多边形中相邻的两条边之间通过圆弧过渡,以减小两条边之间形成尖锐区域,减小应力集中。
其中,每个凸轮可以是一体成型的,可以通过铸造工艺制造。
第五实施例
本实施例提供一种凸轮轴的制造方法,本实施例中,凸轮的结构可参照图5所示,包括第一部分201、第二部分202;芯轴10具有沿轴向的孔11。
本实施例的制造方法包括以下步骤:
S21:将凸轮的第一部分201、第二部分202分别套设在芯轴10外,将第一部分201、第二部分202沿轴向排布且彼此相抵;
S22:扩张芯轴10的孔11,使得芯轴10在位于凸轮内的部分的外径增大至与凸轮相互压紧。
步骤S22中,扩张芯轴10的孔11时,扩张方法与第四实施例相同,在此不再赘述。
其中,第一部分201、第二部分202中的至少之一利用冷冲压工艺形成。
在一些实施例中,第一部分201、第二部分202的形状可以不同。其中,第一部分201包括用于发动机制动的凸轮轮廓,第二部分202则包括用于发动机常规工作的凸轮轮廓。当发动机常规工作用于向车轮提供驱动力时,由第二部分202驱动气门运动;当需要发动机制动时,由第一部分201驱动气门运动。
在另一些实施例中,第一部分201、第二部分202具有完全相同的形状。或者在除了轴向厚度不同之外,其余形状相同。本实施例中,设置第一部分201、第二部分202具有相同的轴向尺寸,以便于加工。
进一步,沿轴向朝向第二部分202的方向,第一部分201的内周面20a的横截面的尺寸呈减小趋势。第一部分201的形状可参照图7所示,沿轴向方向,第一部分201的内周面呈朝向第二部分202倾斜的斜面状。
从上述步骤中可以看出,在扩张前,第一部分201、第二部分202之间轴向相抵,两者之间相互接触或者已经具有一定的轴向压紧力。在步骤S24进行扩张处理时,第一部分201将随着芯轴10与第一部分201之间的相互挤压朝向第二部分202移动,使得第一部分201、第二部分202之间沿轴向配合更紧密。
同理,沿轴向朝向第一部分201的方向,第二部分202的内周面20a的横截面的尺寸呈减小趋势。在步骤S24进行扩张处理时,第二部分202将随着芯轴10与第二部分202之间的相互挤压朝向第一部分201移动,使得第一部分201、第二部分202之间沿轴向配合更紧密。
需要注意的是,当第一部分201的内周面为与轴向不平行的斜面时,该斜面相对于中心轴线的倾斜角优选为大于第一部分201与芯轴10之间的自锁角;同样的,当第二部分202的内周面为与轴向不平行的斜面时,该斜面相对于中心轴线的倾斜角优选为大于第二部分202与芯轴10之间的自锁角。如此,在扩张处理时,可以避免第一部分201、第二部分202由于自锁效应而无法发生轴向移动。
可选择的,第一部分201、第二部分202的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
本实施例中,凸轮的第一部分201、第二部分202的内周面的横截面、以及配合段101的外周面的横截面的形状不作限定,可以是圆形,也可以是多边形。
第六实施例
本发明实施例提供一种凸轮轴,如图9所示,包括芯轴10以及套设在芯轴10上的凸轮20。其中,凸轮20具有分别套设于芯轴10上且沿轴向间隔设置的多个。
如图9示例性地示出了具有六个凸轮20的凸轮轴,凸轮轴上的每个凸轮20对应一个发动机的气缸,每个凸轮20分别与芯轴10抗转动地连接,两者同步转动。每个凸轮20分别用于驱动不同的发动机气门。
芯轴10具有用于与凸轮20配合的配合段101,凸轮则套设于配合段101。参照图 10,图10示出了芯轴10在配合段101位置的横截面轮廓。
配合段101外周面的横截面轮廓包括:直线区10a和圆弧区10b。其中,圆弧区10a同属于一个圆且包括多段圆弧,直线区10a同属于一个多边形且包括多段直线,各个直线和各个圆弧沿周向交错排布并相互连接成外周面的横截面轮廓。本实施例中,如图10所示,多边形为六边形。
需要注意的是,本实施例中,配合段101的外周面在任意一个轴向位置的横截面具有相同的轮廓。换言之,将任意一个具有上述圆弧区和直线区的轮廓沿轴向拉伸,即形成配合段101的外周面。其中,“横截面”指的是沿垂直于轴向方向的截面。
进一步,参照图11所示,凸轮20的内周面的横截面的轮廓形状与芯轴10上配合段101的外周面的横截面的轮廓形状一致。也就是说,凸轮20的内周面的横截面轮廓也包括:直线区20a和圆弧区20b,所述圆弧区20b同属于一个圆且包括多段圆弧,所述直线区20a同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布。其中图11只对凸轮20中的部分直线区20a和圆弧区20b作了标注。
对于芯轴10上的配合段101而言,在将凸轮20套设于配合段101时,圆弧区10b能够与凸轮20的内孔的圆弧区20b配合。具体地,圆弧区10b的形状与凸轮20内孔的圆弧区20b吻合,使得芯轴10外周面的圆弧区10b(图10)与凸轮20的内孔的圆弧区20b(图11)贴合。
由此可见,本方案凸轮轴中芯轴的外周面轮廓包括交错排列的直线区和圆弧区,并且直线区所属同一多边形,圆弧区所属同一圆。当与凸轮配合时,能够通过圆弧区与凸轮内孔相应的圆弧区配合实现两者之间的同心组装,并通过直线区与凸轮内孔相应的直线区配合实现两者之间的固定的、抗转动地连接。相比于现有采用花键连接的凸轮轴,传递的扭矩更大、结构更简单。
其中,圆弧区10b(或20b)所在的圆与直线段10a(或20a)所在的多边形同心,即两者的几何中心重合。
继续参照图9所示,凸轮轴还包括轴承30,轴承30安装于芯轴10的配合段101,轴承30具有与芯轴10配合的内孔(图中未示出),内孔为圆形且内孔的直径与圆弧区10b所属的圆的直径一致。
在其他实施例中,轴承30的内孔也可以不是圆形,但轴承30的内孔至少需要包括能够与芯轴10的圆弧区10b配合的弧面。也就是说,轴承30的内孔30的横截面的形状可以是多段线的组合,该多段线中,在与芯轴10的圆弧区10b对应的部位,至少有一个或者多个线段能够与对应的圆弧区10b配合。
其中,上述多边形除了六边形外,还也可以是其他多边形。多边形的边数可以是发动机缸数的整数倍,例如一倍、两倍等。例如对于三缸或六缸发动机而言,上述多边形可以是六边形;对于四缸发动机而言,上述多边形可以是四边形。发动机相邻两缸所对应的两个凸轮之间的相位差为n*(360°/N),其中N为发动机气缸的缸数,n为1或大于1的整数。
