WO2018006361A1 - 一种虚拟机器人的控制方法和系统 - Google Patents

一种虚拟机器人的控制方法和系统 Download PDF

Info

Publication number
WO2018006361A1
WO2018006361A1 PCT/CN2016/089202 CN2016089202W WO2018006361A1 WO 2018006361 A1 WO2018006361 A1 WO 2018006361A1 CN 2016089202 W CN2016089202 W CN 2016089202W WO 2018006361 A1 WO2018006361 A1 WO 2018006361A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion information
virtual robot
control device
control
robot
Prior art date
Application number
PCT/CN2016/089202
Other languages
English (en)
French (fr)
Inventor
王昊奋
邱楠
杨新宇
Original Assignee
深圳狗尾草智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳狗尾草智能科技有限公司 filed Critical 深圳狗尾草智能科技有限公司
Priority to PCT/CN2016/089202 priority Critical patent/WO2018006361A1/zh
Priority to CN201680001746.1A priority patent/CN106489115A/zh
Publication of WO2018006361A1 publication Critical patent/WO2018006361A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention relates to the field of robot interaction technologies, and in particular, to a method and system for controlling a virtual robot.
  • robots are used more and more. For example, some elderly people and children can interact with robots, including dialogue and entertainment. When interacting with the robot, the user often causes the robot to run a function, such as playing a song, reading a novel, etc., to increase the user's sense of communication and let the user feel companionship.
  • a function such as playing a song, reading a novel, etc.
  • the inventor has developed a robot that uses 3D image display, so that the robot can add various expressions such as action and dance to the traditional robot's expression form, so that the robot is more anthropomorphic when interacting. , to give users a better experience.
  • the object of the present invention is to provide a control method and system for a virtual robot, which is more convenient for controlling a virtual robot, and the feedback of the robot is more accurate, and the user experience is improved.
  • a method for controlling a virtual robot includes:
  • the virtual robot is controlled to make feedback based on the motion information.
  • the feedback includes the virtual robot making the same motion as the control device, the control device is provided with color blocks of at least two colors, and the motion information of the control device is obtained by the motion track of the color block. .
  • control device is provided with a gyroscope, and motion information of the control device is acquired by the gyroscope.
  • control device and the virtual robot device establish a data connection by wireless transmission.
  • the wireless transmission comprises Bluetooth transmission.
  • control device is provided with a pressure sensing device
  • the motion information includes a change after the pressure on the pressure sensing device
  • the step of controlling the virtual robot to make feedback according to the motion information comprises: according to the The pressure on the pressure sensing device controls the virtual robot to make feedback.
  • control device is spherical.
  • the invention discloses a control system for a virtual robot, comprising:
  • An acquisition module configured to acquire motion information of the control device
  • a sending module configured to send the motion information to the virtual robot device
  • a feedback module configured to control the virtual robot to make feedback according to the motion information.
  • the feedback includes the virtual robot making the same motion as the control device, the control device is provided with color blocks of at least two colors, and the motion information of the control device is obtained by the motion track of the color block. .
  • control device is provided with a gyroscope, and motion information of the control device is acquired by the gyroscope.
  • control device and the virtual robot device establish a data connection by wireless transmission.
  • the wireless transmission comprises Bluetooth transmission.
  • control device is provided with a pressure sensing device
  • the motion information includes a change after the pressure on the pressure sensing device
  • the step of controlling the virtual robot to make feedback according to the motion information comprises: according to the The pressure on the pressure sensing device controls the virtual robot to make feedback.
  • control device is spherical.
  • the control method of the virtual robot of the present invention includes: acquiring motion information of the control device; transmitting the motion information to the virtual robot device; and controlling the virtual robot according to the motion information Feedback.
  • the control information of the user can be obtained by controlling the motion information of the device, and then the control device sends the motion information to the virtual robot device, and the virtual robot device controls the virtual robot according to the motion information indicating the control command, so that the virtual robot is controlled. It is more convenient and simple to control the virtual robot, and let the virtual robot know the user's control instructions more accurately, so that the feedback of the robot is more accurate, and the user's pleasure and experience of using the robot is improved.
  • FIG. 1 is a flowchart of a function control method based on active wakeup according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a function control system based on active wakeup according to Embodiment 2 of the present invention.
  • Computer devices include user devices and network devices.
  • the user equipment or the client includes but is not limited to a computer, a smart phone, a PDA, etc.;
  • the network device includes but is not limited to a single network server, a server group composed of multiple network servers, or a cloud computing-based computer or network server. cloud.
  • the computer device can operate alone to carry out the invention, and can also access the network and implement the invention through interoperation with other computer devices in the network.
  • the network in which the computer device is located includes, but is not limited to, the Internet, a wide area network, a metropolitan area network, a local area network, a VPN network, and the like.
  • first means “first,” “second,” and the like may be used herein to describe the various elements, but the elements should not be limited by these terms, and the terms are used only to distinguish one element from another.
  • the term “and/or” used herein includes any and all combinations of one or more of the associated listed items. When a unit is referred to as being “connected” or “coupled” to another unit, it can be directly connected or coupled to the other unit, or an intermediate unit can be present.
  • a control method of a virtual robot including:
