WO2018004257A1 - Bioplastic film, bubble film, and bubble film product using same - Google Patents

Bioplastic film, bubble film, and bubble film product using same Download PDF

Info

Publication number
WO2018004257A1
WO2018004257A1 PCT/KR2017/006848 KR2017006848W WO2018004257A1 WO 2018004257 A1 WO2018004257 A1 WO 2018004257A1 KR 2017006848 W KR2017006848 W KR 2017006848W WO 2018004257 A1 WO2018004257 A1 WO 2018004257A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
air cap
bioplastic
wheat
bioplastic film
Prior art date
Application number
PCT/KR2017/006848
Other languages
French (fr)
Korean (ko)
Inventor
박은진
최혜민
문상권
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170018595A external-priority patent/KR101885987B1/en
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to US16/314,530 priority Critical patent/US20190225763A1/en
Priority to CN201780041011.6A priority patent/CN109415569A/en
Publication of WO2018004257A1 publication Critical patent/WO2018004257A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/03Wrappers or envelopes with shock-absorbing properties, e.g. bubble films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present application relates to a bio plastic film including air by-products such as wheat veins, air caps and air cap products using the same.
  • Courier packaging is performed to prevent damage to the goods during the courier delivery process.
  • 1) a hanger-type chute case made of non-woven material is used.
  • 2) The primary packaging is made of transparent polyvinyl. 3, the primary packaging with transparent polyvinyl and the opaque polyvinyl packaging are widely used.
  • the method of packaging in a hanger-type chute case using non-woven material is mainly used in the case of clothes which should not be wrinkled, such as a coat or a crystal, and is packaged and transported in the form of a hanger-type chute case.
  • the PET-based non-woven material is processed in the form of a chute case as a packaging material, and then the outer packaging is completed by attaching a transparent film for easy identification of clothing and attachment of a waybill.
  • Korean Patent Laid-Open Publication No. 10-2016-0029271 a flat film and an embossing film are made of a low density polyethylene film, and Korean Utility Model Publication No. 20-2013-0006038 forms embossing with low density ethylene.
  • Conventional courier packaging materials are made of petroleum-derived plastic products, such as a base sheet film that is flatly molded with high density polyethylene on one surface of an embossed cap sheet. Incineration and landfill cause toxic gas, which causes air pollution, shortage of landfill space, and environmental pollution.
  • Patent Document 1 KR10-2016-0029271 A1
  • Patent Document 2 KR20-2013-0006038 U1
  • the present application aims to provide a bioplastic film and an air cap in which physical properties are not deteriorated as compared to conventional petroleum-derived plastic products as a plastic composition using a plant-derived by-product to solve the problem of environmental pollution.
  • the present application aims to provide an air cap product using the air cap and the material.
  • the present application provides a bioplastic film including a first polyolefin-based resin, a wheat vein-containing composition, and a dehumidifying agent in order to solve the above problems.
  • the first polyolefin-based resin may be at least one selected from polyethylene (PE), polypropylene (PP), polybutylene, and polymethylpentene, and preferably, polyethylene (PE).
  • the polyethylene (PE) may be at least one selected from linear low density polyethylene (LLDPE), low density polyethylene (LDPE), and high density polyethylene (HDPE).
  • the first polyolefin-based resin may include 85 to 95% by weight based on the total weight of the bioplastic film. Except for the type and range described above, the physical properties of the bioplastic film are uneven.
  • the wheat vein-containing composition may include 2 to 8% by weight based on the total weight of the bioplastic film, and the wheat vein-containing composition may contain a second polyolefin-based resin, wheat vein, wax, inorganic filler, and surfactant.
  • the second polyolefin-based resin may be at least one selected from polyethylene (PE), polypropylene (PP), polybutylene and polymethylpentene, preferably at least one selected from polyethylene (PE) and polypropylene (PP). It may be, and most preferably may be polyethylene (PE). More specifically, the polyethylene may be at least one selected from linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE). Also,
  • the polyethylene may be reacted under one or more catalysts selected from a metallocene catalyst and a Zieggler-Natta catalyst, but may preferably be a metallocene catalyst.
  • the metallocene catalyst has a single active point, and precisely controls the polymer structure by the single active point catalyst technology, thereby freely implementing a specific synthesis process.
  • M-PE refers to PE synthesized using a metallocene catalyst. M-PE has better processability and quality than other PE.
  • the second polyolefin-based resin may be included 40 to 70% by weight based on the total weight of the wheat vein-containing composition. If less than 40% by weight of the composition may not be easy to mix, there is a problem in the physical properties of the film is uneven. If more than 70% by weight, the intrinsic color of wheat in the composition is not maintained, and the carbon reduction effect is insignificant.
  • the composition of the present invention may include the polyolefin resin of the above range, the composition is maintained while the intrinsic color of the wheat bubbles do not occur when manufacturing the film, it can provide the same appearance, quality as the conventional plastic film.
  • the wheat vein may be a by-product remaining after the production of flour in biomass.
  • the size of the wheat vein may be 5 ⁇ 30mm, preferably 10 ⁇ 25mm. If the size is smaller than the above-mentioned range of wheat vein, there is a problem that the workability worsens due to the blown off powder and the yield falls. If it is larger than the range, the melt index (MI) of the composition is increased, so that the hardness of the pellets prepared with the composition is not constant, and the film processability is low when the film is manufactured using the film, and holes are generated, or the film properties (sealing strength, Deviation in tensile strength, elongation, etc.).
  • MI melt index
  • the particle uniformity PDI (polydipersity index) value of the wheat vein may be 2 or less, preferably 1.5 or less.
  • PDI represents particle uniformity and can be expressed as the standard deviation of the diameter / square of the mean of the diameters. If the uniformity of the wheat size is above the above range, the physical properties of the wheat-containing composition may be uneven, and the dispersibility may be deteriorated.
  • the wheat vein may have a water content of 1 to 10%. If it is lower than the range of water content of the wheat flour, the wheat flour processing process is inefficient, and if it is larger than the range, the physical properties of the prepared composition are bad, and the film processing degree is lowered.
  • the wheat vein may be included 10 to 30% by weight based on the total weight of the wheat vein-containing composition. If less than the above range may not express the unique color of the wheat flour in the wheat flour-containing composition, in the case of more than the range of fine wheat flour may contain air bubbles aggregated during the manufacturing process of the wheat flour containing composition When the bioplastic film is manufactured with the containing composition, holes are generated, or the physical properties (sealing strength, tensile strength, elongation, etc.) of the manufactured bioplastic film are inferior.
  • the wheat vein-containing composition of the present invention is included in the wheat vein of the above range, the color of the wheat as a unique expression of the bioplastic film does not generate bubbles, it can provide the same physical properties and quality as conventional oil-derived film. .
  • the wax serves to connect the wheat flour and the polyolefin resin, and may be any one or more selected from paraffin wax, liquid paraffin wax, beeswax, mold wax, candelilla wax, polyethylene wax, and polypropylene wax, but is not limited thereto.
  • polyethylene wax is used, and more preferably, one or two selected from low density polyethylene wax (LDPE WAX) and high density polyethylene wax (HDPE WAX) are mixed and used.
  • the wax may be included 10 to 20% by weight based on the total weight of the wheat vein-containing composition.
  • the inorganic filler may be at least one selected from the group consisting of calcium carbonate, silica, mica and talc, but is not limited thereto, and preferably, inexpensive calcium carbonate (CaCO 3 ) is used.
  • the inorganic filler may be included 5 to 20% by weight based on the total weight of the wheat vein-containing composition. If it is included in less than the above ranges may be lowered physical properties and production costs, and if it is included in more than the above ranges may be poor properties of the composition containing the bio-film and bioplastic film.
  • the surfactant of the present invention coats the surface of the wheat and makes it possible to mix well with wax or polyolefin and serves to prevent the wheat from burning.
  • the surfactants include fatty acids such as stearic acid, myristic acid, palmitic acid, arachidic acid, oleic acid, linolenic acid and cured fatty acid, glycerin, butylene glycol, propylene glycol, dipropylene glycol, pentylene glycol, hexylene glycol, polyethylene At least one selected from polyol series such as glycol and sorbitol, but is not limited thereto.
  • the surfactant may be included 0.5 to 5% by weight based on the total weight of the wheat vein-containing composition. When the surfactant is less than 0.5% by weight, the effect of the surfactant is insignificant, and when it exceeds 5% by weight, the properties of the bioplastic film such as tensile strength are deteriorated.
  • the dehumidifying agent may be zeolite, silica gel, activated alumina, or the like, without limitation.
  • the dehumidifying agent may inhibit the bubble formation during film production by absorbing moisture in the wheat vein-containing composition.
  • the dehumidifying agent may include 3 to 8 wt% based on the total weight of the biofilm.
  • the bioplastic film may have physical properties that can replace the conventional petroleum derived plastic film. Specifically, the sealing strength of the bioplastic film is 0.7 ⁇ 1.0kgf and the sting strength may be 0.13 ⁇ 0.19kgf.
  • the bioplastic film is 1) mixing the composition containing the wheat flour in the first polyolefin resin, 2) further mixing the dehumidifying agent and 3) to discharge the mixture to the tee die equipment to produce a bioplastic film It may be prepared by a bio plastic film manufacturing method comprising the step of.
  • the air cap may have a sealing strength of 1.5 to 2.1 kgf and a pressure resistance of 0.05 to 0.07 kgf.
  • the air cap is 1) mixing the composition containing the wheat flour in the first polyolefin resin, 2) further mixing the dehumidifying agent, 3) to discharge the mixture to the tee die equipment to produce a bioplastic film
  • the bioplastic film may be produced by an air cap manufacturing method comprising the step of forming an air cap.
  • the air cap 110 may be manufactured in such a manner that the first bio plastic film 111 and the second bio plastic film 112 pass through the air cap forming roll at the same time (FIG. 5). Reference).
  • the present application provides an air cap product 100 in which the air cap 110 and the subsidiary material 130 are laminated.
  • the submaterial 130 may include at least one submaterial selected from paper, film, foam, and nonwoven fabric.
  • the paper may be kraft paper, hanji, or polyethylene coated kraft paper or hanji
  • the film may be nylon, cellophane, cellulose, ethylene vinyl acetate, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyamide, poly Vinyl alcohol, polyurethane, acrylic resin, polyethylene terephthalate, polyethylene, polypropylene, polybutylene, polymethyl pentene may be selected from one of the printed film.
  • the foam may be polyurethane, polystyrene, phenol resin, polyvinyl chloride, polyethylene, polypropylene, polybutylene, polymethylpentene and the nonwoven fabric is polyethylene, polypropylene, polybutylene, polymethylpentene, polyethylene tere It may be one selected from phthalates, but is not limited thereto.
  • the air cap 110 and the member material 130 may be laminated by an adhesive layer 120 formed of an adhesive material.
  • the pressure-sensitive adhesive material may use a known pressure-sensitive adhesive.
  • the air cap product can be used as a packaging material, wallpaper, flooring, mat, insulation cover, interior materials, moldings, coatings by using the function of the cushion, insulation, sound insulation of the air cap product.
  • it can be used as a packaging material in packaging bags, packaging boxes, as mats, as rugs, and as clothing, as a selected one of clothing, socks and hats.
  • the air cap product of the present application when the kraft paper or polyethylene coated kraft paper is used as the material of the air cap product, it may be a garment packaging for kraft air cap delivery (see FIG. 7A).
  • Kraft paper can replace the box packaging because the air cap absorbs the shock as a cushioning material while withstanding the shock during delivery.
  • the cushioning material can be manufactured to maintain the packaging form and can be transported in the form of a hanger, so that wrinkles can be prevented and can be manufactured 30% cheaper than a conventional nonwoven suitcase.
  • hanji or polyethylene coated hanji as an ingredient of the aircap product, it can be a garment packaging for hanji aircap parcel delivery (see Figure 7b).
  • the luxurious image of Hanji can provide a high quality courier packaging, and the air cap absorbs the impact strength that may occur during distribution as a cushioning material, thereby replacing a box or an opaque plastic bag packaging.
  • the cushioning material can be unfolded and transported in the form of a hanger to maintain the packaging form, thereby preventing wrinkles of clothes and can be manufactured at 20% cheaper than the conventional nonwoven suitcase.
  • the printed film as a material of the air cap product, it can be a garment packaging for air cap delivery to maintain the shape (see Figure 7c). It can be promoted by printed contents on the surface, and it is suitable for courier packaging because it is light in weight, and the air cap absorbs the impact strength that may occur during distribution as a cushioning material, and thus can be replaced with an opaque plastic bag packaging. Furthermore, the cushioning material can be unfolded and transported in the form of a hanger to maintain the packaging form, thereby preventing wrinkles and can be manufactured at 40% cheaper than conventional nonwoven suitcases.
  • the foam when used as a material of the air cap product, a shape of the garment packaging for air cap delivery is maintained (see FIG. 7D).
  • the cushioning material When the cushioning material is manufactured, it is formed as a double cap instead of a single cap (see FIG. 4), and the surface printing is possible, and the foam foam forms a layer inward, so that the shock absorber and the foam foam absorb the impact strength that may occur during distribution.
  • the air cap product may be manufactured by a manufacturing method of manufacturing the air cap product 100 by laminating the adhesive layer 120 and the material 130 formed of the adhesive material on the air cap 110.
  • the lamination may be a known method, but in particular, if the subsidiary material is kraft paper or Hanji, it may be thermal lamination, when the subsidiary material is a film, dry lamination may be used, and when the subsidiary material is a foam, it may be a low temperature lamination (FIG. 5).
  • the present application it is possible to reduce the carbon by using a small amount of petroleum-based plastic material, and since the physical properties are not deteriorated compared to conventional petroleum-derived plastic products, it can be produced using existing equipment, and bioplastic film having a unique color of wheat. It is effective to provide an air cap that can replace the existing air cap.
  • FIG. 1 is a flowchart illustrating a process of manufacturing a bioplastic film and an air cap of the present application.
  • Figure 2 is a photograph comparing the air cap (left) of the present application and the air cap (right) made of conventional polyethylene.
  • FIG. 3 is a cross-sectional view showing an air cap product of the present application.
  • Figure 4 shows an example of manufacturing the air cap product of the present application in a hanger type chute case.
  • Figure 5 shows the manufacturing process of the air cap product of the present application.
  • Figure 7 is a photograph showing the air cap product of Examples 7 to 10,
  • Figure 7a shows an air cap product using polyethylene coated kraft paper as a material
  • Figure 7b is an air cap product using polyethylene coated paper as a material
  • 7C shows an air cap product using a printing film as a component material
  • FIG. 7D shows an air cap product using a foam foam as a component material.
  • Example 2 In addition, in the same manufacturing method as in Example 1 25% by weight of the wheat flour and 50% by weight of polyethylene (PE) in the form of pellets or powder to prepare a composition containing the wheat vein of Example 2.
  • PE polyethylene
  • Example 3 70 wt% polyethylene (60 wt% LLDPE and 10 wt% LDPE) of the pellet prepared from the vegetal-containing composition of Example 2 was mixed, followed by further mixing 5% by weight of the desiccant with respect to the total weight of the mixture and performing film molding.
  • the bioplastic film of Example 3 was prepared.
  • the bioplastic film of Example 4 was prepared by mixing and film molding without using a dehumidifying agent.
  • Example 3 Comparison of Properties of Bioplastic Films According to Dehumidifier Content
  • Example 4 Dehumidifier content 5 wt% 0 Sealing strength (kgf) 0.8936 0.9832 Sting strength (kfg) 0.15 0.1618
  • the bioplastic film including the dehumidifying agent of the present application is also suitable to be manufactured and used as an air cap. It has been shown that it can provide an air cap that can reduce the carbon and control the environment within the packaging.
  • the bioplastic films of Examples 3 and 4 were attached to other bioplastic films while passing through a forming roll to form an air cap, and then cooled to prepare the air caps of Examples 5 and 6.
  • the sealing strength and the pressure resistance strength of the air cap of the present application were slightly reduced compared to that of the conventional petroleum-derived plastic film, but it was confirmed that the range of physical properties usable as the air cap.
  • An air cap product was manufactured by laminating an adhesive material and a material on the air cap of Example 5.
  • the air cap products of Examples 7 and 8 were prepared by using polyethylene-coated kraft paper and polyethylene-coated hanji as the subsidiary materials (FIGS. 7A and B), and using a printing film as a subsidiary material and performing dry lamination.
  • the air cap product of Example 9 was prepared (FIG. 7C), and the air cap product of Example 10 was prepared by using low temperature lamination and foam foam as a component (FIG. 7D).
  • the air cap products of Examples 7 to 10 can be manufactured at 5 to 40% cheaper than the conventional nonwoven suit case, maintain the packaging form through the air cap and absorb shocks that may occur during distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)