在另一些实施例中,也可以只将凸轮的内周面的横截面轮廓设置为上述包含直线区和圆弧区的形状,而对芯轴的外周面的轮廓形状不作限制,其可以是圆柱形。
第七实施例
本实施例提供一种凸轮轴的制造方法,该方法包括以下步骤:
S11:利用冷冲压工艺制成凸轮的第一部分、第二部分的至少之一;
S12:将所述第一部分、第二部分分别套设于所述芯轴。
参照图12所示,至少一个凸轮20包括沿轴向排布的第一部分21和第二部分22,第一部分21、第二部分22分别套设于芯轴10且在轴向、径向和轴向均固定于芯轴10。换言之,第一部分21、第二部分22与芯轴10之间完全固定,安装完成后,在轴向、径向和轴向均不能与芯轴10之间发生相对移动。
其中,可以设置套设在芯轴10上的所有凸轮均包括所述第一部分、第二部分;也可以设置套设在芯轴上的部分凸轮包括所述第一部分和所述第二部分,而其余凸轮则可以是一体成型的凸轮。
在图12所示的实施例中,套设在芯轴10上的凸轮20均包括所述第一部分21和所述第二部分22。图13中只对其中一个第一凸轮21的第一部分、第二部分作了标注。
进一步,本实施例的制造方法还包括步骤S13。
步骤S13:将凸轮20的第一部分21、第二部分22分别固定在芯轴10上,并被配置成用于驱动同一发动机气门。
可见,第一部分21、第二部分22相互独立且分别固套于芯轴10。如图13所示,第一部分21具有第一轴向端面201a,第二部分22具有第二轴向端面202a,所述第一轴向端面201a和所述第二轴向端面202a面对面设置。可见,安装前,第一部分21、第二部分22是相互独立的两个部件,第一部分21、第二部分22分别制造,并通过装配而同轴地套设在芯轴10外。
其中,装配完成后,第一部分21的第一轴向端面201a、第二部分22的第二轴向端面202a可以相互分离,即相互不接触;或者第一轴向端面201a、第二轴向端面202a也可以相互接触。在润滑时,可以利用第一部分和第二部分之间的缝隙传递润滑油润滑凸轮。
相比于一体成型的凸轮而言,本实施例中凸轮分为沿轴向排布的第一部分21、第二部分22,每一部分的轴向厚度更小,因此可以采用冲压,例如冷冲压的工艺来制造,成本更低。
第一部分21、第二部分22可以具有完全相同的形状,例如横截面的形状相同、轴向截面的形状相同,轴向厚度相同等等。或者,第一部分21、第二部分22也可以在保留其余形状相同外,具有不同的轴向厚度。其中,“轴向截面”指的是沿与轴向平行的方向切开所获得的截面。
在本实施的另一些变形例中,第一部分21、第二部分22的形状不同。第一部分21包括用于发动机制动的凸轮轮廓,第二部分22则包括用于发动机常规工作的凸轮轮廓。当发动机常规工作用于向车轮提供驱动力时,由第二部分22驱动气门运动;当需要发动机制动时,由第一部分21驱动气门运动。
进一步,本实施例的方法还包括步骤S14。
步骤S14:对芯轴10伸入第一部分21、第二部分21内的伸入部分进行扩张,使得所述伸入部分的外径增大,并与第一部分21、第二部分22沿径向相互压紧。
在扩张前,配合段101的外径可以略小于凸轮20的内径,将配合段101插入凸轮20内后,配合段101的外周面与凸轮20的内周面之间可以有微小的径向间隙。扩张后,配合段101伸入凸轮20内的伸入部分的外径增大,凸轮20与配合段101的伸入部分之 间的径向间隙被消除,从而使得凸轮20与配合段101的伸入部分紧密配合,以将凸轮20在轴向、径向、轴向均固定在芯轴10上。
本实施例中,参照图14所示,芯轴10具有轴向孔11。其中,轴向孔11可以是通孔,也可以是盲孔,其数量可以是一个,或者是分别朝向芯轴的轴向两端开口的两个。但须注意的是,轴向孔11应当延伸至每个需要扩张的部位。
对于步骤14,在对配合段101伸入凸轮20内的伸入部分进行扩张时,扩张的步骤包括:将扩张件S伸入芯轴10的轴向孔11,使得配合段101的伸入部分沿径向扩张。
其中,扩张件S为刚性件,那么,沿径向至少在一个方向上,扩张件S的尺寸应当大于轴向孔11的尺寸,否则将无法起到扩张作用。
在一些实施例中,扩张件30为刚性的球状件,例如钢球。钢球的直径大于轴向孔11的直径。凸轮20套设于在芯轴10上后,将钢球从芯轴10的轴向一端伸入轴向孔11,然后推动钢球沿轴向在轴向孔11内移动。在与钢球接触的部位,芯轴10被撑大。由此,当钢球移动至配合段的伸入部分时,伸入部分将被扩张。
在另一些实施例中,扩张件可以为流体,对配合段伸入凸轮内的伸入部分进行扩张时:在压力作用下向轴向孔11中通入流体,使得配合段的伸入部分沿径向扩张。
需要注意的是,在用流体进行扩张时,轴向孔11在一端应当是封闭的。如果轴向孔11为盲孔,则可以直接通入流体。如果轴向孔11为通孔,则先将轴向孔11的一端封闭,再从轴向孔11的另一端向轴向孔11中通入流体,通过流体的压力来扩张芯轴10的轴向孔11。
第八实施例
本实施例提供一种凸轮轴的制造方法,该制造方法包括:
S21:形成具有轴向孔的芯轴;
S22:将凸轮套设于芯轴。
步骤S21中,在形成芯轴时,包括以下几个子步骤:
S211:采用冷拔形成具有外圆柱面的管件;
S212:利用冷拔在所述外圆柱面形成若干沿周向间隔分布的平面,所述平面沿所述管件的轴向延伸,使得所述管件的外周面的横截面的轮廓包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布。
其中,管件的横截面形状可以参照图10。
本实施例的制造方法采用冷拔工艺形成管件,并用冷拔工艺在管件的外圆柱面上形成所述平面,能够保证管件的圆弧区和直线区都具有较高的精度,由此就不需要再机加工,从而降低凸轮轴的制造成本。
本实施例中,上述圆弧区所在的圆和直线区所在的多边形同心。多边形的边数设置与第六实施例相同。
进一步,在步骤S22“将凸轮套设于所述芯轴”之前,还包括步骤S23:利用冷冲压工艺形成所述凸轮的第一部分、第二部分。其中,步骤S23与步骤S21之间没有时序关系。
本实施例中凸轮的第一部分、第二部分的结构与第七实施例相同,可参照图12、图13。
凸轮的第一部分、第二部分的内周面的横截面形状与所述芯轴的外周面的横截面形 状一致,第一部分、第二部分内周面的横截面的形状可以参照图11。将凸轮套设于所述芯轴时,所述芯轴的外周面与所述第一部分、第二部分的内周面相匹配。
换言之,在步骤S23中,形成凸轮的第一部分、第二部分的内周面的横截面包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布。
其中,对于凸轮的内周面的横截面来说,圆弧区所在的圆和直线区所在的多边形可以同心。
