WO2018003949A1 - Hollow fiber composite membrane module and method for producing same - Google Patents

Hollow fiber composite membrane module and method for producing same Download PDF

Info

Publication number
WO2018003949A1
WO2018003949A1 PCT/JP2017/024041 JP2017024041W WO2018003949A1 WO 2018003949 A1 WO2018003949 A1 WO 2018003949A1 JP 2017024041 W JP2017024041 W JP 2017024041W WO 2018003949 A1 WO2018003949 A1 WO 2018003949A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
separation layer
fiber membrane
membrane
module
Prior art date
Application number
PCT/JP2017/024041
Other languages
French (fr)
Japanese (ja)
Inventor
敬史 大亀
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018525279A priority Critical patent/JP6931490B2/en
Publication of WO2018003949A1 publication Critical patent/WO2018003949A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5223Polyphenylene oxide, phenyl ether polymers or polyphenylethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/66Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers

Definitions

  • the present invention relates to a hollow fiber composite membrane module suitable for water treatment by reverse osmosis or nanofiltration and a method for producing the same, and in particular, an external pressure filtration type hollow fiber comprising a yarn bundle of hollow fiber composite membranes provided with a separation layer on the outer surface.
  • the present invention relates to a high-performance external pressure filtration type hollow fiber composite membrane module and an efficient manufacturing method thereof that do not have a problem of performance deterioration caused by friction of a yarn bundle during module manufacture.
  • Water treatment by membrane separation especially water treatment using modules composed of reverse osmosis (Reverse Osmosis, RO) membranes or nanofiltration (Nanofiltration, NF) membranes, as well as separation of polymers, colloids and inorganic particles, NF membranes
  • Reverse Osmosis, RO reverse Osmosis
  • Nanofiltration, NF nanofiltration membranes
  • RO reverse Osmosis
  • NF nanofiltration
  • RO and NF membrane modules are used in fruit juice concentration processes, food processes such as beer enzyme separation, drinking water by desalination of seawater and brine, production of ultrapure water, production of sterile water for medical use, and valuable materials from wastewater. Has been established as an indispensable separation process.
  • the composite separation membrane is a membrane structure obtained by forming a thin separation layer having a thickness of several tens of nm to several ⁇ m on the surface of a hollow fiber support membrane having excellent mechanical properties and high water permeability. It is possible to obtain higher permselectivity than the asymmetric membrane structure obtained by the phase separation method.
  • the hollow fiber membrane module can be classified into an internal pressure filtration module and an external pressure filtration module.
  • the external pressure filtration type hollow fiber membrane module is composed of a yarn bundle formed by bundling hollow fiber membranes having a separation layer on the outer surface, and of these, a relatively thin hollow fiber membrane yarn having an outer diameter of 100 ⁇ m or more and 800 ⁇ m or less.
  • the module composed of bundles has a feature that the specific surface area (ratio of the surface area based on the outer diameter of the hollow fiber membrane in the volume of the filtration chamber in the module) is larger than that of other module configurations.
  • an external pressure filtration type hollow fiber membrane module having a composite membrane structure having a high permselectivity and comprising a bundle of hollow fiber membranes having a relatively small diameter is different from a separation membrane module of another form.
  • an advantage of the external pressure filtration type hollow fiber membrane module is that the room for designing the flow path in the module is large because the supply liquid flows outside the hollow fiber membrane.
  • various cleaning methods such as aeration, flushing and back pressure cleaning can be combined, which is excellent in terms of stable operation and life of the module.
  • FIG. 1 shows an outline of a general manufacturing process of an external pressure filtration type hollow fiber composite membrane module.
  • a general production process (a) a hollow fiber membrane production process, (b) a process of winding up several thousand to several million hollow fiber membranes to produce a yarn bundle, (C) a step of inserting a hollow fiber membrane yarn bundle into a housing such as a cylindrical pressure vessel, (d) a resin bonded end of the hollow fiber membrane yarn bundle, and then cutting the cured resin end face
  • Main steps include opening the end of the yarn membrane, and (e) moistening the yarn bundle of the hollow fiber membrane in the module with a solvent having a low surface tension such as alcohol, if necessary, and then hydrating the entire membrane.
  • a solvent having a low surface tension such as alcohol
  • the hollow fiber composite membrane has a fiber shape and has a dense and thin separation layer in the outer layer, in the production steps (a) to (e), between the yarn bundles of the hollow fiber membrane and the yarn There is a problem that it is difficult to avoid performance degradation of the separation layer due to friction between the fibers generated in the bundle.
  • the separation layer deteriorates due to not only the friction between fibers but also the friction between the fibers and the housing member, and the separation performance is serious. There is a problem that it is easy to cause a decrease.
  • Patent Document 1 discloses a method for producing a hollow fiber composite membrane in which a polyamide thin film crosslinked by interfacial polymerization is formed on the surface of a hollow fiber support membrane.
  • the polyamide separation layer is extremely fragile in terms of the abrasion resistance of the fiber surface in the module manufacturing process, although it is a very suitable structure in terms of being able to express high RO and NF membrane performance. And has the problem that it is difficult to avoid performance degradation due to friction in the manufacturing process described above.
  • Patent Document 2 as a method for reducing the inter-fiber friction in the yarn bundle of the hollow fiber membrane at the time of assembling the module, the high water absorption member is hollowed when the polyamide hollow fiber composite membrane is inserted into the module.
  • a method of inserting a yarn bundle with a yarn bundle into a housing is disclosed.
  • the present invention has been made in view of the problems of the prior art, and the object thereof is a hollow fiber having a relatively small diameter, in particular, provided on the outer surface with a separation layer having a high barrier property capable of separating RO and NF.
  • the present inventor completed an external pressure filtration type hollow fiber membrane module and a manufacturing method thereof based on the following knowledge.
  • a hollow fiber membrane made of a polymer having an anionic functional group and having a flexible and highly friction-resistant first separation layer on the outer surface as a protective layer is manufactured, and the module manufacturing steps (a) to (e) described above are performed.
  • a hollow fiber membrane module having a high filling rate and containing water.
  • the yarn bundle of the hollow fiber membrane having the first separated layer in the module and contained in the module is in contact with an aqueous solution of polyvinyl alcohol having at least one cationic functional group and polyvinyl alcohol having an anionic functional group.
  • a second separation composed of an adsorption thin film of polyvinyl alcohol is formed on the first separation layer by an alternating lamination method (Layer-by-Layer Assembly). A layer is formed.
  • the second separation layer is subjected to acetal crosslinking treatment to form a crosslinked thin film having a dense and high permselectivity.
  • the hollow fiber composite membrane module produced in this way is surprisingly composed of high-density hollow fiber membrane yarn bundles having a large number of contact points and entanglement points. Adsorption through the ionic interaction between the surface of the first separation layer and the cationic polyvinyl alcohol is performed very quickly and uniformly on the entire surface of each of the hollow fiber membranes. It was found that high separation performance applicable to RO and NF is expressed. The reason for this is that the modified polyvinyl alcohol having a certain cation number or a balance between the anion number and the degree of saponification is adsorbed on the surface of the hollow fiber membrane because the molecular dispersibility is very good in an aqueous solution. Later, it is considered that repulsive force is generated between the surfaces of the yarn bundle to prevent the hollow fiber membranes from sticking to each other in the yarn bundle.
  • the method that can collectively process the process of uniformly forming the separation layer in the module on the outer surface of the fiber bundle of the hollow fiber membrane is novel and has great advantages in the separation membrane industry.
  • the cross-linked polyamide separation layer is formed by the above-described interfacial polymerization method
  • the interfacial polymerization treatment is performed on the bundle of hollow fibers in the module as described above
  • defects at the contact points and entanglement points of the yarns As a result, it is extremely difficult to obtain a separation membrane that can withstand practical use.
  • it is difficult to directly apply another conventional method such as a polymer solution coating method and a spray method to a bundle of hollow fiber membranes.
  • the process of forming the second separation layer of the present invention is performed in a state where the hollow fiber membrane bundle is immersed in water in the module thus completed, an operation that may cause friction between the hollow fiber fibers is performed. None at all. Therefore, it is possible to easily obtain an external pressure filtration type hollow fiber membrane module having an advanced separation function without defects. Moreover, since the formation process of a 2nd separated layer is performed only by the simple process of flowing various aqueous solution in a module, it is very economical and efficient.
  • the present invention has been completed based on the above findings, and has the following configurations (1) to (8).
  • (1) Method for producing an external pressure filtration type hollow fiber composite membrane module comprising a bundle of hollow fiber membranes having an outer diameter of 100 ⁇ m or more and 800 ⁇ m or less, and a net hollow fiber membrane filling rate of 20% or more and 60% or less
  • the manufacturing method comprising the following steps (i) to (vi): (I) producing a hollow fiber membrane having a first separation layer made of a polymer containing an anionic functional group on the outer surface; (Ii) a step of winding the hollow fiber membrane to produce a yarn bundle, (Iii) inserting the yarn bundle of the hollow fiber membrane into a housing; (Iv) a step of resin-bonding at least one end of the yarn bundle of the hollow fiber membrane and performing an opening treatment; (V) A modified polyvinyl alcohol aqueous solution having at least one kind of cationic functional group or anionic functional group is brought into contact with the outer surface of the hollow fiber
  • a and b each represent a natural number of 1 or more
  • R 1 and R 2 represent —SO 3 M or —SO 3 H
  • M represents a metal element
  • Sulfonation rate expressed as a percentage of the number of repetitions of formula (V) to the total number of repetitions of formula (IV) and formula (V) in the sulfonated polyarylene ether copolymer is from 5% Is larger than 80%.
  • the sulfonated polymer constituting the first separation layer is a sulfonated polymer comprising a repeating structure of a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II).
  • m and n each represent a natural number of 1 or more
  • R 1 and R 2 represent —SO 3 M or —SO 3 H
  • M represents a metal element
  • a sulfonated polyarylene ether copolymer The sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (I) and formula (II) is greater than 5% and less than 80% .
  • a component of the hollow fiber membrane other than the first separation layer and the second separation layer of the hollow fiber membrane is composed of polyphenylene ether, according to any one of (1) to (3) Manufacturing method of hollow fiber composite membrane module of external pressure filtration type.
  • a first separation layer and a second separation layer are provided in this order on the outer surface of the hollow fiber membrane;
  • the first separating layer is composed of a polymer containing an anionic functional group, and
  • the modified polyvinyl having at least one cationic functional group or anionic functional group in the second separating layer Consists of cross-linked alcohol aldehydes.
  • a sulfonated polyarylene ether in which the polymer constituting the first separation layer has a repeating structure of a hydrophobic segment represented by the following formula (IV) and a hydrophilic segment represented by the following formula (V) The external pressure filtration type hollow fiber composite membrane module according to (5), wherein In the above formula, And And And And The same Y and W are not selected, a and b each represent a natural number of 1 or more, R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element, Sulfonation rate expressed as a percentage of the number of repetitions of formula (V) to the total number of repetitions of formula (IV) and formula (V) in the sulfonated polyarylene ether copolymer is from 5% Is larger than 80%.
  • the sulfonated polymer constituting the first separation layer is a sulfonated polymer comprising a repeating structure of a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II):
  • m and n represent a natural number of 1 or more, respectively, R 1 and R 2 represents -SO 3 M or -SO 3 H, M represents a metal element, sulfonated polyarylene ether copolymers
  • the sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (I) and formula (II) is greater than 5% and less than 80% .
  • the constituent part of the hollow fiber membrane other than the first separation layer and the second separation layer of the hollow fiber membrane is composed of polyphenylene ether, (5) to (7), The external pressure filtration type hollow fiber composite membrane module.
  • the external pressure filtration type hollow fiber composite membrane module of the present invention is a hollow fiber membrane in which a first separation layer as a protective layer is provided on the outer surface, and then a yarn bundle wound with the hollow fiber membrane is inserted into a housing. In this state, by passing a specific aqueous solution of polyvinyl alcohol, the second separation layer is formed on the first separation layer by the alternating lamination method, so that the defect of the separation layer on the outer surface due to friction does not occur. High water permeability and separability can be achieved.
  • the manufacturing method of the external pressure filtration type hollow fiber composite membrane module of the present invention only allows a desired liquid to pass through the module after filling the module with the hollow fiber membrane whose outer surface is protected by the first separation layer. Since the second separation layer can be formed, it is extremely economical and efficient.
  • FIG. 1 is a flowchart showing the manufacturing process of the hollow fiber membrane module.
  • FIG. 2 is a schematic explanatory view of a cross section of a hollow fiber membrane that can be used in the present invention.
  • FIG. 3 is a schematic explanatory view showing an example of an embodiment of the hollow fiber membrane module of the present invention.
  • FIG. 4 is a schematic explanatory view showing an example of another embodiment of the hollow fiber membrane module of the present invention.
  • FIG. 5 is a schematic explanatory view showing an example of still another embodiment of the hollow fiber membrane module of the present invention.
  • FIG. 6 is a schematic view showing the relationship between the outer diameter of the hollow fiber membrane and the specific surface area.
  • the method for producing an external pressure filtration type hollow fiber composite membrane module of the present invention includes the following steps (i) to (vi).
  • a modified polyvinyl alcohol aqueous solution having at least one kind of cationic functional group or anionic functional group is brought into contact with the outer surface of the hollow fiber membrane to form a second separation layer comprising an adsorption layer of the modified polyvinyl alcohol.
  • the first separation layer provided on the outer surface of the hollow fiber membrane is composed of a polymer having an anionic functional group, and is particularly preferably composed of a polymer having a sulfonic acid group, a carboxyl group, or a phosphonic acid group. More preferably, it is preferably composed of a polymer having a sulfonic acid group from the viewpoint of easy production or availability.
  • sulfonated polysulfone sulfonated polyimide, sulfonated polyarylene ether, sulfonated polysulfone, sulfonated polyphenylene ether (sulfonated polyphenylene oxide), sulfonated polyetherimide, sulfonated polyether ether ketone, sulfonated polyphenylene It is preferably composed of sulfide, sulfonated polybenzimidazole or the like. These polymers can have a high sulfonic acid group density while maintaining the mechanical strength of the first separation layer.
  • the sulfonated polymer is obtained by sulfonating a known polymer such as polyphenylene ether (polyphenylene oxide), polyimide, polysulfone, polyethersulfone, polyetherimide using chlorosulfuric acid or concentrated sulfuric acid.
  • a known polymer such as polyphenylene ether (polyphenylene oxide), polyimide, polysulfone, polyethersulfone, polyetherimide using chlorosulfuric acid or concentrated sulfuric acid.
  • More preferable examples include a sulfonated polymer obtained by copolymerizing a hydrophilic monomer having a sulfonic acid group and a hydrophobic monomer having no sulfonic acid group.
  • Such a copolymer sulfonated polymer can precisely control the amount of sulfonic acid group introduced with good reproducibility, and by selecting a desired monomer, it has excellent mechanical strength, high sulfonic acid group density and friction resistance. Can be compatible.
  • a sulfonated polymer having a polymer composed of a repeating structure of a hydrophobic segment represented by the following formula (IV) and a hydrophilic segment represented by the following formula (V) as a basic skeleton: Arylene ether (SPAE) is preferred.
  • a polymer exhibits a rigid molecular skeleton and excellent chemical durability, and has excellent mechanical strength and good friction resistance.
  • a and b each represent a natural number of 1 or more
  • R 1 and R 2 represent —SO 3 M or —SO 3 H
  • M represents a metal element
  • Sulfonation rate expressed as a percentage of the number of repetitions of formula (V) to the total number of repetitions of formula (IV) and formula (V) in the sulfonated polyarylene ether copolymer is from 5% Is larger than 80%.
  • a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II) A sulfonated polyarylene ether having a repeating structure of In the above formula, m and n each represent a natural number of 1 or more, R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element, and a sulfonated polyarylene ether copolymer
  • the sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (I) and formula (II) is greater than 5% and less than 80% .
  • the SPAEs represented by the above formulas (I), (II), (IV), and (V) have high mechanical strength due to high molecular structure, so that even if the sulfonic acid group density is increased, the SPAE swells. Capable of forming a flexible and strong film that is difficult to resist and excellent in friction resistance. Excellent characteristics as a first separation layer that forms the outer surface of a hollow fiber membrane bundle and inserts it into the housing. Have Furthermore, in the SPAEs represented by the formulas (I) and (II), the hydrophobic segment of the formula (I) contains a benzonitrile structure, so that it has excellent chemical durability and has a hydrophobic portion. Since the cohesive force becomes strong, a film structure in which hydrophilic domains are supported on a strong hydrophobic matrix is formed. As a result, it has a feature that both high sulfonic acid group density and friction resistance can be achieved.
  • the preferred ion exchange capacity IEC for the degree of sulfonation of the polymer is 0.5 to 3.0 meq. / G, and the preferred range of sulfonation rate DS is greater than 5% and less than 80%.
  • IEC and DS are lower than the above ranges, the anionic charge density on the surface of the first separation layer becomes small because there are too few sulfonic acid groups. Therefore, there is a tendency that the formation process of the second separation layer by the alternate lamination method described later does not proceed uniformly, which is not preferable.
  • IEC and DS are higher than the said range, since the hydrophilic property of a polymer becomes large too much and a 1st separated layer will swell excessively, it is unpreferable.
  • a more preferable IEC range is 0.7 to 2.9 meq. Further, the range of the sulfonation rate DS is more preferably 10% to 70%.
  • the hollow fiber membrane serving as the base material of the first separation layer can be an asymmetric membrane composed of the same polymer as the first separation layer (see (a1) in FIG. 2).
  • the above-mentioned sulfonated polymer is molded by a known phase separation method, for example, a wet phase separation method or a dry / wet phase separation method, so that a layer (skin layer) having a high polymer density can be easily separated on the hollow fiber outer layer side. Can be obtained as a layer.
  • the hollow fiber membrane used as the base material of the first separation layer is an asymmetric membrane made of a material different from that of the first separation layer, and a composite membrane in which the first separation layer is provided on the outer surface of the asymmetric membrane. It can also be a structure (see (b1) in FIG. 2). In the present invention, the structure of (b1) in FIG. 2 is preferable as the hollow fiber membrane provided with the first separation layer.
  • the constituent parts of the hollow fiber membrane excluding the first separation layer on the outer surface are polyphenylene ether (polyphenylene oxide), polysulfone, polyethersulfone, polyetherimide, polyketone, polyimide, polyacrylonitrile, polystyrene, polyvinylidene fluoride, etc.
  • Preferred are asymmetric membranes of polymers selected from known solution-castable polymers.
  • the constituent part of the hollow fiber membrane is preferably an asymmetric membrane of polyphenylene ether.
  • a known method can be used as a method for compounding the first separation layer of a different material to the hollow fiber membrane.
  • a coating method such as a dip coating method or a spray method, or a co-extrusion method. (That is, using a triple cylindrical tube nozzle having a core liquid tube at the center and a double annular slit around it, the solution of the sulfonated polymer of the first separation layer is removed from the outer annular slit to the inner annular shape.
  • a polymer solution constituting the hollow fiber membrane part is extruded from the slit, and a fluid such as water, a solvent, or a gas is simultaneously extruded from the core liquid tube at the center part, and then combined by a known wet or dry wet phase separation.
  • a method for obtaining a film structure) can be used. Among these, the dip coating method is preferable from the viewpoint of obtaining a high-quality separation layer stably and simply.
  • the hollow fiber membrane having the first separation layer composed of the sulfonated polymer has a NaCl rejection of 60% or less for the purpose of being flexible and excellent in wear resistance and increasing water permeability. preferable. Depending on the manufacturing conditions, it is possible to impart sufficient separability, but the water permeability is significantly impaired, and as a result of the dense separation layer, defects on the membrane surface due to friction tend to occur. It is not preferable. More preferably, the NaCl rejection is 30% or less. More preferably, the NaCl rejection is 20% or less. However, the measurement conditions for the NaCl rejection are 0.5 MPa (5 bar), a NaCl concentration of 1500 ppm, and a recovery rate of about 5%.
  • the thickness of the first separation layer is preferably 50 nm or more and 10 ⁇ m or less. When the thickness is too small, the wear resistance is not sufficient, which is not preferable. When the thickness is too large, the permeation resistance becomes too large and sufficient water permeability cannot be obtained. More preferably, it is 100 nm or more and 1 ⁇ m or less.
  • the hollow fiber membrane having the above first separation layer is formed by a membrane formation step (FIG. 1 (a)) by a wet phase separation method or a dry / wet phase separation method, followed by a water washing step, a drying step, dip coating.
  • Etc. can be obtained by a desired combination of known techniques such as a compounding step, a winding step, an unwinding step and the like.
  • a large number of hollow fiber membranes thus obtained are wound up into thousands to millions of yarn bundles by a yarn bundle forming step ((b) in FIG. 1). Subsequently, after the step of inserting this yarn bundle into the housing (pressure container or cartridge frame (FIG. 1 (c)), resin bonding / end opening processing (FIG. 1 (d)) is performed, and if necessary. Then, after the membrane is completely wetted with a solvent having a low surface tension such as alcohol, a module can be obtained by performing a hydrophilization / water-containing step ((e) in FIG. 1) in which the membrane is gradually replaced with water. . However, from the viewpoint of making the manufacturing efficiency and the module structure suitable, the steps (b) to (e) in FIG. 1 may be performed simultaneously or the order may be changed.
  • the arrangement of the yarn bundles of the hollow fiber membranes in the module may be either a parallel arrangement or a cross arrangement, but it is preferable that the hollow fibers are slightly shaken or vibrated during physical washing such as back pressure washing or flushing. Further, from the viewpoint of uniformly forming the second separation layer, which will be described later, it is preferable that there is a margin in which a slight gap is generated in the yarn bundle of the water-containing hollow fiber membrane. Therefore, the filling rate of the net hollow fiber membrane is preferably 20% or more and 60% or less. When the filling rate is lower than this range, the specific surface area as the final module product becomes small, and the water production efficiency is lowered.
  • the filling rate is higher than this range, it becomes difficult to substantially fill the housing due to the bulkiness of the yarn bundle, and a resin impregnation defect tends to occur in the resin bonding step of the module end face. More preferably, it is 30% or more and 50% or less.
  • the net filling factor of the module is a ratio of the volume based on the outer diameter of the hollow fiber membrane to the volume of the filtration chamber in the module, and is expressed by the following formula.
  • (Filling rate) 100 ⁇ NL H ⁇ R H 2 / (L M S M) (vol%)
  • N number of hollow fibers
  • L H average effective length of hollow fiber membrane
  • R H outer radius of hollow fiber membrane
  • L M length of filtration chamber
  • S M average cross-sectional area of filtration chamber
  • L H is an average value of the length of the effective portion of the hollow fiber membrane that comes into contact with the supply liquid in the filtration chamber, and excludes the resin adhesion portion.
  • the hollow fiber membrane is the length of the filtration chamber of the net has been filled (for example a L M in FIGS. 3-5).
  • SM represents the cross-sectional area of the filtration chamber including the hollow fiber membrane part after removing all cross-sectional areas of members other than the hollow fiber membrane such as the container wall, the core tube part, the partition plate, and the liquid introduction pipe part. is the average value in the range of L M.
  • the outer diameter of the hollow fiber membrane filled in the module is preferably 100 ⁇ m or more and 800 ⁇ m or less. More preferably, it is 200 ⁇ m or more and 600 ⁇ m or less.
  • the smaller the outer diameter of the hollow fiber membrane the larger the specific surface area of the module.
  • the specific surface area is expressed as a ratio (m 2 / m 3 ) of the hollow fiber membrane outer diameter standard surface area to the net filtration chamber volume (L M S M ).
  • FIG. 6 shows a graph in which the specific surface area when the filtration chamber is a simple cylinder and the hollow fiber membrane is arranged completely in parallel to this is calculated for various filling ratios and hollow fiber membrane outer diameters.
  • the specific surface area is preferably 3000 m 2 / m 3 or more so that the specific surface area is superior to other-type modules such as a spiral flat membrane. And more preferably 4000 m 2 / m 3 or more.
  • the filling ratio and outer diameter of the preferred hollow fiber membrane described above correspond to the preferred range of this specific surface area. On the other hand, if the outer diameter of the hollow fiber membrane is smaller than this range, the productivity is deteriorated, the breaking strength per single yarn is reduced, and troubles such as yarn breakage are liable to occur in the module manufacturing process.
  • a partition plate that divides the bundle of multiple hollow fiber membranes in parallel to the longitudinal direction of the yarn is provided, or the center of the module A structure may be provided in which a core pipe is provided, and supply water is introduced from the core pipe.
  • the member configuration / arrangement method of the external pressure filtration module is not particularly limited, and a known method can be adopted.
  • An integral module in which the resin bonded portion of the yarn bundle end of the hollow fiber membrane and the pressure vessel are fixed, or the yarn bundle of the hollow fiber membrane and the resin bonded end are fixed with a member such as a cap or a core tube for protection.
  • a detachable cartridge type module in which a wrapped cartridge (or element) is configured, inserted into a pressure resistant container, and sealed with an O-ring or the like can be preferably employed.
  • the module structure shown in FIGS. 3 to 5 can be cited as a preferred example of the present invention.
  • FIG. 3 shows an example of an external pressure filtration type hollow fiber membrane module having a hollow fiber opening end (A1) only at one end and capable of collecting water from the permeate outlet (A7).
  • the hollow fiber membrane thread bundle (A3) and The bonding portion 1 (A2) is an integrated module fixed to the pressure vessel (A8).
  • the other end (A11) of the yarn bundle (A3) of the hollow fiber membrane is preferably looped or resin-bonded in a cut state. This end (A11) is preferably suspended or fixed to the pressure resistant vessel (A8) at a position where the hollow fiber membrane is bent sufficiently.
  • Other inlets (A4, A5, A12) provided in the module can be used as inlets / outlets of supply water or as inlets / outlets of membrane cleaning air bubbles, chemicals, and the like.
  • the permeate outlet (A7) can be used as an inlet for the cleaning liquid during back pressure cleaning. There is no problem even if an inlet for back pressure cleaning is added to the cap (A9).
  • FIG. 4 shows an example of an external pressure filtration type hollow fiber membrane module in which the hollow fiber opening end (B1) is at both ends and water can be collected from two permeate outlets (B7).
  • the thread bundle (B3) and the adhesive part 1 (B2) are an integrated module fixed to the pressure vessel (B8). Since both ends of the yarn bundle (B3) of the hollow fiber membrane are fixed, it is preferable to adjust the hollow fiber membrane so that the yarn does not stretch by giving a slight deflection in the longitudinal direction.
  • Other inlets (B4, B5) provided in the module can be used as inlets / outlets of supply water, or as inlets / outlets of membrane cleaning air bubbles, chemicals, and the like.
  • the permeate outlet (B7) can be used as an inlet for the cleaning liquid during back pressure cleaning. There is no problem even if an inlet for back pressure cleaning is added to the cap (B9).
  • FIG. 5 is an example of an external pressure filtration type hollow fiber membrane module in which the hollow fiber opening end (C1) has only one end and can collect water from the permeate outlet (C10), and the hollow fiber membrane thread bundle (C4) and
  • the adhering portion (C2) is a cartridge (or element) type module attached by a removable water stop mechanism (C3) such as packing.
  • the other end (C5) of the yarn bundle (C4) of the hollow fiber membrane is preferably resin-bonded in a loop or cut state.
  • the end (C5) may be in a suspended state, or may be fixed to the core tube (C7) or the pressure vessel (C11) at a position where the hollow fiber membrane is adequately bent.
  • the core tube (C7) and other inlets (C8) having a plurality of apertures (C14) in the module should be used as inlets / outlets for supply water, or as membrane inlet / outlet for membrane cleaning. Can do. From the viewpoint of channel design, it is also preferable to provide a partition plate (C13).
  • a module having a pattern in which the module configurations shown in FIGS. 3 to 5 are combined may be employed as desired.
  • the hollow fiber membrane yarn bundle having the first separation layer is inserted into the module container, and at least one end of the hollow fiber membrane yarn bundle is resin-bonded to perform an opening process ((d in FIG. 1). ))I do.
  • the resin for example, an epoxy resin, a urethane resin, or the like is preferably selected, and any of known static potting or centrifugal potting can be used.
  • the opening treatment of the hollow fiber membrane at the bonded end for collecting the filtrate can be performed by a cutting device such as a guillotine or a grinder.
  • the hollow fiber membrane module thus obtained is preferably filled with alcohol such as methanol, ethanol, isopropyl alcohol, etc., and subjected to a hydrophilization treatment to wet the hollow fiber membrane. It is preferable to perform a hydrophilization / water-containing step ((e) of FIG. 1) in which the inside and outside of the substrate are completely replaced with water.
  • the water to be introduced is preferably filtered in advance so that dust and microorganisms do not adhere to the membrane.
  • this step while cleaning the membrane surface by increasing the linear velocity of the membrane surface by cross-flow filtration.
  • the water charged in the module The electrical conductivity is preferably 100 ⁇ S / cm or less. More preferably, it is 10 ⁇ S / cm or less. If the conductivity is high beyond this range and the ion concentration in the solution is high, the modified polyvinyl alcohol has a coulomb shielding effect in the solution, depending on the amount of ionic functional groups introduced into the modified polyvinyl alcohol. Is not preferable because adsorption to the first separation layer is hindered.
  • the second separation layer can be formed by a method (Layer-by-Layer method) in which a cationic polymer and an anionic polymer are alternately laminated starting from the first separation layer having an anionic surface.
  • an aqueous solution of a modified polyvinyl alcohol having a cationic functional group is filled into the module containing water.
  • the solution is preferably filled from the bottom of the module so that air bubbles do not enter the module.
  • a CPVA adsorption treatment is performed by bringing a cationic polyvinyl alcohol (hereinafter, CPVA) solution into contact with the anionic surface of the first separation layer of the hollow fiber membrane for a certain time. From the viewpoint of forming a thin separation layer without defects, the solution is preferably kept in contact for a period of 10 seconds to 10 hours. More preferably, it is 1 minute or more and 3 hours or less. Thereafter, the CPVA aqueous solution is extracted and rinsed with pure water.
  • CPVA cationic polyvinyl alcohol
  • rinsing is performed for 10 seconds or more to remove excess polymer other than CPVA adsorbed on the hollow fiber membrane from the module.
  • solution switching steps are preferably performed continuously in order to keep the gap in the yarn bundle of the hollow fiber membrane filled with the solution or water.
  • an aqueous solution of an anionic polyvinyl alcohol (hereinafter referred to as APVA) having an anionic functional group is preferably filled, and an APVA layer adsorption layer is further formed on the surface of the CPVA adsorption layer.
  • APVA anionic polyvinyl alcohol
  • CPVA and APVA can be alternately repeated starting from the anionic first separation layer. It is preferable to perform at least one CPVA adsorption. More preferably, APVA adsorption is added to CPVA adsorption because an effect of improving separation performance is observed. It is also preferable to perform each treatment twice or more. However, even if it is performed three times or more, the performance change is not so much seen.
  • the concentrations of the CPVA and APVA aqueous solutions are each preferably 0.01% to 1% by weight. When the concentration is smaller than this range, the adsorption is not sufficiently performed and the film performance is deteriorated. If the concentration is too high, the adsorption layer tends to be too thick, and the viscosity of the aqueous solution becomes high.
  • the solvent of the CPVA and APVA aqueous solutions is preferably pure water, and it is preferable to use pure water having a conductivity of preferably 10 ⁇ S / cm or less, more preferably 1 ⁇ S / cm or less. If the conductivity of water as a solvent is too high, the adsorption of the modified PVA to the first separation layer via electrostatic interaction tends to be hindered due to the influence of Coulomb shielding as described above.
  • acetal crosslink the hydroxyl groups of CPVA and APVA by filling the module with an aqueous solution of aldehydes.
  • the modified PVA adsorbing layer not subjected to cross-linking has almost no separability. Only after the crosslinking treatment can the separation performance of RO and NF membranes with a molecular weight cut off of 100-1000 be achieved. Surprisingly, such a cross-linked adsorption layer is formed to be extremely uniform and thin compared to a PVA separation layer formed by a conventional coating method or the like. it can.
  • aldehyde for example, formaldehyde, glutaraldehyde, glyoxal, benzaldehyde, orthophthalaldehyde, isophthalaldehyde, terephthalaldehyde and the like can be preferably used. More preferably, glutaraldehyde or orthophthalaldehyde can be used in terms of high water solubility, relatively low toxicity, and good separation membrane performance after the crosslinking treatment.
  • the crosslinking time is preferably 10 minutes or more and 40 hours or less.
  • the crosslinking time is too short, the blocking performance of the second separation layer is small.
  • the crosslinking time is too long, there is not much effect.
  • the module and the hollow fiber membrane are sufficiently washed with pure water. From the viewpoint of completely removing aldehydes in the membrane, it is preferable to enhance the cleaning effect by performing a cross flow operation using pure water under a pressure of about 1 to 10 atm. Furthermore, when a cross-linking agent with a slightly low water solubility and strong hydrophobicity, such as orthophthalaldehyde, is used, the cross-linking agent tends to remain in the membrane. For example, a sodium hydrogen sulfite aqueous solution is filled in the module. In addition, an aldehyde and an adduct can be formed to enhance the cleaning effect.
  • an aqueous solution of reducing sugar (glucose, fructose, glucosamine, etc.) having reducibility is filled in the module, and unreacted aldehyde groups and reducing sugars outside and inside the membrane are removed.
  • a process of reacting and detoxifying can also be suitably used.
  • the module which has been subjected to the crosslinking treatment with aldehydes and sufficiently washed with water is again subjected to the adsorption treatment of CPVA and APVA and the aldehyde crosslinking in exactly the same manner.
  • a high separation performance for example, a magnesium sulfate rejection of 98% or more and a fractional molecular weight of 100 to 300
  • the adsorption / crosslinking treatment cycle is repeated twice or more.
  • the thickness of the second separation layer is preferably 1 nm or more and 200 nm or less.
  • the thickness is too thin, the adsorption of the modified PVA is insufficient and the separability is not sufficiently developed.
  • the permeation resistance becomes too large and sufficient water permeability cannot be obtained. More preferably, it is 5 nm or more and 100 nm or less.
  • the type of the cationic functional group contained in CPVA is not particularly limited, but preferably has a primary to quaternary ammonium group, and a quaternary ammonium group is particularly preferable from the viewpoint of chemical durability and antibacterial properties.
  • CPVA is saponified by copolymerizing a quaternary ammonium salt such as diallyldimethylammonium chloride and 3-methacrylamideamidopropyltrimethylammonium chloride with vinyl acetate as an unsaturated monomer having a cationic group. It is preferable that it is a polymer obtained by processing.
  • a method for obtaining CPVA a method in which a quaternary ammonium salt having a glycidyl group is added to a hydroxyl group of ordinary unmodified polyvinyl alcohol under an alkaline condition is also preferable.
  • the monomer having a glycidyl group for example, glycidyltrimethylammonium chloride can be preferably used.
  • Both the modification of polyvinyl alcohol by such an addition reaction and the modification by the above copolymerization can be preferably used.
  • both methods may be implemented to introduce two or more types of cationic groups into the polymer.
  • the type of anionic functional group is not particularly limited, and PVA having a sulfonic acid group, a phosphonic acid group, a carboxyl group, or the like can be used. From the viewpoint of easy production and availability, PVA having a sulfonic acid group is preferably used.
  • PVA having a sulfonic acid group is preferably used.
  • sulfonated PVA obtained by copolymerizing 2-acrylamido-2-methylpropanesulfonate and vinyl acetate and saponifying can be used. Similar to CPVA, two or more types of anionic groups may be introduced into the polymer.
  • the amount of the cationic group or anionic group of CPVA and APVA is at least 0.01 mol% to 30 mol%. More preferably, they are 0.1 mol% or more and 20 mol% or less.
  • the ionic functional group is smaller than this range, the adsorption to the hollow fiber membrane surface does not proceed sufficiently and the membrane performance is lowered, which is not preferable.
  • the second separation layer swells too much and the separation performance is lowered, which is not preferable.
  • the degree of saponification of CPVA and APVA is preferably 60 to 99 mol%, more preferably 70 to 95 mol%, still more preferably 75 to 90 mol%. If the degree of saponification is larger than this range, the dispersibility of the modified PVA molecules in an aqueous solution tends to deteriorate. That is, it is easy to form a state in which PVA molecules are associated in a solution. As a result, a phenomenon occurs in which the modified PVA layers adsorbed on the surface of the hollow fiber membrane are bonded to each other, and as a result, a sticking portion tends to be generated in the yarn bundle of the hollow fiber. In this case, the film performance is not sufficiently exhibited, which is not preferable. When the degree of saponification is lower than this range, the stability of the aqueous solution is similarly deteriorated, which is not preferable.
  • the external pressure filtration type hollow fiber membrane module of the present invention has a hollow fiber membrane having an anionic first separation layer on the outer surface that is flexible and excellent in friction resistance. Performance degradation due to friction between hollow fibers can be avoided. Furthermore, in the present invention, a thin second separation layer having no defects can be uniformly formed only by a simple process of alternately filling a modified PVA and an aqueous solution of an aldehyde in a state of a hollow fiber membrane module having a high filling rate containing water. It is possible to industrially manufacture a practical and high-performance hollow fiber composite membrane module.
  • Example 1 Preparation of hollow fiber support membrane
  • polyphenylene ether PX100L (hereinafter abbreviated as PPE) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was prepared.
  • NMP N-methyl-2-pyrrolidone
  • the obtained PPE hollow fiber support membrane had an outer diameter of 250 ⁇ m and a film thickness of 50 ⁇ m.
  • the pure water flux was 43 L / (m 2 ⁇ h ⁇ bar).
  • S-DCDPS 3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt
  • DCBN 2,6-dichlorobenzonitrile
  • the charge molar ratio of S-DCDPS and DCBN was 38:62.
  • 2.9679 kg of 4,4′-biphenol and 2.4213 kg of potassium carbonate were weighed and put into a polymerization tank to flow nitrogen. After adding 25.9 kg of NMP and stirring at 150 ° C. for 50 minutes, the reaction temperature was raised to 195 ° C. to 200 ° C. and the reaction was continued.
  • DMSO solvent was added to the obtained SPAE and dissolved while stirring at room temperature to obtain a 1.0 mass% SPAE coating solution.
  • the PPE hollow fiber support membrane was dip coated in a SPAE coating solution and dried at 120 ° C. in a vertical drying oven. Thereafter, a plurality of composite separation membranes having a first separation layer made of SPAE were wound around a winder. As a result of observation by SEM, the thickness of the first separation layer was 300 nm. At this time, the pure water flux was 30 L / (m 2 ⁇ h ⁇ bar), and the NaCl rejection was 11%.
  • a module of the type shown in FIG. 3 was produced as follows. One yarn bundle in which 70,000 hollow fiber membranes were bundled in parallel was prepared, one end of the yarn bundle was cut, and the opening surface was clogged with a hot melt of polyolefin. This end was placed in a polytetrafluoroethylene (PTFE) container having an inner diameter of 80 mm, filled with an epoxy resin and hardened, and then released to obtain an adhesive end (A11). Further, the periphery of the above-described yarn bundle was wound with a PTFE film having a thickness of 50 ⁇ m to protect the outer surface, and an inner diameter of 100 mm and a length of 1,000 mm provided with two supply liquid inlets / outlets (A4, A5).
  • PTFE polytetrafluoroethylene
  • a cylindrical container made of polyvinyl chloride was filled. Thereafter, the PTFE film was pulled out. Subsequently, with the cylindrical container fixed in an upright state, with the adhesive end (A11) on the upper side and the other end on the lower side, an epoxy resin is poured from the lower part of the cylindrical container, and end bonding is performed. An adhesive end (A2) was obtained. The opening end (A1) was cut so that the hollow fiber membrane was opened after the resin was cured.
  • the obtained module had a hollow fiber membrane effective length L H and a filtration chamber length L M of 900 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 7,000 m 2 / m 3 .
  • a cap (A9) was vertically attached to this module to produce a hollow fiber membrane module having a first separation layer.
  • the module thus produced was filled with ethanol from the lower inlet (A12) and subjected to a hydrophilic treatment for 2 hours. Thereafter, pure water was introduced while the ethanol was expelled from the upper outlet (A5), and a substitution treatment was performed. Thereafter, a cross flow operation was performed with pure water at a pressure of 2 bar to completely remove ethanol in the membrane.
  • the pure water permeation amount of the module was 865 L / h, and the pure water flux per pressure was 3.5 L / (m 2 ⁇ h ⁇ bar).
  • the MgSO 4 blocking rate was 99.2%, the NaCl blocking rate was 65.0%, the sucrose blocking rate was 99.0%, and the glucose blocking rate was 90.3%.
  • Example 2 Preparation of hollow fiber support membrane
  • Example 2 Preparation of hollow fiber support membrane
  • the outer diameter of the PPE hollow fiber support membrane was 520 ⁇ m, and the film thickness was 310 ⁇ m.
  • the pure water permeation test was conducted, the pure water flux was 40 L / (m 2 ⁇ h ⁇ bar).
  • a module of FIG. 3 type was manufactured using a polyvinyl chloride cylindrical container having an inner diameter of 100 mm and a length of 1,000 mm and a yarn bundle of 19,200 hollow fiber membranes.
  • the obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 900 mm, a hollow fiber filling rate of 52 vol%, and a specific surface area of 4,000 m 2 / m 3 .
  • the final module performance was a module pure water permeation of 508 L / h and a pure water flux per pressure of 3.6 L / (m 2 ⁇ h ⁇ bar) at a pressure of 5 bar.
  • the MgSO 4 blocking rate was 97.6%
  • the NaCl blocking rate was 62.0%
  • the sucrose blocking rate was 98.5%
  • the glucose blocking rate was 87.0%.
  • Example 3 Preparation of hollow fiber support membrane
  • the outer diameter of the PPE hollow fiber support membrane was 260 ⁇ m, and the film thickness was 170 ⁇ m.
  • pure water flux was 83L / (m 2 ⁇ h ⁇ bar).
  • a module of FIG. 3 type was prepared using a cylindrical container made of polyvinyl chloride having an inner diameter of 100 mm and a length of 1,000 mm, and a bundle of 36,000 hollow fiber membranes.
  • the hollow fiber membrane obtained modules effective length L H and filtration chamber length L M are both 900 mm, the hollow fiber packing ratio 24vol%, a specific surface area of 3,700m 2 / m 3.
  • the final module performance was a pure water permeation amount of 595 L / h and a pure water flux of 4.5 L / (m 2 ⁇ h ⁇ bar) at a pressure of 5 bar.
  • the MgSO 4 blocking rate was 98.5%
  • the NaCl blocking rate was 65.0%
  • the sucrose blocking rate was 99.0%
  • the glucose blocking rate was 91.0%.
  • Example 4 Preparation of hollow fiber support membrane
  • a PPE hollow fiber support membrane was obtained in the same manner as in Example 1 except that the shape of the hollow fiber was changed.
  • the outer diameter of the PPE hollow fiber support membrane was 670 ⁇ m, and the film thickness was 420 ⁇ m.
  • the pure water permeation test was conducted, the pure water flux was 117 L / (m 2 ⁇ h ⁇ bar).
  • a module of FIG. 3 type was prepared using a cylindrical container made of polyvinyl chloride having an inner diameter of 100 mm and a length of 1,000 mm and a bundle of 12,400 hollow fiber membranes.
  • the obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 900 mm, a hollow fiber filling rate of 56 vol%, and a specific surface area of 3,300 m 2 / m 3 .
  • the final module performance was a pure water permeation amount of 564 L / h and a pure water flux per pressure of 4.8 L / (m 2 ⁇ h ⁇ bar) at a pressure of 5 bar.
  • the MgSO 4 rejection 97.5% NaCl rejection 63.0%, sucrose rejection 98.4%, 88.0% glucose rejection.
  • Example 5 Preparation of hollow fiber support membrane
  • the outer diameter of the PPE hollow fiber support membrane was 260 ⁇ m, and the film thickness was 170 ⁇ m.
  • the pure water permeation test was conducted, the pure water flux was 83 L / (m 2 ⁇ h ⁇ bar).
  • a SPAE having a repeating structure of a hydrophobic segment represented by the following formula (VI) and a hydrophilic segment represented by the following formula (VII) was prepared as follows. First, weigh 30.000 g of 3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt (hereinafter abbreviated as S-DCDPS) and 70.936 g of 4,4'-dichlorodiphenylsulfone (hereinafter abbreviated as DCDPS). The charge molar ratio of S-DCDPS and DCDPS was 20:80.
  • DMSO solvent was added to the obtained SPAE and dissolved while stirring at room temperature to obtain a coating solution having a concentration of 1.0% by mass.
  • the PPE hollow fiber support membrane was dip coated in a SPAE coating solution and dried at 140 ° C. in a vertical drying oven. Thereafter, a plurality of composite separation membranes having a first separation layer made of SPAE were wound around a winder. As a result of observation by SEM, the thickness of the first separation layer was 140 nm. At this time, the pure water flux was 26 L / (m 2 ⁇ h ⁇ bar), and the NaCl rejection was 15%.
  • the module of FIG. 3 type was produced as follows. Prepare one yarn bundle of 1,100 hollow fiber membranes bundled in parallel, tie one loop end of the yarn bundle with a string, and place this end in a PTFE cylinder container with an inner diameter of 10 mm. This was filled with an epoxy resin and hardened, and then released to obtain an adhesive end (A11). Next, the circumference of the yarn bundle is wound with a PTFE film having a thickness of 50 ⁇ m to protect the outer surface, and polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm having two supply liquid inlets / outlets (A4, A5) is provided. Filled into a cylindrical container. Thereafter, the PTFE film was pulled out.
  • the obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 6,800 m 2 / m 3 .
  • a cap (A9) was vertically attached to this module to produce a hollow fiber membrane module having a first separation layer.
  • the final module performance was a module pure water permeation of 3.0 L / h and a pure water flux per pressure of 2.8 L / (m 2 ⁇ h ⁇ bar) at a pressure of 5 bar.
  • the MgSO 4 blocking rate was 98.0%
  • the NaCl blocking rate was 63.0%
  • the sucrose blocking rate was 99.0%
  • the glucose blocking rate was 89.0%.
  • Example 6 Preparation of hollow fiber support membrane
  • the outer diameter of the PPE hollow fiber support membrane was 260 ⁇ m, and the film thickness was 170 ⁇ m.
  • the pure water permeation test was conducted, the pure water flux was 83 L / (m 2 ⁇ h ⁇ bar).
  • a module of FIG. 3 type was manufactured using a cylindrical container made of polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm and a bundle of 1,100 hollow fiber membranes.
  • the obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 6,800 m 2 / m 3 .
  • the MgSO 4 blocking rate was 99.4%
  • the NaCl blocking rate was 96.0%
  • the sucrose blocking rate was 99.2%
  • the glucose blocking rate was 98.7%.
  • Example 7 (Preparation of SPAE hollow fiber membrane) An asymmetric membrane in which the hollow fiber support membrane and the first separation layer were composed of the same SPAE was produced as follows. First, SPAE having a repeating structure of the hydrophobic segment represented by the above formula (I) and the hydrophilic segment represented by the above formula (II) was prepared as follows.
  • S-DCDPS 3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt
  • DCBN 2,6-dichlorobenzonitrile
  • the charge molar ratio of S-DCDPS and DCBN was 10:90.
  • 112.7715 g of 4,4′-biphenol, 92.0078 g of potassium carbonate, and molecular sieve were weighed into a four-necked flask and flushed with nitrogen. After adding 767.9 g of NMP and stirring at 150 ° C.
  • the SPAE was dissolved at 180 ° C. while adding and kneading NMP so as to be 35% by mass to obtain a uniform film forming stock solution.
  • a solution in which ethylene glycol and NMP are mixed at a weight ratio of 70:30 is extruded as an inner solution and simultaneously molded to form air at room temperature.
  • a pure water coagulation bath at 25 ° C. to produce a SPAE hollow fiber membrane, and then washed with water.
  • the obtained SPAE hollow fiber membrane had an outer diameter of 180 ⁇ m and a film thickness of 110 ⁇ m.
  • the pure water flux was 2.3 L / (m 2 ⁇ h ⁇ bar), and the NaCl rejection was 62%.
  • a module of FIG. 3 type was produced as described below in the state of the wet membrane washed with water after film formation.
  • One yarn bundle in which 2,200 water-containing SPAE hollow fiber membranes were bundled in parallel was prepared, and the yarn bundle was covered with a wet cloth so as not to be dried.
  • One end of the loop of the yarn bundle is dried with a dryer and tied with a string. The end is placed in a Teflon (registered trademark) tube container having an inner diameter of 10 mm, and filled with an epoxy resin and hardened.
  • the adhesive end (A11) was obtained by molding.
  • the periphery of the yarn bundle is wound with a Teflon (registered trademark) film having a thickness of 50 ⁇ m to protect the outer surface, and the inner diameter is 13 mm and the length is 300 mm provided with two supply liquid inlets / outlets (A4, A5).
  • a cylindrical container made of polyvinyl chloride was filled. Thereafter, the Teflon (registered trademark) film was pulled out. Subsequently, the cylindrical container is fixed in an upright state, and the epoxy resin is poured from the lower part of the cylindrical container into the end dried with a dryer, with the adhesive end (A11) on the upper side and the other end on the lower side. Then, end bonding was performed to obtain a bonded end (A2).
  • the opening end (A1) was cut so that the hollow fiber membrane was opened after the resin was cured.
  • the obtained module had an effective length of the hollow fiber membrane and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 42 vol%, and a specific surface area of 9,400 m 2 / m 3 .
  • pure water was filled into the module to obtain a SPAE hollow fiber membrane module having a first separation layer (skin layer).
  • the final module performance was a module pure water permeation of 0.6 L / h and a pure water flux per pressure of 0.4 L / (m 2 ⁇ h ⁇ bar) at a pressure of 5 bar.
  • the MgSO 4 blocking rate was 98.6%
  • the NaCl blocking rate was 92.0%
  • the sucrose blocking rate was 99.1%
  • the glucose blocking rate was 96.0%.
  • Example 8 Preparation of hollow fiber support membrane
  • the outer diameter of the PPE hollow fiber support membrane was 260 ⁇ m, and the film thickness was 170 ⁇ m.
  • the pure water permeation test was conducted, the pure water flux was 83 L / (m 2 ⁇ h ⁇ bar).
  • a module of FIG. 3 type was manufactured using a cylindrical container made of polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm and a bundle of 1,100 hollow fiber membranes.
  • the obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 6,800 m 2 / m 3 .
  • CPVA and APVA adsorption treatment and glutaraldehyde crosslinking treatment were performed in the same manner as in Example 1 except that the type of CPVA was changed and K434 (Nippon GOHSEI cation-modified polyvinyl alcohol) was used.
  • the final module performance was a pure water permeation amount of 4.7 L / h and a pure water flux per pressure of 4.4 L / (m 2 ⁇ h ⁇ bar) at a pressure of 5 bar.
  • the MgSO 4 blocking rate was 98.2%
  • the NaCl blocking rate was 61.0%
  • the sucrose blocking rate was 99.0%
  • the glucose blocking rate was 89.4%.
  • the yarn bundle was immersed in a tank filled with a 0.1 wt% aqueous solution in which APVA (manufactured by Nippon Synthetic Chemical Co., Ltd.) was dissolved in pure water, left to stand for 30 minutes, and subjected to an adsorption treatment. A rinsing treatment was performed for 5 minutes in the tank.
  • GA glutaraldehyde
  • a yarn bundle was prepared by air-drying the above-mentioned hollow fiber membrane bundle overnight.
  • a module of the type shown in FIG. 3 was produced using a cylindrical container made of polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm.
  • the hollow fiber membrane obtained modules effective length L H and filtration chamber length L M are both 240 mm, the hollow fiber packing ratio is 44 vol%, a specific surface area of 7,100m 2 / m 3.
  • the final module performance was a module pure water permeation of 6.1 L / h and a pure water flux of 5.4 L / (m 2 ⁇ h ⁇ bar) at a pressure of 5 bar. Further, the MgSO 4 blocking rate is 54%, the NaCl blocking rate is 30%, the sucrose blocking rate is 62%, and the glucose blocking rate is 31%.
  • the second separation layer is formed and then modularization is performed. When it performed, the process became complicated and the performance of the membrane was lowered in the modularization process, and the performance expression was insufficient.
  • Second separation layer As the polymer of the second separation layer, ordinary unmodified polyvinyl alcohol (Sigma-Aldrich, product number: 363073, average molecular weight of 31,000 to 50,000, saponification degree of 87 to 89%) was prepared. Polyvinyl alcohol (PVA) was dissolved in pure water to prepare a 1.0% by weight aqueous solution, which was filled in the bathtub. The hollow fiber membrane wound up by the winder was wound, the dip coating process was performed to this bathtub, and it dried at 80 degreeC.
  • PVA Polyvinyl alcohol
  • a thread bundle of 1200 hollow fiber membranes was prepared, and a module of FIG. 3 type was produced using a polyvinyl chloride cylindrical container having an inner diameter of 13 mm and a length of 300 mm in the same procedure as in Example 5.
  • the hollow fiber membrane obtained modules effective length L H and filtration chamber length L M are both 240 mm, the hollow fiber packing ratio is 44 vol%, specific surface area of 7,100m 2 / m 3.
  • the thickness of the PVA separation layer was 180 nm.
  • Hydrophilic treatment / moisture treatment was performed in the same manner as in Example 1.
  • the final module performance was a module pure water permeation of 0.3 L / h and a pure water flux of 0.3 L / (m 2 ⁇ h ⁇ bar) at a pressure of 5 bar. Further, the MgSO 4 blocking rate is 89%, the NaCl blocking rate is 88%, the sucrose blocking rate is 87.2%, and the glucose blocking rate is 46%. Compared with the method of Example 1, the cross-linked PVA is thicker by the conventional coating method. When the modularization was performed after forming the second separation layer by the above, the process became complicated, the water permeability was low, and the expression of the separation performance was insufficient.
  • a PPE hollow fiber support membrane was obtained in the same manner as in Example 1 except that the shape of the hollow fiber was changed.
  • the outer diameter of the PPE hollow fiber support membrane was 260 ⁇ m, and the film thickness was 170 ⁇ m.
  • the pure water permeation test was conducted, the pure water flux was 83 L / (m 2 ⁇ h ⁇ bar).
  • a module of the type shown in FIG. 3 was produced using a cylindrical container made of polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm and a bundle of 1,100 hollow fiber membranes.
  • the obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 6,800 m 2 / m 3 .
  • the final module performance was 1.7 L / h of pure water permeation of the module at a pressure of 5 bar and 1.5 L / (m 2 ⁇ h ⁇ bar) of pure water per pressure.
  • the degree of sulfonation DS of the SPAE polymer was evaluated as follows. 20 mg of the polymer dried overnight at 100 ° C. in a vacuum dryer was dissolved in 1 mL of deuterated DMSO (DMSO-d6) manufactured by Nacalai Tesque, and this was dissolved in BRUKER AVANCE500 (frequency 500.13 MHz, temperature 30 ° C., FT integration) 32 times) proton NMR measurement.
  • DMSO-d6 deuterated DMSO
  • BRUKER AVANCE500 frequency 500.13 MHz, temperature 30 ° C., FT integration
  • the hollow fiber membrane in a water-containing state is frozen with liquid nitrogen, cleaved, air-dried, and Pt is sputtered onto the fractured surface.
  • a scanning electron microscope S-4800 manufactured by Hitachi, Ltd. the acceleration voltage Observed at 5 kV.
  • the modules produced in the examples and comparative examples are connected to a module testing device consisting of a feed water tank and a pressure pump (for a small module with an inner diameter of 13 mm, a small testing device having almost the same configuration) and subjected to a filtration test by crossflow Carried out.
  • the evaluation pressure was unified at 5 bar (0.5 MPa), and the supply liquid temperature was unified at 25 ° C.
  • the feed liquid flow rate was adjusted so that the recovery rate was about 5%.
  • Sodium chloride (NaCl), magnesium sulfate (MgSO 4 ), sucrose (molecular weight 342), and glucose (molecular weight 180) were used as solutes for the separation test.
  • Blocking rate [%] (1 ⁇ conductivity of filtrate [ ⁇ S / cm] / conductivity of feed aqueous solution [ ⁇ S / cm]) ⁇ 100
  • the membrane permeated water collected by the water permeation measurement and the sugar concentration of the feed aqueous solution were evaluated by the phenol-sulfuric acid method. Specifically, 1.0 mL of the above-mentioned supply liquid or permeate diluted 10-fold with pure water is placed in a test tube, and 1.0 mL of a 5% phenol aqueous solution is added and stirred. On top of that, 5.0 mL of concentrated sulfuric acid (96% concentration) is quickly added and stirred. The colored solution is subjected to absorbance measurement at 490 nm, the concentration is calculated from a calibration curve prepared in advance, and the value obtained by multiplying by 10 is used as the actual concentration value.
  • Blocking rate [%] (1 ⁇ sugar concentration of the filtrate [mg / L] / sugar concentration of the feed aqueous solution [mg / L]) ⁇ 100
  • Table 1 shows details and evaluation results of Examples 1 to 8 and Comparative Examples 1 to 3.
  • the separation layer is deteriorated due to friction when the housing is inserted, and the performance is thereby reduced. It can avoid and can provide what achieved high selective permeability and specific surface area ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyethers (AREA)

Abstract

Provided is a method for producing a hollow fiber composite membrane module having high selective permeability and a high specific surface are ratio, whereby it becomes possible to prevent the deterioration of separation layers caused by friction generated upon the insertion of the module into a housing and also prevent the deterioration in performance resulting from the deterioration of the separation layers. The production method according to the present invention comprises the steps of: (i) producing a hollow fiber membrane having, on the outer surface thereof, a first separation layer made from a polymer having an anionic functional group; (ii) winding up the hollow fiber membrane to produce a fiber bundle; (iii) inserting the fiber bundle of the hollow fiber membrane into a housing; (iv) bonding at least one end of the fiber bundle of the hollow fiber membrane with a resin and performing an opening processing; (v) bringing the outer surface of the hollow fiber membrane into contact with an aqueous solution of a modified polyvinyl alcohol having at least one cationic or anionic functional group to form a second separation layer composed of an absorption layer made from the modified polyvinyl alcohol; and (vi) bringing the second separation layer into contact with an aqueous solution of an aldehyde compound to acetalize some of hydroxyl groups in the modified polyvinyl alcohol.

