WO2018004093A1 - Organic semiconductor device and method for preparing same - Google Patents

Organic semiconductor device and method for preparing same Download PDF

Info

Publication number
WO2018004093A1
WO2018004093A1 PCT/KR2017/000461 KR2017000461W WO2018004093A1 WO 2018004093 A1 WO2018004093 A1 WO 2018004093A1 KR 2017000461 W KR2017000461 W KR 2017000461W WO 2018004093 A1 WO2018004093 A1 WO 2018004093A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic semiconductor
semiconductor layer
solution
organic
Prior art date
Application number
PCT/KR2017/000461
Other languages
French (fr)
Korean (ko)
Inventor
김도환
강문성
황해중
박한울
신지혜
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Priority to KR1020170079382A priority Critical patent/KR102038124B1/en
Priority to PCT/KR2017/006734 priority patent/WO2018004219A2/en
Priority to US15/578,483 priority patent/US10529937B2/en
Priority to CN201780052766.6A priority patent/CN109643760B/en
Publication of WO2018004093A1 publication Critical patent/WO2018004093A1/en
Priority to US16/192,399 priority patent/US10991894B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]

Definitions

  • the present invention relates to an organic semiconductor device and a method of manufacturing the same.
  • a reactor in order to form a self-assembled monolayer on the organic semiconductor, a reactor must exist on the surface of the organic semiconductor.
  • the organic semiconductor has a problem that physical adsorption must be used because such a reactor does not exist or a large amount thereof.
  • the performance of the semiconductor in the case of forming a self-assembled monolayer through the reactor synthesized by introducing a reactor in the organic semiconductor, it is known that the performance of the semiconductor is reduced by the synthesized reactor.
  • the organic semiconductor is damaged by the solvent used to proceed the solution process to form the self-assembled monolayer.
  • the present invention it is possible to increase the chemical resistance of the organic semiconductor and thereby to improve the electrical properties of the organic electronic device, and to effectively control the physicochemical or electro-optical properties of the organic semiconductor surface or bulk. It is intended to provide a semiconductor manufacturing method.
  • Korean Patent Laid-Open Publication No. 10-2010-0006294 name of the invention: an organic nanofiber structure based on a self-assembled organic gel, an organic nanofiber transistor using the same, and a method of manufacturing the same
  • a method for producing an organic thin film transistor which can be formed, has excellent transistor characteristics, good adhesion, and excellent durability is disclosed.
  • the present invention is to solve the above-mentioned problems of the prior art, to laminate a gelled semiconductor solution containing a hydroxyl group (M-OH, M (metal)), such as silanol group (silanol group (Si-OH)) It provides a method of manufacturing a high-performance or high-sensitivity organic semiconductor device by effectively controlling the surface or bulk properties of the organic semiconductor thin film through a solution process.
  • a hydroxyl group M-OH, M (metal)
  • silanol group silanol group
  • a method of manufacturing an organic semiconductor device is a hydroxyl group (M, such as silanol group (Si-OH) on a substrate on which a dielectric is formed (M) Stacking a semiconductor solution comprising -OH, M (metal)).
  • M hydroxyl group
  • Si-OH silanol group
  • the organic semiconductor device includes a gate electrode, a dielectric layer formed on the gate electrode, a semiconductor layer formed on the dielectric layer, and a source electrode and a drain electrode formed on the semiconductor layer.
  • the semiconductor layer is formed by gelling a semiconductor solution containing a hydroxyl group (M-OH, M (metal)) such as silanol group (Si-OH).
  • the silanol group of the self-assembled thin film layer compound and the silanol group of the organic semiconductor solution used to control the surface or bulk physical properties of the organic semiconductor undergo a condensation reaction, thereby eliminating the hole trap.
  • the transistor element characteristics can be improved.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an organic semiconductor device according to an embodiment of the present invention.
  • FIGS. 2A and 2B are diagrams for describing a method of manufacturing an organic semiconductor device according to an embodiment of the present invention.
  • FIG 3 is a view illustrating an organic semiconductor switching device manufactured using a semiconductor layer according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an organic semiconductor switching device manufactured using a semiconductor layer according to an embodiment of the present invention.
  • 5A and 5B illustrate experimental characteristics of an organic semiconductor device according to an embodiment of the present invention.
  • 6A and 6B illustrate experimental characteristics of an organic semiconductor device according to an embodiment of the present invention.
  • the organic semiconductor used in the present invention is characterized by having a ⁇ -conjugated structure in which a single bond and a double bond between constituent carbon atoms are alternately repeated.
  • Representative ⁇ -conjugated polymer materials include polyacetylene, polypyrrole, polyaniline, polythiophene (PTh), and polyphenylenevinylene (PPV). ), And derivatives thereof.
  • Examples of ⁇ -conjugated structural small molecules include pentacene, perylene, rubrene, and phthalocyanine. .
  • FIGS. 2A and 2B are diagrams for describing a method of manufacturing an organic semiconductor device according to an embodiment of the present invention.
  • an organic semiconductor solution for forming a semiconductor layer is prepared (S100).
  • the organic metal compound precursor stock solution is added and stirred to produce an organic semiconductor solution.
  • the material used as the organic solvent may include one of chloroform, dichloromethane, acetone, pyridine, tetrahydrofuran, chlorobenzene, dichlorobenzene, xylene, toluene, or a mixture thereof.
  • the polymer semiconductor is not particularly limited as a generally used organic semiconductor material, but a material having high carrier mobility is preferable.
  • Specific examples include polythiophenes such as poly-3-hexylthiophene and polybenzothiophene, poly (p-phenylenevinylene) such as polypyrroles and poly (p-phenylenevinylene), polyaniline, Nitrogen-containing aromatic rings such as polyacetylenes, polydiacetylenes, polycarbazoles, polyfurans such as polyfuran and polybenzofuran, pyridine, quinoline, phenanthroline, oxazole and oxadiazole as structural units Condensed polycyclic aromatic compounds such as polyheteroaryls, anthracene, pyrene, naphthacene, pentacene, hexacene, rubrene, furan, thiophene, benzothiophene, dibenzofuran, pyridine, quinoline,
  • organometallic precursors using the material of the formula (1).
  • the precursor may comprise a metal (M) and a reactor (X).
  • the reactor may be formed by synthesizing various materials to suit the purpose.
  • Y in Formula 1 is an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an arylether group, an arylthioether group, an aryl group, a heteroaryl group, a halogen atom, Cyano group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group.
  • the metal (M) is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn , Ge, Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg and Uub
  • the reactor (X) is each hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group , Halogen atom, cyano group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group can be selected. .
  • the organic semiconductor solution includes a hydroxyl group (M-OH, M (metal)) such as a silanol group (Si-OH).
  • the solvated semiconductor solution thus produced is applied to the surface of the object, and then gelled by a sol-gel method to form a gelled organic semiconductor layer (S110).
  • an organic semiconductor solution containing a hydroxyl group (M-OH, M (metal)), such as a silanol group (Si-OH), is laminated and gelled. Therefore, there are a large number of hydroxyl groups (M-OH, M (metal)) such as silanol groups (Si-OH) on the surface and bulk of the organic semiconductor, which functions as a reactor. Meanwhile, an annealing process may be added during the gelation process of the organic semiconductor layer 10.
  • the self-assembled monolayer 20 is formed (S120).
  • the self-assembled monolayer 16 can be formed through a solution process rather than a gas phase process.
  • surface and internal physical properties can be controlled through chemical bonding between the self-assembled monolayer and the gelled organic semiconductor layer.
  • the organometallic precursor when the initial heat treatment is not performed, the organometallic precursor is bonded in a shape into the organic semiconductor bulk, and when the initial heat treatment is performed as shown in FIG. 2B, the organometallic precursor is It may be formed in a form bonded to the surface of the organic semiconductor layer 10.
  • a compound of Chemical Formula 2 is used as the compound for forming the self-assembled monolayer.
  • X is selected from the group consisting of non-aromatic substances such as -NH 2 , -CH 3 , -SH, -COOH, -CF 3 , Cl and any aromatics, and in addition to the electron acceptor group for attracting electrons and electron donor for pushing electrons We include all groups.
  • Y may comprise a metal and a reactor.
  • the reactor may be formed by synthesizing various materials to suit the purpose.
  • the metals are Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge,
  • One or more metals selected from the group consisting of Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg and Uub It may include, but is not limited to these.
  • the reactor is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen atom, respectively , Cyano group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group.
  • R in Formula 2 may be selected from aliphatic groups including alkyl chains, or aromatic groups including benzene, thiophene, and the like, and n may be a natural number.
  • organometallic precursors may be used.
  • Octyltrichlorosilane OTS
  • Octyltrimethoxysilane OTMS
  • Octyltriethoxysilane OCT
  • Hexamethyldisilazane HMDS
  • Octadecyltrichlorosilane Octadecyltrichlorosilane
  • ODTS octadecyltrimethoxysilane
  • OTMS octadecyltriethoxysilane
  • OTE 3-aminopropyl) trichlorosilane [(3-Aminopropyl) trichlorosilane]
  • (3-aminopropyl ) Trimethoxysilane (3-Aminopropyl) trimethoxysilane; APTMS], (3-aminopropyl) triethoxysilane [(3-Aminopropyl) trimethoxysilane; APTES], Perfluorode
  • various organic semiconductor devices may be manufactured by performing an additional process based on a solution process on top of a semiconductor layer on which a self-assembled monolayer according to an embodiment of the present invention is formed to manufacture an organic semiconductor device.
  • an organic semiconductor device is manufactured by additionally forming various electrodes such as an insulating layer or a source electrode and a drain electrode on the organic semiconductor layer 10 on which the self-assembled monolayer 20 is formed (S130).
  • an insulating layer and various electrodes are additionally formed to manufacture an organic semiconductor device.
  • a detailed configuration will be described with reference to the drawings.
  • FIG 3 is a view illustrating an organic semiconductor switching device manufactured using a semiconductor layer according to an embodiment of the present invention.
  • the illustrated organic semiconductor switching device 300 illustrates an organic FET (OFET) having a top gate structure.
  • the organic semiconductor switching device 300 includes a substrate 310, a drain electrode 320, a source electrode 322, a semiconductor layer 330, a dielectric layer 340, and a gate electrode 350.
  • the organic semiconductor layer 330 is formed by gelling the organic semiconductor solution containing the silanol group described above, and then forming a self-assembled monolayer.
  • the organic semiconductor layer 330 is in a gelled state and has chemical resistance, and includes a plurality of reactors to form a self-assembled monolayer, thereby controlling the surface and bulk physical properties of the dielectric layer.
  • the present invention can be applied to various types of dielectric layers, and to various types of chemical sensors or biosensors.
  • the organic semiconductor layer 330 is formed through the processes of FIGS. 1 and 2.
  • the dielectric layer 340 may be formed and the gate electrode 350 may be formed on the organic semiconductor switching device 300 having a top gate structure.
  • FIG. 4 is a diagram illustrating an organic semiconductor switching device manufactured using a semiconductor layer according to an embodiment of the present invention.
  • the illustrated organic semiconductor switching device 500 illustrates an organic FET having a bottom gate structure.
  • the organic semiconductor switching device 400 includes a gate electrode 410, a dielectric layer 420, an organic semiconductor layer 430, a drain electrode 440, and a source electrode 442.
  • the gate electrode 410 is formed through the processes of FIGS. 1 and 2, the dielectric layer 420 is formed, the organic semiconductor layer 430 is formed, and then a self-assembled monolayer is formed.
  • the drain electrode 440 and the source electrode 442 are formed on the upper portion 430 through a vapor phase process.
  • the semiconductor solution is produced by placing a polymer semiconductor (diketopyrrolo-pyrrole-dithiophene-thienothiophene (DPP-DTT)) in a chlorobenzene solution at 80 ° C. and maintaining a stirring state for about 1 hour and 30 minutes.
  • the precursor stock solution (1,8-bead (trichlorosilyl) octane (1,8-BIS (TRICHLOROSILYL) OCTANE) was added to the polymer semiconductor solution thus prepared, and the mixture was stirred for about 1 hour while maintaining a temperature of about 80 ° C. .
  • the semiconductor solution thus produced is stacked on the silicon substrate by performing at least one of various printing methods such as spin coating, spray coating, inkjet printing, dip coating, drop casting, and bar coating on the silicon substrate on which the dielectric is formed.
  • FIGS. 6A and 6B illustrate experimental characteristics of an organic semiconductor device according to an embodiment of the present invention. to be.
  • octadecyltrichlorosilane as a self-assembled monolayer in the case where the initial heat treatment was not performed (upper figure) and the substrate coated with the organic semiconductor thin film was subjected to the initial heat treatment at 180 ° C. (lower figure).
  • the contact angles of the octadecyltrichlorosilane were not increased.
  • FIG. 5B when the initial heat treatment is not performed (upper figure) and the substrate coated with the organic semiconductor thin film is subjected to an initial heat treatment at 180 ° C.
  • the self-assembled monolayer (3- Aminopropyl (triethoxysilane)) [3-Aminopropyl (triethoxysilane); APS], it can be seen that the contact angle is reduced respectively compared to the case where (3-aminopropyl (triethoxysilane)) is not laminated.
  • This phenomenon may be attributed to the fact that the self-assembled monolayer is combined with the reactor of the semiconductor layer and the characteristics of the surface of the organic semiconductor have changed.
  • FIG. 6A after the organic semiconductor layer according to the present invention is laminated on a SiO 2 substrate and before the initial heat treatment is performed (left graph), before octadecyltrichlorosilane is deposited and octadecyltrichloro Looking at the graph after laminating the silane, it can be seen that the threshold voltage is shifted (-). In the case of the initial heat treatment (right graph), the graphs before stacking octadecyltrichlorosilane and after stacking octadecyltrichlorosilane can be seen that the threshold voltage is shifted positively and hysteresis increases.
  • the silanol group of the organometallic precursor octadecyltrichlorosilane or (3-aminopropyl (triethoxysilane)) is bonded to the silanol group of the organic semiconductor surface and the bulk layer,
  • the octadecyl trichlorosilane or (3-aminopropyl (triethoxysilane)) is combined to change the surface contact angle of the organic semiconductor layer, and the effect of changing the threshold voltage and off current.
  • octadecyltrichlorosilane is bonded to the silanol group of octadecyltrichlorosilane or (3-aminopropyl (triethoxysilane)), which is an organometallic precursor, on the surface of the organic semiconductor.
  • (3-aminopropyl (triethoxysilane)) is bonded to change the surface contact angle of the organic semiconductor layer, the effect of changing the threshold voltage and hysteresis occurs.
  • the initial heat treatment is not performed, the prominent effect occurs because the organometallic precursor is bonded not only to the surface but also to the bulk layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

