WO2018003620A1 - Method for producing plated roll and mechanism for preventing adhesion of hydrogen gas for plating - Google Patents

Method for producing plated roll and mechanism for preventing adhesion of hydrogen gas for plating Download PDF

Info

Publication number
WO2018003620A1
WO2018003620A1 PCT/JP2017/022818 JP2017022818W WO2018003620A1 WO 2018003620 A1 WO2018003620 A1 WO 2018003620A1 JP 2017022818 W JP2017022818 W JP 2017022818W WO 2018003620 A1 WO2018003620 A1 WO 2018003620A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
roll
chromium
hydrogen gas
gas
Prior art date
Application number
PCT/JP2017/022818
Other languages
French (fr)
Japanese (ja)
Inventor
西脇 宏
美幸 亀川
すみ子 大野
敏一 村田
秀浩 吉岡
縄舟 秀美
幸彦 金谷
Original Assignee
テクノロール株式会社
フソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノロール株式会社, フソー株式会社 filed Critical テクノロール株式会社
Publication of WO2018003620A1 publication Critical patent/WO2018003620A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/04Removal of gases or vapours ; Gas or pressure control
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies

Definitions

  • the present invention relates to a method for producing a plating coating roll and a hydrogen gas adhesion suppressing mechanism for plating.
  • Carbon steel pipes are widely used as roll base materials because they are excellent in terms of strength, ease of processing, and material cost.
  • a carbon steel pipe is used for a roll used for high-speed rotation, such as a film forming feed roll or an offset printing roll, there is a problem in that vibration or rotation unevenness occurs during rotation because bending is likely due to insufficient rigidity. Had occurred.
  • the roll is to be widened in order to meet the demand for widening the workpiece, there is a problem that the deflection generated during the rotation of the roll is further increased as the width increases.
  • rolls used in the field of film conveyance, papermaking, printing, etc. tend to cause uneven rotation of the roll due to the increase in the conveyance speed of the workpiece, which may cause damage such as scratches and wrinkles on the workpiece. It was. In order to improve productivity, it is necessary to increase the rigidity of the roll, to reduce the deflection, and to reduce the moment of inertia. Thus, a lightweight roll has been demanded.
  • a roll has been proposed in which a carbon fiber reinforced plastic (hereinafter referred to as “CFRP”) having a specific gravity smaller than that of carbon steel or aluminum is used as a roll base material, and the surface of the roll base material is subjected to chromium plating.
  • CFRP carbon fiber reinforced plastic
  • “gravure plate making roll” described in Patent Document 1 can be mentioned.
  • the present invention provides a manufacturing method of a plating coating roll and a plating hydrogen gas adhesion suppression mechanism that uses CFRP as a roll base material and suppresses the occurrence of plating defects to obtain a high-quality plating surface. Is an issue.
  • the present invention provides a smoothing step for smoothing the surface of a roll base material made of cylindrical carbon fiber reinforced plastic, and a base plating step for performing metal plating in a plating solution on the roll base material that has undergone the smoothing step. And a surface plating step of performing trivalent chromium plating on the roll base material that has undergone the base plating step, and the surface plating step includes a hydrogen removal step of removing hydrogen gas generated on the plating surface being formed.
  • a method for producing a plating coating roll is a method for producing a plating coating roll.
  • bubbles are discharged to the plating surface being formed, and the discharged bubbles are raised to the liquid level of the plating solution through the plating surface being formed while taking in the hydrogen gas. To remove the hydrogen gas.
  • chromium ions can be replenished by dissolving the metal chromium with an acid and washing it and then adding it to the plating solution.
  • electrolytic nickel plating can be performed in the base plating step.
  • the present invention also includes a bubble generating block connected to a lower portion of a roll base material made of a cylindrical carbon fiber reinforced plastic, which is set in a vertical direction in a plating bath, and a gas supply mechanism for supplying gas to the bubble generating block And the bubble generating block is provided with a plurality of gas ejection holes for discharging the gas supplied by the gas supply mechanism to the plating surface being formed on the upper surface in a state of being arranged in the plating bath.
  • This is a hydrogen gas adhesion suppression mechanism.
  • FIG. 1 is a schematic longitudinal sectional view showing a plating bath used in one embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the plating bath.
  • FIG. 3A shows an example of a plating coating roll in which a defect has occurred.
  • FIG. 3B shows an example of a healthy plated roll.
  • FIG. 4 is a schematic longitudinal sectional view showing a plating bath used in another embodiment of the present invention.
  • the outline of the present embodiment is as follows. After the CFRP element tube 2 which is a cylindrical roll base material is degreased and subjected to a conductive treatment with a conductive paint, a smoothing process is performed to smooth the surface of the CFRP element tube 2 (smoothness). ), Plating such as nickel plating as the base plating (base plating step), and then coating the surface of the CFRP base tube 2 plated with the base with trivalent chromium plating (surface plating step). And
  • CFRP has a pitch system and a PAN system, but both can be used.
  • degreasing is performed. Although degreasing depends on the degree of contamination of the surface of the CFRP base tube 2, it is usually washed with water and solvent after degreasing with a surfactant. Then dry thoroughly.
  • the resistivity is less than 100 k ⁇ ⁇ cm, preferably 1 k ⁇ ⁇ cm or less, by energizing the surface of the CFRP raw tube 2 using a tester or the like.
  • a conductive treatment is performed by applying a conductive paint to the surface so that the film thickness can be processed as described below.
  • a method for applying the conductive paint various methods such as spraying, dipping, and brushing can be used.
  • the conductive component contained in the conductive paint is, for example, a metal-based, oxide-based, carbon-based or ionic-based material, and a metal-based or carbon-based material is preferable.
  • a plurality of the conductive components may be used in combination.
  • the resin component contained in the conductive paint is not particularly limited, but an epoxy-based, urethane-based, or acrylic-based resin having good compatibility with CFRP is preferable.
  • the coating thickness is preferably 1 to 200 ⁇ m, more preferably 60 to 100 ⁇ m.
  • the surface treatment is performed so that the surface roughness is preferably 1.0 s or less, more preferably 0.5 s or less, and even more preferably 0.2 s or less.
  • processing suitable for the required accuracy of the finished product such as dry or wet polishing using a grindstone, turning using a cutting tool, paper processing using dry or wet paper, is appropriately selected.
  • Preferred processing is polishing processing and paper processing processing.
  • the conductivity of the surface processed surface is preferably 10 k ⁇ ⁇ cm or less, more preferably 1 k ⁇ ⁇ cm or less, in a range where the following base plating is possible. If the conductivity is insufficient even by application of the conductive paint, the conductive paint can be applied again.
  • alkali degreasing or solvent degreasing is performed, and then water washing and pickling are performed.
  • solvent degreasing is performed, followed by washing with water and pickling.
  • nickel plating As the base plating, various metal plating such as nickel plating, copper plating, and iron plating are possible. Nickel plating is preferred, and as this nickel plating, electrolytic nickel plating or electroless nickel plating is possible. Of these, electrolytic nickel plating has a longer bath life than electroless nickel plating, and is easier to dispose of the plating solution than electroless nickel plating. From this point, it is preferable because there is a merit that the surface processing after plating is unnecessary.
  • the electrolytic nickel plating can be applied to a CFRP base tube 2 after conducting a conductive treatment in a plating bath using a plating solution of nickel sulfate 240 to 300 g / L, nickel chloride 45 to 50 g / L and boric acid 30 to 40 g / L. Is set in the vertical direction, and plating is performed with a plating thickness of 20 to 50 ⁇ m under plating conditions of a current density of 2 to 8 A / dm 2 .
  • trivalent chromium plating can be performed by using chromium chloride or chromium sulfate as a chromium source at 80 to 110 g / L, formate or malate as a complexing agent at 10 to 80 g / L, and boric acid as a pH buffer.
  • a chromium plating bath 1 using a plating solution 12 prepared by adjusting ammonium chloride, potassium nitrate, atrium sulfate, etc.
  • the plated CFRP tube 2 is set in the vertical direction and plated with a plating thickness of 20 to 100 ⁇ m under a plating condition of a current density of 3 to 10 A / dm 2 .
  • the surface of metallic chromium that is granular is partially dissolved with an acid (specifically hydrochloric acid or sulfuric acid). Then, the oxide film on the surface is dissolved, and then the oxide film is washed with an acid (specifically sulfuric acid) to remove the dissolved oxide film from the metallic chromium. Then, clean metal chromium after the treatment is added to the plating solution 12 to replenish the plating solution 12 with chromium ions.
  • an acid specifically sulfuric acid
  • Metal chromium is added to 20% hydrochloric acid or 20% sulfuric acid heated to 80 ° C., and when bubbles are generated, the metal chromium is taken out and washed with 2% sulfuric acid.
  • the trivalent chromium plating bath 1 is charged. Thereby, since the chromium metal from which the oxide film has been removed is dissolved in the plating bath 1, chromium ions can be replenished promptly without mixing impurities.
  • Hexavalent chromium plating that has been widely used as chromium plating is excellent in physical properties, productivity, and cost of the plating film.
  • the main component of the plating solution is Cr 6+ ions, there are concerns about the impact on health, air pollution, and environmental pollution of workers due to mist containing Cr 6+ ions during manufacturing. The development of was awaited. Therefore, in this example, trivalent chromium was used instead of hexavalent chromium.
  • Plating baths composed of Cr 3+ ions have been industrially put to practical use only for decorative applications with a small plating thickness (thickness of 2 ⁇ m or less) due to increased environmental awareness.
  • a trivalent chromium bath it is difficult to obtain a thick film with excellent properties (film thickness of 5 ⁇ m or more, desirably 20 ⁇ m or more), and it has not been put into practical use for industrial purposes other than decoration.
  • the trivalent chromium plating has a problem that streaks and depressions are formed on the plating surface due to a rapid decrease in plating speed with the elapse of the plating time and generation of hydrogen on the cathode side.
  • the hydrogen gas adhesion suppressing mechanism 4 includes a bubble generation block 41 having a hollow portion, and a gas supply mechanism 42 having a compressor or the like that supplies air to the bubble generation block 41.
  • the gas supply mechanism 42 includes a gas supply source 421, an atmospheric pressure adjustment mechanism 422, and an air supply pipe 423. As the gas supply source 421, a compressor or the like is used when air is sent.
  • the cylinder filled with the inert gas is used.
  • an inert gas for example, nitrogen gas
  • the atmospheric pressure adjusting mechanism 422 for example, a regulator capable of setting to a specified gas pressure can be used.
  • a filter for filtering gas can be added to the gas supply mechanism 42.
  • the cooling mechanism 6 is provided in the plating tank 11.
  • the cooling mechanism 6 includes, for example, a temperature adjusting device 61, a connection unit 62, and a plating bath cooling unit 63.
  • the plating bath cooling unit 63 is provided in the plating tank 11 at a portion that contacts the plating solution 12.
  • the cooling mechanism 6 can be configured to circulate the refrigerant between the temperature adjusting device 61 and the plating bath cooling unit 63 via a connection unit 62 that is a refrigerant pipe.
  • the temperature adjusting device 61 can be electrically connected to the plating bath cooling unit 63 including a cooling element that is cooled by energization via a connection unit 62 that is an electrical wiring. With these configurations, the plating bath cooling unit 63 can cool the plating solution 12.
  • the chromium plating in this embodiment is electroplating
  • the plating solution 12 is heated and the temperature of the plating solution 12 rises as power is supplied to the chromium plating bath 1.
  • the required power is larger than other plating such as hexavalent chrome plating, so the temperature rise of the plating solution 12 is significant. Therefore, by cooling the plating solution 12 by the cooling mechanism 6, it is possible to suppress the temperature rise of the plating solution 12 and perform trivalent chromium plating in a favorable environment.
  • symbol 3 in FIG.1 and FIG.2 is an anode which is an electrode which becomes a pair with a cathode.
  • the flat plate-like anodes 3 are provided at four locations, but the shape and quantity are not limited to this.
  • the shape of the plating tank 11 is not restricted to what was illustrated, and can be various shapes.
  • An electric wire 52 a connected to the negative pole of the rectifier 51 is connected to the CFRP base tube 2 that is a cathode.
  • the anode 3 is connected to an electric wire 52 b connected to the positive pole of the rectifier 51 that is the power supply mechanism 5.
  • the bubble generating block 41 is connected to the lower side of the CFRP element tube 2 subjected to electrolytic nickel plating, and is a substantially disc-shaped part formed with a larger diameter than the CFRP element tube 2.
  • the upper surface of the bubble generation block 41 is formed as a flat surface around the connection portion with the CFRP element tube 2, and is formed on a slope 411 that rises from the middle toward the outside.
  • a plurality of gas ejection holes 412 are formed on the inclined surface 411 of the bubble generation block 41 in a circular shape, for example.
  • the air supplied to the bubble generation block 41 by the gas supply mechanism is jetted from the gas jet hole 412 to the chromium plating bath 1.
  • the air ejected from the gas ejection holes 412 becomes granular bubbles B as shown in FIG.
  • the bubbles B rise to the surface of the plating solution 12 while taking in hydrogen gas generated on the surface of the chromium plating being formed.
  • the hydrogen gas is prevented from adhering to the surface of the CFRP element tube 2 during the chrome plating, and the adhering hydrogen gas is removed.
  • the plating solution 12 is agitated by the flow of the plating solution 12 accompanying the release of the bubbles B from the bubble generating block 41.
  • the hydrogen gas adhesion suppressing mechanism 4 can suppress the occurrence of a large number of pinholes as plating proceeds while the hydrogen gas is adhered to the surface of the roll base material (CFRP base tube 2).
  • the plating solution 12 is agitated by the air released from the bubble generating block 41 to the chromium plating bath 1, the pH of the plating solution 12 is locally increased by the generation of hydrogen gas, and chromium oxide or chromium hydroxide is generated. It can suppress that chromium compounds, such as a thing, generate
