WO2018006501A1 - 一种用于连续检测人体血压的集成电路结构 - Google Patents
一种用于连续检测人体血压的集成电路结构 Download PDFInfo
- Publication number
- WO2018006501A1 WO2018006501A1 PCT/CN2016/100037 CN2016100037W WO2018006501A1 WO 2018006501 A1 WO2018006501 A1 WO 2018006501A1 CN 2016100037 W CN2016100037 W CN 2016100037W WO 2018006501 A1 WO2018006501 A1 WO 2018006501A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- human body
- circuit
- signal
- blood pressure
- digital
- Prior art date
Links
- 230000036772 blood pressure Effects 0.000 title claims abstract description 35
- 238000001514 detection method Methods 0.000 title abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 23
- 238000012545 processing Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 26
- 238000005259 measurement Methods 0.000 abstract description 13
- 238000013186 photoplethysmography Methods 0.000 abstract 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000000691 measurement method Methods 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 3
- 238000002555 auscultation Methods 0.000 description 3
- 238000002627 tracheal intubation Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 208000028399 Critical Illness Diseases 0.000 description 1
- 230000008321 arterial blood flow Effects 0.000 description 1
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000036581 peripheral resistance Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02108—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02141—Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0431—Portable apparatus, e.g. comprising a handle or case
Definitions
- the invention relates to the technical field of human blood pressure signal detection, in particular to an integrated circuit structure for continuously detecting blood pressure of a human body.
- Blood pressure is an important physiological parameter of the human body. It can reflect the functional status of the human heart and blood vessels. It is an important basis for clinical diagnosis of diseases, observation of therapeutic effects, and prognosis.
- Human blood pressure refers to the side pressure generated by blood flowing through the blood vessel to the wall of the heart when it contracts, and is the result of the combination of ventricular ejection and peripheral resistance.
- the blood pressure of the human body changes with the physiological cycle, personal emotions, external and internal stimuli, and has obvious volatility. Because blood pressure parameters are affected by many factors such as physical condition, environmental conditions and physiological rhythm, the results of single measurement or intermittent measurement are quite different, while continuous measurement method can measure blood pressure in each cardiac cycle, in clinical and medical research. It has a more important meaning.
- the mainstream human blood pressure detection techniques on the market include arterial intubation, Korotkoff auscultation, and oscillography; arterial intubation can continuously and accurately measure stroke arterial blood pressure, but this measurement method has a long preparation time, except In addition to special needs such as blood pressure measurement in critically ill patients and major surgery, it is generally not used.
- the Korotkoff sound auscultation method is used to complete the measurement of the cuff refilling and deflation air pump. The method has good consistency and does not have the difference between different auscultation patients, but is susceptible to external interference. Whether it is the artificial Korotkoff method or the electronic Korotkoff method, because there is an inflation-deflation process, it is impossible to continuously measure the blood pressure of the human arteries.
- the Korotkoff sound method is not suitable for long-term continuous blood pressure observation.
- the oscillometric method still uses the inflatable sleeve to block the arterial blood flow.
- the oscillometric method has the advantages of small interference, good repeatability and small measurement error, but the oscillating pressure and diastolic pressure of the oscillometric method.
- due to the inflation-deflation process it can only be used for intermittent blood pressure measurement.
- the arterial intubation method can continuously and accurately measure the blood pressure of stroke arteries, but this measurement method has trauma, long preparation time, high requirements for the operator, and the human body is easy to cause complications; Korotkoff method and Due to the inflating and deflation process, the oscillometric method cannot continuously measure the blood pressure of the human arteries.
- the measurement requires a cuff and an air pump. The measurement process is inconvenient, and at the same time, the blood vessel is pressed and the body is uncomfortable.
- the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, an integrated circuit capable of continuously detecting human blood pressure, simplifying the measurement process, and miniaturizing and portable measuring equipment is provided by adopting a non-invasive and cuffless measurement method. structure.
- the present invention adopts the following technical solutions.
