WO2018003204A1 - Display device, temperature compensation circuit, and display device control method - Google Patents

Display device, temperature compensation circuit, and display device control method Download PDF

Info

Publication number
WO2018003204A1
WO2018003204A1 PCT/JP2017/010839 JP2017010839W WO2018003204A1 WO 2018003204 A1 WO2018003204 A1 WO 2018003204A1 JP 2017010839 W JP2017010839 W JP 2017010839W WO 2018003204 A1 WO2018003204 A1 WO 2018003204A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
temperature
temperature region
dependent current
Prior art date
Application number
PCT/JP2017/010839
Other languages
French (fr)
Japanese (ja)
Inventor
光一 橋柿
幸弘 安井
一紀 道家
秀行 北川
松井 和久
Original Assignee
ソニー株式会社
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社, ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニー株式会社
Priority to JP2018524892A priority Critical patent/JP6785309B2/en
Publication of WO2018003204A1 publication Critical patent/WO2018003204A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element

Definitions

  • the present technology relates to a display device, a temperature compensation circuit, and a display device control method.
  • the present invention relates to a display device in which a transistor drives a light emitting element, a temperature compensation circuit, and a display device control method.
  • a pixel circuit in this display device is provided with an OLED and a MOS (Metal-Oxide-Semiconductor) transistor that drives the OLED.
  • MOS Metal-Oxide-Semiconductor
  • a driver applies a gradation voltage corresponding to the gradation to the MOS transistor, so that a driving current can be supplied to the OLED to emit light.
  • the threshold voltage of the MOS transistor decreases as the temperature increases.
  • the gradation voltage is corrected based on the temperature characteristic of the threshold voltage.
  • the driving current of the MOS transistor depends not only on the threshold voltage but also on the carrier mobility.
  • the threshold voltage is proportional to T ⁇ 1
  • the carrier mobility is proportional to T ( ⁇ 1.5) .
  • the influence of the carrier mobility becomes larger. Therefore, in the above-described display device that performs correction considering only the temperature characteristics of the threshold voltage, the luminance variation due to the change in carrier mobility cannot be corrected, and the light emitting element cannot emit light with appropriate luminance. There is.
  • the present technology has been developed in view of such a situation, and an object of the present technology is to suppress a change in luminance of a light emitting element accompanying a temperature change in a display device in which a transistor drives the light emitting element.
  • a current having a smaller value as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature.
  • a low temperature region dependent current generating unit that generates a current as a low temperature region dependent current
  • a full temperature region dependent current generating unit that generates a current having a larger value as the entire temperature region dependent current as the measurement temperature is higher, and the low temperature region dependent current generating unit.
  • a current-voltage conversion unit that converts a current from a connection point of the temperature-dependent current generation unit to a voltage and supplies it as a gradation voltage, and supplies a drive current corresponding to the gradation voltage to the light emitting element.
  • a display device including a driving transistor that emits light, and a control method thereof. This brings about the effect that the light emitting element emits light by the drive current corresponding to the voltage converted from the current from the connection point of the low temperature region dependent current generator and the all temperature region dependent current generator.
  • a constant current generation unit that generates a constant constant current and supplies the constant constant current to the connection point may be further provided. This brings about the effect that the light emitting element emits light by the drive current corresponding to the voltage obtained by converting the current from the connection point of the constant current generating unit, the low temperature region dependent current generating unit, and the all temperature region dependent current generating unit.
  • the first aspect may further include a holding unit that holds the constant current adjustment value as a constant current adjustment value, and the constant current generation unit generates the constant current adjusted according to the constant current adjustment value. May be. This brings about the effect that a constant current adjusted by the adjustment value is generated.
  • the holding unit further holds an adjustment value of the low temperature region dependent current as a low temperature region dependent current adjustment value
  • the low temperature region dependent current generation unit includes the low temperature region dependent current adjustment value.
  • the low temperature region dependent current adjusted in accordance with the method may be generated. As a result, the low temperature region dependent current adjusted by the adjustment value is generated.
  • the holding unit further holds the adjustment value of the total temperature region dependent current as a low temperature region dependent current adjustment value, and the total temperature region dependent current generation unit is dependent on the total temperature region.
  • the entire temperature region dependent current adjusted according to the current adjustment value may be generated. This brings about the effect
  • the first aspect may further include a temperature sensor that supplies a measurement voltage corresponding to the measurement temperature, and the low-temperature region dependent current generation unit is configured to calculate a difference between the voltage corresponding to the measurement voltage and a predetermined voltage.
  • a corresponding current may be supplied as the low temperature region dependent current, and the all temperature region dependent current generator may supply a current corresponding to the measurement voltage as the all temperature region dependent current.