  • the problems caused by the conventional trivalent chromium plating are solved, and a thick film having excellent properties can be obtained. For this reason, the plating coating roll which does not use harmful hexavalent chromium also in industrial uses other than a decoration came to be manufactured.
  • a CFRP which is a material having a specific gravity smaller than that of carbon steel or aluminum, can be used to form a roll having a small runout even if it is rotated. it can. And since the roll is lightened, it can be expected to provide a roll product corresponding to an increase in line speed, an improvement in yield, and a widening.
  • the wear resistance of the plating coating roll can be expected to be improved.
  • hexavalent chromium plating cracks (microcracks) occurred when the film thickness was large. This micro-crack causes a problem that a fine uneven pattern is formed (transferred) on the film when the work is a precision resin film.
  • the micro-crack is not cleaned when the roll is stopped or when the work is changed. At this time, there is a possibility that foreign matter, oil or the like enters the micro crack, and rust is generated on the roll or foreign matter or oil is transferred to the workpiece.
  • trivalent chromium plating does not generate cracks, the above-described problems do not occur and the corrosion resistance increases. Further, in the chromium plating bath 1 of this embodiment, trivalent chromium ions can be constantly supplied to the surface of the chromium plating being formed, and the uniformity of the plating thickness due to the generation of hydrogen can be ensured, so that the bath management is simplified and industrial use. Can withstand use in
  • a CFRP element tube 2 having a diameter ( ⁇ ) of 100 mm, a length of 2000 mm, and a wall thickness of 10 mm was used as a roll base material.
  • a pitch-based carbon fiber tube “Carbo Leader 240” manufactured by Mitsubishi Rayon Co., Ltd. was used as the CFRP base tube 2.
  • the CFRP element tube 2 In order to degrease the CFRP element tube 2, it was first washed with a surfactant, washed with water and washed with warm water, and then sufficiently dried. After degreasing, the conductivity of the surface of the CFRP element tube 2 was measured with a tester, and a carbon-based conductive paint was applied to the surface so that the resistivity was 1000 ⁇ ⁇ cm or less. The film thickness of the applied conductive paint was about 60 ⁇ m. After the conductive coating was cured, surface processing was performed so that the surface roughness of the entire roll surface was 0.5 s or less.
  • the CFRP element tube 2 confirmed to be conductive was added to nickel sulfate 270 g / L, nickel chloride 47.5 g / L, boric acid 35 g / L, saccharin 5 g / L, 1,4-butynediol 0.3 g /
  • An electrolytic nickel plating having an average plating thickness of 0.03 mm was performed as a base plating under a plating condition of a current density of 5 A / dm 2 .
  • chromium chloride or chromium sulfate salt as a chromium source 90g / L, complexing agent formate and malate 45g / L, pH buffer boric acid 50g / L, conductive agent ammonium chloride, potassium nitrate, Sodium sulfate is adjusted in the range of 50 to 150 g / L and placed vertically in the chrome plating bath 1 using a plating solution to which a small amount of surfactant is added, and the current density is 6.5 A / dm 2 under plating conditions. Then, trivalent chromium plating with an average plating thickness of 0.05 mm was performed.
  • the plating solution on the roll surface is combined with a mechanism for preventing hydrogen gas from adhering to the cathode surface as shown in FIGS.
  • a hydrogen gas adhesion suppressing mechanism 4 for releasing hydrogen gas generated from the lower part of the cathode is provided in the plating tank 11.
  • a cage-shaped unit that allows easy removal of the plated product is provided, and the nickel-plated state that functions as an insoluble anode 3 and cathode during plating.
  • CFRP element tube 2 was set in the vertical direction.
  • a bubble generating block 41 made of polyvinyl chloride and having a hole for sending air, which constitutes the hydrogen gas adhesion suppressing mechanism 4 was attached.
  • the air bubbles B generated from the bubble generating block 41 are discharged to the chromium plating bath 1, and the bubbles B take in the hydrogen gas generated in the chromium plating bath 1 and pass through the surface of the chromium plating that is being formed. It rises to the liquid level.
  • the bubble generation block 41 used in the trial production has a diameter of 160 mm, a flat portion thickness of 50 mm, and a slope 411 formed at 45 °.
  • the trivalent chromium plating using the hydrogen gas adhesion suppressing mechanism 4 has a high hardness, trivalent chromium plating that is glossy and has no microcracks and is equal to or higher than the hardness of the conventional hexavalent chromium plating.
  • Table 1 shows the results of inspection after polishing the surface after chromium plating. The prototype was confirmed to have less deflection than carbon steel pipes and aluminum pipes (diameter: ⁇ ) 100 mm, length 2000 mm, wall thickness 10 mm (both without plating coating).
  • neither nickel plating nor trivalent chromium plating confirmed that the peeling of the plating film was visually observed and the adhesion was good.
  • FIG. 3A shows an example of a plating coating roll (defective product) Rb manufactured when the hydrogen gas adhesion suppressing mechanism 4 is not provided in the chromium plating bath 1.
  • the plating coating roll Rb had a glossy finish at the center of the roll surface, but black defective portions X were formed at the upper and lower portions.
  • the defective part X is a part where chromium oxide or chromium hydroxide is abnormally deposited on the surface of the part due to the adhesion of hydrogen gas.
  • the reason why the defective part X can be formed in the upper part and the lower part is that electricity flows intensively in the corner part of the CFRP elementary tube 2 as compared with the central part, and the pH of the plating solution in contact with this part increases.
  • the plating coating roll (non-defective product) Rg shown in FIG. 3B is a prototype manufactured by the above-mentioned trial manufacture, and a healthy plating film is formed in the entire area of the roll surface.
  • the hydrogen gas adhesion suppression mechanism 4 was functioning effectively.
  • stirring means such as a propeller may be used in combination.
  • a nozzle can be provided at a portion of the bubble generating block 41 where air is ejected.
  • the nozzle may be a movable nozzle that moves (rotates, etc.) by air pressure, for example.
  • a flow guide portion for guiding the bubbles B can be provided in the chromium plating bath 1.
  • the plurality of gas ejection holes 412 are provided in the circumferential direction of a single circle, but a plurality of gas ejection holes 412 may be provided in the circumferential direction of two or more concentric circles.
  • air is ejected from the bubble generating block 41.
  • a gas other than air such as an inert gas, is ejected. You can also.
  • the cooling mechanism 6 is provided in the plating tank 11, but in addition to this, a cooling mechanism is provided in the gas supply mechanism 42, and the bubble is generated by cooling the gas by this cooling mechanism. Can also be supplied.
  • the gas supply mechanism 42 By supplying the gas cooled by the gas supply mechanism 42 to the chromium plating bath 1, the temperature rise of the plating solution 12 can be suppressed as in the above embodiment, and trivalent chromium plating can be performed in a favorable environment.
  • the hydrogen gas adhesion suppressing mechanism 4 is not limited to the configuration in which the bubbles B are discharged to the chrome plating surface being formed as in the above-described embodiment, and for example, a configuration as shown in FIG. 4 can also be adopted.
  • the hydrogen gas adhesion suppressing mechanism 4 in this embodiment includes a gas removal unit 43, a flange unit 44, a connecting rod 45, and a drive unit 46.
  • the gas removal unit 43 is provided immovably with respect to the plating tank 11.
  • the gas removal unit 43 is located outside the diameter of the CFRP base tube 2 and extends in the vertical direction to a bar-like support unit 431 and a plurality of plates that are fixed to the support unit 431 and spaced in the vertical direction.
  • the plate portion 432 has an annular shape in plan view, and the inner peripheral edge 432 a of the plate portion 432 is positioned so as to surround the outer surface of the CFRP element tube 2.
  • the inner peripheral edge 432a of the plate portion 432 is located slightly apart from the chrome plating surface being formed in the CFRP element tube 2 without being in close contact therewith.
  • the plate part 432 is made not to inhibit formation of chromium plating.
  • the material of the plate portion 432 is not limited, but the trivalent chromium plating film may be damaged even if the plate portion 432 touches the surface of the CFRP base tube 2 when the CFRP base tube 2 moves up and down as will be described later. It is preferable that the material is flexible so that it does not exist.
  • the flange portion 44 includes a lower flange portion 441 that is connected to the lower end portion of the CFRP element tube 2 and an upper flange portion 442 that is connected to the upper end portion of the CFRP element tube 2 when performing chromium plating.
  • the lower end portion of the lower flange portion 441 and the upper end portion of the upper flange portion 442 have a conical shape with a tapered shape. For this reason, when the CFRP raw tube 2 moves up and down as will be described later, the flange portion 44 that moves up and down together can prevent the plating solution 12 from causing undulations more than necessary, thereby preventing adverse effects on the chromium plating construction. .
  • the connecting rod 45 is a rod-like body extending in the vertical direction, is connected to the upper flange portion 442, and protrudes above the plating tank 11.
  • the connecting rod 45 is made of a conductive material and is electrically connected to the power supply mechanism 5 together with the anode 3.
  • the drive unit 46 includes a drive unit main body 461 and a drive rod 462 extending in the horizontal direction from the drive unit main body 461 and reciprocating in the vertical direction as indicated by an arrow M in FIG.
  • the connecting rod 45 is connected to the drive rod 462.
  • the CFRP base tube 2 can be moved up and down in the chromium plating bath 1 by reciprocating the drive rod 462 in the vertical direction.
  • the CFRP element tube 2 moves up and down, a flow of the plating solution 12 in the vertical direction is generated on the surface of the CFRP element tube 2.
  • the flow of the plating solution 12 prevents the hydrogen gas from adhering to the surface of the CFRP element tube 2 during the chrome plating, and the hydrogen gas adhering thereto is removed. Further, since the plating solution 12 flows as the CFRP elementary tube 2 moves up and down, the plating solution 12 is agitated particularly near the surface of the CFRP elementary tube 2.
  • the gas removal unit 43 is provided immovably and the CFRP element tube 2 is moved up and down.
  • the present invention is not limited to this, and the CFRP element tube 2 is provided immovably and the gas removal unit 43 is moved up and down.
  • the gas removal unit 43 and the CFRP element tube 2 can be moved up and down together.
  • the CFRP element tube 2 can be rotated not only in the vertical direction but also in the circumferential direction.
  • the shape of the flange portion 44 is not limited to the shape of this embodiment, and can be various shapes such as a columnar shape. Further, the flange portion 44 is omitted, and the connecting rod 45 is directly connected to the CFRP base tube 2. You can also.
  • a smoothing step for smoothing the surface of the roll base material 2 made of a cylindrical carbon fiber reinforced plastic, and a base plating step for performing metal plating on the roll base material 2 that has undergone the smoothing step The roll base material 2 that has undergone the base plating step has a surface plating step of performing trivalent chromium plating in a plating solution 12, and the surface plating step removes hydrogen gas generated on the plating surface being formed. It is a manufacturing method of a plating coat roll including a hydrogen removal process.
  • the surface plating step includes a hydrogen removal step of removing hydrogen gas generated on the plating surface being formed. For this reason, hydrogen gas adheres to the surface of the roll base material 2 during surface plating, and the pH of the plating solution 12 is locally increased (particularly near the surface of the roll base material 2) due to the generation of hydrogen gas. This can be suppressed.
  • the hydrogen removal step bubbles are discharged to the plating surface being formed, and the discharged bubbles are raised to the liquid surface of the plating solution 12 through the plating surface being formed while taking in the hydrogen gas.
  • hydrogen gas can be removed.
  • the released bubbles rise to the surface of the plating solution 12 while taking in hydrogen gas. For this reason, hydrogen gas generated on the plating surface being formed can be efficiently removed from the plating solution 12.
  • chromium ions can be replenished by dissolving the metal chromium with an acid and washing it and then adding it to the plating solution 12.
  • the surface of the metal chromium is partially dissolved with an acid to dissolve the surface oxide film, and then the oxide film is washed with an acid to remove the dissolved oxide film from the metal chromium. be able to.
  • clean metal chromium from which the oxide film has been removed is dissolved in the plating bath, so that chromium ions can be replenished promptly without introducing impurities.
  • electrolytic nickel plating can be performed in the base plating step.
  • electrolytic nickel plating eliminates the need for surface processing after plating in terms of film thickness uniformity and surface smoothness.
  • the bubble generating block 41 connected to the lower part of the roll base material 2 made of a cylindrical carbon fiber reinforced plastic, which is set in the plating bath 1 in the vertical direction, and gas is supplied to the bubble generating block 41.
  • a plurality of gas supply mechanisms 42 wherein the bubble generating block 41 discharges the gas supplied by the gas supply mechanism 42 to the plating surface being formed on the upper surface in a state where the bubble generation block 41 is disposed in the plating bath 1. It is the hydrogen gas adhesion suppression mechanism 4 for plating provided with the gas ejection hole 412 of this.
  • the gas (air, inert gas, etc.) released from the gas ejection hole 412 of the bubble generation block 41 to the plating surface being formed removes hydrogen gas generated on the plating surface being formed. For this reason, hydrogen gas adheres to the surface of the roll base material 2 during plating, and the pH of the plating solution 12 increases locally (particularly near the surface of the roll base material) due to the generation of hydrogen gas. Can be suppressed.
  • hydrogen gas adheres to the surface of the roll base material 2 during plating, and the pH of the plating solution 12 increases locally (particularly near the surface of the roll base material) due to the generation of hydrogen gas. This can be suppressed. For this reason, plating defects such as pinholes caused by hydrogen gas are suppressed, and a high-quality plated surface can be obtained.