- An integrated circuit structure for continuously detecting blood pressure of a human body comprising an integrated chip, wherein the integrated chip is packaged with: a photoelectric detecting unit comprising a light emitting diode and a photodiode, wherein the photodiode is used for receiving The light emitting diode emits light and transmits light through the human body to generate an electrical signal; a photoelectric volume pulse wave collecting circuit is connected to the photodiode, and the photoelectric volume pulse wave collecting circuit is configured to collect the output signal of the photodiode to obtain a human body pulse.
- Wave signal ; a first analog-to-digital conversion circuit connected to the output end of the photoplethysmographic wave acquisition circuit for converting the human body pulse wave signal into a digital signal; an ECG signal acquisition circuit for collecting the human body electrocardiogram a second analog-to-digital conversion circuit coupled to the output of the electrocardiographic signal acquisition circuit, the second analog-to-digital conversion circuit for converting the human body electrocardiographic signal into a digital signal; a digital signal processor, For receiving two digital signals output by the first analog to digital conversion circuit and the second analog to digital conversion circuit And the The two digital signals are processed to obtain data capable of characterizing the continuous blood pressure of the human body; an I2C circuit is connected to the digital signal processor, and the I2C circuit is used to send data obtained by the digital signal processor through the I2C bus.
- the method further includes an LED driving circuit for controlling the lighting state of the LED.
- a clock circuit is further included, the clock circuit for providing a time base signal for the digital signal processor.
- a power module is further included, and the power module is configured to provide electrical energy.
- the ECG signal acquisition circuit is coupled to a right leg drive circuit for increasing the common mode rejection ratio.
- the light generated by the light-emitting diode is transmitted or reflected into the skin of the human body, and is received by the photodiode and converted into a current signal, and then the human body is obtained through the photoelectric volume pulse wave collecting circuit.
- the pulse wave signal is subjected to analog-to-digital conversion to form a digital signal and sent to the digital signal processor; and the ECG signal acquisition circuit is used to collect the ECG signal of the human body, and the ECG signal is digital-analog converted to form a digital signal.
- the signal is sent to the digital signal processor; the digital signal processor processes the acquired pulse wave signal and the electrocardiogram signal through a preset algorithm to obtain a digital value that can characterize the continuous blood pressure of the human body, and finally transmits the signal through the I2C bus.
- the invention adopts a non-invasive, cuffless measurement method, and simplifies the measurement process on the basis of continuous detection of human blood pressure, realizes miniaturization and portability of the measurement device, and is suitable for application. Human blood pressure signal detection device.
- 1 is a block diagram showing the composition of an integrated circuit structure of the present invention.
- the invention discloses an integrated circuit structure for continuously detecting blood pressure of a human body. As shown in FIG. 1 , it comprises an integrated chip 100.
- the integrated chip 100 includes a photoelectric detecting unit 1 and a photoelectric volume pulse wave collecting circuit 2 .
- a first analog-to-digital conversion circuit 3 an ECG signal acquisition circuit 4, a second analog-to-digital conversion circuit 5, a digital signal processor 6, an I2C circuit 7, an LED driving circuit 8, a clock circuit 9 and A power module 10, wherein:
- the photodetecting unit 1 includes a light emitting diode D1 and a photodiode D2 for receiving light emitted by the light emitting diode D1 and transmitted through the human body to generate an electrical signal;
- the photoplethysmographic pulse wave acquisition circuit is connected to the photodiode D2, and the photoplethysmographic pulse wave acquisition circuit 2 is configured to collect the output signal of the photodiode D2 to obtain a human body pulse wave signal;
- the first analog-to-digital conversion circuit 3 is connected to an output end of the photoplethysmographic wave acquisition circuit 2 for converting the human body pulse wave signal into a digital signal;
- the ECG signal collecting circuit 4 is configured to collect a human body ECG signal
- the second analog-to-digital conversion circuit 5 is connected to an output end of the electrocardiographic signal acquisition circuit 4, and the second analog-to-digital conversion circuit 5 is configured to convert the human body electrocardiographic signal into a digital signal;
- the digital signal processor 6 is configured to receive two digital signals output by the first analog to digital conversion circuit 3 and the second analog to digital conversion circuit 5, and process the two digital signals to obtain continuous human body representation Blood pressure data;
- the I2C circuit 7 is connected to a digital signal processor 6, and the I2C circuit 7 is configured to send data obtained by the digital signal processor 6 through an I2C bus;
- the LED driving circuit 8 is configured to control a lighting state of the LED D1;
- the clock circuit 9 is configured to provide a time base signal for the digital signal processor 6;
- the power module 10 is configured to provide electrical energy
- the electrocardiographic signal acquisition circuit 4 is connected to a right leg drive circuit 11 for increasing the common mode rejection ratio.