Abstract

The present application relates to: a bioplastic film comprising wheat husk which is a food by-product; a bubble film; and a bubble film product using the same.

Description

바이오 플라스틱 필름, 에어캡 및 이를 이용한 에어캡 제품Bio plastic film, air cap and air cap product using same
본 출원은 식품 부산물인 소맥피를 포함한 바이오 플라스틱 필름, 에어캡 및 이를 이용한 에어캡 제품에 관한 것이다.The present application relates to a bio plastic film including air by-products such as wheat veins, air caps and air cap products using the same.
택배 배송 과정에서 물건의 손상을 막기 위해서 택배 포장을 하게 되는데, 그 중 의류용 택배 포장의 경우, 1) 부직포 소재를 이용한 행거 타입의 슈트 케이스로 포장하는 방식 2) 투명 폴리비닐로 1차 포장을 하고, 박스에 넣어 포장하는 방식, 3) 투명 폴리비닐로 1차 포장하고, 불투명 폴리비닐에 포장하는 방식이 널리 사용되고 있다. Courier packaging is performed to prevent damage to the goods during the courier delivery process. Among the courier packages for clothing, 1) a hanger-type chute case made of non-woven material is used. 2) The primary packaging is made of transparent polyvinyl. 3, the primary packaging with transparent polyvinyl and the opaque polyvinyl packaging are widely used.
특히 1) 부직포 소재를 이용한 행거 타입의 슈트 케이스로 포장하는 방식은 코트나 정정류와 같이 옷이 구겨지면 안 되는 의류의 경우에 주로 사용되며, 행거 타입의 슈트 케이스 형태로 포장 운송된다. 이러한 포장 방식에는 포장재로서 PET 계열을 부직포 소재를 슈트 케이스 형태로 가공한 뒤 의류의 확인 및 운송장 부착이 용이하도록 투명필름을 부착하여 외포장을 완성한다.In particular, the method of packaging in a hanger-type chute case using non-woven material is mainly used in the case of clothes which should not be wrinkled, such as a coat or a crystal, and is packaged and transported in the form of a hanger-type chute case. In this packaging method, the PET-based non-woven material is processed in the form of a chute case as a packaging material, and then the outer packaging is completed by attaching a transparent film for easy identification of clothing and attachment of a waybill.
그리고 2) 박스에 넣어 포장하는 방식이나 3) 불투명 폴리비닐에 포장하는 방식의 경우 쉽게 구겨지지 않는 의류의 경우에 이용가능하며, 제품을 접어서 넣게 되므로 원가 측면에서는 1) 행거 타입의 슈트 케이스로 포장하는 방식에 비하여 2) 박스에 넣어 포장하거나 3) 불투명 폴리비닐에 포장하는 방식이 60%이상 저렴하다. And 2) packaging in a box or 3) packaging in opaque polyvinyl, which can be used for garments that are not easily wrinkled. It is cheaper than 60% cheaper than 2) packing in box or 3) packing in opaque polyvinyl.
다만, 최근 온라인을 통한 물건 구매가 급증하면서 구매한 물건을 배송하는 택배 시장도 크게 증가하였고, 그로 인해 택배 포장재의 사용 또한 기하급수적으로 증가하게 되었다. 구체적으로 현재까지 대한민국 공개특허공보 제10-2016-0029271호에서는 평면필름과 엠보싱 필름은 저밀도 폴리에틸렌 재질의 필름을 사용하고, 대한민국 공개실용신안 공보 제20-2013-0006038호에서는 저밀도 에틸렌으로 엠보싱을 형성한 엠보싱 캡시트의 일면에 고밀도폴리에틸렌으로 평편하게 성형한 베이스시트필름이 밀착 성형되는 것과 같이 종래의 택배 포장재는 석유 유래의 플라스틱 제품을 사용한 것으로 사용한 택배 포장재는 분리수거가 잘 이루어지지 않을 뿐만 아니라 이를 소각, 매립하는 경우 유독가스가 발생하여 대기오염을 유발하고, 매립공간의 부족 및 환경오염을 유발시키는 원인이 된다. However, as the purchase of goods online has soared recently, the courier market for delivering purchased goods has also increased, and the use of courier packaging materials has also increased exponentially. Specifically, in Korean Patent Laid-Open Publication No. 10-2016-0029271, a flat film and an embossing film are made of a low density polyethylene film, and Korean Utility Model Publication No. 20-2013-0006038 forms embossing with low density ethylene. Conventional courier packaging materials are made of petroleum-derived plastic products, such as a base sheet film that is flatly molded with high density polyethylene on one surface of an embossed cap sheet. Incineration and landfill cause toxic gas, which causes air pollution, shortage of landfill space, and environmental pollution.
이러한 문제점을 해결하기 위하여 식물 유래의 부산물을 사용한 플라스틱 조성물 개발, 활용하려는 시도가 있었으나, 기존의 플라스틱 조성물과 비교하여 신장률, 인장강도 등 물성이 저하되는 문제점과 기존의 설비를 이용하지 못하는 문제점이 있었다.In order to solve these problems, there have been attempts to develop and utilize plastic compositions using plant-derived by-products, but there are problems in that physical properties such as elongation and tensile strength are deteriorated compared to conventional plastic compositions, and problems in which existing facilities cannot be used. .
따라서, 현재까지도 환경오염의 문제를 해결하면서 물성이 저하되지 않는 바이오 플라스틱 필름 및 이를 이용한 에어캡 제품이 요구되어 왔다.Therefore, until now, there has been a need for a bioplastic film and an air cap product using the same, which do not degrade physical properties while solving the problem of environmental pollution.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) KR10-2016-0029271 A1 (Patent Document 1) KR10-2016-0029271 A1
(특허문헌 2) KR20-2013-0006038 U1 (Patent Document 2) KR20-2013-0006038 U1
본 출원은 환경오염의 문제를 해결할 수 있도록 식물 유래의 부산물을 사용한 플라스틱 조성물로서 종래 석유 유래 플라스틱 제품에 비하여 물성이 저하되지 않는 바이오 플라스틱 필름 및 에어캡을 제공하는 것을 목적으로 한다.The present application aims to provide a bioplastic film and an air cap in which physical properties are not deteriorated as compared to conventional petroleum-derived plastic products as a plastic composition using a plant-derived by-product to solve the problem of environmental pollution.
또한, 본 출원은 상기 에어캡 및 부재료를 이용한 에어캡 제품를 제공하는 것을 목적으로 한다.In addition, the present application aims to provide an air cap product using the air cap and the material.
본 출원은 상기의 문제를 해결하기 위하여 제1폴리올레핀계 수지, 소맥피 함유 조성물 및 제습제를 포함하는 바이오 플라스틱 필름을 제공한다.The present application provides a bioplastic film including a first polyolefin-based resin, a wheat vein-containing composition, and a dehumidifying agent in order to solve the above problems.
여기서, 상기 제1폴리올레핀계 수지는 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리부틸렌 및 폴리메틸펜텐 중에서 선택된 하나 이상일 수 있고, 바람직하게는 폴리에틸렌(PE) 일 수 있다. 상기 폴리에틸렌(PE)은 선형저밀도 폴리에틸렌(LLDPE), 저밀도 폴리에틸렌(LDPE) 및 고밀도 폴리에틸렌(HDPE) 중에서 선택된 하나 이상일 수 있다. 상기 제1폴리올레핀계 수지는 바이오 플라스틱 필름 전체 중량 기준 85 ~ 95 중량% 포함될 수 있다. 상기의 종류 및 범위 외에는 바이오 플라스틱 필름의 물성이 고르지 않게 된다.The first polyolefin-based resin may be at least one selected from polyethylene (PE), polypropylene (PP), polybutylene, and polymethylpentene, and preferably, polyethylene (PE). The polyethylene (PE) may be at least one selected from linear low density polyethylene (LLDPE), low density polyethylene (LDPE), and high density polyethylene (HDPE). The first polyolefin-based resin may include 85 to 95% by weight based on the total weight of the bioplastic film. Except for the type and range described above, the physical properties of the bioplastic film are uneven.
그리고 상기 소맥피 함유 조성물은 바이오 플라스틱 필름 전체 중량 기준 2 ~ 8 중량% 포함될 수 있으며 상기 소맥피 함유 조성물은 제 2 폴리올레핀계 수지, 소맥피, 왁스, 무기물 필러 및 계면활성제를 함유할 수 있다. In addition, the wheat vein-containing composition may include 2 to 8% by weight based on the total weight of the bioplastic film, and the wheat vein-containing composition may contain a second polyolefin-based resin, wheat vein, wax, inorganic filler, and surfactant.
구체적으로 상기 제2폴리올레핀계 수지는 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리부틸렌 및 폴리메틸펜텐 중에서 선택된 하나 이상일 수 있고, 바람직하게 폴리에틸렌(PE) 및 폴리프로필렌(PP) 중에서 선택된 하나 이상 일 수 있으며, 가장 바람직하게는 폴리에틸렌(PE)일 수 있다. 더욱 구체적으로 상기 폴리에틸렌은 선형저밀도 폴리에틸렌(LLDPE), 저밀도 폴리에틸렌(LDPE) 및 고밀도 폴리에틸렌(HDPE) 중에서 선택된 하나 이상일 수 있다. 또한, Specifically, the second polyolefin-based resin may be at least one selected from polyethylene (PE), polypropylene (PP), polybutylene and polymethylpentene, preferably at least one selected from polyethylene (PE) and polypropylene (PP). It may be, and most preferably may be polyethylene (PE). More specifically, the polyethylene may be at least one selected from linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE). Also,