Description

中空糸複合膜モジュール及びその製造方法Hollow fiber composite membrane module and manufacturing method thereof
 本発明は、逆浸透あるいはナノろ過による水処理に好適な中空糸複合膜モジュール及びその製造方法に関し、特に外表面に分離層を設けた中空糸複合膜の糸束からなる外圧ろ過式の中空糸複合膜モジュールにおいて、モジュール製造時の糸束の摩擦によって生じる性能劣化の問題のない、高性能な外圧ろ過式中空糸複合膜モジュールおよびその効率的な製造方法に関する。 The present invention relates to a hollow fiber composite membrane module suitable for water treatment by reverse osmosis or nanofiltration and a method for producing the same, and in particular, an external pressure filtration type hollow fiber comprising a yarn bundle of hollow fiber composite membranes provided with a separation layer on the outer surface. The present invention relates to a high-performance external pressure filtration type hollow fiber composite membrane module and an efficient manufacturing method thereof that do not have a problem of performance deterioration caused by friction of a yarn bundle during module manufacture.
 膜分離による水処理、特に逆浸透(Reverse Osmosis, RO)膜あるいはナノろ過(Nanofiltration, NF)膜から構成されるモジュールを用いる水処理は、高分子、コロイド、無機粒子の分離はもとより、NF膜モジュールにおいては、分子量1000~200の低分子、RO膜モジュールにおいては、分子量200以下、さらには100以下の低分子の高度な分離が可能であり、1価イオンまたは多価イオンの分離も可能であるという特長を有する。また、蒸留分離に較べて省エネルギーであり、熱による溶質の劣化や変性を伴わないという利点を有する。そのため、ROおよびNF膜モジュールは、果汁の濃縮工程、ビール酵素分離などの食品工程、海水及びかん水の淡水化による飲料水、超純水の製造、医療用途の無菌水製造、廃水からの有価物の回収など、多岐にわたる分野で利用されており、不可欠な分離プロセスとして定着している。 Water treatment by membrane separation, especially water treatment using modules composed of reverse osmosis (Reverse Osmosis, RO) membranes or nanofiltration (Nanofiltration, NF) membranes, as well as separation of polymers, colloids and inorganic particles, NF membranes In the module, low molecular weight of 1000-200 molecular weight, and in RO membrane module, low molecular weight of 200 or less, or even 100 or less, can be highly separated, and monovalent ions or multivalent ions can also be separated. It has the feature of being. Moreover, it has the advantage that it is energy saving compared with distillation separation, and does not accompany the deterioration and modification | denaturation of the solute by heat. Therefore, RO and NF membrane modules are used in fruit juice concentration processes, food processes such as beer enzyme separation, drinking water by desalination of seawater and brine, production of ultrapure water, production of sterile water for medical use, and valuable materials from wastewater. Has been established as an indispensable separation process.
 RO膜およびNF膜において、高い透水性と分離性を両立するためには、複合分離膜の構造を好適に用いることができる。複合分離膜は、機械特性に優れ、かつ高い透水性を有する、中空糸支持膜の表面に、数10nm~数μm程度の厚みの薄膜の分離層を形成させることにより得られる膜構造であり、相分離法によって得られる非対称膜構造よりも、高い透過選択性を得ることが可能である。 In the RO membrane and the NF membrane, in order to achieve both high water permeability and separability, the structure of the composite separation membrane can be suitably used. The composite separation membrane is a membrane structure obtained by forming a thin separation layer having a thickness of several tens of nm to several μm on the surface of a hollow fiber support membrane having excellent mechanical properties and high water permeability. It is possible to obtain higher permselectivity than the asymmetric membrane structure obtained by the phase separation method.
 一方、RO膜およびNF膜から構成されるモジュールの主要な形態としては、スパイラル型平膜モジュールおよび中空糸膜モジュールの2種類を挙げることができる。このうち中空糸膜モジュールは、内圧ろ過式モジュールと外圧ろ過式モジュールに分類することができる。 On the other hand, two main types of modules composed of RO membranes and NF membranes are spiral flat membrane modules and hollow fiber membrane modules. Among these, the hollow fiber membrane module can be classified into an internal pressure filtration module and an external pressure filtration module.
 外圧ろ過式の中空糸膜モジュールは、外表面に分離層を有する中空糸膜を束ねてなる糸束から構成され、このうち外径が100μm以上800μm以下の比較的細径の中空糸膜の糸束からなるモジュールは、比表面積(モジュール内ろ過室の体積に占める中空糸膜の外径基準の表面積の比率)が他のモジュール形態よりも大きいという特長を有する。 The external pressure filtration type hollow fiber membrane module is composed of a yarn bundle formed by bundling hollow fiber membranes having a separation layer on the outer surface, and of these, a relatively thin hollow fiber membrane yarn having an outer diameter of 100 μm or more and 800 μm or less. The module composed of bundles has a feature that the specific surface area (ratio of the surface area based on the outer diameter of the hollow fiber membrane in the volume of the filtration chamber in the module) is larger than that of other module configurations.
 したがって、上記の透過選択性の高い複合膜構造を有し、かつ比較的細径の中空糸膜の糸束から構成された外圧ろ過式の中空糸膜モジュールは、他の形態の分離膜モジュールと比較して、造水効率に優れることが期待される。さらに外圧ろ過式の中空糸膜モジュールの利点としては、供給液が中空糸膜の外側を流れるために、モジュール内流路設計の余地が大きいことが挙げられる。ファウリングした膜表面の物理的な洗浄方法として、曝気、フラッシングおよび逆圧洗浄など、各種の洗浄方法を組み合わせることが可能であり、モジュールの安定運転および寿命の点においても優れている。 Therefore, an external pressure filtration type hollow fiber membrane module having a composite membrane structure having a high permselectivity and comprising a bundle of hollow fiber membranes having a relatively small diameter is different from a separation membrane module of another form. In comparison, it is expected to be excellent in water production efficiency. Further, an advantage of the external pressure filtration type hollow fiber membrane module is that the room for designing the flow path in the module is large because the supply liquid flows outside the hollow fiber membrane. As the physical cleaning method for the fouled membrane surface, various cleaning methods such as aeration, flushing and back pressure cleaning can be combined, which is excellent in terms of stable operation and life of the module.
 外圧ろ過式の中空糸複合膜モジュールの一般的な製造工程の概略を図1に示す。図1に記載のように、一般的な製造工程として、(a)中空糸膜の製膜工程、(b)数千~数百万本の中空糸膜を巻き上げて糸束を作製する工程、(c)中空糸膜の糸束を筒状の耐圧容器等のハウジングに挿入する工程、(d)中空糸膜の糸束の端部を樹脂接着した後、硬化した樹脂端面を切断し、中空糸膜の端部を開口させる工程、(e)モジュール内の中空糸膜の糸束を、必要に応じてアルコール等の表面張力の小さい溶媒で湿潤させた後に、膜全体を含水させる工程を主要な工程として挙げることができる。 FIG. 1 shows an outline of a general manufacturing process of an external pressure filtration type hollow fiber composite membrane module. As shown in FIG. 1, as a general production process, (a) a hollow fiber membrane production process, (b) a process of winding up several thousand to several million hollow fiber membranes to produce a yarn bundle, (C) a step of inserting a hollow fiber membrane yarn bundle into a housing such as a cylindrical pressure vessel, (d) a resin bonded end of the hollow fiber membrane yarn bundle, and then cutting the cured resin end face Main steps include opening the end of the yarn membrane, and (e) moistening the yarn bundle of the hollow fiber membrane in the module with a solvent having a low surface tension such as alcohol, if necessary, and then hydrating the entire membrane. Can be cited as a simple process.
 しかしながら、上記の中空糸複合膜は、繊維形状であり、かつ外層に緻密かつ薄い分離層を有するために、前記の製造工程(a)~(e)において、中空糸膜の糸束間および糸束内に生じる繊維間の摩擦による分離層の性能劣化を避けることが難しいという問題がある。特に工程(c)において、ハウジングに高密度の中空糸膜の糸束を挿入する際に、繊維間摩擦のみならず、繊維とハウジング部材との摩擦により、分離層が劣化し、分離性能の深刻な低下を起こしやすいという問題がある。 However, since the hollow fiber composite membrane has a fiber shape and has a dense and thin separation layer in the outer layer, in the production steps (a) to (e), between the yarn bundles of the hollow fiber membrane and the yarn There is a problem that it is difficult to avoid performance degradation of the separation layer due to friction between the fibers generated in the bundle. Particularly in the step (c), when a high-density hollow fiber membrane yarn bundle is inserted into the housing, the separation layer deteriorates due to not only the friction between fibers but also the friction between the fibers and the housing member, and the separation performance is serious. There is a problem that it is easy to cause a decrease.
 従来、このような外層に分離層を有する中空糸複合膜の製造方法としては、架橋ポリアミド薄膜を中空糸状の中空糸支持膜の表面に形成させる方法が用いられている。例えば、特許文献1には、中空糸支持膜の表面に、界面重合により架橋されたポリアミドの薄膜を形成させてなる中空糸複合膜の作製方法が開示されている。 Conventionally, as a method for producing such a hollow fiber composite membrane having a separation layer as an outer layer, a method of forming a crosslinked polyamide thin film on the surface of a hollow fiber-like hollow fiber support membrane has been used. For example, Patent Document 1 discloses a method for producing a hollow fiber composite membrane in which a polyamide thin film crosslinked by interfacial polymerization is formed on the surface of a hollow fiber support membrane.
 しかしながら、ポリアミド分離層は、高度なROおよびNF膜性能を発現可能という観点において、極めて好適な構造であるにも関わらず、上記のモジュール製造工程における繊維表面の耐摩耗性という点では、極めて脆弱であり、前述の製造工程における摩擦によって性能劣化を避けることが難しいという問題を有する。 However, the polyamide separation layer is extremely fragile in terms of the abrasion resistance of the fiber surface in the module manufacturing process, although it is a very suitable structure in terms of being able to express high RO and NF membrane performance. And has the problem that it is difficult to avoid performance degradation due to friction in the manufacturing process described above.
 また、特許文献2には、上記のモジュール組立て時の中空糸膜の糸束における繊維間摩擦を低減する方法として、ポリアミド中空糸複合膜を、モジュールに挿入する際に、高吸水性部材を中空糸膜の糸束とともにハウジングに挿入する方法が開示されている。 Further, in Patent Document 2, as a method for reducing the inter-fiber friction in the yarn bundle of the hollow fiber membrane at the time of assembling the module, the high water absorption member is hollowed when the polyamide hollow fiber composite membrane is inserted into the module. A method of inserting a yarn bundle with a yarn bundle into a housing is disclosed.
 しかしながら、この場合にも、糸束内の繊維間摩擦を避けることはできず、緻密かつ薄いポリアミド分離層は、わずかな摩擦によって劣化して性能低下を受けるため、油剤等の潤滑剤を膜に付与したとしても、上記の問題が完全には解決されない。また、分離に寄与しない中空糸膜の糸束以外の部材を挿入する体積の分、モジュールの比表面積が小さくなるという問題も有する。 However, in this case as well, the friction between fibers in the yarn bundle cannot be avoided, and the dense and thin polyamide separation layer deteriorates due to slight friction and suffers performance degradation. Therefore, a lubricant such as an oil agent is used as a film. Even if it is given, the above problem is not completely solved. In addition, there is a problem that the specific surface area of the module is reduced by the amount of insertion of a member other than the yarn bundle of the hollow fiber membrane that does not contribute to separation.
特許第3250644号公報Japanese Patent No. 3250644 特開平8-309155号公報JP-A-8-309155
 本発明は、かかる従来技術の問題に鑑みなされたものであり、その目的は、特にROおよびNF分離が可能な高度な阻止性を有する分離層を外表面に設けた比較的細径の中空糸複合膜の糸束から構成される外圧ろ過式のモジュールの製造方法において、ハウジングへの糸束挿入時の摩擦による分離層の劣化及びそれによる性能低下を回避した、高い選択透過性と比表面積率を有する造水効率の高い中空糸複合膜モジュールの製造方法を提供することにある。 The present invention has been made in view of the problems of the prior art, and the object thereof is a hollow fiber having a relatively small diameter, in particular, provided on the outer surface with a separation layer having a high barrier property capable of separating RO and NF. High permselectivity and specific surface area ratio in the manufacturing method of external pressure filtration module composed of composite membrane yarn bundles, avoiding degradation of the separation layer due to friction when inserting the yarn bundle into the housing and resulting performance degradation It is an object to provide a method for producing a hollow fiber composite membrane module having high water production efficiency.
 本発明者は、上記の目的を達成するため鋭意検討した結果、以下のような知見に基づいて外圧ろ過式の中空糸膜モジュールおよびその製造方法を完成させた。 As a result of intensive studies to achieve the above object, the present inventor completed an external pressure filtration type hollow fiber membrane module and a manufacturing method thereof based on the following knowledge.
 まず、アニオン性官能基を有するポリマーからなる、柔軟かつ摩擦耐性の高い第一分離層を保護層として外表面に有する中空糸膜を製造し、上記のモジュール製造工程(a)~(e)までを行うことにより、含水された高充填率の中空糸膜モジュールを製造する。 First, a hollow fiber membrane made of a polymer having an anionic functional group and having a flexible and highly friction-resistant first separation layer on the outer surface as a protective layer is manufactured, and the module manufacturing steps (a) to (e) described above are performed. To produce a hollow fiber membrane module having a high filling rate and containing water.
 その後、モジュール内に収められた含水状態の第一分離層を有する中空糸膜の糸束が、少なくとも1種類のカチオン性官能基を有するポリビニルアルコールおよびアニオン性官能基を有するポリビニルアルコールの水溶液と接触するように、前記水溶液をモジュール内に合計1回以上通液することにより、交互積層法(Layer-by-Layer Assembly)によって、第一分離層上に、ポリビニルアルコールの吸着薄膜からなる第二分離層を形成させる。さらに、モジュール内にアルデヒド類の水溶液を通液することにより、第二分離層をアセタール架橋処理し、緻密かつ高い透過選択性を有する架橋薄膜を形成させる。 After that, the yarn bundle of the hollow fiber membrane having the first separated layer in the module and contained in the module is in contact with an aqueous solution of polyvinyl alcohol having at least one cationic functional group and polyvinyl alcohol having an anionic functional group. As described above, by passing the aqueous solution through the module at least once in total, a second separation composed of an adsorption thin film of polyvinyl alcohol is formed on the first separation layer by an alternating lamination method (Layer-by-Layer Assembly). A layer is formed. Furthermore, by passing an aqueous solution of aldehydes through the module, the second separation layer is subjected to acetal crosslinking treatment to form a crosslinked thin film having a dense and high permselectivity.
 このように製造された中空糸複合膜モジュールは、驚くべきことに、多数の接点や交絡点を有する高密度の中空糸膜の糸束で構成されているにも関わらず、水相において、アニオン性を有する第一分離層の表面と、カチオン性ポリビニルアルコールとのイオン性相互作用を介した吸着が、極めて速やかに、かつ均一に中空糸膜の1本1本の全表面にまで行われて、ROおよびNFに適用可能な高度な分離性能が発現されることがわかった。この理由は、一定のカチオン価またはアニオン価とケン化度のバランスを有した変性ポリビニルアルコールが、水溶液中において分子分散性が非常に良好であるために、中空糸膜の糸束表面に吸着した後も、糸束の表面間に斥力を生じ、糸束内で中空糸膜同士が固着することを防ぐことによるものと考えられる。 The hollow fiber composite membrane module produced in this way is surprisingly composed of high-density hollow fiber membrane yarn bundles having a large number of contact points and entanglement points. Adsorption through the ionic interaction between the surface of the first separation layer and the cationic polyvinyl alcohol is performed very quickly and uniformly on the entire surface of each of the hollow fiber membranes. It was found that high separation performance applicable to RO and NF is expressed. The reason for this is that the modified polyvinyl alcohol having a certain cation number or a balance between the anion number and the degree of saponification is adsorbed on the surface of the hollow fiber membrane because the molecular dispersibility is very good in an aqueous solution. Later, it is considered that repulsive force is generated between the surfaces of the yarn bundle to prevent the hollow fiber membranes from sticking to each other in the yarn bundle.
 このようにモジュール内で分離層を均一に形成する工程を、中空糸膜の糸束外表面に対して一括処理できる手法は、新規であり、分離膜の業界においてメリットは大きい。一般には、例えば、前述の界面重合法による架橋ポリアミド分離層の形成時に、このようにモジュール内の中空糸の糸束に対して、界面重合処理を実施した場合、糸の接点や交絡点で欠陥が多数生じたり、糸束が固着してしまったりするために、実用に耐える分離膜を得ることは極めて困難であった。また、別の従来法であるポリマー溶液塗布法、スプレー法なども、中空糸膜の糸束に直接適用することは困難であった。 The method that can collectively process the process of uniformly forming the separation layer in the module on the outer surface of the fiber bundle of the hollow fiber membrane is novel and has great advantages in the separation membrane industry. In general, for example, when the cross-linked polyamide separation layer is formed by the above-described interfacial polymerization method, when the interfacial polymerization treatment is performed on the bundle of hollow fibers in the module as described above, defects at the contact points and entanglement points of the yarns As a result, it is extremely difficult to obtain a separation membrane that can withstand practical use. In addition, it is difficult to directly apply another conventional method such as a polymer solution coating method and a spray method to a bundle of hollow fiber membranes.
 本発明の第二分離層の形成工程は、このように完成されたモジュール内で中空糸膜の糸束を水に浸漬した状態で実施されるため、中空糸繊維間に摩擦が生じうる操作が一切ない。従って、欠陥のない高度な分離機能を有する外圧ろ過式中空糸膜モジュールを容易に得ることができる。また、第二分離層の形成工程は、各種の水溶液をモジュール内に通液するという簡便な処理のみで行なわれるため、極めて経済的かつ効率的である。 Since the process of forming the second separation layer of the present invention is performed in a state where the hollow fiber membrane bundle is immersed in water in the module thus completed, an operation that may cause friction between the hollow fiber fibers is performed. Nothing at all. Therefore, it is possible to easily obtain an external pressure filtration type hollow fiber membrane module having an advanced separation function without defects. Moreover, since the formation process of a 2nd separated layer is performed only by the simple process of flowing various aqueous solution in a module, it is very economical and efficient.
 本発明は、上記の知見に基づいて完成したものであり、以下の(1)~(8)の構成を有するものである。
(1)外径が100μm以上800μm以下の中空糸膜の糸束から構成され、正味の中空糸膜充填率が20%以上60%以下である、外圧ろ過式の中空糸複合膜モジュールの製造方法において、以下の(i)~(vi)の工程を含むことを特徴とする製造方法:
(i)アニオン性官能基を含むポリマーからなる第一分離層を外表面に有する中空糸膜を作製する工程、
(ii)前記中空糸膜を巻き上げて糸束を作製する工程、
(iii)前記中空糸膜の糸束をハウジングに挿入する工程、
(iv)前記中空糸膜の糸束の少なくとも片方の端部を樹脂接着し、開口処理を行う工程、
(v)前記中空糸膜の外表面に、少なくとも1種類のカチオン性官能基またはアニオン性官能基を有する変性ポリビニルアルコール水溶液を接触させ、変性ポリビニルアルコールの吸着層からなる第二分離層を形成させる工程、及び
(vi)前記第二分離層に、アルデヒド類の水溶液を接触させ、変性ポリビニルアルコールの水酸基の一部をアセタール化する工程。
(2)前記第一分離層を構成するポリマーが、下記式(IV)で表される疎水性セグメントと、下記式(V)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることを特徴とする(1)に記載の外圧ろ過式の中空糸複合膜モジュールの製造方法。
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
上記式中、
Figure JPOXMLDOC01-appb-I000019
であり、
Figure JPOXMLDOC01-appb-I000020
であり、
Figure JPOXMLDOC01-appb-I000021
であり、
Figure JPOXMLDOC01-appb-I000022
であり、
 YとWは同じものが選択されることはなく、
 aおよびbはそれぞれ1以上の自然数を表し、
 RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、
 スルホン化ポリアリーレンエーテル共重合体中の式(IV)の繰り返し数と式(V)の繰り返し数の合計に対する式(V)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
(3)前記第一分離層を構成するスルホン化ポリマーが、下記式(I)で表される疎水性セグメントと、下記式(II)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることを特徴とする(1)又は(2)に記載の外圧ろ過式の中空糸複合膜モジュールの製造方法。
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
 上記式中、mおよびnはそれぞれ1以上の自然数を表し、RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、スルホン化ポリアリーレンエーテル共重合体中の式(I)の繰り返し数と式(II)の繰り返し数の合計に対する式(II)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
(4)前記中空糸膜の第一分離層および第二分離層以外の中空糸膜の構成部分が、ポリフェニレンエーテルで構成されることを特徴とする(1)~(3)のいずれかに記載の外圧ろ過式の中空糸複合膜モジュールの製造方法。
(5)外径が100μm以上800μm以下の中空糸膜の糸束から構成され、正味の中空糸膜充填率が、20%以上60%以下である、外圧ろ過式の中空糸膜モジュールにおいて、以下の(i)~(iii)を満足することを特徴とする外圧ろ過式の中空糸複合膜モジュール。
(i)中空糸膜の外表面に第一分離層と第二分離層が順に設けられていること、
(ii)第一分離層が、アニオン性官能基を含むポリマーから構成されていること、及び
(iii)第二分離層が、少なくとも1種類のカチオン性官能基またはアニオン性官能基を有する変性ポリビニルアルコールのアルデヒド架橋物から構成されていること。
(6)前記第一分離層を構成するポリマーが、下記式(IV)で表される疎水性セグメントと、下記式(V)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることを特徴とする(5)に記載の外圧ろ過式の中空糸複合膜モジュール。
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
上記式中、
Figure JPOXMLDOC01-appb-I000027
であり、
Figure JPOXMLDOC01-appb-I000028
であり、
Figure JPOXMLDOC01-appb-I000029
であり、
Figure JPOXMLDOC01-appb-I000030
であり、
 YとWは同じものが選択されることはなく、
 aおよびbはそれぞれ1以上の自然数を表し、
 RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、
 スルホン化ポリアリーレンエーテル共重合体中の式(IV)の繰り返し数と式(V)の繰り返し数の合計に対する式(V)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
(7)前記第一分離層を構成するスルホン化ポリマーが、下記式(I)で表される疎水性セグメントと、下記式(II)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることを特徴とする(5)又は(6)に記載の外圧ろ過式の中空糸複合膜モジュール。
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
 上記式中、mおよびnはそれぞれ1以上の自然数を表し、RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、スルホン化ポリアリーレンエーテル共重合体中の式(I)の繰り返し数と式(II)の繰り返し数の合計に対する式(II)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
(8)前記中空糸膜の第一分離層および第二分離層以外の中空糸膜の構成部分が、ポリフェニレンエーテルで構成されることを特徴とする(5)~(7)のいずれかに記載の外圧ろ過式の中空糸複合膜モジュール。
The present invention has been completed based on the above findings, and has the following configurations (1) to (8).
(1) Method for producing an external pressure filtration type hollow fiber composite membrane module comprising a bundle of hollow fiber membranes having an outer diameter of 100 μm or more and 800 μm or less, and a net hollow fiber membrane filling rate of 20% or more and 60% or less In the manufacturing method comprising the following steps (i) to (vi):
(I) producing a hollow fiber membrane having a first separation layer made of a polymer containing an anionic functional group on the outer surface;
(Ii) a step of winding the hollow fiber membrane to produce a yarn bundle,
(Iii) inserting the yarn bundle of the hollow fiber membrane into a housing;
(Iv) a step of resin-bonding at least one end of the yarn bundle of the hollow fiber membrane and performing an opening treatment;
(V) A modified polyvinyl alcohol aqueous solution having at least one kind of cationic functional group or anionic functional group is brought into contact with the outer surface of the hollow fiber membrane to form a second separation layer comprising an adsorption layer of the modified polyvinyl alcohol. And (vi) a step of bringing the second separation layer into contact with an aqueous solution of aldehydes to acetalize part of the hydroxyl groups of the modified polyvinyl alcohol.
(2) A sulfonated polyarylene ether in which the polymer constituting the first separation layer has a repeating structure of a hydrophobic segment represented by the following formula (IV) and a hydrophilic segment represented by the following formula (V) (1) The method for producing an external pressure filtration type hollow fiber composite membrane module according to (1).
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
In the above formula,
Figure JPOXMLDOC01-appb-I000019
And
Figure JPOXMLDOC01-appb-I000020
And
Figure JPOXMLDOC01-appb-I000021
And
Figure JPOXMLDOC01-appb-I000022
And
The same Y and W are not selected,
a and b each represent a natural number of 1 or more,
R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element,
Sulfonation rate expressed as a percentage of the number of repetitions of formula (V) to the total number of repetitions of formula (IV) and formula (V) in the sulfonated polyarylene ether copolymer is from 5% Is larger than 80%.
(3) The sulfonated polymer constituting the first separation layer is a sulfonated polymer comprising a repeating structure of a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II). The method for producing an external pressure filtration type hollow fiber composite membrane module according to (1) or (2), which is an arylene ether.
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
In the above formula, m and n each represent a natural number of 1 or more, R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element, and a sulfonated polyarylene ether copolymer The sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (I) and formula (II) is greater than 5% and less than 80% .
(4) A component of the hollow fiber membrane other than the first separation layer and the second separation layer of the hollow fiber membrane is composed of polyphenylene ether, according to any one of (1) to (3) Manufacturing method of hollow fiber composite membrane module of external pressure filtration type.
(5) In an external pressure filtration type hollow fiber membrane module comprising a bundle of hollow fiber membranes having an outer diameter of 100 μm or more and 800 μm or less, and a net hollow fiber membrane filling rate of 20% or more and 60% or less, (I) to (iii) are satisfied, an external pressure filtration type hollow fiber composite membrane module.
(I) a first separation layer and a second separation layer are provided in this order on the outer surface of the hollow fiber membrane;
(Ii) the first separating layer is composed of a polymer containing an anionic functional group, and (iii) the modified polyvinyl having at least one cationic functional group or anionic functional group in the second separating layer. Consists of cross-linked alcohol aldehydes.
(6) A sulfonated polyarylene ether in which the polymer constituting the first separation layer has a repeating structure of a hydrophobic segment represented by the following formula (IV) and a hydrophilic segment represented by the following formula (V) The external pressure filtration type hollow fiber composite membrane module according to (5), wherein
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
In the above formula,
Figure JPOXMLDOC01-appb-I000027
And
Figure JPOXMLDOC01-appb-I000028
And
Figure JPOXMLDOC01-appb-I000029
And
Figure JPOXMLDOC01-appb-I000030
And
The same Y and W are not selected,
a and b each represent a natural number of 1 or more,
R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element,
Sulfonation rate expressed as a percentage of the number of repetitions of formula (V) to the total number of repetitions of formula (IV) and formula (V) in the sulfonated polyarylene ether copolymer is from 5% Is larger than 80%.
(7) The sulfonated polymer constituting the first separation layer is a sulfonated polymer comprising a repeating structure of a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II): The external pressure filtration type hollow fiber composite membrane module according to (5) or (6), which is an arylene ether.
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
In the formula, m and n represent a natural number of 1 or more, respectively, R 1 and R 2 represents -SO 3 M or -SO 3 H, M represents a metal element, sulfonated polyarylene ether copolymers The sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (I) and formula (II) is greater than 5% and less than 80% .
(8) The constituent part of the hollow fiber membrane other than the first separation layer and the second separation layer of the hollow fiber membrane is composed of polyphenylene ether, (5) to (7), The external pressure filtration type hollow fiber composite membrane module.