  • a band gap reference circuit that generates a measurement voltage according to the measurement temperature and a constant reference voltage, and a difference according to a difference between the voltage according to the measurement voltage and the reference voltage
  • a voltage-current converter that outputs a dynamic signal, wherein the low temperature region dependent current generation unit generates the low temperature region dependent current from the differential signal, and the all temperature region dependent current generation unit includes the difference
  • the entire temperature region dependent current may be generated from a dynamic signal. This brings about the effect that the measurement voltage and the constant reference voltage are generated by the band gap reference circuit.
  • the drive transistor may be a MOS transistor.
  • the light emitting element emits light by the drive current from the MOS transistor.
  • a second aspect of the present technology is a low temperature region dependent current generation unit that generates a current having a smaller value as a low temperature region dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature.
  • the temperature compensation circuit includes an entire temperature region dependent current generation unit that generates a current having a larger value as the entire temperature region dependent current as the measurement temperature is higher. This brings about the effect that a low temperature region dependent current and a whole temperature region dependent current are generated.
  • the present technology in a display device in which a transistor drives a light-emitting element, it is possible to achieve an excellent effect that a change in luminance of the light-emitting element accompanying a temperature change can be suppressed.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • 7 is a flowchart illustrating an example of the operation of the display device according to the first embodiment of the present technology. It is a circuit diagram showing an example of 1 composition of a temperature compensation part in a modification of a 1st embodiment of this art. It is a circuit diagram showing an example of 1 composition of a temperature compensation part in a 2nd embodiment of this art.
  • BGR Band Gap Reference
  • First Embodiment Example of generating constant current, low temperature region dependent current and full temperature region dependent current
  • Second embodiment example of generating low temperature region dependent current and full temperature region dependent current
  • Third Embodiment Example in which temperature is measured by a BGR circuit and a low temperature region dependent current and a whole temperature region dependent current are generated
  • FIG. 1 is a block diagram illustrating a configuration example of the display device 100 according to the first embodiment.
  • the display device 100 is a device for displaying an image, and includes a data input interface 110, a timing controller 120, and a display controller 130.
  • the display device 100 includes a register 140, a drive circuit 150, and an organic EL (Electro Luminescence) panel 180.
  • the drive circuit 150 includes a vertical driver 160, a horizontal driver 170, and a gamma correction circuit 200.
  • a plurality of pixel circuits are arranged in a two-dimensional lattice pattern.
  • a set of pixel circuits arranged in the horizontal direction is referred to as “row”, and a set of pixel circuits arranged in the direction perpendicular to the row is referred to as “column”.
  • the data input interface 110 receives serially transferred display data from an external device (such as a source device) of the display device 100.
  • the display data is data to be displayed on the display device 100.
  • moving image data including a plurality of pieces of image data in time series and still image data are input as display data.
  • the data input interface 110 converts serial display data into parallel data.
  • the data input interface 110 generates a vertical synchronization signal and a horizontal synchronization signal and supplies them to the timing controller 120 via the signal line 119 together with parallel data.
  • the vertical synchronization signal is a signal indicating timing for displaying image data
  • the horizontal synchronization signal is a signal indicating timing for displaying a row.
  • the timing controller 120 controls the timing at which the display controller 130 operates.
  • the timing controller 120 generates pixel data from the parallel data and supplies the pixel data together with the timing signal to the display controller 130 via the signal line 129.
  • the display controller 130 controls the drive circuit 150.
  • the display controller 130 supplies pixel data to the horizontal driver 170 via the signal line 138 in synchronization with the timing signal.
  • This pixel data includes gradation information indicating the gradation for each color such as R (Red), G (Green), B (Blue), and W (White).
  • the display controller 130 controls the vertical driver 160 in synchronization with the timing signal.
  • the vertical driver 160 drives the rows of the organic EL panels 180 in order under the control of the display controller 130.
  • the register 140 holds a setting value for adjusting the luminance level.
  • the gamma correction circuit 200 performs gamma correction.
  • the gamma correction circuit 200 reads the setting value of the register 140 and generates a gradation voltage indicating a gradation based on the setting value.
  • the gradation is controlled in 256 steps, for example, 256 different gradation voltages are generated.
  • the gamma correction circuit 200 supplies these gradation voltages to the horizontal driver 170 via the signal line 209.
  • the register 140 is an example of a holding unit described in the claims.
  • the horizontal driver 170 selects a gradation voltage corresponding to the gradation information in the pixel data for each pixel in the selected row and supplies it to the organic EL panel 180.
  • FIG. 2 is a block diagram illustrating a configuration example of the data input interface 110 according to the first embodiment.
  • the data input interface 110 includes a clock control unit 111, a high-speed interface 112, a synchronization signal generation unit 113, and a serial / parallel conversion unit 114.