An organic semiconductor device preparation method, according to an aspect of the present invention, comprises a step for laminating an organic semiconductor solution, which comprises a hydroxyl group (M-OH, M (metal)) such as a silanol group (Si-OH), on a substrate on which a dielectric body is formed. A novel organic semiconductor device is prepared by means of the utilization as a reactor comprising a hydroxyl group (M-OH, M (metal)) such as a silanol group (Si-OH) present on a bulk and the surface of an organic semiconductor layer, and forming a self-assembled monomolecular layer showing various properties.

Description

유기 반도체 소자 및 그 제조 방법Organic semiconductor device and its manufacturing method
본 발명은 유기 반도체 소자 및 그 제조 방법에 관한 것이다.The present invention relates to an organic semiconductor device and a method of manufacturing the same.
최근 들어, 접히고 휘어지는 유연한 소재를 디스플레이나 박막형 태양전지 등에 적용하기 위한 연구가 활발하게 진행되고 있다. 이러한 기계적 특성을 갖는 전자 소자를 제작하기 위해서는 기존에 사용되었던 무기물 반도체를 대신하여 유기물 반도체를 사용하는 것이 유리한 것으로 알려져 있으며, 이에 유기물 반도체에 대한 관심이 높은 상태이다. 이러한 유기물 반도체는 무기물 반도체에 비하여 외부 환경에 민감하기 때문에, 전기적 특성의 안정성과 물리화학적 내구성을 향상시키기 위한 처리가 필요하며, 이러한 방법으로 유기물 반도체가 접합하는 유전체의 표면을 개질하거나 유기물 반도체 소자를 봉지 기술로 마감하는 방법을 사용하고 있다. 그러나, 이러한 방법은 공정이 복잡하고 경제성이 떨어지기 때문에 소자 제작에 많은 제약이 있다. In recent years, research is being actively conducted to apply a flexible material that is folded and bent to a display or a thin film solar cell. In order to manufacture an electronic device having such mechanical properties, it is known to use an organic semiconductor instead of an inorganic semiconductor, which has been previously used, and thus, there is a high interest in organic semiconductors. Since the organic semiconductor is more sensitive to the external environment than the inorganic semiconductor, a process for improving the stability of the electrical properties and the physicochemical durability is required. In this way, the surface of the dielectric to which the organic semiconductor is bonded or the organic semiconductor device is modified. We use the sealing method to finish. However, this method has many limitations in device fabrication because of the complexity of the process and inefficiency.
특히, 유기물 반도체 표면을 개질하기 위한 방법으로서 기상 공정을 통해 유기물 반도체 및 자기조립단분자층을 형성하여 표면 전도도나 전기적 특성을 개질한 연구 사례가 알려져 있다. 그러나, 이러한 기상 공정을 이용하는 방법은 다양한 형태와 활용분야의 유연한 소자를 제공하거나 생산성을 향상시키는데 있어 제약 사항이 큰 것으로 알려져 있다.In particular, as a method for modifying the surface of an organic semiconductor, a research case of modifying surface conductivity or electrical properties by forming an organic semiconductor and a self-assembled monolayer through a vapor phase process is known. However, it is known that the method using such a gas phase process has great limitations in providing flexible devices of various shapes and applications or improving productivity.
또한, 유기물 반도체의 상부에 자기조립단분자층을 형성하기 위해서는 유기물 반도체의 표면에 반응기가 존재하여야 하는데, 일반적인 유기물 반도체는 이러한 반응기가 존재하지 않거나 그 양이 많지 않아 물리적 흡착을 사용해야 하는 문제점이 있다. 또한, 유기물 반도체 내 반응기를 도입하여 합성한 반응기를 통해 자기조립단분자층을 형성하는 경우, 합성한 반응기에 의해 반도체의 성능이 떨어지는 단점이 있는 것으로 알려져 있다. 또한, 자기조립단분자층을 형성하는 용액공정을 진행하기 위해 사용되는 용매에 의해서도 유기물 반도체가 손상을 받는 문제점이 존재한다. In addition, in order to form a self-assembled monolayer on the organic semiconductor, a reactor must exist on the surface of the organic semiconductor. In general, the organic semiconductor has a problem that physical adsorption must be used because such a reactor does not exist or a large amount thereof. In addition, in the case of forming a self-assembled monolayer through the reactor synthesized by introducing a reactor in the organic semiconductor, it is known that the performance of the semiconductor is reduced by the synthesized reactor. In addition, there is a problem that the organic semiconductor is damaged by the solvent used to proceed the solution process to form the self-assembled monolayer.
이에, 본 발명에서는 유기물 반도체의 내화학성을 증대시키고, 이를 통해 유기물 전자 소자의 전기적 특성을 향상시킬 수 있을 뿐만 아니라, 유기물 반도체 표면 혹은 벌크의 물리화학적 혹은 전기광학적 물성을 효과적으로 제어할 수 있는 새로운 유기 반도체 제조 방법을 제공하고자 한다.  Accordingly, in the present invention, it is possible to increase the chemical resistance of the organic semiconductor and thereby to improve the electrical properties of the organic electronic device, and to effectively control the physicochemical or electro-optical properties of the organic semiconductor surface or bulk. It is intended to provide a semiconductor manufacturing method.
이와 관련하여, 대한민국 공개특허 제10-2010-0006294 호(발명의 명칭: 자기 조립 유기겔에 기초한 유기 나노섬유 구조와 이를 이용한 유기 나노섬유 트랜지스터 및 이들의 제조방법)는 간편한 웨트 프로세스로 게이트 절연막을 형성할 수 있고 트랜지스터 특성이 우수하고, 밀착성이 양호하고 내구성이 우수한 유기 박막 트랜지스터의 제조 방법을 개시하고 있다.In this regard, Korean Patent Laid-Open Publication No. 10-2010-0006294 (name of the invention: an organic nanofiber structure based on a self-assembled organic gel, an organic nanofiber transistor using the same, and a method of manufacturing the same) has a gate insulating film using a simple wet process. A method for producing an organic thin film transistor which can be formed, has excellent transistor characteristics, good adhesion, and excellent durability is disclosed.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))을 포함하는 겔화된 반도체 용액을 적층하는 용액공정을 통해 유기반도체 박막의 표면 혹은 벌크 물성을 효과적으로 제어하여 고성능 혹은 고민감도 유기 반도체 소자를 제조하는 방법을 제공한다. The present invention is to solve the above-mentioned problems of the prior art, to laminate a gelled semiconductor solution containing a hydroxyl group (M-OH, M (metal)), such as silanol group (silanol group (Si-OH)) It provides a method of manufacturing a high-performance or high-sensitivity organic semiconductor device by effectively controlling the surface or bulk properties of the organic semiconductor thin film through a solution process.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problem to be achieved by the present embodiment is not limited to the technical problem as described above, and other technical problems may exist.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 측면에 따른 유기 반도체 소자의 제조방법은 유전체가 형성된 기판상에 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))을 포함하는 반도체 용액을 적층하는 단계를 포함한다. As a technical means for achieving the above-described technical problem, a method of manufacturing an organic semiconductor device according to the first aspect of the present invention is a hydroxyl group (M, such as silanol group (Si-OH) on a substrate on which a dielectric is formed (M) Stacking a semiconductor solution comprising -OH, M (metal)).
본 발명의 제 2 측면에 따른 유기 소재 표면 혹은 벌크에 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))을 포함하는 유기반도체 용액을 적층하는 단계를 포함한다. Stacking an organic semiconductor solution containing a hydroxyl group (M-OH, M (metal)) such as a silanol group (Si-OH) on the surface or bulk of the organic material according to the second aspect of the present invention. Include.
본 발명의 제 3 측면에 따른 유기 반도체 소자는 게이트 전극, 게이트 전극 상에 형성된 유전체층, 유전체층 상에 형성된 반도체층 및 반도체층 상에 형성된 소스 전극과 드레인 전극을 포함한다. 이때, 반도체층은 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))을 포함하는 반도체 용액이 겔화되어 형성된 것이다.The organic semiconductor device according to the third aspect of the present invention includes a gate electrode, a dielectric layer formed on the gate electrode, a semiconductor layer formed on the dielectric layer, and a source electrode and a drain electrode formed on the semiconductor layer. In this case, the semiconductor layer is formed by gelling a semiconductor solution containing a hydroxyl group (M-OH, M (metal)) such as silanol group (Si-OH).
전술한 본 발명의 과제 해결 수단에 의하면 유기반도체의 표면 혹은 벌크 물성을 제어하기 위해서 사용되는 자기조립박막층 화합물의 실라놀기와 유기반도체 용액의 실라놀기가 축합 반응을 하게되고, 이를 통해 홀 트랩이 제거되어, 트랜지스터 소자특성을 향상시킬 수 있다. 또한, 이를 통해 유기 반도체 소자의 내화학성, 내구성과 전기적 특성을 효과적으로 제어할 수 있다. According to the aforementioned problem solving means of the present invention, the silanol group of the self-assembled thin film layer compound and the silanol group of the organic semiconductor solution used to control the surface or bulk physical properties of the organic semiconductor undergo a condensation reaction, thereby eliminating the hole trap. Thus, the transistor element characteristics can be improved. In addition, it is possible to effectively control the chemical resistance, durability and electrical properties of the organic semiconductor device.
도 1는 본 발명의 일 실시예에 따른 유기 반도체 소자의 제조 방법을 도시한 순서도이다. 1 is a flowchart illustrating a method of manufacturing an organic semiconductor device according to an embodiment of the present invention.
도 2a 및 2b는 본 발명의 일 실시예에 따른 유기 반도체 소자의 제조 방법을 설명하기 위한 도면이다.2A and 2B are diagrams for describing a method of manufacturing an organic semiconductor device according to an embodiment of the present invention.