  • the control method of the virtual robot of the embodiment includes: acquiring motion information of the control device; transmitting the motion information to the virtual robot device; and controlling the virtual robot to make feedback according to the motion information.
  • the control information of the user can be obtained by controlling the motion information of the device, and then the control device sends the motion information to the virtual robot device, and the virtual robot device controls the virtual robot according to the motion information indicating the control command, so that the virtual robot is controlled. It is more convenient and simple to control the virtual robot, and let the virtual robot know the user's control instructions more accurately, so that the feedback of the robot is more accurate, and the user's pleasure and experience of using the robot is improved.
  • the feedback includes the virtual robot making the same motion as the control device, the control device is provided with color patches of at least two colors, and the motion information of the control device passes the motion of the color block Track acquisition.
  • the virtual robot can capture the movement of the color block by the camera device to obtain the movement of the control device.
  • the motion track of the color block includes the trajectory of the movement of the color block, for example, the direction in which the color block moves, and the trajectory when moving. What it is, so that the motion information of the control device can be obtained more accurately.
  • the control device can be set to be a bar shape, which can facilitate the motion recognition of the virtual robot device. Spots of color patches, or dots, or hollow rings, square rings, and so on.
  • control device is provided with a gyroscope, and motion information of the control device is acquired by the gyroscope.
  • the motion information of the motion device is obtained by the gyroscope provided on the control device, and then the motion information is transmitted to the virtual robot device, so that the motion information of the control device can be acquired more accurately.
  • the motion information of the control device it is also possible to obtain the motion information of the control device through the trajectory of the color block and the gyroscope, which is more accurate.
  • control device establishes a data connection with the virtual robot device by wireless transmission. This allows the control device to move more freely, without being bound by other cables, for example, and the data transmission is reliable and stable.
  • the wireless transmission includes Bluetooth transmission.
  • Using Bluetooth transmission can be more convenient, quick, easy to use and easy to implement.
  • control device is provided with a pressure sensing device
  • the motion information includes a change after being subjected to pressure on the pressure sensing device
  • the step of controlling the virtual robot to make feedback according to the motion information comprises: The pressure applied by the pressure sensing device controls the virtual robot to make feedback.
  • the virtual robot can be controlled by the pressure sensing to understand the control commands that the control device wants to send.
  • control device is spherical.
  • the spherical control device is more susceptible to pressure and facilitates pressure detection.
  • this embodiment discloses a control system for a virtual robot, including:
  • the obtaining module 201 is configured to acquire motion information of the control device
  • the sending module 202 is configured to send the motion information to the virtual robot device
  • the feedback module 203 is configured to control the virtual robot to make feedback according to the motion information.
  • control information of the user can be obtained by controlling the motion information of the device, and then the control device sends the motion information to the virtual robot device, and the virtual robot device controls the virtual robot according to the motion information indicating the control command, so that the virtual robot is controlled. It is more convenient and simple to control the virtual robot, and let the virtual robot know the user's control instructions more accurately, so that the feedback of the robot is more accurate, and the user's pleasure and experience of using the robot is improved.
  • the feedback includes the virtual robot making the same motion as the control device, the control device is provided with color patches of at least two colors, and the motion information of the control device passes the motion of the color block Track acquisition.
  • the virtual robot can capture the movement of the color block by the camera device to obtain the movement of the control device.
  • the motion track of the color block includes the trajectory of the movement of the color block, for example, the direction in which the color block moves, and the trajectory when moving. What it is, so that the motion information of the control device can be obtained more accurately.
  • the control device can be set to be a bar shape, which can facilitate the motion recognition of the virtual robot device.
  • control device is provided with a gyroscope, and motion information of the control device is acquired by the gyroscope.
  • the motion information of the motion device is obtained by the gyroscope provided on the control device, and then the motion information is transmitted to the virtual robot device, so that the motion information of the control device can be acquired more accurately.
  • control device establishes a data connection with the virtual robot device by wireless transmission. This allows the control device to move more freely, without being bound by other cables, for example, and the data transmission is reliable and stable.
  • the wireless transmission includes Bluetooth transmission.
  • the control device when used to control the virtual robot, it is controlled at a close distance, and the use of Bluetooth transmission can be more convenient, quick, easy to use, and easy to implement.
  • control device is provided with a pressure sensing device
  • the motion information includes a change after being subjected to pressure on the pressure sensing device
  • the step of controlling the virtual robot to make feedback according to the motion information comprises: The pressure applied by the pressure sensing device controls the virtual robot to make feedback.
  • the virtual robot can be controlled by the pressure sensing to understand the control commands that the control device wants to send.
  • control device is spherical.
  • the spherical control device is more susceptible to pressure and facilitates pressure detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Toys (AREA)