상기 폴리에틸렌은 메탈로센(Metallocene) 촉매 및 지글러 나타(Zeiggler-Natta) 촉매 중 선택된 하나 이상의 촉매하에서 반응될 수 있으나 바람직하게는 메탈로센(Metallocene) 촉매일 수 있다. 상기 메탈로센 촉매는 지글러 나타 촉매와 달리 단일활성점을 가지고 있고, 단일활성점 촉매 기술로 고분자 구조를 정밀하게 제어하여, 특정 합성 과정을 자유롭게 구현할 수 있다. 특히 M-PE는 메탈로센 촉매를 사용하여 합성한 PE를 말한다. M-PE는 다른 PE보다 가공성과 품질이 우수한 특징이 있다. The polyethylene may be reacted under one or more catalysts selected from a metallocene catalyst and a Zieggler-Natta catalyst, but may preferably be a metallocene catalyst. Unlike the Ziegler-Natta catalyst, the metallocene catalyst has a single active point, and precisely controls the polymer structure by the single active point catalyst technology, thereby freely implementing a specific synthesis process. In particular, M-PE refers to PE synthesized using a metallocene catalyst. M-PE has better processability and quality than other PE.
또한, 제2폴리올레핀계 수지는 소맥피 함유 조성물 전체 중량 기준 40 ~ 70 중량% 포함될 수 있다. 40 중량%보다 적은 경우 조성물의 혼합이 용이하지 않을 수 있고, 필름 제조 시 물성이 고르지 않은 문제점이 있다. 70중량%보다 많은 경우 조성물에서 소맥 고유의 컬러가 유지되지 않고, 탄소저감 효과가 미미해진다. 그러나 본 발명의 조성물은 상기 범위의 폴리올레핀계 수지가 포함되어 조성물이 소맥 고유의 컬러가 유지되면서 필름 제조 시 소맥의 기포가 발생하지 않고, 기존 플라스틱 계열 필름과 동일한 외관, 품질을 제공할 수 있다. In addition, the second polyolefin-based resin may be included 40 to 70% by weight based on the total weight of the wheat vein-containing composition. If less than 40% by weight of the composition may not be easy to mix, there is a problem in the physical properties of the film is uneven. If more than 70% by weight, the intrinsic color of wheat in the composition is not maintained, and the carbon reduction effect is insignificant. However, the composition of the present invention may include the polyolefin resin of the above range, the composition is maintained while the intrinsic color of the wheat bubbles do not occur when manufacturing the film, it can provide the same appearance, quality as the conventional plastic film.
한편, 상기 소맥피는 바이오 매스 중 밀가루 생산 후 남은 부산물을 사용할 수 있다. 구체적으로 상기 소맥피의 크기는 5 ~ 30чm, 바람직하게는 10 ~ 25чm일 수 있다. 상기의 소맥피 크기 범위보다 작은 경우 분말이 날려서 작업성이 나빠져 수율이 떨어지는 문제점이 있다. 범위보다 큰 경우 조성물의 용융 지수(MI)가 높아져 상기 조성물로 제조된 펠릿의 경도가 일정하지 못하고, 이를 이용하여 필름 제조 시 필름 가공성이 낮아 홀(hole)이 발생하거나, 필름 물성 (씰링강도, 인장강도, 신율 등)에 편차가 발생한다. On the other hand, the wheat vein may be a by-product remaining after the production of flour in biomass. Specifically, the size of the wheat vein may be 5 ~ 30mm, preferably 10 ~ 25mm. If the size is smaller than the above-mentioned range of wheat vein, there is a problem that the workability worsens due to the blown off powder and the yield falls. If it is larger than the range, the melt index (MI) of the composition is increased, so that the hardness of the pellets prepared with the composition is not constant, and the film processability is low when the film is manufactured using the film, and holes are generated, or the film properties (sealing strength, Deviation in tensile strength, elongation, etc.).
그리고 상기 소맥피의 입자 균일도 PDI (polydipersity index)값은 2 이하일 수 있으며, 바람직하게는 1.5 이하일 수 있다. PDI는 입자 균일도를 나타내는 것으로 직경의 표준편차/직경의 평균의 제곱으로 나타낼 수 있다. 소맥 사이즈의 균일도가 상기 범위 이상일 경우 소맥피 함유 조성물의 물성이 고르지 않으며, 분산성이 떨어질 수 있다.And the particle uniformity PDI (polydipersity index) value of the wheat vein may be 2 or less, preferably 1.5 or less. PDI represents particle uniformity and can be expressed as the standard deviation of the diameter / square of the mean of the diameters. If the uniformity of the wheat size is above the above range, the physical properties of the wheat-containing composition may be uneven, and the dispersibility may be deteriorated.
또한, 상기 소맥피는 1 ~ 10%의 수분 함량을 가질 수 있다. 상기의 소맥피 수분함량 범위 보다 낮은 경우 소맥피 가공 공정이 비효율적이고, 범위보다 큰 경우 제조된 조성물의 물성이 나쁘고, 필름 가공정도가 낮아진다. In addition, the wheat vein may have a water content of 1 to 10%. If it is lower than the range of water content of the wheat flour, the wheat flour processing process is inefficient, and if it is larger than the range, the physical properties of the prepared composition are bad, and the film processing degree is lowered.
상기 소맥피는 소맥피 함유 조성물 전체 중량 기준 10 ~ 30 중량% 포함될 수 있다. 상기의 범위보다 적은 경우 소맥피 함유 조성물에서 소맥피 고유의 컬러가 발현되지 않을 수 있고, 범위보다 많은 경우에는 미세 크기의 소맥피가 소맥피 함유 조성물 제조과정 중 뭉쳐 기포를 포함할 수 있어 소맥피 함유 조성물로 바이오 플라스틱 필름을 제조 시 홀(hole)을 발생시키거나, 제조된 바이오 플라스틱 필름의 물성(씰링강도, 인장강도, 신장율 등)이 떨어지는 문제점이 있다. 그러나, 본 발명의 소맥피 함유 조성물은 상기 범위의 소맥피가 포함되어 소맥 고유의 컬러가 발현되면서 바이오 플라스틱 필름 제조 시 기포가 발생하지 않고, 종래 석유 유래 필름과 동일한 물성, 품질을 제공할 수 있다.The wheat vein may be included 10 to 30% by weight based on the total weight of the wheat vein-containing composition. If less than the above range may not express the unique color of the wheat flour in the wheat flour-containing composition, in the case of more than the range of fine wheat flour may contain air bubbles aggregated during the manufacturing process of the wheat flour containing composition When the bioplastic film is manufactured with the containing composition, holes are generated, or the physical properties (sealing strength, tensile strength, elongation, etc.) of the manufactured bioplastic film are inferior. However, the wheat vein-containing composition of the present invention is included in the wheat vein of the above range, the color of the wheat as a unique expression of the bioplastic film does not generate bubbles, it can provide the same physical properties and quality as conventional oil-derived film. .
상기 왁스는 소맥피와 폴리올레핀 수지를 연결해주는 역할을 하며 파라핀 왁스, 유동 파라핀 왁스, 밀납, 몰다 왁스, 칸데릴라 왁스, 폴리에틸렌 왁스, 폴리프로필렌 왁스 중 선택되는 어느 하나 이상일 수 있으나, 이에 한정되지 않으나 바람직하게는 폴리에틸렌 왁스를 사용하는 것이 바람직하고, 더욱 바람직하게는 저밀도 폴리에틸렌 왁스(LDPE WAX)와 고밀도 폴리에틸렌 왁스(HDPE WAX) 중 선택된 하나 또는 둘을 혼합하여 사용하는 것이 바람직하다. 상기 왁스는 상기 소맥피 함유 조성물 전체 중량 기준 10 ~ 20 중량% 포함될 수 있다. The wax serves to connect the wheat flour and the polyolefin resin, and may be any one or more selected from paraffin wax, liquid paraffin wax, beeswax, mold wax, candelilla wax, polyethylene wax, and polypropylene wax, but is not limited thereto. Preferably, polyethylene wax is used, and more preferably, one or two selected from low density polyethylene wax (LDPE WAX) and high density polyethylene wax (HDPE WAX) are mixed and used. The wax may be included 10 to 20% by weight based on the total weight of the wheat vein-containing composition.
상기 무기물 필러는 탄산칼슘, 실라카, 마이카 및 탈크로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 한정되지 않으며 바람직하게는 가격이 저렴한 탄산칼슘(CaCO3)을 사용하는 것이 바람직하다. 상기 무기물 필러는 소맥피 함유 조성물 전체 중량 기준 5 ~ 20 중량% 포함될 수 있다. 상기 범위보다 적게 포함되는 경우 물성저하와 생산단가가 높아질 수 있고, 상기 범위보다 많이 포함되는 경우 소맥피 함유 조성물 및 바이오 플라스틱 필름의 물성이 나빠질 수 있다. The inorganic filler may be at least one selected from the group consisting of calcium carbonate, silica, mica and talc, but is not limited thereto, and preferably, inexpensive calcium carbonate (CaCO 3 ) is used. The inorganic filler may be included 5 to 20% by weight based on the total weight of the wheat vein-containing composition. If it is included in less than the above ranges may be lowered physical properties and production costs, and if it is included in more than the above ranges may be poor properties of the composition containing the bio-film and bioplastic film.