Abstract

This method for producing a plated roll comprises: a smoothing step of smoothing the surface of a roll base material composed of a cylindrical carbon fiber reinforced plastic; a base plating step of performing metal plating on the roll base material having been subjected to the smoothing step; and a surface plating step of performing trivalent chrome plating on the roll base material having been subjected to the base plating step in a plating solution. The surface plating step comprises a hydrogen removal step of removing hydrogen gas generated on a plated surface being formed.

Description

めっき被覆ロールの製造方法及びめっき用水素ガス付着抑制機構Method for manufacturing plating coating roll and mechanism for suppressing adhesion of hydrogen gas for plating 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2016-131576号に基づく優先権を主張し、引用によって本願明細書の記載に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-131576, and is incorporated herein by reference.
 本発明は、めっき被覆ロールの製造方法及びめっき用水素ガス付着抑制機構に関するものである。 The present invention relates to a method for producing a plating coating roll and a hydrogen gas adhesion suppressing mechanism for plating.
 従来、印刷用ロールや工業用ロールは、ロール母材に炭素鋼管やアルミニウム管を使用してその表面にめっきを施工したものであった。 Conventionally, printing rolls and industrial rolls have been made by plating a surface of a roll base material using a carbon steel pipe or an aluminum pipe.
 炭素鋼管は、強度、加工の容易性、材料コストの観点で優れることから、ロール母材として広く用いられている。しかし、フィルム成形用送りロールやオフセット印刷用ロールのように、高速回転で用いるロールに炭素鋼管を用いると、剛性不足でたわみが生じ易いことから、回転時に振動や回転ムラが発生する等の不具合が発生していた。特に、ワークの広幅化の要求に応じるためにロールを広幅化しようとすると、幅が大きくなる分、ロールの回転時に発生するたわみが一層大きくなる問題がある。 Carbon steel pipes are widely used as roll base materials because they are excellent in terms of strength, ease of processing, and material cost. However, if a carbon steel pipe is used for a roll used for high-speed rotation, such as a film forming feed roll or an offset printing roll, there is a problem in that vibration or rotation unevenness occurs during rotation because bending is likely due to insufficient rigidity. Had occurred. In particular, if the roll is to be widened in order to meet the demand for widening the workpiece, there is a problem that the deflection generated during the rotation of the roll is further increased as the width increases.
 このような高速回転時のたわみを抑制するため、ロールの剛性を大きくすることが考えられる。剛性を大きくするためには、ロールの外径や肉厚を大きくする必要があるので、ロールの重量が増加してしまう。重量が増加すると慣性モーメントが大きくなるため、回転時に回転ムラや振動が発生しやすくなる。このように、高速回転用ロールのロール母材に炭素鋼管を用いることは困難であった。 In order to suppress such deflection during high-speed rotation, it is conceivable to increase the rigidity of the roll. In order to increase the rigidity, it is necessary to increase the outer diameter and thickness of the roll, which increases the weight of the roll. As the weight increases, the moment of inertia increases, so that rotation unevenness and vibration are likely to occur during rotation. Thus, it has been difficult to use a carbon steel pipe for the roll base material of the roll for high-speed rotation.
 また、アルミニウム管はロールの軽量化のために使用されていた。しかし、アルミニウム管も炭素鋼管と同じく、ロールの剛性を大きくしようとすると、ロールの重量が増加してしまうので、高速回転用ロールのロール母材にアルミニウム管を用いることもまた困難であった。 Also, aluminum tubes have been used to reduce the weight of rolls. However, the aluminum tube, like the carbon steel tube, increases the weight of the roll when it is attempted to increase the rigidity of the roll. Therefore, it is also difficult to use the aluminum pipe for the roll base material of the roll for high-speed rotation.
 一方、例えばフィルム搬送、製紙、印刷分野等に使用されるロールは、ワークの搬送速度の高速化によりロールの回転ムラが発生しやすく、ワークに傷やしわなどの損失が出てしまうことがあった。生産性向上のためには、ロールの剛性を大きくし、たわみを小さく、慣性モーメントを小さくする必要があって、軽量化されたロールが求められていた。 On the other hand, rolls used in the field of film conveyance, papermaking, printing, etc., tend to cause uneven rotation of the roll due to the increase in the conveyance speed of the workpiece, which may cause damage such as scratches and wrinkles on the workpiece. It was. In order to improve productivity, it is necessary to increase the rigidity of the roll, to reduce the deflection, and to reduce the moment of inertia. Thus, a lightweight roll has been demanded.
 そこでロール母材として、炭素鋼やアルミニウムに比べて比重の小さい炭素繊維強化プラスチック(以下「CFRP」と表記)を使用し、ロール母材の表面にクロムめっきを施したロールが提案されている。例えば特許文献1に記載の「グラビア製版ロール」が挙げられる。 Therefore, a roll has been proposed in which a carbon fiber reinforced plastic (hereinafter referred to as “CFRP”) having a specific gravity smaller than that of carbon steel or aluminum is used as a roll base material, and the surface of the roll base material is subjected to chromium plating. For example, “gravure plate making roll” described in Patent Document 1 can be mentioned.
 ところで、クロムめっきを施す際には、形成中のめっき表面から多量の水素ガスが発生して、めっき実施中のロール表面に付着する。また、水素ガスの発生に伴いめっき表面のpH上昇が生じることから、めっき不良(例えば、多数のピンホール形成、粉末状クロム酸化物付着の異常めっき、めっき表面に筋状の凹凸が形成される等)を生じさせ、高品質なめっき表面が得られないことがある。 By the way, when chromium plating is performed, a large amount of hydrogen gas is generated from the plating surface being formed and adheres to the roll surface being plated. In addition, since the pH of the plating surface increases with the generation of hydrogen gas, plating defects (for example, formation of many pinholes, abnormal plating of powdered chromium oxide adhesion, and streaky irregularities are formed on the plating surface. Etc.) and a high-quality plated surface may not be obtained.
日本国特開2008-143169号公報Japanese Unexamined Patent Publication No. 2008-143169
 そこで本発明は、ロール母材としてCFRPを使用し、めっき不良が生じることを抑制して高品質なめっき表面が得られる、めっき被覆ロールの製造方法及びめっき用水素ガス付着抑制機構を提供することを課題とする。 Accordingly, the present invention provides a manufacturing method of a plating coating roll and a plating hydrogen gas adhesion suppression mechanism that uses CFRP as a roll base material and suppresses the occurrence of plating defects to obtain a high-quality plating surface. Is an issue.
 本発明は、円筒状の炭素繊維強化プラスチックからなるロール母材の表面を平滑化する平滑化工程と、前記平滑化工程を経た前記ロール母材に、めっき液中で金属めっきを行う下地めっき工程と、前記下地めっき工程を経た前記ロール母材に3価クロムめっきを行う表面めっき工程とを有し、前記表面めっき工程は、形成中のめっき表面に生じる水素ガスを除去する水素除去工程を含む、めっき被覆ロールの製造方法である。 The present invention provides a smoothing step for smoothing the surface of a roll base material made of cylindrical carbon fiber reinforced plastic, and a base plating step for performing metal plating in a plating solution on the roll base material that has undergone the smoothing step. And a surface plating step of performing trivalent chromium plating on the roll base material that has undergone the base plating step, and the surface plating step includes a hydrogen removal step of removing hydrogen gas generated on the plating surface being formed. A method for producing a plating coating roll.
 また、前記水素除去工程では、形成中のめっき表面に気泡を放出し、当該放出された気泡が前記水素ガスを取り込みつつ形成中のめっき表面を通って、前記めっき液の液面まで上昇させることで水素ガスを除去するものとできる。 Further, in the hydrogen removal step, bubbles are discharged to the plating surface being formed, and the discharged bubbles are raised to the liquid level of the plating solution through the plating surface being formed while taking in the hydrogen gas. To remove the hydrogen gas.
 また、金属クロムを酸で溶解し洗浄した上で前記めっき液に投入することでクロムイオンの補給を行うものとできる。 Also, chromium ions can be replenished by dissolving the metal chromium with an acid and washing it and then adding it to the plating solution.
 また、前記下地めっき工程にて電解ニッケルめっきを行うものとできる。 Also, electrolytic nickel plating can be performed in the base plating step.
 また本発明は、めっき浴に縦方向にセットされた、円筒状の炭素繊維強化プラスチックからなるロール母材の下部に連結される気泡発生ブロックと、前記気泡発生ブロックに気体を供給する気体供給機構と、を備え、前記気泡発生ブロックは、めっき浴に配置された状態における上面に、前記気体供給機構により供給された気体を形成中のめっき表面に放出する複数の気体噴出穴を備える、めっき用水素ガス付着抑制機構である。 The present invention also includes a bubble generating block connected to a lower portion of a roll base material made of a cylindrical carbon fiber reinforced plastic, which is set in a vertical direction in a plating bath, and a gas supply mechanism for supplying gas to the bubble generating block And the bubble generating block is provided with a plurality of gas ejection holes for discharging the gas supplied by the gas supply mechanism to the plating surface being formed on the upper surface in a state of being arranged in the plating bath. This is a hydrogen gas adhesion suppression mechanism.
図1は、本発明の一実施例で用いられるめっき浴を示す概略的な縦断面図である。FIG. 1 is a schematic longitudinal sectional view showing a plating bath used in one embodiment of the present invention. 図2は、同めっき浴を示す概略的な平面図である。FIG. 2 is a schematic plan view showing the plating bath. 図3Aは、不良が生じためっき被覆ロールの例を示す。FIG. 3A shows an example of a plating coating roll in which a defect has occurred. 図3Bは、健全なめっき被覆ロールの例を示す。FIG. 3B shows an example of a healthy plated roll. 図4は、本発明の他の実施例で用いられるめっき浴を示す概略的な縦断面図である。FIG. 4 is a schematic longitudinal sectional view showing a plating bath used in another embodiment of the present invention.
 次に、本発明のめっき被覆ロールの製造方法について一実施例を挙げて説明する。本実施例の概要を述べると、円筒状のロール母材であるCFRP素管2を脱脂し、導電性塗料による導電処理後、CFRP素管2の表面を平滑化する平滑加工処理を行い(平滑化工程)、下地めっきとしてニッケルめっき等のめっきを施し(下地めっき工程)、その後、下地めっきされたCFRP素管2の表面に3価クロムめっきを被覆すること(表面めっき工程)でめっき被覆ロールとする。 Next, a method for producing the plating coated roll of the present invention will be described with reference to an example. The outline of the present embodiment is as follows. After the CFRP element tube 2 which is a cylindrical roll base material is degreased and subjected to a conductive treatment with a conductive paint, a smoothing process is performed to smooth the surface of the CFRP element tube 2 (smoothness). ), Plating such as nickel plating as the base plating (base plating step), and then coating the surface of the CFRP base tube 2 plated with the base with trivalent chromium plating (surface plating step). And
 CFRPはピッチ系とPAN系が存在するが、どちらも使用できる。 CFRP has a pitch system and a PAN system, but both can be used.
 CFRP素管2の寸法精度及び表面粗度に問題がなければ脱脂処理を行う。脱脂はCFRP素管2の表面の汚染程度にもよるが、通常、界面活性剤による脱脂後に水洗し、溶剤洗浄を行う。その後十分に乾燥させる。 If there is no problem in the dimensional accuracy and surface roughness of the CFRP tube 2, degreasing is performed. Although degreasing depends on the degree of contamination of the surface of the CFRP base tube 2, it is usually washed with water and solvent after degreasing with a surfactant. Then dry thoroughly.
 次に、テスター等を用いてCFRP素管2の表面における通電を、抵抗率が100kΩ・cm未満、好ましくは1kΩ・cm以下であることを確認する。 Next, it is confirmed that the resistivity is less than 100 kΩ · cm, preferably 1 kΩ · cm or less, by energizing the surface of the CFRP raw tube 2 using a tester or the like.
 CFRP素管2の表面に平滑性のない場合、導電性塗料を下記表面加工できる膜厚となるように表面に塗布する導電処理を行う。導電性塗料の塗布方法は、スプレー、浸漬、刷毛等種々の方法を用いることができる。導電性塗料に含まれる導電成分は、例えば金属系、酸化物系、炭素系、イオン系の物質であるが、金属系あるいは炭素系の物質が好ましい。前記導電成分は複数組み合わせて用いることもできる。導電性塗料に含まれる樹脂成分は特に限定されないが、CFRPとの相性の良いエポキシ系、ウレタン系、アクリル系の樹脂が好ましい。塗布膜厚は、好ましくは1~200μm、より好ましくは60~100μmとする。 When the surface of the CFRP element tube 2 is not smooth, a conductive treatment is performed by applying a conductive paint to the surface so that the film thickness can be processed as described below. As a method for applying the conductive paint, various methods such as spraying, dipping, and brushing can be used. The conductive component contained in the conductive paint is, for example, a metal-based, oxide-based, carbon-based or ionic-based material, and a metal-based or carbon-based material is preferable. A plurality of the conductive components may be used in combination. The resin component contained in the conductive paint is not particularly limited, but an epoxy-based, urethane-based, or acrylic-based resin having good compatibility with CFRP is preferable. The coating thickness is preferably 1 to 200 μm, more preferably 60 to 100 μm.
 導電性塗料の硬化後、表面粗さを、好ましくは1.0s以下、より好ましくは0.5s以下、さらに好ましくは0.2s以下とする表面加工を行う。表面加工は、砥石を使用する乾式または湿式研磨加工、バイトを使用した旋削加工、乾式あるいは湿式ペーパーを用いたペーパー処理加工など、完成製品の要求精度に適した加工を適宜選定する。好ましい加工は、研磨加工及びペーパー処理加工である。 After the conductive coating is cured, surface treatment is performed so that the surface roughness is preferably 1.0 s or less, more preferably 0.5 s or less, and even more preferably 0.2 s or less. As the surface processing, processing suitable for the required accuracy of the finished product, such as dry or wet polishing using a grindstone, turning using a cutting tool, paper processing using dry or wet paper, is appropriately selected. Preferred processing is polishing processing and paper processing processing.
 表面加工された表面の導電性は、以下の下地めっきが可能な範囲として、好ましくは10kΩ・cm以下、より好ましくは1kΩ・cm以下とする。前記導電性塗料の塗布によっても導電性が不十分な場合は、再度導電性塗料を塗布できる。 The conductivity of the surface processed surface is preferably 10 kΩ · cm or less, more preferably 1 kΩ · cm or less, in a range where the following base plating is possible. If the conductivity is insufficient even by application of the conductive paint, the conductive paint can be applied again.
 導電処理後のCFRP素管2に下地めっきを行う前処理として、アルカリ脱脂または溶剤脱脂を行い、その後、水洗して酸洗いを行う。好ましくは、溶剤脱脂を行い、その後、水洗して酸洗いを行う。 As a pretreatment for performing base plating on the CFRP element tube 2 after the conductive treatment, alkali degreasing or solvent degreasing is performed, and then water washing and pickling are performed. Preferably, solvent degreasing is performed, followed by washing with water and pickling.
 下地めっきとしては、ニッケルめっき、銅めっき、鉄めっき等の種々の金属めっきが可能である。好ましくはニッケルめっきであり、このニッケルめっきとして電解ニッケルめっきあるいは無電解ニッケルめっきが可能である。このうち電解ニッケルめっきは、浴寿命が無電解ニッケルめっきに比べて長く、めっき液の廃棄時の処理が無電解ニッケルめっきに比べて容易であり、めっき被膜に関する膜厚の均一性及び表面平滑性の点から、めっき後の表面加工が不要となるメリットがあるため好ましい。 As the base plating, various metal plating such as nickel plating, copper plating, and iron plating are possible. Nickel plating is preferred, and as this nickel plating, electrolytic nickel plating or electroless nickel plating is possible. Of these, electrolytic nickel plating has a longer bath life than electroless nickel plating, and is easier to dispose of the plating solution than electroless nickel plating. From this point, it is preferable because there is a merit that the surface processing after plating is unnecessary.