Abstract

一种虚拟机器人的控制方法,包括:获取控制装置的运动信息(S101);将所述运动信息发送至虚拟机器人设备(S102);根据所述运动信息控制虚拟机器人作出反馈(S103)。这样就可以通过控制装置运动信息来获取用户想要发出的控制指令,然后控制装置将运动信息发送至虚拟机器人设备,虚拟机器人设备就会根据表示控制指令的运动信息来对虚拟机器人进行控制,这样就可以更加方便和简单的控制虚拟机器人,并且让虚拟机器人更加准确的知道用户的控制指令,从而让机器人的反馈更加精确,提高用户使用机器人的愉悦度和体验度。

Description

一种虚拟机器人的控制方法和系统 技术领域
本发明涉及机器人交互技术领域,尤其涉及一种虚拟机器人的控制方法和系统。
背景技术
机器人作为与人类的交互工具,使用的场合越来越多,例如一些老人、小孩较孤独时,就可以与机器人交互,包括对话、娱乐等。用户在与机器人交互时,往往会让机器人运行一项功能,例如播放歌曲,读一段小说等等,以增加用户的沟通感,让用户感觉到陪伴。
为了让机器人的表现形式更加多样,发明人研究出利用3D影像显示的机器人,这样机器人就可以在传统的机器人的表现形式上增加动作、舞蹈等多种表现形式,让机器人在交互时更加拟人化,带给用户更好的使用体验。
然而,如何更加方便控制虚拟机器人,并且机器人的反馈更精确,是本技术领域亟需解决的技术问题。
发明内容
本发明的目的是提供一种虚拟机器人的控制方法和系统,以更加方便控制虚拟机器人,并且机器人的反馈更精确,提升用户的使用体验。
本发明的目的是通过以下技术方案来实现的:
一种虚拟机器人的控制方法,包括:
获取控制装置的运动信息;
将所述运动信息发送至虚拟机器人设备;
根据所述运动信息控制虚拟机器人作出反馈。
优选的,所述反馈包括虚拟机器人作出与所述控制装置相同的运动,所述控制装置上设有至少两种颜色的色块,所述控制装置的运动信息通过所述色块的运动轨迹获取。
优选的,所述控制装置上设置有陀螺仪,所述控制装置的运动信息通过所述陀螺仪获取。
优选的,所述控制装置与虚拟机器人设备通过无线传输建立数据连接。
优选的,所述无线传输包括蓝牙传输。
优选的,所述控制装置上设有压力感应装置,所述运动信息包括所述压力感应装置上受到压力后的变化,所述根据所述运动信息控制虚拟机器人作出反馈的步骤包括:根据所述压力感应装置所受的压力,控制虚拟机器人作出反馈。
优选的,所述控制装置为球状。
本发明公开一种虚拟机器人的控制系统,包括:
获取模块,用于获取控制装置的运动信息;
发送模块,用于将所述运动信息发送至虚拟机器人设备;
反馈模块,用于根据所述运动信息控制虚拟机器人作出反馈。
优选的,所述反馈包括虚拟机器人作出与所述控制装置相同的运动,所述控制装置上设有至少两种颜色的色块,所述控制装置的运动信息通过所述色块的运动轨迹获取。
优选的,所述控制装置上设置有陀螺仪,所述控制装置的运动信息通过所述陀螺仪获取。
优选的,所述控制装置与虚拟机器人设备通过无线传输建立数据连接。
优选的,所述无线传输包括蓝牙传输。
优选的,所述控制装置上设有压力感应装置,所述运动信息包括所述压力感应装置上受到压力后的变化,所述根据所述运动信息控制虚拟机器人作出反馈的步骤包括:根据所述压力感应装置所受的压力,控制虚拟机器人作出反馈。
优选的,所述控制装置为球状。