도 3는 본 발명의 일 실시예에 따른 반도체층을 이용하여 제조된 유기 반도체 스위칭 소자를 도시한 도면이다.3 is a view illustrating an organic semiconductor switching device manufactured using a semiconductor layer according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 반도체층을 이용하여 제조된 유기 반도체 스위칭 소자를 도시한 도면이다.4 is a diagram illustrating an organic semiconductor switching device manufactured using a semiconductor layer according to an embodiment of the present invention.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 유기 반도체 소자의 실험 특성을 도시한 도면이다.5A and 5B illustrate experimental characteristics of an organic semiconductor device according to an embodiment of the present invention.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 유기 반도체 소자의 실험 특성을 도시한 도면이다.6A and 6B illustrate experimental characteristics of an organic semiconductor device according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. . In addition, when a part is said to "include" a certain component, which means that it may further include other components, except to exclude other components unless otherwise stated.
본 발명에서 사용되는 유기반도체는 구성 탄소원자 간의 단일결합과 이중결합이 교대로 반복되는 π-공액 구조를 갖는 특징이 있다. 대표적인 π-공액 구조의 고분자 물질로는 폴리아세틸렌(polyacetylene), 폴리피롤(polypyrrole), 폴리아닐린(polyaniline), 폴리치오펜(polythiophene(PTh)), 폴리페닐렌비닐렌 (poly(p-phenylenevinylene, PPV)) 등과 이들의 유도체(derivative)가 있으며, π-공액 구조 단분자(small molecule)의 예로는 펜타센(pentacene), 페릴렌(perylene), 루브렌(rubrene), 및 프탈로시아닌(phthalocyanine) 등이 있다.The organic semiconductor used in the present invention is characterized by having a π-conjugated structure in which a single bond and a double bond between constituent carbon atoms are alternately repeated. Representative π-conjugated polymer materials include polyacetylene, polypyrrole, polyaniline, polythiophene (PTh), and polyphenylenevinylene (PPV). ), And derivatives thereof. Examples of π-conjugated structural small molecules include pentacene, perylene, rubrene, and phthalocyanine. .
도 1은 본 발명의 일 실시예에 따른 유기 반도체 소자의 제조 방법을 도시한 순서도이고, 도 2a 및 도 2b는 본 발명의 일 실시예에 따른 유기 반도체 소자의 제조 방법을 설명하기 위한 도면이다.1 is a flowchart illustrating a method of manufacturing an organic semiconductor device according to an embodiment of the present invention, and FIGS. 2A and 2B are diagrams for describing a method of manufacturing an organic semiconductor device according to an embodiment of the present invention.
먼저, 반도체 층을 형성할 유기 반도체 용액을 준비한다(S100).First, an organic semiconductor solution for forming a semiconductor layer is prepared (S100).
본 발명에서는 고분자 반도체(diketopyrrolo-pyrrole-dithiophene-thienothiophene, DPP-DTT)를 용매에 섞어 반도체 용액을 제조한 후, 유기 금속 화합물 전구체 원액을 넣고 교반하여 유기 반도체 용액을 생성한다.In the present invention, after preparing a semiconductor solution by mixing a polymer semiconductor (diketopyrrolo-pyrrole-dithiophene-thienothiophene, DPP-DTT) in a solvent, the organic metal compound precursor stock solution is added and stirred to produce an organic semiconductor solution.
여기에서 유기용매로 사용되는 물질은 클로로포름, 다이클로로메탄, 아세톤, 피리딘, 테트라하이드로퓨란, 클로로벤젠, 다이클로로벤젠, 자일렌, 톨루엔 중에 하나이거나 그들의 혼합용액으로 이루어진 것을 포함할 수 있다.Herein, the material used as the organic solvent may include one of chloroform, dichloromethane, acetone, pyridine, tetrahydrofuran, chlorobenzene, dichlorobenzene, xylene, toluene, or a mixture thereof.
또한, 고분자 반도체로는 일반적으로 사용되는 유기 반도체 물질로서 특별히 한정되지 않지만, 캐리어 이동도가 높은 재료가 바람직하다. 구체적으로는 폴리-3-헥실티오펜, 폴리벤조티오펜 등의 폴리티오펜류, 폴리피롤류, 폴리(p-페닐렌비닐렌) 등의 폴리(p-페닐렌비닐렌)류, 폴리아닐린류, 폴리아세틸렌류, 폴리디아세틸렌류, 폴리카르바졸류, 폴리푸란, 폴리벤조푸란 등의 폴리푸란류, 피리딘, 퀴놀린, 페난트롤린, 옥사졸, 옥사디아졸 등의 질소 함유 방향환을 구성 단위로 하는 폴리헤테로아릴류, 안트라센, 피렌, 나프타센, 펜타센, 헥사센, 루브렌 등의 축합 다환 방향족 화합물, 푸란, 티오펜, 벤조티오펜, 디벤조푸란, 피리딘, 퀴놀린, 페난트롤린, 옥사졸, 옥사디아졸 등의 질소 함유 방향족 화합물, 4,4'-비스(N-(3-메틸페닐)-N-페닐아미노)비페닐로 대표되는 방향족 아민 유도체, 비스(N-알릴카르바졸) 또는 비스(N-알킬카르바졸) 등의 비스카르바졸 유도체, 피라졸린 유도체, 스틸벤계 화합물, 히드라존계 화합물, 구리 프탈로시아닌 등의 금속 프탈로시아닌류, 구리 포르피린 등의 금속 포르피린류, 디스티릴벤젠 유도체, 아미노스티릴 유도체, 방향족 아세틸렌 유도체, 나프탈렌-1,4,5,8-테트라카르복실산디이미드, 페릴렌-3,4,9,10-테트라카르복실산디이미드 등의 축합환 테트라카르복실산디이미드류, 메로시아닌, 페녹사진, 로다민 등의 유기 색소 등을 예로서 들 수 있다.In addition, the polymer semiconductor is not particularly limited as a generally used organic semiconductor material, but a material having high carrier mobility is preferable. Specific examples include polythiophenes such as poly-3-hexylthiophene and polybenzothiophene, poly (p-phenylenevinylene) such as polypyrroles and poly (p-phenylenevinylene), polyaniline, Nitrogen-containing aromatic rings such as polyacetylenes, polydiacetylenes, polycarbazoles, polyfurans such as polyfuran and polybenzofuran, pyridine, quinoline, phenanthroline, oxazole and oxadiazole as structural units Condensed polycyclic aromatic compounds such as polyheteroaryls, anthracene, pyrene, naphthacene, pentacene, hexacene, rubrene, furan, thiophene, benzothiophene, dibenzofuran, pyridine, quinoline, phenanthroline, oxa Nitrogen-containing aromatic compounds such as sol and oxadiazole, aromatic amine derivatives represented by 4,4'-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl, bis (N-allylcarbazole) or Biscarbazole derivatives such as bis (N-alkylcarbazole), pyrazoline derivatives, stilbene-based compounding , Metal phthalocyanines such as hydrazone compound, copper phthalocyanine, metal porphyrins such as copper porphyrin, distyrylbenzene derivative, aminostyryl derivative, aromatic acetylene derivative, naphthalene-1,4,5,8-tetracarboxylic acid imide And organic pigments such as condensed cyclic tetracarboxylic acid diimides such as perylene-3,4,9,10-tetracarboxylic acid diimide, merocyanine, phenoxazine, and rhodamine.
이때, 유기 금속 화합물 전구체(organometallic precursors)로는 하기의 화학식 1의 물질을 사용한다.At this time, the organometallic precursors (organometallic precursors) using the material of the formula (1).
[화학식 1][Formula 1]
Figure PCTKR2017000461-appb-I000001
Figure PCTKR2017000461-appb-I000001
전구체는 금속(M) 및 반응기(X)를 포함할 수 있다. 이때, 반응기는 용도에 맞게 다양한 물질을 합성하여 형성된 것일 수 있다. The precursor may comprise a metal (M) and a reactor (X). In this case, the reactor may be formed by synthesizing various materials to suit the purpose.
화학식 1의 Y는 각각 알킬기, 시클로알킬기, 복소환기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 헤테로아릴기, 할로겐 원자, 시아노기, 포르밀기, 알킬카르보닐기, 아릴카르보닐기, 카르복실기, 알콕시카르보닐기, 아릴옥시카르보닐기, 알킬카르보닐옥시기, 아릴카르보닐옥시기, 카르바모일기, 아미노기 또는 실릴기 중에서 선택될 수 있다.Y in Formula 1 is an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an arylether group, an arylthioether group, an aryl group, a heteroaryl group, a halogen atom, Cyano group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group.
일반적으로 금속(M)은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg 및 Uub로 이루어진 군에서 선택된 하나 이상의 금속을 포함할 수 있으나, 반드시 이들로 한정되지 않는다.In general, the metal (M) is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn , Ge, Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg and Uub Although it may contain the above metal, it is not necessarily limited to these.
또한, 반응기(X)는 각각 수소, 알킬기, 시클로알킬기, 복소환기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 헤테로아릴기, 할로겐 원자, 시아노기, 포르밀기, 알킬카르보닐기, 아릴카르보닐기, 카르복실기, 알콕시카르보닐기, 아릴옥시카르보닐기, 알킬카르보닐옥시기, 아릴카르보닐옥시기, 카르바모일기, 아미노기 또는 실릴기 중에서 선택될 수 있다.In addition, the reactor (X) is each hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group , Halogen atom, cyano group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group can be selected. .
이러한 공정에 따라 유기 반도체 용액은 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))을 포함하게 된다.According to this process, the organic semiconductor solution includes a hydroxyl group (M-OH, M (metal)) such as a silanol group (Si-OH).
다음으로, 이와 같이 생성된 졸화된 반도체 용액을 대상체의 표면에 도포한 후 졸-겔법에 따라 겔화하여 겔화된 유기 반도체층을 형성한다(S110). Next, the solvated semiconductor solution thus produced is applied to the surface of the object, and then gelled by a sol-gel method to form a gelled organic semiconductor layer (S110).
도 2a 및 도 2b에 도시된 바와 같이, 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))을 포함하는 유기 반도체 용액을 적층하고 이를 겔화시키는 정도에 따라 유기 반도체 표면 및 벌크에는 다수의 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))이 존재하게 되고, 이는 반응기로서 기능하게 된다. 한편, 유기 반도체층(10)의 겔화 과정 중에 어닐링 공정이 추가될 수 있다.As shown in FIGS. 2A and 2B, an organic semiconductor solution containing a hydroxyl group (M-OH, M (metal)), such as a silanol group (Si-OH), is laminated and gelled. Therefore, there are a large number of hydroxyl groups (M-OH, M (metal)) such as silanol groups (Si-OH) on the surface and bulk of the organic semiconductor, which functions as a reactor. Meanwhile, an annealing process may be added during the gelation process of the organic semiconductor layer 10.
다음으로, 유기 반도체층(10)이 형성된 후에 자기조립단분자층(20)을 형성한다(S120).Next, after the organic semiconductor layer 10 is formed, the self-assembled monolayer 20 is formed (S120).