 本発明の外圧ろ過式の中空糸複合膜モジュールは、保護層としての第一分離層を外表面に設けた中空糸膜を作製した後、この中空糸膜を巻き上げた糸束をハウジングに挿入し、この状態で特定のポリビニルアルコール水溶液を通液することにより、交互積層法で第一分離層の上に第二分離層を形成しているので、摩擦による外表面の分離層の欠陥が生じずに高い透水性と分離性を達成することができる。また、本発明の外圧ろ過式の中空糸複合膜モジュールの製造方法は、第一分離層で外表面が保護された中空糸膜をモジュールに充填した後に所望の液体をモジュール内に通液するだけで第二分離層を形成することができるので、極めて経済的かつ効率的である。 The external pressure filtration type hollow fiber composite membrane module of the present invention is a hollow fiber membrane in which a first separation layer as a protective layer is provided on the outer surface, and then a yarn bundle wound with the hollow fiber membrane is inserted into a housing. In this state, by passing a specific aqueous solution of polyvinyl alcohol, the second separation layer is formed on the first separation layer by the alternating lamination method, so that the defect of the separation layer on the outer surface due to friction does not occur. High water permeability and separability can be achieved. In addition, the manufacturing method of the external pressure filtration type hollow fiber composite membrane module of the present invention only allows a desired liquid to pass through the module after filling the module with the hollow fiber membrane whose outer surface is protected by the first separation layer. Since the second separation layer can be formed, it is extremely economical and efficient.
図1は、中空糸膜モジュールの製造工程を示すフロー図である。FIG. 1 is a flowchart showing the manufacturing process of the hollow fiber membrane module. 図2は、本発明において使用されうる中空糸膜の断面の概略説明図である。FIG. 2 is a schematic explanatory view of a cross section of a hollow fiber membrane that can be used in the present invention. 図3は、本発明の中空糸膜モジュールの実施形態の一例を示す概略説明図である。FIG. 3 is a schematic explanatory view showing an example of an embodiment of the hollow fiber membrane module of the present invention. 図4は、本発明の中空糸膜モジュールの別の実施形態の一例を示す概略説明図である。FIG. 4 is a schematic explanatory view showing an example of another embodiment of the hollow fiber membrane module of the present invention. 図5は、本発明の中空糸膜モジュールのさらに別の実施形態の一例を示す概略説明図である。FIG. 5 is a schematic explanatory view showing an example of still another embodiment of the hollow fiber membrane module of the present invention. 図6は、中空糸膜の外径と比表面積の関係を示す概略図である。FIG. 6 is a schematic view showing the relationship between the outer diameter of the hollow fiber membrane and the specific surface area.
 本発明の外圧ろ過式の中空糸複合膜モジュールの製造方法は、以下の(i)~(vi)の工程を含むことを特徴とする。
(i)アニオン性官能基を含むポリマーからなる第一分離層を外表面に有する中空糸膜を作製する工程、
(ii)前記中空糸膜を巻き上げて糸束を作製する工程、
(iii)前記中空糸膜の糸束をハウジングに挿入する工程、
(iv)前記中空糸膜の糸束の少なくとも片方の端部を樹脂接着し、開口処理を行う工程、
(v)前記中空糸膜の外表面に、少なくとも1種類のカチオン性官能基またはアニオン性官能基を有する変性ポリビニルアルコール水溶液を接触させ、変性ポリビニルアルコールの吸着層からなる第二分離層を形成させる工程、及び
(vi)前記第二分離層に、アルデヒド類の水溶液を接触させ、変性ポリビニルアルコールの水酸基の一部をアセタール化する工程。
The method for producing an external pressure filtration type hollow fiber composite membrane module of the present invention includes the following steps (i) to (vi).
(I) producing a hollow fiber membrane having a first separation layer made of a polymer containing an anionic functional group on the outer surface;
(Ii) a step of winding the hollow fiber membrane to produce a yarn bundle,
(Iii) inserting the yarn bundle of the hollow fiber membrane into a housing;
(Iv) a step of resin-bonding at least one end of the yarn bundle of the hollow fiber membrane and performing an opening treatment;
(V) A modified polyvinyl alcohol aqueous solution having at least one kind of cationic functional group or anionic functional group is brought into contact with the outer surface of the hollow fiber membrane to form a second separation layer comprising an adsorption layer of the modified polyvinyl alcohol. And (vi) a step of bringing the second separation layer into contact with an aqueous solution of aldehydes to acetalize part of the hydroxyl groups of the modified polyvinyl alcohol.
 まず、第一分離層を有する中空糸膜の製造工程について説明する。 First, the manufacturing process of the hollow fiber membrane having the first separation layer will be described.
 中空糸膜の外表面に設けられる第一分離層は、アニオン性官能基を有するポリマーで構成され、特にスルホン酸基、カルボキシル基、又はホスホン酸基を有するポリマーで構成されることが好ましい。より好ましくは、作製または入手の容易な観点から、スルホン酸基を有するポリマーで構成されることが好ましい。具体的には、スルホン化ポリスルホン、スルホン化ポリイミド、スルホン化ポリアリーレンエーテル、スルホン化ポリスルホン、スルホン化ポリフェニレンエーテル(スルホン化ポリフェニレンオキサイド)、スルホン化ポリエーテルイミド、スルホン化ポリエーテルエーテルケトン、スルホン化ポリフェニレンスルフィド、スルホン化ポリベンズイミダゾールなどから構成されることが好ましい。これらのポリマーは、第一分離層の機械強度を維持しつつ、高いスルホン酸基密度を有することができる。 The first separation layer provided on the outer surface of the hollow fiber membrane is composed of a polymer having an anionic functional group, and is particularly preferably composed of a polymer having a sulfonic acid group, a carboxyl group, or a phosphonic acid group. More preferably, it is preferably composed of a polymer having a sulfonic acid group from the viewpoint of easy production or availability. Specifically, sulfonated polysulfone, sulfonated polyimide, sulfonated polyarylene ether, sulfonated polysulfone, sulfonated polyphenylene ether (sulfonated polyphenylene oxide), sulfonated polyetherimide, sulfonated polyether ether ketone, sulfonated polyphenylene It is preferably composed of sulfide, sulfonated polybenzimidazole or the like. These polymers can have a high sulfonic acid group density while maintaining the mechanical strength of the first separation layer.
 上記のスルホン化ポリマーは、公知のポリマー、例えば、ポリフェニレンエーテル(ポリフェニレンオキサイド)、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミドなどを、クロロ硫酸や濃硫酸を用いてスルホン化して得られたものであることが好ましい。さらに好ましくは、スルホン酸基を有する親水性モノマーと、スルホン酸基を有しない疎水性モノマーとを共重合させたスルホン化ポリマーを挙げることができる。このような共重合スルホン化ポリマーは、スルホン酸基の導入量を再現性良く精密に制御することができ、所望のモノマーを選択することにより、機械強度に優れ、高いスルホン酸基密度と摩擦耐性を両立することができる。 The sulfonated polymer is obtained by sulfonating a known polymer such as polyphenylene ether (polyphenylene oxide), polyimide, polysulfone, polyethersulfone, polyetherimide using chlorosulfuric acid or concentrated sulfuric acid. Preferably there is. More preferable examples include a sulfonated polymer obtained by copolymerizing a hydrophilic monomer having a sulfonic acid group and a hydrophobic monomer having no sulfonic acid group. Such a copolymer sulfonated polymer can precisely control the amount of sulfonic acid group introduced with good reproducibility, and by selecting a desired monomer, it has excellent mechanical strength, high sulfonic acid group density and friction resistance. Can be compatible.
 上記の共重合スルホン化ポリマーとしては、下記式(IV)で表される疎水性セグメントと、下記式(V)で表される親水性セグメントの繰り返し構造からなるポリマーを基本骨格としたスルホン化ポリアリーレンエーテル(SPAE)が好ましい。かかるポリマーは、剛直な分子骨格と優れた化学耐久性を発現し、機械強度に優れて摩擦耐性が良好である。
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
上記式中、
Figure JPOXMLDOC01-appb-I000035
であり、
Figure JPOXMLDOC01-appb-I000036
であり、
Figure JPOXMLDOC01-appb-I000037
であり、
Figure JPOXMLDOC01-appb-I000038
であり、
 YとWは同じものが選択されることはなく、
 aおよびbはそれぞれ1以上の自然数を表し、
 RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、
 スルホン化ポリアリーレンエーテル共重合体中の式(IV)の繰り返し数と式(V)の繰り返し数の合計に対する式(V)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
As the copolymerized sulfonated polymer, a sulfonated polymer having a polymer composed of a repeating structure of a hydrophobic segment represented by the following formula (IV) and a hydrophilic segment represented by the following formula (V) as a basic skeleton: Arylene ether (SPAE) is preferred. Such a polymer exhibits a rigid molecular skeleton and excellent chemical durability, and has excellent mechanical strength and good friction resistance.
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
In the above formula,
Figure JPOXMLDOC01-appb-I000035
And
Figure JPOXMLDOC01-appb-I000036
And
Figure JPOXMLDOC01-appb-I000037
And
Figure JPOXMLDOC01-appb-I000038
And
The same Y and W are not selected,
a and b each represent a natural number of 1 or more,
R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element,
Sulfonation rate expressed as a percentage of the number of repetitions of formula (V) to the total number of repetitions of formula (IV) and formula (V) in the sulfonated polyarylene ether copolymer is from 5% Is larger than 80%.
 さらに、より機械強度が高く、高い柔軟性と摩擦耐性を併せ持つ共重合スルホン化ポリマーとしては、下記式(I)で表される疎水性セグメントと、下記式(II)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることが好ましい。
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000040
 上記式中、mおよびnはそれぞれ1以上の自然数を表し、RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、スルホン化ポリアリーレンエーテル共重合体中の式(I)の繰り返し数と式(II)の繰り返し数の合計に対する式(II)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
Furthermore, as the copolymer sulfonated polymer having higher mechanical strength and having both high flexibility and friction resistance, a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II) A sulfonated polyarylene ether having a repeating structure of
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000040
In the above formula, m and n each represent a natural number of 1 or more, R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element, and a sulfonated polyarylene ether copolymer The sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (I) and formula (II) is greater than 5% and less than 80% .
 前記式(I)、(II)および(IV)、(V)で表されるSPAEは、分子構造の剛直性が高いために、機械強度が高く、スルホン酸基密度を高くしても、膨潤しにくい柔軟かつ強固な皮膜を形成可能であり、摩擦耐性に優れているため、中空糸膜の糸束を作製してハウジングに挿入する際の外表面を形成する第一分離層として優れた特性を有する。さらに、前記式(I)、(II)で表されるSPAEにおいては、前記式(I)の疎水性セグメントにベンゾニトリル構造を含むため、優れた化学耐久性を有し、また疎水性部の凝集力が強くなるために、強固な疎水性マトリクスに親水性ドメインが支えられた皮膜構造が形成される結果、高いスルホン酸基密度と摩擦耐性を両立できるという特徴を有する。 The SPAEs represented by the above formulas (I), (II), (IV), and (V) have high mechanical strength due to high molecular structure, so that even if the sulfonic acid group density is increased, the SPAE swells. Capable of forming a flexible and strong film that is difficult to resist and excellent in friction resistance. Excellent characteristics as a first separation layer that forms the outer surface of a hollow fiber membrane bundle and inserts it into the housing. Have Furthermore, in the SPAEs represented by the formulas (I) and (II), the hydrophobic segment of the formula (I) contains a benzonitrile structure, so that it has excellent chemical durability and has a hydrophobic portion. Since the cohesive force becomes strong, a film structure in which hydrophilic domains are supported on a strong hydrophobic matrix is formed. As a result, it has a feature that both high sulfonic acid group density and friction resistance can be achieved.
 前記ポリマーのスルホン化度の好ましいイオン交換容量IEC(すなわち、スルホン化ポリマー1g当りのスルホン酸基のミリ当量)は、0.5~3.0meq./gであり、スルホン化率DSの好ましい範囲は、5%より大きく80%より小さい。IECおよびDSが上記範囲より低い場合は、スルホン酸基が少なすぎるため、第一分離層の表面のアニオン電荷密度が小さくなる。そのため、後述される交互積層法による第二分離層の形成工程が均一に進行しない傾向があり、好ましくない。また、IECおよびDSが上記範囲より高い場合、ポリマーの親水性が大きくなりすぎ、第一分離層が過度に膨潤するため好ましくない。さらに好ましいIECの範囲は0.7~2.9meq./gであり、さらに好ましいスルホン化率DSの範囲は10%から70%である。 The preferred ion exchange capacity IEC for the degree of sulfonation of the polymer (that is, milliequivalents of sulfonic acid groups per gram of sulfonated polymer) is 0.5 to 3.0 meq. / G, and the preferred range of sulfonation rate DS is greater than 5% and less than 80%. When IEC and DS are lower than the above ranges, the anionic charge density on the surface of the first separation layer becomes small because there are too few sulfonic acid groups. Therefore, there is a tendency that the formation process of the second separation layer by the alternate lamination method described later does not proceed uniformly, which is not preferable. Moreover, when IEC and DS are higher than the said range, since the hydrophilic property of a polymer becomes large too much and a 1st separated layer will swell excessively, it is unpreferable. A more preferable IEC range is 0.7 to 2.9 meq. Further, the range of the sulfonation rate DS is more preferably 10% to 70%.
 上記の第一分離層の基材となる中空糸膜は、第一分離層と同じポリマーから構成された非対称膜であることができる(図2の(a1)参照)。例えば上記のスルホン化ポリマーを公知の相分離法、例えば湿式相分離法または乾湿式相分離法によって成形することで、容易に中空糸外層側にポリマー密度が高い層(スキン層)を第一分離層として得ることができる。 The hollow fiber membrane serving as the base material of the first separation layer can be an asymmetric membrane composed of the same polymer as the first separation layer (see (a1) in FIG. 2). For example, the above-mentioned sulfonated polymer is molded by a known phase separation method, for example, a wet phase separation method or a dry / wet phase separation method, so that a layer (skin layer) having a high polymer density can be easily separated on the hollow fiber outer layer side. Can be obtained as a layer.
 また、第一分離層の基材となる中空糸膜は、第一分離層とは異なる素材で構成された非対称膜であり、この非対称膜の外表面に、第一分離層を設けた複合膜構造(図2の(b1)参照)であることもできる。本発明では、第一分離層を設けた中空糸膜として、図2の(b1)の構造が好ましい。この場合、外表面の第一分離層を除く中空糸膜の構成部分は、ポリフェニレンエーテル(ポリフェニレンオキサイド)、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリケトン、ポリイミド、ポリアクリロニトリル、ポリスチレン、ポリフッ化ビニリデンなどの公知の溶液製膜可能なポリマーから選択されたポリマーの非対称膜であることが好ましい。特に、かかる中空糸膜の構成部分が、ポリフェニレンエーテルの非対称膜であることが好ましい。 Moreover, the hollow fiber membrane used as the base material of the first separation layer is an asymmetric membrane made of a material different from that of the first separation layer, and a composite membrane in which the first separation layer is provided on the outer surface of the asymmetric membrane. It can also be a structure (see (b1) in FIG. 2). In the present invention, the structure of (b1) in FIG. 2 is preferable as the hollow fiber membrane provided with the first separation layer. In this case, the constituent parts of the hollow fiber membrane excluding the first separation layer on the outer surface are polyphenylene ether (polyphenylene oxide), polysulfone, polyethersulfone, polyetherimide, polyketone, polyimide, polyacrylonitrile, polystyrene, polyvinylidene fluoride, etc. Preferred are asymmetric membranes of polymers selected from known solution-castable polymers. In particular, the constituent part of the hollow fiber membrane is preferably an asymmetric membrane of polyphenylene ether.
 中空糸膜にそれとは異なる素材の第一分離層を複合化する方法としては、公知の手法を用いることができ、具体的にはディップコーティング法やスプレー法などの塗布法、または、共押し出し法(すなわち中心部に芯液管を設け、その周囲に2重の環状スリットを有する3重円筒管ノズルを用いて、外側の環状スリットから第一分離層のスルホン化ポリマーの溶液を、内側の環状スリットから、中空糸膜部を構成するポリマーの溶液を、中心部の芯液管からは水、溶媒、気体等の流体を、同時に押し出して成形し、公知の湿式または乾湿式相分離により、複合膜構造を得る方法)を用いることができる。これらのうち、高品質な分離層を安定かつ簡便に得る観点から、ディップコーティング法が好ましい。 As a method for compounding the first separation layer of a different material to the hollow fiber membrane, a known method can be used. Specifically, a coating method such as a dip coating method or a spray method, or a co-extrusion method. (That is, using a triple cylindrical tube nozzle having a core liquid tube at the center and a double annular slit around it, the solution of the sulfonated polymer of the first separation layer is removed from the outer annular slit to the inner annular shape. A polymer solution constituting the hollow fiber membrane part is extruded from the slit, and a fluid such as water, a solvent, or a gas is simultaneously extruded from the core liquid tube at the center part, and then combined by a known wet or dry wet phase separation. A method for obtaining a film structure) can be used. Among these, the dip coating method is preferable from the viewpoint of obtaining a high-quality separation layer stably and simply.
 上記のスルホン化ポリマーで構成された第一分離層を有する中空糸膜は、柔軟で耐摩耗性に優れ、かつ透水性を大きくするという目的のため、NaCl阻止率が60%以下であることが好ましい。製造条件によっては、これ以上の分離性を付与することも十分可能であるが、透水性が著しく損なわれるうえに、分離層が緻密になる結果として、摩擦による膜表面の欠陥を生じやすくなるため、好ましくない。より好ましくはNaCl阻止率は30%以下である。さらに好ましくはNaCl阻止率は20%以下である。ただし、NaClの阻止率の測定条件は、0.5MPa(5bar)、NaCl濃度1500ppm、(回収率は約5%)である。 The hollow fiber membrane having the first separation layer composed of the sulfonated polymer has a NaCl rejection of 60% or less for the purpose of being flexible and excellent in wear resistance and increasing water permeability. preferable. Depending on the manufacturing conditions, it is possible to impart sufficient separability, but the water permeability is significantly impaired, and as a result of the dense separation layer, defects on the membrane surface due to friction tend to occur. It is not preferable. More preferably, the NaCl rejection is 30% or less. More preferably, the NaCl rejection is 20% or less. However, the measurement conditions for the NaCl rejection are 0.5 MPa (5 bar), a NaCl concentration of 1500 ppm, and a recovery rate of about 5%.
 また、第一分離層の厚さは、50nm以上10μm以下であることが好ましい。厚みが小さすぎる場合には、耐磨耗性が十分でなくなるため好ましくない。厚みが大きすぎる場合には、透過抵抗が大きくなりすぎて十分な透水性が得られない。より好ましくは100nm以上1μm以下である。 The thickness of the first separation layer is preferably 50 nm or more and 10 μm or less. When the thickness is too small, the wear resistance is not sufficient, which is not preferable. When the thickness is too large, the permeation resistance becomes too large and sufficient water permeability cannot be obtained. More preferably, it is 100 nm or more and 1 μm or less.
 上記の第一分離層を有する中空糸膜は、湿式相分離法または乾湿式相分離法による製膜工程(図1の(a))により製膜された後、水洗工程、乾燥工程、ディップコーティング等の複合化工程、巻取り工程、巻き出し工程等の公知技術の所望の組み合わせによって得ることができる。 The hollow fiber membrane having the above first separation layer is formed by a membrane formation step (FIG. 1 (a)) by a wet phase separation method or a dry / wet phase separation method, followed by a water washing step, a drying step, dip coating. Etc. can be obtained by a desired combination of known techniques such as a compounding step, a winding step, an unwinding step and the like.
 このようにして得られた多数の中空糸膜は、糸束化工程(図1の(b))によって数千~数百万本の糸束へ巻き上げられる。続いて、この糸束をハウジング(耐圧容器またはカートリッジ枠)へ挿入する工程(図1の(c))の後、樹脂接着・端面開口処理(図1の(d))を行い、必要に応じて、アルコール等の表面張力の小さい溶媒で膜を完全に濡らした後、段階的に水に置換する親水化・含水工程(図1の(e))を実施して、モジュールを得ることができる。ただし、製造の効率化やモジュール構造を好適なものとする観点から、図1の工程(b)~(e)は、同時に行われたり、順序を入れ替えたりしてもよい。 A large number of hollow fiber membranes thus obtained are wound up into thousands to millions of yarn bundles by a yarn bundle forming step ((b) in FIG. 1). Subsequently, after the step of inserting this yarn bundle into the housing (pressure container or cartridge frame (FIG. 1 (c)), resin bonding / end opening processing (FIG. 1 (d)) is performed, and if necessary Then, after the membrane is completely wetted with a solvent having a low surface tension such as alcohol, a module can be obtained by performing a hydrophilization / water-containing step ((e) in FIG. 1) in which the membrane is gradually replaced with water. . However, from the viewpoint of making the manufacturing efficiency and the module structure suitable, the steps (b) to (e) in FIG. 1 may be performed simultaneously or the order may be changed.
 次に、中空糸複合膜モジュールの構成について説明する。モジュール内の中空糸膜の糸束の配置としては、平行配置、交差配置のいずれでもよいが、逆圧洗浄やフラッシングなどの物理洗浄時に、中空糸が少し揺れるか、または振動することが好ましい。また、後述する第二分離層の形成を均一に行う観点から、含水した中空糸膜の糸束にやや間隙が生じる余裕があることが好ましい。そのため、正味の中空糸膜の充填率は20%以上60%以下であることが好ましい。充填率がこの範囲より低い場合、最終的なモジュール製品としての比表面積が小さくなり、造水効率が低下する。充填率がこの範囲より高い場合、糸束の嵩張りから、実質的にハウジングへ充填することが難しくなり、またモジュール端面の樹脂接着工程において、樹脂含浸不良を起こしやすい。より好ましくは30%以上50%以下である。 Next, the configuration of the hollow fiber composite membrane module will be described. The arrangement of the yarn bundles of the hollow fiber membranes in the module may be either a parallel arrangement or a cross arrangement, but it is preferable that the hollow fibers are slightly shaken or vibrated during physical washing such as back pressure washing or flushing. Further, from the viewpoint of uniformly forming the second separation layer, which will be described later, it is preferable that there is a margin in which a slight gap is generated in the yarn bundle of the water-containing hollow fiber membrane. Therefore, the filling rate of the net hollow fiber membrane is preferably 20% or more and 60% or less. When the filling rate is lower than this range, the specific surface area as the final module product becomes small, and the water production efficiency is lowered. When the filling rate is higher than this range, it becomes difficult to substantially fill the housing due to the bulkiness of the yarn bundle, and a resin impregnation defect tends to occur in the resin bonding step of the module end face. More preferably, it is 30% or more and 50% or less.
 ここでモジュールの正味の充填率とは、モジュール内のろ過室体積に対する、中空糸膜外径基準の体積の比率であり、以下の式で表す。
  (充填率)=100×NLπR /(L)(vol%)
N:中空糸本数、L:中空糸膜の平均有効長さ、R:中空糸膜の外半径、L:ろ過室の長さ、S:ろ過室の平均断面積
 ここで、Lは、ろ過室内において供給液と接触する中空糸膜有効部分の長さの平均値であり、樹脂接着部は除く。Lは樹脂接着部を除き、中空糸膜が充填された正味のろ過室の長さである(図3~5にLを例示する)。Sは中空糸膜部を含むろ過室の断面積について、容器壁、芯管部、仕切り板、液の導入配管部等の中空糸膜以外の部材の断面積を全て除いた後の、長さLの範囲での平均値である。
Here, the net filling factor of the module is a ratio of the volume based on the outer diameter of the hollow fiber membrane to the volume of the filtration chamber in the module, and is expressed by the following formula.
(Filling rate) = 100 × NL H πR H 2 / (L M S M) (vol%)
N: number of hollow fibers, L H : average effective length of hollow fiber membrane, R H : outer radius of hollow fiber membrane, L M : length of filtration chamber, S M : average cross-sectional area of filtration chamber where L H is an average value of the length of the effective portion of the hollow fiber membrane that comes into contact with the supply liquid in the filtration chamber, and excludes the resin adhesion portion. L M except the resin bonding portion, the hollow fiber membrane is the length of the filtration chamber of the net has been filled (for example a L M in FIGS. 3-5). SM represents the cross-sectional area of the filtration chamber including the hollow fiber membrane part after removing all cross-sectional areas of members other than the hollow fiber membrane such as the container wall, the core tube part, the partition plate, and the liquid introduction pipe part. is the average value in the range of L M.
 モジュールに充填する中空糸膜の外径は、好ましくは100μm以上800μm以下である。より好ましくは200μm以上600μm以下である。中空糸膜の外径は、小さいほど、モジュールの比表面積を大きくすることが可能である。ここで比表面積は、正味のろ過室体積(L)に対する中空糸膜外径基準の表面積の比(m/m)で表す。参考として、図6にろ過室を単純な円筒として、これに中空糸膜を完全に平行配置した場合の比表面積を、様々な充填率および中空糸膜外径について計算したグラフを示す。外圧ろ過式中空糸膜モジュールとして、スパイラル型平膜などの他形態モジュールよりも比表面積を優位とするためには、比表面積が3000m/m以上であることが好ましい。より好ましくは4000m/m以上である。前述した好ましい中空糸膜の充填率および外径は、この比表面積の好ましい範囲と対応する。一方、中空糸膜の外径はこの範囲より小さすぎると生産性が悪くなり、かつ単糸あたりの破断強力が小さくなり、モジュール製造工程で糸切れ等のトラブルを起こしやすいので好ましくない。 The outer diameter of the hollow fiber membrane filled in the module is preferably 100 μm or more and 800 μm or less. More preferably, it is 200 μm or more and 600 μm or less. The smaller the outer diameter of the hollow fiber membrane, the larger the specific surface area of the module. Here, the specific surface area is expressed as a ratio (m 2 / m 3 ) of the hollow fiber membrane outer diameter standard surface area to the net filtration chamber volume (L M S M ). As a reference, FIG. 6 shows a graph in which the specific surface area when the filtration chamber is a simple cylinder and the hollow fiber membrane is arranged completely in parallel to this is calculated for various filling ratios and hollow fiber membrane outer diameters. As the external pressure filtration type hollow fiber membrane module, the specific surface area is preferably 3000 m 2 / m 3 or more so that the specific surface area is superior to other-type modules such as a spiral flat membrane. And more preferably 4000 m 2 / m 3 or more. The filling ratio and outer diameter of the preferred hollow fiber membrane described above correspond to the preferred range of this specific surface area. On the other hand, if the outer diameter of the hollow fiber membrane is smaller than this range, the productivity is deteriorated, the breaking strength per single yarn is reduced, and troubles such as yarn breakage are liable to occur in the module manufacturing process.
 夾雑物等による膜面ファウリングが起こりにくいモジュール内流路を設計する観点からは、複数の中空糸膜の糸束を、糸の長手方向に平行に区画する仕切板を設けるか、またはモジュール中央に芯管を設け、芯管より供給水を導入する構造を設けてもよい。 From the viewpoint of designing the channel in the module where membrane surface fouling is less likely to occur due to contaminants, a partition plate that divides the bundle of multiple hollow fiber membranes in parallel to the longitudinal direction of the yarn is provided, or the center of the module A structure may be provided in which a core pipe is provided, and supply water is introduced from the core pipe.
 外圧ろ過モジュールの部材構成・配置方法については、特に限定されるものではなく、公知の方法を採用することができる。中空糸膜の糸束端部の樹脂接着部と耐圧容器が固定された一体型モジュール、または中空糸膜の糸束および樹脂接着端部をキャップや芯管等の部材で固定し、保護用のラップを巻いたカートリッジ(又はエレメント)を構成し、これを耐圧容器に挿入し、Oリング等でシーリングする着脱可能なカートリッジ式モジュールを好ましく採用することができる。具体的には、図3~5に示されるモジュール構造を本発明の好ましい例として挙げることができる。 The member configuration / arrangement method of the external pressure filtration module is not particularly limited, and a known method can be adopted. An integral module in which the resin bonded portion of the yarn bundle end of the hollow fiber membrane and the pressure vessel are fixed, or the yarn bundle of the hollow fiber membrane and the resin bonded end are fixed with a member such as a cap or a core tube for protection. A detachable cartridge type module in which a wrapped cartridge (or element) is configured, inserted into a pressure resistant container, and sealed with an O-ring or the like can be preferably employed. Specifically, the module structure shown in FIGS. 3 to 5 can be cited as a preferred example of the present invention.