相比现有技术,本发明具有以下优点:本发明的虚拟机器人的控制方法,包括:获取控制装置的运动信息;将所述运动信息发送至虚拟机器人设备;根据所述运动信息控制虚拟机器人作出反馈。这样就可以通过控制装置运动信息来获取用户想要发出的控制指令,然后控制装置将运动信息发送至虚拟机器人设备,虚拟机器人设备就会根据表示控制指令的运动信息来对虚拟机器人进行控制,这样就可以更加方便和简单的控制虚拟机器人,并且让虚拟机器人更加准确的知道用户的控制指令,从而让机器人的反馈更加精确,提高用户使用机器人的愉悦度和体验度。
附图说明
图1是本发明实施例一的一种基于主动唤醒的功能控制方法的流程图;
图2是本发明实施例二的一种基于主动唤醒的功能控制系统的示意图。
具体实施方式
虽然流程图将各项操作描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。各项操作的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于方法、函数、规程、子例程、子程序等等。
计算机设备包括用户设备与网络设备。其中,用户设备或客户端包括但不限于电脑、智能手机、PDA等;网络设备包括但不限于单个网络服务器、多个网络服务器组成的服务器组或基于云计算的由大量计算机或网络服务器构成的云。计算机设备可单独运行来实现本发明,也可接入网络并通过与网络中的其他计算机设备的交互操作来实现本发明。计算机设备所处的网络包括但不限于互联网、广域网、城域网、局域网、VPN网络等。
在这里可能使用了术语“第一”、“第二”等等来描述各个单元,但是这些单元不应当受这些术语限制,使用这些术语仅仅是为了将一个单元与另一个单元进行区分。这里所使用的术语“和/或”包括其中一个或更多所列出的相关联项目的任意和所有组合。当一个单元被称为“连接”或“耦合”到另一单元时,其可以直接连接或耦合到所述另一单元,或者可以存在中间单元。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和较佳的实施例对本发明作进一步说明。
实施例一
如图1所示,本实施例中公开一种虚拟机器人的控制方法,包括:
S101、获取控制装置的运动信息;
S102、将所述运动信息发送至虚拟机器人设备;
S103、根据所述运动信息控制虚拟机器人作出反馈。
本实施例的虚拟机器人的控制方法,包括:获取控制装置的运动信息;将所述运动信息发送至虚拟机器人设备;根据所述运动信息控制虚拟机器人作出反馈。这样就可以通过控制装置运动信息来获取用户想要发出的控制指令,然后控制装置将运动信息发送至虚拟机器人设备,虚拟机器人设备就会根据表示控制指令的运动信息来对虚拟机器人进行控制,这样就可以更加方便和简单的控制虚拟机器人,并且让虚拟机器人更加准确的知道用户的控制指令,从而让机器人的反馈更加精确,提高用户使用机器人的愉悦度和体验度。
根据其中一个示例,所述反馈包括虚拟机器人作出与所述控制装置相同的运动,所述控制装置上设有至少两种颜色的色块,所述控制装置的运动信息通过所述色块的运动轨迹获取。
这样虚拟机器人就可以通过摄像装置拍摄色块的移动来得到控制装置的移动,色块的运动轨迹包括色块的移动的轨迹,例如色块朝什么方向,移动了多少,移动的时候的轨迹是什么样子的,从而更加准确的获得到控制装置的运动信息。通过设置两种不同颜色的色块,不仅可以更加精确的获取控制装置的运动信息,而且还可以减少其他的外界因素而的干扰,两种颜色可以是颜色反差较大的两种颜色,例如白色和黑色等。本实施例中,控制装置可以设置为指挥棒状,这样可以方便虚拟机器人设备的运动识别。色块颜色的斑点,或者圆点,或者空心的圆环、方形环等等。
根据其中一个示例,所述控制装置上设置有陀螺仪,所述控制装置的运动信息通过所述陀螺仪获取。