본 발명의 경우 유기 반도체층(10)의 표면 혹은 벌크에 다수의 반응기가 존재하므로, 기상공정이 아닌 용액공정을 통해 자기조립단분자층(20)을 형성할 수 있다. 또한, 자기조립단분자층과 겔화된 유기 반도체층간의 화학적 결합을 통해 표면 및 내부 물성의 제어가 가능하다. 구체적으로, 도 2a에 도시된 바와 같이, 초기열처리를 진행하지 않은 경우, 유기금속전구체가 유기 반도체 벌크에 들어간 형상으로 결합하고, 도 2b에 도시된 바와 같이 초기열처리를 진행한 경우 유기금속전구체가 유기 반도체층(10) 표면 상에 결합한 형태로 형성될 수 있다. In the case of the present invention, since a plurality of reactors exist on the surface or bulk of the organic semiconductor layer 10, the self-assembled monolayer 16 can be formed through a solution process rather than a gas phase process. In addition, surface and internal physical properties can be controlled through chemical bonding between the self-assembled monolayer and the gelled organic semiconductor layer. Specifically, as shown in FIG. 2A, when the initial heat treatment is not performed, the organometallic precursor is bonded in a shape into the organic semiconductor bulk, and when the initial heat treatment is performed as shown in FIG. 2B, the organometallic precursor is It may be formed in a form bonded to the surface of the organic semiconductor layer 10.
한편, 자기조립단분자층 형성용 화합물로는 화학식 2의 물질을 사용한다. Meanwhile, a compound of Chemical Formula 2 is used as the compound for forming the self-assembled monolayer.
[화학식 2][Formula 2]
Figure PCTKR2017000461-appb-I000002
Figure PCTKR2017000461-appb-I000002
X는 -NH2, -CH3, -SH, -COOH, -CF3, Cl 과 같은 비방향족 물질 및 임의의 방향족으로 이루어지는 군으로부터 선택되고, 이외에도 전자를 당기는 전자받개 그룹과 전자를 미는 전자주개 그룹등을 모두 포함한다.X is selected from the group consisting of non-aromatic substances such as -NH 2 , -CH 3 , -SH, -COOH, -CF 3 , Cl and any aromatics, and in addition to the electron acceptor group for attracting electrons and electron donor for pushing electrons We include all groups.
Y는 금속 및 반응기를 포함할 수 있다. 이때 반응기는 용도에 맞게 다양한 물질을 합성하여 형성된 것일 수 있다. Y may comprise a metal and a reactor. In this case, the reactor may be formed by synthesizing various materials to suit the purpose.
일반적으로 금속은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg 및 Uub로 이루어진 군에서 선택된 하나 이상의 금속을 포함할 수 있으나, 반드시 이들로 한정되지 않는다.Generally, the metals are Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, One or more metals selected from the group consisting of Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg and Uub It may include, but is not limited to these.
또한, 반응기는 각각 수소, 알킬기, 시클로알킬기, 복소환기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 헤테로아릴기, 할로겐 원자, 시아노기, 포르밀기, 알킬카르보닐기, 아릴카르보닐기, 카르복실기, 알콕시카르보닐기, 아릴옥시카르보닐기, 알킬카르보닐옥시기, 아릴카르보닐옥시기, 카르바모일기, 아미노기 또는 실릴기로 이루어지는 군으로부터 선택될 수 있다. In addition, the reactor is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen atom, respectively , Cyano group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group.
화학식 2의 R은 알킬사슬 등을 포함하는 지방족(aliphatic)그룹 혹은 벤젠, 싸이오펜 등을 포함하는 방향족(aromatic) 그룹 중에서 선택될 수 있으며, n은 자연수일 수 있다.R in Formula 2 may be selected from aliphatic groups including alkyl chains, or aromatic groups including benzene, thiophene, and the like, and n may be a natural number.
[화학식 2]의 예로는 다음과 같은 유기 금속 화합물 전구체(organometallic precursors)를 사용할 수 있다.For example, the following organometallic precursors may be used.
옥틸트리클로로실란(Octyltrichlorosilane; OTS), 옥틸트리메톡시실란(Octyltrimethoxysilane; OTMS), 옥틸트리에톡시실란(Octyltriethoxysilane; OTES), 헥사메틸디실란(Hexamethyldisilazane; HMDS), 옥타데실트리클로로실란 (Octadecyltrichlorosilane; ODTS), 옥타데실트리메톡시실란(Octadecyltrimethoxysilane; OTMS), 옥타데실트리에톡시실란(Octadecyltriethoxysilane; OTE), (3-아미노프로필)트리클로로실란[(3-Aminopropyl)trichlorosilane], (3-아미노프로필)트리메톡시실란[(3-Aminopropyl)trimethoxysilane; APTMS], (3-아미노프로필)트리에톡시실란[(3-Aminopropyl)triethoxysilane; APTES], 퍼플루오로데실트리클로로실란(Perfluorodecyltrichlorosilane; PFTS), 퍼플루오로데실트리메톡시실란(Perfluorodecyltrimethoxysilane; PFMS), 퍼플라오로데실트리에톡시실란(Perfluorodecyltriethoxysilane; PFES), 메르캅토프로필트리클로로실란(Mercaptopropyltrichlorosilane; MPTCS), 메르캅토프로필트리메톡시실란(Mercaptopropyltrimethoxysilane; MPTMS), 메르캅토프로필트리에톡시실란(Mercaptopropyltriethoxysilane; MPTES), (헵타데카플루오로-1,1,2,2-테트라하이드로데실)트리클로로실란[(Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane; FDTS], (헵타데카플로오로-1,1,2,2-테트라하이드로데실)트리메톡시실란[(Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane; FDMS], (헵타데카플로오로-1,1,2,2-테트라하이드로데실)트리에톡시실란[(Heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane; FDES], 퍼플루오로데실트리클로로실란(1H,1H,2H,2H-perfluorodecyltrichlorosilane; FOTS), 퍼플루오로데실트리메톡시실란(1H,1H,2H,2H-perfluorodecyltrimethoxysilane; FOMS), 퍼플루오로데실트리에톡시실란(1H,1H,2H,2H-perfluorodecyltriethoxysilane; FOES), 디클로로디메틸실란(Dichlorodimethylsilane; DDMS) , 트리클로로메틸실란(Trichloromethylsilane; TCMS) 및 이들의 조합들로 이루어진 군에서 선택될 수 있다.Octyltrichlorosilane (OTS), Octyltrimethoxysilane (OTMS), Octyltriethoxysilane (OCT), Hexamethyldisilazane (HMDS), Octadecyltrichlorosilane (Octadecyltrichlorosilane; ODTS), octadecyltrimethoxysilane (OTMS), octadecyltriethoxysilane (OTE), (3-aminopropyl) trichlorosilane [(3-Aminopropyl) trichlorosilane], (3-aminopropyl ) Trimethoxysilane [(3-Aminopropyl) trimethoxysilane; APTMS], (3-aminopropyl) triethoxysilane [(3-Aminopropyl) triethoxysilane; APTES], Perfluorodecyltrichlorosilane (PFTS), Perfluorodecyltrimethoxysilane (PFMS), Perfluorodecyltriethoxysilane (PFES), Mercaptopropyltrichlorosilane (Mercaptopropyltrichlorosilane; MPTCS), mercaptopropyltrimethoxysilane (MPTMS), mercaptopropyltriethoxysilane (MPTES), (heptadecafluoro-1,1,2,2-tetrahydrodecyl) Trichlorosilane [(Heptadecafluoro-1,1,2,2-tetrahydrodecyl) trichlorosilane; FDTS], (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane [(Heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane; FDMS], (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane [(Heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane; FDES], perfluorodecyltrichlorosilane (1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane; FOTS), perfluorodecyltrimethoxysilane (1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane; FOMS), perfluorodecyl Triethoxysilane (1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (FOES), dichlorodimethylsilane (DDMS), trichloromethylsilane (TCMS) and combinations thereof.
이와 같은 공정을 통해 유기 반도체 표면 및 벌크 물성을 제어할 수 있다. 예를 들면, 유기 반도체 소자의 제조를 위해 본 발명의 일 실시예에 따른 자기조립단분자층이 형성된 반도체층의 상부에 용액 공정에 기반한 추가 공정을 수행하여, 각종 유기 반도체 소자를 제조할 수 있다.Through this process it is possible to control the surface and bulk properties of the organic semiconductor. For example, various organic semiconductor devices may be manufactured by performing an additional process based on a solution process on top of a semiconductor layer on which a self-assembled monolayer according to an embodiment of the present invention is formed to manufacture an organic semiconductor device.
다음으로, 자기조립단분자층(20)이 형성된 유기 반도체 층(10)의 상부에 절연층 또는 소스 전극 및 드레인 전극과 같은 각종 전극을 추가적으로 형성하여 유기 반도체 소자를 제조한다(S130).Next, an organic semiconductor device is manufactured by additionally forming various electrodes such as an insulating layer or a source electrode and a drain electrode on the organic semiconductor layer 10 on which the self-assembled monolayer 20 is formed (S130).
예를 들어, 유기 트랜지스터를 제조할 경우, 절연층과 각종 전극을 추가적으로 형성하여 유기 반도체 소자를 제조한다. 구체적인 구성에 대해서는 도면을 통해 설명하기로 한다.For example, when manufacturing an organic transistor, an insulating layer and various electrodes are additionally formed to manufacture an organic semiconductor device. A detailed configuration will be described with reference to the drawings.
도 3은 본 발명의 일 실시예에 따른 반도체층을 이용하여 제조된 유기 반도체 스위칭 소자를 도시한 도면이다.3 is a view illustrating an organic semiconductor switching device manufactured using a semiconductor layer according to an embodiment of the present invention.
도시된 유기 반도체 스위칭 소자(300)는 탑 게이트(Top gate) 구조의 OFET(Organic FET)를 도시한 것이다. 유기 반도체 스위칭 소자(300)는 기판(310), 드레인 전극(320), 소스 전극(322), 반도체층(330), 유전체층(340) 및 게이트 전극(350)을 포함한다.The illustrated organic semiconductor switching device 300 illustrates an organic FET (OFET) having a top gate structure. The organic semiconductor switching device 300 includes a substrate 310, a drain electrode 320, a source electrode 322, a semiconductor layer 330, a dielectric layer 340, and a gate electrode 350.
유기 반도체층(330)은 앞서 설명한 실라놀기를 포함하는 유기 반도체 용액을 겔화하여 형성한 후 자기조립단분자층을 형성한 것이다. 유기 반도체층(330)은 겔화된 상태여서 내화학성을 가지고 있고, 다수의 반응기를 포함하고 있어 자기조립단분자층을 형성하여 유전체층과의 표면 및 벌크 물성을 제어할 수 있다. 또한, 다양한 형태의 유전체층과의 적용이 가능하며, 다양한 종류의 화학 센서 또는 바이오 센서로의 응용이 가능하다.The organic semiconductor layer 330 is formed by gelling the organic semiconductor solution containing the silanol group described above, and then forming a self-assembled monolayer. The organic semiconductor layer 330 is in a gelled state and has chemical resistance, and includes a plurality of reactors to form a self-assembled monolayer, thereby controlling the surface and bulk physical properties of the dielectric layer. In addition, the present invention can be applied to various types of dielectric layers, and to various types of chemical sensors or biosensors.