 図3は、中空糸開口端(A1)が片端のみで、透過液出口(A7)から集水可能な外圧ろ過式の中空糸膜モジュールの例であり、中空糸膜の糸束(A3)と、その接着部1(A2)が、耐圧容器(A8)に固定された一体型モジュールである。中空糸膜の糸束(A3)のもう一方の端部(A11)は、ループか、または切断された状態で樹脂接着されることが好ましい。この端部(A11)は吊るした状態とするか、または中空糸膜がほどよくたわむ程度の位置で、耐圧容器(A8)に固定されることが好ましい。モジュールに設けられた他の導入口(A4、A5、A12)は、供給水の入出口、または膜洗浄用のエアーバブル、薬液等の入出口として用いることができる。また、透過液出口(A7)は、逆圧洗浄時には、洗浄液の入口として用いることができる。また、キャップ(A9)に逆圧洗浄用の導入口を追加しても問題ない。 FIG. 3 shows an example of an external pressure filtration type hollow fiber membrane module having a hollow fiber opening end (A1) only at one end and capable of collecting water from the permeate outlet (A7). The hollow fiber membrane thread bundle (A3) and The bonding portion 1 (A2) is an integrated module fixed to the pressure vessel (A8). The other end (A11) of the yarn bundle (A3) of the hollow fiber membrane is preferably looped or resin-bonded in a cut state. This end (A11) is preferably suspended or fixed to the pressure resistant vessel (A8) at a position where the hollow fiber membrane is bent sufficiently. Other inlets (A4, A5, A12) provided in the module can be used as inlets / outlets of supply water or as inlets / outlets of membrane cleaning air bubbles, chemicals, and the like. Further, the permeate outlet (A7) can be used as an inlet for the cleaning liquid during back pressure cleaning. There is no problem even if an inlet for back pressure cleaning is added to the cap (A9).
 図4は、中空糸開口端(B1)が両端であり、2つの透過液出口(B7)から集水可能な外圧ろ過式の中空糸膜モジュールの例であり、図3と同様に中空糸膜の糸束(B3)と、その接着部1(B2)が、耐圧容器(B8)に固定された一体型モジュールである。中空糸膜の糸束(B3)の両端が固定されているため、中空糸膜の長手方向に若干のたわみを持たせて、糸が伸びきらないように調整されていることが好ましい。モジュールに設けられた他の導入口(B4、B5)は、供給水の入出口、または膜洗浄用のエアーバブル、薬液等の入出口として用いることができる。また、透過液出口(B7)は、逆圧洗浄時には、洗浄液の入口として用いることができる。また、キャップ(B9)に逆圧洗浄用の導入口を追加しても問題ない。 FIG. 4 shows an example of an external pressure filtration type hollow fiber membrane module in which the hollow fiber opening end (B1) is at both ends and water can be collected from two permeate outlets (B7). The thread bundle (B3) and the adhesive part 1 (B2) are an integrated module fixed to the pressure vessel (B8). Since both ends of the yarn bundle (B3) of the hollow fiber membrane are fixed, it is preferable to adjust the hollow fiber membrane so that the yarn does not stretch by giving a slight deflection in the longitudinal direction. Other inlets (B4, B5) provided in the module can be used as inlets / outlets of supply water, or as inlets / outlets of membrane cleaning air bubbles, chemicals, and the like. Further, the permeate outlet (B7) can be used as an inlet for the cleaning liquid during back pressure cleaning. There is no problem even if an inlet for back pressure cleaning is added to the cap (B9).
 図5は、中空糸開口端(C1)が片端のみで、透過液出口(C10)から集水可能な外圧ろ過式の中空糸膜モジュールの例であり、中空糸膜の糸束(C4)と、その接着部(C2)が、パッキン等の脱着可能な止水機構(C3)で取り付けられたカートリッジ(又はエレメント)方式のモジュールである。中空糸膜の糸束(C4)のもう一方の端部(C5)は、ループか、または切断された状態で樹脂接着されることが好ましい。端部(C5)は、吊るした状態としてもよいし、または中空糸膜がほどよくたわむ程度の位置で、芯管(C7)または耐圧容器(C11)と固定されてもよい。モジュール内に、開孔部(C14)を複数有する芯管(C7)および他の導入口(C8)は、供給水の入出口、または膜洗浄用のエアーバブル、薬液等の入出口として用いることができる。流路設計の観点からは、仕切り板(C13)を設けることも好ましい。 FIG. 5 is an example of an external pressure filtration type hollow fiber membrane module in which the hollow fiber opening end (C1) has only one end and can collect water from the permeate outlet (C10), and the hollow fiber membrane thread bundle (C4) and The adhering portion (C2) is a cartridge (or element) type module attached by a removable water stop mechanism (C3) such as packing. The other end (C5) of the yarn bundle (C4) of the hollow fiber membrane is preferably resin-bonded in a loop or cut state. The end (C5) may be in a suspended state, or may be fixed to the core tube (C7) or the pressure vessel (C11) at a position where the hollow fiber membrane is adequately bent. The core tube (C7) and other inlets (C8) having a plurality of apertures (C14) in the module should be used as inlets / outlets for supply water, or as membrane inlet / outlet for membrane cleaning. Can do. From the viewpoint of channel design, it is also preferable to provide a partition plate (C13).
 本発明では、所望により、図3~5に示すモジュール構成を組み合わせたパターンのモジュールを採用することもできる。 In the present invention, a module having a pattern in which the module configurations shown in FIGS. 3 to 5 are combined may be employed as desired.
 第一分離層を有する中空糸膜の糸束は、上記のモジュール容器に挿入され、中空糸膜の糸束の少なくとも片方の端部を樹脂接着し、開口処理を行う工程(図1の(d))を行う。樹脂は、例えばエポキシ樹脂、ウレタン樹脂などを選択することが好ましく、公知の静置ポッティングまたは遠心ポッティングのどちらも用いることができる。ろ過液を集水する接着端部の中空糸膜の開口処理は、ギロチンやグラインダーなどの切削装置により行うことができる。 The hollow fiber membrane yarn bundle having the first separation layer is inserted into the module container, and at least one end of the hollow fiber membrane yarn bundle is resin-bonded to perform an opening process ((d in FIG. 1). ))I do. As the resin, for example, an epoxy resin, a urethane resin, or the like is preferably selected, and any of known static potting or centrifugal potting can be used. The opening treatment of the hollow fiber membrane at the bonded end for collecting the filtrate can be performed by a cutting device such as a guillotine or a grinder.
 このようにして得られた中空糸膜モジュールは、好ましくはメタノール、エタノール、イソプロピルアルコールなどのアルコールを、モジュールに充填して、中空糸膜を濡らす親水化処理を行い、さらに段階的に中空糸膜の内外を、完全に水に置換する親水化・含水工程(図1の(e))を行うことが好ましい。導入する水は、予めろ過され、ダストや微生物が膜に付着しないようにすることが好ましい。膜内のアルコールの残余成分を完全に除去するために、外圧をかけながら水の透過処理を行うことも好ましい。さらに、クロスフローろ過により膜面の線速を大きくすることで、膜面を洗浄しながら本工程を行うことも好ましい。 The hollow fiber membrane module thus obtained is preferably filled with alcohol such as methanol, ethanol, isopropyl alcohol, etc., and subjected to a hydrophilization treatment to wet the hollow fiber membrane. It is preferable to perform a hydrophilization / water-containing step ((e) of FIG. 1) in which the inside and outside of the substrate are completely replaced with water. The water to be introduced is preferably filtered in advance so that dust and microorganisms do not adhere to the membrane. In order to completely remove the remaining alcohol components in the membrane, it is also preferable to perform a water permeation treatment while applying external pressure. Furthermore, it is also preferable to perform this step while cleaning the membrane surface by increasing the linear velocity of the membrane surface by cross-flow filtration.
 この親水化・含水工程(図1の(e))において、後述するカチオン基またはアニオン基を有する変性ポリビニルアルコールの、第一分離層への吸着を効率良く進めるために、モジュール内に充填した水の導電率は、100μS/cm以下にしておくことが好ましい。より好ましくは10μS/cm以下である。この範囲を超えて導電率が高く、溶液中のイオン濃度が高い場合には、変性ポリビニルアルコールのイオン性官能基導入量にもよるが、溶液中でクーロン遮へい効果が働くことにより、変性ポリビニルアルコールの第一分離層への吸着が阻害されるため、好ましくない。 In this hydrophilization / water-containing step ((e) of FIG. 1), in order to efficiently promote the adsorption of the modified polyvinyl alcohol having a cationic group or an anionic group, which will be described later, to the first separation layer, the water charged in the module The electrical conductivity is preferably 100 μS / cm or less. More preferably, it is 10 μS / cm or less. If the conductivity is high beyond this range and the ion concentration in the solution is high, the modified polyvinyl alcohol has a coulomb shielding effect in the solution, depending on the amount of ionic functional groups introduced into the modified polyvinyl alcohol. Is not preferable because adsorption to the first separation layer is hindered.
 次に、第二分離層の形成方法について説明する。第二分離層は、アニオン性表面を有する第一分離層を起点として、カチオン性ポリマーおよびアニオン性ポリマーを交互に積層する方法(Layer-by-Layer法)によって形成することができる。 Next, a method for forming the second separation layer will be described. The second separation layer can be formed by a method (Layer-by-Layer method) in which a cationic polymer and an anionic polymer are alternately laminated starting from the first separation layer having an anionic surface.
 上記の含水したモジュール内に、まず、カチオン性官能基を有する変性ポリビニルアルコールの水溶液を充填する。モジュール内に気泡が入らないように、好ましくはモジュール下部から溶液を充填する。一定の時間、中空糸膜の第一分離層のアニオン性表面にカチオン性ポリビニルアルコール(以下CPVA)溶液を接触させて、CPVAの吸着処理を行う。欠陥なくかつ薄い分離層を形成させる観点から、好ましくは10秒以上10時間以下の期間、溶液を接触させておく。より好ましくは1分以上3時間以下である。その後、CPVA水溶液を抜き出し、純水でリンスする。好ましくは10秒以上リンスを行って、中空糸膜に吸着したCPVA以外の余剰のポリマーをモジュールから除去する。これらの溶液切替えの工程は、中空糸膜の糸束内の間隙を溶液または水で満たした状態を保つために、連続的に行われることが好ましい。 First, an aqueous solution of a modified polyvinyl alcohol having a cationic functional group is filled into the module containing water. The solution is preferably filled from the bottom of the module so that air bubbles do not enter the module. A CPVA adsorption treatment is performed by bringing a cationic polyvinyl alcohol (hereinafter, CPVA) solution into contact with the anionic surface of the first separation layer of the hollow fiber membrane for a certain time. From the viewpoint of forming a thin separation layer without defects, the solution is preferably kept in contact for a period of 10 seconds to 10 hours. More preferably, it is 1 minute or more and 3 hours or less. Thereafter, the CPVA aqueous solution is extracted and rinsed with pure water. Preferably, rinsing is performed for 10 seconds or more to remove excess polymer other than CPVA adsorbed on the hollow fiber membrane from the module. These solution switching steps are preferably performed continuously in order to keep the gap in the yarn bundle of the hollow fiber membrane filled with the solution or water.
 その後、好ましくは、アニオン性官能基を有するアニオン性ポリビニルアルコール(以下APVA)の水溶液を充填し、CPVAの吸着層の表面にさらにAPVA層の吸着層を形成させる。吸着時間および純水リンス処理は、前記と同様の方法で行ってよい。 Thereafter, an aqueous solution of an anionic polyvinyl alcohol (hereinafter referred to as APVA) having an anionic functional group is preferably filled, and an APVA layer adsorption layer is further formed on the surface of the CPVA adsorption layer. The adsorption time and pure water rinse treatment may be performed by the same method as described above.
 アニオン性の第一分離層を起点として、上記のCPVAおよびAPVAの吸着処理は、交互に繰り返すことが可能である。少なくともCPVAの吸着を1回行うことが好ましい。より好ましくは、CPVAの吸着にAPVAの吸着を加えることが分離性能の向上効果が見られるために好ましい。それぞれの処理を2回以上行うことも好ましい。但し、3回以上行っても性能変化はあまり見られなくなる。 The above-described adsorption treatment of CPVA and APVA can be alternately repeated starting from the anionic first separation layer. It is preferable to perform at least one CPVA adsorption. More preferably, APVA adsorption is added to CPVA adsorption because an effect of improving separation performance is observed. It is also preferable to perform each treatment twice or more. However, even if it is performed three times or more, the performance change is not so much seen.
 CPVAおよびAPVA水溶液の濃度はそれぞれ0.01重量%~1重量%であることが好ましい。この範囲より濃度が小さいと、吸着が十分行われず、膜性能が低下する。濃度が高すぎると、吸着層が厚くなりすぎる傾向があり、また水溶液粘度が高くなるため、吸着ムラが生じやすくなり好ましくない。 The concentrations of the CPVA and APVA aqueous solutions are each preferably 0.01% to 1% by weight. When the concentration is smaller than this range, the adsorption is not sufficiently performed and the film performance is deteriorated. If the concentration is too high, the adsorption layer tends to be too thick, and the viscosity of the aqueous solution becomes high.
 また、CPVAおよびAPVA水溶液の溶媒は、純水であることが好ましく、導電率が好ましくは10μS/cm以下、より好ましくは1μS/cm以下の純水を用いることが好ましい。溶媒としての水の導電率が高すぎると、前述したようにクーロン遮へいの影響により、静電相互作用を介した第一分離層への変性PVAの吸着が阻害される傾向がある。 The solvent of the CPVA and APVA aqueous solutions is preferably pure water, and it is preferable to use pure water having a conductivity of preferably 10 μS / cm or less, more preferably 1 μS / cm or less. If the conductivity of water as a solvent is too high, the adsorption of the modified PVA to the first separation layer via electrostatic interaction tends to be hindered due to the influence of Coulomb shielding as described above.
 これらのCPVAおよびAPVAの吸着処理の後、アルデヒド類の水溶液をモジュール内へ充填することで、CPVAおよびAPVAの水酸基をアセタール架橋することが好ましい。架橋を施さない変性PVAの吸着層は、ほとんど分離性を有しない。架橋処理によって初めて、分画分子量100~1000のRO膜およびNF膜の分離性能を達成することができる。さらに驚くべきことには、このような架橋吸着層は、従来の塗布法などによるPVAの分離層と比較すると、極めて均一かつ厚みが薄く形成されるために、高い透水性をも両立することができる。 After the adsorption treatment of CPVA and APVA, it is preferable to acetal crosslink the hydroxyl groups of CPVA and APVA by filling the module with an aqueous solution of aldehydes. The modified PVA adsorbing layer not subjected to cross-linking has almost no separability. Only after the crosslinking treatment can the separation performance of RO and NF membranes with a molecular weight cut off of 100-1000 be achieved. Surprisingly, such a cross-linked adsorption layer is formed to be extremely uniform and thin compared to a PVA separation layer formed by a conventional coating method or the like. it can.
 架橋剤としてのアルデヒド類は、例えばホルムアルデヒド、グルタルアルデヒド、グリオキサール、ベンズアルデヒド、オルトフタルアルデヒド、イソフタルアルデヒド、テレフタルアルデヒドなどを好ましく用いることができる。より好ましくは、水溶性が高く、比較的毒性が低く、かつ架橋処理後の分離膜性能が良好であるという点から、グルタルアルデヒドまたはオルトフタルアルデヒドを用いることができる。 As the aldehyde as the crosslinking agent, for example, formaldehyde, glutaraldehyde, glyoxal, benzaldehyde, orthophthalaldehyde, isophthalaldehyde, terephthalaldehyde and the like can be preferably used. More preferably, glutaraldehyde or orthophthalaldehyde can be used in terms of high water solubility, relatively low toxicity, and good separation membrane performance after the crosslinking treatment.
 上記の架橋処理において、架橋時間は10分以上40時間以下であることが好ましい。架橋時間が短すぎる場合、第二分離層の阻止性能が小さい。また、架橋時間を長くしすぎても、あまり効果がない。架橋反応を促進する観点からは、アルデヒド水溶液の温度を20℃以上60℃以下に保つことも好ましい。 In the above crosslinking treatment, the crosslinking time is preferably 10 minutes or more and 40 hours or less. When the crosslinking time is too short, the blocking performance of the second separation layer is small. In addition, if the crosslinking time is too long, there is not much effect. From the viewpoint of promoting the crosslinking reaction, it is also preferable to maintain the temperature of the aldehyde aqueous solution at 20 ° C. or more and 60 ° C. or less.
 架橋処理の後、モジュールおよび中空糸膜は、純水で十分水洗される。膜内のアルデヒド類を完全に除去する観点から、例えば1~10気圧程度の圧力下で純水を用いてクロスフロー運転を行うことで、洗浄効果を高めることが好ましい。さらに、オルトフタルアルデヒドのように、水溶性が幾分低く、疎水性の強い架橋剤を用いた場合は、膜内に架橋剤が残存しやすいため、例えば、亜硫酸水素ナトリウム水溶液をモジュール内に充填し、アルデヒドと付加体を形成させて洗浄効果を高めることができる。または、例えば、pH9以上のアルカリ条件下で、還元性を有する還元糖(グルコース、フルクトース、グルコサミンなど)の水溶液をモジュール内に充填し、膜外および膜内の未反応のアルデヒド基と還元糖を反応させて、解毒する処理を好適に用いることもできる。 After the crosslinking treatment, the module and the hollow fiber membrane are sufficiently washed with pure water. From the viewpoint of completely removing aldehydes in the membrane, it is preferable to enhance the cleaning effect by performing a cross flow operation using pure water under a pressure of about 1 to 10 atm. Furthermore, when a cross-linking agent with a slightly low water solubility and strong hydrophobicity, such as orthophthalaldehyde, is used, the cross-linking agent tends to remain in the membrane. For example, a sodium hydrogen sulfite aqueous solution is filled in the module. In addition, an aldehyde and an adduct can be formed to enhance the cleaning effect. Or, for example, under alkaline conditions of pH 9 or higher, an aqueous solution of reducing sugar (glucose, fructose, glucosamine, etc.) having reducibility is filled in the module, and unreacted aldehyde groups and reducing sugars outside and inside the membrane are removed. A process of reacting and detoxifying can also be suitably used.
 このようにして、アルデヒド類による架橋処理を完了して、十分水洗されたモジュールは、さらに、CPVAおよびAPVAの吸着処理と、アルデヒド架橋を全く同様の方法で再度行うことが好ましい。この吸着・架橋の処理サイクルを繰り返すことで、高度な分離性能(例えば、硫酸マグネシウム阻止率98%以上、かつ分画分子量100~300)を得ることができる。好ましくは2回以上、吸着・架橋処理のサイクルを繰り返すことが好ましい。 Thus, it is preferable that the module which has been subjected to the crosslinking treatment with aldehydes and sufficiently washed with water is again subjected to the adsorption treatment of CPVA and APVA and the aldehyde crosslinking in exactly the same manner. By repeating this adsorption / crosslinking treatment cycle, a high separation performance (for example, a magnesium sulfate rejection of 98% or more and a fractional molecular weight of 100 to 300) can be obtained. Preferably, the adsorption / crosslinking treatment cycle is repeated twice or more.
 第二分離層の厚さは、1nm以上200nm以下であることが好ましい。厚みが薄すぎると変性PVAの吸着が不十分であり、分離性が十分発現しない。また、厚すぎる場合には、透過抵抗が大きくなりすぎて、透水性が十分得られない。より好ましくは5nm以上100nm以下である。 The thickness of the second separation layer is preferably 1 nm or more and 200 nm or less. When the thickness is too thin, the adsorption of the modified PVA is insufficient and the separability is not sufficiently developed. On the other hand, if it is too thick, the permeation resistance becomes too large and sufficient water permeability cannot be obtained. More preferably, it is 5 nm or more and 100 nm or less.
 第二分離層を構成する変性PVAの構成について以下に説明する。 The structure of the modified PVA constituting the second separation layer will be described below.
 CPVAに含まれるカチオン性官能基の種類については、特に限定されないが、1~4級のアンモニウム基を有することが好ましく、化学耐久性や抗菌性を有する観点から、4級アンモニウム基が特に好ましい。具体的には、CPVAは、カチオン性基を有する不飽和単量体として、ジアリルジメチルアンモニウムクロライド、3-メタクリルアミドプロピルトリメチルアンモニウムクロライド等の4級アンモニウム塩を酢酸ビニルと共重合させて、ケン化処理を行って得られるポリマーであることが好ましい。 The type of the cationic functional group contained in CPVA is not particularly limited, but preferably has a primary to quaternary ammonium group, and a quaternary ammonium group is particularly preferable from the viewpoint of chemical durability and antibacterial properties. Specifically, CPVA is saponified by copolymerizing a quaternary ammonium salt such as diallyldimethylammonium chloride and 3-methacrylamideamidopropyltrimethylammonium chloride with vinyl acetate as an unsaturated monomer having a cationic group. It is preferable that it is a polymer obtained by processing.
 また、CPVAを得る別の方法としては、通常の未変性ポリビニルアルコールの水酸基に、グルシジル基を有する4級アンモニウム塩をアルカリ条件下で付加反応させる方法も好ましい。グリシジル基を有する単量体としては、例えば、グリシジルトリメチルアンモニウムクロライドを好ましく用いることができる。このような付加反応によるポリビニルアルコールの変性と、上記の共重合による変性のどちらも好ましく用いることができる。また、両方の方法を実施して、2種類以上のカチオン性基をポリマーに導入してもよい。 As another method for obtaining CPVA, a method in which a quaternary ammonium salt having a glycidyl group is added to a hydroxyl group of ordinary unmodified polyvinyl alcohol under an alkaline condition is also preferable. As the monomer having a glycidyl group, for example, glycidyltrimethylammonium chloride can be preferably used. Both the modification of polyvinyl alcohol by such an addition reaction and the modification by the above copolymerization can be preferably used. Moreover, both methods may be implemented to introduce two or more types of cationic groups into the polymer.
 一方、APVAについては、アニオン性官能基の種類は、特に限定されず、スルホン酸基、ホスホン酸基、カルボキシル基などを有するPVAを用いることができる。作製や入手が容易な観点から、スルホン酸基を有するPVAを用いることが好ましい。例えば、2-アクリルアミド-2-メチルプロパンスルホン酸塩と酢酸ビニルを共重合し、ケン化処理して得られるスルホン化PVAを用いることができる。CPVAと同様、2種類以上のアニオン性基がポリマーに導入されていてもよい。 On the other hand, for APVA, the type of anionic functional group is not particularly limited, and PVA having a sulfonic acid group, a phosphonic acid group, a carboxyl group, or the like can be used. From the viewpoint of easy production and availability, PVA having a sulfonic acid group is preferably used. For example, sulfonated PVA obtained by copolymerizing 2-acrylamido-2-methylpropanesulfonate and vinyl acetate and saponifying can be used. Similar to CPVA, two or more types of anionic groups may be introduced into the polymer.
 CPVAおよびAPVAのカチオン基またはアニオン基の量は、少なくとも0.01mol%以上30mol%以下であることが好ましい。より好ましくは、0.1mol%以上20mol%以下である。イオン性官能基が、この範囲より小さいと、中空糸膜表面への吸着が十分に進行せず、膜性能が低下するので好ましくない。また、この範囲より大きすぎると、第二分離層が膨潤しすぎて、分離性能が低下するため好ましくない。 It is preferable that the amount of the cationic group or anionic group of CPVA and APVA is at least 0.01 mol% to 30 mol%. More preferably, they are 0.1 mol% or more and 20 mol% or less. When the ionic functional group is smaller than this range, the adsorption to the hollow fiber membrane surface does not proceed sufficiently and the membrane performance is lowered, which is not preferable. On the other hand, if it is larger than this range, the second separation layer swells too much and the separation performance is lowered, which is not preferable.
 CPVAおよびAPVAのケン化度は、60~99mol%が好ましく、より好ましくは、70~95mol%、さらに好ましくは75~90mol%である。ケン化度がこの範囲より大きいと、水溶液中での変性PVA分子の分散性が悪くなる傾向がある。すなわち溶液中で、PVA分子どうしが会合した状態を形成しやすい。その結果、中空糸膜表面に吸着した変性PVA層どうしが接着してしまう現象が起こり、結果として中空糸の糸束に固着部分が生まれる傾向がある。この場合、膜性能が十分発現しないので、好ましくない。ケン化度がこの範囲より低いと、同様に水溶液の安定性が悪くなり好ましくない。 The degree of saponification of CPVA and APVA is preferably 60 to 99 mol%, more preferably 70 to 95 mol%, still more preferably 75 to 90 mol%. If the degree of saponification is larger than this range, the dispersibility of the modified PVA molecules in an aqueous solution tends to deteriorate. That is, it is easy to form a state in which PVA molecules are associated in a solution. As a result, a phenomenon occurs in which the modified PVA layers adsorbed on the surface of the hollow fiber membrane are bonded to each other, and as a result, a sticking portion tends to be generated in the yarn bundle of the hollow fiber. In this case, the film performance is not sufficiently exhibited, which is not preferable. When the degree of saponification is lower than this range, the stability of the aqueous solution is similarly deteriorated, which is not preferable.
 以上、本発明の外圧ろ過式の中空糸膜モジュールは、柔軟かつ耐摩擦性に優れるアニオン性の第一分離層を外表面に有する中空糸膜を、一旦モジュールとして完成させることで、製造工程における中空繊維間の摩擦による性能低下を回避できる。さらに、本発明では、含水した高充填率の中空糸膜モジュールの状態で、変性PVAおよびアルデヒドの水溶液を交互充填する簡便な工程のみで、欠陥のない薄い第二分離層を均一形成させることが可能であり、実用的かつ高性能な中空糸複合膜モジュールを工業的に製造可能である。 As described above, the external pressure filtration type hollow fiber membrane module of the present invention has a hollow fiber membrane having an anionic first separation layer on the outer surface that is flexible and excellent in friction resistance. Performance degradation due to friction between hollow fibers can be avoided. Furthermore, in the present invention, a thin second separation layer having no defects can be uniformly formed only by a simple process of alternately filling a modified PVA and an aqueous solution of an aldehyde in a state of a hollow fiber membrane module having a high filling rate containing water. It is possible to industrially manufacture a practical and high-performance hollow fiber composite membrane module.
 以下、実施例により本発明の効果を具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the effects of the present invention will be specifically described by way of examples, but the present invention is not limited to these.
(実施例1)
(中空糸支持膜の作製)
 中空糸支持膜のポリマーとして、三菱エンジニアリングプラスチックス株式会社製のポリフェニレンエーテルPX100L(以下、PPEと略す。)を準備した。PPEが20質量%となるように、N-メチル-2-ピロリドン(以下、NMPと略す。)を加えて混練しながら、130℃で溶解させて、均一な製膜原液を得た。
Example 1
(Preparation of hollow fiber support membrane)
As a polymer for the hollow fiber support membrane, polyphenylene ether PX100L (hereinafter abbreviated as PPE) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was prepared. N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) was added and dissolved at 130 ° C. while kneading so that the PPE would be 20% by mass to obtain a uniform film forming stock solution.
 続いて、製膜原液を二重円筒管ノズルより、中空状に押出しながら、内液として35質量%NMP水溶液を同時に押出して成形させ、常温の空気中を空走させて、乾燥処理を行ったあと30質量%のNMP凝固浴に30℃にて浸漬させ、PPE中空糸支持膜を作製した後、水洗処理を行った。 Subsequently, while extruding the film-forming stock solution into a hollow shape from a double cylindrical tube nozzle, a 35% by mass NMP aqueous solution was simultaneously extruded as an internal solution to be molded, and was allowed to dry in the air at room temperature. Further, it was immersed in a 30% by mass NMP coagulation bath at 30 ° C. to prepare a PPE hollow fiber support membrane, and then washed with water.
 得られたPPE中空糸支持膜の外径は250μm、膜厚は50μmであった。純水透過試験を行ったところ、純水フラックスは43L/(m・h・bar)であった。 The obtained PPE hollow fiber support membrane had an outer diameter of 250 μm and a film thickness of 50 μm. When the pure water permeation test was conducted, the pure water flux was 43 L / (m 2 · h · bar).
(第一分離層の形成)
 上記の式(I)で表される疎水性セグメントと上記の式(II)で表される親水性セグメントの繰り返し構造を有するSPAEを以下のようにして準備した。
(Formation of the first separation layer)
An SPAE having a repeating structure of the hydrophobic segment represented by the above formula (I) and the hydrophilic segment represented by the above formula (II) was prepared as follows.
 3,3′-ジスルホ-4,4′-ジクロロジフェニルスルホン2ナトリウム塩(以下S-DCDPSと略す。)3.0000kg、2,6-ジクロロベンゾニトリル(以下DCBNと略す)1.7036kgを計り取り、S-DCDPSとDCBNの仕込みモル比を38:62とした。さらに4,4′-ビフェノール2.9677kg、炭酸カリウム2.4213kg、を計り取り、重合タンクに投入して窒素を流した。NMP25.9kgを加えて、150℃で50分撹拌した後、反応温度を195℃~200℃に上昇させて反応を続けた。その後、放冷し、放冷後、重合溶液を水浴へ沈殿させた。得られたポリマーは、沸騰水中で1時間洗浄した後、純水で丁寧に水洗することで、残留した炭酸カリウムを完全に除去した。その後、炭酸カリウムを除去した後のポリマーを乾燥させることによって、目的物であるスルホン化度DS=38%の共重合SPAEを得た。 Weigh out 3.0000 kg of 3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt (hereinafter abbreviated as S-DCDPS) and 1.7036 kg of 2,6-dichlorobenzonitrile (hereinafter abbreviated as DCBN). The charge molar ratio of S-DCDPS and DCBN was 38:62. Further, 2.9679 kg of 4,4′-biphenol and 2.4213 kg of potassium carbonate were weighed and put into a polymerization tank to flow nitrogen. After adding 25.9 kg of NMP and stirring at 150 ° C. for 50 minutes, the reaction temperature was raised to 195 ° C. to 200 ° C. and the reaction was continued. Thereafter, the mixture was allowed to cool, and after cooling, the polymerization solution was precipitated into a water bath. The obtained polymer was washed in boiling water for 1 hour and then carefully washed with pure water to completely remove residual potassium carbonate. Thereafter, the polymer after removing potassium carbonate was dried to obtain a copolymerized SPAE having a sulfonation degree DS = 38%, which was the target product.
 得られたSPAEにDMSO溶媒を加えて、常温で撹拌させながら溶解させ1.0質量%濃度のSPAEコーティング溶液を得た。 DMSO solvent was added to the obtained SPAE and dissolved while stirring at room temperature to obtain a 1.0 mass% SPAE coating solution.
 PPE中空糸支持膜をSPAEコーティング溶液中にディップコートし、垂直乾燥炉内120℃で乾燥させた。その後、SPAEからなる第一分離層を有する複数の複合分離膜をワインダーに巻き取った。SEMで観察した結果、第一分離層の厚みは300nmであった。この時点で、純水フラックスは30L/(m・h・bar)、NaCl阻止率は11%であった。 The PPE hollow fiber support membrane was dip coated in a SPAE coating solution and dried at 120 ° C. in a vertical drying oven. Thereafter, a plurality of composite separation membranes having a first separation layer made of SPAE were wound around a winder. As a result of observation by SEM, the thickness of the first separation layer was 300 nm. At this time, the pure water flux was 30 L / (m 2 · h · bar), and the NaCl rejection was 11%.
(モジュールの作製)
 以下のように、図3に示すタイプのモジュールを作製した。上述の中空糸膜を70,000本平行に束ねた糸束1本を準備し、糸束の片方の端部を切断し、開口面をポリオレフィンのホットメルトにより目詰めした。この端部を内径80mmのポリテトラフルオロエチレン(PTFE)製の容器に収めて、これにエポキシ樹脂を充填して固めた後、離型して接着端(A11)を得た。