通过设置在控制装置上的陀螺仪来获取运动装置的运动信息,然后将运动信息传输给虚拟机器人设备,可以更加准确的获取控制装置的运动信息。当然也可以通过色块的轨迹和陀螺仪来共同获取到控制装置的运动信息,这样更加准确。
根据其中一个示例,所述控制装置与虚拟机器人设备通过无线传输建立数据连接。这样就可以让控制装置的移动更加自由,不会受到其他例如线缆的束缚,而且数据传输可靠、稳定。
根据其中一个示例,所述无线传输包括蓝牙传输。一般使用控制装置 控制虚拟机器人时,均是在近距离控制,使用蓝牙传输可以更加方便、快捷,简单易用,容易实现。
根据其中一个示例,所述控制装置上设有压力感应装置,所述运动信息包括所述压力感应装置上受到压力后的变化,所述根据所述运动信息控制虚拟机器人作出反馈的步骤包括:根据所述压力感应装置所受的压力,控制虚拟机器人作出反馈。
这样就可以通过压力的感应来了解到控制装置想要发出的控制指令,从而控制虚拟机器人。
根据其中一个示例,所述控制装置为球状。球状的控制装置更加容易感受到压力,方便压力的检测。
实施例二
如图2所示,本实施例公开一种虚拟机器人的控制系统,包括:
获取模块201,用于获取控制装置的运动信息;
发送模块202,用于将所述运动信息发送至虚拟机器人设备;
反馈模块203,用于根据所述运动信息控制虚拟机器人作出反馈。
这样就可以通过控制装置运动信息来获取用户想要发出的控制指令,然后控制装置将运动信息发送至虚拟机器人设备,虚拟机器人设备就会根据表示控制指令的运动信息来对虚拟机器人进行控制,这样就可以更加方便和简单的控制虚拟机器人,并且让虚拟机器人更加准确的知道用户的控制指令,从而让机器人的反馈更加精确,提高用户使用机器人的愉悦度和体验度。
根据其中一个示例,所述反馈包括虚拟机器人作出与所述控制装置相同的运动,所述控制装置上设有至少两种颜色的色块,所述控制装置的运动信息通过所述色块的运动轨迹获取。
这样虚拟机器人就可以通过摄像装置拍摄色块的移动来得到控制装置的移动,色块的运动轨迹包括色块的移动的轨迹,例如色块朝什么方向,移动了多少,移动的时候的轨迹是什么样子的,从而更加准确的获得到控制装置的运动信息。通过设置两种不同颜色的色块,不仅可以更加精确的获取控制装置的运动信息,而且还可以减少其他的外界因素而的干扰,两种颜色可以是颜色反差较大的两种颜色,例如白色和黑色等。本实施例中,控制装置可以设置为指挥棒状,这样可以方便虚拟机器人设备的运动识别。
根据其中一个示例,所述控制装置上设置有陀螺仪,所述控制装置的运动信息通过所述陀螺仪获取。
通过设置在控制装置上的陀螺仪来获取运动装置的运动信息,然后将运动信息传输给虚拟机器人设备,可以更加准确的获取控制装置的运动信息。
根据其中一个示例,所述控制装置与虚拟机器人设备通过无线传输建立数据连接。这样就可以让控制装置的移动更加自由,不会受到其他例如线缆的束缚,而且数据传输可靠、稳定。
根据其中一个示例,所述无线传输包括蓝牙传输。一般使用控制装置控制虚拟机器人时,均是在近距离控制,使用蓝牙传输可以更加方便、快捷,简单易用,容易实现。
根据其中一个示例,所述控制装置上设有压力感应装置,所述运动信息包括所述压力感应装置上受到压力后的变化,所述根据所述运动信息控制虚拟机器人作出反馈的步骤包括:根据所述压力感应装置所受的压力,控制虚拟机器人作出反馈。
这样就可以通过压力的感应来了解到控制装置想要发出的控制指令,从而控制虚拟机器人。
根据其中一个示例,所述控制装置为球状。球状的控制装置更加容易感受到压力,方便压力的检测。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (14)

