WO2018004328A1 - Device for the thermal protection and transport of biomacromolecules - Google Patents

Device for the thermal protection and transport of biomacromolecules Download PDF

Info

Publication number
WO2018004328A1
WO2018004328A1 PCT/MX2017/000069 MX2017000069W WO2018004328A1 WO 2018004328 A1 WO2018004328 A1 WO 2018004328A1 MX 2017000069 W MX2017000069 W MX 2017000069W WO 2018004328 A1 WO2018004328 A1 WO 2018004328A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
glass
tube
housing
proteins
Prior art date
Application number
PCT/MX2017/000069
Other languages
Spanish (es)
French (fr)
Inventor
Abel MORENO CÁRCAMO
Claudia Carina PAREJA RIVERA
Original Assignee
Universidad Nacional Autónoma de México
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional Autónoma de México filed Critical Universidad Nacional Autónoma de México
Publication of WO2018004328A1 publication Critical patent/WO2018004328A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation

Definitions

  • the present invention relates to container devices for the protection and transport of materials, such as biological macromolecules, without risks of tampering or external disturbances, and without risks of thermal damage, from one site to another, even in transcontinental paths.
  • thermodynamics focusing particularly on S entropy and its maximization a! evolve a closed system spontaneously. While it started with e! analysis of the thermodynamics of fluids, soon addressed the case in which different states of matter are present. Gibbs' contributions to the definition of phases, phase rule and equilibrium were crucial in chemistry, physics, metallurgy and materials, particularly for the systematization of the presentation and the analysis of the phase diagrams to equilibrium, concentration determination of crystal defects to balance, etc. A system is in thermodynamic equilibrium when it is in mechanical, thermal and chemical equilibrium. In materials it is particularly relevant e! aspect of chemical equilibrium. Jan!
  • the corresponding TS mix energy term tends to a maximum value, corresponding to trying to maximize the disorder.
  • T 0 K
  • E enthalpy H
  • the free energy (Gibbs) function is defined as G TM H-TS.
  • G TM H-TS the free energy
  • the barrier ⁇ * Gb-Ga is overcome by the atomic vibrations associated with a sufficiently high temperature T (thermal activation).
  • This barrier is called the activation energy of the transformation (or reaction) and its value is related to the intensity of the bonds and the atomic mechanism of the transformation involved.
  • the speed at which this thermally activated transformation occurs is no longer a matter of the equilibrium criterion but of the "kinetics to reach equilibrium", which is strongly dependent on the values of AG * and T. frame, for a given solid one speaks of high, intermediate and low temperatures, depending on whether the transformation speed is high, moderate or practically zero; This is a simplification of a kinetics that varies continuously, exponentially, with temperature.
  • metastable structure materials corresponds to window glass (SiQ 2 ), an amorphous material ⁇ that is, with the structure of a supercooled liquid).
  • Some examples of modern metallic materials of metastable structure are: materials manufactured by mechanical alloy (even incorporating ceramics) at nominal temperatures close to the environment; shape memory alloys (related to martensitic transformation); and solid amorphous alloys, today obtained at cooling rates as low as 1 K / s.
  • shape memory alloys related to martensitic transformation
  • solid amorphous alloys today obtained at cooling rates as low as 1 K / s.
  • metastability is the property exhibited by a system with several equilibrium states, when it remains in a weakly stable equilibrium state during A considerable period of time.
  • these systems exhibit a temporary evolution towards a strongly stable state of equilibrium.
  • metastability is due to slow state transformations. If we represent a physical-chemical system by its potential energy, a metastable state will be characterized by a state that corresponds to a local minimum of energy. In order for the system to reach the minimum energy state that corresponds to the thermodynamic equilibrium state, it is necessary to supply an amount of energy called activation energy.
  • an enzyme is a biocataiizer capable of establishing weak bonds with its substrate at the level of its active site. The bond energy released is at the origin of the decrease in the activation energy of the reaction. In this way, the reaction is activated kinetically (Arrhenius's law). An enzyme can accelerate the rate constant of the reaction it catalyzes: thus, very slow chemical reactions without a catalyst are accelerated until they can be used by the metabolism.
  • a metastable state is a state that is a local minimum of energy, which is not fully stable under system disturbances above a certain magnitude.
  • the drops of pure water in suspension in an also very pure air do not freeze at 0 ° C, but remain in a liquid state until reaching - 39 ° C. This state of overfusion ceases abruptly when the drop comes into contact with an external body (such as an ice crystal).
  • an external body such as an ice crystal
  • the state of instability is characterized by the radioactive decay period, more or less long (ranging from minutes to several centuries and even millions of years).
  • the Scottish physicist James Dewar (1842 - 1923) designed a vessel that bears his name - Dewar - to provide thermal insulation, reduce heat losses by conduction, convection or radiation, It is used to store liquids, cold or hot ( Figure 2 ),
  • the Dewar used as containers facilitate the transport and protection of materials that must be kept at a low temperature and protected from vibrations, agitation, goips, oscillations and / or any external disturbance that break their thermodynamic stability
  • these types of devices have some Common disadvantages such as: if the Dewar is dropped during handling, there is a risk that the glass will break; the cost of a traditional Dewar is high, for example, a 600 mi Dewar can have a sale price of more than $ 200; The classic Dewar is not necessarily easy to handle.
  • Dewars for the transport and protection of samples, especially in the field of biomacromolecules.
  • the Dewar have been frequently used for the transport and protection of crystalline compounds, including crystallized proteins that are subject to X-ray diffraction studies.
  • they are reached to open the Dewar (for example, by customs agents) losing not only the low internal temperature of the container, but also the loss of intrinsic properties and / or decomposition of the material contained due to both the increase in temperature, and the incorrect handling of said material, such as protein degradation, which otherwise could not be transported under suitable conditions from one site to another, even on long journeys or intercontinental travel.
  • thermoplastic polymers for example, polypropylene, polyethylene (including LLDPE, LDPE and, in particular HDPE), polyamide (Nylon), polystyrene, polyurethane, polyvinyl chloride, aceta! polyphenylene sulfide, polyesters, acryl-onitrile-butadiene-styrene (ABS) and other co-polymers of (aceta copolymers!) and the like, but which cannot be used since they do not prevent external disturbances, such as vibrations, agitation, shock or oscillations, or that affect thermodynamic stability, as well as changes in sample temperature.
  • polypropylene polyethylene (including LLDPE, LDPE and, in particular HDPE)
  • polyamide Nylon
  • polystyrene polyurethane
  • polyvinyl chloride aceta! polyphenylene sulfide
  • polyesters acryl-onitrile-butadiene-styrene (ABS) and other co-poly
  • US Patent 8,863,532 describes a system for use in the freezing, storage and defrosting of biopharmaceutical materials that includes a flexible sterile container with means for containing the biopharmaceutical material therein and a stiffer support than said container means.
  • US Patent 5,344,036 describes a container system for reagents and other substances used in medical diagnostic devices. The container system includes a blow molded plastic vial, which can withstand lyophiization.
  • US Patent 7,971, 744 describes a container for cryogenic separation and storage of fluids and fluid mixtures, made of cross-linked cross-linked polyolefsna foam with a density of between 2 and 4 inches per cubic foot.
  • these types of containers are only to contain liquid N 2 and none of the containers and devices of the previous documents are designed for the protection and transport of materials in which changes in temperature or external disturbances that break their stability as in the case of crystals, such as protein crystals.
  • the purpose of the present invention is to provide a new polyolefin device and method of transport and protection of materials against external disturbances and changes in temperature.
  • the device of the present invention keeps the materials isolated from temperature changes, vibrations, agitation, shocks and / or oscillations, thus preventing their thermodynamic stability from breaking.
  • the materials are, without limiting the scope of the invention, selected from: biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, hydrated polymorphs, solvated polymorphs, salts, powders, proteins in dust, and / or materials sensitive to changes in temperature.
  • Said materials can preferably be found, for example, in the solid state, such as crystals.
  • the crystals can be without being limiting of the invention, crystallized proteins.
  • a device comprising a container of plastic material, preferably polyolefin.
  • the device of the present invention comprises a container of plastic material, preferably of polyolefin, which has a series of perforations or holes drilled in a cylindrical shape in which a glass tube (401) is inserted cylindrically into which will deposit a material to protect.
  • the glass tube (401) can also be, without limiting the scope of the invention, an elongated plastic or glass container, which in turn is a receptacle of at least one capillary tube (601), preferably of glass, which will contain the material to be protected and where the capillary tube (601) is optionally immersed or inserted in an insulating gel inside the glass tube (401).
  • the glass tube (401) is selected from: nuclear magnetic resonance glass tubes, test tubes, blown glass tubes. It is preferably selected from tubes used in NMR.
  • the device of the present invention can be used to transport protein crystals safely, easily, without the need for N 2 , without risks of tampering or external disturbances, without risks of thermal damage, and without the need to carry large and heavy loads. containers like a Dewar. In addition, its manufacture in plastic materials makes it safe and not dangerous, being able to even transport the sample by land, sea or area without risk.
  • Figure 2 View of a Dewar bottle or container.
  • Figure 3 Shows a front perspective view of the device for protection and transport, in which Figure 3A shows the device with housing holes (301) of cylindrical type in a container; Figure 3B shows the glass tube (401) of the type used in NMR together with its cap comprising at least one capillary tube (801), and Figure 3C shows the insertion of the glass tubes comprising said tube of glass in said housing and the means (201) for sealing or closing both said glass tubes each comprising at least one capillary tube (601), as well as said housings in the device container.
  • Figure 3A shows the device with housing holes (301) of cylindrical type in a container
  • Figure 3B shows the glass tube (401) of the type used in NMR together with its cap comprising at least one capillary tube (801)
  • Figure 3C shows the insertion of the glass tubes comprising said tube of glass in said housing and the means (201) for sealing or closing both said glass tubes each comprising at least one capillary tube (601), as well as said housings in the device container.
  • FIG. 4 Means (201) for sealing or closing the housing holes of the container (301) and the cylindrical glass tubes (401) each comprising at least one capillary tube (601) in its bottom.
  • the purpose is to provide a new device for transport and protection of materials, such as biological macromolecules, against external disturbances and changes in temperature since keeping materials isolated from changes in temperature, vibration, shock or oscillation prevents breakage. Its thermodynamic stability.
  • the device of the present invention allows transport in suitable conditions and without risks of tampering or external disturbances, and without risks of thermal damage, from one place to another, even on long journeys or intercontinental trips, materials that must be isolated from changes in temperature and / or external disturbances.
  • the term "material” or “materials” should be understood as those materials selected from biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, polymorphs hydrates, solvated polymorphs, salts, powders, protein powders, and / or materials sensitive to changes in temperature. Said materials can preferably be found, for example, in a solid state such as crystals. The crystals can be without being limiting of the invention, crystallized proteins.
  • biological macromolecules should also be understood as proteins, nucleic acids and polssaccharides, and macromolecular complexes having combinations of these biomolecules.
  • the device according to the invention comprises:
  • At least one housing hole (301) drilled in a cylindrical shape that is open at one end and closed at the other end, and said housing is arranged so that the open end is incorporated in said container and adjacent to the bottom thereof, and where the housing also allows to insert a cylindrical glass tube (401); and where two and up to three housing holes are preferably located for two and up to three cylindrical glass tubes in the container;
  • a cylindrical glass tube (401) which in turn is a receptacle of at least one capillary tube (601), preferably of glass, into which a material or sample to be protected and transported will be deposited;
  • the container of rectangular dimensions, comprises four walls and a bottom, where the open end of the container housing hole defines an inlet and e! closed end of the housing opening defines a closed end adjacent to the bottom of! container.
  • the means (201), for sealing or closing the housing holes in the device container and the glass tubes each comprising inside at least one capillary tube (601), comprise perforations in its inner part ⁇ 701 ⁇ which fit perfectly with the container housing holes and with the cylindrical glass tubes ( Figure 4),
  • the entrance provides a housing hole for the sample or matter!
  • the inlet also provides a hole for the addition of an insulating gel, which flows freely throughout the housing of! Container of! device providing an additional protective layer if required, which ensures that thermal protection is effective.
  • the perforated cylindrical shape of the housing (301) corresponds to the shape of a cylindrical tube, which can be a cylindrical glass tube (401) that is inserted through said container housing hole by its open end, and resting its base on the closed end adjacent to the bottom of! container.
  • the glass tube (401) can be an elongated plastic or glass container, which in turn is a receptacle of at least one capillary tube (601), preferably of glass, which will contain the material! to protect.
  • Said glass tube (401) is selected from among; nuclear magnetic resonance glass tubes, test tubes, blown glass tubes. It is preferably selected from glass tubes used in NMR.
  • the cylindrical shape drilled from! housing (301) corresponds to the shape of a cylindrical tube, inside! which a glass tube (401) of the type used in NMR is inserted through said housing hole (301) of the container at its open end, and resting its base on the closed end adjacent to the bottom of the container.
  • the nuclear magnetic resonance glass tube (401) is closed with a removable plug (501), which is preferably a nuclear magnetic resonance tube stopper.
  • Figure 3A shows the device with the cylindrical housing holes (301), with dimensions ranging from 4.5 long x 3.7 cm wide or deep x 8.0 cm high up to 75 cm long x 62 cm wide or deep x 8 cm high.