 さらに上述の糸束の周囲を、厚さ50μmのPTFEフィルムで巻いて外面を保護した状態にして、2箇所の供給液入出口(A4,A5)を備えた内径100mm、長さ1,000mmのポリ塩化ビニル製の円筒容器に充填した。その後、PTFEフィルムを引き抜いた。続いて、円筒容器を立てた状態で固定して、接着端(A11)を上側、もう片方の端部を下側にした状態で、円筒容器下部からエポキシ樹脂を流し込み、端部接着を行い、接着端(A2)を得た。開口端部(A1)は、樹脂硬化後に、中空糸膜が開口するように切削加工を行った。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに900mmであり、中空糸充填率は44vol%、比表面積は7,000m/mであった。このモジュールにキャップ(A9)を上下取り付けて、第一分離層を有する中空糸膜モジュールを作製した。
(Manufacture of modules)
A module of the type shown in FIG. 3 was produced as follows. One yarn bundle in which 70,000 hollow fiber membranes were bundled in parallel was prepared, one end of the yarn bundle was cut, and the opening surface was clogged with a hot melt of polyolefin. This end was placed in a polytetrafluoroethylene (PTFE) container having an inner diameter of 80 mm, filled with an epoxy resin and hardened, and then released to obtain an adhesive end (A11).
Further, the periphery of the above-described yarn bundle was wound with a PTFE film having a thickness of 50 μm to protect the outer surface, and an inner diameter of 100 mm and a length of 1,000 mm provided with two supply liquid inlets / outlets (A4, A5). A cylindrical container made of polyvinyl chloride was filled. Thereafter, the PTFE film was pulled out. Subsequently, with the cylindrical container fixed in an upright state, with the adhesive end (A11) on the upper side and the other end on the lower side, an epoxy resin is poured from the lower part of the cylindrical container, and end bonding is performed. An adhesive end (A2) was obtained. The opening end (A1) was cut so that the hollow fiber membrane was opened after the resin was cured. The obtained module had a hollow fiber membrane effective length L H and a filtration chamber length L M of 900 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 7,000 m 2 / m 3 . A cap (A9) was vertically attached to this module to produce a hollow fiber membrane module having a first separation layer.
(親水化・含水処理)
 このように作製されたモジュールに、下端の導入口(A12)からエタノールを充填し、親水化処理を2時間行った。その後、上部出口(A5)からエタノールを追い出しつつ、純水を導入し、置換処理を行った。その後、さらに2barの圧力にて、純水でクロスフロー運転を行い、膜中のエタノールを完全に除去した。
(Hydrophilization / moisture treatment)
The module thus produced was filled with ethanol from the lower inlet (A12) and subjected to a hydrophilic treatment for 2 hours. Thereafter, pure water was introduced while the ethanol was expelled from the upper outlet (A5), and a substitution treatment was performed. Thereafter, a cross flow operation was performed with pure water at a pressure of 2 bar to completely remove ethanol in the membrane.
(第二分離層の形成)
 この含水状態のモジュールについて、上部出口(A5)から純水を追い出しつつ、CPVA(クラレ製CM318)を純水に溶解させた0.1wt%水溶液をモジュール内に充填した。30分間静置して吸着処理を行った後、純水に置換しながら5分間リンスを行った。その後、APVA(日本合成化学製CKS50)を純水に溶解させた0.1wt%水溶液をモジュール内に充填した。30分間静置して吸着処理を行った。純水に置換処理しながら5分間リンス処理を行った後、1wt%のグルタルアルデヒド(GA)水溶液(酸触媒として硫酸を加え、pH=1に調製)を充填し、20時間架橋処理を行った。モジュール内を十分純水で洗浄した後、全く同じ方法に基づいて、CPVAおよびAPVAの吸着処理およびグルタルアルデヒド架橋の処理サイクルをもう1回実施した。最後に十分純水で水洗して、第二分離層を有する中空糸膜モジュールを完成させた。
(Formation of second separation layer)
With respect to this water-containing module, a 0.1 wt% aqueous solution in which CPVA (Kuraray CM318) was dissolved in pure water was filled into the module while purifying pure water from the upper outlet (A5). After performing the adsorption treatment by allowing to stand for 30 minutes, rinsing was performed for 5 minutes while substituting with pure water. Thereafter, a 0.1 wt% aqueous solution in which APVA (manufactured by Nippon Synthetic Chemical Co., Ltd. CKS50) was dissolved in pure water was filled in the module. The adsorption treatment was carried out by leaving for 30 minutes. After rinsing for 5 minutes while substituting with pure water, 1 wt% glutaraldehyde (GA) aqueous solution (added with sulfuric acid as an acid catalyst and adjusted to pH = 1) was charged and subjected to crosslinking treatment for 20 hours. . After thoroughly washing the inside of the module with pure water, another CPVA and APVA adsorption treatment and glutaraldehyde crosslinking treatment cycle were carried out based on exactly the same method. Finally, it was sufficiently washed with pure water to complete a hollow fiber membrane module having a second separation layer.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量は、865L/h、圧力あたり純水フラックスは3.5L/(m・h・bar)であった。またMgSO阻止率99.2%、NaCl阻止率65.0%、スクロース阻止率99.0%、グルコース阻止率90.3%であった。 As for the final module performance, at a pressure of 5 bar, the pure water permeation amount of the module was 865 L / h, and the pure water flux per pressure was 3.5 L / (m 2 · h · bar). The MgSO 4 blocking rate was 99.2%, the NaCl blocking rate was 65.0%, the sucrose blocking rate was 99.0%, and the glucose blocking rate was 90.3%.
(実施例2)
(中空糸支持膜の作製)
 中空糸の形状を変更したこと以外は、実施例1と同一の方法で、PPE中空糸支持膜を得た。PPE中空糸支持膜の外径は520μm、膜厚は310μmであった。純水透過試験を行ったところ、純水フラックスは40L/(m・h・bar)であった。
(Example 2)
(Preparation of hollow fiber support membrane)
A PPE hollow fiber support membrane was obtained in the same manner as in Example 1 except that the shape of the hollow fiber was changed. The outer diameter of the PPE hollow fiber support membrane was 520 μm, and the film thickness was 310 μm. When the pure water permeation test was conducted, the pure water flux was 40 L / (m 2 · h · bar).
(第一分離層の形成)
 実施例1と同一の方法で、ディップコーティング速度と乾燥温度を微調整して、SPAEからなる第一分離層を有する複数の複合分離膜を得た。SEMで観察した結果、第一分離層の厚みは180nmであった。この時点で、純水フラックスは28L/(m・h・bar)、NaCl阻止率は10%であった。
(Formation of the first separation layer)
In the same manner as in Example 1, the dip coating speed and the drying temperature were finely adjusted to obtain a plurality of composite separation membranes having a first separation layer made of SPAE. As a result of observation by SEM, the thickness of the first separation layer was 180 nm. At this point, the pure water flux 28L / (m 2 · h · bar), NaCl rejection was 10%.
(モジュールの作製)
 実施例1と同様にして、内径100mm、長さ1,000mmのポリ塩化ビニル製の円筒容器、中空糸膜の本数19,200本の糸束を用いて、図3タイプのモジュールを作製した。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに900mmであり、中空糸充填率は52vol%、比表面積は4,000m/mであった。
(Manufacture of modules)
In the same manner as in Example 1, a module of FIG. 3 type was manufactured using a polyvinyl chloride cylindrical container having an inner diameter of 100 mm and a length of 1,000 mm and a yarn bundle of 19,200 hollow fiber membranes. The obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 900 mm, a hollow fiber filling rate of 52 vol%, and a specific surface area of 4,000 m 2 / m 3 .
(親水化・含水処理)
 実施例1に同様にして、膜の親水化処理と純水への置換処理を行った。
(Hydrophilization / moisture treatment)
In the same manner as in Example 1, the membrane was hydrophilized and replaced with pure water.
(第二分離層の形成)
 実施例1と同一の方法で、CPVAおよびAPVAの吸着処理、グルタルアルデヒドによる架橋処理を行った。
(Formation of second separation layer)
In the same manner as in Example 1, adsorption treatment of CPVA and APVA and crosslinking treatment with glutaraldehyde were performed.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量508L/h、圧力あたり純水フラックス3.6L/(m・h・bar)であった。またMgSO阻止率97.6%、NaCl阻止率62.0%、スクロース阻止率98.5%、グルコース阻止率87.0%であった。 The final module performance was a module pure water permeation of 508 L / h and a pure water flux per pressure of 3.6 L / (m 2 · h · bar) at a pressure of 5 bar. The MgSO 4 blocking rate was 97.6%, the NaCl blocking rate was 62.0%, the sucrose blocking rate was 98.5%, and the glucose blocking rate was 87.0%.
(実施例3)
(中空糸支持膜の作製)
 中空糸の形状を変更したこと以外は、実施例1と同一の方法で、PPE中空糸支持膜を得た。PPE中空糸支持膜の外径は260μm、膜厚は170μmであった。純水透過試験を行ったところ、純水フラックスは83L/(m・h・bar)であった。
(Example 3)
(Preparation of hollow fiber support membrane)
A PPE hollow fiber support membrane was obtained in the same manner as in Example 1 except that the shape of the hollow fiber was changed. The outer diameter of the PPE hollow fiber support membrane was 260 μm, and the film thickness was 170 μm. Was subjected to a pure water permeation test, pure water flux was 83L / (m 2 · h · bar).
(第一分離層の形成)
 実施例1と同一の方法で、ディップコーティング速度と乾燥温度を微調整して、SPAEからなる第一分離層を有する複数の複合分離膜を得た。SEMで観察した結果、第一分離層の厚みは150nmであった。この時点で、純水フラックスは42L/(m・h・bar)、NaCl阻止率は11%であった。
(Formation of the first separation layer)
In the same manner as in Example 1, the dip coating speed and the drying temperature were finely adjusted to obtain a plurality of composite separation membranes having a first separation layer made of SPAE. As a result of observation by SEM, the thickness of the first separation layer was 150 nm. At this time, the pure water flux was 42 L / (m 2 · h · bar), and the NaCl rejection was 11%.
(モジュールの作製)
 実施例1と同様にして、内径100mm、長さ1,000mmのポリ塩化ビニル製の円筒容器、中空糸膜の本数36,000本の糸束を用いて、図3タイプのモジュールを作製した。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに900mmであり、中空糸充填率は24vol%、比表面積は3,700m/mであった。
(Manufacture of modules)
In the same manner as in Example 1, a module of FIG. 3 type was prepared using a cylindrical container made of polyvinyl chloride having an inner diameter of 100 mm and a length of 1,000 mm, and a bundle of 36,000 hollow fiber membranes. The hollow fiber membrane obtained modules effective length L H and filtration chamber length L M are both 900 mm, the hollow fiber packing ratio 24vol%, a specific surface area of 3,700m 2 / m 3.
(親水化・含水処理)
 実施例1に同様にして、膜の親水化処理と純水への置換処理を行った。
(Hydrophilization / moisture treatment)
In the same manner as in Example 1, the membrane was hydrophilized and replaced with pure water.
(第二分離層の形成)
 実施例1と同一の方法で、CPVAおよびAPVAの吸着処理、グルタルアルデヒドによる架橋処理を行った。
(Formation of second separation layer)
In the same manner as in Example 1, adsorption treatment of CPVA and APVA and crosslinking treatment with glutaraldehyde were performed.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量595L/h、圧力あたり純水フラックス4.5L/(m・h・bar)であった。またMgSO阻止率98.5%、NaCl阻止率65.0%、スクロース阻止率99.0%、グルコース阻止率91.0%であった。 The final module performance was a pure water permeation amount of 595 L / h and a pure water flux of 4.5 L / (m 2 · h · bar) at a pressure of 5 bar. The MgSO 4 blocking rate was 98.5%, the NaCl blocking rate was 65.0%, the sucrose blocking rate was 99.0%, and the glucose blocking rate was 91.0%.
(実施例4)
(中空糸支持膜の作製)
 中空糸の形状を変更したこと以外は、実施例1と同一の方法で、PPE中空糸支持膜を得た。PPE中空糸支持膜の外径は670μm、膜厚は420μmであった。純水透過試験を行ったところ、純水フラックスは117L/(m・h・bar)であった。
(Example 4)
(Preparation of hollow fiber support membrane)
A PPE hollow fiber support membrane was obtained in the same manner as in Example 1 except that the shape of the hollow fiber was changed. The outer diameter of the PPE hollow fiber support membrane was 670 μm, and the film thickness was 420 μm. When the pure water permeation test was conducted, the pure water flux was 117 L / (m 2 · h · bar).
(第一分離層の形成)
 実施例1と同一の方法で、ディップコーティング速度と乾燥温度を微調整して、SPAEからなる第一分離層を有する複数の複合分離膜を得た。SEMで観察した結果、第一分離層の厚みは200nmであった。この時点で、純水フラックスは62L/(m・h・bar)、NaCl阻止率は9%であった。
(Formation of the first separation layer)
In the same manner as in Example 1, the dip coating speed and the drying temperature were finely adjusted to obtain a plurality of composite separation membranes having a first separation layer made of SPAE. As a result of observation by SEM, the thickness of the first separation layer was 200 nm. At this time, the pure water flux was 62 L / (m 2 · h · bar), and the NaCl rejection was 9%.
(モジュールの作製)
 実施例1と同様にして、内径100mm、長さ1,000mmのポリ塩化ビニル製の円筒容器、中空糸膜の本数12,400本の糸束を用いて、図3タイプのモジュールを作製した。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに900mmであり、中空糸充填率は56vol%、比表面積は3,300m/mであった。
(Manufacture of modules)
In the same manner as in Example 1, a module of FIG. 3 type was prepared using a cylindrical container made of polyvinyl chloride having an inner diameter of 100 mm and a length of 1,000 mm and a bundle of 12,400 hollow fiber membranes. The obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 900 mm, a hollow fiber filling rate of 56 vol%, and a specific surface area of 3,300 m 2 / m 3 .
(親水化・含水処理)
 実施例1に同様にして、膜の親水化処理と純水への置換処理を行った。
(Hydrophilization / moisture treatment)
In the same manner as in Example 1, the membrane was hydrophilized and replaced with pure water.
(第二分離層の形成)
 実施例1と同一の方法で、CPVAおよびAPVAの吸着処理、グルタルアルデヒドによる架橋処理を行った。
(Formation of second separation layer)
In the same manner as in Example 1, adsorption treatment of CPVA and APVA and crosslinking treatment with glutaraldehyde were performed.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量564L/h、圧力あたり純水フラックス4.8L/(m・h・bar)であった。またMgSO阻止率97.5%、NaCl阻止率63.0%、スクロース阻止率98.4%、グルコース阻止率88.0%であった。 The final module performance was a pure water permeation amount of 564 L / h and a pure water flux per pressure of 4.8 L / (m 2 · h · bar) at a pressure of 5 bar. The MgSO 4 rejection 97.5% NaCl rejection 63.0%, sucrose rejection 98.4%, 88.0% glucose rejection.
(実施例5)
(中空糸支持膜の作製)
 中空糸の形状を変更したこと以外は、実施例1と同一の方法で、PPE中空糸支持膜を得た。PPE中空糸支持膜の外径は260μm、膜厚は170μmであった。純水透過試験を行ったところ、純水フラックスは83L/(m・h・bar)であった。
(Example 5)
(Preparation of hollow fiber support membrane)
A PPE hollow fiber support membrane was obtained in the same manner as in Example 1 except that the shape of the hollow fiber was changed. The outer diameter of the PPE hollow fiber support membrane was 260 μm, and the film thickness was 170 μm. When the pure water permeation test was conducted, the pure water flux was 83 L / (m 2 · h · bar).
(第一分離層の形成)
 下記の式(VI)で表される疎水性セグメントと下記の式(VII)で表される親水性セグメントの繰り返し構造を有するSPAEを以下のようにして準備した。まず3,3’-ジスルホ-4,4’-ジクロロジフェニルスルホン2ナトリウム塩(以下S-DCDPSと略す)30.000g、4,4’-ジクロロジフェニルスルホン(以下DCDPSと略す)70.936gを計り取り、S-DCDPSとDCDPSの仕込みモル比を20:80とした。さらに4,4’-ビフェノール56.386g、炭酸カリウム46.004g、およびモレキュラーシーブを四つ口フラスコに計り取り、窒素を流した。NMPを534g加えて、150℃で50分撹拌した後、反応温度を195℃~200℃に上昇させて系の粘性が十分上がるのを目安に反応を続けた。その後、放冷し、放冷後、沈降しているモレキュラーシーブを除いて水中に沈殿させた。得られたポリマーは、沸騰水中で1時間洗浄した後、純水で丁寧に水洗することで、残留した炭酸カリウムを完全に除去した。その後、炭酸カリウムを除去した後のポリマーを乾燥させることによって、目的物であるスルホン化度DS=20%の共重合SPAEを得た。
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000042
 上記式中、aおよびb、RおよびRについては上記の式(IV)(V)で規定されているのと同じ意味を表す。
(Formation of the first separation layer)
A SPAE having a repeating structure of a hydrophobic segment represented by the following formula (VI) and a hydrophilic segment represented by the following formula (VII) was prepared as follows. First, weigh 30.000 g of 3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt (hereinafter abbreviated as S-DCDPS) and 70.936 g of 4,4'-dichlorodiphenylsulfone (hereinafter abbreviated as DCDPS). The charge molar ratio of S-DCDPS and DCDPS was 20:80. Further, 56.386 g of 4,4′-biphenol, 46.004 g of potassium carbonate, and molecular sieve were weighed into a four-necked flask and flushed with nitrogen. After adding 534 g of NMP and stirring at 150 ° C. for 50 minutes, the reaction temperature was increased to 195 ° C. to 200 ° C., and the reaction was continued with the aim of sufficiently increasing the viscosity of the system. Thereafter, the mixture was allowed to cool and then allowed to cool, and the precipitated molecular sieve was removed and the mixture was precipitated in water. The obtained polymer was washed in boiling water for 1 hour and then carefully washed with pure water to completely remove residual potassium carbonate. Thereafter, the polymer after removing the potassium carbonate was dried to obtain a copolymerized SPAE having a sulfonation degree DS of 20%, which was the target product.
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000042
In the above formula, a and b, R 1 and R 2 have the same meaning as defined in the above formulas (IV) and (V).
 得られたSPAEにDMSO溶媒を加えて、常温で撹拌させながら溶解させ1.0質量%濃度のコーティング溶液を得た。 DMSO solvent was added to the obtained SPAE and dissolved while stirring at room temperature to obtain a coating solution having a concentration of 1.0% by mass.
 PPE中空糸支持膜をSPAEコーティング溶液中にディップコートし、垂直乾燥炉内140℃で乾燥させた。その後、SPAEからなる第一分離層を有する複数の複合分離膜をワインダーに巻き取った。SEMで観察した結果、第一分離層の厚みは140nmであった。この時点で、純水フラックスは26L/(m・h・bar)、NaCl阻止率は15%であった。 The PPE hollow fiber support membrane was dip coated in a SPAE coating solution and dried at 140 ° C. in a vertical drying oven. Thereafter, a plurality of composite separation membranes having a first separation layer made of SPAE were wound around a winder. As a result of observation by SEM, the thickness of the first separation layer was 140 nm. At this time, the pure water flux was 26 L / (m 2 · h · bar), and the NaCl rejection was 15%.
(モジュールの作製)
 以下のように、図3タイプのモジュールを作製した。中空糸膜の本数1,100本を平行に束ねた糸束1本を準備し、糸束の片方のループ端部を紐で縛り、この端部を、内径10mmのPTFE製筒容器に収めて、これにエポキシ樹脂を充填して固めた後、離型して接着端(A11)を得た。次に糸束の周囲を、厚さ50μmのPTFEフィルムで巻いて外面を保護した状態にして、2箇所の供給液入出口(A4,A5)を備えた内径13mm、長さ300mmのポリ塩化ビニル製の円筒容器に充填した。その後、PTFEフィルムを引き抜いた。続いて、円筒容器を立てた状態で固定して、接着端(A11)を上側、もう片方の端部を下側にした状態で、円筒容器下部からエポキシ樹脂を流し込み、端部接着を行い、接着端(A2)を得た。開口端部(A1)は、樹脂硬化後に、中空糸膜が開口するように切削加工を行った。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに240mmであり、中空糸充填率は44vol%、比表面積は6,800m/mであった。このモジュールにキャップ(A9)を上下取り付けて、第一分離層を有する中空糸膜モジュールを作製した。
(Manufacture of modules)
The module of FIG. 3 type was produced as follows. Prepare one yarn bundle of 1,100 hollow fiber membranes bundled in parallel, tie one loop end of the yarn bundle with a string, and place this end in a PTFE cylinder container with an inner diameter of 10 mm. This was filled with an epoxy resin and hardened, and then released to obtain an adhesive end (A11). Next, the circumference of the yarn bundle is wound with a PTFE film having a thickness of 50 μm to protect the outer surface, and polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm having two supply liquid inlets / outlets (A4, A5) is provided. Filled into a cylindrical container. Thereafter, the PTFE film was pulled out. Subsequently, with the cylindrical container fixed in an upright state, with the adhesive end (A11) on the upper side and the other end on the lower side, an epoxy resin is poured from the lower part of the cylindrical container, and end bonding is performed. An adhesive end (A2) was obtained. The opening end (A1) was cut so that the hollow fiber membrane was opened after the resin was cured. The obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 6,800 m 2 / m 3 . A cap (A9) was vertically attached to this module to produce a hollow fiber membrane module having a first separation layer.
(親水化・含水処理)
 実施例1に同様にして、膜の親水化処理と純水への置換処理を行った。
(Hydrophilization / moisture treatment)
In the same manner as in Example 1, the membrane was hydrophilized and replaced with pure water.
(第二分離層の形成)
 実施例1と同一の方法で、CPVAおよびAPVAの吸着処理、グルタルアルデヒドによる架橋処理を行った。
(Formation of second separation layer)
In the same manner as in Example 1, adsorption treatment of CPVA and APVA and crosslinking treatment with glutaraldehyde were performed.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量3.0L/h、圧力あたり純水フラックス2.8L/(m・h・bar)であった。またMgSO阻止率98.0%、NaCl阻止率63.0%、スクロース阻止率99.0%、グルコース阻止率89.0%であった。 The final module performance was a module pure water permeation of 3.0 L / h and a pure water flux per pressure of 2.8 L / (m 2 · h · bar) at a pressure of 5 bar. The MgSO 4 blocking rate was 98.0%, the NaCl blocking rate was 63.0%, the sucrose blocking rate was 99.0%, and the glucose blocking rate was 89.0%.
(実施例6)
(中空糸支持膜の作製)
 中空糸の形状を変更したこと以外は、実施例1と同一の方法で、PPE中空糸支持膜を得た。PPE中空糸支持膜の外径は260μm、膜厚は170μmであった。純水透過試験を行ったところ、純水フラックスは83L/(m・h・bar)であった。
(Example 6)
(Preparation of hollow fiber support membrane)
A PPE hollow fiber support membrane was obtained in the same manner as in Example 1 except that the shape of the hollow fiber was changed. The outer diameter of the PPE hollow fiber support membrane was 260 μm, and the film thickness was 170 μm. When the pure water permeation test was conducted, the pure water flux was 83 L / (m 2 · h · bar).
(第一分離層の形成)
 実施例1と同一の方法で、ディップコーティング速度と乾燥温度を微調整して、SPAEからなる第一分離層を有する複数の複合分離膜を得た。SEMで観察した結果、第一分離層の厚みは180nmであった。この時点で、純水フラックスは42L/(m・h・bar)、NaCl阻止率は11%であった。
(Formation of the first separation layer)
In the same manner as in Example 1, the dip coating speed and the drying temperature were finely adjusted to obtain a plurality of composite separation membranes having a first separation layer made of SPAE. As a result of observation by SEM, the thickness of the first separation layer was 180 nm. At this point, the pure water flux 42L / (m 2 · h · bar), NaCl rejection was 11%.
(モジュールの作製)
 実施例5と同様にして、内径13mm、長さ300mmのポリ塩化ビニル製の円筒容器、中空糸膜の本数1,100本の糸束を用いて、図3タイプのモジュールを作製した。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに240mmであり、中空糸充填率は44vol%、比表面積は6,800m/mであった。
(Manufacture of modules)
In the same manner as in Example 5, a module of FIG. 3 type was manufactured using a cylindrical container made of polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm and a bundle of 1,100 hollow fiber membranes. The obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 6,800 m 2 / m 3 .
(親水化・含水処理)
 実施例1と同様にして、膜の親水化処理と純水への置換処理を行った。
(Hydrophilization / moisture treatment)
In the same manner as in Example 1, the membrane was hydrophilized and replaced with pure water.
(第二分離層の形成)
 アルデヒド架橋剤として、1wt%オルトフタルアルデヒド(OPA)水溶液(酸触媒として硫酸を加え、pH=1に調製)を用いて架橋時間を10時間、架橋液温度を40℃としたこと以外は、実施例1と同一の方法で、CPVAおよびAPVAの吸着処理、オルトフタルアルデヒドによる架橋処理を行った。ただし、2回目のOPA架橋処理後、モジュール内を純水で水洗してから、2%のフルクトース水溶液(水酸化ナトリウムpH=11に調製)をモジュール内に充填し、24時間放置して、膜内外のOPAの未反応アルデヒド基を還元糖であるフルクトースと反応させて、アルデヒド臭気が完全になくなるまで無毒化した。最後に純水で十分水洗し、モジュールを完成させた。
(Formation of second separation layer)
Except for using aldehyde cross-linking agent as a 1 wt% orthophthalaldehyde (OPA) aqueous solution (adding sulfuric acid as an acid catalyst and adjusting to pH = 1) for a cross-linking time of 10 hours and a cross-linking liquid temperature of 40 ° C. In the same manner as in Example 1, CPVA and APVA adsorption treatment and cross-linking treatment with orthophthalaldehyde were performed. However, after the second OPA cross-linking treatment, the inside of the module was washed with pure water, and then 2% fructose aqueous solution (prepared to sodium hydroxide pH = 11) was filled into the module and left for 24 hours to form a membrane Unreacted aldehyde groups of the inner and outer OPA were reacted with fructose, which is a reducing sugar, to detoxify until the aldehyde odor disappeared completely. Finally, the module was completed by thoroughly washing with pure water.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量1.1L/h、圧力あたり純水フラックス1.0L/(m・h・bar)であった。またMgSO阻止率99.4%、NaCl阻止率96.0%、スクロース阻止率99.2%、グルコース阻止率98.7%であった。 The final module performance, at a pressure 5 bar, pure water permeation rate 1.1 L / h of the module was deionized water flux 1.0 L / per pressure (m 2 · h · bar) . The MgSO 4 blocking rate was 99.4%, the NaCl blocking rate was 96.0%, the sucrose blocking rate was 99.2%, and the glucose blocking rate was 98.7%.
(実施例7)
(SPAE中空糸膜の作製)
 中空糸支持膜と第一分離層が、同一のSPAEで構成された非対称膜を以下のように作製した。まず、上記の式(I)で表される疎水性セグメントと上記の式(II)で表される親水性セグメントの繰り返し構造を有するSPAEを以下のようにして準備した。
(Example 7)
(Preparation of SPAE hollow fiber membrane)
An asymmetric membrane in which the hollow fiber support membrane and the first separation layer were composed of the same SPAE was produced as follows. First, SPAE having a repeating structure of the hydrophobic segment represented by the above formula (I) and the hydrophilic segment represented by the above formula (II) was prepared as follows.
 3,3′-ジスルホ-4,4′-ジクロロジフェニルスルホン2ナトリウム塩(以下S-DCDPSと略す。)30.0000g、2,6-ジクロロベンゾニトリル(以下DCBNと略す)93.9709gを計り取り、S-DCDPSとDCBNの仕込みモル比を10:90とした。さらに4,4′-ビフェノール112.7715g、炭酸カリウム92.0078g、およびモレキュラーシーブを四つ口フラスコに計り取り、窒素を流した。NMPを767.9g加えて、150℃で50分撹拌した後、反応温度を195℃~200℃に上昇させて系の粘性が十分上がるのを目安に反応を続けた。その後、放冷し、放冷後、沈降しているモレキュラーシーブを除いて水中に沈殿させた。得られたポリマーは、沸騰水中で1時間洗浄した後、純水で丁寧に水洗することで、残留した炭酸カリウムを完全に除去した。その後、炭酸カリウムを除去した後のポリマーを乾燥させることによって、目的物であるスルホン化度DS=10%の式(I)および式(II)の共重合SPAEを得た。 Weigh out 30.0000 g of 3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt (hereinafter abbreviated as S-DCDPS) and 93.9709 g of 2,6-dichlorobenzonitrile (hereinafter abbreviated as DCBN). The charge molar ratio of S-DCDPS and DCBN was 10:90. Further, 112.7715 g of 4,4′-biphenol, 92.0078 g of potassium carbonate, and molecular sieve were weighed into a four-necked flask and flushed with nitrogen. After adding 767.9 g of NMP and stirring at 150 ° C. for 50 minutes, the reaction temperature was increased to 195 ° C. to 200 ° C., and the reaction was continued with the aim of sufficiently increasing the viscosity of the system. Thereafter, the mixture was allowed to cool and then allowed to cool, and the precipitated molecular sieve was removed and the mixture was precipitated in water. The obtained polymer was washed in boiling water for 1 hour and then carefully washed with pure water to completely remove residual potassium carbonate. Thereafter, the polymer after removing potassium carbonate was dried to obtain a copolymerized SPAE of the formula (I) and the formula (II) having a sulfonation degree DS = 10% as a target product.
 このSPAEを35質量%となるように、NMPを加えて混練しながら180℃で溶解させて、均一な製膜原液を得た。 The SPAE was dissolved at 180 ° C. while adding and kneading NMP so as to be 35% by mass to obtain a uniform film forming stock solution.
 続いて製膜原液を二重円筒管ノズルより、中空状に押出しながら、内液としてエチレングリコールとNMPを重量比70:30で混合した溶液を、同時に押出して成形させ、常温の空気中を空走させて、乾燥処理を行ったあと純水の凝固浴に25℃にて浸漬させ、SPAE中空糸膜を作製した後、水洗処理を行った。得られたSPAE中空糸膜の外径は180μm、膜厚は110μmであった。この時点で、純水フラックスは2.3L/(m・h・bar)、NaCl阻止率は62%であった。 Subsequently, while extruding the membrane-forming solution from a double cylindrical tube nozzle into a hollow shape, a solution in which ethylene glycol and NMP are mixed at a weight ratio of 70:30 is extruded as an inner solution and simultaneously molded to form air at room temperature. After running and drying, it was immersed in a pure water coagulation bath at 25 ° C. to produce a SPAE hollow fiber membrane, and then washed with water. The obtained SPAE hollow fiber membrane had an outer diameter of 180 μm and a film thickness of 110 μm. At this time, the pure water flux was 2.3 L / (m 2 · h · bar), and the NaCl rejection was 62%.