  1. 一种虚拟机器人的控制方法,其特征在于,包括:
    获取控制装置的运动信息;
    将所述运动信息发送至虚拟机器人设备;
    根据所述运动信息控制虚拟机器人作出反馈。
  2. 根据权利要求1所述的控制方法,其特征在于,所述反馈包括虚拟机器人作出与所述控制装置相同的运动,所述控制装置上设有至少两种颜色的色块,所述控制装置的运动信息通过所述色块的运动轨迹获取。
  3. 根据权利要求1或2所述的控制方法,其特征在于,所述控制装置上设置有陀螺仪,所述控制装置的运动信息通过所述陀螺仪获取。
  4. 根据权利要求1所述的控制方法,其特征在于,所述运动信息通过无线传输的方式发送至虚拟机器人设备。
  5. 根据权利要求4所述的控制方法,其特征在于,所述无线传输包括蓝牙传输。
  6. 根据权利要求1所述的控制方法,其特征在于,所述控制装置上设有压力感应装置,所述运动信息包括所述压力感应装置上受到压力后的变化,所述根据所述运动信息控制虚拟机器人作出反馈的步骤包括:根据所述压力感应装置所受的压力,控制虚拟机器人作出反馈。
  7. 根据权利要求6所述的控制方法,其特征在于,所述控制装置为球状。
  8. 一种虚拟机器人的控制系统,其特征在于,包括:
    获取模块,用于获取控制装置的运动信息;
    发送模块,用于将所述运动信息发送至虚拟机器人设备;
    反馈模块,用于根据所述运动信息控制虚拟机器人作出反馈。
  9. 根据权利要求8所述的控制系统,其特征在于,所述反馈包括虚拟机器人作出与所述控制装置相同的运动,所述控制装置上设有至少两种颜色的色块,所述控制装置的运动信息通过所述色块的运动轨迹获取。
  10. 根据权利要求8或9所述的控制系统,其特征在于,所述控制装置上设置有陀螺仪,所述控制装置的运动信息通过所述陀螺仪获取。
  11. 根据权利要求8所述的控制系统,其特征在于,所述控制装置与虚拟机器人设备通过无线传输建立数据连接。
  12. 根据权利要求11所述的控制系统,其特征在于,所述无线传输包 括蓝牙传输。
  13. 根据权利要求8所述的控制系统,其特征在于,所述控制装置上设有压力感应装置,所述运动信息包括所述压力感应装置上受到压力后的变化,所述根据所述运动信息控制虚拟机器人作出反馈的步骤包括:根据所述压力感应装置所受的压力,控制虚拟机器人作出反馈。
  14. 根据权利要求13所述的控制系统,其特征在于,所述控制装置为球状。
PCT/CN2016/089202 2016-07-07 2016-07-07 一种虚拟机器人的控制方法和系统 WO2018006361A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/089202 WO2018006361A1 (zh) 2016-07-07 2016-07-07 一种虚拟机器人的控制方法和系统
CN201680001746.1A CN106489115A (zh) 2016-07-07 2016-07-07 一种虚拟机器人的控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/089202 WO2018006361A1 (zh) 2016-07-07 2016-07-07 一种虚拟机器人的控制方法和系统