  • the device may comprise at least one container with 1 to N housing holes (301), wherein N is an integer between 1 and 50, preferably between 1- 25, and more preferably between 1-3, sufficient and capable of accommodating from 1 to N glass tubes, where N is an integer between 1 and 50, preferably between 1-25, and more preferably between 1-3.
  • the device has a dimension of 4.5 cm long x 3.7 wide or depth x 8.0 cm high, minimum and appropriate dimensions to accommodate from 1 to 3 glass tubes (401) each comprising inside a! minus a capillary tube (601).
  • Figure 3B shows the glass tube (401), together with its cap, which will contain the material or sample to be protected; and wherein the tube (401) is selected from nuclear magnetic resonance glass tubes, test tubes, glass tubes, blown glass tubes; preferably the cylindrical glass tube is an NMR sample tube (401) together with its cap (501).
  • the glass tube (401) can also be, without limiting the scope of the invention, an elongated plasticized or glass container, which in turn is a receptacle of at least one capillary tube (801), preferably of glass , which will contain the material to be protected and where the capillary tube (801) is optionally immersed or inserted in a ge! insulator inside the glass tube (401).
  • Figure 3C shows the insertion of the glass tubes comprising said glass tube in said housing and the means (201) for sealing or closing both said glass tubes each comprising at least one capillary tube (601), as well as said housings in the device container.
  • the means (201) for sealing or closing the housing holes of the device container and the cylindrical glass tubes is a cover made of the same material as the rest of the device, with a dimension corresponding to the length and width of the container- of the device and a height of at least 1.0 cm and not more than 2.0 cm.
  • the means (201) for closing the orifice (s) of the container housing are also the means for closing the cylindrical glass tube (s).
  • the means (201) comprise a removable cap (501) for closing the container housing (s) and the cylindrical glass tubes.
  • the glass tubes (401) preferably a Nuclear Magnetic Resonance tubes, which in turn are a receptacle of at least one capillary tube (601) and up to N capillary tubes, where N is an integer greater than 1 that will contain the material to be protected
  • said means (201) comprise removable caps (501) for nuclear magnetic resonance tube attached as a single piece or unit to said means for closing the container, its housings and the glass tubes comprising the capillary tube (s) ( Figure 4).
  • a glass tube (401) preferably a nuclear magnetic resonance glass tube, can comprise from one to N capillary tubes, where N is an integer greater than 1.
  • the amount of capillary tubes (601) that They may be contained in a glass tube (401) will depend according to the specific storage and transportation requirements required of matter!
  • biological macromolecules selected from among biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, hydrated polymorphs, solvated polymorphs, salts, powders, powdered proteins, and / or materials sensitive to changes in temperature; and wherein said materials can preferably be found for example in the solid state such as crystals, as crystallized proteins; and wherein the biological macromolecules are selected from proteins, nucleic acids and polysaccharides, or macromolecular complexes that have combinations of these biomolecules.
  • a small cap (901) is inserted inside the cap (501) to avoid heat transfer in the sample or material to be protected ( Figure 4).
  • the means (201) for closing e! or the hole (s) for housing the container (301), which may optionally also be the means for closing the glass tube in a cylindrical shape (401), are optionally attached to the container of!
  • the device through appropriate joining means (801) such as tape, tie, thread, flexible adherent materials and even but not limited to, a strip of polyolefin material which can be easily and quickly molded in a desired manner, such allowing for example the joining of the means to close the hole (s) of the container housing, with said hole container.
  • joining means such as tape, tie, thread, flexible adherent materials and even but not limited to, a strip of polyolefin material which can be easily and quickly molded in a desired manner, such allowing for example the joining of the means to close the hole (s) of the container housing, with said hole container.
  • the device for protection and transport can be sealed or closed with adhesive tape usually used in electrical coatings.
  • the device container can be formed and sized according to the specific storage and transportation demands required.
  • the device container can be parallelepiped-shaped, like a rectangle.
  • the side walls of! container can be of equal dimensions essentially creating a square container. It will be understood thus, that the present invention is not limited and the device may comprise a container of any given size and may have substantially the same or similar size as other conventional cylindrical container, such as test tubes, glass tubes, tubes blown glass, plastic tubes, and / or plastic cylinders, preferably nuclear magnetic resonance tubes.
  • the device of the present invention comprises a container of polymeric material, preferably of polyolefin, which has a series of perforations or holes in which a cylindrical glass tube is inserted which in turn is a! less a capillary tube (601), preferably of glass, which will contain or inside! which will be deposited a material to protect.
  • a container of polymeric material preferably of polyolefin
  • a capillary tube preferably of glass, which will contain or inside! which will be deposited a material to protect.
  • the material to be protected are protein crystals, they are grown in capillary tubes (801) with a diameter of 1mm. These are introduced into Sos tubes (401), which usually fit 4 to 5 glass capillary tubes 1mm in diameter. Once these have been introduced into the glass tube (401), it is understood that capillary tubes (801) of 1mm in diameter must be sealed on both sides, covered with a ge!
  • the tube (401) is selected from: nuclear magnetic resonance glass tubes, test tubes, glass tubes, blown glass tubes. It is preferably selected from tubes used in R N.
  • the device is made of a material! of polyolefin which can be molded easily and quickly in durable containers of a desired shape, such that they allow for example stacking.
  • the polyolefin material is a crosslinked and compact polyoiefin foam useful and suitable for transport and material protection devices, which in addition to allowing thermal insulation, prevents external disturbances, such as vibrations, agitation, shocks or oscillations that affect thermodynamic stability of the sample preventing it from losing its properties, mainly those that have to do with its solid state, such as crystals.
  • polyolefin foams make them advantageous for use in these devices such as: they are typically molded by conventional means well known to persons skilled in the art. Preferred methods include rotational molding, although it is contemplated that other methods may be used, such as injection molding, compression molding or extrusion and blow molding, and other conventional methods may also be used.
  • Its cellular structure is typically thin enough to contain, for example, liquid nitrogen, without leaks; They are strong enough to withstand repeated exposures at a temperature scale ranging from cryogenesis to hot temperatures above 40 ° C. It is a non-reactive material; they have a low thermal conductivity and a low volumetric heat capacity, and also the polyolefin foam can withstand moderate physical manipulation and without mechanical failure, which makes this polyolefin material suitable and relevant for the manufacture of devices of the present invention. for transport and protection of materials such as biological macromolecules.
  • polyolefin foam refers to a polyethylene foam, polypropylene foam, mixtures of polyethylene-polypropylene and copoimers, and foams containing a mixture or copolymer of olefin monomer and other monomers, in the extent to which mixed foams have at least some of the favorable characteristics indicated above.
  • foams may also have additives known in the art.
  • foams may include softeners, coloring agents, stabilizers, preservatives, and fillers.
  • Polyolefin foams are typically provided in a variety of densities.
  • the density of a polyolefin foam to be used for a device such as that of the present invention one must seek to balance the mechanical and thermal properties of the material. If the foam is not very dense, it cannot have advantageous mechanical properties; If the foam is too dense, it will have a higher thermal conductivity.
  • the polyolefin foam has a density of at least 32.04 kg / m 3 (2 pounds per cubic foot), while the densities in the range of 32.04 to 64.07 kg / m 3 (2 pounds at 4 pounds per cubic foot) may be particularly advantageous in the present invention.
  • polyolefin foams are expected to comprise densities of 98.11-128 kg / m 3 (6-8 pounds per cubic foot).
  • the device described in the present invention is capable of withstanding temperature variations and even withstanding temperatures up to -160 ° C without presenting temperature variations.
  • liasas constitute a diverse group of water-soluble enzymes that catalyze the hydrolysis of ester bonds in water-insoluble lipid substrates. Iipases play essential roles in the digestion, transport, and treatment of dietary lipids such as triacylglycerides, fats, oils in most, if not all, of living organisms. Likewise, üpasa B is industrially important in the synthesis of glycolipids.
  • Lipase B in particular is a pure, dry, crystalline form of üpase B from Candida Antarctica produced by submerged fermentation of a genetically modified microorganism of Aspergiiius oryzae.
  • Lipase B is a white crystalline powder, where lipase B is present in the form of crystals and there are no other ingredients or buffer salts.
  • Lipase B has a pH of 5-7, and has a isoelectric point of 6.0. AND! Mr of Lipase B is 35 kDa by SDS polyacrylamide gel electrophoresis,
  • lipase has been used as a thermal sensor since the crystals are sensitive to dissolve when there are changes to their crystallization temperature that is 18 ° C and variations in a range of ⁇ 2 ° C that affect it considerably.
  • Crystal 1 and Crystal! 2 were grown in the presence of a magnetic field of
  • Crystal 1 of Table 2 was grown in the presence of a 700 MHz magnetic field.
  • Pieces of the polyolefin of the following dimensions are cut: 4.5 cm long x 3.7 wide or depth x 8.0 cm high, minimum dimensions and appropriate for Ajar from 1 to 3 tubes (401). Once the cuts are made, a parallelepiped shaped device is obtained. Subsequently, 3 perforations are made with a drill the size of the NMR tubes. Between the closed end of the housing and the bottom of the container there is at least a 1.0 cm gap or gap.
  • the means to close the device container is a lid (201) made of the same material as e! rest of the device, with a dimension corresponding to the length and width of the device container and a height of at least 1.0 cm and not more than 2.0 cm.
  • the 1mm diameter capillary tubes must be sealed on both sides with plasticine or wax (to prevent the proteins contained in them from dehydrating and leaking the mother liquor), then covered with a gel Silica insulator, filling the NMR tube (401) with a mixture of the components that will form the gel (1 mL of 1 M acetic acid with two mL of sodium metasilicate density of 1.08 g / mL). This is an additional protective layer, which ensures that thermal and external disturbance protection is effective.
  • the NMR tube (401) containing the 1mm diameter capillary tubes is covered or closed with the lid (201) which is a cover of the same material of the device (polyolefin), which also comprises a removable cap (501) than in its interior optionally comprises a small plug (901) ( Figure 4); optionally the lid (201) is attached to the device container through appropriate joining means (801) such as tape, tie, thread, flexible adhesive materials and even but not limited to, a strip of polyolefin material which it can be molded easily and quickly in a desired manner; optionally, the device for protection and transport can be sealed or closed with adhesive tape usually used in electrical coatings.
  • Example 2 Infrared spectrum of two devices for protection of the present invention with different compactness.
  • the red band (A) is a device of material compacted and preferred in the invention.
  • black (B) it is a device of less compacted material but equally efficient in the invention.
  • the device of the present invention comprises a container of plastic material, preferably of polyolefin, which has a series of perforations in which a cylindrical glass tube is inserted into which a material to be protected will be deposited.
  • the material to be protected is in turn inside a capillary tube (801).
  • the glass tube (401) can be, without limiting the scope of the invention, a nuclear magnetic resonance tube, which in turn is a receptacle of a capillary tube that will contain the material to be protected.
  • the material to be protected for example a biomachromolecule
  • a biomachromolecule can be placed, placed or even crystallized in situ in said capillaries which will be introduced into the tube (401) (for example, an NMR tube) as described in Example 1
  • a gel is used in which these capillaries will be immersed or inserted.
  • Said gel allows to completely isolate external disturbances such as vibrations, agitation, blows and / or oscillations, as well as temperature changes, to the sample of matter! or materials transported in the device.
  • the manufacture of said gel comprises the following steps and compounds:
  • a solution of sodium metasilicate of a density 1.06 g / ml is taken and neutralized with a solution of 1 M acetic acid.
  • the proportions to produce a gel at ⁇ ⁇ 7 are:
  • Example 4 transport and protection of materials with the device of the present invention.
  • the protein crystals grown in capillary tubes (601) of 1mm in diameter are introduced into the NMR tube (401) and the components that will form the silica gel are added. It is sealed e! device.
  • the crystals can then be transported in a portfolio and there is no need to worry that they suffer any damage due to thermal effects (sudden changes in temperature) or other disturbances such as oscillations, vibrations, agitations or blows.
  • thermal effects den changes in temperature
  • other disturbances such as oscillations, vibrations, agitations or blows.
  • the device of the present invention can be used to transport protein crystals safely, easily, without the need for, without risks of tampering or external disturbances, without risks of thermal damage, and without the need to load large and heavy containers.
  • a Dewar Like a Dewar
  • its manufacture in plastic materials makes it safe and not dangerous, being able to even transport the sample by land, sea or area without risk.
  • the invention can be applied - without being limiting in its scope - in the protection and transport in general of any material that must be isolated from changes in temperature and / or external disturbances.
  • a very useful application is for those people who use synchrotons, who for their work and sophisticated work equipment required for e! study of material samples, selected from biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, hydrated polymorphs, solvated polymorphs, salts, powders, powdered proteins, and / or temperature sensitive materials - preferably crystallized proteins and / or powdered proteins - they travel to institutions in different parts of the world that have this kind of equipment.
  • the present invention provides a polyolefin device and method of transport and protection of this class of materials that must be kept isolated from changes in temperature, vibrations, agitation, shocks and / or oscillations, thus preventing its thermodynamic stability from breaking, thus allowing to keep intact the material to be subjected to tests, for example, of X-ray diffraction or other crystallographic studies.