(モジュールの作製)
 SPAE中空糸膜は、乾燥すると膜性能が著しく低下したことから、製膜後、水洗されたウェット膜の状態のまま、以下のように、図3タイプのモジュールを作製した。含水状態のSPAE中空糸膜の本数2,200本を平行に束ねた糸束1本を準備し、乾燥しないように濡れた布巾で糸束を覆った。糸束の片方のループ端部をドライヤーで乾燥させて紐で縛り、この端部を、内径10mmのテフロン(登録商標)筒容器に収めて、これにエポキシ樹脂を充填して固めた後、離型して接着端(A11)を得た。次に糸束の周囲を、厚さ50μmのテフロン(登録商標)フィルムで巻いて外面を保護した状態にして、2箇所の供給液入出口(A4,A5)を備えた内径13mm、長さ300mmのポリ塩化ビニル製の円筒容器に充填した。その後、テフロン(登録商標)フィルムを引き抜いた。続いて、円筒容器を立てた状態で固定して、接着端(A11)を上側、もう片方の端部を下側にして、同じくドライヤーで乾燥した端部に、円筒容器下部からエポキシ樹脂を流し込み、端部接着を行い、接着端(A2)を得た。開口端部(A1)は、樹脂硬化後に、中空糸膜が開口するように切削加工を行った。得られたモジュールの中空糸膜有効長およびろ過室長さLは240mmであり、中空糸充填率は42vol%、比表面積は9,400m/mであった。このモジュールにキャップ(A9)を上下取り付けた後、純水をモジュール内に充填して、第一分離層(スキン層)を有するSPAE中空糸膜のモジュールを得た。
(Manufacture of modules)
Since the membrane performance of the SPAE hollow fiber membrane was remarkably lowered when it was dried, a module of FIG. 3 type was produced as described below in the state of the wet membrane washed with water after film formation. One yarn bundle in which 2,200 water-containing SPAE hollow fiber membranes were bundled in parallel was prepared, and the yarn bundle was covered with a wet cloth so as not to be dried. One end of the loop of the yarn bundle is dried with a dryer and tied with a string. The end is placed in a Teflon (registered trademark) tube container having an inner diameter of 10 mm, and filled with an epoxy resin and hardened. The adhesive end (A11) was obtained by molding. Next, the periphery of the yarn bundle is wound with a Teflon (registered trademark) film having a thickness of 50 μm to protect the outer surface, and the inner diameter is 13 mm and the length is 300 mm provided with two supply liquid inlets / outlets (A4, A5). A cylindrical container made of polyvinyl chloride was filled. Thereafter, the Teflon (registered trademark) film was pulled out. Subsequently, the cylindrical container is fixed in an upright state, and the epoxy resin is poured from the lower part of the cylindrical container into the end dried with a dryer, with the adhesive end (A11) on the upper side and the other end on the lower side. Then, end bonding was performed to obtain a bonded end (A2). The opening end (A1) was cut so that the hollow fiber membrane was opened after the resin was cured. The obtained module had an effective length of the hollow fiber membrane and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 42 vol%, and a specific surface area of 9,400 m 2 / m 3 . After the cap (A9) was vertically attached to this module, pure water was filled into the module to obtain a SPAE hollow fiber membrane module having a first separation layer (skin layer).
(第二分離層の形成)
 実施例1と同一の方法で、CPVAおよびAPVAの吸着処理、グルタルアルデヒドによる架橋処理を行った。
(Formation of second separation layer)
In the same manner as in Example 1, adsorption treatment of CPVA and APVA and crosslinking treatment with glutaraldehyde were performed.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量0.6L/h、圧力あたり純水フラックス0.4L/(m・h・bar)であった。またMgSO阻止率98.6%、NaCl阻止率92.0%、スクロース阻止率99.1%、グルコース阻止率96.0%であった。 The final module performance was a module pure water permeation of 0.6 L / h and a pure water flux per pressure of 0.4 L / (m 2 · h · bar) at a pressure of 5 bar. The MgSO 4 blocking rate was 98.6%, the NaCl blocking rate was 92.0%, the sucrose blocking rate was 99.1%, and the glucose blocking rate was 96.0%.
(実施例8)
(中空糸支持膜の作製)
 中空糸の形状を変更したこと以外は、実施例1と同一の方法で、PPE中空糸支持膜を得た。PPE中空糸支持膜の外径は260μm、膜厚は170μmであった。純水透過試験を行ったところ、純水フラックスは83L/(m・h・bar)であった。
(Example 8)
(Preparation of hollow fiber support membrane)
A PPE hollow fiber support membrane was obtained in the same manner as in Example 1 except that the shape of the hollow fiber was changed. The outer diameter of the PPE hollow fiber support membrane was 260 μm, and the film thickness was 170 μm. When the pure water permeation test was conducted, the pure water flux was 83 L / (m 2 · h · bar).
(第一分離層の形成)
 実施例1と同一の方法で、ディップコーティング速度と乾燥温度を微調整して、SPAEからなる第一分離層を有する複数の複合分離膜を得た。SEMで観察した結果、第一分離層の厚みは160nmであった。この時点で、純水フラックスは42L/(m・h・bar)、NaCl阻止率は10%であった。
(Formation of the first separation layer)
In the same manner as in Example 1, the dip coating speed and the drying temperature were finely adjusted to obtain a plurality of composite separation membranes having a first separation layer made of SPAE. As a result of observation by SEM, the thickness of the first separation layer was 160 nm. At this time, the pure water flux was 42 L / (m 2 · h · bar), and the NaCl rejection was 10%.
(モジュールの作製)
 実施例5と同様にして、内径13mm、長さ300mmのポリ塩化ビニル製の円筒容器、中空糸膜の本数1,100本の糸束を用いて、図3タイプのモジュールを作製した。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに240mmであり、中空糸充填率は44vol%、比表面積は6,800m/mであった。
(Manufacture of modules)
In the same manner as in Example 5, a module of FIG. 3 type was manufactured using a cylindrical container made of polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm and a bundle of 1,100 hollow fiber membranes. The obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 6,800 m 2 / m 3 .
(親水化・含水処理)
 実施例1と同様にして、膜の親水化処理と純水への置換処理を行った。
(Hydrophilization / moisture treatment)
In the same manner as in Example 1, the membrane was hydrophilized and replaced with pure water.
(第二分離層の形成)
 CPVAの種類を変更し、K434(日本合成化学製カチオン変性ポリビニルアルコール)を用いたこと以外は、実施例1と同一の方法で、CPVAおよびAPVAの吸着処理、グルタルアルデヒドによる架橋処理を行った。
(Formation of second separation layer)
CPVA and APVA adsorption treatment and glutaraldehyde crosslinking treatment were performed in the same manner as in Example 1 except that the type of CPVA was changed and K434 (Nippon GOHSEI cation-modified polyvinyl alcohol) was used.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量4.7L/h、圧力あたり純水フラックス4.4L/(m・h・bar)であった。またMgSO阻止率98.2%、NaCl阻止率61.0%、スクロース阻止率99.0%、グルコース阻止率89.4%であった。 The final module performance was a pure water permeation amount of 4.7 L / h and a pure water flux per pressure of 4.4 L / (m 2 · h · bar) at a pressure of 5 bar. The MgSO 4 blocking rate was 98.2%, the NaCl blocking rate was 61.0%, the sucrose blocking rate was 99.0%, and the glucose blocking rate was 89.4%.
(比較例1)
 以下のように、中空糸膜に第一分離層及び第二分離層を順に形成する処理を行ってから、モジュールを構成する手法を検討した。
(Comparative Example 1)
As described below, after performing the process of sequentially forming the first separation layer and the second separation layer on the hollow fiber membrane, a method for constructing the module was examined.
(中空糸支持膜の作製)
 実施例1と同一の方法で、PPE中空糸支持膜を得た。PPE中空糸支持膜の外径は250μm、膜厚は150μmであった。純水透過試験を行ったところ、純水フラックスは43L/(m・h・bar)であった。
(Preparation of hollow fiber support membrane)
In the same manner as in Example 1, a PPE hollow fiber support membrane was obtained. The outer diameter of the PPE hollow fiber support membrane was 250 μm, and the film thickness was 150 μm. When the pure water permeation test was conducted, the pure water flux was 43 L / (m 2 · h · bar).
(第一分離層の形成)
 実施例1と同一の方法で、SPAEからなる第一分離層を有する複数の複合分離膜を得た。SEMで観察した結果、第一分離層の厚みは160nmであった。この時点で、純水フラックスは30L/(m・h・bar)、NaCl阻止率は11%であった。
(Formation of the first separation layer)
In the same manner as in Example 1, a plurality of composite separation membranes having a first separation layer made of SPAE were obtained. As a result of observation by SEM, the thickness of the first separation layer was 160 nm. At this time, the pure water flux was 30 L / (m 2 · h · bar), and the NaCl rejection was 11%.
(第二分離層の形成)
 この中空糸膜を用いて、長さ500mmの1,200本のループ状糸束を作製した。このループ糸束を、エタノールを満たしたバットに2時間浸漬し、純水に段階的に置換して、親水化・含水処理を行った。続いて、この糸束を、CPVA(クラレ製CM318)の0.1wt%水溶液を満たしたプラスチックタンクに浸漬し、30分間静置して吸着処理を行った後、純水を満たしたタンクに5分間浸漬してリンスを行った。その後、APVA(日本合成化学製CKS50)を純水に溶解させた0.1wt%水溶液を満たしたタンクに糸束を浸漬し、30分間静置して吸着処理を行った後、同様に純水タンク内で、5分間リンス処理を行った。次にドラフト内で、1wt%のグルタルアルデヒド(GA)水溶液(酸触媒として硫酸を加え、pH=1に調製)を満たしたタンクに、糸束を浸漬し、20時間架橋処理を行った。中空糸膜の糸束を十分水洗した後、CPVAおよびAPVAの吸着処理およびグルタルアルデヒド架橋の処理サイクルをもう1回実施した。最後に十分純水で水洗して、第二分離層を有する中空糸膜の糸束を得た。
(Formation of second separation layer)
Using this hollow fiber membrane, 1,200 loop yarn bundles having a length of 500 mm were produced. The loop yarn bundle was dipped in a vat filled with ethanol for 2 hours, and was gradually replaced with pure water to perform hydrophilization / moisture treatment. Subsequently, the yarn bundle was dipped in a plastic tank filled with a 0.1 wt% aqueous solution of CPVA (Kuraray CM318), left to stand for 30 minutes for adsorption treatment, and then placed in a tank filled with pure water. Rinsing was performed by dipping for a minute. Thereafter, the yarn bundle was immersed in a tank filled with a 0.1 wt% aqueous solution in which APVA (manufactured by Nippon Synthetic Chemical Co., Ltd.) was dissolved in pure water, left to stand for 30 minutes, and subjected to an adsorption treatment. A rinsing treatment was performed for 5 minutes in the tank. Next, the yarn bundle was immersed in a tank filled with a 1 wt% aqueous solution of glutaraldehyde (GA) (added sulfuric acid as an acid catalyst and adjusted to pH = 1) and subjected to a crosslinking treatment for 20 hours. After sufficiently washing the yarn bundle of the hollow fiber membrane with water, another treatment cycle of CPVA and APVA adsorption treatment and glutaraldehyde crosslinking was performed. Finally, it was sufficiently washed with pure water to obtain a hollow fiber membrane yarn bundle having a second separation layer.
(モジュールの作製)
 上記の中空糸膜の糸束を一晩風乾させた糸束を準備した。実施例5と同じ手順で、内径13mm、長さ300mmのポリ塩化ビニル製の円筒容器を用いて、図3タイプのモジュールを作製した。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに240mmであり、中空糸充填率は44vol%、比表面積は7,100m/mであった。
(Manufacture of modules)
A yarn bundle was prepared by air-drying the above-mentioned hollow fiber membrane bundle overnight. In the same procedure as in Example 5, a module of the type shown in FIG. 3 was produced using a cylindrical container made of polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm. The hollow fiber membrane obtained modules effective length L H and filtration chamber length L M are both 240 mm, the hollow fiber packing ratio is 44 vol%, a specific surface area of 7,100m 2 / m 3.
(親水化・含水処理)
 乾燥状態のモジュールを再度含水させるために、実施例1と同一の方法で、親水化処理・含水処理を行った。
(Hydrophilization / moisture treatment)
In order to rehydrate the dried module, hydrophilization treatment and water treatment were performed in the same manner as in Example 1.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量6.1L/h、圧力あたり純水フラックス5.4L/(m・h・bar)であった。またMgSO阻止率54%、NaCl阻止率30%、スクロース阻止率62%、グルコース阻止率31%であり、実施例1の手法と比較して、第二分離層を形成させてからモジュール化を行った場合、工程が煩雑になるうえ、モジュール化工程で膜の性能低下が生じ、性能発現が不十分であった。 The final module performance was a module pure water permeation of 6.1 L / h and a pure water flux of 5.4 L / (m 2 · h · bar) at a pressure of 5 bar. Further, the MgSO 4 blocking rate is 54%, the NaCl blocking rate is 30%, the sucrose blocking rate is 62%, and the glucose blocking rate is 31%. Compared with the method of Example 1, the second separation layer is formed and then modularization is performed. When it performed, the process became complicated and the performance of the membrane was lowered in the modularization process, and the performance expression was insufficient.
(比較例2)
 以下のように、従来の溶液塗布法により、未変性のポリビニルアルコールから構成される第二分離層を形成して、モジュールを構成する手法を検討した。
(Comparative Example 2)
As described below, a method for forming a module by forming a second separation layer composed of unmodified polyvinyl alcohol by a conventional solution coating method was studied.
(中空糸支持膜の作製)
 実施例1と同一の方法で、PPE中空糸支持膜を得た。PPE中空糸支持膜の外径は250μm、膜厚は150μmであった。純水透過試験を行ったところ、純水フラックスは43L/(m・h・bar)であった。
(Preparation of hollow fiber support membrane)
In the same manner as in Example 1, a PPE hollow fiber support membrane was obtained. The outer diameter of the PPE hollow fiber support membrane was 250 μm, and the film thickness was 150 μm. When the pure water permeation test was conducted, the pure water flux was 43 L / (m 2 · h · bar).
(第一分離層の形成)
 実施例1と同一の方法で、SPAEからなる第一分離層を有する複数の複合分離膜を得た。SEMで観察した結果、第一分離層の厚みは160nmであった。この時点で、純水フラックスは30L/(m・h・bar)、NaCl阻止率は11%であった。
(Formation of the first separation layer)
In the same manner as in Example 1, a plurality of composite separation membranes having a first separation layer made of SPAE were obtained. As a result of observation by SEM, the thickness of the first separation layer was 160 nm. At this point, the pure water flux 30L / (m 2 · h · bar), NaCl rejection was 11%.
(第二分離層の形成)
 第二分離層のポリマーとして、通常の未変性ポリビニルアルコール(シグマ-アルドリッチ、製品番号:363073、平均分子量31,000~50,000、ケン化度87~89%)を準備した。ポリビニルアルコール(PVA)を純水に溶解し、1.0重量%水溶液を調製して、これを浴槽に満たした。ワインダーに巻き取った中空糸膜を巻きだして、この浴槽にディップコート処理を行い、80℃で乾燥処理した。続いてこの中空糸膜を1%グルタルアルデヒド水溶液(酸触媒として硫酸を加えpH=2に調製)に導いて、含浸処理を行った後、垂直型の乾燥炉にて120℃で乾燥処理を行って、最後にワインダーに巻き取って、PVAの第二分離層を有する中空糸膜を得た。
(Formation of second separation layer)
As the polymer of the second separation layer, ordinary unmodified polyvinyl alcohol (Sigma-Aldrich, product number: 363073, average molecular weight of 31,000 to 50,000, saponification degree of 87 to 89%) was prepared. Polyvinyl alcohol (PVA) was dissolved in pure water to prepare a 1.0% by weight aqueous solution, which was filled in the bathtub. The hollow fiber membrane wound up by the winder was wound, the dip coating process was performed to this bathtub, and it dried at 80 degreeC. Subsequently, the hollow fiber membrane was introduced into a 1% glutaraldehyde aqueous solution (sulfuric acid was added as an acid catalyst and adjusted to pH = 2), impregnated, and then dried at 120 ° C. in a vertical drying furnace. And finally, it wound up by the winder and obtained the hollow fiber membrane which has the 2nd separated layer of PVA.
(モジュールの作製)
 上記の中空糸膜1200本の糸束を準備し、実施例5と同じ手順で、内径13mm、長さ300mmのポリ塩化ビニル製の円筒容器を用いて、図3タイプのモジュールを作製した。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに240mmであり、中空糸充填率は44vol%、比表面積は7,100m/mであった。SEMで観察を行ったところ、PVA分離層の厚みは180nmであった。
(Manufacture of modules)
A thread bundle of 1200 hollow fiber membranes was prepared, and a module of FIG. 3 type was produced using a polyvinyl chloride cylindrical container having an inner diameter of 13 mm and a length of 300 mm in the same procedure as in Example 5. The hollow fiber membrane obtained modules effective length L H and filtration chamber length L M are both 240 mm, the hollow fiber packing ratio is 44 vol%, specific surface area of 7,100m 2 / m 3. When observed by SEM, the thickness of the PVA separation layer was 180 nm.
(親水化・含水処理)
 実施例1と同一の方法で、親水化処理・含水処理を行った。
(Hydrophilization / moisture treatment)
Hydrophilic treatment / moisture treatment was performed in the same manner as in Example 1.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量0.3L/h、圧力あたり純水フラックス0.3L/(m・h・bar)であった。またMgSO阻止率89%、NaCl阻止率88%、スクロース阻止率87.2%、グルコース阻止率46%であり、実施例1の手法と比較して、従来の塗布法により厚みの大きい架橋PVAによる第二分離層を形成させてから、モジュール化を行った場合、工程が煩雑になるうえ、透水性が低く、分離性能の発現も不十分であった。 The final module performance was a module pure water permeation of 0.3 L / h and a pure water flux of 0.3 L / (m 2 · h · bar) at a pressure of 5 bar. Further, the MgSO 4 blocking rate is 89%, the NaCl blocking rate is 88%, the sucrose blocking rate is 87.2%, and the glucose blocking rate is 46%. Compared with the method of Example 1, the cross-linked PVA is thicker by the conventional coating method. When the modularization was performed after forming the second separation layer by the above, the process became complicated, the water permeability was low, and the expression of the separation performance was insufficient.
(比較例3)
 以下のように、比較的高い分離性能を付与した第一分離層のみを有する中空糸膜を準備し、モジュールの作製を検討した。
(Comparative Example 3)
As described below, a hollow fiber membrane having only a first separation layer imparted with relatively high separation performance was prepared, and production of a module was examined.
(中空糸支持膜の作製)
 中空糸の形状を変更したこと以外は、実施例1と同一の方法で、PPE中空糸支持膜を得た。PPE中空糸支持膜の外径は260μm、膜厚は170μmであった。純水透過試験を行ったところ、純水フラックスは83L/(m・h・bar)であった。
(Preparation of hollow fiber support membrane)
A PPE hollow fiber support membrane was obtained in the same manner as in Example 1 except that the shape of the hollow fiber was changed. The outer diameter of the PPE hollow fiber support membrane was 260 μm, and the film thickness was 170 μm. When the pure water permeation test was conducted, the pure water flux was 83 L / (m 2 · h · bar).
(第一分離層の形成)
 実施例1と同一の方法で、乾燥温度を180℃として、SPAEからなる第一分離層を有する複数の複合分離膜を得た。SEMで観察した結果、第一分離層の厚みは160nmであった。この時点で、純水フラックスは1.5L/(m・h・bar)、NaCl阻止率は72%であった。
(Formation of the first separation layer)
In the same manner as in Example 1, the drying temperature was set to 180 ° C., and a plurality of composite separation membranes having a first separation layer made of SPAE were obtained. As a result of observation by SEM, the thickness of the first separation layer was 160 nm. At this time, the pure water flux was 1.5 L / (m 2 · h · bar), and the NaCl rejection was 72%.
(モジュールの作製)
 実施例5と同様にして、内径13mm、長さ300mmのポリ塩化ビニル製の円筒容器、中空糸膜の本数1,100本の糸束を用いて、図3に示すタイプのモジュールを作製した。得られたモジュールの中空糸膜有効長Lおよびろ過室長さLはともに240mmであり、中空糸充填率は44vol%、比表面積は6,800m/mであった。
(Manufacture of modules)
In the same manner as in Example 5, a module of the type shown in FIG. 3 was produced using a cylindrical container made of polyvinyl chloride having an inner diameter of 13 mm and a length of 300 mm and a bundle of 1,100 hollow fiber membranes. The obtained module had an effective hollow fiber membrane length L H and a filtration chamber length L M of 240 mm, a hollow fiber filling rate of 44 vol%, and a specific surface area of 6,800 m 2 / m 3 .
(親水化・含水処理)
 実施例1と同様にして、膜の親水化処理と純水への置換処理を行った。
(Hydrophilization / moisture treatment)
In the same manner as in Example 1, the membrane was hydrophilized and replaced with pure water.
 最終的なモジュール性能は、圧力5barにおいて、モジュールの純水透過量1.7L/h、圧力あたり純水フラックス1.5L/(m・h・bar)であった。またMgSO阻止率73%、NaCl阻止率65.0%、スクロース阻止率74%、グルコース阻止率38%であり、透水性および分離性ともに不十分であった。 The final module performance was 1.7 L / h of pure water permeation of the module at a pressure of 5 bar and 1.5 L / (m 2 · h · bar) of pure water per pressure. The MgSO 4 rejection 73% NaCl rejection 65.0%, sucrose rejection of 74%, a glucose rejection of 38%, was insufficient in permeability and separability both.
 以下、本発明における測定、評価手法について説明する。 Hereinafter, the measurement and evaluation methods in the present invention will be described.
(SPAEポリマーのスルホン化度DSの測定)
 SPAEポリマーのスルホン化度DSは以下のように評価した。真空乾燥器で100℃、1晩乾燥させたポリマー20mgを、ナカライテスク社の重水素化DMSO(DMSO-d6)1mLに溶解させ、これをBRUKER AVANCE500(周波数500.13MHz、温度30℃、FT積算32回)にてプロトンNMR測定した。得られたスペクトルチャートにおいて、疎水性セグメントおよび親水性セグメントに含まれる各プロトンとピーク位置の関係を同定し、疎水性セグメントにおけるプロトンのうち独立したピークと、親水性セグメントにおけるプロトンのうち独立したピークの1個のプロトンあたりの積分強度の比から求めた。
(Measurement of sulfonation degree DS of SPAE polymer)
The degree of sulfonation DS of the SPAE polymer was evaluated as follows. 20 mg of the polymer dried overnight at 100 ° C. in a vacuum dryer was dissolved in 1 mL of deuterated DMSO (DMSO-d6) manufactured by Nacalai Tesque, and this was dissolved in BRUKER AVANCE500 (frequency 500.13 MHz, temperature 30 ° C., FT integration) 32 times) proton NMR measurement. In the obtained spectrum chart, the relationship between each proton contained in the hydrophobic segment and the hydrophilic segment and the peak position is identified, and the independent peak among the protons in the hydrophobic segment and the independent peak among the protons in the hydrophilic segment Was obtained from the ratio of the integrated intensity per proton.
(中空糸膜の形状)
 3mm径または6mm径の孔を空けた3mm厚のSUS板の孔に、適量の中空糸膜を詰め、カミソリ刃でカットして断面を露出させた後、Nikon製の顕微鏡(ECLIPSE LV100)およびNikon製の画像処理装置(DIGITAL SIGHT DS-U2)およびCCDカメラ(DS-Ri1)を用いて、断面の形状を撮影し、画像解析ソフト(NIS Element D3.00 SP6)により、中空糸膜断面の外径および内径を、該解析ソフトの計測機能を用いて測定することで中空糸膜の外径および内径および厚みを算出した。
(Shape of hollow fiber membrane)
An appropriate amount of a hollow fiber membrane is filled in a 3 mm-thick SUS plate hole with a 3 mm diameter or 6 mm diameter hole, cut with a razor blade to expose the cross section, and then a Nikon microscope (ECLIPSE LV100) and Nikon The cross-sectional shape was photographed using an image processing device (DIGITAL SIGN DS-U2) and a CCD camera (DS-Ri1), and the outside of the cross section of the hollow fiber membrane was imaged using image analysis software (NIS Element D3.00 SP6). The outer diameter, inner diameter and thickness of the hollow fiber membrane were calculated by measuring the diameter and inner diameter using the measurement function of the analysis software.
(第一分離層の厚み)
 含水した状態の中空糸膜を液体窒素で凍結させ、割断し、風乾させて、その割断面にPtをスパッタリングし、(株)日立製作所製の走査型電子顕微鏡S-4800を用いて、加速電圧5kVで観察した。
(Thickness of the first separation layer)
The hollow fiber membrane in a water-containing state is frozen with liquid nitrogen, cleaved, air-dried, and Pt is sputtered onto the fractured surface. Using a scanning electron microscope S-4800 manufactured by Hitachi, Ltd., the acceleration voltage Observed at 5 kV.
(中空糸膜モジュールのろ過評価)
 実施例および比較例で作製したモジュールについて、供給水タンク、圧力ポンプからなるモジュール試験装置(内径13mmの小型モジュールについては、ほぼ同一構成の小型試験装置)に接続し、クロスフローにてろ過試験を実施した。評価圧力は5bar(0.5MPa),供給液温度は25℃に統一した。回収率はおおむね5%になるように供給液流量を調節した。分離試験の溶質として塩化ナトリウム(NaCl)、硫酸マグネシウム(MgSO)、スクロース(分子量342)、グルコース(分子量180)をそれぞれ用いた。溶質濃度は全て1500mg/Lに調製した。約1時間ろ過運転を行った後、膜からの透過水量を試験装置の流量計で測定するとともに、透過液をサンプリングし、溶質濃度を測定した。
 圧力あたり透水量は下記式より算出した。
  FR[L/(m・h・bar)]=透過水量[L]/膜面積[m]/採取時間[分]/運転圧力[bar]
(Filtration evaluation of hollow fiber membrane module)
The modules produced in the examples and comparative examples are connected to a module testing device consisting of a feed water tank and a pressure pump (for a small module with an inner diameter of 13 mm, a small testing device having almost the same configuration) and subjected to a filtration test by crossflow Carried out. The evaluation pressure was unified at 5 bar (0.5 MPa), and the supply liquid temperature was unified at 25 ° C. The feed liquid flow rate was adjusted so that the recovery rate was about 5%. Sodium chloride (NaCl), magnesium sulfate (MgSO 4 ), sucrose (molecular weight 342), and glucose (molecular weight 180) were used as solutes for the separation test. All solute concentrations were adjusted to 1500 mg / L. After performing the filtration operation for about 1 hour, the amount of permeated water from the membrane was measured with the flow meter of the test apparatus, the permeate was sampled, and the solute concentration was measured.
The amount of water per pressure was calculated from the following formula.
FR [L / (m 2 · h · bar)] = permeated water amount [L] / membrane area [m 2 ] / collection time [min] / operating pressure [bar]
 供給液がNaClまたはMgSOの場合には、ろ過試験で採取した膜透過水と、供給水溶液について、電気伝導率計(東亜ディーケーケー社CM-25R)を用いて導電度を測定し、イオン阻止率を下記式より算出した。
  阻止率[%]=(1-ろ過液の導電率[μS/cm]/供給水溶液の導電率[μS/cm])×100
When the supply solution is NaCl or MgSO 4 , the conductivity of the membrane permeated water collected in the filtration test and the supply aqueous solution is measured using an electric conductivity meter (CM-25R, Toa DKK Corporation), and the ion blocking rate is measured. Was calculated from the following formula.
Blocking rate [%] = (1−conductivity of filtrate [μS / cm] / conductivity of feed aqueous solution [μS / cm]) × 100
 供給液がスクロースまたはグルコースの場合には、前記透水量測定で採取した膜透過水と、供給水溶液の糖濃度を、フェノール硫酸法により評価した。具体的には、試験管に1.0mLの上記の供給液または透過液を、純水で10倍に希釈したものを入れ、5%フェノール水溶液を1.0mL加えて攪拌する。そのうえに濃硫酸(96%濃度)を5.0mL速やかに加えて、攪拌する。呈色した溶液を、490nmにて吸光度測定を行い、あらかじめ作成した検量線から濃度を算出し、10倍した値を実際の濃度値とする。フェノール硫酸法において、各糖濃度と吸光度の間の線形性が良好な範囲は、0~200mg/Lまでであるため、上記の1500mg/Lの供給液またはろ過液は10倍に希釈して測定を行う。溶質の阻止率は下記式から算出した。
  阻止率[%]=(1-ろ過液の糖濃度[mg/L]/供給水溶液の糖濃度[mg/L])×100
When the feed solution was sucrose or glucose, the membrane permeated water collected by the water permeation measurement and the sugar concentration of the feed aqueous solution were evaluated by the phenol-sulfuric acid method. Specifically, 1.0 mL of the above-mentioned supply liquid or permeate diluted 10-fold with pure water is placed in a test tube, and 1.0 mL of a 5% phenol aqueous solution is added and stirred. On top of that, 5.0 mL of concentrated sulfuric acid (96% concentration) is quickly added and stirred. The colored solution is subjected to absorbance measurement at 490 nm, the concentration is calculated from a calibration curve prepared in advance, and the value obtained by multiplying by 10 is used as the actual concentration value. In the phenol-sulfuric acid method, the range in which the linearity between each sugar concentration and absorbance is good is from 0 to 200 mg / L. Therefore, the above-mentioned 1500 mg / L supply solution or filtrate is diluted 10 times and measured. I do. The solute rejection was calculated from the following equation.
Blocking rate [%] = (1−sugar concentration of the filtrate [mg / L] / sugar concentration of the feed aqueous solution [mg / L]) × 100
 実施例1~8及び比較例1~3の詳細と評価結果を表1に示す。 Table 1 shows details and evaluation results of Examples 1 to 8 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 本発明によれば、比較的細径の中空糸複合膜の糸束をハウジングに挿入した外圧ろ過式の中空糸複合膜モジュールにおいて、ハウジング挿入時の摩擦による分離層の劣化及びそれによる性能低下を回避し、高い選択透過性と比表面積率を達成したものを提供することができる。 According to the present invention, in an external pressure filtration type hollow fiber composite membrane module in which a bundle of hollow fiber composite membranes having relatively small diameters is inserted into a housing, the separation layer is deteriorated due to friction when the housing is inserted, and the performance is thereby reduced. It can avoid and can provide what achieved high selective permeability and specific surface area ratio.