  • the high speed interface 112 receives serially transferred display data.
  • the clock control unit 111 controls the timing controller 120 to generate a clock signal over a period for displaying display data.
  • the synchronization signal generator 113 generates a horizontal synchronization signal and a vertical synchronization signal based on the display data.
  • the serial / parallel converter 114 converts serial display data into parallel data.
  • FIG. 3 is a block diagram illustrating a configuration example of the timing controller 120 according to the first embodiment.
  • the timing controller 120 includes a clock generator 121, a timing generator 122, and an image processing unit 123.
  • the clock generator 121 generates a clock signal having a predetermined frequency under the control of the clock control unit 111.
  • the frequency of this clock signal is higher than that of the horizontal synchronizing signal.
  • the clock generator 121 supplies a clock signal to the display controller 130.
  • the timing generator 122 generates a timing signal based on the vertical synchronization signal and the horizontal synchronization signal and supplies the timing signal to the display controller 130.
  • the image processing unit 123 performs various image processing on the parallel data. For example, a process for converting the resolution and a process for interpolating color information (such as W) for each pixel are performed.
  • the image processing unit 123 generates pixel data for each pixel by image processing and supplies the pixel data to the display controller 130.
  • FIG. 4 is a block diagram illustrating a configuration example of the display controller 130 according to the first embodiment.
  • the display controller 130 includes a vertical logic circuit 131 and a horizontal logic circuit 132.
  • the vertical logic circuit 131 controls the vertical driver 160 in synchronization with the timing signal.
  • the horizontal logic circuit 132 supplies pixel data to the horizontal driver 170 in synchronization with the timing signal.
  • FIG. 5 is a circuit diagram showing a configuration example of the gamma correction circuit 200 in the first embodiment.
  • the gamma correction circuit 200 includes a maximum voltage generation unit 210, a minimum voltage generation unit 230, and a resistor 220.
  • the maximum voltage generator 210 generates a gradation voltage VG0 for causing light emission with the minimum luminance.
  • the maximum voltage generator 210 includes an operational amplifier 211, switches 212, 213 and 214, a resistor 215, and a constant current source 216.
  • the resistor 215 is inserted between the power source and the constant current source 216.
  • the switches 212, 213, and 214 are connected to the resistor 215 at connection points different from each other.
  • the output terminal of the operational amplifier 211 is connected to the inverting input terminal ( ⁇ ) of the operational amplifier 211 itself and the resistor 220.
  • the switch 212 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 211 and a corresponding connection point of the resistor 215.
  • the switch 213 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 211 and a corresponding connection point of the resistor 215.
  • the switch 214 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 211 and a corresponding connection point of the resistor 215.
  • the register 140 includes a maximum voltage adjustment value for adjusting the voltage generated by the maximum voltage generation unit 210, a minimum voltage adjustment value for adjusting the voltage generated by the minimum voltage generation unit 230, and a current adjustment. Value.
  • the current adjustment value is a value for adjusting the current generated in the minimum voltage generation unit 230.
  • the maximum voltage adjustment value is input to the maximum voltage generation unit 210, and the minimum voltage adjustment value and the current adjustment value are input to the minimum voltage generation unit 230.
  • Each of the switches 212, 213 and 214 opens and closes according to the maximum voltage adjustment value in the register 140.
  • the maximum voltage adjustment value is set so that only one of these switches is closed.
  • any of the switches 212, 213, and 214 supplies a voltage corresponding to the connection point to the operational amplifier 211 as the DC voltage VDCb.
  • the operational amplifier 211 generates a voltage corresponding to the DC voltage VDCb as the gradation voltage VG0 and applies it to one end of the resistor 220.
  • the minimum voltage generator 230 generates a gradation voltage VG255 for causing light emission with the maximum luminance minimum voltage.
  • the minimum voltage generation unit 230 includes a current-voltage conversion unit 240, an operational amplifier 236, a temperature compensation unit 300, switches 231, 232, and 233, a resistor 234, and a constant current source 235.
  • the current-voltage conversion unit 240 includes a resistor 241 and an operational amplifier 242.
  • the resistor 234 is inserted between the power source and the constant current source 235.
  • the switches 231, 232 and 233 are connected to the resistor 234 at connection points different from each other.
  • the switch 231 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 242 and a corresponding connection point of the resistor 234.
  • the switch 232 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 242 and a corresponding connection point of the resistor 234.
  • the switch 233 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 242 and a corresponding connection point of the resistor 234.
  • the temperature compensation unit 300 generates an output current I OUT depending on temperature.
  • the temperature compensation unit 300 outputs the output current I OUT to the inverting input terminal ( ⁇ ) of the operational amplifier 242.
  • the resistor 241 is inserted between the inverting input terminal ( ⁇ ) and the output terminal of the operational amplifier 242.