먼저, 기판(310)상에 드레인 전극(320)과 소스 전극(322)을 형성한 상태에서 앞서 도 1 및 2의 공정을 통해 유기 반도체층(330)을 형성한다. First, in the state where the drain electrode 320 and the source electrode 322 are formed on the substrate 310, the organic semiconductor layer 330 is formed through the processes of FIGS. 1 and 2.
유기 반도체층(330)의 형성후에 유전체층(340)을 형성하고, 그 상부에 게이트 전극(350)을 형성하는 과정을 통해 탑 게이트 구조의 유기 반도체 스위칭 소자(300)를 제조할 수 있다.After the formation of the organic semiconductor layer 330, the dielectric layer 340 may be formed and the gate electrode 350 may be formed on the organic semiconductor switching device 300 having a top gate structure.
도 4는 본 발명의 일 실시예에 따른 반도체층을 이용하여 제조된 유기 반도체 스위칭 소자를 도시한 도면이다.4 is a diagram illustrating an organic semiconductor switching device manufactured using a semiconductor layer according to an embodiment of the present invention.
도시된 유기 반도체 스위칭 소자(500)는 바텀 게이트(bottom gate) 구조의 OFET(Organic FET)를 도시한 것이다. 유기 반도체 스위칭 소자(400)는 게이트 전극(410), 유전체층(420), 유기 반도체층(430), 드레인 전극(440) 및 소스 전극(442)을 포함한다.The illustrated organic semiconductor switching device 500 illustrates an organic FET having a bottom gate structure. The organic semiconductor switching device 400 includes a gate electrode 410, a dielectric layer 420, an organic semiconductor layer 430, a drain electrode 440, and a source electrode 442.
먼저, 앞서 도 1 및 2의 공정을 통해 게이트 전극(410)을 형성한 후 유전체층(420)을 형성하고, 유기 반도체층(430)을 형성한 후 자기조립단분자층을 형성한 뒤, 유기 반도체층(430)의 상부에 드레인 전극(440) 및 소스 전극(442)을 각각 기상 공정을 통해 형성한다.First, after the gate electrode 410 is formed through the processes of FIGS. 1 and 2, the dielectric layer 420 is formed, the organic semiconductor layer 430 is formed, and then a self-assembled monolayer is formed. The drain electrode 440 and the source electrode 442 are formed on the upper portion 430 through a vapor phase process.
<실시예> <Example>
반도체 용액은 고분자 반도체(diketopyrrolo-pyrrole-dithiophene-thienothiophene (DPP-DTT))를 80℃ 클로로벤젠 용액에 넣고, 약 1시간 30분 교반상태를 유지하여 생성한다. 이와 같이 생성된 고분자 반도체 용액 에 전구체 원액(1,8-비즈(트리클로로실릴)옥탄 (1,8-BIS(TRICHLOROSILYL)OCTANE))을 넣고, 약 80℃의 온도를 유지하며 1시간 가량 교반한다.The semiconductor solution is produced by placing a polymer semiconductor (diketopyrrolo-pyrrole-dithiophene-thienothiophene (DPP-DTT)) in a chlorobenzene solution at 80 ° C. and maintaining a stirring state for about 1 hour and 30 minutes. The precursor stock solution (1,8-bead (trichlorosilyl) octane (1,8-BIS (TRICHLOROSILYL) OCTANE)) was added to the polymer semiconductor solution thus prepared, and the mixture was stirred for about 1 hour while maintaining a temperature of about 80 ° C. .
이와 같이 생성된 반도체 용액을 유전체가 형성된 실리콘 기판에 스핀코팅 스프레이 코팅, 잉크젯 프린팅, 딥코팅, 드랍 캐스팅, 바 코팅과 같은 다양한 프린팅 방법 등 적어도 하나를 수행하여 반도체 층을 적층한다.The semiconductor solution thus produced is stacked on the silicon substrate by performing at least one of various printing methods such as spin coating, spray coating, inkjet printing, dip coating, drop casting, and bar coating on the silicon substrate on which the dielectric is formed.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 유기 반도체 소자의 실험 특성을 도시한 도면이고, 도 6a 및 도 6b는 본 발명의 일 실시예에 따른 유기 반도체 소자의 실험 특성을 도시한 도면이다.5A and 5B illustrate experimental characteristics of an organic semiconductor device according to an embodiment of the present invention, and FIGS. 6A and 6B illustrate experimental characteristics of an organic semiconductor device according to an embodiment of the present invention. to be.
도 5a에 도시된 바와 같이, 초기열처리를 진행하지 않은 경우(상부 그림)와 유기반도체 박막이 코팅된 기판을 180℃ 초기열처리를 진행한 경우(하부 그림)에서 자기조립단분자층으로서 옥타데실트리클로로실란(Octadecyltrichlorosilane; ODTS)를 적층한 경우, 옥타데실트리클로로실란를 적층하지 않은 경우에 비하여 접촉각이 각각 상승한 것을 확인할 수 있다. 또한, 도 5b에 도시된 바와 같이, 초기열처리를 진행하지 않은 경우(상부 그림)와 유기반도체 박막이 코팅된 기판을 180℃ 초기열처리를 진행한 경우(하부 그림)에서 자기조립단분자층으로서 (3-아미노프로필(트리에톡시실란))[3-Aminopropyl (triethoxysilane); APS]를 적층한 경우, (3-아미노프로필(트리에톡시실란))을 적층하지 않은 경우에 비하여 접촉각이 각각 감소한 것을 확인할 수 있다. 이와 같은 현상은 자기조립단분자층이 반도체층의 반응기와 결합하여, 유기 반도체 표면의 특성이 변화하였기 때문인 것으로 분석된다.As shown in FIG. 5A, octadecyltrichlorosilane as a self-assembled monolayer in the case where the initial heat treatment was not performed (upper figure) and the substrate coated with the organic semiconductor thin film was subjected to the initial heat treatment at 180 ° C. (lower figure). In the case of stacking (Octadecyltrichlorosilane; ODTS), the contact angles of the octadecyltrichlorosilane were not increased. In addition, as shown in FIG. 5B, when the initial heat treatment is not performed (upper figure) and the substrate coated with the organic semiconductor thin film is subjected to an initial heat treatment at 180 ° C. (lower figure), the self-assembled monolayer (3- Aminopropyl (triethoxysilane)) [3-Aminopropyl (triethoxysilane); APS], it can be seen that the contact angle is reduced respectively compared to the case where (3-aminopropyl (triethoxysilane)) is not laminated. This phenomenon may be attributed to the fact that the self-assembled monolayer is combined with the reactor of the semiconductor layer and the characteristics of the surface of the organic semiconductor have changed.
또한, 도 6a 에 도시된 바와 같이, SiO2 기판에 본 발명에 따른 유기 반도체층을 적층한 후 초기열처리를 진행하지 않은 경우(좌측 그래프)에서 옥타데실트리클로로실란을 적층하기전과 옥타데실트리클로로실란을 적층한 후의 그래프를 살펴보면, 문턱전압이 (-) 쉬프트되는 것을 확인할 수 있다. 초기열처리를 진행한 경우(우측 그래프)에서 옥타데실트리클로로실란을 적층하기전과 옥타데실트리클로로실란을 적층한 후의 그래프를 살펴보면, 문턱전압이 (+) 쉬프트되고 히스테리시스가 증가하는 것을 확인할 수 있다. 그리고, 도 6b에 도시된 바와 같이, SiO2 기판에 본 발명에 따른 유기 반도체층을 적층한 후 초기열처리를 진행하지 않은 경우(좌측 그래프)에서 (3-아미노프로필 (트리에톡시실란))을 적층하기전과 (3-아미노프로필(트리에톡시실란))을 적층한 후의 그래프를 살펴보면, 문턱전압이 각각 (-) 쉬프트되는 것을 확인할 수 있다. 초기열처리를 진행한 경우(우측 그래프)에서 (3-아미노프로필 (트리에톡시실란))을 적층하기전과 (3-아미노프로필(트리에톡시실란))을 적층한 후의 그래프를 살펴보면, 문턱전압이 각각 (-) 쉬프트되고 히스테리시스가 증가하는 것을 확인할 수 있다.In addition, as shown in FIG. 6A, after the organic semiconductor layer according to the present invention is laminated on a SiO 2 substrate and before the initial heat treatment is performed (left graph), before octadecyltrichlorosilane is deposited and octadecyltrichloro Looking at the graph after laminating the silane, it can be seen that the threshold voltage is shifted (-). In the case of the initial heat treatment (right graph), the graphs before stacking octadecyltrichlorosilane and after stacking octadecyltrichlorosilane can be seen that the threshold voltage is shifted positively and hysteresis increases. 6B, (3-aminopropyl (triethoxysilane)) is obtained in the case where the initial heat treatment is not performed after the organic semiconductor layer according to the present invention is laminated on a SiO 2 substrate (left graph). Looking at the graphs before stacking and after stacking (3-aminopropyl (triethoxysilane)), it can be seen that the threshold voltages are shifted by (-), respectively. In the case of the initial heat treatment (right graph), the graph before stacking (3-aminopropyl (triethoxysilane)) and after stacking (3-aminopropyl (triethoxysilane)) shows that the threshold voltage It can be seen that each shift is negative and hysteresis increases.
이는 초기열처리를 진행하지 않은 경우에 유기금속전구체인 옥타데실트리클로로실란 또는 (3-아미노프로필(트리에톡시실란))의 실라놀 그룹이 유기 반도체 표면 및 벌크층의 실라놀기와 결합함에 따라, 옥타데실트리클로로실란 또는 (3-아미노프로필(트리에톡시실란))가 결합하여 유기 반도체 층의 표면 접촉각이 변화하게 되고, 문턱전압과 오프커런트가 변화하는 효과가 발생함에 따른 것이다. 초기열처리를 진행한 경우에 유기금속전구체인 옥타데실트리클로로실란 또는 (3-아미노프로필(트리에톡시실란))의 실라놀 그룹이 유기 반도체 표면의 실라놀기와 결합함에 따라, 옥타데실트리클로로실란 또는 (3-아미노프로필 (트리에톡시실란))가 결합하여 유기 반도체 층의 표면 접촉각이 변화하게 되고, 문턱전압과 히스테리시스가 변화하는 효과가 발생함에 따른다. 그러나 도 2a에 도시된 바와 같이, 초기열처리를 진행하지 않은 경우는 초기열처리를 진행한 경우에 비해 표면뿐만 아니라 벌크층에 유기금속전구체가 결합을 하여 두드러지는 효과가 발생하게 되는 것을 확인할 수 있다.When the initial heat treatment is not performed, the silanol group of the organometallic precursor octadecyltrichlorosilane or (3-aminopropyl (triethoxysilane)) is bonded to the silanol group of the organic semiconductor surface and the bulk layer, The octadecyl trichlorosilane or (3-aminopropyl (triethoxysilane)) is combined to change the surface contact angle of the organic semiconductor layer, and the effect of changing the threshold voltage and off current. When the initial heat treatment is performed, octadecyltrichlorosilane is bonded to the silanol group of octadecyltrichlorosilane or (3-aminopropyl (triethoxysilane)), which is an organometallic precursor, on the surface of the organic semiconductor. Or (3-aminopropyl (triethoxysilane)) is bonded to change the surface contact angle of the organic semiconductor layer, the effect of changing the threshold voltage and hysteresis occurs. However, as shown in FIG. 2A, when the initial heat treatment is not performed, the prominent effect occurs because the organometallic precursor is bonded not only to the surface but also to the bulk layer.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.