在步骤S22“将凸轮套设于所述芯轴”之后,还包括对芯轴伸入所述凸轮内的伸入部分进行扩张的步骤,该步骤与第七实施例相同,在此不再赘述。
在另一些实施例中,在凸轮轴的制造方法中,步骤S21也可以采用现有方法来完成,而不采用本实施例的步骤S211~S212所用的方法。同时采用本实施例的步骤S23来制造凸轮。
在另一些实施例中,步骤S211~步骤S212可以用于制造芯轴之外的其他管件。步骤S24也可以用于制造用于凸轮轴之外的其他凸轮。
第九实施例
本发明实施例提供一种凸轮轴,如图15所示,包括芯轴10以及套设在芯轴10上的凸轮20。其中,凸轮20具有分别套设于芯轴10上且沿轴向间隔设置的多个。
如图15示例性地示出了具有六个凸轮20的凸轮轴,凸轮轴上的每个凸轮20对应一个发动机的气缸,每个凸轮20分别与芯轴10抗转动地连接,两者同步转动。每个凸轮20分别用于驱动不同的发动机气门。
芯轴10具有用于与凸轮20配合的配合段101,凸轮则套设于配合段101。参照图16,图16示出了芯轴10在配合段101位置的横截面轮廓。
配合段101外周面的横截面轮廓包括:直线区10a和圆弧区10b。其中,圆弧区10a同属于一个圆且包括多段圆弧,直线区10a同属于一个多边形且包括多段直线,各个直线和各个圆弧沿周向交错排布并相互连接成外周面的横截面轮廓。本实施例中,如图16所示,多边形为十二边形。
需要注意的是,本实施例中,配合段101的外周面在轴向位置的横截面具有相同的轮廓,将上述圆弧区和直线区的轮廓沿轴向拉伸,即形成配合段101的外周面,其中,“横截面”指的是沿垂直于轴向方向的截面。在芯轴10的外周面上,每隔一定距离,被加工成外圆柱面,形成轴颈60,轴颈60用于回转、支撑整根凸轮轴,外圆柱面与所述芯轴的圆弧区和直线区进行相连。
进一步,参照图18所示,凸轮20的内周面的横截面的轮廓形状与芯轴10上配合段101的外周面的横截面的轮廓形状一致。也就是说,凸轮20的内周面的横截面轮廓也包括:直线区20a和圆弧区20b,所述圆弧区20b同属于一个圆且包括多段圆弧,所述直线区20a同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布。其中图18只对凸轮20中的部分直线区20a和圆弧区20b作了标注。
对于芯轴10上的配合段101而言,在将凸轮20套设于配合段101时,圆弧区10b能够与凸轮20的内孔的圆弧区20b配合。具体地,圆弧区10b的形状与凸轮20内孔的圆弧区20b吻合,使得芯轴10外周面的圆弧区10b(参见图16)与凸轮20的内孔的圆弧区20b(参见图18)贴合。
本实施例中的凸轮轴中芯轴的外周面轮廓包括交错排列的直线区和圆弧区,并且直线区所属同一多边形,圆弧区所属同一圆。当与凸轮配合时,能够通过圆弧区与凸轮内孔相应的圆弧区配合实现两者之间的同心组装,并通过直线区与凸轮内孔相应的直线区配合实现两者之间的固定的、抗转动地连接。相比于现有采用花键连接的凸轮轴,传递的扭矩更大、结构更简单。
其中,圆弧区10b(或20b)所在的圆与直线段10a(或20a)所在的多边形同心,即两者的几何中心重合。
参照图17所示,凸轮轴还包括轴颈60,轴颈60在芯轴10的外周面上,每隔一定距离,被加工成外圆柱面,形成轴颈60,轴颈60用于回转、支撑整根凸轮轴,外圆柱面与所述芯轴的圆弧区和直线区进行圆弧过度连接。
参照图15、图19所示,凸轮轴还包括传动单元40,传动单元40套装在芯轴的一端,传动单元40的内周面的横截面的轮廓形状与芯轴10上配合段101的外周面的横截面的轮廓形状一致。
参照图15、图19所示,凸轮轴还包括两端堵头30和50,所述堵头30和50一端的外圆柱面直径略大于芯轴内孔,所述堵头的外圆柱面再进行滚花加工;所述堵头30和50压装入芯轴的两端内孔中。
其中,上述多边形除了十二边形外,还也可以是其他多边形。多边形的边数可以是发动机缸数的整数倍,例如一倍、两倍等。例如对于三缸或六缸发动机而言,上述多边形可以是六边形;对于四缸发动机而言,上述多边形可以是四边形。发动机相邻两缸所对应的两个凸轮之间的相位差为n*(360°/N),其中N为发动机气缸的缸数,n为1或大于1的整数。
在另一些实施例中,也可以只将凸轮的内周面的横截面轮廓设置为上述包含直线区和圆弧区的形状,而对芯轴的外周面的轮廓形状不作限制,其可以是圆柱形。
第十实施例
本实施例提供一种凸轮轴的制造方法,该方法包括以下步骤:
S’11:利用锻造工艺制成凸轮;
S’12:将所述凸轮、传动单元套设于所述芯轴,芯轴两端压入两个堵头。
参照图19、图20所示,至少一个凸轮20、传动单元40套设于芯轴10且在轴向、径向和轴向均固定于芯轴10。换言之,凸轮20、传动单元40与芯轴10之间完全固定,安装完成后,在轴向、径向和轴向均不能与芯轴10之间发生相对移动。
进一步,本实施例的制造方法还包括步骤S’13。
步骤S’13:对芯轴10伸入凸轮20、传动单元40的伸入部分进行扩张,使得所述伸入部分的外径增大,并与凸轮20、传动单元40沿径向相互压紧。
在扩张前,配合段101的外径可以略小于凸轮20、传动单元40的内径,将配合段101插入凸轮20、传动单元40内后,配合段101的外周面与凸轮20、传动单元40的内周面之间可以有微小的径向间隙。扩张后,配合段101伸入凸轮20、传动单元40内的伸入部分的外径增大,凸轮20、传动单元40与配合段101的伸入部分之间的径向间隙被消除,从而使得凸轮20、传动单元40与配合段101的伸入部分紧密配合,以将凸轮20、传动单元40在轴向、径向、轴向均固定在芯轴10上。
本实施例中,参照图21所示,芯轴10具有轴向孔11。其中,轴向孔11可以是通 孔,也可以是盲孔,其数量可以是一个,或者是分别朝向芯轴的轴向两端开口的两个。但须注意的是,轴向孔11应当延伸至每个需要扩张的部位。
对于步骤13,在对配合段101伸入凸轮20、传动单元40内的伸入部分进行扩张时,扩张的步骤包括:凸轮20、传动单元40套装在芯轴10上,凸轮20、传动单元40再通过上模具M1、下模具M2进行轴向定位,角向定位由芯轴10的外周面的多边形进行定位,将扩张件S伸入芯轴10的轴向孔11,使得配合段101的伸入部分沿径向扩张。
其中,扩张件S为刚性件,那么,沿径向至少在一个方向上,扩张件S的尺寸应当大于轴向孔11的尺寸,否则将无法起到扩张作用。