  • the output terminal of the operational amplifier 242 is connected to the non-inverting input terminal (+) of the operational amplifier 236.
  • the output terminal of the operational amplifier 236 is connected to the inverting input terminal ( ⁇ ) of the operational amplifier 236 itself and to the end of the resistor 220 to which the maximum voltage generator 210 is not connected.
  • the operational amplifier 236 is used for impedance conversion.
  • any of the switches 231, 232, and 233 supplies a voltage corresponding to the connection point to the operational amplifier 242 as the DC voltage VDCw.
  • the resistor 241 converts the output current I OUT into a voltage.
  • the operational amplifier 242 generates a voltage obtained by adding the DC voltage VDCw to the voltage of the resistor 241, and the operational amplifier 236 supplies the voltage to one end of the resistor 220 as the gradation voltage VG225.
  • the resistor 220 is inserted between the maximum voltage generation unit 210 and the minimum voltage generation unit 230.
  • the resistor 220 is connected to the horizontal driver 170 at the number of connection points corresponding to the number of gradations. For example, when the gradation is in 256 levels, the horizontal driver 170 is connected at 256 connection points.
  • the voltage at the n-th connection point (n is an integer from 0 to 255) from the side closer to the maximum voltage generation unit 210 is supplied to the horizontal driver 170 as the gradation voltage VGn indicating the n-th gradation.
  • the temperature compensation unit 300 is provided in the gamma correction circuit 200 in the display device 100, the temperature compensation unit 300 may be provided in a device other than the display device 100 as long as the device requires temperature compensation.
  • FIG. 6 is an example of a graph showing the relationship between the gradation voltage and the gradation in the first embodiment.
  • the vertical axis in the figure indicates the gradation voltages VG0 to VG255.
  • the horizontal axis in the figure shows the gradation of the pixel when the gradation voltage is applied.
  • the white gradation voltage VG0 is the lowest and the black gradation voltage VG255 is the highest.
  • the locus of the gradation voltage VGn is a curve, and the luminance can be linearly changed with the change of gradation by applying this nonlinear gradation voltage. In this manner, the process of adjusting the gradation voltage nonlinearly in accordance with the panel characteristics is called a gamma correction process.
  • FIG. 7 is a circuit diagram showing a configuration example of the horizontal driver 170 in the first embodiment.
  • the horizontal driver 170 is provided with a horizontal analog cell 171 for each column.
  • the horizontal analog cell 171 includes a DA converter 172 and a gradation voltage generator 174.
  • the DA conversion unit 172 includes the same number (for example, 256) of switches 173 as the number of gradations.
  • the gradation voltage generation unit 174 includes an operational amplifier 175 and a number (for example, twelve) of switches 176 equal to the number of subpixels in the pixel.
  • the pixel data includes sub-pixel enable indicating any of the sub-pixels and gradation information indicating the gradation.
  • a 4-bit subpixel enable and 8-bit gradation information are generated by the display controller 130.
  • the DA converter 172 converts digital gradation information into an analog gradation voltage.
  • the nth switch 173 opens and closes a path between the power supply line to which the gradation voltage VGn is supplied and the non-inverting input terminal (+) of the operational amplifier 175.
  • the gradation information indicating the nth gradation is input, only the nth switch 173 shifts to the closed state.
  • the gradation voltage VGn is supplied to the gradation voltage generation unit 174.
  • the gradation voltage generation unit 174 supplies the gradation voltage VGn to the subpixel indicated by the subpixel enable.
  • the operational amplifier 175 amplifies the gradation voltage VGn and supplies it to each of the switches 176.
  • the subpixel enable indicates the mth subpixel (m is an integer from 0 to 11)
  • the mth switch 176 supplies the pixel signal OTm of the gradation voltage VGn to the subpixel.
  • FIG. 8 is a block diagram illustrating a configuration example of the organic EL panel 180 according to the first embodiment.
  • a plurality of pixel circuits 181 are arranged in a two-dimensional lattice pattern.
  • a predetermined number for example, 12
  • Each of the sub-pixel circuits 182 is connected to a vertical signal line wired in the vertical direction, a horizontal signal line wired in the horizontal direction, and a power supply line.
  • Each of the vertical signal lines is connected to the horizontal driver 170, and each of the horizontal signal lines is connected to the vertical driver 160. Further, the pixel signal OTm is supplied through the vertical signal line, and the selection signal SELp (p is an integer) is supplied through the horizontal signal line. This selection signal SELp is a signal for driving the p-th row.
  • FIG. 9 is a circuit diagram illustrating a configuration example of the sub-pixel circuit 182 according to the first embodiment.
  • the subpixel circuit 182 includes a selection transistor 183, a capacitor 184, a driving transistor 185, and a light emitting element 186.