- the light generated by the light-emitting diode D1 is transmitted or reflected into the skin of the human body, and is received by the photodiode D2 and converted into a current signal, and then the pulse wave signal of the human body is obtained by the photoelectric volume pulse wave collecting circuit 2, and the pulse wave is obtained.
- the signal is subjected to analog-to-digital conversion to form a digital signal and sent to the digital signal processor 6; at the same time, the electrocardiographic signal acquisition circuit 4 is used to collect the electrocardiogram signal of the human body, and the electrocardiographic signal is subjected to analog-to-digital conversion to form a digital signal and sent to the digital signal.
- the processor 6 processes the acquired pulse wave signal and the electrocardiogram signal through a preset algorithm to obtain a digital value that can characterize the continuous blood pressure of the human body, and finally transmits it through the I2C bus.
- the invention adopts a non-invasive, cuffless measurement method, and simplifies the measurement process on the basis of continuous detection of human blood pressure, realizes miniaturization and portability of the measurement device, and is suitable for application. Human blood pressure signal detection device.
- an amplifying circuit and a filter circuit may be provided, or only an amplifying circuit may be provided;
- an ECG signal collecting circuit is available.
- Two-electrode mode that is, no right leg drive circuit, or three-electrode mode, that is, with the right leg drive circuit;
- c photodiode can be integrated on the chip, or externally in the chip peripheral circuit;
- d photoelectric volume pulse wave
- the amplification circuit and the filter circuit can be used, or only the amplification circuit can be used;
- the volume pulse wave signal and the electrocardiogram signal can also be converted by the same digital-to-analog conversion circuit by time division multiplexing;
- f or not
- the IIC digital interface is used, and the SPI interface or the UART interface is used;
- the relevant blood pressure calculation algorithm integrated in the digital signal processing module can also be externally placed in the host processing unit working with the chip.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Physiology (AREA)