Claims (8)

  1.  外径が100μm以上800μm以下の中空糸膜の糸束から構成され、正味の中空糸膜充填率が20%以上60%以下である、外圧ろ過式の中空糸複合膜モジュールの製造方法において、以下の(i)~(vi)の工程を含むことを特徴とする製造方法:
    (i)アニオン性官能基を含むポリマーからなる第一分離層を外表面に有する中空糸膜を作製する工程、
    (ii)前記中空糸膜を巻き上げて糸束を作製する工程、
    (iii)前記中空糸膜の糸束をハウジングに挿入する工程、
    (iv)前記中空糸膜の糸束の少なくとも片方の端部を樹脂接着し、開口処理を行う工程、
    (v)前記中空糸膜の外表面に、少なくとも1種類のカチオン性官能基またはアニオン性官能基を有する変性ポリビニルアルコール水溶液を接触させ、変性ポリビニルアルコールの吸着層からなる第二分離層を形成させる工程、及び
    (vi)前記第二分離層に、アルデヒド類の水溶液を接触させ、変性ポリビニルアルコールの水酸基の一部をアセタール化する工程。
    In the manufacturing method of a hollow fiber composite membrane module of an external pressure filtration type, which is composed of a bundle of hollow fiber membranes having an outer diameter of 100 μm or more and 800 μm or less and whose net hollow fiber membrane filling rate is 20% or more and 60% or less, A production method comprising the steps of (i) to (vi):
    (I) producing a hollow fiber membrane having a first separation layer made of a polymer containing an anionic functional group on the outer surface;
    (Ii) a step of winding the hollow fiber membrane to produce a yarn bundle,
    (Iii) inserting the yarn bundle of the hollow fiber membrane into a housing;
    (Iv) a step of resin-bonding at least one end of the yarn bundle of the hollow fiber membrane and performing an opening treatment;
    (V) A modified polyvinyl alcohol aqueous solution having at least one kind of cationic functional group or anionic functional group is brought into contact with the outer surface of the hollow fiber membrane to form a second separation layer comprising an adsorption layer of the modified polyvinyl alcohol. And (vi) a step of bringing the second separation layer into contact with an aqueous solution of aldehydes to acetalize part of the hydroxyl groups of the modified polyvinyl alcohol.
  2.  前記第一分離層を構成するポリマーが、下記式(IV)で表される疎水性セグメントと、下記式(V)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることを特徴とする請求項1に記載の外圧ろ過式の中空糸複合膜モジュールの製造方法。
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    上記式中、
    Figure JPOXMLDOC01-appb-I000003
    であり、
    Figure JPOXMLDOC01-appb-I000004
    であり、
    Figure JPOXMLDOC01-appb-I000005
    であり、
    Figure JPOXMLDOC01-appb-I000006
    であり、
     YとWは同じものが選択されることはなく、
     aおよびbはそれぞれ1以上の自然数を表し、
     RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、
     スルホン化ポリアリーレンエーテル共重合体中の式(IV)の繰り返し数と式(V)の繰り返し数の合計に対する式(V)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
    The polymer constituting the first separation layer is a sulfonated polyarylene ether having a repeating structure of a hydrophobic segment represented by the following formula (IV) and a hydrophilic segment represented by the following formula (V). The method for producing an external pressure filtration type hollow fiber composite membrane module according to claim 1.
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    In the above formula,
    Figure JPOXMLDOC01-appb-I000003
    And
    Figure JPOXMLDOC01-appb-I000004
    And
    Figure JPOXMLDOC01-appb-I000005
    And
    Figure JPOXMLDOC01-appb-I000006
    And
    The same Y and W are not selected,
    a and b each represent a natural number of 1 or more,
    R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element,
    Sulfonation rate expressed as a percentage of the number of repetitions of formula (V) to the total number of repetitions of formula (IV) and formula (V) in the sulfonated polyarylene ether copolymer is from 5% Is larger than 80%.
  3.  前記第一分離層を構成するスルホン化ポリマーが、下記式(I)で表される疎水性セグメントと、下記式(II)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることを特徴とする請求項1又は2に記載の外圧ろ過式の中空糸複合膜モジュールの製造方法。
    Figure JPOXMLDOC01-appb-I000007
     上記式中、mおよびnはそれぞれ1以上の自然数を表し、RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、スルホン化ポリアリーレンエーテル共重合体中の式(I)の繰り返し数と式(II)の繰り返し数の合計に対する式(II)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
    The sulfonated polymer constituting the first separation layer is a sulfonated polyarylene ether comprising a repeating structure of a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II). The method for producing an external pressure filtration type hollow fiber composite membrane module according to claim 1 or 2, wherein:
    Figure JPOXMLDOC01-appb-I000007
    In the above formula, m and n each represent a natural number of 1 or more, R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element, and a sulfonated polyarylene ether copolymer The sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (I) and formula (II) is greater than 5% and less than 80% .
  4.  前記中空糸膜の第一分離層および第二分離層以外の中空糸膜の構成部分が、ポリフェニレンエーテルで構成されることを特徴とする請求項1~3のいずれかに記載の外圧ろ過式の中空糸複合膜モジュールの製造方法。 The external pressure filtration type according to any one of claims 1 to 3, wherein the constituent parts of the hollow fiber membrane other than the first separation layer and the second separation layer of the hollow fiber membrane are composed of polyphenylene ether. Manufacturing method of hollow fiber composite membrane module.
  5.  外径が100μm以上800μm以下の中空糸膜の糸束から構成され、正味の中空糸膜充填率が、20%以上60%以下である、外圧ろ過式の中空糸膜モジュールにおいて、以下の(i)~(iii)を満足することを特徴とする外圧ろ過式の中空糸複合膜モジュール。
    (i)中空糸膜の外表面に第一分離層と第二分離層が順に設けられていること、
    (ii)第一分離層が、アニオン性官能基を含むポリマーから構成されていること、及び
    (iii)第二分離層が、少なくとも1種類のカチオン性官能基またはアニオン性官能基を有する変性ポリビニルアルコールのアルデヒド架橋物から構成されていること。
    In the external pressure filtration type hollow fiber membrane module, which is composed of a bundle of hollow fiber membranes having an outer diameter of 100 μm or more and 800 μm or less, and whose net hollow fiber membrane filling rate is 20% or more and 60% or less, the following (i ) To (iii) are satisfied, an external pressure filtration type hollow fiber composite membrane module.
    (I) a first separation layer and a second separation layer are provided in this order on the outer surface of the hollow fiber membrane;
    (Ii) the first separating layer is composed of a polymer containing an anionic functional group, and (iii) the modified polyvinyl having at least one cationic functional group or anionic functional group in the second separating layer. Consists of cross-linked alcohol aldehydes.
  6.  前記第一分離層を構成するポリマーが、下記式(IV)で表される疎水性セグメントと、下記式(V)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることを特徴とする請求項5に記載の外圧ろ過式の中空糸複合膜モジュール。
    Figure JPOXMLDOC01-appb-I000009
    Figure JPOXMLDOC01-appb-I000010
    上記式中、
    Figure JPOXMLDOC01-appb-I000011
    であり、
    Figure JPOXMLDOC01-appb-I000012
    であり、
    Figure JPOXMLDOC01-appb-I000013
    であり、
    Figure JPOXMLDOC01-appb-I000014
    であり、
     YとWは同じものが選択されることはなく、
     aおよびbはそれぞれ1以上の自然数を表し、
     RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、
     スルホン化ポリアリーレンエーテル共重合体中の式(IV)の繰り返し数と式(V)の繰り返し数の合計に対する式(V)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
    The polymer constituting the first separation layer is a sulfonated polyarylene ether having a repeating structure of a hydrophobic segment represented by the following formula (IV) and a hydrophilic segment represented by the following formula (V). An external pressure filtration type hollow fiber composite membrane module according to claim 5.
    Figure JPOXMLDOC01-appb-I000009
    Figure JPOXMLDOC01-appb-I000010
    In the above formula,
    Figure JPOXMLDOC01-appb-I000011
    And
    Figure JPOXMLDOC01-appb-I000012
    And
    Figure JPOXMLDOC01-appb-I000013
    And
    Figure JPOXMLDOC01-appb-I000014
    And
    The same Y and W are not selected,
    a and b each represent a natural number of 1 or more,
    R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element,
    Sulfonation rate expressed as a percentage of the number of repetitions of formula (V) to the total number of repetitions of formula (IV) and formula (V) in the sulfonated polyarylene ether copolymer is from 5% Is larger than 80%.
  7.  前記第一分離層を構成するスルホン化ポリマーが、下記式(I)で表される疎水性セグメントと、下記式(II)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることを特徴とする請求項5又は6に記載の外圧ろ過式の中空糸複合膜モジュール。
    Figure JPOXMLDOC01-appb-I000015
    Figure JPOXMLDOC01-appb-I000016
     上記式中、mおよびnはそれぞれ1以上の自然数を表し、RおよびRは、-SOMあるいは-SOHを表し、Mは金属元素を表し、スルホン化ポリアリーレンエーテル共重合体中の式(I)の繰り返し数と式(II)の繰り返し数の合計に対する式(II)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
    The sulfonated polymer constituting the first separation layer is a sulfonated polyarylene ether comprising a repeating structure of a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II). The external pressure filtration type hollow fiber composite membrane module according to claim 5 or 6, wherein the external pressure filtration type hollow fiber composite membrane module is provided.
    Figure JPOXMLDOC01-appb-I000015
    Figure JPOXMLDOC01-appb-I000016
    In the above formula, m and n each represent a natural number of 1 or more, R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element, and a sulfonated polyarylene ether copolymer The sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (I) and formula (II) is greater than 5% and less than 80% .
  8.  前記中空糸膜の第一分離層および第二分離層以外の中空糸膜の構成部分が、ポリフェニレンエーテルで構成されることを特徴とする請求項5~7のいずれかに記載の外圧ろ過式の中空糸複合膜モジュール。 A component of the hollow fiber membrane other than the first separation layer and the second separation layer of the hollow fiber membrane is composed of polyphenylene ether. Hollow fiber composite membrane module.
PCT/JP2017/024041 2016-07-01 2017-06-29 Hollow fiber composite membrane module and method for producing same WO2018003949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018525279A JP6931490B2 (en) 2016-07-01 2017-06-29 Hollow fiber composite membrane module and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-131518 2016-07-01
JP2016131518 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018003949A1 true WO2018003949A1 (en) 2018-01-04