  • As the selection transistor 183 and the driving transistor 185 for example, an N-type MOS transistor is used.
  • An OLED is used as the light emitting element 186.
  • the gate of the selection transistor 183 is connected to the horizontal signal line, the source is connected to the vertical signal line, and the drain is connected to the capacitor 184 and the drive transistor 185. Both ends of the capacitor 184 are connected to the gate and source of the driving transistor 185.
  • the source of the driving transistor 185 is connected to the power supply line, and the drain is connected to the light emitting element 186.
  • the selection transistor 183 when the high level selection signal SELp is supplied to the horizontal signal line, the selection transistor 183 outputs a current corresponding to the pixel signal OTm to the capacitor 184.
  • the higher the voltage of the pixel signal OTm (gradation voltage VGn) the lower the gate-source voltage of the selection transistor 183 and the smaller the current to the capacitor 184.
  • the charging voltage of the capacitor 184 becomes lower.
  • the lower the charging voltage of the capacitor 184 the smaller the drive current (drain current) output from the drive transistor 185 to the light emitting element 186, and the luminance of the light emitting element 186 decreases.
  • the higher the gradation voltage VGn the lower the drive voltage (gate-source voltage) of the drive transistor 185 and the lower the luminance.
  • the lower the gradation voltage VGn the higher the luminance.
  • FIG. 10 is a graph showing an example of the relationship between the driving voltage and the temperature corresponding to the constant luminance in the first embodiment.
  • the vertical axis represents voltage
  • the horizontal axis represents temperature T.
  • I ds (1/2) ⁇ ⁇ C ox ⁇ (W / L) ⁇ (V gs ⁇ V th ) 2 Equation 1
  • I ds is the drain current
  • the unit is, for example, ampere (A)
  • is the carrier mobility
  • the unit is, for example, square centimeter per volt second (cm 2 / V ⁇ s).
  • C ox is the oxide film capacity per unit area, and the unit is, for example, farad per square centimeter (F / cm 2 ).
  • W is the gate width, and the unit is, for example, centimeter (cm).
  • L is the gate length, and the unit is, for example, centimeter (cm).
  • V gs is a gate-source voltage, and its unit is, for example, volts (V).
  • Vth is a threshold voltage, and its unit is, for example, volts (V).
  • V gs The gate-source voltage V gs is expressed by the following expression by modifying Expression 1.
  • V gs ⁇ 2I ds / ( ⁇ ⁇ C ox ⁇ W / L) ⁇ 0.5 + V th.
  • T is the measurement temperature, and the unit is, for example, degree (° C.).
  • the threshold voltage V th on the right side is proportional to T ⁇ 1
  • the carrier mobility ⁇ on the right side is proportional to T ( ⁇ 1.5)
  • the solid line in FIG. 10 indicates the temperature characteristic of the drive voltage (that is, V gs ) corresponding to the constant luminance obtained from Equation 3, and the alternate long and short dash line indicates the characteristic of the threshold voltage Vth .
  • the gate - temperature characteristics of the source voltage V gs between the low temperature side temperature characteristic of the threshold voltage V th becomes dominant at the right side of the threshold voltage V th term (Equation 3 at the high temperature side The second term) is canceled by the carrier mobility ⁇ term (the first term on the right side of Equation 3).
  • the gradation voltage VGn and the gate-source voltage Vgs of the selection transistor 183 are in an inversely proportional relationship. For this reason, by applying the gradation voltage VGn having a temperature characteristic obtained by inverting the solid curve in FIG. 10 up and down, fluctuations in luminance due to temperature changes can be suppressed.
  • FIG. 11 is a circuit diagram illustrating a configuration example of the temperature compensation unit 300 according to the first embodiment.
  • the temperature compensation unit 300 includes a bias voltage supply circuit 310, a temperature sensor 320, and a temperature compensation circuit 330.
  • the temperature compensation circuit 330 includes a low temperature region dependent current generation unit 340, a constant current generation unit 350, and an entire temperature region dependency current generation unit 360.
  • the bias voltage supply circuit 310 generates a constant bias voltage Vb and supplies it to the constant current generator 350.
  • the temperature sensor 320 measures temperature.
  • the temperature sensor 320 generates a voltage having a higher level as the measurement temperature is higher as the measurement voltage V TEMP and supplies the generated voltage to the low temperature region dependent current generation unit 340 and the entire temperature region dependency current generation unit 360.
  • Constant current generation unit 350 and generates a not dependent on the measured temperature constant current I A.
  • Low temperature range dependent current generator 340 the measured temperature is a temperature range lower than the predetermined temperature, a current of about the measured temperature is higher small value and generates the low temperature range dependent current I C.