Claims (14)

  1. 유기 반도체 소자의 제조 방법에 있어서,In the manufacturing method of an organic semiconductor element,
    기판상에 유기 반도체 용액을 도포하여 유기 반도체 층을 적층하는 단계 및Depositing an organic semiconductor layer by applying an organic semiconductor solution on a substrate; and
    상기 유기 반도체층 표면 또는 벌크에 자기조립단분자층을 형성하는 단계를 포함하는 유기 반도체 소자의 제조 방법.Forming a self-assembled monolayer on the surface or bulk of the organic semiconductor layer.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 유기 반도체 용액은 고분자 반도체 용액에 유기 금속 화합물 전구체 원액을 넣고 교반하여 생성된 것인 유기 반도체 소자 제조 방법.The organic semiconductor solution is an organic semiconductor device manufacturing method is produced by putting the organometallic compound precursor stock solution in a polymer semiconductor solution and stirred.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 유기 금속 화합물 전구체 원액으로서는 하기의 화학식 1의 물질을 사용하는 것인 유기 반도체 소자 제조 방법.An organic semiconductor device manufacturing method using the following Chemical Formula 1 as the organometallic compound precursor stock solution.
    [화학식 1][Formula 1]
    Figure PCTKR2017000461-appb-I000003
    Figure PCTKR2017000461-appb-I000003
    상기 M은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Gs, Mt, Ds, Rg 및 Uub로 이루어진 군에서 선택된 하나 이상의 금속이고,M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y At least one metal selected from the group consisting of Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Gs, Mt, Ds, Rg, and Uub,
    상기 Y는 알킬기, 시클로알킬기, 복소환기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 헤테로아릴기, 할로겐 원자, 시아노기, 포르밀기, 알킬카르보닐기, 아릴카르보닐기, 카르복실기, 알콕시카르보닐기, 아릴옥시카르보닐기, 알킬카르보닐옥시기, 아릴카르보닐옥시기, 카르바모일기, 아미노기 또는 실릴기 중에서 선택되고,Y is an alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen atom, cyano group, Formyl, alkylcarbonyl, arylcarbonyl, carboxyl, alkoxycarbonyl, aryloxycarbonyl, alkylcarbonyloxy, arylcarbonyloxy, carbamoyl, amino or silyl
    상기 X는 수소, 알킬기, 시클로알킬기, 복소환기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 헤테로아릴기, 할로겐 원자, 시아노기, 포르밀기, 알킬카르보닐기, 아릴카르보닐기, 카르복실기, 알콕시카르보닐기, 아릴옥시카르보닐기, 알킬카르보닐옥시기, 아릴카르보닐옥시기, 카르바모일기, 아미노기 또는 실릴기 중에서 선택이 됨.X is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen atom, sia No group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 자기조립단분자층은 하기의 화학식 2의 물질을 사용하는 것인 유기 반도체 소자 제조 방법.The self-assembled monolayer is an organic semiconductor device manufacturing method using a material of the formula (2).
    [화학식 2][Formula 2]
    Figure PCTKR2017000461-appb-I000004
    Figure PCTKR2017000461-appb-I000004
    상기 X는 -NH2, -CH3, -SH, -COOH, -CF3 또는 Cl과 같은 비방향족 물질 및 임이의 방향족 물질들로 이루어지는 군으로부터 선택되고, X is selected from the group consisting of non-aromatic substances such as —NH 2 , —CH 3 , —SH, —COOH, —CF 3 or Cl and any aromatics,
    상기 Y는 금속 및 반응기를 포함하며, Y includes a metal and a reactor,
    상기 금속은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg 및 Uub 로 이루어진 군에서 선택된 하나 이상의 금속을 포함하고, 상기 반응기는 각각 수소, 알킬기, 시클로알킬기, 복소환기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 헤테로아릴기, 할로겐 원자, 시아노기, 포르밀기, 알킬카르보닐기, 아릴카르보닐기, 카르복실기, 알콕시카르보닐기, 아릴옥시카르보닐기, 알킬카르보닐옥시기, 아릴카르보닐옥시기, 카르바모일기, 아미노기 또는 실릴기로 이루어진 군으로부터 선택되며, The metal is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y At least one metal selected from the group consisting of Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg and Uub In addition, the reactor is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen It is selected from the group consisting of an atom, cyano group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group,
    상기 R은 알킬사슬 등을 포함하는 지방족(aliphatic)그룹 혹은 벤젠, 싸이오펜 등을 포함하는 방향족(aromatic) 그룹 중에서 선택되며, n은 자연수임.R is selected from aliphatic groups including alkyl chains or aromatic groups including benzene, thiophene and the like, n is a natural number.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 유기 반도체 층을 적층하는 단계는Stacking the organic semiconductor layer
    고분자 반도체 용액에 전구체 원액을 넣고 교반하여 생성된 유기 반도체 용액을 상기 기판상에 도포한 후, 졸겔법에 따라 상기 유기 반도체 용액을 겔화하는 단계를 포함하는 것인 유기 반도체 소자 제조 방법.A method of manufacturing an organic semiconductor device comprising the step of applying a precursor stock solution to a polymer semiconductor solution by stirring and applying the resulting organic semiconductor solution onto the substrate, followed by gelling the organic semiconductor solution by a sol-gel method.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 유기 반도체 층을 적층하는 단계는Stacking the organic semiconductor layer
    고분자 반도체 용액에 전구체 원액을 넣고 교반하여 생성된 유기 반도체 용액을 상기 기판상에 스핀코팅, 스프레이 코팅, 잉크젯 프린팅, 딥코팅, 드랍 캐스팅, 바 코팅 중 적어도 하나를 수행하여 반도체 층을 적층하는 단계를 포함하는 것인 유기 반도체 소자 제조 방법.Stacking a semiconductor layer by spin coating, spray coating, inkjet printing, dip coating, drop casting, and bar coating on the organic semiconductor solution formed by adding a precursor stock solution to a polymer semiconductor solution and stirring the substrate; An organic semiconductor device manufacturing method comprising.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 유기 반도체 층의 적층 단계 수행전에 상기 기판의 상부에 드레인 전극 및 소스 전극을 형성하는 단계를 더 포함하고,Forming a drain electrode and a source electrode on the substrate before performing the laminating step of the organic semiconductor layer;
    상기 자기조립단분자층이 형성된 유기 반도체층의 상부에 절연층을 형성하는 단계; 및Forming an insulating layer on the organic semiconductor layer on which the self-assembled monolayer is formed; And
    상기 절연층에 게이트 전극을 형성하는 단계를 더 포함하는 유기 반도체 소자 제조 방법.And forming a gate electrode on the insulating layer.
  8. 유기 소재의 계면을 개질하는 방법에 있어서,In the method of modifying the interface of the organic material,
    기판상에 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))을 포함하는 유기 반도체 용액을 도포하여 유기 반도체 층을 적층하는 단계 및Stacking an organic semiconductor layer by applying an organic semiconductor solution containing a hydroxyl group (M-OH, M (metal)) such as a silanol group (Si-OH) on a substrate; and
    상기 유기 반도체층 표면 또는 벌크에 자기조립단분자층을 형성하는 단계를 포함하는 유기 소재의 계면 개질 방법.Forming a self-assembled monolayer on the surface or bulk of the organic semiconductor layer.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 유기 반도체 용액은 고분자 반도체 용액에 유기 금속 화합물 전구체 원액을 넣고 교반하여 생성된 것인 유기 소재의 계면 개질 방법.The organic semiconductor solution is an interface modification method of the organic material is produced by putting the organometallic compound precursor stock solution in a polymer semiconductor solution and stirred.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 유기 금속 화합물 전구체 원액으로서는 하기의 화학식 3의 물질을 사용하는 것인 유기 소재의 계면 개질 방법.The organic-metal compound precursor stock solution is a method of interfacial reforming of an organic material using the material of the formula (3).