 電解ニッケルめっきの施工は、例えば硫酸ニッケル240~300g/L、塩化ニッケル45~50g/Lおよびホウ酸30~40g/Lからなるめっき液を用いためっき浴において、導電処理後のCFRP素管2を縦方向にセットし、電流密度2~8A/dm2のめっき条件でめっき厚さ20~50μmのめっきを行うものである。 For example, the electrolytic nickel plating can be applied to a CFRP base tube 2 after conducting a conductive treatment in a plating bath using a plating solution of nickel sulfate 240 to 300 g / L, nickel chloride 45 to 50 g / L and boric acid 30 to 40 g / L. Is set in the vertical direction, and plating is performed with a plating thickness of 20 to 50 μm under plating conditions of a current density of 2 to 8 A / dm 2 .
 下地めっき後、必要により表面加工を行い、その後、アルカリ脱脂、水洗、酸洗い、水洗乾燥後、3価クロムめっきを行う。 After surface plating, surface treatment is performed if necessary, and then trivalent chromium plating is performed after alkaline degreasing, water washing, acid washing, water washing and drying.
 3価クロムめっきの施工は、例えば、クロム源として塩化クロムあるいは硫酸クロム塩を80~110g/L、錯化剤としてギ酸塩やリンゴ酸塩を10~80g/L、pH緩衝剤としてホウ酸を40~60g/L、導電剤として塩化アンモニウム、硝酸カリウム、硫酸アトリウム等を50~150g/Lの範囲で調整し、界面活性剤を微量添加しためっき液12を用いたクロムめっき浴1において、電解ニッケルめっきを施したCFRP素管2を縦方向にセットし、電流密度3~10A/dm2のめっき条件でめっき厚さ20~100μmのめっきを行うものである。 For example, trivalent chromium plating can be performed by using chromium chloride or chromium sulfate as a chromium source at 80 to 110 g / L, formate or malate as a complexing agent at 10 to 80 g / L, and boric acid as a pH buffer. In a chromium plating bath 1 using a plating solution 12 prepared by adjusting ammonium chloride, potassium nitrate, atrium sulfate, etc. as a conductive agent in a range of 50-150 g / L and adding a small amount of a surfactant, electrolytic nickel The plated CFRP tube 2 is set in the vertical direction and plated with a plating thickness of 20 to 100 μm under a plating condition of a current density of 3 to 10 A / dm 2 .
 ここで、3価クロムめっきでは、白金、黒鉛、および酸化物電極等の不溶性アノードを使用する必要がある。この場合、めっきの進行に伴いめっき液中のクロムイオン(Cr3+イオン)が消費されて減少するため、クロムイオンの補給が必要になる。ところで、例えば日本国特開2006-249518には、水酸化クロムによりクロムイオンを補給することが記載されている。しかし、当該記載の水酸化クロムは含水ゲル状であって、固液分離が難しいことから表面の洗浄が難しいため、この含水ゲル状である水酸化クロムをめっき液に投入すると、未洗浄であるが故にめっき液が多量の不純物を含んでしまう欠点がある。また、含水ゲル状の水酸化クロムは多量の水分を含むため、水酸化クロム沈殿後に脱水が必要となり、この脱水乾燥過程において水酸化クロムがコランダム構造となってしまいめっき液に溶解しにくくなる。そこで本実施例では、下記の方法によりクロムイオンを補給する。 Here, in trivalent chromium plating, it is necessary to use insoluble anodes such as platinum, graphite, and oxide electrodes. In this case, chromium ions (Cr 3+ ions) in the plating solution are consumed and reduced with the progress of plating, so that it is necessary to supply chromium ions. Incidentally, for example, Japanese Patent Application Laid-Open No. 2006-249518 describes that chromium ions are replenished with chromium hydroxide. However, since the described chromium hydroxide is in a water-containing gel form, and it is difficult to separate the solid and liquid, it is difficult to clean the surface. Therefore, when this water-containing gel-like chromium hydroxide is put into the plating solution, it is not washed. Therefore, there is a drawback that the plating solution contains a large amount of impurities. In addition, since the hydrous gel-like chromium hydroxide contains a large amount of water, dehydration is required after the precipitation of chromium hydroxide. In this dehydration and drying process, the chromium hydroxide has a corundum structure and is difficult to dissolve in the plating solution. Therefore, in this embodiment, chromium ions are replenished by the following method.
 本実施例では、3価クロムめっき浴に電解析出により消費されたクロムイオンを補給するにあたり、例えば粒状である金属クロムの表面を酸(具体的には塩酸あるいは硫酸)で一部溶解させることで表面の酸化膜を溶解させ、その後、酸(具体的には硫酸)で洗浄することで前記溶解させた酸化膜を金属クロムから除去する処理を行う。その上で前記処理後の清浄な金属クロムをめっき液12に投入することで、めっき液12にクロムイオンを補給する。このクロムイオンの補給方法は、具体例として、80℃に加熱した20%塩酸あるいは20%硫酸に金属クロムを投入し、気泡が発生した時点で金属クロムを取り出し、2%硫酸で洗浄した後、3価クロムめっき浴1に投入する。これにより、酸化膜の除去された金属クロムがめっき浴1中で溶解されるので、不純物を混入させることなく、かつ、速やかにクロムイオンを補給できる。 In this embodiment, in order to replenish chromium ions consumed by electrolytic deposition in a trivalent chromium plating bath, for example, the surface of metallic chromium that is granular is partially dissolved with an acid (specifically hydrochloric acid or sulfuric acid). Then, the oxide film on the surface is dissolved, and then the oxide film is washed with an acid (specifically sulfuric acid) to remove the dissolved oxide film from the metallic chromium. Then, clean metal chromium after the treatment is added to the plating solution 12 to replenish the plating solution 12 with chromium ions. As a specific example, the chromium ion replenishment method is as follows. Metal chromium is added to 20% hydrochloric acid or 20% sulfuric acid heated to 80 ° C., and when bubbles are generated, the metal chromium is taken out and washed with 2% sulfuric acid. The trivalent chromium plating bath 1 is charged. Thereby, since the chromium metal from which the oxide film has been removed is dissolved in the plating bath 1, chromium ions can be replenished promptly without mixing impurities.
 クロムめっきとして従来広く用いられてきた6価クロムめっきは、めっき被膜の物性、生産性、およびコスト面に優れている。しかし、めっき液の主成分がCr6+イオンであるため、製造時におけるCr6+イオンを含むミストによる作業従事者の健康障害や大気汚染、環境汚染への影響が懸念されるため、代替技術の開発が待望されていた。そこで本実施例では、6価クロムに代えて3価クロムを用いることとした。 Hexavalent chromium plating that has been widely used as chromium plating is excellent in physical properties, productivity, and cost of the plating film. However, since the main component of the plating solution is Cr 6+ ions, there are concerns about the impact on health, air pollution, and environmental pollution of workers due to mist containing Cr 6+ ions during manufacturing. The development of was awaited. Therefore, in this example, trivalent chromium was used instead of hexavalent chromium.
 Cr3+イオンからなるめっき浴(3価クロム浴)は、環境意識の高まりにより、めっき厚みの小さい(膜厚2μm以下)装飾用途に限って工業的に実用化されている。しかし3価クロム浴では、性状の優れた厚膜(膜厚5μm以上、望ましくは20μm以上)を得ることが難しく、装飾以外の工業用途では実用化されていなかった。3価クロムめっきは、めっき実施時間の経過に伴うめっき速度の急激な低下、カソード側の水素発生に伴ってめっき表面に筋状の凹凸が形成されてしまう問題があったためである。この問題を解決するためには、3価クロムめっき時においてカソードとなるロール母材(CFRP素管2)の表面に発生する泡状の水素ガスを除去する必要がある。 Plating baths composed of Cr 3+ ions (trivalent chromium baths) have been industrially put to practical use only for decorative applications with a small plating thickness (thickness of 2 μm or less) due to increased environmental awareness. However, with a trivalent chromium bath, it is difficult to obtain a thick film with excellent properties (film thickness of 5 μm or more, desirably 20 μm or more), and it has not been put into practical use for industrial purposes other than decoration. This is because the trivalent chromium plating has a problem that streaks and depressions are formed on the plating surface due to a rapid decrease in plating speed with the elapse of the plating time and generation of hydrogen on the cathode side. In order to solve this problem, it is necessary to remove the foam-like hydrogen gas generated on the surface of the roll base material (CFRP base tube 2) that becomes the cathode during the trivalent chromium plating.
 このため本実施例では水素除去工程を行っている。この水素除去工程にて、クロムめっき浴1の水素ガスをロール母材(CFRP素管2)の表面から除去させるため、図1及び図2に示すように、水素ガス付着抑制機構4をクロムめっき浴1に設けた。水素ガス付着抑制機構4は、中空部分を有する気泡発生ブロック41と、この気泡発生ブロック41に空気を供給する、コンプレッサー等を有する気体供給機構42とを備える。気体供給機構42は、例えば図1に示すように、気体供給源421、気圧調整機構422、送気配管423を備える。気体供給源421は、空気を送る場合にはコンプレッサー等が用いられる。また、不活性ガス(例えば窒素ガス)を送る場合は、不活性ガスを充填したボンベが用いられる。気圧調整機構422としては、例えば指定ガス圧力にできるレギュレターを用いることができる。気体供給機構42には、前記の他、気体をろ過するためのフィルターを付加することができる。 Therefore, in this embodiment, a hydrogen removal process is performed. In this hydrogen removal step, in order to remove the hydrogen gas in the chromium plating bath 1 from the surface of the roll base material (CFRP base tube 2), as shown in FIGS. Set in bath 1. The hydrogen gas adhesion suppressing mechanism 4 includes a bubble generation block 41 having a hollow portion, and a gas supply mechanism 42 having a compressor or the like that supplies air to the bubble generation block 41. For example, as shown in FIG. 1, the gas supply mechanism 42 includes a gas supply source 421, an atmospheric pressure adjustment mechanism 422, and an air supply pipe 423. As the gas supply source 421, a compressor or the like is used when air is sent. Moreover, when sending an inert gas (for example, nitrogen gas), the cylinder filled with the inert gas is used. As the atmospheric pressure adjusting mechanism 422, for example, a regulator capable of setting to a specified gas pressure can be used. In addition to the above, a filter for filtering gas can be added to the gas supply mechanism 42.
 ここで、めっき槽11には冷却機構6が設けられている。この冷却機構6は例えば、温度調整装置61、接続部62、めっき浴冷却部63を備える。めっき浴冷却部63はめっき槽11の内部において、めっき液12に触れる部分に設けられている。冷却機構6は例えば、冷媒配管である接続部62を介して温度調整装置61とめっき浴冷却部63との間で冷媒を循環させるように構成することができる。または、通電により冷却される冷却素子を備えためっき浴冷却部63に対し、電気配線である接続部62を介して温度調整装置61を電気的に接続するよう構成することもできる。これらの構成により、めっき浴冷却部63がめっき液12を冷却することができる。 Here, the cooling mechanism 6 is provided in the plating tank 11. The cooling mechanism 6 includes, for example, a temperature adjusting device 61, a connection unit 62, and a plating bath cooling unit 63. The plating bath cooling unit 63 is provided in the plating tank 11 at a portion that contacts the plating solution 12. For example, the cooling mechanism 6 can be configured to circulate the refrigerant between the temperature adjusting device 61 and the plating bath cooling unit 63 via a connection unit 62 that is a refrigerant pipe. Alternatively, the temperature adjusting device 61 can be electrically connected to the plating bath cooling unit 63 including a cooling element that is cooled by energization via a connection unit 62 that is an electrical wiring. With these configurations, the plating bath cooling unit 63 can cool the plating solution 12.
 ここで、本実施例におけるクロムめっきは電気めっきであるので、電力をクロムめっき浴1に供給するに伴い、めっき液12が加熱されてめっき液12の温度が上昇する。特に、3価クロムめっきの場合、6価クロムめっき等の他のめっきよりも必要な電力が大きいから、めっき液12の温度上昇が顕著である。そこで、冷却機構6によりめっき液12を冷却することで、めっき液12の温度上昇を抑制して、良好な環境で3価クロムめっきを行うことができる。 Here, since the chromium plating in this embodiment is electroplating, the plating solution 12 is heated and the temperature of the plating solution 12 rises as power is supplied to the chromium plating bath 1. In particular, in the case of trivalent chrome plating, the required power is larger than other plating such as hexavalent chrome plating, so the temperature rise of the plating solution 12 is significant. Therefore, by cooling the plating solution 12 by the cooling mechanism 6, it is possible to suppress the temperature rise of the plating solution 12 and perform trivalent chromium plating in a favorable environment.
 なお、図1及び図2中の符号3は、カソードと対になる電極であるアノードである。本実施例のクロムめっき浴1では平板状のアノード3が4か所に設けられているが、形状や数量はこれに限定されるものではない。なお、めっき槽11の形状も図示したものに限られず、種々の形状とできる。カソードであるCFRP素管2には、整流器51の-極につながった電線52aが接続される。そして、アノード3には電力供給機構5である整流器51の+極につながった電線52bが接続される。 In addition, the code | symbol 3 in FIG.1 and FIG.2 is an anode which is an electrode which becomes a pair with a cathode. In the chromium plating bath 1 of the present embodiment, the flat plate-like anodes 3 are provided at four locations, but the shape and quantity are not limited to this. In addition, the shape of the plating tank 11 is not restricted to what was illustrated, and can be various shapes. An electric wire 52 a connected to the negative pole of the rectifier 51 is connected to the CFRP base tube 2 that is a cathode. The anode 3 is connected to an electric wire 52 b connected to the positive pole of the rectifier 51 that is the power supply mechanism 5.
 気泡発生ブロック41は、電解ニッケルめっきを施したCFRP素管2の下方に接続され、CFRP素管2よりも大径に形成された略円盤状の部分である。図1に示すように、気泡発生ブロック41の上面は、CFRP素管2との接続部の周囲において平面に形成され、途中からは径外に向かうにつれ上昇する斜面411に形成されている。図2に示すように、気泡発生ブロック41の斜面411には複数の気体噴出穴412が、例えば円形状に並んで形成されている。気体供給機構により気泡発生ブロック41に供給された空気は気体噴出穴412からクロムめっき浴1に噴出する。 The bubble generating block 41 is connected to the lower side of the CFRP element tube 2 subjected to electrolytic nickel plating, and is a substantially disc-shaped part formed with a larger diameter than the CFRP element tube 2. As shown in FIG. 1, the upper surface of the bubble generation block 41 is formed as a flat surface around the connection portion with the CFRP element tube 2, and is formed on a slope 411 that rises from the middle toward the outside. As shown in FIG. 2, a plurality of gas ejection holes 412 are formed on the inclined surface 411 of the bubble generation block 41 in a circular shape, for example. The air supplied to the bubble generation block 41 by the gas supply mechanism is jetted from the gas jet hole 412 to the chromium plating bath 1.
 気体噴出穴412から噴出した空気は、図1に示すように粒状の気泡Bとなって形成中のクロムめっき表面を通って、クロムめっき浴1を上昇する。この際、気泡Bは形成中のクロムめっき表面に発生する水素ガスを取り込みつつめっき液12の液面まで上昇する。前記取り込みにより、クロムめっき実施中のCFRP素管2の表面への水素ガスの付着が防止され、これと共に付着した水素ガスが除去される。また、気泡発生ブロック41からの気泡Bの放出に伴いめっき液12に流れが生じることにより、めっき液12の撹拌がなされる。 The air ejected from the gas ejection holes 412 becomes granular bubbles B as shown in FIG. At this time, the bubbles B rise to the surface of the plating solution 12 while taking in hydrogen gas generated on the surface of the chromium plating being formed. By the incorporation, the hydrogen gas is prevented from adhering to the surface of the CFRP element tube 2 during the chrome plating, and the adhering hydrogen gas is removed. Further, the plating solution 12 is agitated by the flow of the plating solution 12 accompanying the release of the bubbles B from the bubble generating block 41.
 この水素ガス付着抑制機構4により、ロール母材(CFRP素管2)の表面に水素ガスが付着した状態のままめっきが進行することにより、ピンホールが多数発生してしまうことを抑制できる。また、気泡発生ブロック41からクロムめっき浴1に放出された空気によりめっき液12が撹拌されるため、水素ガスの発生によりめっき液12のpHが局所的に高くなり、クロム酸化物やクロム水酸化物等のクロム化合物が形成中のクロムめっき表面に発生してしまい、金属クロムの析出が阻害されることを抑制できる。 The hydrogen gas adhesion suppressing mechanism 4 can suppress the occurrence of a large number of pinholes as plating proceeds while the hydrogen gas is adhered to the surface of the roll base material (CFRP base tube 2). In addition, since the plating solution 12 is agitated by the air released from the bubble generating block 41 to the chromium plating bath 1, the pH of the plating solution 12 is locally increased by the generation of hydrogen gas, and chromium oxide or chromium hydroxide is generated. It can suppress that chromium compounds, such as a thing, generate | occur | produce on the chromium plating surface in formation, and precipitation of metal chromium is inhibited.