Abstract

Dewar flasks are containers used to transport materials that have to be kept at a low temperature and protected against vibration, shaking, impact, oscillation and/or any other external disturbance that could interfere with thermodynamic stability. However, if the Dewar flask is opened arbitrarily, such as for customs inspections during air transportation, without knowledge of the material contained therein, this could affect not only the low temperature inside the container, but also the intrinsic properties of the material therein. The device or container of the present invention is suitable for materials that have to be isolated from changes in temperature and/or external disturbances and can be used to transport said materials under suitable conditions from one site to another, including over long distances and intercontinental journeys, without any risk of damage from handling or external disturbances and without any thermal risk.

Description

La presente invención se relaciona a dispositivos contenedores para la protección y transporte de materiales, como macromoléculas biológicas, sin riesgos de afectaciones por manipulación o perturbaciones externas, y sin riesgos por afectación térmica, de un sitio a otro, incluso en trayectos transcontinentales.  The present invention relates to container devices for the protection and transport of materials, such as biological macromolecules, without risks of tampering or external disturbances, and without risks of thermal damage, from one site to another, even in transcontinental paths.
E! desarrollo de esta invención fue posible gradas al patrocinio de los siguientes proyectos: DGAPA UNA , proyecto IT2G0215 y apoyo de REDTÜLS (Red Temática de Usuarios de Radiación Sincrotrón del CONACYT). AND! The development of this invention was possible thanks to the sponsorship of the following projects: DGAPA UNA, IT2G0215 project and support from REDTÜLS (CONACYT Synchrotron Radiation Thematic Network of Users).
ANTECEDENTES BACKGROUND
Gíbbs (1839-1903) se interesó en el primer y en el segundo principio de la termodinámica, enfocándose particularmente en la entropía S y su maximización a! evolucionar un sistema cerrado en forma espontánea. Si bien comenzó por e! análisis de la termodinámica de los fluidos, pronto abordó el caso en que hay presentes diferentes estados de la materia. Los aportes de Gibbs a la definición de fases, regla de las fases y equilibrio fueron cruciales en química, física, metalurgia y materiales, particularmente para la sistematización de la presentación y el análisis de ios diagramas de fases al equilibrio, la determinación de la concentración de defectos cristalinos al equilibrio, etc. Un sistema está en equilibrio termodinámíeo cuando está en equilibrio mecánico, térmico y químico. En materiales es particularmente relevante e! aspecto del equilibrio químico. En e! marco de los desarrollos de Gibbs, se considerará un sólido, libre para dilatarse o contraerse, que tiene una composición dada, y está a temperatura T y presión P constantes. Impondremos además que el material no esté sometido a ningún tipo de campo externo. Al analizar el equilibrio químico no sólo se debe tener en cuenta el efecto de los enlaces, sino que también la tendencia entrópica de los átomos a mezclarse (no sólo entre sí, sino que también con los defectos cristalinos). Cada efecto anterior puede expresarse como una energía: la energía interna E y la energía de mezcla TS, respectivamente. Al equilibrio, por una parte, la energía interna tiende a alcanzar un valor mínimo, correspondiente a mantener e! orden que los enlaces presentes procuren imponer, en tanto que, por otra, e! correspondiente término de energía de mezcla TS tiende a un valor máximo, correspondiente a procurar maximizar el desorden. Por ejemplo, al ir aumentando la temperatura de un sólido como el cobre, e! término de desorden se va imponiendo sobre el efecto de los enlaces y asf es como podemos pasar, bajo condiciones de equilibrio, desde, idealmente, un cristal perfecto (T = 0 K) a URO más imperfecto, y luego a un líquido y después a un vapor. Cabe señalar que para un sólido de enlace fuerte, su energía interna E es aproximadamente igual a su entalpia H; esto se debe a que por la elevada intensidad de sus enlaces, estos materiales presentan un bajo volumen molar y sólo moderados cambios de volumen al variar P y T (dentro de ciertos rangos). Gíbbs (1839-1903) was interested in the first and second principles of thermodynamics, focusing particularly on S entropy and its maximization a! evolve a closed system spontaneously. While it started with e! analysis of the thermodynamics of fluids, soon addressed the case in which different states of matter are present. Gibbs' contributions to the definition of phases, phase rule and equilibrium were crucial in chemistry, physics, metallurgy and materials, particularly for the systematization of the presentation and the analysis of the phase diagrams to equilibrium, concentration determination of crystal defects to balance, etc. A system is in thermodynamic equilibrium when it is in mechanical, thermal and chemical equilibrium. In materials it is particularly relevant e! aspect of chemical equilibrium. Jan! Within the Gibbs developments, it will be considered a solid, free to expand or contract, that has a given composition, and is at constant temperature T and pressure P. We will also impose that the material is not subjected to any external field. When analyzing the chemical equilibrium, not only the effect of the bonds must be taken into account, but also the entropic tendency of the atoms to mix (not only with each other, but also with the crystalline defects). Each previous effect can be expressed as an energy: the internal energy E and the mixing energy TS, respectively. On balance, on the one hand, internal energy tends to reach a minimum value, corresponding to maintaining e! order that the links present seek to impose, while, on the other, e! The corresponding TS mix energy term tends to a maximum value, corresponding to trying to maximize the disorder. For example, as the temperature of a solid such as copper increases, e! Disorder term is imposed on the effect of the bonds and this is how we can pass, under equilibrium conditions, from, ideally, a perfect crystal (T = 0 K) to a more imperfect URO, and then to a liquid and then to a steam It should be noted that for a strong bond solid, its internal energy E is approximately equal to its enthalpy H; This is due to the high intensity of their bonds, these materials have a low molar volume and only moderate changes in volume by varying P and T (within certain ranges).
Considerando los dos términos anteriores, se define la función energía libre (de Gibbs) como G H- TS. Asi, la condición de equilibrio químico para un sistema a composición, temperatura y presión constante, corresponde a un estado en que tal sistema presenta un mínimo de la energía G; esto es válido para todo tipo de fases, no sólo sólidas. Los aportes de Gibbs al desarrollo de los diagramas de equilibrio, así como la importancia de estos últimos, son bien conocidos por los especialistas. El énfasis del trabajo de Gibbs fue para el estado que denominamos de equilibrio estable. Por otra parte, el estudio de los aceros endurecido por temple en agua y el descubrimiento en el año 1908 del endurecimiento por envejecimiento de las aleaciones de aluminio (p.e. Aí-4,5%p. Cu), mostraron que numerosos sistemas importantes no están estrictamente al equilibrio, en eí sentido de corresponder a un mínimo absoluto de la energía libre de Gibbs. Este estado se debe a que, a temperaturas suficientemente bajas, el movimiento atómico (difusión) en un sólido se hace tan lento que los átomos están congelados en sus posiciones y el sistema queda impedido de evolucionar. Esta especie de fotografía instantánea es actualmente considerada como un estado de enorme importancia en Ingeniería y ciencia de los materiales. iíheím Ostwaíd (1853-1932), un profesor de fa Universidad de Leipzig, premio Nobel de Química (1909), fue el primero en reconocer claramente este tema, introduciendo el concepto de metaestabilidad. La Figura 1 ilustra los conceptos de estado a) metaestable, b) inestable y c) estable. En un estado inestable el sistema evoluciona espontáneamente con apenas una pequeña perturbación. La determinación de los estados de equilibrio metaestable y estable concierne al criterio de equilibrio (valores mínimos de la función G), Describamos ahora la transformación de un materia! evolucionando desde un estado metaestable a uno estable, véase Figura 1. inicialmente, el sistema debe ser sacado de un pozo de potencial inicial Ga, elevando su energía en ΔΘ *, por una acción externa, para alcanzar el estado intermedio inestable de energía Gb; y sólo después de superada tal barrera, el sistema podrá ¡legar, finalmente, al estado de equilibrio estable asociado al pozo de energía Ge. El resultado neto es que la energía del sistema ha disminuido en ΔΘ= Gc-Ga, En química y materiales, frecuentemente la barrera ΔΘ* = Gb-Ga es superada por las vibraciones atómicas asociadas a una temperatura T suficientemente elevada (activación térmica). A esta barrera se le llama energía de activación de la transformación (o reacción) y su valor está relacionado con la intensidad de los enlaces y con el mecanismo atómico de la transformación involucrada. La velocidad a la cual se produce esta transformación activada térmicamente, ya no es un asunto del criterio de equilibrio sino que de la "cinética para alcanzar el equilibrio", la cual es fuertemente dependiente de los valores de AG* y de T. En este marco, para un sólido dado se habla de temperaturas altas, intermedias y bajas, dependiendo de si la velocidad de la transformación es alta, moderada o prácticamente nula; ésta es una simplificación de una cinética que varía continuamente, en forma exponencial, con la temperatura. También existe la transformación en que desde un estado metaestable se pasa a otro estado también metaestable, pero de menor energía G que el primero. Considering the previous two terms, the free energy (Gibbs) function is defined as G H-TS. Thus, the chemical equilibrium condition for a system with constant composition, temperature and pressure corresponds to a state in which such a system has a minimum of energy G; This is valid for all types of phases, not only solid. Gibbs' contributions to the development of equilibrium diagrams, as well as the importance of the latter, are well known to specialists. The emphasis of Gibbs' work was for the state we call stable equilibrium. On the other hand, the study of steels hardened by quenching in water and the discovery in 1908 of aging hardening of aluminum alloys (eg Ai-4.5% p. Cu), showed that numerous important systems are not strictly to balance, in the sense of corresponding to an absolute minimum of Gibbs free energy. This state is due to the fact that, at sufficiently low temperatures, the atomic movement (diffusion) in a solid becomes so slow that the atoms are frozen in their positions and the system is prevented from evolving. This kind of instant photography is currently considered a state of enormous importance in engineering and materials science. iíheím Ostwaíd (1853-1932), a professor of fa University of Leipzig, Nobel Prize in Chemistry (1909), was the first to clearly recognize this topic, introducing the concept of metastability. Figure 1 illustrates the concepts of a) metastable, b) unstable and c) stable status. In an unstable state the system evolves spontaneously with just a small disturbance. The determination of the stable and metastable equilibrium states concerns the equilibrium criterion (minimum values of the G function). Now the transformation of a subject! evolving from a metastable to a stable state, see Figure 1. Initially, the system must be removed from a well of initial potential Ga, raising its energy by ΔΘ * , by an external action, to reach the unstable intermediate state of energy Gb; and only after such a barrier has been overcome, the system will finally be able to arrive at the steady state of equilibrium associated with the energy well Ge. The net result is that the energy of the system has decreased by ΔΘ = Gc-Ga. In chemistry and materials, often the barrier ΔΘ * = Gb-Ga is overcome by the atomic vibrations associated with a sufficiently high temperature T (thermal activation). This barrier is called the activation energy of the transformation (or reaction) and its value is related to the intensity of the bonds and the atomic mechanism of the transformation involved. The speed at which this thermally activated transformation occurs is no longer a matter of the equilibrium criterion but of the "kinetics to reach equilibrium", which is strongly dependent on the values of AG * and T. frame, for a given solid one speaks of high, intermediate and low temperatures, depending on whether the transformation speed is high, moderate or practically zero; This is a simplification of a kinetics that varies continuously, exponentially, with temperature. There is also the transformation in which, from a metastable state, another metastable state is passed, but of lower energy G than the first.
Otro ejemplo notable de materiales clásicos de estructura metaestable corresponde al vidrio de ventanas (SiQ2), un material amorfo {esto es, con la estructura de un líquido sobreenfriado). Algunos ejemplos de materiales modernos metálicos de estructura metaestable son: materiales fabricados por aleado mecánico (incluso incorporando cerámicas) a temperaturas nominales próximas a la ambiente; aleaciones con memoria de forma (relacionados con la transformación martensítica); y aleaciones amorfas macizas, hoy obtenidas a velocidades de enfriamiento tan bajas como 1 K/s. Así, los aportes de Gibbs y Ostwaid han sido fundamentales para el desarrollo de herramientas esenciales de la ingeniería y ciencia de los materiales, como lo son los diagramas de fases a! equilibrio y la consideración de los estados metaestables. Another notable example of classic metastable structure materials corresponds to window glass (SiQ 2 ), an amorphous material {that is, with the structure of a supercooled liquid). Some examples of modern metallic materials of metastable structure are: materials manufactured by mechanical alloy (even incorporating ceramics) at nominal temperatures close to the environment; shape memory alloys (related to martensitic transformation); and solid amorphous alloys, today obtained at cooling rates as low as 1 K / s. Thus, the contributions of Gibbs and Ostwaid have been fundamental for the development of essential engineering tools and materials science, as are the phase diagrams a! balance and consideration of metastable states.
Así, la metaestabilidad es la propiedad que exhibe un sistema con varios estados de equilibrio, cuando permanece en un estado de equilibrio débilmente estable durante un considerable periodo de tiempo. Sin embargo, bajo la acción de perturbaciones externas (a veces no fácilmente detectables) dichos sistemas exhiben una evolución temporal hacia un estado de equilibrio fuertemente estable. Normalmente la metaestabilidad es debida a transformaciones de estado lentas. Si representamos un sistema físico-químico por su energía potencial, un estado metaestable estará caracterizado por un estado que corresponde a un mínimo local de energía. Para que el sistema pueda alcanzar el estado de energía mínima que corresponde al estado de equilibrio termodinámico, es necesario suministrarle una cantidad de energía llamada energía de activación. Thus, metastability is the property exhibited by a system with several equilibrium states, when it remains in a weakly stable equilibrium state during A considerable period of time. However, under the action of external disturbances (sometimes not easily detectable), these systems exhibit a temporary evolution towards a strongly stable state of equilibrium. Normally, metastability is due to slow state transformations. If we represent a physical-chemical system by its potential energy, a metastable state will be characterized by a state that corresponds to a local minimum of energy. In order for the system to reach the minimum energy state that corresponds to the thermodynamic equilibrium state, it is necessary to supply an amount of energy called activation energy.
Por ejemplo en metaestabilidad química, a temperatura ambiente los diamantes son metaestables porque la transformación a su forma estable, el grafito, es extremadamente lenta. A mayores temperaturas y presiones, la tasa de transformación se incrementa y el grafito se convierte en diamante. For example in chemical metastability, at room temperature diamonds are metastable because the transformation to their stable form, graphite, is extremely slow. At higher temperatures and pressures, the transformation rate increases and graphite becomes diamond.