    [화학식3][Formula 3]
    Figure PCTKR2017000461-appb-I000005
    Figure PCTKR2017000461-appb-I000005
    상기 M은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Gs, Mt, Ds, Rg 및 Uub로 이루어진 군에서 선택된 하나 이상의 금속이고,M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y At least one metal selected from the group consisting of Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Gs, Mt, Ds, Rg, and Uub,
    상기 Y는 알킬기, 시클로알킬기, 복소환기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 헤테로아릴기, 할로겐 원자, 시아노기, 포르밀기, 알킬카르보닐기, 아릴카르보닐기, 카르복실기, 알콕시카르보닐기, 아릴옥시카르보닐기, 알킬카르보닐옥시기, 아릴카르보닐옥시기, 카르바모일기, 아미노기 또는 실릴기 중에서 선택되고,Y is an alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen atom, cyano group, Formyl, alkylcarbonyl, arylcarbonyl, carboxyl, alkoxycarbonyl, aryloxycarbonyl, alkylcarbonyloxy, arylcarbonyloxy, carbamoyl, amino or silyl
    상기 X는 수소, 알킬기, 시클로알킬기, 복소환기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 헤테로아릴기, 할로겐 원자, 시아노기, 포르밀기, 알킬카르보닐기, 아릴카르보닐기, 카르복실기, 알콕시카르보닐기, 아릴옥시카르보닐기, 알킬카르보닐옥시기, 아릴카르보닐옥시기, 카르바모일기, 아미노기 또는 실릴기 중에서 선택이 됨.X is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen atom, sia No group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 자기조립단분자층은 하기의 화학식 4의 물질을 사용하는 것인 유기 소재의 계면 개질 방법.The self-assembled monolayer is an interface modification method of an organic material using the material of the formula (4).
    [화학식 4][Formula 4]
    Figure PCTKR2017000461-appb-I000006
    Figure PCTKR2017000461-appb-I000006
    상기 X는 -NH2, -CH3, -SH, -COOH, -CF3 또는 Cl 과 같은 비방향족 물질 및 임이의 방향족 물질들로 이루어지는 군으로부터 선택되고, X is selected from the group consisting of non-aromatic substances such as -NH 2 , -CH 3 , -SH, -COOH, -CF 3 or Cl and any aromatics,
    상기 Y는 금속 및 반응기를 포함하며, Y includes a metal and a reactor,
    상기 금속은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y, Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg 및 Uub 로 이루어진 군에서 선택된 하나 이상의 금속을 포함하고, 상기 반응기는 각각 수소, 알킬기, 시클로알킬기, 복소환기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 헤테로아릴기, 할로겐 원자, 시아노기, 포르밀기, 알킬카르보닐기, 아릴카르보닐기, 카르복실기, 알콕시카르보닐기, 아릴옥시카르보닐기, 알킬카르보닐옥시기, 아릴카르보닐옥시기, 카르바모일기, 아미노기 또는 실릴기로 이루어진 군으로부터 선택되며, The metal is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu, Zn, Pd, Ag, Au, Hg, Pt, Ta, Mo, Zr, Ta, Mg, Sn, Ge, Y At least one metal selected from the group consisting of Nb, Tc, Ru, Rh, Lu, Hf, W, Re, Os, Ir, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg and Uub In addition, the reactor is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen It is selected from the group consisting of an atom, cyano group, formyl group, alkylcarbonyl group, arylcarbonyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, carbamoyl group, amino group or silyl group,
    상기 R은 알킬사슬 등을 포함하는 지방족(aliphatic)그룹 혹은 벤젠, 싸이오펜 등을 포함하는 방향족(aromatic) 그룹 중에서 선택되며, n은 자연수임. R is selected from aliphatic groups including alkyl chains or aromatic groups including benzene, thiophene and the like, n is a natural number.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 유기 반도체 층을 적층하는 단계는Stacking the organic semiconductor layer
    고분자 반도체 용액에 전구체 원액을 넣고 교반하여 생성된 유기 반도체 용액을 상기 기판상에 도포한 후, 졸겔법에 따라 상기 유기 반도체 용액을 겔화하는 단계를 포함하는 것인 유기 소재의 계면 개질 방법.A method of interfacial reforming of an organic material, comprising applying a precursor stock solution to a polymer semiconductor solution and applying the resulting organic semiconductor solution onto the substrate, and then gelling the organic semiconductor solution according to a sol-gel method.
  13. 제 8 항에 있어서,The method of claim 8,
    상기 유기 반도체 층을 적층하는 단계는Stacking the organic semiconductor layer
    고분자 반도체 용액에 전구체 원액을 넣고 교반하여 생성된 유기 반도체 용액을 상기 기판상에 스핀코팅, 스프레이 코팅, 잉크젯 프린팅, 딥코팅, 드랍 캐스팅, 바 코팅 중 적어도 하나를 수행하여 반도체 층을 적층하는 단계를 포함하는 것인 유기 소재의 계면 개질 방법.Stacking a semiconductor layer by spin coating, spray coating, inkjet printing, dip coating, drop casting, and bar coating on the organic semiconductor solution formed by adding a precursor stock solution to a polymer semiconductor solution and stirring the substrate; Interface modification method of the organic material to contain.
  14. 유기 반도체 소자에 있어서,In an organic semiconductor device,
    게이트 전극,Gate electrode,
    상기 게이트 전극과 접하도록 형성된 유전체층,A dielectric layer formed to contact the gate electrode,
    상기 유전체층과 접하도록 형성된 유기 반도체 층 및 An organic semiconductor layer formed to contact the dielectric layer;
    상기 유기 반도체 층과 접하도록 형성된 소스 전극과 드레인 전극을 포함하되,A source electrode and a drain electrode formed to contact the organic semiconductor layer,
    상기 유기 반도체층은 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))을 포함하는 유기 반도체 용액이 겔화되어 형성된 것이고,The organic semiconductor layer is formed by gelling an organic semiconductor solution containing a hydroxyl group (M-OH, M (metal)) such as silanol group (silanol group, Si-OH),
    상기 유기 반도체층의 상부에는 상기 실라놀기(silanol group, Si-OH)와 같은 하이드록시 그룹(M-OH, M(금속))을 포함하는 반응기로서 활용하여 형성된 자기조립단분자층이 형성된 것인 유기 반도체 소자.An organic semiconductor having a self-assembled monolayer formed on top of the organic semiconductor layer by using as a reactor containing a hydroxyl group (M-OH, M (metal)) such as the silanol group (Si-OH) device.
PCT/KR2017/000461 2015-03-19 2017-01-13 Organic semiconductor device and method for preparing same WO2018004093A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020170079382A KR102038124B1 (en) 2016-06-27 2017-06-22 Method of manufacturing organic semiconductor device
PCT/KR2017/006734 WO2018004219A2 (en) 2016-06-27 2017-06-26 Method for manufacturing organic semiconductor device
US15/578,483 US10529937B2 (en) 2016-06-27 2017-06-26 Method of manufacturing organic semiconductor device
CN201780052766.6A CN109643760B (en) 2016-06-27 2017-06-26 Method for manufacturing organic semiconductor device
US16/192,399 US10991894B2 (en) 2015-03-19 2018-11-15 Compound of organic semiconductor and organic semiconductor device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160082390 2016-06-30
KR10-2016-0082390 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018004093A1 true WO2018004093A1 (en) 2018-01-04