- Pulmonology (AREA)
- Signal Processing (AREA)
- Vascular Medicine (AREA)
- Power Engineering (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
一种用于连续检测人体血压的集成电路结构,包括光电检测单元(1)、光电容积脉搏波采集电路(2)、第一模数转换电路(3)、心电信号采集电路(4)、第二模数转换电路(5)、数字信号处理器(6)及I2C总线(7),其中:光电检测单元(1)包括发光二极管(D1)和光电二极管(D2),发光二极管(D1)产生的光线经过透射或者反射进入人体皮肤后,由光电二极管(D2)接收并转换为电流信号,再通过光电容积脉搏波采集电路(2)得到人体的脉搏波信号;同时心电信号采集电路(4)采集人体的心电信号;数字信号处理器(6)接收脉搏波信号和心电信号并处理得到表征人体连续血压的数字值,将该值经由I2C总线(7)传输。该集成电路结构能够连续检测人体血压、简化测量过程和实现测量设备小型化。
Description
本发明涉及人体血压信号检测技术领域,尤其涉及一种用于连续检测人体血压的集成电路结构。
血压是人体重要的生理参数,能够反应出人体心脏和血管的功能状况,是临床上诊断疾病、观察治疗效果、进行预后判断的重要依据。人体血压是指心脏收缩时血液流经血管对管壁产生的侧压力,是心室射血和外周阻力共同作用的结果。人体血压随着生理周期、个人情绪、外界和内在的各种刺激而产生变化,具有明显的波动性。由于血压参数受身体状况、环境条件及生理韵律等诸多因素的影响,单次测量或断续测量的结果存在较大差别,而连续测量方法可在每个心动周期测量血压,在临床和医学研究中具有更重要的意义。
目前市场上主流的人体血压检测技术有动脉插管法、柯氏音听诊法、示波法;动脉插管法能够连续准确地测量每搏动脉血压,但是这种测量方法准备时间很长,除危重患者及大手术的血压测量等特殊需求外,一般不采用。柯氏音听诊法对袖带加气、放气用气泵来完成测量,该方法一致性较好,不存在不同听诊者之间产生的差异性,但是易受外界干扰。不论是人工柯氏音法还是电子柯氏音法,因为都有充气一放气过程,所以不能够连续测量人体动脉血压。同时由于血管被压迫对人体所造成的不适性,在长时间连续血压观测中也不适宜采用柯氏音法。示波法仍采用充气袖带来阻断动脉血流,相对于柯氏音法,示波法具有干扰小,重复性好,测量误差小等优点,但示波法的收缩压和舒张压
的计算间无通用的统一标准,各个厂家均是在大量临床实验的基础上推算出各自的经验算法,因此精度不高。同时由于存在充气一放气过程,只能用于间歇性血压测量。
其中,动脉插管法能够连续准确地测量每搏动脉血压,但是这种测量方法有创伤,准备时间很长,对施术者要求较高,施术人体容易引发并发症;柯氏音法和示波法由于存在充气一放气过程,不能够连续测量人体动脉血压,测量需要袖带和气泵,测量过程不方便,同时由于血管被压迫还会对人体造成不适。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种采用无创、无袖带的测量方式,能够连续检测人体血压、简化测量过程、实现测量设备小型化、便携化的集成电路结构。
为解决上述技术问题,本发明采用如下技术方案。
一种用于连续检测人体血压的集成电路结构,其包括有集成芯片,所述集成芯片内封装有:一光电检测单元,包括有发光二极管和光电二极管,所述光电二极管用于接收由所述发光二极管发出并且透射过人体的光线而产生电信号;一光电容积脉搏波采集电路,其连接于光电二极管,所述光电容积脉搏波采集电路用于对光电二极管的输出信号进行采集而得到人体脉搏波信号;一第一模数转换电路,其连接于光电容积脉搏波采集电路的输出端,用于将所述人体脉搏波信号转换为数字信号;一心电信号采集电路,用于采集人体心电信号;一第二模数转换电路,其连接于心电信号采集电路的输出端,所述第二模数转换电路用于将所述人体心电信号转换为数字信号;一数字信号处理器,用于接收由所述第一模数转换电路和第二模数转换电路输出的两路数字信号,并对该
两路数字信号进行处理得出能表征人体连续血压的数据;一I2C电路,连接于数字信号处理器,所述I2C电路用于将数字信号处理器得出的数据通过I2C总线发出。
优选地,还包括有一发光二极管驱动电路,所述发光二极管驱动电路用于控制发光二极管的点亮状态。
优选地,还包括有一时钟电路,所述时钟电路用于为数字信号处理器提供时基信号。
优选地,还包括有一电源模块,所述电源模块用于提供电能。
优选地,所述心电信号采集电路连接有一用于提高共模抑制比的右腿驱动电路。
本发明公开的用于连续检测人体血压的集成电路结构中,发光二极管产生的光线经过透射或者反射进入人体皮肤后,由光电二极管接收并转换为电流信号,再通过光电容积脉搏波采集电路得到人体的脉搏波信号,该脉搏波信号经过模数转换后形成数字信号并发送至数字信号处理器;同时利用心电信号采集电路采集人体的心电信号,该心电信号经过模数转换后形成数字信号并发送至数字信号处理器;所述数字信号处理器将采集到的脉搏波信号和心电信号通过预设算法处理后,得到可表征人体连续血压的数字值,最后经由I2C总线传输出去。相比现有技术而言,本发明采用了无创、无袖带的测量方式,并且在能够连续检测人体血压的基础上,简化了测量过程,实现了测量设备小型化、便携化,适合应用于人体血压信号检测设备中。