본 발명의 상기 계면활성제는 상기 소맥피 표면을 코팅하고 왁스나 폴리올레핀등과 잘 혼합할 수 있게 하며 소맥피가 타지 않게 하는 역할을 한다. 상기 계면활성제는 스테아린산, 미리스트산, 팔미트산, 아라키드산, 올레인산, 리놀렌산 및 경화지방산과 같은 지방산, 글리세린, 부틸렌글리콜, 프로필렌 글리콜, 디프로필렌글리콜, 펜틸렌글리콜, 헥실렌글리콜, 폴리에틸렌글리콜 및 솔비톨과 같은 폴리올 계열 중에서 선택된 어느 하나 이상일 수 있으나 이에 한정하지 않는다. 상기 계면활성제는 소맥피 함유 조성물 전체 중량 기준 0.5 ~ 5 중량% 포함될 수 있다. 계면활성제가 0.5 중량% 미만일 경우 계면활성제의 효과가 미미하며, 5 중량%를 초과할 경우 인장 강도 등 바이오 플라스틱 필름 물성이 저하되는 현상을 나타낸다.The surfactant of the present invention coats the surface of the wheat and makes it possible to mix well with wax or polyolefin and serves to prevent the wheat from burning. The surfactants include fatty acids such as stearic acid, myristic acid, palmitic acid, arachidic acid, oleic acid, linolenic acid and cured fatty acid, glycerin, butylene glycol, propylene glycol, dipropylene glycol, pentylene glycol, hexylene glycol, polyethylene At least one selected from polyol series such as glycol and sorbitol, but is not limited thereto. The surfactant may be included 0.5 to 5% by weight based on the total weight of the wheat vein-containing composition. When the surfactant is less than 0.5% by weight, the effect of the surfactant is insignificant, and when it exceeds 5% by weight, the properties of the bioplastic film such as tensile strength are deteriorated.
상기 제습제는 제올라이트, 실리카겔, 활성알루미나 등이 있으나, 그 제한이 없이 사용가능하다. 상기 제습제는 소맥피 함유 조성물 내 수분을 흡수하여 필름 제조 시 기포 형성을 억제할 수 있다. 특히 바이오 플라스틱 필름을 에어캡으로 성형할 때 제습제 첨가로 기포발생을 억제하여야 불량이 생기지 않는다. 상기 제습제는 바이오 필름 전체 중량 기준 3 ~ 8 중량% 를 포함할 수 있다. 상기의 범위 보다 적게 제습제를 사용할 경우 첨가제의 기능이 발현되지 않고, 범위 보다 많이 제습제를 사용할 경우 바이오 플라스틱 필름의 물성이 유지되지 않을 수 있다.The dehumidifying agent may be zeolite, silica gel, activated alumina, or the like, without limitation. The dehumidifying agent may inhibit the bubble formation during film production by absorbing moisture in the wheat vein-containing composition. In particular, when molding the bioplastic film into the air cap, it is necessary to suppress the generation of bubbles by adding a dehumidifying agent so that a defect does not occur. The dehumidifying agent may include 3 to 8 wt% based on the total weight of the biofilm. When the dehumidifier is used in less than the above range, the function of the additive is not expressed, and when the dehumidifier is used in more than the range, the physical properties of the bioplastic film may not be maintained.
상기 바이오 플라스틱 필름은 종래의 석유 유래 플라스틱 필름을 대체할 수 있는 물성을 가질 수 있다. 구체적으로 바이오 플라스틱 필름의 씰링강도는 0.7 ~ 1.0kgf이며 찌름강도는 0.13 ~ 0.19kgf일 수 있다.The bioplastic film may have physical properties that can replace the conventional petroleum derived plastic film. Specifically, the sealing strength of the bioplastic film is 0.7 ~ 1.0kgf and the sting strength may be 0.13 ~ 0.19kgf.
또한, 상기 바이오 플라스틱 필름은 1) 제1 폴리올레핀 수지에 소맥피를 함유한 조성물을 혼합하는 단계, 2) 제습제를 더 혼합하는 단계 및 3) 상기 혼합물을 티 다이 설비에 토출하여 바이오 플라스틱 필름을 제조하는 단계를 포함하는 바이오 플라스틱 필름 제조방법에 의해 제조될 수 있다.In addition, the bioplastic film is 1) mixing the composition containing the wheat flour in the first polyolefin resin, 2) further mixing the dehumidifying agent and 3) to discharge the mixture to the tee die equipment to produce a bioplastic film It may be prepared by a bio plastic film manufacturing method comprising the step of.
그리고 본 출원은 상기 바이오 플라스틱 필름을 포함하는 에어캡을 제공한다.And the present application provides an air cap comprising the bio plastic film.
상기 에어캡은 씰링강도가 1.5 ~ 2.1kgf이며 내압강도는 0.05 ~ 0.07kgf일 수 있다.The air cap may have a sealing strength of 1.5 to 2.1 kgf and a pressure resistance of 0.05 to 0.07 kgf.
또한, 상기 에어캡은 1) 제1 폴리올레핀 수지에 소맥피를 함유한 조성물을 혼합하는 단계, 2) 제습제를 더 혼합하는 단계, 3) 상기 혼합물을 티 다이 설비에 토출하여 바이오 플라스틱 필름을 제조하는 단계 및 4) 상기 바이오 플라스틱 필름이 에어캡을 형성하는 단계를 포함하는 에어캡 제조방법에 의해 제조될 수 있다. 구체적으로 상기 에어캡 형성하는 단계는 제1 바이오 플라스틱 필름 (111)과 제2 바이오 플라스틱 필름 (112)이 동시에 에어캡 성형롤을 통과하는 방식으로 에어캡(110)을 제조할 수 있다 (도 5 참조). In addition, the air cap is 1) mixing the composition containing the wheat flour in the first polyolefin resin, 2) further mixing the dehumidifying agent, 3) to discharge the mixture to the tee die equipment to produce a bioplastic film Step and 4) the bioplastic film may be produced by an air cap manufacturing method comprising the step of forming an air cap. Specifically, in the forming of the air cap, the air cap 110 may be manufactured in such a manner that the first bio plastic film 111 and the second bio plastic film 112 pass through the air cap forming roll at the same time (FIG. 5). Reference).
그리고 본 출원은 상기 에어캡 (110)과 부재료 (130)가 합지된 에어캡 제품(100)을 제공한다.In addition, the present application provides an air cap product 100 in which the air cap 110 and the subsidiary material 130 are laminated.
상기 부재료 (130)는 종이, 필름, 발포 폼, 부직포 중에 선택되는 어느 하나 이상의 부재료를 포함할 수 있다. 구체적으로 상기 종이는 크라프트 종이, 한지 또는 폴리에틸렌 코팅된 크라프트 종이나 한지일 수 있고, 상기 필름은 나일론, 셀로판, 셀룰로오스, 에틸렌비닐아세테이트, 폴리염화비닐, 폴리염화비니리덴, 폴리카보네이트, 폴리아마이드, 폴리비닐알콜, 폴리우레탄, 아크릴 수지, 폴리에틸렌테레프탈레이트, 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리메틸펜텐 중 선택된 하나 일 수 있으며, 인쇄된 필름을 사용할 수도 있다. 상기 발포 폼은 폴리우레탄, 폴리스티렌, 페놀수지, 폴리염화 비닐, 폴리 에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리메틸펜텐일 수 있고 상기 부직포는 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리메틸펜텐, 폴리에틸렌테레프탈레이트 중 선택될 하나 일 수 있으나, 이에 한정되지 않는다. The submaterial 130 may include at least one submaterial selected from paper, film, foam, and nonwoven fabric. Specifically, the paper may be kraft paper, hanji, or polyethylene coated kraft paper or hanji, and the film may be nylon, cellophane, cellulose, ethylene vinyl acetate, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyamide, poly Vinyl alcohol, polyurethane, acrylic resin, polyethylene terephthalate, polyethylene, polypropylene, polybutylene, polymethyl pentene may be selected from one of the printed film. The foam may be polyurethane, polystyrene, phenol resin, polyvinyl chloride, polyethylene, polypropylene, polybutylene, polymethylpentene and the nonwoven fabric is polyethylene, polypropylene, polybutylene, polymethylpentene, polyethylene tere It may be one selected from phthalates, but is not limited thereto.
상기 에어캡 (110)과 부재료 (130)는 점착재료로 형성되는 점착층(120)에 의해서 합지될 수 있다. 구체적으로 상기 점착재료는 공지의 점착제를 사용할 수 있다. The air cap 110 and the member material 130 may be laminated by an adhesive layer 120 formed of an adhesive material. Specifically, the pressure-sensitive adhesive material may use a known pressure-sensitive adhesive.
그리고 상기 에어캡 제품의 완충, 단열, 방음의 기능을 이용하여 포장재, 벽지, 바닥재, 매트, 보온 덮개, 내장재, 조형물, 피복류로 사용될 수 있다. 구체적으로 포장재로서 포장 봉투, 포장 상자에 사용될 수 있고, 매트로서 깔개에 사용될 수 있으며, 피복류로서 의류, 양말 및 모자 중 선택된 하나로서 사용될 수 있다. And it can be used as a packaging material, wallpaper, flooring, mat, insulation cover, interior materials, moldings, coatings by using the function of the cushion, insulation, sound insulation of the air cap product. Specifically, it can be used as a packaging material in packaging bags, packaging boxes, as mats, as rugs, and as clothing, as a selected one of clothing, socks and hats.
본 출원의 에어캡 제품의 일 예시로 애어캡 제품의 부재료로서 크라프트 종이 또는 폴리에틸렌 코팅된 크라프트 종이를 사용할 경우 크라프트 에어캡 택배용 의류 포장재가 될 수 있다 (도 7a 참조). 크라프트 종이는 택배 유통 시의 충격을 견디면서 에어캡이 완충재로서 충격을 흡수하므로 박스포장을 대체할 수 있다. 더욱이 완충재가 포장 형태를 유지하도록 하여 옷을 펼쳐 행거 형태로 운송할 수 있으므로 옷 구김을 방지할 수 있으면서 종래의 부직포 슈트케이스 대비 30% 저렴하게 제조될 수 있다.As an example of the air cap product of the present application, when the kraft paper or polyethylene coated kraft paper is used as the material of the air cap product, it may be a garment packaging for kraft air cap delivery (see FIG. 7A). Kraft paper can replace the box packaging because the air cap absorbs the shock as a cushioning material while withstanding the shock during delivery. In addition, the cushioning material can be manufactured to maintain the packaging form and can be transported in the form of a hanger, so that wrinkles can be prevented and can be manufactured 30% cheaper than a conventional nonwoven suitcase.