Family

ID=60787169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000461 WO2018004093A1 (en) 2015-03-19 2017-01-13 Organic semiconductor device and method for preparing same

Country Status (1)

Country Link
WO (1) WO2018004093A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040029143A (en) * 2001-09-06 2004-04-03 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Surface Modifying Layers for Organic Thin Film Transistors
KR100708720B1 (en) * 2005-10-19 2007-04-17 삼성에스디아이 주식회사 A organic thin film transistor, a method for preparing the same and a flat panel display comprising the same
KR20120095965A (en) * 2009-11-18 2012-08-29 스미또모 가가꾸 가부시키가이샤 Device, thin film transistor, method for manufacturing the device and method for manufacturing the thin film transistor
KR20160055334A (en) * 2014-11-07 2016-05-18 서울시립대학교 산학협력단 Organic field-effect transistors, and method for preparing thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040029143A (en) * 2001-09-06 2004-04-03 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Surface Modifying Layers for Organic Thin Film Transistors
KR100708720B1 (en) * 2005-10-19 2007-04-17 삼성에스디아이 주식회사 A organic thin film transistor, a method for preparing the same and a flat panel display comprising the same
KR20120095965A (en) * 2009-11-18 2012-08-29 스미또모 가가꾸 가부시키가이샤 Device, thin film transistor, method for manufacturing the device and method for manufacturing the thin film transistor
KR20160055334A (en) * 2014-11-07 2016-05-18 서울시립대학교 산학협력단 Organic field-effect transistors, and method for preparing thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. F. CALHOUN ET AL.: "Electronic Functionalization of the Surface of Organic Semiconductors with Self-assembled Monolayers", DEPARTMENT OF PHYSICS AND ASTRONOMY, vol. 7, 18 November 2007 (2007-11-18), pages 84 - 89, XP055450768 *

Similar Documents

Publication Publication Date Title
JP5307349B2 (en) Functionalized heteroacenes and electronic devices made therefrom
KR102038124B1 (en) Method of manufacturing organic semiconductor device
US7319153B2 (en) 6,13-Bis(thienyl)pentacene compounds
TWI660529B (en) Organic thin film transistor and manufacturing method thereof
WO2012008483A1 (en) Organic semiconductor composition, organic thin film, and organic thin film transistor having same
JP2011519350A (en) Perylene-3,4: 9,10-tetracarboximide substituted with N, N&#39;-bis (fluorophenylalkyl) and its preparation and use
WO2015174749A1 (en) Carbon nanotube layer between layers, manufacturing method thereof and thin film transistor using same
EP2117059B1 (en) Organic Thin Film Transistors
KR20120085206A (en) Electronic device
KR20150135792A (en) Aromatic heterocyclic compound, manufacturing method thereof, organic semiconductor material, and organic semiconductor device
EP2474551B1 (en) Organic semiconductor compound, and transistor and electronic device including the same
EP2318420A1 (en) Solution processable organic semiconductors
CN111655684B (en) Novel substituted benzonaphthiophene compounds for organic electronic material
WO2014181910A1 (en) Diketopyrrolopyrrole polymer and organic electronic device containing same
CN101691420B (en) Organic semiconducting copolymer and organic electronic device including the same
US20060216851A1 (en) Dedoping of organic semiconductors
WO2018004093A1 (en) Organic semiconductor device and method for preparing same
KR20160112903A (en) Compound of organic semiconductor andmethod for manufacturing the same
EP3070755B1 (en) Method for manufacturing an organic semiconductor composition
WO2017078390A1 (en) Organic semiconductor layer comprising carbon nanotube, manufacturing method therefor, and thin film transistor using same
WO2018004084A1 (en) Organic semiconductor device and method for preparing same
US10991894B2 (en) Compound of organic semiconductor and organic semiconductor device using the same
KR20100021973A (en) Semiconducting polymers
WO2019009152A1 (en) Thin film transistor and polymer compound
KR20100021974A (en) Electronic device comprising semiconducting polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820370

Country of ref document: EP

Kind code of ref document: A1