Publications (1)

Publication Number Publication Date
WO2018006361A1 true WO2018006361A1 (zh) 2018-01-11

Family

ID=58285375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089202 WO2018006361A1 (zh) 2016-07-07 2016-07-07 一种虚拟机器人的控制方法和系统

Country Status (2)

Country Link
CN (1) CN106489115A (zh)
WO (1) WO2018006361A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463780A (zh) * 2017-08-04 2017-12-12 南京乐朋电子科技有限公司 一种3d虚拟自闭症治疗系统及治疗方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816838A (zh) * 2010-01-19 2010-09-01 广东群兴玩具股份有限公司 一种红外光控制的行走玩具
JP2011147467A (ja) * 2010-01-19 2011-08-04 Js-Robotics Ltd 毛状体で移動する教材用ロボット
CN102861441A (zh) * 2012-09-21 2013-01-09 徐志强 一种采用光束遥控的电动玩具车
CN204965564U (zh) * 2015-09-30 2016-01-13 深圳光启合众科技有限公司 智能机器人以及光子门禁系统
CN205042100U (zh) * 2015-09-09 2016-02-24 三峡大学 轮式足球机器人
CN205160878U (zh) * 2015-11-30 2016-04-13 深圳职业技术学院 一种基于光立方的机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816838A (zh) * 2010-01-19 2010-09-01 广东群兴玩具股份有限公司 一种红外光控制的行走玩具
JP2011147467A (ja) * 2010-01-19 2011-08-04 Js-Robotics Ltd 毛状体で移動する教材用ロボット
CN102861441A (zh) * 2012-09-21 2013-01-09 徐志强 一种采用光束遥控的电动玩具车
CN202961875U (zh) * 2012-09-21 2013-06-05 徐志强 一种采用光束遥控的电动玩具车
CN205042100U (zh) * 2015-09-09 2016-02-24 三峡大学 轮式足球机器人
CN204965564U (zh) * 2015-09-30 2016-01-13 深圳光启合众科技有限公司 智能机器人以及光子门禁系统
CN205160878U (zh) * 2015-11-30 2016-04-13 深圳职业技术学院 一种基于光立方的机器人

Also Published As

Publication number Publication date
CN106489115A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
Lipton et al. Baxter's homunculus: Virtual reality spaces for teleoperation in manufacturing
Hu et al. Internet‐based robotic systems for teleoperation
US11559898B2 (en) Teleoperation system, method, apparatus, and computer-readable medium
US20170053550A1 (en) Education System using Connected Toys
WO2017167239A1 (zh) 移动控制方法、移动电子设备及移动控制系统、存储介质
Pitzer et al. Pr2 remote lab: An environment for remote development and experimentation
Schwartz et al. Hybrid teams: flexible collaboration between humans, robots and virtual agents
JP2017215577A (ja) バーチャルロボットを用いた教育システム
JP7428436B2 (ja) 随意のデュアルレンジ運動学を用いたプロキシコントローラスーツ
Manring et al. Augmented reality for interactive robot control
Ishak et al. Design and implementation of robot assisted surgery based on Internet of Things (IoT)
KR20150097049A (ko) 네추럴 ui를 이용한 자율서빙 로봇 시스템
Chen et al. Development of an immersive interface for robot teleoperation
Shamaine et al. RoSTAR: ROS-based telerobotic control via augmented reality
Tikanmäki et al. The remote operation and environment reconstruction of outdoor mobile robots using virtual reality
WO2018006361A1 (zh) 一种虚拟机器人的控制方法和系统
Mueggler Event-based vision for high-speed robotics
KR20210123586A (ko) 모방 학습을 통한 사물 자율 제어 방법 및 장치
Deng et al. A motion sensing-based framework for robotic manipulation
Spada et al. Locomotion and telepresence in virtual and real worlds
Ma et al. Networked robot systems for indoor service enhanced via ROS middleware
Mohammad et al. Tele-operation of robot using gestures
Komatsu et al. Leveraging 5G in cyber-physical system for low-cost robotic telepresence
Song et al. Networked Robots
CN205375372U (zh) 一种互动娱乐装置及互动娱乐系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907866

Country of ref document: EP

Kind code of ref document: A1