다른 예시로, 에어캡 제품의 부재료로서 한지 또는 폴리에틸렌 코팅된 한지를 이용하면, 한지 에어캡 택배용 의류 포장재가 될 수 있다 (도 7b참조). 한지를 부재료로 사용할 경우 한지의 고급스러운 이미지로 인해 고급스러운 택배 포장을 제공할 수 있으며, 에어캡이 완충재로서 유통 중 발생 가능한 충격 강도를 흡수하므로, 박스나 불투명 비닐백 포장을 대체할 수 있다. 더욱이 완충재가 포장 형태를 유지하도록 하여 옷을 펼쳐서 행거 형태로 운송할 수 있으므로, 옷 구김을 방지할 수 있고, 종래의 부직포 슈트케이스 대비하여 20% 저렴하게 제조될 수 있다. As another example, using hanji or polyethylene coated hanji as an ingredient of the aircap product, it can be a garment packaging for hanji aircap parcel delivery (see Figure 7b). If Hanji is used as a subsidiary material, the luxurious image of Hanji can provide a high quality courier packaging, and the air cap absorbs the impact strength that may occur during distribution as a cushioning material, thereby replacing a box or an opaque plastic bag packaging. Furthermore, the cushioning material can be unfolded and transported in the form of a hanger to maintain the packaging form, thereby preventing wrinkles of clothes and can be manufactured at 20% cheaper than the conventional nonwoven suitcase.
또 다른 예시로, 에어캡 제품의 부재료로서 인쇄된 필름을 이용하면, 형상이 유지되는 에어캡 택배용 의류 포장재가 될 수 있다 (도 7c 참조). 표면에 인쇄된 내용으로 홍보가 가능하며, 무게가 가볍기 때문에 택배 포장으로 적정하고, 에어캡이 완충재로서 유통 중 발생 가능한 충격 강도를 흡수하므로, 불투명 비닐백 포장을 대체할 수 있다. 더욱이 완충재가 포장 형태를 유지하도록 하여 옷을 펼쳐서 행거 형태로 운송할 수 있으므로, 옷 구김을 방지할 수 있고, 기존 부직포 슈트케이스 대비하여 40% 저렴하게 제조될 수 있다. As another example, using the printed film as a material of the air cap product, it can be a garment packaging for air cap delivery to maintain the shape (see Figure 7c). It can be promoted by printed contents on the surface, and it is suitable for courier packaging because it is light in weight, and the air cap absorbs the impact strength that may occur during distribution as a cushioning material, and thus can be replaced with an opaque plastic bag packaging. Furthermore, the cushioning material can be unfolded and transported in the form of a hanger to maintain the packaging form, thereby preventing wrinkles and can be manufactured at 40% cheaper than conventional nonwoven suitcases.
그리고 다른 예시로 에어캡 제품의 부재료로서 발포폼을 이용하면, 형상이 유지되는 에어캡 택배용 의류 포장재가 된다 (도 7d 참조). 완충재 제작 시 Single Cap 이 아닌 Double Cap으로 형성되어 (도 4 참조), 표면 인쇄가 가능하고, 발포 폼이 내측으로 층을 구성하여, 완충재와 발포폼이 유통 중 발생 가능한 충격 강도를 흡수하므로, 모든 의류 포장을 대체할 수 있다. 완충재와 발포폼이 포장 형태를 유지하게 하여 옷을 펼쳐서 행거 형태로 운송할 수 있으므로, 옷 구김을 방지할 수 있고, 옷의 구김 방지 효과가 확실한 대신, 기존 부직포 슈트케이스 대비하여 5~10% 저렴하게 제조될 수 있다.In another example, when the foam is used as a material of the air cap product, a shape of the garment packaging for air cap delivery is maintained (see FIG. 7D). When the cushioning material is manufactured, it is formed as a double cap instead of a single cap (see FIG. 4), and the surface printing is possible, and the foam foam forms a layer inward, so that the shock absorber and the foam foam absorb the impact strength that may occur during distribution. Can replace clothing packaging. Since the cushioning material and the foam foam are kept in the packaging form, the clothes can be unfolded and transported in the form of hangers, which prevents the wrinkles of clothes and the effect of preventing the wrinkles of the clothes is obvious, but 5 to 10% cheaper than the existing nonwoven suitcase. Can be prepared.
그리고 상기 에어캡 제품은 에어캡 (110)에 점착재료로 형성된 점착층 (120) 및 부재료 (130)를 라미네이션 하여 에어캡 제품 (100)을 제조하는 제조방법에 의해 제조될 수 있다. 상기 라미네이션은 공지의 방법으로 할 수 있으나, 구체적으로 부재료가 크라프트 종이, 한지인 경우 열 라미네이션일 수 있고, 부재료가 필름인 경우 드라이 라미네이션일 수 있으며, 부재료가 발포 폼인 경우 저온 라미네이션일 수 있다 (도 5 참조).The air cap product may be manufactured by a manufacturing method of manufacturing the air cap product 100 by laminating the adhesive layer 120 and the material 130 formed of the adhesive material on the air cap 110. The lamination may be a known method, but in particular, if the subsidiary material is kraft paper or Hanji, it may be thermal lamination, when the subsidiary material is a film, dry lamination may be used, and when the subsidiary material is a foam, it may be a low temperature lamination (FIG. 5).
본 출원에 따르면 석유계 플라스틱 소재의 함량을 적게 사용하여 탄소저감이 가능하고 종래 석유 유래 플라스틱 제품에 비하여 물성이 저하되지 않으므로 기존의 설비를 사용하여 생산할 수 있고, 소맥 고유의 컬러를 가진 바이오 플라스틱 필름, 기존의 에어캡을 대체할 수 있는 에어캡을 제공하는 효과가 있다.According to the present application, it is possible to reduce the carbon by using a small amount of petroleum-based plastic material, and since the physical properties are not deteriorated compared to conventional petroleum-derived plastic products, it can be produced using existing equipment, and bioplastic film having a unique color of wheat. It is effective to provide an air cap that can replace the existing air cap.
그리고 본 출원에 따르면 종래 석유 유래의 에어캡 제품을 대체하여 완충, 단열, 방음효과를 가져 포장재(포장 봉투, 포장 상자), 벽지, 바닥재, 매트(깔개), 보온 덮개, 내장재, 조형물, 피복류(의류, 양말, 모자)에 사용할 수 있으면서 환경오염을 줄일 수 있는 에어캡 제품을 제공하는 효과가 있다. And according to the present application to replace the conventional petroleum-derived air cap product has a cushioning, insulation, sound insulation effect packaging materials (packaging bags, packaging boxes), wallpaper, flooring, mats (carpets), thermal insulation cover, interior materials, moldings, coatings ( It can be used for clothing, socks, and hats), and it is effective to provide air cap products that can reduce environmental pollution.
도 1은 본 출원의 바이오 플라스틱 필름과 에어캡을 제조 공정을 나타낸 흐름도이다.1 is a flowchart illustrating a process of manufacturing a bioplastic film and an air cap of the present application.
도 2는 본 출원의 에어캡 (왼쪽)과 종래 폴리에틸렌으로 제작된 에어캡 (오른쪽)을 비교한 사진이다.Figure 2 is a photograph comparing the air cap (left) of the present application and the air cap (right) made of conventional polyethylene.
도 3은 본 출원의 에어캡 제품을 도시한 단면도이다.3 is a cross-sectional view showing an air cap product of the present application.
도 4는 본 출원의 에어캡 제품을 행거 타입의 슈트 케이스로 제조한 예를 나타낸 것이다. Figure 4 shows an example of manufacturing the air cap product of the present application in a hanger type chute case.
도 5는 본 출원의 에어캡 제품의 제조공정을 나타낸 것이다.Figure 5 shows the manufacturing process of the air cap product of the present application.
도 6은 Single cap의 단면도와 Double cap의 단면도를 비교한 것이다.6 compares a cross-sectional view of a single cap with a cross-sectional view of a double cap.
도 7은 실시예 7 내지 10의 에어캡 제품을 나타낸 사진으로서, 도 7a는 부재료로서 폴리에틸렌 코팅된 크라프트 종이를 사용한 에어캡 제품을 나타낸 것이고, 도 7b는 부재료로서 폴리에틸렌 코팅된 한지를 사용한 에어캡 제품을 나타낸 것이며, 도 7c는 부재료로서 인쇄 필름을 사용한 에어캡 제품을 나타낸 것이고, 도 7d는 부재료로서 발포 폼을 사용한 에어캡 제품을 나타낸 것이다. Figure 7 is a photograph showing the air cap product of Examples 7 to 10, Figure 7a shows an air cap product using polyethylene coated kraft paper as a material, Figure 7b is an air cap product using polyethylene coated paper as a material 7C shows an air cap product using a printing film as a component material, and FIG. 7D shows an air cap product using a foam foam as a component material.
이하의 실시예에서 본 출원에 대하여 더욱 구체적으로 설명한다. 실시예는 본 출원의 일 예시만을 개시하는 것이므로, 본 출원의 범위가 실시예의 범위로 한정되지 않는다. The present application will be described in more detail with reference to the following examples. Since the embodiments disclose only one example of the present application, the scope of the present application is not limited to the scope of the embodiments.