  • the entire temperature range dependent current generator 360 a current of greater value as the measured temperature is higher and generates the entire temperature range dependent current I B.
  • constant current generator 350 and full temperature region dependent current generator 360 are connected in series between the power supply and the ground terminal.
  • the low temperature region dependent current generation unit 340 is inserted between the connection point of the constant current generation unit 350 and the entire temperature region dependency current generation unit 360 and the power source. These connection points are connected to the current-voltage conversion unit 240. With this connection relationship, an output current I OUT represented by the following equation is output from the connection point to the current-voltage conversion unit 240.
  • I OUT I B ⁇ I A ⁇ I C Expression 4
  • the values of the currents I A , I B, and I C in Equation 4 can be individually adjusted by the set value of the register 140.
  • FIG. 12 is a graph showing an example of the relationship between current and temperature in the first embodiment.
  • the vertical axis represents current
  • the horizontal axis represents temperature.
  • a in the figure is a graph showing an example of the relationship between the constant current I A and the temperature T.
  • the constant current I A does not depend on the temperature and is a constant value.
  • FIG. 12 is a graph showing an example of the relationship between the total temperature range dependent current I B and the temperature T.
  • the entire temperature range dependent current I B is, as the temperature T is high, a large value.
  • one-dot chain line b in the figure shows a constant current I A.
  • Temperature constant current I A and the entire temperature range dependent current I B match, for example, is 40 degrees (° C.).
  • FIG. 12 is a graph showing an example of the relationship between the low temperature range dependent current I C and the temperature T. As illustrated in c in the figure, the low temperature region dependent current I C becomes smaller as the measurement temperature is higher in a temperature range lower than a predetermined temperature (for example, 40 degrees).
  • a predetermined temperature for example, 40 degrees
  • FIG. 13 is a diagram illustrating an example of the relationship between the output current and the temperature in the first embodiment.
  • the vertical axis represents the output current I OUT
  • the horizontal axis represents the temperature T.
  • the output current I OUT has a value of I B ⁇ I A , and its locus is a straight line.
  • This output current I OUT is converted into a gradation voltage VG255 expressed by the following equation by the current-voltage conversion unit 240.
  • VG255 VDCw + R (I B ⁇ I A ) Equation 5
  • R is the resistance value of the resistor 241, and the unit is, for example, ohm ( ⁇ ).
  • a constant current I A is larger than the entire temperature range dependent current I B, the current flows into the current-voltage conversion unit 240, the gradation voltage VG255 is reduced to a value lower than the DC voltage VDCw. Further, if the constant current I A and the entire temperature range dependent current I B are equal, gradation voltage VG255 is a value equal to the DC voltage VDCw. Further, if the constant current I A is smaller than the entire temperature range dependent current I B, a current flows from the current-to-voltage converter 240, the gradation voltage VG255 rises to a higher value than the DC voltage VDCw.
  • the gradation voltage VG255 can have a desired temperature characteristic.
  • the temperature characteristic of the gradation voltage VG255 is expressed by the following expression obtained by differentiating both sides of Expression 5 with respect to temperature.
  • ⁇ VG255 / ⁇ T R ( ⁇ I B / ⁇ T) ⁇ Equation 6
  • the output current I OUT becomes the value of I B ⁇ I A ⁇ Ic according to Equation 4, and the locus is a curve and Become.
  • This output current I OUT is converted into a gradation voltage VG255 expressed by the following equation by the current-voltage conversion unit 240.
  • VG255 VDCw + R (I B -I A -Ic) ⁇ formula 7
  • R is the resistance value of the resistor 241, and the unit is, for example, ohm ( ⁇ ).
  • the temperature characteristics of the gradation voltage VG255 are different between a high temperature range above a predetermined temperature (such as 40 degrees) and a low temperature range below the predetermined temperature.
  • the curve indicating the relationship between the gradation voltage VG255 and the temperature is set so that the shape thereof substantially coincides with that obtained by vertically inverting the drive voltage curve illustrated in FIG. As a result, it is possible to compensate for fluctuations in the drive current associated with temperature changes, make the drive current constant regardless of temperature changes, and suppress fluctuations in luminance associated with temperature changes.
  • FIG. 14 is a diagram for explaining a temperature compensation method according to the first embodiment.
  • Temperature compensation circuit 330 generates a constant of the constant current I A and the entire temperature range dependent current I B and the low temperature range dependent current I C, supplying an output current I OUT of the formula 4 to the current-to-voltage conversion unit 240 To do. Then, the current-voltage conversion unit 240 converts the output current I OUT into a gradation voltage VG255 expressed by Equation 5 or Equation 7.
  • the horizontal driver 170 generates the pixel signal OTm having the gradation voltage VGn and supplies it to the sub-pixel circuit 182.