图1为本发明集成电路结构的组成框图。
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种用于连续检测人体血压的集成电路结构,如图1所示,其包括有集成芯片100,所述集成芯片100包括有一光电检测单元1、一光电容积脉搏波采集电路2、一第一模数转换电路3、一心电信号采集电路4、一第二模数转换电路5、一数字信号处理器6、一I2C电路7、一发光二极管驱动电路8、一时钟电路9及一电源模块10,其中:
所述光电检测单元1包括有发光二极管D1和光电二极管D2,所述光电二极管D2用于接收由所述发光二极管D1发出并且透射过人体的光线而产生电信号;
所述光电容积脉搏波采集电路连接于光电二极管D2,所述光电容积脉搏波采集电路2用于对光电二极管D2的输出信号进行采集而得到人体脉搏波信号;
所述第一模数转换电路3连接于光电容积脉搏波采集电路2的输出端,用于将所述人体脉搏波信号转换为数字信号;
所述心电信号采集电路4用于采集人体心电信号;
所述第二模数转换电路5连接于心电信号采集电路4的输出端,所述第二模数转换电路5用于将所述人体心电信号转换为数字信号;
所述数字信号处理器6用于接收由所述第一模数转换电路3和第二模数转换电路5输出的两路数字信号,并对该两路数字信号进行处理得出能表征人体连续血压的数据;
所述I2C电路7连接于数字信号处理器6,所述I2C电路7用于将数字信号处理器6得出的数据通过I2C总线发出;
所述发光二极管驱动电路8用于控制发光二极管D1的点亮状态;
所述时钟电路9用于为数字信号处理器6提供时基信号;
所述电源模块10用于提供电能;
所述心电信号采集电路4连接有一用于提高共模抑制比的右腿驱动电路11。
上述集成电路中,发光二极管D1产生的光线经过透射或者反射进入人体皮肤后,由光电二极管D2接收并转换为电流信号,再通过光电容积脉搏波采集电路2得到人体的脉搏波信号,该脉搏波信号经过模数转换后形成数字信号并发送至数字信号处理器6;同时利用心电信号采集电路4采集人体的心电信号,该心电信号经过模数转换后形成数字信号并发送至数字信号处理器6;所述数字信号处理器6将采集到的脉搏波信号和心电信号通过预设算法处理后,得到可表征人体连续血压的数字值,最后经由I2C总线传输出去。相比现有技术而言,本发明采用了无创、无袖带的测量方式,并且在能够连续检测人体血压的基础上,简化了测量过程,实现了测量设备小型化、便携化,适合应用于人体血压信号检测设备中。
作为一种扩展说明,在实际应用中,还包括如下优选实施例:a、心电信号采集电路中,可以设置放大电路和滤波电路,也可以只设置放大电路;b、心电信号采集电路可用两电极方式,即无右腿驱动电路,或者采用三电极方式,即配合右腿驱动电路;c、光电二极管可集成在芯片上,也可外置在芯片外围电路中;d、光电容积脉搏波信号采集电路中,可以做放大电路和滤波电路,也可只做放大电路;e、容积脉搏波信号和心电信号也可通过时分复用方式采用相同数模转换电路进行信号转换;f、可不采用IIC数字接口,换用SPI接口或者UART接口;g、数字信号处理模块中集成的相关血压计算算法,也可以外置在和芯片配合工作的主机处理单元中。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。
Claims (5)
- 一种用于连续检测人体血压的集成电路结构,其特征在于,包括有:一光电检测单元,包括有发光二极管和光电二极管,所述光电二极管用于接收由所述发光二极管发出并且透射过人体的光线而产生电信号;一光电容积脉搏波采集电路,其连接于光电二极管,所述光电容积脉搏波采集电路用于对光电二极管的输出信号进行采集而得到人体脉搏波信号;一第一模数转换电路,其连接于光电容积脉搏波采集电路的输出端,用于将所述人体脉搏波信号转换为数字信号;一心电信号采集电路,用于采集人体心电信号;一第二模数转换电路,其连接于心电信号采集电路的输出端,所述第二模数转换电路用于将所述人体心电信号转换为数字信号;一数字信号处理器,用于接收由所述第一模数转换电路和第二模数转换电路输出的两路数字信号,并对该两路数字信号进行处理得出能表征人体连续血压的数据;一I2C电路,连接于数字信号处理器,所述I2C电路用于将数字信号处理器得出的数据通过I2C总线发出。
- 如权利要求1所述的用于连续检测人体血压的集成电路结构,其特征在于,还包括有一发光二极管驱动电路,所述发光二极管驱动电路用于控制发光二极管的点亮状态。
- 如权利要求1所述的用于连续检测人体血压的集成电路结构,其特征在于,还包括有一时钟电路,所述时钟电路用于为数字信号处理器提供时基信号。
- 如权利要求1所述的用于连续检测人体血压的集成电路结构,其特征在于,还包括有一电源模块,所述电源模块用于提供电能。
- 如权利要求1所述的用于连续检测人体血压的集成电路结构,其特征在 于,所述心电信号采集电路连接有一用于提高共模抑制比的右腿驱动电路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610519789.0A CN106073735A (zh) | 2016-07-03 | 2016-07-03 | 一种用于连续检测人体血压的集成电路结构 |
CN2016105197890 | 2016-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018006501A1 true WO2018006501A1 (zh) | 2018-01-11 |