<실시예> <Example>
1. 실시예 1 및 2: 소맥피를 함유한 조성물의 제조1. Examples 1 and 2: Preparation of Compositions Containing Wheatgrass
소맥피를 ACM 분쇄기에서 100~200RPM으로 Blade의 모터를 조절하여 자동 건조시켜 수분율을 7% 이하로 분쇄하고 분쇄된 미립자를 분급하여 15㎛, PDI=1인 분말을 생성한 뒤 15㎛, PDI=1인 소맥피 분말 15중량%에 펠렛 또는 파우더 형태의 폴리에틸렌(PE) 60중량%, 충전제로 탄산칼슘 10중량% 및 왁스(LDPE 6중량% 및 HDPE 8중량%) 14중량% 및 계면활성제 1중량%를 160℃~200℃에서 소맥피가 타지 않게끔 온도를 조절하며, 가열혼합하여 실시예 1의 소맥피를 함유한 조성물을 제조하였다. It is automatically dried by controlling the motor of the blade at 100 ~ 200RPM in the ACM grinder and grinding the moisture content to 7% or less and classifying the pulverized fine particles to produce powder with 15㎛, PDI = 1 and then 15㎛, PDI = 15% by weight of wheat flour per person, 60% by weight polyethylene (PE) in pellet or powder form, 10% by weight calcium carbonate as filler, 14% by weight wax (6% by weight LDPE and 8% by weight HDPE) and 1% surfactant The temperature was controlled to prevent the burnt wheat from 160 ° C to 200 ° C, and the mixture was heated and mixed to prepare a composition containing the wheatweed of Example 1.
또한, 실시예 1과 동일한 제조방법에서 소맥피 25중량%과 펠렛 또는 파우더 형태의 폴리에틸렌(PE) 50중량%를 사용하여 실시예 2의 소맥피를 함유한 조성물을 제조하였다. In addition, in the same manufacturing method as in Example 1 25% by weight of the wheat flour and 50% by weight of polyethylene (PE) in the form of pellets or powder to prepare a composition containing the wheat vein of Example 2.
2. 실시예 3 및 4: 제습제 함유 바이오 플라스틱 필름의 제조2. Examples 3 and 4: Preparation of Dehumidifier-Containing Bioplastic Film
실시예 2의 소맥피 함유 조성물로 제조된 펠릿 25중량% 폴리에틸렌 70중량% (LLDPE 60중량% 및 LDPE 10 중량%)를 혼합하고 혼합물 전체 중량대비 5중량%의 제습제를 더 혼합하고 필름 성형하여 실시예 3의 바이오 플라스틱 필름을 제조하였다.70 wt% polyethylene (60 wt% LLDPE and 10 wt% LDPE) of the pellet prepared from the vegetal-containing composition of Example 2 was mixed, followed by further mixing 5% by weight of the desiccant with respect to the total weight of the mixture and performing film molding. The bioplastic film of Example 3 was prepared.
실시예 3의 바이오 플라스틱 필름과 동일한 제조방법에서 제습제를 사용하지 않고 혼합, 필름 성형하여 실시예 4의 바이오 플라스틱 필름을 제조하였다.In the same method as the bioplastic film of Example 3, the bioplastic film of Example 4 was prepared by mixing and film molding without using a dehumidifying agent.
3. 실험예 1: 제습제 함유 바이오 플라스틱 필름의 물성 비교3. Experimental Example 1: Comparison of Physical Properties of Dehumidifier-Containing Bioplastic Film
제습제 함유량이 차이 나는 바이오 플라스틱 필름의 에어캡 이용가능성을 확인하기 위하여 씰링강도 및 찌름강도를 확인하였고 그 결과를 표 1에 나타내었다.In order to confirm the availability of the air cap of the bio plastic film having a different dehumidifier content, the sealing strength and the puncture strength were confirmed, and the results are shown in Table 1.
제습제 함유량에 따른 바이오 플라스틱 필름의 물성 비교Comparison of Properties of Bioplastic Films According to Dehumidifier Content
실시예 3Example 3 실시예 4Example 4
제습재 함량Dehumidifier content 5 중량%5 wt% 00
씰링강도(kgf)Sealing strength (kgf) 0.89360.8936 0.98320.9832
찌름강도(kfg) Sting strength (kfg) 0.150.15 0.16180.1618
표 1과 같이 제습제를 5중량% 포함하였을 때는 그렇지 않을 때 보다 씰링강도는 9% 저하되고 찌름강도는 7.3% 저하되나 본 출원의 제습제를 포함한 바이오 플라스틱 필름 또한 에어캡으로 제조, 사용되기에 적정한 물성을 보여주어 탄소 저감되고 포장재 내의 환경을 조절할 수 있는 에어캡을 제공할 수 있음을 확인하였다.As shown in Table 1, when 5% by weight of the dehumidifier is included, the sealing strength is lowered by 9% and the puncture strength is lowered by 7.3% than otherwise, but the bioplastic film including the dehumidifying agent of the present application is also suitable to be manufactured and used as an air cap. It has been shown that it can provide an air cap that can reduce the carbon and control the environment within the packaging.
4. 실시예 5 및 6: 에어캡의 제조4. Examples 5 and 6: Preparation of Air Cap
실시예 3 및 4의 바이오 플라스틱 필름이 성형롤을 통과하면서 다른 바이오 플라스틱 필름에 부착시켜 에어캡을 형성한 뒤 냉각하여 실시예 5 및 6의 에어캡을 제조하였다.The bioplastic films of Examples 3 and 4 were attached to other bioplastic films while passing through a forming roll to form an air cap, and then cooled to prepare the air caps of Examples 5 and 6.
5. 비교예 1: 기존의 석유 제품 유래 에어캡의 제조5. Comparative Example 1: Preparation of existing petroleum product derived air cap
실시예 5와 동일한 제조방법에서 소맥피를 함유한 조성물의 사용 없이 폴리에틸렌만 95중량%와 제습제 5중량%를 혼합하여 필름을 제조하고 에어캡을 제조하였다. In the same manufacturing method as in Example 5, 95% by weight of polyethylene alone and 5% by weight of a dehumidifying agent were mixed without using a composition containing wheat vegetation to prepare an air cap.
6. 실험예 3: 기존의 에어캡과 본 출원의 에어캡 물성 비교6. Experimental Example 3: Comparison of existing air cap and air cap properties of the present application
본 출원의 에어캡이 기존의 석유 제품 유래 에어캡을 대체할 수 있는 지 확인하기 위하여 실시예 5 및 6과 비교예 1의 에어캡의 씰링강도와 내압강도를 측정하였고 그 결과를 표3에 나타내었다.In order to confirm whether the air cap of the present application can replace the existing petroleum product derived air cap, the sealing strength and the pressure resistance strength of the air caps of Examples 5 and 6 and Comparative Example 1 were measured, and the results are shown in Table 3. It was.
기존의 에어캡과 본 출원의 에어캡 물성 비교Comparison of existing air cap and air cap properties of this application
비교예 1Comparative Example 1 실시예 5Example 5 실시예 6Example 6
씰링강도(kgf)Sealing strength (kgf) 2.0652.065 1.7211.721 1.5641.564
내압강도(Mpa)Pressure strength (Mpa) 0.0680.068 0.0630.063 0.0590.059
기존의 석유 유래 플라스틱 필름인 비교예 1와 비교하여 본 출원의 에어캡의 씰링강도 및 내압강도가 다소 저하되었으나, 에어캡으로서 활용 가능한 물성범위인 것으로 확인되었다. The sealing strength and the pressure resistance strength of the air cap of the present application were slightly reduced compared to that of the conventional petroleum-derived plastic film, but it was confirmed that the range of physical properties usable as the air cap.
7. 7. 실시예Example 7 내지 10:  7 to 10: 에어캡Air cap 제품의 제조 Manufacture of products
실시예 5의 에어캡에 점착재료 및 부재료를 라미네이션 하여 에어캡 제품을 제조하였다. 구체적으로 부재료로서 폴리에틸렌 코팅된 크라프트 종이, 폴리에틸렌 코팅된 한지를 사용하고 열 라미네이션하여 실시예 7 및 8의 에어캡 제품을 제조하였고 (도 7a 및 b), 부재료로서 인쇄 필름을 사용하고 드라이 라미네이션하여 실시예 9의 에어캡 제품을 제조하였으며 (도 7c), 부재료로서 발포 폼을 사용하고 저온 라미네이션하여 실시예 10의 에어캡 제품을 제조하였다 (도 7d).An air cap product was manufactured by laminating an adhesive material and a material on the air cap of Example 5. Specifically, the air cap products of Examples 7 and 8 were prepared by using polyethylene-coated kraft paper and polyethylene-coated hanji as the subsidiary materials (FIGS. 7A and B), and using a printing film as a subsidiary material and performing dry lamination. The air cap product of Example 9 was prepared (FIG. 7C), and the air cap product of Example 10 was prepared by using low temperature lamination and foam foam as a component (FIG. 7D).
실시예 7 내지 10의 에어캡 제품은 기존 부직포 슈트케이스 대비하여 5 내지 40% 저렴하게 제조될 수 있고, 에어캡을 통해 포장 형태를 유지하며 유통 중 발생 가능한 충격을 흡수할 수 있음을 확인하였다.It was confirmed that the air cap products of Examples 7 to 10 can be manufactured at 5 to 40% cheaper than the conventional nonwoven suit case, maintain the packaging form through the air cap and absorb shocks that may occur during distribution.
[부호의 설명][Description of the code]
100: 에어캡 제품100: Air Cap Products
110: 에어캡110: air cap
111: 제 1 바이오 플라스틱 필름111: first bioplastic film
112: 제 2 바이오 플라스틱 필름112: second bioplastic film
120: 점착층120: adhesive layer
130: 부재료130: Subsidy