En un caso de metaestabilidad biológica, los enlaces entre Sos elementos constructivos de los polímeros como el ADN, ARN y las proteínas son también metaestables. Los componentes carbonados que constituyen los seres vivos son metaestables. Una enzima es un biocataiizador capaz de establecer enlaces débiles con su sustrato a nivel de su sitio activo. La energía de enlace liberada está en el origen de la disminución de la energía de activación de la reacción. De este modo, la reacción se activa cinéticamente (ley de Arrhenius). Una enzima puede acelerar la constante de velocidad de la reacción que cataliza: así, reacciones químicas muy lentas sin catalizador son aceleradas hasta hacerse utilizables por el metabolismo. En otro aspecto de metaestabilidad física, un estado metaestable es un estado que es un mínimo local de energía, que no es totalmente estable bajo perturbaciones del sistema por encima de cierta magnitud. Por ejemplo, en el agua en sobrefusión, las gotas de agua pura en suspensión en un aire también muy puro no se congelan a los 0 °C, sino que siguen en estado líquido hasta alcanzar los - 39 °C. Este estado de sobrefusión cesa bruscamente cuando la gota entra en contacto con un cuerpo externo (como un cristal de hielo). Por otro lado, para un isótopo radioactivo, el estado de inestabilidad está caracterizado por el periodo radiactivo de desintegración, más o menos largo (abarcando desde minutos hasta varios siglos e incluso millones de años). El físico escocés James Dewar (1842 - 1923) diseñó un recipiente que lleva su nombre - Dewar - para proporcionar aislamiento térmico, disminuir ¡as pérdidas de calor por conducción, convección o radiación, Se utiliza para almacenar líquidos, fríos o calientes (Figura 2), In a case of biological metastability, the links between Sos constructive elements of polymers such as DNA, RNA and proteins are also metastable. The carbon components that constitute living beings are metastable. An enzyme is a biocataiizer capable of establishing weak bonds with its substrate at the level of its active site. The bond energy released is at the origin of the decrease in the activation energy of the reaction. In this way, the reaction is activated kinetically (Arrhenius's law). An enzyme can accelerate the rate constant of the reaction it catalyzes: thus, very slow chemical reactions without a catalyst are accelerated until they can be used by the metabolism. In another aspect of physical metastability, a metastable state is a state that is a local minimum of energy, which is not fully stable under system disturbances above a certain magnitude. For example, in superfusion water, the drops of pure water in suspension in an also very pure air do not freeze at 0 ° C, but remain in a liquid state until reaching - 39 ° C. This state of overfusion ceases abruptly when the drop comes into contact with an external body (such as an ice crystal). On the other hand, for a radioactive isotope, the state of instability is characterized by the radioactive decay period, more or less long (ranging from minutes to several centuries and even millions of years). The Scottish physicist James Dewar (1842 - 1923) designed a vessel that bears his name - Dewar - to provide thermal insulation, reduce heat losses by conduction, convection or radiation, It is used to store liquids, cold or hot (Figure 2 ),
Su principal uso es en el almacenamiento de nitrógeno líquido (cuyo punto de ebullición es de 77 K) y oxígeno líquido (cuyo punto de ebullición es a 90 K), durante mucho tiempo sin necesidad de refrigeración. También se puede utilizar para almacenar helio, que posee un punto de ebullición bajfsimo, (4.2 K,) pero el frasco de Dewar debe tener una capa cuádruple de vidrio y el espacio entre paredes se debe llenar con nitrógeno liquido. Its main use is in the storage of liquid nitrogen (whose boiling point is 77 K) and liquid oxygen (whose boiling point is 90 K), for a long time without the need for refrigeration. It can also be used to store helium, which has a very low boiling point, (4.2 K,) but the Dewar bottle must have a quadruple layer of glass and the space between walls must be filled with liquid nitrogen.
El tipo de construcción de estos recipientes les hace muy sensibles a ¡a hora de recibir golpes y sobrepresiones sobre la parte exterior deí envase. Así, si bien los Dewar utilizados como recipientes facilitan el transporte y protección de materiales que deben mantenerse a baja temperatura y protegidos de vibraciones, agitación, goipes, oscilaciones y/o cualquier perturbación externa que rompan su estabilidad termodinámica, este tipo de dispositivos presentan algunas desventajas comunes como son: si el Dewar se deja caer durante la manipulación, hay un riesgo de que el vidrio se rompa; el costo de un Dewar tradicional es alto, por ejemplo, un Dewar de 600 mi puede tener un precio de venta de más de 200 dólares; el clásico Dewar no es necesariamente fácil de manejar. Sin embargo, hay otro tipo de desventajas en el uso de Dewars para el transporte y protección de muestras, sobre todo en el ámbito de las biomacromoléculas. Los Dewar han sido frecuentemente utilizados para el transporte y protección de compuestos cristalinos, entre ellos proteínas cristalizadas que son sujetas a estudios de difracción de rayos X. Sin embargo, durante el trayecto de transporte y principalmente por cuestiones de seguridad química y biológica, se llegan a abrir los Dewar (por ejemplo, por agentes aduanales) perdiéndose no sólo la baja temperatura interna del recipiente, sino también ia pérdida de propiedades intrínsecas y/o descomposición del material contenido a causa tanto del aumento de temperatura, como de la incorrecta manipulación de dicho material, como por ejemplo, la degradación de proteínas, que de otro modo no podrían transportarse en condiciones adecuadas de un sitio a otro, incluso en trayectos largos o viajes intercontinentales. Existen otro tipo de recipientes de polímero que se moldean a partir de polímeros termoplásticos, por ejemplo, polipropileno, polietileno (incluyendo LLDPE, LDPE y, en particular HDPE), poiiamida (Nylon), poüestireno, poliuretano, cloruro de polivinilo, aceta!, sulfuro de polifenileno, pollésteres, acri!onitrilo-butadieno-estireno (ABS) y otros copoiímeros de (copolímeros de aceta!) y similares, pero que no pueden ser utilizados ya que no evitan perturbaciones externas, como son vibraciones, agitación, golpes u oscilaciones, o que afectan la estabilidad termodinámica, así como cambios de temperatura de la muestra. The type of construction of these containers makes them very sensitive when receiving blows and overpressures on the outside of the container. Thus, although the Dewar used as containers facilitate the transport and protection of materials that must be kept at a low temperature and protected from vibrations, agitation, goips, oscillations and / or any external disturbance that break their thermodynamic stability, these types of devices have some Common disadvantages such as: if the Dewar is dropped during handling, there is a risk that the glass will break; the cost of a traditional Dewar is high, for example, a 600 mi Dewar can have a sale price of more than $ 200; The classic Dewar is not necessarily easy to handle. However, there are other types of disadvantages in the use of Dewars for the transport and protection of samples, especially in the field of biomacromolecules. The Dewar have been frequently used for the transport and protection of crystalline compounds, including crystallized proteins that are subject to X-ray diffraction studies. However, during the transport route and mainly for chemical and biological safety reasons, they are reached to open the Dewar (for example, by customs agents) losing not only the low internal temperature of the container, but also the loss of intrinsic properties and / or decomposition of the material contained due to both the increase in temperature, and the incorrect handling of said material, such as protein degradation, which otherwise could not be transported under suitable conditions from one site to another, even on long journeys or intercontinental travel. There are other types of polymer containers that are molded from thermoplastic polymers, for example, polypropylene, polyethylene (including LLDPE, LDPE and, in particular HDPE), polyamide (Nylon), polystyrene, polyurethane, polyvinyl chloride, aceta! polyphenylene sulfide, polyesters, acryl-onitrile-butadiene-styrene (ABS) and other co-polymers of (aceta copolymers!) and the like, but which cannot be used since they do not prevent external disturbances, such as vibrations, agitation, shock or oscillations, or that affect thermodynamic stability, as well as changes in sample temperature.
La patente US 8,863,532 describe un sistema para su uso en la congelación, el almacenamiento y descongelación de materiales biofarmacéuticos que incluye un recipiente estéril flexible con medios para contener el material biofarmacéutico en su interior y un soporte más rígido que dichos medios contenedores. La patente US 5,344,036 describe un sistema contenedor para reactivos y otras sustancias utilizadas en aparatos de diagnóstico médico. El sistema contenedor incluye un vial de plástico moldeado por soplado, que puede resistir la liofiíización. Por su lado, la patente US 7,971 ,744 describe un recipiente para separación y almacenamiento criogénico de fluidos y mezclas de fluidos, hecho de espuma de poíiolefsna reticulada de celda cerrada con una densidad de entre 2 y 4 pulgadas por pie cúbico. Sin embargo, este tipo de recipientes sólo son para contener N2 líquido y ninguno de los contenedores y dispositivos de los documentos anteriores están diseñados para la protección y transporte de materiales en los que se debe evitar los cambios de temperatura o perturbaciones externas que rompan su estabilidad como en el caso de los cristales, como los cristales de proteínas. US Patent 8,863,532 describes a system for use in the freezing, storage and defrosting of biopharmaceutical materials that includes a flexible sterile container with means for containing the biopharmaceutical material therein and a stiffer support than said container means. US Patent 5,344,036 describes a container system for reagents and other substances used in medical diagnostic devices. The container system includes a blow molded plastic vial, which can withstand lyophiization. For its part, US Patent 7,971, 744 describes a container for cryogenic separation and storage of fluids and fluid mixtures, made of cross-linked cross-linked polyolefsna foam with a density of between 2 and 4 inches per cubic foot. However, these types of containers are only to contain liquid N 2 and none of the containers and devices of the previous documents are designed for the protection and transport of materials in which changes in temperature or external disturbances that break their stability as in the case of crystals, such as protein crystals.
El propósito de la presente invención es proporcionar un nuevo dispositivo de poiiolefina y método de transporte y protección de materiales contra perturbaciones externas y cambios en la temperatura. El dispositivo de la presente invención mantiene aislados de los cambios de temperatura, vibraciones, agitación, golpes y/u oscilaciones los materiales, evitando así que se rompa su estabilidad termodinámica. SUMARIO DE LA INVENCIÓN  The purpose of the present invention is to provide a new polyolefin device and method of transport and protection of materials against external disturbances and changes in temperature. The device of the present invention keeps the materials isolated from temperature changes, vibrations, agitation, shocks and / or oscillations, thus preventing their thermodynamic stability from breaking. SUMMARY OF THE INVENTION
Es un objeto de la presente invención proporcionar dispositivos o recipientes que permitan el transporte seguro de muestras o materiales, que además de aislarlos térmicamente, evite que perturbaciones externas, como son vibraciones, agitación, goipes u oscilaciones, afecten la estabilidad termodinámica de la muestra impidiendo que ésta pierda sus propiedades, principalmente aquellas que tienen que ver con su estado sólido, como son ios cristales. It is an object of the present invention to provide devices or containers that allow the safe transport of samples or materials, which in addition to thermally insulating them, prevents external disturbances, such as vibrations, agitation, flutes or oscillations, affect the thermodynamic stability of the sample preventing it from losing its properties, mainly those that have to do with its solid state, such as crystals.
En otro objeto de la invención, los materiales son, sin limitar el alcance de la invención, seleccionados de entre: macromoléculas biológicas, proteínas, proteínas cristalizadas, compuestos cristalinos, cocristales, polimorfos, polimorfos hidratados, polimorfos solvatados, sales, polvos, proteínas en polvo, y/o materiales sensibles a cambios en la temperatura. Dichos materiales se pueden encontrar preferentemente por ejemplo en estado sólido como son cristales. Los cristales pueden ser sin ser limitativos de la invención, proteínas cristalizadas.  In another object of the invention, the materials are, without limiting the scope of the invention, selected from: biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, hydrated polymorphs, solvated polymorphs, salts, powders, proteins in dust, and / or materials sensitive to changes in temperature. Said materials can preferably be found, for example, in the solid state, such as crystals. The crystals can be without being limiting of the invention, crystallized proteins.
Es otro objeto de la presente invención, un dispositivo que comprende un contenedor de material plástico, preferentemente de poliolefina.  It is another object of the present invention, a device comprising a container of plastic material, preferably polyolefin.
El dispositivo de la presente invención comprende un contenedor de material plástico, preferentemente de poliolefina, que posee una serie de perforaciones u orificios de alojamiento horadado en forma ciHndrica en fas cuales se inserta un tubo de vidrio (401) de forma cilindrica dentro del cual se depositará un material a proteger. El tubo de vidrio (401) puede ser también, sin limitar el alcance de la invención, un contenedor alargado plastificado o de vidrio, que a su vez es receptáculo de al menos un tubo capilar (601), preferentemente de vidrio, que contendrá el material a proteger y en donde el tubo capilar (601) se encuentra opcionalmente inmerso o insertado en un gel aislante dentro del tubo de vidrio (401). El tubo de vidrio (401) se selecciona de entre: tubos de vidrio de resonancia magnética nuclear, tubos de ensayo, tubos de vidrio soplado. Preferentemente se selecciona de tubos empleados en RMN.  The device of the present invention comprises a container of plastic material, preferably of polyolefin, which has a series of perforations or holes drilled in a cylindrical shape in which a glass tube (401) is inserted cylindrically into which will deposit a material to protect. The glass tube (401) can also be, without limiting the scope of the invention, an elongated plastic or glass container, which in turn is a receptacle of at least one capillary tube (601), preferably of glass, which will contain the material to be protected and where the capillary tube (601) is optionally immersed or inserted in an insulating gel inside the glass tube (401). The glass tube (401) is selected from: nuclear magnetic resonance glass tubes, test tubes, blown glass tubes. It is preferably selected from tubes used in NMR.
El dispositivo de la presente invención puede ser utilizado para transportar cristales de proteínas de forma segura, fácil, sin necesidad de N2, sin riesgos de afectaciones por manipulación o perturbaciones extemas, sin riesgos por afectación térmica, y sin necesidad de cargar grandes y pesados recipientes como un Dewar. Además, su fabricación en materiales plásticos lo hace seguro y no peligroso, pudiéndose incluso transportar la muestra por vía terrestre, marítima o área sin riesgos. The device of the present invention can be used to transport protein crystals safely, easily, without the need for N 2 , without risks of tampering or external disturbances, without risks of thermal damage, and without the need to carry large and heavy loads. containers like a Dewar. In addition, its manufacture in plastic materials makes it safe and not dangerous, being able to even transport the sample by land, sea or area without risk.
A continuación, ia presente invención, y en particular modalidades preferidas de la misma, se describirán con mayor detalle en conexión con los dibujos adjuntos. Figura 1. Estados a) metaestable, b) inestable y c) estable, en un gráfico energía libre de Gibbs versus una variable que caracteriza el avance del proceso. Los estados de equilibrio estable y metaestabie(s) corresponden a mínimos de la función G. El estado de equilibrio estable es el mínimo absoluto. In the following, the present invention, and particularly preferred embodiments thereof, will be described in greater detail in connection with the accompanying drawings. Figure 1. States a) metastable, b) unstable and c) stable, in a Gibbs free energy graph versus a variable that characterizes the progress of the process. The steady state of equilibrium and metastabie (s) correspond to minimums of the G function. The steady state of equilibrium is the absolute minimum.
Figura 2. Vista de un frasco o recipiente tipo Dewar. Figure 2. View of a Dewar bottle or container.
Figura 3. Muestra una vista en perspectiva frontal del dispositivo para protección y transporte, en donde la Figura 3A muestra el dispositivo con orificios de alojamiento (301 ) de tipo cilindrico en un contenedor; la Figura 3B muestra el tubo de vidrio (401) del tipo utilizado en RMN junto con su tapón que comprende en su interior al menos un tubo capilar (801), y la Figura 3C muestra la inserción de los tubos de vidrio que comprende dicho tubo de vidrio en dicho alojamiento y los medios (201 ) para sellar o cerrar tanto dichos tubos de vidrio comprendiendo cada uno al menos un tubo capilar (601), así como dichos alojamientos en el contenedor del dispositivo.  Figure 3. Shows a front perspective view of the device for protection and transport, in which Figure 3A shows the device with housing holes (301) of cylindrical type in a container; Figure 3B shows the glass tube (401) of the type used in NMR together with its cap comprising at least one capillary tube (801), and Figure 3C shows the insertion of the glass tubes comprising said tube of glass in said housing and the means (201) for sealing or closing both said glass tubes each comprising at least one capillary tube (601), as well as said housings in the device container.
Figura 4, Medios (201 ) para seilar o cerrar los orificios de alojamiento del contenedor (301) y ios tubos de vidrio de forma cilindrica (401) que comprenden cada uno en su inferior al menos un tubo capilar (601). Figure 4, Means (201) for sealing or closing the housing holes of the container (301) and the cylindrical glass tubes (401) each comprising at least one capillary tube (601) in its bottom.
Figura 5. Espectro de infrarrojo de dos dispositivos para protección de la presente invención con distinta compactabiüdad.  Figure 5. Infrared spectrum of two devices for protection of the present invention with different compactness.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