  • a drive voltage inversely proportional to the gradation voltage VGn is applied between the gate and source of the drive transistor 185 in the sub-pixel circuit 182. Since this drive voltage substantially coincides with the temperature characteristics illustrated in FIG. 10, fluctuations in the drive current due to temperature changes are compensated. Thereby, the fluctuation
  • the response speed of the image is not limited by the response speed of the panel itself at a low temperature. For this reason, in particular, by providing the temperature compensation unit 300 in a display device using an organic EL panel, the response speed of the image can be increased.
  • the temperature compensation unit 300 does not require a memory or the like for holding the table, and therefore is lower in cost and smaller in area than such a method. Temperature compensation.
  • the operation amplitude of the amplifier in the horizontal driver 170 is widened by temperature compensation, heat generation in the chip is likely to occur.
  • the circuit since the circuit generates heat in a low temperature region as compared with the high temperature region, the generated heat amount is offset with the cooling amount by the outside air, and the panel temperature is stabilized.
  • FIG. 15 is a circuit diagram illustrating a configuration example of the bias voltage supply circuit according to the first embodiment.
  • the bias voltage supply circuit 310 includes a BGR circuit 311, an operational amplifier 312, P-type transistors 313 and 316, an N-type transistor 314, and a resistor 315.
  • As the P-type transistor 313, the N-type transistor 314, and the P-type transistor 316 for example, MOS transistors are used.
  • the P-type transistor 313, the N-type transistor 314, and the resistor 315 are connected in series between the power supply and the ground terminal.
  • the non-inverting input terminal (+) of the operational amplifier 312 is connected to the connection point of the N-type transistor 314 and the resistor 315, and the output terminal of the operational amplifier 312 is connected to the gate of the N-type transistor 314.
  • the gate of the P-type transistor 313 is connected in common to the drain of the P-type transistor 313, the gate of the P-type transistor 316, and the constant current generator 350.
  • the source of the P-type transistor 316 is connected to the power source.
  • the BGR circuit 311 generates a constant voltage independent of temperature and supplies it to the inverting input terminal ( ⁇ ) of the operational amplifier.
  • FIG. 16 is a circuit diagram showing a configuration example of the constant current generation unit 350 in the first embodiment.
  • the constant current generator 350 includes a P-type transistor 351, a plurality of P-type transistors 352, and a plurality of switches 353.
  • the P-type transistor 351 is inserted between the power supply and the output terminal of the constant current generator 350.
  • the switch 353 is provided for each P-type transistor 352, and the P-type transistor 352 and the switch 353 corresponding to the transistor are connected in series between the power supply and the output terminal.
  • a bias voltage Vb is applied to the gates of the P-type transistor 351 and the plurality of P-type transistors 352.
  • Each of the switches 353 opens and closes the path between the corresponding P-type transistor 352 and the output terminal according to the set value of the register 140.
  • Set value in register 140 includes an adjustment value of the constant current I A, it is possible to adjust the value of I A by changing the current mirror ratio by the adjustment value.
  • FIG. 17 is a circuit diagram showing a configuration example of the entire temperature region dependent current generation unit 360 in the first embodiment.
  • the entire temperature region dependent current generation unit 360 includes an operational amplifier 361, P-type transistors 362 and 365, an N-type transistor 363, and a resistor 364.
  • the total temperature region dependent current generation unit 360 includes N-type transistors 366 and 367, a plurality of switches 368, and a plurality of N-type transistors 369.
  • the P-type transistor 362, the N-type transistor 363, the P-type transistor 365, the N-type transistor 366, the N-type transistor 367, and the N-type transistor 369 for example, MOS transistors are used.
  • N-type transistor 363 and resistor 364 are connected in series between the power supply and the ground terminal.
  • the non-inverting input terminal (+) of the operational amplifier 361 is connected to the connection point of the N-type transistor 363 and the resistor 364, and the output terminal of the operational amplifier 361 is connected to the gate of the N-type transistor 363.
  • the measurement voltage V TEMP is input to the inverting input terminal ( ⁇ ) of the operational amplifier 361.
  • the gate of the P-type transistor 362 is connected in common to the drain of the P-type transistor 362 itself and the gate of the P-type transistor 365.
  • the P-type transistor 365 and the N-type transistor 366 are connected in series between the power supply and the ground terminal.
  • the gate of the N-type transistor 366 is connected to the drain of the N-type transistor 366 itself, the gate of the N-type transistor 367, and the gate of the N-type transistor 369.
  • the drain of the N-type transistor 367 is connected to a connection point with the low temperature region dependent current generation unit 340.
  • the switch 368 is provided for each N-type transistor 369.
  • the N-type transistor 369 corresponding to the switch 368 is connected in series between the drain of the N-type transistor 367 and the ground terminal.