Claims (12)

  1. 제 1 폴리올레핀계 수지, 소맥피 함유 조성물 및 제습제를 포함하는 바이오 플라스틱 필름.A bioplastic film comprising a first polyolefin-based resin, a wheat vein-containing composition, and a dehumidifying agent.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 폴리올레핀계 수지는 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리부틸렌 및 폴리메틸펜텐 중에서 선택된 하나 이상인 것인 바이오 플라스틱 필름.The first polyolefin-based resin is at least one selected from polyethylene (PE), polypropylene (PP), polybutylene and polymethylpentene.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제 1 폴리올레핀계 수지는 바이오 플라스틱 필름 전체 중량 기준 85 ~ 95 중량% 포함되는 바이오 플라스틱 필름. The first polyolefin-based resin is a bioplastic film containing 85 to 95% by weight based on the total weight of the bioplastic film.
  4. 제 1항에 있어서,The method of claim 1,
    상기 소맥피 함유 조성물은 바이오 플라스틱 필름 전체 중량 기준 2 ~ 8 중량% 포함되는 것인 바이오 플라스틱 필름. The biomembrane-containing composition is a bioplastic film that contains 2 to 8 wt% based on the total weight of the bioplastic film.
  5. 제 1항에 있어서,The method of claim 1,
    상기 소맥피 함유 조성물은 제 2 폴리올레핀계 수지, 소맥피, 왁스, 무기물 필러 및 계면활성제를 함유하는 것인 바이오 플라스틱 필름.The wheat vein-containing composition is a bio-plastic film containing a second polyolefin resin, wheat vein, wax, inorganic filler and surfactant.
  6. 제 6항에 있어서,The method of claim 6,
    상기 소맥피는 5~30чm, PDI 2이하의 크기로 소맥피 함유 조성물 전체 중량 기준 10 ~ 30중량% 함유하는 것인 바이오 플라스틱 필름.The wheat vein is 5 ~ 30чm, PDI 2 or less of the bioplastic film containing 10 to 30% by weight based on the total weight of the composition containing the wheat flour.
  7. 제 1항에 있어서,The method of claim 1,
    상기 제습제는 제올라이트, 실리카겔, 활성알루미나 중 선택되는 어느 하나 이상인 것인 바이오 플라스틱 필름.The dehumidifying agent is a bioplastic film which is at least one selected from zeolite, silica gel and activated alumina.
  8. 제 1항에 있어서,The method of claim 1,
    상기 제습제는 바이오 플라스틱 필름 전체 중량 기준 3 ~ 8 중량% 포함되는 것인 바이오 플라스틱 필름.The dehumidifying agent is a bioplastic film that contains 3 to 8 wt% based on the total weight of the bioplastic film.
  9. 제 1항의 바이오 플라스틱 필름을 포함하는 에어캡.An air cap comprising the bioplastic film of claim 1.
  10. 제 9항의 에어캡과 부재료를 합지한 에어캡 제품.An air cap product in which the air cap and the subsidiary material of claim 9 are laminated.
  11. 제 10항에 있어서,The method of claim 10,
    상기 부재료는 종이, 필름, 발포 폼, 부직포 중에 선택되는 어느 하나 이상인 것인 에어캡 제품.The submaterial is any one or more selected from paper, film, foam foam, non-woven fabric.
  12. 제 10항에 있어서,The method of claim 10,
    상기 에어캡 제품의 용도는 포장재, 벽지, 바닥재, 매트, 보온 덮개, 내장재, 조형물 또는 피복류인 것인 에어캡 제품.Use of the air cap product is an air cap product is a packaging material, wallpaper, flooring, mats, thermal cover, interior materials, moldings or coatings.
PCT/KR2017/006848 2016-07-01 2017-06-28 Bioplastic film, bubble film, and bubble film product using same WO2018004257A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/314,530 US20190225763A1 (en) 2016-07-01 2017-06-28 Bioplastic film, bubble film, and bubble film product using same
CN201780041011.6A CN109415569A (en) 2016-07-01 2017-06-28 Biological plastics film, vacuolar membrane and the vacuolar membrane product using it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160083392 2016-07-01
KR10-2016-0083392 2016-07-01
KR1020170018595A KR101885987B1 (en) 2016-07-01 2017-02-10 A bio plastic film, air cap and an air cap product using therefrom
KR10-2017-0018595 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018004257A1 true WO2018004257A1 (en) 2018-01-04