El propósito es proporcionar un nuevo dispositivo de transporte y protección de materiales, como macromoíéculas biológicas, contra perturbaciones externas y cambios en la temperatura ya que al mantener los materiales aislados de los cambios de temperatura, vibraciones agitación, golpes u oscilaciones se evita que se rompa su estabilidad termodinámica. El dispositivo de la presente invención permite transportar en condiciones adecuadas y sin riesgos de afectaciones por manipulación o perturbaciones externas, y sin riesgos por afectación térmica, de un sitio a otro, incluso en trayectos largos o viajes intercontinentales, materiales que deben encontrarse aislado de cambios en temperatura y/o perturbaciones externas. The purpose is to provide a new device for transport and protection of materials, such as biological macromolecules, against external disturbances and changes in temperature since keeping materials isolated from changes in temperature, vibration, shock or oscillation prevents breakage. Its thermodynamic stability. The device of the present invention allows transport in suitable conditions and without risks of tampering or external disturbances, and without risks of thermal damage, from one place to another, even on long journeys or intercontinental trips, materials that must be isolated from changes in temperature and / or external disturbances.
En la presente invención, el término "material" o "materiales" se debe entender como aquellos materiales seleccionados de entre macromoíéculas biológicas, proteínas, proteínas cristalizadas, compuestos cristalinos, cocristales, polimorfos, polimorfos hidratados, polimorfos solvatados, sales, polvos, proteínas en polvo, y/o materiales sensibles a cambios en la temperatura. Dichos materiales se pueden encontrar preferentemente por ejemplo en estado sólido como son cristales. Los cristales pueden ser sin ser limitativos de la invención, proteínas cristalizadas. In the present invention, the term "material" or "materials" should be understood as those materials selected from biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, polymorphs hydrates, solvated polymorphs, salts, powders, protein powders, and / or materials sensitive to changes in temperature. Said materials can preferably be found, for example, in a solid state such as crystals. The crystals can be without being limiting of the invention, crystallized proteins.
En ¡a presente invención, el término macromoléculas biológicas, también se debe entender como proteínas, ácidos nucleicos y polssacáridos, y complejos macromoleculares que tengan combinaciones de estas biomoléculas. In the present invention, the term biological macromolecules should also be understood as proteins, nucleic acids and polssaccharides, and macromolecular complexes having combinations of these biomolecules.
En la actualidad, no existen dispositivos que permitan el transporte seguro de muestras o materiales, que además de aislarlos térmicamente, evite que perturbaciones externas, como son vibraciones, agitación, golpes u oscilaciones, afecten la estabilidad termodinámica de la muestra impidiendo que ésta pierda sus propiedades, principalmente aquellas que tienen que ver con su estado sólido, como son los cristales. At present, there are no devices that allow the safe transport of samples or materials, which in addition to thermally isolating them, prevent external disturbances, such as vibrations, agitation, shocks or oscillations, from affecting the thermodynamic stability of the sample preventing it from losing its properties, mainly those that have to do with its solid state, such as crystals.
El dispositivo de acuerdo a la invención comprende:  The device according to the invention comprises:
» al menos un contenedor (101) de materia! polimérico y en forma de paralelepípedo;  »At least one container (101) of matter! polymeric and parallelepiped shaped;
« al menos un orificio de alojamiento (301) horadado en forma cilindrica que está abierto en un extremo y cerrado en el otro extremo, y dicho alojamiento está dispuesto tai que el extremo abierto está incorporado en dicho contenedor y adyacente ai fondo del mismo, y en donde el alojamiento también permite insertar un tubo de vidrio de forma cilindrica (401); y en donde preferiblemente se encuentran dos y hasta tres orificios de alojamiento para dos y hasta tres tubos de vidrio cilindricos en el contenedor;  "At least one housing hole (301) drilled in a cylindrical shape that is open at one end and closed at the other end, and said housing is arranged so that the open end is incorporated in said container and adjacent to the bottom thereof, and where the housing also allows to insert a cylindrical glass tube (401); and where two and up to three housing holes are preferably located for two and up to three cylindrical glass tubes in the container;
« un tubo de vidrio de forma cilindrica (401) que a su vez es receptáculo de al menos un tubo capilar (601), preferentemente de vidrio, dentro del cual se depositará un material o muestra a proteger y transportar;  "A cylindrical glass tube (401) which in turn is a receptacle of at least one capillary tube (601), preferably of glass, into which a material or sample to be protected and transported will be deposited;
* medios para sellar o cerrar el a! menos uno, dos y hasta tres orificios de alojamiento del contenedor (301) y el al menos uno, dos y hasta tres tubos de vidrio de forma cilindrica (401) que comprende(n) cada uno en su interior al menos un tubo capilar (801), en donde dicho medio es una tapa (201); y en donde dicha tapa (201) opcionalmente comprende un tapón (501) desmontable para sellar o cerrar el al menos uno, dos y hasta tres orificios de alojamiento del contenedor (301) y el ai menos uno, dos y hasta tres tubos de vidrio cilindricos comprendiendo cada uno en su interior al menos un tubo capilar (601). * means to seal or close the a! at least one, two and up to three holes for housing the container (301) and the at least one, two and up to three cylindrical glass tubes (401) comprising (n) each inside at least one capillary tube ( 801), wherein said means is a cover (201); and wherein said lid (201) optionally comprises a removable cap (501) for sealing or closing the at least one, two and up to three housing holes of the container (301) and the at least one, two and up to three tubes of cylindrical glass each comprising inside at least one capillary tube (601).
El contenedor, de dimensiones rectangulares, comprende cuatro paredes y un fondo, en donde el extremo abierto del orificio de alojamiento del contenedor define una entrada y e! extremo cerrado del orificio de alojamiento define un extremo cerrado adyacente al fondo de! contenedor. Los medios (201 ), para sellar o cerrar los orificios de alojamiento en el contenedor del dispositivo y ¡os tubos de vidrio que comprenden cada uno en su interior al menos un tubo capilar (601), comprenden horadaciones en su parte interna {701} que ensamblan perfectamente con ios orificios de alojamiento del contenedor y con los tubos de vidrio cilindricos (Figura 4),  The container, of rectangular dimensions, comprises four walls and a bottom, where the open end of the container housing hole defines an inlet and e! closed end of the housing opening defines a closed end adjacent to the bottom of! container. The means (201), for sealing or closing the housing holes in the device container and the glass tubes each comprising inside at least one capillary tube (601), comprise perforations in its inner part {701} which fit perfectly with the container housing holes and with the cylindrical glass tubes (Figure 4),
En una modalidad, la entrada proporciona un orificio de alojamiento para la muestra o materia!. En otra modalidad, la entrada proporciona también un orificio para la adición de un gel aislante, el cual fluye libremente a todo lo largo del alojamiento de! contenedor de! dispositivo proporcionando una capa protectora adicional si se requiriese, que garantiza que la protección térmica sea efectiva.  In one embodiment, the entrance provides a housing hole for the sample or matter! In another embodiment, the inlet also provides a hole for the addition of an insulating gel, which flows freely throughout the housing of! Container of! device providing an additional protective layer if required, which ensures that thermal protection is effective.
En una modalidad, la forma cilindrica horadada del alojamiento (301 ) corresponde a la forma de un tubo cilindrico, el cual puede ser un tubo de vidrio (401) de forma cilindrica que se inserta a través de dicho orificio de alojamiento del contenedor por su extremo abierto, y descansando su base sobre el extremo cerrado adyacente al fondo de! contenedor. El tubo de vidrio (401) puede ser un contenedor alargado plastificado o de vidrio, que a su vez es receptáculo de al menos un tubo capilar (601 ), preferentemente de vidrio, que contendrá el materia! a proteger. Dicho tubo de vidrio(401) se selecciona de entre; tubos de vidrio de resonancia magnética nuclear, tubos de ensayo, tubos de vidrio soplado. Preferentemente se selecciona de tubos de vidrio empleados en RMN.  In one embodiment, the perforated cylindrical shape of the housing (301) corresponds to the shape of a cylindrical tube, which can be a cylindrical glass tube (401) that is inserted through said container housing hole by its open end, and resting its base on the closed end adjacent to the bottom of! container. The glass tube (401) can be an elongated plastic or glass container, which in turn is a receptacle of at least one capillary tube (601), preferably of glass, which will contain the material! to protect. Said glass tube (401) is selected from among; nuclear magnetic resonance glass tubes, test tubes, blown glass tubes. It is preferably selected from glass tubes used in NMR.
En una modalidad, la forma cilindrica horadada de! alojamiento (301) corresponde a la forma de un tubo cilindrico, dentro de! cual se inserta un tubo de vidrio (401) del tipo utilizado en RMN a través de dicho orificio de alojamiento (301 ) del contenedor por su extremo abierto, y descansando su base sobre el extremo cerrado adyacente al fondo del contenedor. A su vez, y opcionalmente, el tubo de vidrio (401) de resonancia magnética nuclear se cierra con un tapón (501 ) desmontable, que preferentemente es un tapón para tubo de resonancia magnética nuclear. En la Figura 3 se muestra una vista en perspectiva frontal del dispositivo para protección y transporte, en donde la figura 3A muestra el dispositivo con los orificios de alojamiento de tipo cilindrico (301 ), con dimensiones que pueden ir desde 4.5 de largo x 3.7 cm de ancho o profundidad x 8.0 cm de alto hasta 75 cm de largo x 62 cm de ancho o profundidad x 8 cm de alto. De acuerdo al alcance de la invención, y sin limitar la misma, ei dispositivo puede comprender al menos un contenedor con 1 hasta N orificios de alojamiento (301), en donde N es un número entero de entre 1 y 50, preferiblemente entre 1-25, y más preferiblemente entre 1-3, suficientes y con capacidad para alojar desde 1 hasta N tubos de vidrio, donde N es un número entero de entre 1 y 50, preferiblemente entre 1-25, y más preferiblemente entre 1-3. Preferentemente, el dispositivo posee una dimensión de 4.5 cm de largo x 3.7 de ancho o profundidad x 8.0 cm de alto, dimensiones mínimas y apropiadas para alojar desde 1 hasta 3 tubos de vidrio (401 ) que comprenden cada uno en su interior a! menos un tubo capilar (601). La figura 3B muestra el tubo de vidrio (401), junto con su tapón, que contendrá el material o muestra a proteger; y en donde el tubo (401) se selecciona de entre tubos de vidrio de resonancia magnética nuclear, tubos de ensayo, tubos de vidrio, tubos de vidrio soplado; preferentemente el tubo de vidrio tipo cilindrico es un tubo para muestra de RMN (401) junto con su tapón (501). En una modalidad, el tubo de vidrio (401) puede ser también, sin limitar el alcance de la invención, un contenedor alargado plastificado o de vidrio, que a su vez es receptáculo de al menos un tubo capilar (801), preferentemente de vidrio, que contendrá el material a proteger y en donde el tubo capilar (801) se encuentra opcionalmeníe inmerso o insertado en un ge! aislante dentro del tubo de vidrio (401). La figura 3C muestra la inserción de los tubos de vidrio que comprende dicho tubo de vidrio en dicho alojamiento y los medios (201 ) para sellar o cerrar tanto dichos tubos de vidrio comprendiendo cada uno ai menos un tubo capilar (601), así como dichos alojamientos en ei contenedor del dispositivo. Entre el extremo cerrado del alojamiento y ei fondo del contenedor existe al menos una separación o espacio de 1.0 cm. Los medios (201 ) para sellar o cerrar los orificios de alojamiento del contenedor del dispositivo y los tubos de vidrio de forma cilindrica, es una tapa hecha del mismo material que el resto del dispositivo, con una dimensión correspondiente al largo y ancho del confenedor-del dispositivo y una altura de al menos 1.0 cm y no más de 2.0 cm. En una modalidad, los medios (201) para cerrar ei o Sos orificio(s) de alojamiento del contenedor son también ¡os medios para cerrar ei Q los tubo(s) de vidrio de forma cilindrica. Opcionalmente, los medios (201) comprenden un tapón (501) desmontable para cerrar el o los orificios de alojamiento del contenedor y los tubos de vidrio cilindricos. Preferiblemente, cuando e! o los tubos de vidrio (401), preferentemente un tubos de Resonancia Magnética Nuclear, que a su vez son receptáculo de ai menos un tubo capilar (601 ) y hasta N tubos capilares, donde N es un número entero mayor a 1 que contendrán el material a proteger, entonces dichos medios (201 ) comprenden tapones (501 ) desmontables para tubo de resonancia magnética nuclear adheridos como una sola pieza o unidad a dichos medios para cerrar el contenedor, sus alojamientos y ios tubos de vidrio comprendiendo el o los tubos capilares (Figura 4). In one embodiment, the cylindrical shape drilled from! housing (301) corresponds to the shape of a cylindrical tube, inside! which a glass tube (401) of the type used in NMR is inserted through said housing hole (301) of the container at its open end, and resting its base on the closed end adjacent to the bottom of the container. In turn, and optionally, the nuclear magnetic resonance glass tube (401) is closed with a removable plug (501), which is preferably a nuclear magnetic resonance tube stopper. A perspective perspective view of the device for protection and transport is shown in Figure 3, where Figure 3A shows the device with the cylindrical housing holes (301), with dimensions ranging from 4.5 long x 3.7 cm wide or deep x 8.0 cm high up to 75 cm long x 62 cm wide or deep x 8 cm high. According to the scope of the invention, and without limiting it, the device may comprise at least one container with 1 to N housing holes (301), wherein N is an integer between 1 and 50, preferably between 1- 25, and more preferably between 1-3, sufficient and capable of accommodating from 1 to N glass tubes, where N is an integer between 1 and 50, preferably between 1-25, and more preferably between 1-3. Preferably, the device has a dimension of 4.5 cm long x 3.7 wide or depth x 8.0 cm high, minimum and appropriate dimensions to accommodate from 1 to 3 glass tubes (401) each comprising inside a! minus a capillary tube (601). Figure 3B shows the glass tube (401), together with its cap, which will contain the material or sample to be protected; and wherein the tube (401) is selected from nuclear magnetic resonance glass tubes, test tubes, glass tubes, blown glass tubes; preferably the cylindrical glass tube is an NMR sample tube (401) together with its cap (501). In one embodiment, the glass tube (401) can also be, without limiting the scope of the invention, an elongated plasticized or glass container, which in turn is a receptacle of at least one capillary tube (801), preferably of glass , which will contain the material to be protected and where the capillary tube (801) is optionally immersed or inserted in a ge! insulator inside the glass tube (401). Figure 3C shows the insertion of the glass tubes comprising said glass tube in said housing and the means (201) for sealing or closing both said glass tubes each comprising at least one capillary tube (601), as well as said housings in the device container. Between the closed end of the housing and the bottom of the container there is at least a 1.0 cm gap or space. The means (201) for sealing or closing the housing holes of the device container and the cylindrical glass tubes, is a cover made of the same material as the rest of the device, with a dimension corresponding to the length and width of the container- of the device and a height of at least 1.0 cm and not more than 2.0 cm. In one embodiment, the means (201) for closing the orifice (s) of the container housing are also the means for closing the cylindrical glass tube (s). Optionally, the means (201) comprise a removable cap (501) for closing the container housing (s) and the cylindrical glass tubes. Preferably, when e! or the glass tubes (401), preferably a Nuclear Magnetic Resonance tubes, which in turn are a receptacle of at least one capillary tube (601) and up to N capillary tubes, where N is an integer greater than 1 that will contain the material to be protected, then said means (201) comprise removable caps (501) for nuclear magnetic resonance tube attached as a single piece or unit to said means for closing the container, its housings and the glass tubes comprising the capillary tube (s) (Figure 4).
En una modalidad, un tubo de vidrio (401 ), preferiblemente un tubo de vidrio de resonancia magnética nuclear, puede comprender desde uno hasta N tubos capilares, donde N es un número entero mayor a 1. La cantidad de tubos capilares (601 ) que pueden estar contenidos en un tubo de vidrio (401 ) dependerá conforme a las demandas específicas de almacenamiento y transporte requeridas de materia! o materiales a proteger seleccionados de entre macromolécuias biológicas, proteínas, proteínas cristalizadas, compuestos cristalinos, cocristaíes, polimorfos, polimorfos hidratados, polimorfos solvatados, sales, polvos, proteínas en polvo, y/o materiales sensibles a cambios en la temperatura; y en donde dichos materiales se pueden encontrar preferentemente por ejemplo en estado sólido como son cristales, como proteínas cristalizadas; y en donde las macromolécuias biológicas se seleccionan de entre proteínas, ácidos nucleicos y polisacáridos, o complejos macromoleculares que tengan combinaciones de estas biomoiéculas.  In one embodiment, a glass tube (401), preferably a nuclear magnetic resonance glass tube, can comprise from one to N capillary tubes, where N is an integer greater than 1. The amount of capillary tubes (601) that They may be contained in a glass tube (401) will depend according to the specific storage and transportation requirements required of matter! or materials to be protected selected from among biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, hydrated polymorphs, solvated polymorphs, salts, powders, powdered proteins, and / or materials sensitive to changes in temperature; and wherein said materials can preferably be found for example in the solid state such as crystals, as crystallized proteins; and wherein the biological macromolecules are selected from proteins, nucleic acids and polysaccharides, or macromolecular complexes that have combinations of these biomolecules.