 このように本実施例では、水素ガス付着抑制機構4を用いることにより、従来の3価クロムめっきによる問題点が解決され、性状の優れた厚膜を得ることができるようになった。このため、装飾以外の工業用途においても、有害性のある6価クロムを使用しないめっき被覆ロールを製造できるようになった。 As described above, in this embodiment, by using the hydrogen gas adhesion suppressing mechanism 4, the problems caused by the conventional trivalent chromium plating are solved, and a thick film having excellent properties can be obtained. For this reason, the plating coating roll which does not use harmful hexavalent chromium also in industrial uses other than a decoration came to be manufactured.
 本実施例によると、炭素鋼やアルミニウムに比べて比重の小さい材料であるCFRPを用いて、回転しても生じる振れの小さいロールを形成できるので、ワークの回転ムラや搬送トラブルを防止することができる。そして、ロールが軽量化されるので、ラインスピードの高速化、歩留まりの向上および広幅化に対応したロール製品の提供が期待できる。 According to the present embodiment, a CFRP, which is a material having a specific gravity smaller than that of carbon steel or aluminum, can be used to form a roll having a small runout even if it is rotated. it can. And since the roll is lightened, it can be expected to provide a roll product corresponding to an increase in line speed, an improvement in yield, and a widening.
 また、3価クロムめっきの被膜は、従来用いられてきた6価クロムめっきの被膜よりも硬度が高いため、めっき被覆ロールの耐摩耗性向上も期待できる。また、6価クロムめっきでは膜厚が厚い場合クラック(マイクロクラック)が発生していた。このマイクロクラックは、ワークが精密樹脂フィルムである場合、当該フィルムに微細な凹凸の模様が形成(転写)されてしまう問題が生じ、また、ロールの停止時やワークの段取り替えの際における洗浄の際、異物や油分等がこのマイクロクラックへ侵入し、ロールに錆が発生したり、ワークに異物や油分等が移行したりする問題を生じる可能性があった。これに対し、3価クロムめっきではクラックが発生しないので前述の問題が起こらず耐食性が高くなる。また、本実施例のクロムめっき浴1では3価クロムイオンを定常的に形成中のクロムめっき表面に供給でき、水素発生によるめっき厚みの均一性を確保できるので、浴管理が簡略化され工業用途での使用に耐えうる。 Also, since the trivalent chrome plating film has higher hardness than the conventionally used hexavalent chrome plating film, the wear resistance of the plating coating roll can be expected to be improved. Further, in hexavalent chromium plating, cracks (microcracks) occurred when the film thickness was large. This micro-crack causes a problem that a fine uneven pattern is formed (transferred) on the film when the work is a precision resin film. In addition, the micro-crack is not cleaned when the roll is stopped or when the work is changed. At this time, there is a possibility that foreign matter, oil or the like enters the micro crack, and rust is generated on the roll or foreign matter or oil is transferred to the workpiece. In contrast, since trivalent chromium plating does not generate cracks, the above-described problems do not occur and the corrosion resistance increases. Further, in the chromium plating bath 1 of this embodiment, trivalent chromium ions can be constantly supplied to the surface of the chromium plating being formed, and the uniformity of the plating thickness due to the generation of hydrogen can be ensured, so that the bath management is simplified and industrial use. Can withstand use in
 以上、本実施例に係るめっき被覆ロールの製造方法によると多くのメリットを享受できる。 As mentioned above, according to the manufacturing method of the plating coating roll concerning a present Example, many merits can be enjoyed.
 次に、本願発明の発明者が実際にCFRPロールを試作したので、試作要領及び結果につき、以下説明する。 Next, since the inventor of the present invention actually made a prototype of a CFRP roll, the trial production procedure and results will be described below.
 本試作には、ロール母材として、直径(φ)100mm、長さ2000mm、肉厚10mmのCFRP素管2を使用した。CFRP素管2は、三菱レイヨン株式会社製のピッチ系炭素繊維管「カーボリーダー240」を使用した。 In this trial production, a CFRP element tube 2 having a diameter (φ) of 100 mm, a length of 2000 mm, and a wall thickness of 10 mm was used as a roll base material. As the CFRP base tube 2, a pitch-based carbon fiber tube “Carbo Leader 240” manufactured by Mitsubishi Rayon Co., Ltd. was used.
 CFRP素管2を脱脂するため、まずは界面活性剤で洗浄し、水洗及び温水洗を行った後、十分に乾燥させた。脱脂後、CFRP素管2の表面の導電性をテスターで計測し、抵抗率が1000Ω・cm以下になるように、表面に炭素系導電性塗料を塗布した。塗布した導電性塗料の膜厚は約60μmであった。導電性塗料が硬化した後、ロール表面全体の表面粗さを0.5s以下となるように表面加工を行った。 In order to degrease the CFRP element tube 2, it was first washed with a surfactant, washed with water and washed with warm water, and then sufficiently dried. After degreasing, the conductivity of the surface of the CFRP element tube 2 was measured with a tester, and a carbon-based conductive paint was applied to the surface so that the resistivity was 1000 Ω · cm or less. The film thickness of the applied conductive paint was about 60 μm. After the conductive coating was cured, surface processing was performed so that the surface roughness of the entire roll surface was 0.5 s or less.
 前述のように導電性が確認されたCFRP素管2を、硫酸ニッケル270g/L、塩化ニッケル47.5g/L、ホウ酸35g/L、サッカリン 5 g/L, 1,4-ブチンジオール 0.3 g/Lからなるめっき液を用いためっき浴に縦方向に配置し、下地めっきとして、電流密度5A/dm2のめっき条件で、平均めっき厚さ0.03mmの電解ニッケルめっきを行った。 As described above, the CFRP element tube 2 confirmed to be conductive was added to nickel sulfate 270 g / L, nickel chloride 47.5 g / L, boric acid 35 g / L, saccharin 5 g / L, 1,4-butynediol 0.3 g / An electrolytic nickel plating having an average plating thickness of 0.03 mm was performed as a base plating under a plating condition of a current density of 5 A / dm 2 .
 電解ニッケルめっきの施工後、表面加工なしでアルカリ脱脂、水洗、酸洗い、水洗乾燥を行った。そして、クロム源として塩化クロムあるいは硫酸クロム塩を90g/L、錯化剤としてギ酸塩やリンゴ酸塩を45g/L、pH緩衝剤としてホウ酸を50g/L、導電剤として塩化アンモニウム、硝酸カリウム、硫酸ナトリウム等を50~150g/Lの範囲で調整し、界面活性剤を微量添加しためっき液を用いたクロムめっき浴1に縦方向に配置し、電流密度を6.5A/dm2のめっき条件で、平均めっき厚さ0.05mmの3価クロムめっきを行った。 After the electrolytic nickel plating was applied, alkaline degreasing, washing with water, pickling, and drying with water were performed without surface treatment. And chromium chloride or chromium sulfate salt as a chromium source 90g / L, complexing agent formate and malate 45g / L, pH buffer boric acid 50g / L, conductive agent ammonium chloride, potassium nitrate, Sodium sulfate is adjusted in the range of 50 to 150 g / L and placed vertically in the chrome plating bath 1 using a plating solution to which a small amount of surfactant is added, and the current density is 6.5 A / dm 2 under plating conditions. Then, trivalent chromium plating with an average plating thickness of 0.05 mm was performed.
 3価クロムめっき施工の際、形成中のクロムめっき表面で発生する水素ガスへの対策のため、図1及び図2のような水素ガスをカソード表面へ付着させない機構と併せてロール表面のめっき液の撹拌を促す機構として、カソード下部から発生する水素ガスを逃がす水素ガス付着抑制機構4をめっき槽11に設けた。 In order to prevent hydrogen gas generated on the chromium plating surface being formed during trivalent chromium plating, the plating solution on the roll surface is combined with a mechanism for preventing hydrogen gas from adhering to the cathode surface as shown in FIGS. As a mechanism for urging the agitation, a hydrogen gas adhesion suppressing mechanism 4 for releasing hydrogen gas generated from the lower part of the cathode is provided in the plating tank 11.
 3価クロムめっきの施工に当たり、めっき槽11内に、めっき完了品の取外しが容易なかご型のユニットを設けた上で、めっき実施中に不溶性のアノード3、カソードとして機能するニッケルめっきされた状態のCFRP素管2を縦方向にセットした。ロール下部には、水素ガス付着抑制機構4を構成する、ポリ塩化ビニル製の、空気を送るための穴の開いた気泡発生ブロック41を取り付けた。この気泡発生ブロック41から発生する空気の気泡Bはクロムめっき浴1に放出され、この気泡Bがクロムめっき浴1に発生する水素ガスを取り込んで形成中のクロムめっき表面を通って、めっき液の液面まで上昇する。これにより、ロール表面への水素ガスの付着防止がなされる。また、気泡発生ブロック41から気泡Bが放出されるに伴い、めっき液の撹拌がなされる。これにより、水素ガスによる不具合(発生した水素ガスによりめっき液のpHが局所的(特にCFRP素管2の表面近傍)に高くなること)が防止でき、めっき液を均一に撹拌することができた。 In the installation of trivalent chrome plating, in the plating tank 11, a cage-shaped unit that allows easy removal of the plated product is provided, and the nickel-plated state that functions as an insoluble anode 3 and cathode during plating. CFRP element tube 2 was set in the vertical direction. At the lower part of the roll, a bubble generating block 41 made of polyvinyl chloride and having a hole for sending air, which constitutes the hydrogen gas adhesion suppressing mechanism 4, was attached. The air bubbles B generated from the bubble generating block 41 are discharged to the chromium plating bath 1, and the bubbles B take in the hydrogen gas generated in the chromium plating bath 1 and pass through the surface of the chromium plating that is being formed. It rises to the liquid level. Thereby, adhesion of hydrogen gas to the roll surface is prevented. Further, as the bubbles B are released from the bubble generation block 41, the plating solution is agitated. As a result, it was possible to prevent problems caused by hydrogen gas (the generated hydrogen gas locally increased the pH of the plating solution (particularly near the surface of the CFRP element tube 2)), and the plating solution could be uniformly stirred. .
 試作に用いた気泡発生ブロック41は、直径160mm、平坦部の厚さが50mmであり、斜面411は45°に形成されている。気体噴出穴412は、気泡発生ブロック41の斜面411に、周方向に32か所設けられており、各気体噴出穴412の直径は0.3mmである。気体噴出穴412からは、垂直方向基準で径内方向へ45°の角度で空気が噴出される。噴出される空気の圧力は0.06MPaとした。 The bubble generation block 41 used in the trial production has a diameter of 160 mm, a flat portion thickness of 50 mm, and a slope 411 formed at 45 °. There are 32 gas ejection holes 412 provided in the circumferential direction on the slope 411 of the bubble generation block 41, and each gas ejection hole 412 has a diameter of 0.3 mm. From the gas ejection hole 412, air is ejected at an angle of 45 ° in the radial inward direction with respect to the vertical direction. The pressure of the ejected air was 0.06 MPa.
 このように水素ガス付着抑制機構4を用いた3価クロムめっきの施工により、光沢があってマイクロクラックの無い、従来の6価クロムめっきの硬度と同等以上である、高硬度の3価クロムめっきが被覆されためっき被覆ロールを製造できた。クロムめっき後に表面の研磨加工を行った上で検査を行った結果を表1に示す。試作品は、直径(φ)100mm、長さ2000mm、肉厚10mmの炭素鋼管やアルミニウム管(いずれもめっき被覆はなし)と比較して、たわみが小さいことが確認できた。また、ニッケルめっき及び3価クロムめっきのいずれも、めっき被膜の剥離は目視されず、付着性が良好であることが確認できた。 As described above, the trivalent chromium plating using the hydrogen gas adhesion suppressing mechanism 4 has a high hardness, trivalent chromium plating that is glossy and has no microcracks and is equal to or higher than the hardness of the conventional hexavalent chromium plating. Was able to produce a plating coated roll coated with. Table 1 shows the results of inspection after polishing the surface after chromium plating. The prototype was confirmed to have less deflection than carbon steel pipes and aluminum pipes (diameter: φ) 100 mm, length 2000 mm, wall thickness 10 mm (both without plating coating). Moreover, neither nickel plating nor trivalent chromium plating confirmed that the peeling of the plating film was visually observed and the adhesion was good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、クロムめっき浴1に水素ガス付着抑制機構4を設けなかった場合に製造されためっき被覆ロール(不良品)Rbの例を図3Aに示す。このめっき被覆ロールRbは、ロール表面の中央部については光沢のある仕上がりであったが、上部及び下部に黒色の不良部Xができてしまった。この不良部Xは、水素ガスの付着により、その部分の表面にクロム酸化物やクロム水酸化物が異常に析出してしまった部分である。不良部Xが上部及び下部にできる理由は、CFRP素管2の角部では、中央部に比べて集中的に電気が流れ、この部分に接するめっき液のpHが上昇したからである。 Here, FIG. 3A shows an example of a plating coating roll (defective product) Rb manufactured when the hydrogen gas adhesion suppressing mechanism 4 is not provided in the chromium plating bath 1. The plating coating roll Rb had a glossy finish at the center of the roll surface, but black defective portions X were formed at the upper and lower portions. The defective part X is a part where chromium oxide or chromium hydroxide is abnormally deposited on the surface of the part due to the adhesion of hydrogen gas. The reason why the defective part X can be formed in the upper part and the lower part is that electricity flows intensively in the corner part of the CFRP elementary tube 2 as compared with the central part, and the pH of the plating solution in contact with this part increases.
 一方、図3Bに示すめっき被覆ロール(良品)Rgは前記試作により製造された試作品であって、ロール表面の全領域で健全なめっき被膜が形成されている。このように、本実施例のクロムめっき浴1では、水素ガス付着抑制機構4が効果的に機能していることが確認できた。 On the other hand, the plating coating roll (non-defective product) Rg shown in FIG. 3B is a prototype manufactured by the above-mentioned trial manufacture, and a healthy plating film is formed in the entire area of the roll surface. Thus, in the chromium plating bath 1 of the present Example, it has confirmed that the hydrogen gas adhesion suppression mechanism 4 was functioning effectively.
 以上、本発明につき一実施例を説明したが、本発明は前記実施例で示した構成に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 As described above, one embodiment of the present invention has been described. However, the present invention is not limited to the configuration shown in the above embodiment, and various modifications can be made without departing from the gist of the present invention.
 例えば、水素ガス付着抑制機構4として、前記実施例の構成のほか、プロペラ等の撹拌手段を併用してもよい。また、気泡発生ブロック41の空気が噴出する部分にはノズルを設けることもできる。このノズルは、例えば空気圧により移動(回転等)する可動式ノズルとすることもできる。また、気泡Bがロール母材(CFRP素管2)の表面に沿って上昇するようにするため、気泡Bを導くための導流部(フィン等)をクロムめっき浴1に設けることもできる。また、前記実施例では粒状の気泡Bを形成したが、膜状の気泡を形成することもできる。また、前記実施例では一重円の周方向に複数の気体噴出穴412を設けたが、二重以上の同心円の周方向に複数の気体噴出穴412を設けることもできる。 For example, as the hydrogen gas adhesion suppressing mechanism 4, in addition to the configuration of the above embodiment, stirring means such as a propeller may be used in combination. In addition, a nozzle can be provided at a portion of the bubble generating block 41 where air is ejected. The nozzle may be a movable nozzle that moves (rotates, etc.) by air pressure, for example. In addition, in order for the bubbles B to rise along the surface of the roll base material (CFRP base tube 2), a flow guide portion (fin or the like) for guiding the bubbles B can be provided in the chromium plating bath 1. Moreover, although the granular bubble B was formed in the said Example, a film-like bubble can also be formed. In the above embodiment, the plurality of gas ejection holes 412 are provided in the circumferential direction of a single circle, but a plurality of gas ejection holes 412 may be provided in the circumferential direction of two or more concentric circles.