Family

ID=60787230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006848 WO2018004257A1 (en) 2016-07-01 2017-06-28 Bioplastic film, bubble film, and bubble film product using same

Country Status (1)

Country Link
WO (1) WO2018004257A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108610540A (en) * 2018-05-17 2018-10-02 深圳市康尼塑胶有限公司 The method of production of the degradable bubble chamber film of fire resistant antistatic wear-proof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079935A1 (en) * 2012-09-20 2014-03-20 The Procter & Gamble Company Flexible Thermoplastic Films And Articles
KR20140104703A (en) * 2013-02-21 2014-08-29 씨제이제일제당 (주) Composition for biomass film using food byproduct of wheat bran or soybean hull and biomass film using thereof
KR20150012804A (en) * 2013-07-26 2015-02-04 주식회사 뉴랩 Bio-based thin film composition with plant biomass and method of manufacturing the same
KR20150073593A (en) * 2013-12-23 2015-07-01 가톨릭대학교 산학협력단 High strength carbon neutral bio-plastics film using wheat bran and preparing method thereof
KR101612429B1 (en) * 2015-05-04 2016-04-15 주식회사 브러시월드 Resin Composition Using Biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079935A1 (en) * 2012-09-20 2014-03-20 The Procter & Gamble Company Flexible Thermoplastic Films And Articles
KR20140104703A (en) * 2013-02-21 2014-08-29 씨제이제일제당 (주) Composition for biomass film using food byproduct of wheat bran or soybean hull and biomass film using thereof
KR20150012804A (en) * 2013-07-26 2015-02-04 주식회사 뉴랩 Bio-based thin film composition with plant biomass and method of manufacturing the same
KR20150073593A (en) * 2013-12-23 2015-07-01 가톨릭대학교 산학협력단 High strength carbon neutral bio-plastics film using wheat bran and preparing method thereof
KR101612429B1 (en) * 2015-05-04 2016-04-15 주식회사 브러시월드 Resin Composition Using Biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108610540A (en) * 2018-05-17 2018-10-02 深圳市康尼塑胶有限公司 The method of production of the degradable bubble chamber film of fire resistant antistatic wear-proof

Similar Documents

Publication Publication Date Title
KR101885987B1 (en) A bio plastic film, air cap and an air cap product using therefrom
US5073316A (en) Process for producing a porous film
KR101304144B1 (en) Biodegradable sheet
KR101299358B1 (en) Biodegradable sheet having foam layer
CN110760169B (en) Barrier material and preparation method thereof
WO2018056539A1 (en) Biodegradable resin composition and biodegradable article manufactured therefrom
JP6641953B2 (en) Moisture permeable laminate
JP2017105032A (en) Moisture permeable laminate
WO2018004257A1 (en) Bioplastic film, bubble film, and bubble film product using same
KR20210000389A (en) Functional bio-pulp composition and molded product manufactured the same
KR101305642B1 (en) Biodegradable sheet using pla resin
KR101165342B1 (en) easy peelable container
CN106604959A (en) Polyolefin resin composition, molding, and polyolefin resin film
KR102501476B1 (en) Flame retardant casting-polypropylene(cpp) film and sheet for interior comprising the same
KR101285981B1 (en) Biodegradable panel
WO2014046321A1 (en) Biodegradable panel
KR101956011B1 (en) A molded product having micro powder of cellulose
KR102207972B1 (en) Composition for Non-slip Film and Non-slip Film
JP2021011529A (en) Sheet and manufacturing method of sheet
KR101333849B1 (en) Biodegradable laminated wallpaper
WO2024005536A1 (en) Eco-friendly laminate and packaging material comprising same
KR102130822B1 (en) A sheet product having micro powder of cellulose
KR101317605B1 (en) Biodegradable wallpaper using natural material
KR20220025588A (en) Eco-friendly cushion Packaging
KR20230151765A (en) Packaging sheet and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17820533

Country of ref document: EP

Kind code of ref document: A1