Family
ID=57212047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/100037 WO2018006501A1 (zh) | 2016-07-03 | 2016-09-25 | 一种用于连续检测人体血压的集成电路结构 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106073735A (zh) |
WO (1) | WO2018006501A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112986188A (zh) * | 2021-01-20 | 2021-06-18 | 中国农业大学 | 一种基于漫射光谱的母兔早期孕征检测装置及其方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106725400A (zh) * | 2016-11-24 | 2017-05-31 | 南昌大学 | 一种融合心电信号和脉冲波形态定量评估的新型血压计 |
CN107126201A (zh) * | 2017-03-31 | 2017-09-05 | 悦享趋势科技(北京)有限责任公司 | 非入侵式的连续血压检测方法、设备和装置 |
CN108618772A (zh) * | 2018-05-30 | 2018-10-09 | 北京小汤山医院 | 一种心肺运动试验中实时连续动态血压监测系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6186953B1 (en) * | 1998-10-29 | 2001-02-13 | Colin Corporation | Non-invasive and continuous blood-pressure estimation apparatus |
EP1366709A1 (en) * | 2002-05-15 | 2003-12-03 | Colin Corporation | Fetal-pulse-wave-velocity-related-information obtaining apparatus |
CN101327121A (zh) * | 2007-06-22 | 2008-12-24 | 香港中文大学 | 一种生理参数测量装置 |
CN102058400A (zh) * | 2011-01-24 | 2011-05-18 | 北京新兴阳升科技有限公司 | 一种人体基本生命体征数据的快速检测方法和装置 |
CN102688024A (zh) * | 2012-04-24 | 2012-09-26 | 北京大学 | 一种血压无创测量方法 |
CN104000584A (zh) * | 2014-05-30 | 2014-08-27 | 深圳贝特莱电子科技有限公司 | 一种高信噪比微弱信号的采集电路 |
CN104622445A (zh) * | 2015-01-30 | 2015-05-20 | 中国科学院电子学研究所 | 一种无线智能的多生理参数健康监护腕式设备 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100502768C (zh) * | 2004-10-18 | 2009-06-24 | 香港中文大学 | 基于高频光容积描记信号的人体生理参数监测装置 |
CN102008296B (zh) * | 2010-12-24 | 2013-09-04 | 吉林大学 | 基于脉搏波信号和心电信号测量动脉血压装置及测量方法 |
CN202950649U (zh) * | 2012-11-05 | 2013-05-29 | 北京大学 | 一种便携式电子健康监护仪器 |
KR102263058B1 (ko) * | 2014-07-18 | 2021-06-09 | 삼성전자주식회사 | 생체 정보 검출 장치 및 생체 정보 검출 방법 |
CN104173035A (zh) * | 2014-07-22 | 2014-12-03 | 北京工业大学 | 一种便携袖带式健康监测装置及其使用方法 |
CN104720773A (zh) * | 2015-03-10 | 2015-06-24 | 中国科学院电子学研究所 | 一种手持式的人体多健康参数监护系统 |
CN104840189B (zh) * | 2015-05-26 | 2018-05-11 | 京东方科技集团股份有限公司 | 一种血压计 |
-
2016
- 2016-07-03 CN CN201610519789.0A patent/CN106073735A/zh active Pending
- 2016-09-25 WO PCT/CN2016/100037 patent/WO2018006501A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6186953B1 (en) * | 1998-10-29 | 2001-02-13 | Colin Corporation | Non-invasive and continuous blood-pressure estimation apparatus |