在一些实施例中,扩张件S为刚性的球状件,例如钢球。钢球的直径大于轴向孔11的直径。凸轮20、传动单元40套设于在芯轴10上后,将钢球从芯轴10的轴向一端伸入轴向孔11,然后推动钢球沿轴向在轴向孔11内移动。在与钢球接触的部位,芯轴10被撑大。由此,当钢球移动至配合段的伸入部分时,伸入部分将被扩张。
在另一些实施例中,参照图22,凸轮20、传动单元40套装在芯轴10上,上模具100、下模具110置于工作台90上,凸轮20、传动单元40通过上模具100、下模具110进行轴向定位,角向定位由芯轴10的外周面的多边形进行定位,所示扩张件可以为流体,对配合段伸入凸轮内的伸入部分进行扩张时:芯轴10两端用活塞堵头80、120进行密封,随着高压液体经过管路70压入管内,在压力作用下向轴向孔11中持续加压通入流体,活塞堵头80、120持续顶着芯轴10的两端头进行密封,在芯轴管内形成内部高压,使得配合段的伸入部分沿径向扩张。
需要注意的是,在用流体进行扩张时,轴向孔11在两端应当是封闭的。如果轴向孔11为盲孔,则可以直接通入流体。如果轴向孔11为通孔,则先将轴向孔11的一端封闭,再从轴向孔11的另一端向轴向孔11中通入流体,通过流体的压力来扩张芯轴10的轴向孔11。
凸轮20、传动单元40与芯轴10的配合段经过径向扩张连接后,在将堵头30、50压入芯轴10的两个端头;堵头30、50可以事先应用机械加工完成,在堵头的一端外圆柱面上加工出滚花,再将滚花后的外圆柱面全部压入芯轴10的两个端头,堵头30,50可用作后续磨削加工的定位基准。
第十一实施例
本实施例提供一种凸轮轴的制造方法,该制造方法包括:
S’21:形成具有轴向孔的芯轴;
S’22:将凸轮、传动单元套设于芯轴。
步骤S’21中,在形成芯轴时,包括以下几个子步骤:
S’211:采用冷拔形成具有外圆柱面的管件;
S’212:利用冷拔在所述外圆柱面形成若干沿周向间隔分布的平面,所述平面沿所述管件的轴向延伸,使得所述管件的外周面的横截面的轮廓包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布。
其中,管件的横截面形状可以参照图16。
本实施例的制造方法采用冷拔工艺形成管件,并用冷拔工艺在管件的外圆柱面上形成所述平面,能够保证管件的圆弧区和直线区都具有较高的精度,由此就不需要再机加 工,从而降低凸轮轴的制造成本。
本实施例中,上述圆弧区所在的圆和直线区所在的多边形同心。多边形的边数设置与第九实施例相同。
进一步,在步骤S’22“将凸轮、传动单元套设于所述芯轴”之前,还包括步骤S’23:利用锻造工艺形成所述凸轮,对所述凸轮的内周面以及两端面的内周面边缘处进行精加工,传动单元由机械加工工艺形成。其中,步骤S’23与步骤S’21之间没有时序关系。
本实施例中凸轮结构与第十实施例相同,可参照图20。
凸轮、传动单元的内周面的横截面形状与所述芯轴的外周面的横截面形状一致,凸轮、传动单元的内周面的横截面的形状可以参照图18、5。将凸轮、传动单元套设于所述芯轴时,所述芯轴的外周面与所述凸轮的内周面相匹配。
换言之,在步骤S’23中,形成凸轮、传动单元的内周面的横截面包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布。
其中,对于凸轮、传动单元的内周面的横截面来说,圆弧区所在的圆和直线区所在的多边形可以同心。
在步骤S’22“将凸轮套设于所述芯轴”之后,还包括对芯轴伸入所述凸轮、传动单元内的伸入部分进行扩张的步骤,该步骤与第十实施例相同,在此不再赘述。
在另一些实施例中,在凸轮轴的制造方法中,步骤S’21也可以采用现有方法来完成,而不采用本实施例的步骤S’211~S’212所用的方法。同时采用本实施例的步骤S’23来制造凸轮。
在另一些实施例中,步骤S’211~步骤S’212可以用于制造芯轴之外的其他管件。步骤S’24也可以用于制造用于凸轮轴之外的其他凸轮。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (75)

  1. 一种凸轮轴,其特征在于,包括:
    芯轴,具有轴向的孔,所述芯轴具有配合段,所述配合段在任意一个轴向位置的横截面的外周均为多边形;
    第一凸轮、第二凸轮,所述第一凸轮、第二凸轮分别套设于所述芯轴的配合段且沿轴向间隔设置,所述第一凸轮、第二凸轮的内周面的横截面为多边形,所述配合段沿轴向至少从所述第一凸轮延伸至所述第二凸轮。
  2. 如权利要求1所述的凸轮轴,其特征在于,所述多边形中相邻的两条边之间通过圆弧过渡。
  3. 如权利要求1或2所述的凸轮轴,其特征在于,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;
    所述第一部分、第二部分分别套设于所述芯轴,且在轴向、径向和周向均固定于所述芯轴;
    所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面且相互分离。
  4. 如权利要求1或2所述的凸轮轴,其特征在于,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;
    所述第一部分、第二部分分别套设在所述芯轴,且在轴向、径向和周向均固定于所述芯轴;
    所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面且相互接触。
  5. 如权利要求1或2所述的凸轮轴,其特征在于,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;
    除轴向厚度之外,所述第一部分、第二部分的形状相同。
  6. 如权利要求1或2所述的凸轮轴,其特征在于,所述第一凸轮、第二凸轮的至少之一包括沿轴向排布的第一部分和第二部分;
    所述第一部分、第二部分的形状完全相同。
  7. 如权利要求3-6中任一项所述的凸轮轴,其特征在于,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
  8. 如权利要求7所述的凸轮轴,其特征在于,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
  9. 如权利要求8所述的凸轮轴,其特征在于,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
  10. 如权利要求8所述的凸轮轴,其特征在于,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