 また、前記実施例では気泡発生ブロック41から空気を噴出するものとしたが、3価クロムめっきに悪影響を及ぼさないものであれば、例えば不活性ガス等、空気以外の気体を噴出させるよう構成することもできる。 In the above embodiment, air is ejected from the bubble generating block 41. However, as long as it does not adversely affect the trivalent chromium plating, a gas other than air, such as an inert gas, is ejected. You can also.
 また、前記実施例では、めっき槽11に冷却機構6が設けられていたが、この他に、気体供給機構42に冷却機構を設けておき、この冷却機構で気体を冷却して気泡発生ブロック41に供給することもできる。気体供給機構42により冷却した気体をクロムめっき浴1に供給することで、前記実施例と同様にめっき液12の温度上昇を抑制して、良好な環境で3価クロムめっきを行うことができる。 Further, in the above embodiment, the cooling mechanism 6 is provided in the plating tank 11, but in addition to this, a cooling mechanism is provided in the gas supply mechanism 42, and the bubble is generated by cooling the gas by this cooling mechanism. Can also be supplied. By supplying the gas cooled by the gas supply mechanism 42 to the chromium plating bath 1, the temperature rise of the plating solution 12 can be suppressed as in the above embodiment, and trivalent chromium plating can be performed in a favorable environment.
 更に、水素ガス付着抑制機構4は、前記実施例のように形成中のクロムめっき表面に気泡Bを放出する構成に限定されず、例えば、図4に示すような構成を採用することもできる。この実施例における水素ガス付着抑制機構4は、ガス除去部43、フランジ部44、連結棒45、駆動部46を備える。 Furthermore, the hydrogen gas adhesion suppressing mechanism 4 is not limited to the configuration in which the bubbles B are discharged to the chrome plating surface being formed as in the above-described embodiment, and for example, a configuration as shown in FIG. 4 can also be adopted. The hydrogen gas adhesion suppressing mechanism 4 in this embodiment includes a gas removal unit 43, a flange unit 44, a connecting rod 45, and a drive unit 46.
 ガス除去部43は、めっき槽11に対して不動に設けられる。このガス除去部43は、CFRP素管2の径外に位置し、縦方向に延びる棒状の支持部431と、支持部431に固定された、縦方向に間隔をおいて配置された複数のプレート部432とを備える。図示していないがプレート部432は平面視で円環状とされており、プレート部432の内周縁432aがCFRP素管2の外面を取り巻くように位置する。なお、プレート部432の内周縁432aは、CFRP素管2において形成中のクロムめっき表面に対して密着せず僅かに離れて位置している。これにより、プレート部432がクロムめっきの形成を阻害しないようにされている。なお、プレート部432の材質は問わないが、後述のようにCFRP素管2が上下動する際、プレート部432がCFRP素管2の表面に触れてしまっても3価クロムめっきの被膜が傷つかないよう、柔軟な材質であることが好ましい。 The gas removal unit 43 is provided immovably with respect to the plating tank 11. The gas removal unit 43 is located outside the diameter of the CFRP base tube 2 and extends in the vertical direction to a bar-like support unit 431 and a plurality of plates that are fixed to the support unit 431 and spaced in the vertical direction. Part 432. Although not shown, the plate portion 432 has an annular shape in plan view, and the inner peripheral edge 432 a of the plate portion 432 is positioned so as to surround the outer surface of the CFRP element tube 2. In addition, the inner peripheral edge 432a of the plate portion 432 is located slightly apart from the chrome plating surface being formed in the CFRP element tube 2 without being in close contact therewith. Thereby, the plate part 432 is made not to inhibit formation of chromium plating. The material of the plate portion 432 is not limited, but the trivalent chromium plating film may be damaged even if the plate portion 432 touches the surface of the CFRP base tube 2 when the CFRP base tube 2 moves up and down as will be described later. It is preferable that the material is flexible so that it does not exist.
 フランジ部44は、クロムめっき施工の際、CFRP素管2の下端部に接続される下フランジ部441と、CFRP素管2の上端部に接続される上フランジ部442とを備えている。この実施例では、下フランジ部441の下端部及び上フランジ部442の上端部が先すぼみとなる円錐形状とされている。このため、後述のようにCFRP素管2が上下動する際、共に上下動するフランジ部44により、めっき液12に必要以上の波立ちが生じてしまい、クロムめっき施工に悪影響が生じることを抑制できる。 The flange portion 44 includes a lower flange portion 441 that is connected to the lower end portion of the CFRP element tube 2 and an upper flange portion 442 that is connected to the upper end portion of the CFRP element tube 2 when performing chromium plating. In this embodiment, the lower end portion of the lower flange portion 441 and the upper end portion of the upper flange portion 442 have a conical shape with a tapered shape. For this reason, when the CFRP raw tube 2 moves up and down as will be described later, the flange portion 44 that moves up and down together can prevent the plating solution 12 from causing undulations more than necessary, thereby preventing adverse effects on the chromium plating construction. .
 連結棒45は、垂直方向に延びる棒状体であり、上フランジ部442に接続され、めっき槽11の上方に突出する。連結棒45は導電性を有する材料で形成されており、アノード3と共に電力供給機構5に対し、電気的に接続される。 The connecting rod 45 is a rod-like body extending in the vertical direction, is connected to the upper flange portion 442, and protrudes above the plating tank 11. The connecting rod 45 is made of a conductive material and is electrically connected to the power supply mechanism 5 together with the anode 3.
 駆動部46は、駆動部本体461と、駆動部本体461から横方向に延びており、図4に矢印Mで示したように縦方向に往復動する駆動棒462とを備える。この駆動棒462に前記連結棒45が連結される。駆動棒462が縦方向に往復動することで、クロムめっき浴1においてCFRP素管2を上下動させられる。 The drive unit 46 includes a drive unit main body 461 and a drive rod 462 extending in the horizontal direction from the drive unit main body 461 and reciprocating in the vertical direction as indicated by an arrow M in FIG. The connecting rod 45 is connected to the drive rod 462. The CFRP base tube 2 can be moved up and down in the chromium plating bath 1 by reciprocating the drive rod 462 in the vertical direction.
 このCFRP素管2の上下動に伴い、CFRP素管2の表面に上下方向のめっき液12の流れが発生する。このめっき液12の流れにより、クロムめっき実施中のCFRP素管2の表面への水素ガスの付着が防止され、これと共に付着した水素ガスが除去される。また、CFRP素管2の上下動に伴いめっき液12に流れが生じることから、特にCFRP素管2の表面近傍において、めっき液12の撹拌がなされる。 As the CFRP element tube 2 moves up and down, a flow of the plating solution 12 in the vertical direction is generated on the surface of the CFRP element tube 2. The flow of the plating solution 12 prevents the hydrogen gas from adhering to the surface of the CFRP element tube 2 during the chrome plating, and the hydrogen gas adhering thereto is removed. Further, since the plating solution 12 flows as the CFRP elementary tube 2 moves up and down, the plating solution 12 is agitated particularly near the surface of the CFRP elementary tube 2.
 この実施例の水素ガス付着抑制機構4によっても、前記気泡発生ブロック41を備えた実施例と同様に、ロール母材(CFRP素管2)へのピンホールの多数の発生、また、金属クロムの析出が阻害されることを有効に抑制できる。 Also in the hydrogen gas adhesion suppressing mechanism 4 of this embodiment, as in the embodiment provided with the bubble generation block 41, a large number of pinholes are generated in the roll base material (CFRP base tube 2), and metal chromium It can suppress effectively that precipitation is inhibited.
 この実施例では、ガス除去部43を不動に設け、CFRP素管2を上下動させるよう構成されていたが、これに限定されず、CFRP素管2を不動に設け、ガス除去部43を上下動させるよう構成したり、ガス除去部43及びCFRP素管2を共に上下動したりするよう構成することもできる。更に、CFRP素管2を上下動させるだけでなく円周方向に回転させることもできる。 In this embodiment, the gas removal unit 43 is provided immovably and the CFRP element tube 2 is moved up and down. However, the present invention is not limited to this, and the CFRP element tube 2 is provided immovably and the gas removal unit 43 is moved up and down. The gas removal unit 43 and the CFRP element tube 2 can be moved up and down together. Furthermore, the CFRP element tube 2 can be rotated not only in the vertical direction but also in the circumferential direction.
 また、フランジ部44の形状はこの実施例の形状に限定されず、例えば円柱状等種々の形状とでき、更にはフランジ部44を省略し、CFRP素管2に直接連結棒45を連結することもできる。 Further, the shape of the flange portion 44 is not limited to the shape of this embodiment, and can be various shapes such as a columnar shape. Further, the flange portion 44 is omitted, and the connecting rod 45 is directly connected to the CFRP base tube 2. You can also.
 上記実施形態に関する構成と作用につき、以下にまとめて記載する。上記実施形態は、円筒状の炭素繊維強化プラスチックからなるロール母材2の表面を平滑化する平滑化工程と、前記平滑化工程を経た前記ロール母材2に金属めっきを行う下地めっき工程と、前記下地めっき工程を経た前記ロール母材2に、めっき液12中で3価クロムめっきを行う表面めっき工程とを有し、前記表面めっき工程は、形成中のめっき表面に生じる水素ガスを除去する水素除去工程を含む、めっき被覆ロールの製造方法である。 The configuration and operation related to the above embodiment will be described collectively below. In the above embodiment, a smoothing step for smoothing the surface of the roll base material 2 made of a cylindrical carbon fiber reinforced plastic, and a base plating step for performing metal plating on the roll base material 2 that has undergone the smoothing step, The roll base material 2 that has undergone the base plating step has a surface plating step of performing trivalent chromium plating in a plating solution 12, and the surface plating step removes hydrogen gas generated on the plating surface being formed. It is a manufacturing method of a plating coat roll including a hydrogen removal process.
 この構成によれば、表面めっき工程は、形成中のめっき表面に生じる水素ガスを除去する水素除去工程を含む。このため、表面めっき実施中のロール母材2の表面に水素ガスが付着すること、また、水素ガスの発生によりめっき液12のpHが局所的(特にロール母材2の表面近傍)に高くなることを抑制できる。 According to this configuration, the surface plating step includes a hydrogen removal step of removing hydrogen gas generated on the plating surface being formed. For this reason, hydrogen gas adheres to the surface of the roll base material 2 during surface plating, and the pH of the plating solution 12 is locally increased (particularly near the surface of the roll base material 2) due to the generation of hydrogen gas. This can be suppressed.
 また、前記水素除去工程では、形成中のめっき表面に気泡を放出し、当該放出された気泡が前記水素ガスを取り込みつつ形成中のめっき表面を通って、前記めっき液12の液面まで上昇させることで水素ガスを除去するものとできる。 Further, in the hydrogen removal step, bubbles are discharged to the plating surface being formed, and the discharged bubbles are raised to the liquid surface of the plating solution 12 through the plating surface being formed while taking in the hydrogen gas. Thus, hydrogen gas can be removed.
 この構成によれば、放出された気泡が水素ガスを取り込みつつめっき液12の液面まで上昇する。このため、形成中のめっき表面に生じる水素ガスを効率良くめっき液12から除去できる。 According to this configuration, the released bubbles rise to the surface of the plating solution 12 while taking in hydrogen gas. For this reason, hydrogen gas generated on the plating surface being formed can be efficiently removed from the plating solution 12.
 また、金属クロムを酸で溶解し洗浄した上で前記めっき液12に投入することでクロムイオンの補給を行うものとできる。 Further, chromium ions can be replenished by dissolving the metal chromium with an acid and washing it and then adding it to the plating solution 12.
 この構成によれば、金属クロムの表面を酸で一部溶解させることで表面の酸化膜を溶解させ、その後、酸で洗浄することで前記溶解させた酸化膜を金属クロムから除去する処理を行うことができる。これにより、酸化膜の除去された清浄な金属クロムがめっき浴中で溶解されるので、不純物を混入させることなく、かつ、速やかにクロムイオンを補給できる。 According to this configuration, the surface of the metal chromium is partially dissolved with an acid to dissolve the surface oxide film, and then the oxide film is washed with an acid to remove the dissolved oxide film from the metal chromium. be able to. As a result, clean metal chromium from which the oxide film has been removed is dissolved in the plating bath, so that chromium ions can be replenished promptly without introducing impurities.
 また、前記下地めっき工程にて電解ニッケルめっきを行うものとできる。 Also, electrolytic nickel plating can be performed in the base plating step.
 この構成によれば、電解ニッケルめっきによると、膜厚の均一性、表面平滑性の点からめっき後の表面加工が不要となる。 According to this configuration, electrolytic nickel plating eliminates the need for surface processing after plating in terms of film thickness uniformity and surface smoothness.
 また上記実施形態は、めっき浴1に縦方向にセットされた、円筒状の炭素繊維強化プラスチックからなるロール母材2の下部に連結される気泡発生ブロック41と、前記気泡発生ブロック41に気体を供給する気体供給機構42と、を備え、前記気泡発生ブロック41は、めっき浴1に配置された状態における上面に、前記気体供給機構42により供給された気体を形成中のめっき表面に放出する複数の気体噴出穴412を備える、めっき用水素ガス付着抑制機構4である。 In the above-described embodiment, the bubble generating block 41 connected to the lower part of the roll base material 2 made of a cylindrical carbon fiber reinforced plastic, which is set in the plating bath 1 in the vertical direction, and gas is supplied to the bubble generating block 41. A plurality of gas supply mechanisms 42, wherein the bubble generating block 41 discharges the gas supplied by the gas supply mechanism 42 to the plating surface being formed on the upper surface in a state where the bubble generation block 41 is disposed in the plating bath 1. It is the hydrogen gas adhesion suppression mechanism 4 for plating provided with the gas ejection hole 412 of this.
 この構成によれば、気泡発生ブロック41の気体噴出穴412から形成中のめっき表面に放出される気体(空気、不活性ガス等)が、形成中のめっき表面に生じる水素ガスを除去する。このため、めっき実施中のロール母材2の表面に水素ガスが付着すること、また、水素ガスの発生によりめっき液12のpHが局所的(特にロール母材の表面近傍)に高くなることを抑制できる。 According to this configuration, the gas (air, inert gas, etc.) released from the gas ejection hole 412 of the bubble generation block 41 to the plating surface being formed removes hydrogen gas generated on the plating surface being formed. For this reason, hydrogen gas adheres to the surface of the roll base material 2 during plating, and the pH of the plating solution 12 increases locally (particularly near the surface of the roll base material) due to the generation of hydrogen gas. Can be suppressed.
 上記実施形態は、めっき実施中のロール母材2の表面に水素ガスが付着すること、また、水素ガスの発生によりめっき液12のpHが局所的(特にロール母材の表面近傍)に高くなることを抑制できる。このため、水素ガスが引き起こすピンホール等のめっき不良を抑制して、高品質なめっき表面が得られる。 In the above embodiment, hydrogen gas adheres to the surface of the roll base material 2 during plating, and the pH of the plating solution 12 increases locally (particularly near the surface of the roll base material) due to the generation of hydrogen gas. This can be suppressed. For this reason, plating defects such as pinholes caused by hydrogen gas are suppressed, and a high-quality plated surface can be obtained.
   1    めっき浴、クロムめっき浴
   11   めっき槽
   12   めっき液
   2    ロール母材、CFRP素管
   3    アノード
   4    水素ガス付着抑制機構
   41   気泡発生ブロック
   411  上面の一部、斜面
   412  気体噴出穴
   42   気体供給機構
   43   ガス除去部
   44   フランジ部
   45   連結棒
   46   駆動部
   5    電力供給機構
   6    冷却機構
   B    気泡
DESCRIPTION OF SYMBOLS 1 Plating bath, chrome plating bath 11 Plating tank 12 Plating solution 2 Roll base material, CFRP raw tube 3 Anode 4 Hydrogen gas adhesion suppression mechanism 41 Bubble generation block 411 Part of upper surface, slope 412 Gas ejection hole 42 Gas supply mechanism 43 Gas Removal part 44 Flange part 45 Connecting rod 46 Drive part 5 Power supply mechanism 6 Cooling mechanism B Bubble