Family

ID=60787248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024041 WO2018003949A1 (en) 2016-07-01 2017-06-29 Hollow fiber composite membrane module and method for producing same

Country Status (2)

Country Link
JP (1) JP6931490B2 (en)
WO (1) WO2018003949A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307655A (en) * 2021-11-22 2022-04-12 北京工业大学 U-shaped hollow fiber pervaporation membrane module and preparation method thereof
EP4029595A4 (en) * 2019-09-13 2023-09-20 Toyobo Co., Ltd. Composite film and composite film manufacturing method
WO2023192482A1 (en) * 2022-03-30 2023-10-05 Trustees Of Tufts College Amphiphilic polyelectrolyte complexes, multilayers and blends

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060798B (en) * 2021-03-30 2022-10-18 海南立昇净水科技实业有限公司 Tank type filtering equipment with replaceable filtering membrane component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268302A (en) * 1985-01-11 1986-11-27 Nitto Electric Ind Co Ltd Aromatic polysulfone composite semipermeable membrane and preparation thereof
JP2013223852A (en) * 2011-07-04 2013-10-31 Toyobo Co Ltd Reverse osmosis membrane for saline water conversion
JP2014042913A (en) * 2008-03-31 2014-03-13 Toray Ind Inc Separation membrane and separation membrane module
US20140175006A1 (en) * 2012-12-24 2014-06-26 Cheil Industries Inc. Method of preparing composite membrane module
WO2014157012A1 (en) * 2013-03-25 2014-10-02 次世代型膜モジュール技術研究組合 Gas separation membrane and gas separation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508194B2 (en) * 2014-03-19 2019-05-08 東洋紡株式会社 Composite separation membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268302A (en) * 1985-01-11 1986-11-27 Nitto Electric Ind Co Ltd Aromatic polysulfone composite semipermeable membrane and preparation thereof
JP2014042913A (en) * 2008-03-31 2014-03-13 Toray Ind Inc Separation membrane and separation membrane module
JP2013223852A (en) * 2011-07-04 2013-10-31 Toyobo Co Ltd Reverse osmosis membrane for saline water conversion
US20140175006A1 (en) * 2012-12-24 2014-06-26 Cheil Industries Inc. Method of preparing composite membrane module
WO2014157012A1 (en) * 2013-03-25 2014-10-02 次世代型膜モジュール技術研究組合 Gas separation membrane and gas separation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4029595A4 (en) * 2019-09-13 2023-09-20 Toyobo Co., Ltd. Composite film and composite film manufacturing method
CN114307655A (en) * 2021-11-22 2022-04-12 北京工业大学 U-shaped hollow fiber pervaporation membrane module and preparation method thereof
WO2023192482A1 (en) * 2022-03-30 2023-10-05 Trustees Of Tufts College Amphiphilic polyelectrolyte complexes, multilayers and blends

Also Published As

Publication number Publication date
JP6931490B2 (en) 2021-09-08
JPWO2018003949A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
KR102039807B1 (en) Forward osmosis membrane and forward osmosis treatment system
WO2018003949A1 (en) Hollow fiber composite membrane module and method for producing same
JP6694326B2 (en) Composite membrane
WO2020241860A1 (en) Forward osmosis membrane, forward osmosis membrane module, and manufacturing method thereof
JP6094922B1 (en) Composite separation membrane
US20080197071A1 (en) Nano Composite Hollow Fiber Membrane and Method of Manufacturing the Same
JP6259921B2 (en) Composite hollow fiber membrane module and manufacturing method thereof
JP5252333B1 (en) Reverse osmosis membrane for wastewater treatment
JP6256705B2 (en) Composite separation membrane
JP5896295B2 (en) Separation membrane for nanofiltration
JP5896294B2 (en) Reverse osmosis membrane for brine desalination
WO2018066631A1 (en) Method for regenerating separation membrane module
WO2020059769A1 (en) Forward osmosis membrane and membrane module including same
CN113905808A (en) Hollow fiber membrane, hollow fiber membrane module, humidifying unit, air dryer, membrane-forming stock solution for hollow fiber membrane, and method for producing hollow fiber membrane
JP7226569B2 (en) Composite membrane and method for manufacturing composite membrane
WO2021200982A1 (en) Polyphenylene-based semipermeable membrane and manufacturing method therefor
Cai et al. Hollow Fibers for Reverse Osmosis and Nanofiltration
WO2023172198A1 (en) Covalent organic frameworks on hollow fibre substrates with janus-like characteristics for solvent separation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525279

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820303

Country of ref document: EP

Kind code of ref document: A1