  11. 一种发动机,其特征在于,包括:
    第一气门;
    第二气门;
    权利要求1-10中任一项所述的凸轮轴,所述第一凸轮用于驱动所述第一气门但不驱动所述第二气门,所述第二凸轮用于驱动所述第二气门但不驱动所述第一气门。
  12. 一种凸轮轴,其特征在于,包括:
    芯轴;
    凸轮,套设于所述芯轴,所述凸轮包括沿轴向排布的第一部分和第二部分,所述第一部分、第二部分分别套设于所述芯轴,且在轴向、径向和轴向均固定于所述芯轴;
    所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面。
  13. 如权利要求12所述的凸轮轴,其特征在于,所述第一部分具有用于发动机制动的凸轮轮廓,所述第二部分具有用于发动机常规工作的凸轮轮廓。
  14. 如权利要求12所述的凸轮轴,其特征在于,除轴向厚度之外,所述第一部分、第二部分的形状相同。
  15. 如权利要求12所述的凸轮轴,其特征在于,所述第一部分、第二部分的形状完全相同。
  16. 如权利要求12-15中任一项所述的凸轮轴,其特征在于,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
  17. 如权利要求16所述的凸轮轴,其特征在于,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
  18. 如权利要求17所述的凸轮轴,其特征在于,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
  19. 如权利要求17所述的凸轮轴,其特征在于,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
  20. 一种发动机,其特征在于,包括:
    气门;
    权利要求12-19中任一项所述的凸轮轴,所述凸轮的第一部分和第二部分驱动至少同一个所述气门。
  21. 一种凸轮轴,其特征在于,包括:
    芯轴;
    凸轮,套设于所述芯轴,所述凸轮包括沿轴向排布的第一部分和第二部分,所述第一部分具有第一轴向端面,所述第二部分具有第二轴向端面,所述第一轴向端面和所述第二轴向端面面对面;
    除轴向厚度外,所述第一部分、第二部分的形状相同。
  22. 如权利要求21所述的凸轮轴,其特征在于,所述第一部分、第二部分的形状完全相同。
  23. 如权利要求21-22中任一项所述的凸轮轴,其特征在于,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
  24. 如权利要求23所述的凸轮轴,其特征在于,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
  25. 如权利要求24所述的凸轮轴,其特征在于,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
  26. 如权利要求24所述的凸轮轴,其特征在于,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
  27. 一种凸轮轴的制造方法,其特征在于,包括:
    先将凸轮套设于芯轴的配合段,所述配合段在任意一个轴向位置的横截面的外周均为多边形,所述凸轮的内周面的横截面为多边形,所述芯轴具有轴向的孔,所述孔延伸至所述配合段;
    然后对所述配合段伸入所述凸轮内的伸入部分进行扩张,使得所述伸入部分的外径增大、并与所述凸轮沿径向相互压紧。
  28. 如权利要求27所述的制造方法,其特征在于,对所述配合段伸入所述凸轮内的伸入部分进行扩张的步骤包括:将扩张件伸入所述孔,使得所述伸入部分沿径向扩张。
  29. 如权利要求28所述的制造方法,其特征在于,沿径向至少在一个方向上,所述扩张件的尺寸大于所述孔的尺寸。
  30. 如权利要求27所述的制造方法,其特征在于,对所述配合段伸入所述凸轮内的伸入部分进行扩张的步骤包括:
    在压力作用下向所述孔中通入流体,使得所述伸入部分沿径向扩张。
  31. 如权利要求27-30中任一项所述的制造方法,其特征在于,所述多边形中相邻的两条边之间通过圆弧过渡。
  32. 如权利要求27-30中任一项所述的制造方法,其特征在于,所述凸轮包括沿轴向排布在所述芯轴的第一部分、第二部分。
  33. 如权利要求32所述的制造方法,其特征在于,除轴向厚度之外,所述第一部分、第二部分的形状相同。
  34. 如权利要求32所述的制造方法,其特征在于,所述第一部分、第二部分的形状完全相同。
  35. 如权利要求32-34中任一项所述的制造方法,其特征在于,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈间隙趋势。
  36. 如权利要求35所述的制造方法,其特征在于,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
  37. 如权利要求36所述的制造方法,其特征在于,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
  38. 如权利要求36所述的制造方法,其特征在于,所述第一部分、第二部分的内周面 相对于中心轴线之间的倾斜角大于arctan0.1。
  39. 如权利要求32-38中任一项所述的制造方法,其特征在于,利用冷冲压工艺制成所述第一部分、第二部分中的至少之一。
  40. 一种凸轮轴的制造方法,其特征在于,包括:
    先将凸轮的第一部分、第二部分分别套设在芯轴的配合段上,所述第一部分、第二部分沿轴向排布,所述芯轴具有沿轴向的孔,所述孔延伸至所述配合段;
    然后对所述配合段伸入所述第一部分、第二部分内的伸入部分进行扩张,使得所述伸入部分的外径增大,并与所述第一部分、第二部分沿径向相互压紧。
  41. 如权利要求40所述的制造方法,其特征在于,对所述配合段伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:将扩张件伸入所述孔,使得所述伸入部分沿径向扩张。
  42. 如权利要求41所述的制造方法,其特征在于,沿径向至少在一个方向上,所述扩张件的尺寸大于所述孔的尺寸。