Claims (5)

  1.  円筒状の炭素繊維強化プラスチックからなるロール母材の表面を平滑化する平滑化工程と、
     前記平滑化工程を経た前記ロール母材に金属めっきを行う下地めっき工程と、
     前記下地めっき工程を経た前記ロール母材に、めっき液中で3価クロムめっきを行う表面めっき工程と、を有し、
     前記表面めっき工程は、形成中のめっき表面に生じる水素ガスを除去する水素除去工程を含む、めっき被覆ロールの製造方法。
    A smoothing step of smoothing the surface of a roll base material made of cylindrical carbon fiber reinforced plastic;
    A base plating step of performing metal plating on the roll base material that has undergone the smoothing step;
    A surface plating step of performing trivalent chromium plating in a plating solution on the roll base material that has undergone the base plating step;
    The said surface plating process is a manufacturing method of the plating coating roll including the hydrogen removal process which removes the hydrogen gas which arises on the plating surface in formation.
  2.  前記水素除去工程では、形成中のめっき表面に気泡を放出し、当該放出された気泡が前記水素ガスを取り込みつつ形成中のめっき表面を通って、前記めっき液の表面まで上昇させることで水素ガスを除去する、請求項1に記載のめっき被覆ロールの製造方法。 In the hydrogen removal step, bubbles are released to the plating surface being formed, and the released bubbles are raised to the surface of the plating solution through the plating surface being formed while taking in the hydrogen gas. The manufacturing method of the plating coating roll of Claim 1 which removes.
  3.  金属クロムを酸で溶解し洗浄した上で前記めっき液に投入することでクロムイオンの補給を行う、請求項1または2に記載のめっき被覆ロールの製造方法。 The manufacturing method of the plating coating roll of Claim 1 or 2 which replenishes chromium ion by throwing into the said plating solution after melt | dissolving and wash | cleaning metal chromium with an acid.
  4.  前記下地めっき工程にて電解ニッケルめっきを行う、請求項1~3のいずれかに記載のめっき被覆ロールの製造方法。 The method for producing a plating coating roll according to any one of claims 1 to 3, wherein electrolytic nickel plating is performed in the base plating step.
  5.  めっき浴に縦方向にセットされた、円筒状の炭素繊維強化プラスチックからなるロール母材の下部に連結される気泡発生ブロックと、
     前記気泡発生ブロックに気体を供給する気体供給機構と、を備え、
     前記気泡発生ブロックは、めっき浴に配置された状態における上面に、前記気体供給機構により供給された気体を形成中のめっき表面に放出する複数の気体噴出穴を備える、めっき用水素ガス付着抑制機構。
    A bubble generating block connected to the lower part of a roll base material made of a cylindrical carbon fiber reinforced plastic, which is set in a vertical direction in a plating bath,
    A gas supply mechanism for supplying gas to the bubble generating block,
    The bubble generating block includes a plurality of gas ejection holes for releasing the gas supplied by the gas supply mechanism to the plating surface being formed on the upper surface in a state where the bubble generation block is disposed in the plating bath. .
PCT/JP2017/022818 2016-07-01 2017-06-21 Method for producing plated roll and mechanism for preventing adhesion of hydrogen gas for plating WO2018003620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-131576 2016-07-01
JP2016131576A JP2018003092A (en) 2016-07-01 2016-07-01 Method for manufacturing plating coated roll and mechanism for inhibiting adhesion of hydrogen gas for plating