Los medios para cerrar el orifico del alojamiento del contenedor o ei tubo de vidrio comprendiendo ei tubo capilar, o ambos al mismo tiempo, cierran y sellan perfectamente evitando que la muestra contenida en el dispositivo se derrame, caiga, saiga o escurra. En una modalidad opcional, preferentemente, un pequeño tapón (901) se introduce en el interior del tapón (501) para evitar transferencia de calor en la muestra o material a proteger (Figura 4). En una modalidad, los medios (201) para cerrar e! o los orificio(s) de alojamiento del contenedor (301), que opcionalmente pueden ser también los medios para cerrar el tubo de vidrio de forma cilindrica (401), opcionalmente están unidos al contenedor de! dispositivo a través de medios de unión (801) apropiados como puede ser, cinta, liga, hilo, materiales adheribles flexibles e incluso pero sin limitarse a, una tira de material de poliolefina el cual puede moldearse fácil y rápidamente de una forma deseada, tal que permitan por ejemplo la unión de los medios para cerrar el o los orificio(s) del alojamiento del contenedor, con dicho contenedor del orificio. Opcionalmente, el dispositivo para protección y transporte se puede sellar o cerrar con cinta adhesiva usualmente empleada en recubrimientos eléctricos. The means for closing the orifice of the container housing or the glass tube comprising the capillary tube, or both at the same time, close and seal perfectly preventing the sample contained in the device from spilling, falling, saiga or draining. In an optional embodiment, preferably, a small cap (901) is inserted inside the cap (501) to avoid heat transfer in the sample or material to be protected (Figure 4). In one embodiment, the means (201) for closing e! or the hole (s) for housing the container (301), which may optionally also be the means for closing the glass tube in a cylindrical shape (401), are optionally attached to the container of! device through appropriate joining means (801) such as tape, tie, thread, flexible adherent materials and even but not limited to, a strip of polyolefin material which can be easily and quickly molded in a desired manner, such allowing for example the joining of the means to close the hole (s) of the container housing, with said hole container. Optionally, the device for protection and transport can be sealed or closed with adhesive tape usually used in electrical coatings.
El contenedor del dispositivo puede formarse y dimensionarse conforme a ías demandas especificas de almacenamiento y transporte requeridas. Preferentemente, el contenedor del dispositivo puede ser de forma de paralelepípedo, como un rectángulo. En una modalidad adicional por ejemplo, las paredes laterales de! contendor pueden ser de iguales dimensiones creando esencialmente un contenedor cuadrado. Se entenderá así, que la presente invención no se limita y el dispositivo puede comprender un contenedor de cualquier tamaño determinado y puede tener sustanclalmente el mismo o similar tamaflo que otros contenedores convencionales de tubos cilindricos, como tubos de ensayo, tubos de vidrio, tubos de vidrio soplado, tubos plásticos, y/o cilindros de plástico, preferentemente tubos de resonancia magnética nuclear.  The device container can be formed and sized according to the specific storage and transportation demands required. Preferably, the device container can be parallelepiped-shaped, like a rectangle. In an additional embodiment for example, the side walls of! container can be of equal dimensions essentially creating a square container. It will be understood thus, that the present invention is not limited and the device may comprise a container of any given size and may have substantially the same or similar size as other conventional cylindrical container, such as test tubes, glass tubes, tubes blown glass, plastic tubes, and / or plastic cylinders, preferably nuclear magnetic resonance tubes.
El dispositivo de la presente invención comprende un contenedor de material polimérico, preferentemente de poliolefina, que posee una serie de perforaciones u horadaciones en las cuales se inserta un tubo de vidrio de forma cilindrica que a su vez es receptáculo de a! menos un tubo capilar (601), preferentemente de vidrio, que contendrá o dentro de! cual se depositará un material a proteger. Por ejemplo, cuando el material a proteger son cristales de proteínas, éstos se crecen en tubos capilares (801) de diámetro de 1mm. Estos se introducen dentro de Sos tubos (401), a ios que usualmente les caben de 4 a 5 tubos capilares de vidrio de 1mm de diámetro. Una vez introducidos éstos en el tubo de vidrio (401), se entiende que los tubos capilares (801) de 1mm de diámetro deben estar sellados por los dos lados, se cubren con un ge! aislante de sílice, llenando el tubo (401) con una mezcla de los componentes que formarán el ge! aislante. Este es una capa protectora adicional, que garantiza que ia protección térmica sea efectiva. El tubo (401) se selecciona ele entre: tubos de vidrio de resonancia magnética nuclear, tubos de ensayo, tubos de vidrio, tubos de vidrio soplado. Preferentemente se selecciona de tubos empleados en R N. The device of the present invention comprises a container of polymeric material, preferably of polyolefin, which has a series of perforations or holes in which a cylindrical glass tube is inserted which in turn is a! less a capillary tube (601), preferably of glass, which will contain or inside! which will be deposited a material to protect. For example, when the material to be protected are protein crystals, they are grown in capillary tubes (801) with a diameter of 1mm. These are introduced into Sos tubes (401), which usually fit 4 to 5 glass capillary tubes 1mm in diameter. Once these have been introduced into the glass tube (401), it is understood that capillary tubes (801) of 1mm in diameter must be sealed on both sides, covered with a ge! Silica insulator, filling the tube (401) with a mixture of the components that will form the ge! insulating. This is an additional protective layer, which guarantees that thermal protection is effective. The tube (401) is selected from: nuclear magnetic resonance glass tubes, test tubes, glass tubes, blown glass tubes. It is preferably selected from tubes used in R N.
El dispositivo se fabrica de un materia! de poliolefina el cual puede moldearse fácil y rápidamente en contenedores duraderos de una forma deseada, tal que permitan por ejemplo su apilamiento. The device is made of a material! of polyolefin which can be molded easily and quickly in durable containers of a desired shape, such that they allow for example stacking.
El material de poliolefina es una espuma de polioiefina reticulada y compacta útil y adecuada para dispositivos de transporte y protección de materiales, que además de permitir el aislamiento térmico, evita perturbaciones externas, como son vibraciones, agitación, golpes u oscilaciones que afecten la estabilidad termodinámica de la muestra impidiendo que ésta pierda sus propiedades, principalmente aquellas que tienen que ver con su estado sólido, como son los cristales. Varias características de las espumas de poliolefina los hacen ventajosos para su uso en estos dispositivos como son: se moldean típicamente por medios convencionales bien conocidos por personas con conocimientos en la técnica. Los métodos preferidos incluyen rotomoldeo, aunque se contempla que otros métodos pueden ser utilizados, como moldeo por inyección, moldeo por compresión o moldeo por extrusión y soplado, y otros métodos convencionales pueden también ser utilizados. Su estructura celular es típicamente lo suficientemente fina como para contener, por ejemplo, nitrógeno líquido, sin fugas; son lo suficientemente resistente para soportar repetidas exposiciones a una escala de temperaturas que van desde ia criogénesis hasta temperaturas calurosas superiores a los 40° C, Es un material no reactivo; presentan una baja conductividad térmica y una baja capacidad de calor volumétrico, y además la espuma de poliolefina puede resistir la manipulación física moderada y sin fallo mecánico, lo que hace de este material de poliolefina adecuado y pertinente para la fabricación de dispositivos de la presente invención con propósitos de transporte y protección de materiales como macromoiéculas biológicas.  The polyolefin material is a crosslinked and compact polyoiefin foam useful and suitable for transport and material protection devices, which in addition to allowing thermal insulation, prevents external disturbances, such as vibrations, agitation, shocks or oscillations that affect thermodynamic stability of the sample preventing it from losing its properties, mainly those that have to do with its solid state, such as crystals. Several characteristics of polyolefin foams make them advantageous for use in these devices such as: they are typically molded by conventional means well known to persons skilled in the art. Preferred methods include rotational molding, although it is contemplated that other methods may be used, such as injection molding, compression molding or extrusion and blow molding, and other conventional methods may also be used. Its cellular structure is typically thin enough to contain, for example, liquid nitrogen, without leaks; They are strong enough to withstand repeated exposures at a temperature scale ranging from cryogenesis to hot temperatures above 40 ° C. It is a non-reactive material; they have a low thermal conductivity and a low volumetric heat capacity, and also the polyolefin foam can withstand moderate physical manipulation and without mechanical failure, which makes this polyolefin material suitable and relevant for the manufacture of devices of the present invention. for transport and protection of materials such as biological macromolecules.
Tal como se utiliza aquí, el término "espuma de poliolefina" se refiere a una espuma de polietileno, espuma de polipropileno, mezclas de poiietileno-polipropileno y copoíímeros, y espumas que contienen una mezcla o copolímero de monómero de olefina y otros monómeros, en la medida en que las espumas mixtas tienen al menos algunas de las características favorables indicadas anteriormente. Además del polímero o polímeros que componen la espuma de poliolefina, como el de la presente invención, pueden tener también aditivos conocidos en la técnica. Por ejemplo, las espumas pueden incluir ablandadores, agentes colorantes, estabilizantes, conservadores, y sustancias de relleno. As used herein, the term "polyolefin foam" refers to a polyethylene foam, polypropylene foam, mixtures of polyethylene-polypropylene and copoimers, and foams containing a mixture or copolymer of olefin monomer and other monomers, in the extent to which mixed foams have at least some of the favorable characteristics indicated above. Besides of Polymers or polymers that make up the polyolefin foam, such as that of the present invention, may also have additives known in the art. For example, foams may include softeners, coloring agents, stabilizers, preservatives, and fillers.
Las espumas de poliolefina se proporcionan típicamente en una variedad de densidades. En la selección de ia densidad de una espuma de poliolefina que se va a utilizar para un dispositivo como el de la presente invención, se debe buscar equilibrar las propiedades mecánicas y térmicas del material. Si la espuma no es muy densa, no puede tener propiedades mecánicas ventajosas; si la espuma es demasiado densa, tendrá una mayor conductividad térmica. En la presente invención, se ha encontrado que la espuma de poliolefina posee una densidad de al menos 32.04 kg/m3 (2 libras por pie cúbico), mientras que las densidades en el intervalo de 32.04 a 64.07 kg/m3 (2 libras a 4 libras por pie cúbico) pueden ser particularmente ventajosas en ia presente invención. Sin embargo, en algunas modalidades de la invención, se prevé que las espumas de poliolefina comprendan densidades de 98.11-128 kg/m3 (6-8 libras por pie cúbico). Polyolefin foams are typically provided in a variety of densities. In the selection of the density of a polyolefin foam to be used for a device such as that of the present invention, one must seek to balance the mechanical and thermal properties of the material. If the foam is not very dense, it cannot have advantageous mechanical properties; If the foam is too dense, it will have a higher thermal conductivity. In the present invention, it has been found that the polyolefin foam has a density of at least 32.04 kg / m 3 (2 pounds per cubic foot), while the densities in the range of 32.04 to 64.07 kg / m 3 (2 pounds at 4 pounds per cubic foot) may be particularly advantageous in the present invention. However, in some embodiments of the invention, polyolefin foams are expected to comprise densities of 98.11-128 kg / m 3 (6-8 pounds per cubic foot).
El dispositivo descrito en la presente invención, es capaz de soportar variaciones de temperatura e incluso soportar temperaturas de hasta -160° C sin presentar variaciones de temperatura.  The device described in the present invention is capable of withstanding temperature variations and even withstanding temperatures up to -160 ° C without presenting temperature variations.
Se ha probado con éxito el dispositivo o recipiente para transportar proteínas cristalizadas, cuya fase cristalina se pierde fácilmente debido a cambios en la temperatura y/o perturbaciones externas. Por ejemplo, las li asas constituyen un grupo diverso de enzimas solubles en agua que catalizan la hidrólisis de los enlaces éster en sustratos lípidos insolubles en agua. Las íipasas desempeñan papeles esenciales en la digestión, el transporte, y tratamiento de los lípidos de la dieta tales como los triacilglicéridos, grasas, aceites en la mayoría, si no todos, de los organismos vivos. Asimismo, la üpasa B es industrialmente importante en ia síntesis de glucolfpidos. La Lipasa B en particular es una forma pura, seca, cristalina de la üpasa B de Candida antárctica producida por fermentación sumergida de un microorganismo genéticamente modificado de Aspergiiius oryzae. La Lipasa B es un polvo cristalino blanco, donde la lipasa B está presente en forma de cristales y no hay otros ingredientes o sales amortiguadoras. La Lipasa B tiene un pH de 5-7, y tiene un punto isoeléctrico de 6.0. E! Mr de la Lipasa B es de 35 kDa por electroforesis en gel de poliacrilamida SDS, The device or container for transporting crystallized proteins, whose crystalline phase is easily lost due to changes in temperature and / or external disturbances, has been successfully tested. For example, liasas constitute a diverse group of water-soluble enzymes that catalyze the hydrolysis of ester bonds in water-insoluble lipid substrates. Iipases play essential roles in the digestion, transport, and treatment of dietary lipids such as triacylglycerides, fats, oils in most, if not all, of living organisms. Likewise, üpasa B is industrially important in the synthesis of glycolipids. Lipase B in particular is a pure, dry, crystalline form of üpase B from Candida Antarctica produced by submerged fermentation of a genetically modified microorganism of Aspergiiius oryzae. Lipase B is a white crystalline powder, where lipase B is present in the form of crystals and there are no other ingredients or buffer salts. Lipase B has a pH of 5-7, and has a isoelectric point of 6.0. AND! Mr of Lipase B is 35 kDa by SDS polyacrylamide gel electrophoresis,
En la presente invención, se ha utilizado la lipasa como sensor térmico ya que los cristales son sensibles a disolverse cuando hay cambios a su temperatura de cristalización que es de 18° C y variaciones en un intervalo de ±2° C que le afectan considerablemente. En trayectos intercontinentales y con cambios de presión atmosférica y temperatura, ha sido posible constatar que la lipasa se mantiene en fase cristalina sin cambios, lo que avala que cualquier otra muestra de un cristal a analizar - y del cual se desconoce si los cambios de temperatura y/o perturbaciones afectarán su estabilidad termodinámica - se mantiene intacto sin modificación de sus propiedades fisicoquímicas, entre ellas su fase cristalina.  In the present invention, lipase has been used as a thermal sensor since the crystals are sensitive to dissolve when there are changes to their crystallization temperature that is 18 ° C and variations in a range of ± 2 ° C that affect it considerably. In intercontinental routes and with changes in atmospheric pressure and temperature, it has been possible to verify that the lipase remains in the crystalline phase without changes, which guarantees that any other sample of a crystal to be analyzed - and of which it is unknown if the temperature changes and / or disturbances will affect its thermodynamic stability - it remains intact without modification of its physicochemical properties, including its crystalline phase.
En paralelo a este experimento, se han transportado 2 proteínas (glucosa isomerasa y iisozima) a dos sincrotones diferentes ubicados cada uno de ellos en Trieste, Italia (Elettra) y SLAC en Stanford, California, EEUU. En los dos casos ambos cristales (transportados en este dispositivo) difractaron los rayos X a una resolución muy alta, lo cual implicó que no hubo daño estructural en el transporte. Como ejemplo de ello, se presentan las siguientes tablas 1 y 2 con los resultados:  In parallel to this experiment, 2 proteins (glucose isomerase and iisozyme) have been transported to two different synchrotons each located in Trieste, Italy (Elettra) and SLAC in Stanford, California, USA. In both cases both crystals (transported in this device) diffracted the X-rays at a very high resolution, which meant that there was no structural damage in the transport. As an example, the following tables 1 and 2 are presented with the results:
Tabla 1. Glucosa isomerasa.  Table 1. Glucose isomerase.
Figure imgf000018_0001
* Sin influencia de campo magnético en su crecimiento.
Figure imgf000018_0001
* Without influence of magnetic field in its growth.
El Cristal 1 y el Crista! 2 fueron crecidos en presencia de un campo magnético de Crystal 1 and Crystal! 2 were grown in the presence of a magnetic field of
Tabla 2. Lisozima Table 2. Lysozyme
Figure imgf000019_0001
Figure imgf000019_0001
* Sin influencia de campo magnético en su crecimiento. * Without influence of magnetic field in its growth.
El Cristal 1 de ¡a Tabla 2 fue crecido en presencia de un campo magnético de 700 MHz. Crystal 1 of Table 2 was grown in the presence of a 700 MHz magnetic field.
Cuando se habla de 1Á de resolución, significa que es posible apreciar las densidades electrónicas con claridad, y por tanto la transportación no afectó en su estructura cristalográfica a las biomacromoléculas. EJEMPLOS  When talking about 1A resolution, it means that it is possible to appreciate the electronic densities clearly, and therefore the transport did not affect the biomachromolecules in its crystallographic structure. EXAMPLES
Ejemplo 1. Fabricación dei dispositivo  Example 1. Manufacturing of the device
Se cortan piezas de la poiiolefina de las siguientes dimensiones: 4.5 cm de largo x 3.7 de ancho o profundidad x 8.0 cm de alto, dimensiones mínimas y apropiadas para a!ojar desde 1 hasta 3 tubos (401). Una vez hechos los cortes, se obtiene un dispositivo de forma de paralelepípedo. Posteriormente se hacen 3 perforaciones con una broca del tamaño de los tubos de RMN. Entre el extremo cerrado del alojamiento y el fondo del contenedor existe al menos una separación o espacio de 1.0 cm. Los medios para cerrar el contenedor del dispositivo es una tapa (201) hecha del mismo material que e! resto del dispositivo, con una dimensión correspondiente al largo y ancho del contenedor del dispositivo y una altura de al menos 1.0 cm y no más de 2.0 cm. Una vez hechas las perforaciones, Sos cristales de proteínas a proteger térmicamente y contra perturbaciones, se crecen en tubos capilares (601) de diámetro de 1mm. Estos se introducen dentro de los tubos (401) de R N, a los que usuaimente les caben de 4 a 5 tubos capilares de vidrio de 1 mm de diámetro. Una vez introducidos éstos en e! tubo de RMN, se entiende que los tubos capilares de 1mm de diámetro deben estar sellados por los dos lados con plastilina o cera (para evitar que las proteínas contenidas en ellos se deshidraten y se fugue el licor madre), luego se cubren con un gel aislante de sílice, llenando el tubo (401) de RMN con una mezcla de los componentes que formarán el gel (1 mL de ácido acético 1 M con dos mL de metasílicato de sodio densidad de 1.08 g/mL). Este es una capa protectora adicional, que garantiza que la protección térmica y contra perturbaciones externas sea efectiva. El tubo (401) de RMN que contiene los tubos capilares de 1mm de diámetro se cubre o cierra con la tapa (201) que es una cubierta del mismo material del dispositivo (poiiolefina), que además comprende un tapón (501) desmontable que en su interior comprende opcionaímente un pequeño tapón (901) (Figura 4); opcionalmente la tapa (201) está unida al contenedor del dispositivo a través de medios de unión (801) apropiados como puede ser, cinta, liga, hilo, materiales adheribles flexibles e incluso pero sin limitarse a, una tira de material de poiiolefina el cual puede moldearse fácil y rápidamente de una forma deseada; opcionalmente, el dispositivo para protección y transporte se puede sellar o cerrar con cinta adhesiva usuaimente empleada en recubrimientos eléctricos. Ejemplo 2. Espectro de infrarrojo de dos dispositivos para protección de ¡a presente invención con distinta compactafoilidad. Pieces of the polyolefin of the following dimensions are cut: 4.5 cm long x 3.7 wide or depth x 8.0 cm high, minimum dimensions and appropriate for Ajar from 1 to 3 tubes (401). Once the cuts are made, a parallelepiped shaped device is obtained. Subsequently, 3 perforations are made with a drill the size of the NMR tubes. Between the closed end of the housing and the bottom of the container there is at least a 1.0 cm gap or gap. The means to close the device container is a lid (201) made of the same material as e! rest of the device, with a dimension corresponding to the length and width of the device container and a height of at least 1.0 cm and not more than 2.0 cm. Once the perforations have been made, Sos crystals of proteins to be protected thermally and against disturbances, they are grown in capillary tubes (601) with a diameter of 1mm. These are introduced into the RN tubes (401), which usually fit 4 to 5 glass capillary tubes of 1 mm in diameter. Once introduced these in e! NMR tube, it is understood that the 1mm diameter capillary tubes must be sealed on both sides with plasticine or wax (to prevent the proteins contained in them from dehydrating and leaking the mother liquor), then covered with a gel Silica insulator, filling the NMR tube (401) with a mixture of the components that will form the gel (1 mL of 1 M acetic acid with two mL of sodium metasilicate density of 1.08 g / mL). This is an additional protective layer, which ensures that thermal and external disturbance protection is effective. The NMR tube (401) containing the 1mm diameter capillary tubes is covered or closed with the lid (201) which is a cover of the same material of the device (polyolefin), which also comprises a removable cap (501) than in its interior optionally comprises a small plug (901) (Figure 4); optionally the lid (201) is attached to the device container through appropriate joining means (801) such as tape, tie, thread, flexible adhesive materials and even but not limited to, a strip of polyolefin material which it can be molded easily and quickly in a desired manner; optionally, the device for protection and transport can be sealed or closed with adhesive tape usually used in electrical coatings. Example 2. Infrared spectrum of two devices for protection of the present invention with different compactness.
En la figura 3 se muestra un espectro infrarrojo de dos dispositivos para protección de diferente compactación. La banda de color rojo (A) es un dispositivo de material compactado y el preferido en la invención. En negro (B) es un dispositivo de material de menor compactadón pero igualmente eficiente en la invención. An infrared spectrum of two devices for protection of different compaction is shown in Figure 3. The red band (A) is a device of material compacted and preferred in the invention. In black (B) it is a device of less compacted material but equally efficient in the invention.
En ambos casos, se observan bandas en ¡a región entre 2750-3000, 1500 y 750 cm- 1 , La diferencia en % de íransmitancia se debe precisamente a! grado de compactadón que posee cada dispositivo. In both cases, bands are observed in the region between 2750-3000, 1500 and 750 cm -1, The difference in% of transmittance is precisely due to! degree of compaction that each device has.
Ejemplo 3. Gel aislante Example 3. Insulating gel
Tal como se definió anteriormente, el dispositivo de ia presente invención comprende un contenedor de material plástico, preferentemente de poiiolefina, que posee una serie de perforaciones en las cuales se inserta un tubo de vidrio de forma cilindrica dentro del cual se depositará un material a proteger, preferiblemente, el material a proteger se encuentra a su vez dentro de un tubo capilar (801). Así, el tubo de vidrio (401) puede ser, sin limitar el alcance de la invención, un tubo de resonancia magnética nuclear, que a su vez es receptáculo de un tubo capilar que contendrá el material a proteger. El material a proteger, por ejemplo una biomacromolécuia, se puede poner, colocar o incluso cristalizar in situ en dichos capilares los cuales se introducirán en ei tubo (401) (por ejemplo, un tubo de RMN) tal como se descnbe en el ejemplo 1. A su vez, se utiliza un gel en el cual estarán éstos capilares inmersos o insertados. Dicho gel, permite aislar completamente de perturbaciones externas como son vibraciones, agitación, golpes y/u oscilaciones, así como de cambios de temperatura, a la muestra de materia! o materiales transportados en el dispositivo. La fabricación de dicho gel comprende los siguientes pasos y compuestos:  As defined above, the device of the present invention comprises a container of plastic material, preferably of polyolefin, which has a series of perforations in which a cylindrical glass tube is inserted into which a material to be protected will be deposited. , preferably, the material to be protected is in turn inside a capillary tube (801). Thus, the glass tube (401) can be, without limiting the scope of the invention, a nuclear magnetic resonance tube, which in turn is a receptacle of a capillary tube that will contain the material to be protected. The material to be protected, for example a biomachromolecule, can be placed, placed or even crystallized in situ in said capillaries which will be introduced into the tube (401) (for example, an NMR tube) as described in Example 1 In turn, a gel is used in which these capillaries will be immersed or inserted. Said gel allows to completely isolate external disturbances such as vibrations, agitation, blows and / or oscillations, as well as temperature changes, to the sample of matter! or materials transported in the device. The manufacture of said gel comprises the following steps and compounds:
Se toma una solución de metasilicato de sodio de una densidad = 1.06 g/ml, y se neutraliza con una solución de ácido acético 1 M. Las proporciones para producir un gel a ρΗ^ 7 son: A solution of sodium metasilicate of a density = 1.06 g / ml is taken and neutralized with a solution of 1 M acetic acid. The proportions to produce a gel at ρΗ ^ 7 are:
- se adiciona inicialmente a la mezcla 1 mi de ácido acético y 2 mi de la disolución de metasilicato de sodio anterior; y  - 1 ml of acetic acid and 2 ml of the above sodium metasilicate solution are initially added to the mixture; Y
- la gelificación procede en un tiempo aproximado entre 3 y 5 minutos.  - the gelation proceeds in an approximate time between 3 and 5 minutes.
Ejemplo 4, étodo do transporte y protección d© materiales con el dispositivo de ia presente invención. Como se mencionó anteriormente, los cristales de proteína crecidos en tubos capilares (601) de 1mm de diámetro, se introducen en ei tubo (401) de RMN y se adicionan los componentes que formarán el gel de sílice. Se sella e! dispositivo. Los cristales pueden ser entonces transportados en un portafolio y no hay que preocuparse de que estos sufran daño alguno por efectos térmicos (cambios bruscos de temperatura) o por otro tipo de perturbaciones como pueden ser oscilaciones, vibraciones, agitaciones o golpes. Cuando se llega al sitio donde se colectarán los datos de rayos-X (ya sea un sincrotrón, por ejemplo) o simplemente algún laboratorio lejano, con el que se tenga alguna colaboración, para e! análisis de los cristales, estos se retiran del dispositivo. Los capilares de i mm de diámetro se sacan con unas pinzas de punta fina del tubo de RMN y se cortan de ambos lados (estos fueron sellados con plastiiina o cera) para poder extraer los cristales de proteínas. Las tablas 1 y 2 muestran e! resultado de haber transportado dos proteínas modelos, que fueron crecidas en presencia de campos magnéticos muy intensos, los datos de resolución están entre 1.5 Á y 1.1 A esto en cristalografía, implica que estos cristales son de excelente calidad. Estos fueron transportados desde Ciudad de México al Sincrotrón de Elettra en Triste (Italia) en el mes de Marzo de 2016 y una segunda remesa se transportó posteriormente al sincrotrón de Stanford California (SLAC) en los EEUU a finales de Abril de 2016. Estos dos experimentos validan perfectamente la efectividad del dispositivo que se pretende patentar. Example 4, transport and protection of materials with the device of the present invention. As mentioned above, the protein crystals grown in capillary tubes (601) of 1mm in diameter, are introduced into the NMR tube (401) and the components that will form the silica gel are added. It is sealed e! device. The crystals can then be transported in a portfolio and there is no need to worry that they suffer any damage due to thermal effects (sudden changes in temperature) or other disturbances such as oscillations, vibrations, agitations or blows. When you arrive at the site where the X-ray data will be collected (either a synchrotron, for example) or just some distant laboratory, with which you have some collaboration, for e! Crystal analysis, these are removed from the device. The capillaries of i mm in diameter are removed with fine-tip tweezers from the NMR tube and cut from both sides (these were sealed with plastiiin or wax) to be able to extract the protein crystals. Tables 1 and 2 show e! As a result of having transported two model proteins, which were grown in the presence of very intense magnetic fields, the resolution data is between 1.5 Á and 1.1 This, in crystallography, implies that these crystals are of excellent quality. These were transported from Mexico City to the Elettra Synchrotron in Triste (Italy) in March 2016 and a second consignment was subsequently transported to the Stanford California Synchrotron (SLAC) in the US at the end of April 2016. These two Experiments perfectly validate the effectiveness of the device that is intended to be patented.
Aplicación Industrias Industries Application
El dispositivo de la presente invención puede ser utilizado para transportar cristales de proteínas de forma segura, fácil, sin necesidad de a, sin riesgos de afectaciones por manipulación o perturbaciones externas, sin riesgos por afectación térmica, y sin necesidad de cargar grandes y pesados recipientes como un Dewar. Además, su fabricación en materiales plásticos lo hace seguro y no peligroso, pudiéndose incluso transportar la muestra por vía terrestre, marítima o área sin riesgos.  The device of the present invention can be used to transport protein crystals safely, easily, without the need for, without risks of tampering or external disturbances, without risks of thermal damage, and without the need to load large and heavy containers. Like a Dewar In addition, its manufacture in plastic materials makes it safe and not dangerous, being able to even transport the sample by land, sea or area without risk.
La invención se puede aplicar - sin ser limitativos en el alcance de la misma - en la protección y transporte en general de cualquier material que debe encontrarse aislado de cambios en temperatura y/o perturbaciones externas. Una aplicación muy útil es para aquella gente usuaria de sincrotones, quienes por su labor y sofisticados equipos de trabajo requerido para e! estudio de muestras de materiales, seleccionados de entre macromoléculas biológicas, proteínas, proteínas cristalizadas, compuestos cristalinos, cocristales, polimorfos, polimorfos hidratados, polimorfos solvatados, sales, polvos, proteínas en polvo, y/o materiales sensibles a cambios en la temperatura - preferiblemente proteínas cristalizadas y/o proteínas en polvo - viajan a instituciones en distintas partes del mundo que cuentan con esta clase de equipos. Así, la presente invención proporciona un dispositivo de poliolefina y método de transporte y protección de esta clase de materiales que deben mantenerse aislados de los cambios de temperatura, vibraciones, agitación, golpes y/u oscilaciones, evitando así que se rompa su estabilidad termodinámica, permitiendo así mantener intacto el material a ser sometido a ensayos, por ejemplo, de difracción de rayos X u otros estudios cristalográficos. The invention can be applied - without being limiting in its scope - in the protection and transport in general of any material that must be isolated from changes in temperature and / or external disturbances. A very useful application is for those people who use synchrotons, who for their work and sophisticated work equipment required for e! study of material samples, selected from biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, hydrated polymorphs, solvated polymorphs, salts, powders, powdered proteins, and / or temperature sensitive materials - preferably crystallized proteins and / or powdered proteins - they travel to institutions in different parts of the world that have this kind of equipment. Thus, the present invention provides a polyolefin device and method of transport and protection of this class of materials that must be kept isolated from changes in temperature, vibrations, agitation, shocks and / or oscillations, thus preventing its thermodynamic stability from breaking, thus allowing to keep intact the material to be subjected to tests, for example, of X-ray diffraction or other crystallographic studies.
Los métodos y las técnicas ilustradas en los ejemplos anteriores de construcción son ventajosos porque permiten que el dispositivo para protección y transporte se forme y dimensione conforme a las demandas específicas de almacenamiento y transporte requeridas. Asimismo, los expertos en la técnica se darán cuenta que el material de poliolefina se puede cortar en la forma de un recipiente de almacenamiento mediante moldeo convencional, de soplado u otras técnicas,  The methods and techniques illustrated in the previous construction examples are advantageous because they allow the device for protection and transport to be formed and sized according to the specific storage and transport demands required. Also, those skilled in the art will realize that the polyolefin material can be cut in the form of a storage vessel by conventional molding, blow molding or other techniques,
Aunque ¡a invención se ha descrito con respecto a ciertas modalidades para llevarse a la práctica, la descripción se pretende que sea a modo de ejemplo, en lugar de limitante. Las modificaciones y cambios se pueden hacer dentro del alcance de la invención, como se expone en las siguientes reivindicaciones. Although the invention has been described with respect to certain embodiments to be implemented, the description is intended to be by way of example, rather than limiting. Modifications and changes can be made within the scope of the invention, as set forth in the following claims.