  43. 如权利要求40所述的制造方法,其特征在于,对所述配合段伸入所述第一部分、第二部分内的伸入部分进行扩张的步骤包括:
    在压力作用下向所述孔中通入流体,使得所述伸入部分沿径向扩张。
  44. 如权利要求40-43所述的制造方法,其特征在于,所述第一部分包括用于发动机制动的凸轮轮廓,所述第二部分包括用于发动机常规点火的凸轮轮廓。
  45. 如权利要求40-43中任一项所述的制造方法,其特征在于,除轴向厚度之外,所述第一部分、第二部分的形状相同。
  46. 如权利要求40-43中任一项所述的制造方法,其特征在于,所述第一部分、第二部分的形状完全相同。
  47. 如权利要求40-44中任一项所述的制造方法,其特征在于,沿轴向朝向所述第二部分的方向,所述第一部分的内周面的横截面的尺寸呈减小趋势。
  48. 如权利要求47所述的制造方法,其特征在于,沿轴向朝向所述第一部分的方向,所述第二部分的内周面的横截面的尺寸呈减小趋势。
  49. 如权利要求48所述的制造方法,其特征在于,所述第一部分的内周面相对于中心轴线之间的倾斜角大于所述第一部分与所述芯轴之间的自锁角,所述第二部分的内周面相对于中心轴线之间的倾斜角大于所述第二部分与所述芯轴之间的自锁角。
  50. 如权利要求48所述的制造方法,其特征在于,所述第一部分、第二部分的内周面相对于中心轴线之间的倾斜角大于arctan0.1。
  51. 如权利要求40-50中任一项所述的制造方法,其特征在于,利用冷冲压工艺制成所述第一部分、第二部分中的至少之一。
  52. 一种凸轮轴,其特征在于,包括:
    具有配合段的芯轴,所述配合段的外周面在任一轴向位置的横截面轮廓均相同,所述横截面轮廓包括:直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排 布、并相互连接成所述的横截面轮廓;
    凸轮,套设于所述芯轴的配合段。
  53. 如权利要求52所述的凸轮轴,其特征在于,所述圆和所述多边形同心。
  54. 如权利要求52或53所述的凸轮轴,其特征在于,还包括:轴承,安装于所述芯轴的配合段,所述轴承具有与所述芯轴配合的内孔,所述内孔为圆形且所述圆形的直径与所述圆弧区所属的圆的直径一致。
  55. 如权利要求52或53所述的凸轮轴,其特征在于,还包括轴承,所述轴承具有内孔,所述内孔包括与所述芯轴的圆弧区配合的弧面。
  56. 如权利要求52-55中任一项所述的凸轮轴,其特征在于,所述凸轮的内周面的横截面的轮廓形状与所述配合段的外周面的横截面的轮廓形状一致。
  57. 如权利要求52-56中任一项所述的凸轮轴,其特征在于,所述凸轮具有分别套设于所述芯轴的配合段的多个,且沿轴向间隔设置。
  58. 一种凸轮轴,其特征在于,包括:
    芯轴;
    凸轮,套设于所述芯轴,所述凸轮的内周面的横截面轮廓包括:直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓。
  59. 如权利要求58所述的凸轮轴,其特征在于,所述圆和所述多边形同心。
  60. 一种凸轮轴的制造方法,包括:
    形成具有轴向孔的芯轴;
    将凸轮套设于所述芯轴;
    其特征在于,所述芯轴的形成步骤包括:
    采用冷拔形成具有外圆柱面的管件;
    利用冷拔在所述外圆柱面形成若干沿周向间隔分布的平面,所述平面沿所述管件的轴向延伸,使得所述管件的外周面的横截面的轮廓包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓。
  61. 一种凸轮轴的制造方法,其特征在于,包括:
    采用冷冲压工艺制成凸轮的第一部分、第二部分,所述第一部分、第二部分的内周面的横截面包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓;
    将所述凸轮的第一部分、第二部分分别套设于芯轴。
  62. 一种凸轮轴,其特征在于,包括:
    具有配合段的芯轴,所述配合段的外周面在轴向位置的横截面轮廓均相同,所述横截面轮廓包括直线区和圆弧区,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓;
    套设于所述芯轴配合段的凸轮及传动单元;
    堵头,所述堵头压入芯轴两端的中心孔中,对所述芯轴的端头进行密封。
  63. 如权利要求62所述的凸轮轴,其特征在于:
    所述圆和所述多边形同心。
  64. 如权利要求62所述的凸轮轴,其特征在于,还包括:
    轴颈,所述轴颈具有外圆柱面,所述轴颈用于回转、支撑整根凸轮轴,所述轴颈的外圆柱面,每隔一定距离被加工于芯轴外周面上,外圆柱面与所述芯轴的圆弧区和直线区进行圆弧相连。
  65. 如权利要求62所述的凸轮轴,其特征在于,还包括:
    轴颈,所述轴颈具有内孔,所述内孔为圆形且所述圆形的直径与所述芯轴的内孔直径一致。
  66. 如权利要求62所述的凸轮轴,其特征在于:
    所述传动单元具有与所述芯轴配合的内孔,所述内孔为圆形且所述圆形的直径与所述圆弧区所属圆的直径一致。
  67. 如权利要求62所述的凸轮轴,其特征在于:
    所述传动单元具有内孔,所述内孔包括与所述芯轴的圆弧区配合的弧面。
  68. 如权利要求62所述的凸轮轴,其特征在于:
    所述堵头一端的外圆柱面直径略大于芯轴内孔,所述堵头的外圆柱面由滚花加工而成。
  69. 如权利要求62所述的凸轮轴,其特征在于:
    所述凸轮的内周面的横截面的轮廓形状与所述配合段的外周面的横截面的轮廓形状一致。
  70. 如权利要求62所述的凸轮轴,其特征在于:
    所述凸轮具有分别套设于所述芯轴的多个配合段,且沿轴向间隔设置。
  71. 一种凸轮轴制造方法,其特征在于,包括:
    利用锻造工艺制成凸轮,对所述凸轮的内周面以及两端面的内周面边缘处进行精加工;
    利用机械加工工艺制成传动单元,对所述传动单元的内周面以及两端面的内周面边缘处进行精加工;
    将所述凸轮及所述传动单元套设于具有轴向孔的芯轴上;
    对所述芯轴伸入凸轮和传动单元的伸入部分进行扩张,使得所述伸入部分的外径增大,并与所述凸轮沿径向相互压紧。
  72. 如权利要求71所述的凸轮轴制造方法,其特征在于,所述对所述芯轴伸入凸轮和传动单元的伸入部分进行扩张,包括:
    将扩张件伸入所述轴芯的轴向孔,使得所述伸入部分沿径向扩张。
  73. 如权利要求71所述的凸轮轴制造方法,其特征在于,所述对所述芯轴伸入凸轮和传动单元的伸入部分进行扩张,包括:
    向所述轴芯的轴向孔中通入具有扩张压力的流体,使得所述伸入部分沿径向扩 张。
  74. 如权利要求71所述的凸轮轴制造方法,其特征在于,所述芯轴通过如下方式形成:
    采用冷拔的方式形成具有外圆柱面的管件;
    利用冷拔的方式在所述外圆柱面形成若干沿周向间隔分布的平面,所述平面沿所述管件的轴向延伸,使得所述管件的外周面的横截面的轮廓包括直线区和圆弧区,其中,所述圆弧区同属于一个圆且包括多段圆弧,所述直线区同属于一个多边形且包括多段直线,所述直线和所述圆弧沿周向交错排布、并相互连接成所述的横截面轮廓。
  75. 如权利要求74所述的凸轮轴制造方法,其特征在于:
    在将凸轮套设于所述芯轴之前,在所述芯轴的外周面上,加工具有预设距离间隔的外圆柱面,形成轴颈,所述轴颈用于回转、支撑整根凸轮轴,其中,所述外圆柱面与所述芯轴的圆弧区和直线区进行相连。
PCT/CN2017/091722 2016-07-08 2017-07-04 发动机及其凸轮轴、凸轮轴的制造方法 WO2018006803A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/315,900 US10746274B2 (en) 2016-07-08 2017-07-04 Motor and camshaft thereof, and manufacturing method for camshaft
EP17823615.4A EP3483402A4 (en) 2016-07-08 2017-07-04 ENGINE AND ITS CAMSHAFT, AND MANUFACTURING METHOD FOR CAMSHAFT
CN201780039788.9A CN109415954A (zh) 2016-07-08 2017-07-04 发动机及其凸轮轴、凸轮轴的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610537009.5 2016-07-08
CN201610537009.5A CN107587908A (zh) 2016-07-08 2016-07-08 发动机及其凸轮轴、凸轮轴的制造方法
CN201610899486.6A CN107956526A (zh) 2016-10-14 2016-10-14 凸轮轴及凸轮轴、管件和凸轮的制造方法
CN201610899486.6 2016-10-14
CN201710387766 2017-05-26
CN201710387766.3 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018006803A1 true WO2018006803A1 (zh) 2018-01-11

Family

ID=60912352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091722 WO2018006803A1 (zh) 2016-07-08 2017-07-04 发动机及其凸轮轴、凸轮轴的制造方法

Country Status (4)

Country Link
US (1) US10746274B2 (zh)
EP (1) EP3483402A4 (zh)
CN (1) CN109415954A (zh)
WO (1) WO2018006803A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293995A (en) * 1975-10-18 1981-10-13 Klockner-Humboldt-Deutz Aktiengesellschaft Method of making camshaft for reciprocable piston engines
US4575913A (en) * 1982-07-19 1986-03-18 Riken Corporation Method of joining tubular member and annular parts
CN2422449Y (zh) * 2000-04-30 2001-03-07 李传彬 复合式中空凸轮轴
CN1469031A (zh) * 2002-06-13 2004-01-21 日产自动车株式会社 发动机的组合式凸轮轴及其制造方法
CN205330751U (zh) * 2014-11-11 2016-06-22 保时捷股份公司 用于内燃发动机的凸轮轴
CN105804822A (zh) * 2016-03-17 2016-07-27 秦天 凸轮轴结构
CN205445706U (zh) * 2016-03-17 2016-08-10 秦天 凸轮轴结构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597365A (en) * 1985-02-07 1986-07-01 General Motors Corporation Camshaft assembly and method
JPS61189829A (ja) * 1985-02-18 1986-08-23 Musashi Seimitsu Kogyo Kk 組立カムシヤフトの製造方法
JPS61189830A (ja) * 1985-02-18 1986-08-23 Musashi Seimitsu Kogyo Kk 組立カムシヤフトの製造方法
JPS61248912A (ja) * 1985-04-26 1986-11-06 Musashi Seimitsu Ind Co Ltd 組立カムシヤフト
JPS62192216A (ja) * 1986-02-17 1987-08-22 Musashi Seimitsu Ind Co Ltd 組立カムシャフトの製造方法
JPH07167152A (ja) * 1993-12-14 1995-07-04 Mitsubishi Materials Corp 組立中空可動軸
KR20010096047A (ko) * 2000-04-17 2001-11-07 강대건 고강성 중공캠샤프트의 제작 방법