Publications (1)

Publication Number Publication Date
WO2018003620A1 true WO2018003620A1 (en) 2018-01-04

Family

ID=60786377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022818 WO2018003620A1 (en) 2016-07-01 2017-06-21 Method for producing plated roll and mechanism for preventing adhesion of hydrogen gas for plating

Country Status (3)

Country Link
JP (1) JP2018003092A (en)
TW (1) TW201802266A (en)
WO (1) WO2018003620A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6801887B2 (en) * 2018-10-18 2020-12-16 株式会社クリエイティブコーティングス Film deposition equipment
DE102018133532A1 (en) * 2018-12-21 2020-06-25 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Electrolyte and process for the production of chrome layers
JP7047169B1 (en) * 2021-06-11 2022-04-04 三菱ケミカル株式会社 Roll manufacturing method and roll

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194197A (en) * 1985-02-25 1986-08-28 Mitsubishi Rayon Co Ltd Roller and its production
JPS63259214A (en) * 1987-04-16 1988-10-26 Toho Rayon Co Ltd Roller made of carbon fiber reinforced plastic and its manufacture
JPH05112898A (en) * 1991-10-21 1993-05-07 Kobe Steel Ltd Plating method
JPH05171494A (en) * 1991-12-26 1993-07-09 Mishima Kosan Co Ltd Carbon fiber-reinforced plastic roll and its production
JPH07276538A (en) * 1994-04-15 1995-10-24 Nippon Steel Corp Roll made of carbon-fiber-reinforced plastic and its manufacture
JP2003133698A (en) * 2001-10-29 2003-05-09 Ngk Spark Plug Co Ltd Method for manufacturing board
JP2007169771A (en) * 2005-12-19 2007-07-05 Tadamasa Fujimura Method of plating inside wall of narrow tube and narrow tube manufactured by the same plating method
JP2013543062A (en) * 2010-11-16 2013-11-28 マクダーミッド アキューメン インコーポレーテッド Electrolytic dissolution of chromium from a chromium electrode.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194197A (en) * 1985-02-25 1986-08-28 Mitsubishi Rayon Co Ltd Roller and its production
JPS63259214A (en) * 1987-04-16 1988-10-26 Toho Rayon Co Ltd Roller made of carbon fiber reinforced plastic and its manufacture
JPH05112898A (en) * 1991-10-21 1993-05-07 Kobe Steel Ltd Plating method
JPH05171494A (en) * 1991-12-26 1993-07-09 Mishima Kosan Co Ltd Carbon fiber-reinforced plastic roll and its production
JPH07276538A (en) * 1994-04-15 1995-10-24 Nippon Steel Corp Roll made of carbon-fiber-reinforced plastic and its manufacture
JP2003133698A (en) * 2001-10-29 2003-05-09 Ngk Spark Plug Co Ltd Method for manufacturing board
JP2007169771A (en) * 2005-12-19 2007-07-05 Tadamasa Fujimura Method of plating inside wall of narrow tube and narrow tube manufactured by the same plating method
JP2013543062A (en) * 2010-11-16 2013-11-28 マクダーミッド アキューメン インコーポレーテッド Electrolytic dissolution of chromium from a chromium electrode.

Also Published As

Publication number Publication date
TW201802266A (en) 2018-01-16
JP2018003092A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2018003620A1 (en) Method for producing plated roll and mechanism for preventing adhesion of hydrogen gas for plating
CN100577889C (en) A kind of thin belt continuous casting crystal roller surface electroplating method and electroplate liquid thereof
CN102220582A (en) Platinum-plated titanium palladium alloy plate and preparation method thereof
CN106736306A (en) A kind of electronic product metal shell and its surface treatment method
JP2010202962A (en) High-speed continuous plating apparatus
US20150197080A1 (en) High wear durabilitly aluminum gravure cylinder with environmentally safe, thermally sprayed pre-coat layer
JP2019157270A (en) Cathode drum for electrolytic deposition
CN113755931A (en) Novel corrosion-resistant large-current conductive roller and manufacturing process
JP2021194805A (en) Water-supply roller and method for manufacturing water-supply roller
CN110424032A (en) A kind of jet stream electric deposition device and its method for principal axis of pressing machine reparation
CN112251780B (en) Improved preparation method of flat electro-deposition copper foil
JP2002211159A (en) Method for manufacturing support for lithographic printing plate, support for lithographic printing plate and lithographic printing original plate
KR20090132733A (en) Method of manufacture for master roll of prism sheet
CN103834973B (en) A kind of plating restorative procedure of Hastelloy conductive rollers roll surface
JP5244985B2 (en) Inking roller for offset press
JPH06146066A (en) Continuous electrolytic processor
CN111041540A (en) Wear-resistant treatment process for semiconductor silicon wafer
JP2002047595A (en) Chromium plating method and chromium plating apparatus
CN215887278U (en) Novel corrosion-resistant heavy current conducting roller
JP4672309B2 (en) Alkaline zinc plating method on cast iron
CN110616448B (en) Electrochemical pretreatment-in-situ electrodeposition method
JP2001121837A (en) Method for manufacturing aluminum base for lithographic printing plate
CN115161733B (en) Surface treatment structure of aluminum alloy and preparation method thereof
CN211689264U (en) Movable spray pipe device for electroplating
CN103060867B (en) The preparation method of conductive rollers working lining

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819979

Country of ref document: EP

Kind code of ref document: A1