EP1366709A1 (en) * | 2002-05-15 | 2003-12-03 | Colin Corporation | Fetal-pulse-wave-velocity-related-information obtaining apparatus |
CN101327121A (zh) * | 2007-06-22 | 2008-12-24 | 香港中文大学 | 一种生理参数测量装置 |
CN102058400A (zh) * | 2011-01-24 | 2011-05-18 | 北京新兴阳升科技有限公司 | 一种人体基本生命体征数据的快速检测方法和装置 |
CN102688024A (zh) * | 2012-04-24 | 2012-09-26 | 北京大学 | 一种血压无创测量方法 |
CN104000584A (zh) * | 2014-05-30 | 2014-08-27 | 深圳贝特莱电子科技有限公司 | 一种高信噪比微弱信号的采集电路 |
CN104622445A (zh) * | 2015-01-30 | 2015-05-20 | 中国科学院电子学研究所 | 一种无线智能的多生理参数健康监护腕式设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112986188A (zh) * | 2021-01-20 | 2021-06-18 | 中国农业大学 | 一种基于漫射光谱的母兔早期孕征检测装置及其方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106073735A (zh) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106618537B (zh) | 一种基于脉搏波传导的连续动态血压监测装置和方法 | |
US10588528B2 (en) | Handheld physiological sensor | |
KR100871230B1 (ko) | 통신 장치와 연동되는 비가압적이고 비침습적인 손목형혈압 측정 방법 및 장치 | |
US20150182132A1 (en) | Mobile device system for measurement of cardiovascular health | |
US11071479B2 (en) | Handheld physiological sensor | |
CN102688024A (zh) | 一种血压无创测量方法 | |
WO2018006501A1 (zh) | 一种用于连续检测人体血压的集成电路结构 | |
KR100877207B1 (ko) | 비침습적 연속 혈압, 동맥탄성도 측정장치 | |
KR100855043B1 (ko) | 비침습적 연속 혈압, 동맥탄성도 측정방법 | |
AU2023208673A1 (en) | Photoplethysmography-based blood pressure monitoring device | |
JP7235120B2 (ja) | 血圧計 | |
CN115770027A (zh) | 一种基于人工智能的血压检测方法及装置 | |
KR100855042B1 (ko) | 비침습적 연속혈압, 동맥탄성도 측정장치 | |
US20070239039A1 (en) | Method and apparatus for measuring blood pressures by using blood oxygen concentration and electrocardiography | |
KR100877212B1 (ko) | 비침습적 연속 혈압, 동맥탄성도 측정장치 | |
Qiu et al. | A wireless wearable sensor patch for the real-time estimation of continuous beat-to-beat blood pressure | |
CN209863803U (zh) | 一种血压测量腕带设备 | |
TWM547951U (zh) | 生理訊號偵測裝置 | |
CN116421157A (zh) | 一种无创血流动力学监测系统 | |
US20170188859A1 (en) | Handheld physiological sensor | |
Xu et al. | A wearable vital signs monitoring system for pervasive healthcare | |
CN208447576U (zh) | 多参数检测仪 | |
US20200297225A1 (en) | Vital sign measurement device | |
CN212465979U (zh) | 一种基于ppg的袖带血压监测系统 | |
WO2019179175A1 (zh) | 一种可扩展多生理参数监测指环 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16908005 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16908005 Country of ref document: EP Kind code of ref document: A1 |