Claims

!- Un dispositivo para transporte y protección de materiales contra perturbaciones extemas y cambios en la temperatura, caracterizado porque comprende: ! - A device for transport and protection of materials against external disturbances and changes in temperature, characterized in that it comprises:
· al menos un contenedor (101) de material poSimérico y en forma de paralelepípedo;  · At least one container (101) of poSimeric material and in the form of a parallelepiped;
• al menos un orificio de alojamiento (301) horadado en forma cilindrica que está abierto en un extremo y cerrado en el otro extremo, y dicho alojamiento está dispuesto tal que el extremo abierto está incorporado en dicho contenedor y adyacente al fondo del mismo, y en donde el alojamiento también permite insertar un tubo de vidrio de forma cilindrica (401); y en donde preferiblemente se encuentran dos y hasta tres orificios de alojamiento para dos y hasta tres tubos de vidrio cilindricos en el contenedor;  • at least one housing hole (301) drilled in a cylindrical shape that is open at one end and closed at the other end, and said housing is arranged such that the open end is incorporated in said container and adjacent to the bottom thereof, and where the housing also allows to insert a cylindrical glass tube (401); and where two and up to three housing holes are preferably located for two and up to three cylindrical glass tubes in the container;
» un tubo de vidrio de forma cilindrica (401) que a su vez es receptáculo de al menos un tubo capilar (801) de 1 mm de diámetro, preferentemente de vidrio, dentro del cual se depositará un material o muestra a proteger y transportar; »A cylindrical glass tube (401) which in turn is a receptacle of at least one capillary tube (801) of 1 mm in diameter, preferably of glass, into which a material or sample to be protected and transported will be deposited;
* medios para sellar o cerrar el al menos uno, dos y hasta tres orificios de alojamiento del contenedor (301) y el a! menos uno, dos y hasta tres tubos de vidrio de forma cilindrica (401) que cornprende(n) cada uno en su interior ai menos un tubo capilar (801), en donde dicho medio es una tapa (201); y en donde dicha tapa (201) opcionaimenfe comprende un tapón (501) desmontable para sellar o cerrar el al menos uno, dos y hasta tres orificios de alojamiento del contenedor (301) y el al menos uno, dos y hasta tres tubos de vidrio cilindricos comprendiendo cada uno en su interior al menos un tubo capilar (601); y en donde el tapón (501) desmontable opcionalmente comprende en su interior un pequeño tapón (901). * means for sealing or closing the at least one, two and up to three container housing holes (301) and the a! minus one, two and up to three cylindrical glass tubes (401) that each one comprises (n) inside it at least one capillary tube (801), wherein said means is a lid (201); and wherein said lid (201) optionally comprises a removable plug (501) for sealing or closing the at least one, two and up to three holes for housing the container (301) and the at least one, two and up to three glass tubes cylindrical ones each comprising at least one capillary tube (601); and wherein the removable cap (501) optionally comprises a small plug (901) inside.
2.- E! dispositivo de conformidad con la reivindicación 1 , caracterizado porque los medios (201), para sellar o cerrar los orificios de alojamiento en el contenedor del dispositivo y los tubos de vidrio (401) que comprende(n) cada uno en su interior al menos un tubo capilar (801), comprenden horadaciones en su parte interna (701 ) que ensamblan perfectamente con los orificios de alojamiento del contenedor y con los tubos de vidrio cilindricos. 2.- E! device according to claim 1, characterized in that the means (201), for sealing or closing the housing holes in the device container and the glass tubes (401) comprising (n) each inside therein at least one capillary tube (801), comprise perforations in its internal part (701) that perfectly assemble with the holes of the container and with the cylindrical glass tubes.
3.- El dispositivo de conformidad con la reivindicación 1 , caracterizado porque el tubo de vidrio {401} que a su vez es receptáculo de ai menos un tubo capilar puede contener hasta 5 tubos capilares (801) de vidrio de 1mm de diámetro que contendrá(n) el material a proteger, 3. The device according to claim 1, characterized in that the glass tube {401} which in turn is a receptacle of at least one capillary tube can contain up to 5 capillary tubes (801) of 1mm diameter glass which will contain (n) the material to be protected,
4.- El dispositivo de conformidad con la reivindicación 3, caracterizado porque el tubo de vidrio (401) se selecciona de entre: tubos de vidrio de resonancia magnética nuclear, tubos de ensayo, tubos de vidrio soplado,  4. The device according to claim 3, characterized in that the glass tube (401) is selected from: nuclear magnetic resonance glass tubes, test tubes, blown glass tubes,
5.- El dispositivo de conformidad con la reivindicación 4, caracterizado porque el tubo de vidrio (401) es preferentemente un tubo de vidrio de RMN con un tapón desmontable (501) para tubo de resonancia magnética nuclear que opcionairnente comprende en su interior un pequeño tapón (901).  5. The device according to claim 4, characterized in that the glass tube (401) is preferably an NMR glass tube with a detachable cap (501) for nuclear magnetic resonance tube which optionally comprises a small inside stopper (901).
8.- El dispositivo de conformidad con la reivindicación 1 , caracterizado porque los medios (201) para cerrar el o ios orificio(s) de alojamiento del contenedor son también los medios para cerrar el tubo de vidrio de forma cilindrica,  8. The device according to claim 1, characterized in that the means (201) for closing the orifice (s) of housing of the container are also the means for closing the glass tube cylindrically,
7.- El dispositivo de conformidad con la reivindicación 1 , caracterizado porque los medios (201) para cerrar los orificios de alojamiento del contenedor (301), opcionairnente están unidos al contenedor del dispositivo a través de medios de unión (801),  7. The device according to claim 1, characterized in that the means (201) for closing the housing holes of the container (301), optionally are connected to the device container through joining means (801),
8. - El dispositivo de conformidad con la reivindicación 7, caracterizado porque los medios de unión se seleccionan de entre: cinta, liga, hilo, materiales adheribles flexibles, o una tira de material de poliolefina,  8. - The device according to claim 7, characterized in that the joining means are selected from: tape, bond, thread, flexible adhesive materials, or a strip of polyolefin material,
9. - El dispositivo de conformidad con cualquier de las reivindicaciones anteriores, caracterizado porque los medios para cerrar el orifico del alojamiento del contenedor (301) o el tubo de vidrio (401) que comprende en su interior al menos un tubo capilar (801), o ambos al mismo tiempo, cierran y sellan perfectamente evitando que la muestra contenida en el dispositivo se derrame, caiga, salga o escurra.  9. - The device according to any of the preceding claims, characterized in that the means for closing the hole of the container housing (301) or the glass tube (401) comprising at least one capillary tube (801) inside , or both at the same time, close and seal perfectly preventing the sample contained in the device from spilling, falling, leaving or draining.
10. - El dispositivo de conformidad con ía reivindicación 1, caracterizado porque el material polimérico es una poliolefina.  10. - The device according to claim 1, characterized in that the polymeric material is a polyolefin.
11. - El dispositivo de conformidad con la reivindicación 1 , caracterizado porque el material a transportar y proteger es seleccionado de entre macromoféculas biológicas, proteínas, proteínas cristalizadas, compuestos cristalinos, cocristaies, polimorfos, polimorfos hidratados, polimorfos solvatados, sales, polvos, proteínas en polvo, y/o materiales sensibles a cambios en la temperatura. 11. - The device according to claim 1, characterized in that the material to be transported and protected is selected from among biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, hydrated polymorphs, solvated polymorphs, salts, powders, proteins powder, and / or materials sensitive to changes in temperature.
12. - El dispositivo de conformidad con la reivindicación 1 caracterizado porque las macromoléculas biológicas pueden ser proteínas, ácidos nucleicos, polisacándos, o complejos macromoieculares que tengan combinaciones de las mismas. 12. - The device according to claim 1 characterized in that the biological macromolecules can be proteins, nucleic acids, polysaccharides, or macromolecular complexes having combinations thereof.
13. - El dispositivo de conformidad con cualquier de las reivindicaciones 11-12, s caracterizado porque el material es preferentemente proteínas cristalizadas.  13. - The device according to any of claims 11-12, characterized in that the material is preferably crystallized proteins.
14. - Uso del dispositivo de la reivindicación 1 para el transporte seguro y protección de materiales contra perturbaciones externas y cambios en la temperatura.  14. - Use of the device of claim 1 for the safe transport and protection of materials against external disturbances and changes in temperature.
15. - E! uso de ia reivindicación 14 en donde los materiales son seleccionados deo entre macromoléculas biológicas, proteínas, proteínas cristalizadas, compuestos cristalinos, cocristales, polimorfos, polimorfos hidratados, polimorfos solvatados, sales, polvos, proteínas en polvo, y/o materiales sensibles a cambios en la temperatura.  15. - E! Use of claim 14 wherein the materials are selected from or among biological macromolecules, proteins, crystallized proteins, crystalline compounds, co-crystals, polymorphs, hydrated polymorphs, solvated polymorphs, salts, powders, powdered proteins, and / or materials sensitive to changes in temperature.
16. - El uso de la reivindicación 15 en donde el material es preferentemente5 proteínas cristalizadas.  16. - The use of claim 15 wherein the material is preferably 5 crystallized proteins.
17. - El uso de la reivindicación 14 en donde las perturbaciones externas pueden ser vibraciones, agitación, golpes u oscilaciones que afecten la estabilidad termodinámica del material. 0  17. - The use of claim 14 wherein the external disturbances can be vibrations, agitation, blows or oscillations that affect the thermodynamic stability of the material. 0
5 5
0 0
PCT/MX2017/000069 2016-06-29 2017-06-28 Device for the thermal protection and transport of biomacromolecules WO2018004328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2016008614A MX2016008614A (en) 2016-06-29 2016-06-29 Device for the thermal protection and transport of biomacromolecules.
MXMX/A/2016/008614 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018004328A1 true WO2018004328A1 (en) 2018-01-04

Family

ID=60786410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000069 WO2018004328A1 (en) 2016-06-29 2017-06-28 Device for the thermal protection and transport of biomacromolecules

Country Status (2)

Country Link
MX (1) MX2016008614A (en)
WO (1) WO2018004328A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119465A (en) * 1999-02-10 2000-09-19 Mullens; Patrick L. Shipping container for storing materials at cryogenic temperatures
US20070210090A1 (en) * 2004-01-08 2007-09-13 Bernhard Sixt Transport Container For Keeping Frozen Material Chilled
WO2011159934A2 (en) * 2010-06-18 2011-12-22 Biocision, Inc. Specimen freezing rate regulator device
US20160095310A1 (en) * 2014-10-03 2016-04-07 Paragonix Technologies, Inc. Organ transport system with active tracking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119465A (en) * 1999-02-10 2000-09-19 Mullens; Patrick L. Shipping container for storing materials at cryogenic temperatures
US20070210090A1 (en) * 2004-01-08 2007-09-13 Bernhard Sixt Transport Container For Keeping Frozen Material Chilled
WO2011159934A2 (en) * 2010-06-18 2011-12-22 Biocision, Inc. Specimen freezing rate regulator device
US20160095310A1 (en) * 2014-10-03 2016-04-07 Paragonix Technologies, Inc. Organ transport system with active tracking

Also Published As

Publication number Publication date
MX2016008614A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
US8904810B2 (en) Temperature control transport system
EP0718212B1 (en) Insulated storage/shipping container for maintainig a constant temperature
Shmulovich et al. An experimental study of phase equilibria in the systems H 2 O–CO 2–CaCl 2 and H 2 O–CO 2–NaCl at high pressures and temperatures (500–800 C, 0.5–0.9 GPa): geological and geophysical applications
EP2221569A1 (en) Modular cuboidal passive temperature controlled shipping container
ES2320409T3 (en) SYSTEM FOR THE TRANSPORT OF GOODS TO CONSTANT TEMPERATURE.
US8826672B2 (en) Self-cooling compositions, systems and methods
US7260956B1 (en) System for maintaining materials at freezer temperatures for shipping
US20160174545A1 (en) Closed System Cryopreservation Device
Nakajima et al. Molecular storage of ozone in a clathrate hydrate formed from an O3+ O2+ CO2 gas mixture
US20210298290A1 (en) Apparatus for biological material storage and transport
JP2022172382A (en) Cryosphere
WO2018004328A1 (en) Device for the thermal protection and transport of biomacromolecules
EP1356229A1 (en) Cryogenic shipping container
JP2009047335A (en) Cooler using liquid nitrogen
Moreau et al. Ice formation and solvent nanoconfinement in protein crystals
Silvester et al. The relative efficiency of various fluids in the rapid freezing of protozoa
ES2937010T3 (en) Transport device with an inner container
JP6667903B2 (en) Hollow fiber cryopreservation tool and cell cryopreservation method
GB2447665A (en) Complete cryo encapsualtion device for biological specimen vials
WO2017083164A1 (en) Dry shipping container
TWI649080B (en) Storage device for blood, blood products, or combinations thereof
KR20170068041A (en) Refrigeration equipment and refrigeration cell comprises a cryogenic storage container
US7604930B1 (en) Methods and devices for cryopreservation of biological cells and tissues
JP2012062064A (en) Biomaterial transportation container
US20020083718A1 (en) Specimen chamber for a cryogenic shipping container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820604

Country of ref document: EP

Kind code of ref document: A1