JP2001355709A (ja) * 2000-06-13 2001-12-26 Yamamoto Seisakusho:Kk 組立式カムシャフトのカムピースおよびその製造方法
DE102004009074B3 (de) * 2004-02-23 2005-07-07 Thyssenkrupp Automotive Ag Gebauter Mehrfachnocken
KR20150005777A (ko) * 2013-07-04 2015-01-15 자동차부품연구원 캠 샤프트 장치 및 캠 샤프트 장치의 제작 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293995A (en) * 1975-10-18 1981-10-13 Klockner-Humboldt-Deutz Aktiengesellschaft Method of making camshaft for reciprocable piston engines
US4575913A (en) * 1982-07-19 1986-03-18 Riken Corporation Method of joining tubular member and annular parts
CN2422449Y (zh) * 2000-04-30 2001-03-07 李传彬 复合式中空凸轮轴
CN1469031A (zh) * 2002-06-13 2004-01-21 日产自动车株式会社 发动机的组合式凸轮轴及其制造方法
CN205330751U (zh) * 2014-11-11 2016-06-22 保时捷股份公司 用于内燃发动机的凸轮轴
CN105804822A (zh) * 2016-03-17 2016-07-27 秦天 凸轮轴结构
CN205445706U (zh) * 2016-03-17 2016-08-10 秦天 凸轮轴结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483402A4

Also Published As

Publication number Publication date
US20190226569A1 (en) 2019-07-25
EP3483402A1 (en) 2019-05-15
CN109415954A (zh) 2019-03-01
EP3483402A4 (en) 2020-02-26
US10746274B2 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
US8495980B2 (en) Adjustable camshaft arrangement
US8534252B2 (en) Concentric camshaft with varying wall geometry and method of assembly
EP1337743B1 (en) Variable duration valve timing camshaft
US8807106B2 (en) Camshaft
US10697413B2 (en) Tappet assembly for use in a high-pressure fuel system of an internal combustion engine
CN101832159B (zh) 同心凸轮轴及组装方法
US7895982B2 (en) Refurbished camshaft and method
US8113163B2 (en) Concentric camshaft and method of assembly
US20090000581A1 (en) Variable valve actuator having self-centering pivotal piston
WO2018006803A1 (zh) 发动机及其凸轮轴、凸轮轴的制造方法
US20080060594A1 (en) Engine tubular camshaft assembly with multi-lift cam sets and method
CN111485967A (zh) 凸轮轴及其制造方法
JP6037017B2 (ja) 組立カムシャフト
US20030131683A1 (en) Connecting rod for an internal combustion engine having a self-supporting integrated locking serration
US20090151141A1 (en) Refurbished camshaft and method
CN110871336A (zh) 组合式凸轮轴内高压成形的制造方法及高压扩张装置
CN107956526A (zh) 凸轮轴及凸轮轴、管件和凸轮的制造方法
US20210404430A1 (en) Tappet Assembly for Use in a High-Pressure Fuel System and Method of Manufacturing
KR101465357B1 (ko) 대칭되는 경사형 및 수직형 실린더를 구비하는 트랙식 엔진
CN113661308B (zh) 贯通式正时销系统
KR20120062581A (ko) 타입 i 밸브 트레인용 롤링 가능한 캠샤프트 지지체 및 그것을 포함하는 내연 기관
WO2021197563A1 (en) A camshaft assembly for an internal combustion piston engine and a method of assembling a camshaft assembly into an engine block
JP2000145411A (ja) 組立式カムシャフト
CN107587908A (zh) 发动机及其凸轮轴、凸轮轴的制造方法
JP2010048097A (ja) 内燃機関の可変動弁機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017823615

Country of ref document: EP

Effective date: 20190208