  • the switch 368 opens and closes a path between the drain of the N-type transistor 367 and the corresponding N-type transistor 369 according to the set value of the register 140.
  • a current corresponding to the measurement voltage V TEMP is generated by the N-type transistor 363, and the current is duplicated by the P-type transistors 362 and 365 and the N-type transistors 366 and 367, so that the entire temperature region dependent current I Output as B.
  • Set value in register 140 includes an adjustment value of the entire temperature range dependent current I B, it is possible to adjust the value of I B by changing the current mirror ratio by the adjustment value.
  • FIG. 18 is a circuit diagram illustrating a configuration example of the low-temperature region dependent current generation unit 340 in the first embodiment.
  • the low temperature region dependent current generation unit 340 includes a constant voltage source 341, operational amplifiers 342 and 343, P-type transistors 344 and 347, an N-type transistor 345, and a resistor 346.
  • the low temperature region dependent current generation unit 340 includes a plurality of P-type transistors 348 and a plurality of switches 349.
  • the P-type transistor 344, the N-type transistor 345, the P-type transistor 347, and the P-type transistor 348 for example, MOS transistors are used.
  • the constant voltage source 341 generates a constant DC voltage VB END and inputs it to the inverting input terminal ( ⁇ ) of the operational amplifier 342.
  • the DC voltage VB END the temperature at which a constant current I A and the entire temperature range dependent current I B match (e.g., 40 degrees), the output of the operational amplifier 342 is set to such a value as to invert.
  • the measurement voltage V TEMP is input to the inverting input terminal ( ⁇ ) of the operational amplifier 343.
  • the non-inverting input terminal (+) of the operational amplifier 343 is connected to the output terminal of the operational amplifier 343 itself.
  • the P-type transistor 344, the N-type transistor 345, and the resistor 346 are connected in series between the power supply and the output terminal of the operational amplifier 343.
  • the non-inverting input terminal (+) of the operational amplifier 342 is connected to the connection point of the N-type transistor 345 and the resistor 346, and the output terminal of the operational amplifier 342 is connected to the gate of the N-type transistor.
  • the drain of the P-type transistor 344 is connected to the gates of the P-type transistors 344 and 347 and the respective gates of the P-type transistor 348.
  • the P-type transistor 347 is inserted between the power supply and the output terminal of the low temperature region dependent current generation unit 340.
  • the switch 349 is provided for each P-type transistor 348.
  • the P-type transistor 348 and the corresponding switch 349 are connected in series between the power supply and the output terminal.
  • Each of the switches 349 opens and closes a path between the corresponding P-type transistor 348 and the output terminal according to the set value of the register 140.
  • the operational amplifier 343 outputs the voltage VB corresponding to the measurement voltage V TEMP .
  • the voltage VB is above the value corresponding to a predetermined temperature (such as 40 degrees) (i.e., high temperature range) operational amplifier 342 in the case of, it outputs a low level, the low temperature region dependent current I C is not outputted.
  • a predetermined temperature such as 40 degrees
  • the operational amplifier 342 when the voltage VB is lower than a value corresponding to a predetermined temperature (such as 40 degrees) (that is, a low temperature region), the operational amplifier 342 outputs a high level corresponding to the voltage VB, and a current corresponding to the level is It is generated by the N-type transistor 345. Its current is replicated in such P-type transistors 344,347, it is outputted as a low-temperature range dependent current I C.
  • the set value in the register 140 includes an adjustment value of the low temperature region dependent current I C , and the value of I C can be adjusted by changing the current mirror ratio by the adjustment value.
  • FIG. 19 is a graph showing an example of the relationship between the gradation voltage and the temperature for each set value in the first embodiment.
  • the vertical axis indicates the gradation voltage VG255
  • the horizontal axis indicates the temperature T.
  • the white circle is a plot of the gradation voltage VG255 when the register 140 holds the setting value 1 for emitting light with relatively high luminance.
  • the x mark plots the gradation voltage VG255 when the register 140 holds the setting value 3 for emitting light with a relatively low luminance.
  • the black circle is a plot of the gradation voltage VG255 when the register 140 holds the setting value 2 for emitting light at a luminance between the setting value 1 and the setting value 3.
  • the luminance can be increased as the gradation voltage VG255 is decreased. Further, the locus of the gradation voltage VG255 is not a straight line, but the slope changes at a predetermined temperature (such as 40 degrees). If the gradation voltage VG255 having a constant slope is supplied as shown by the alternate long and short dash line, the voltage becomes insufficient in the low temperature range, and the luminance becomes lower than the value indicated by the gradation information.
  • FIG. 20 is a graph showing an example of the relationship between the cathode current and temperature for each set value in the first embodiment.
  • the vertical axis represents the cathode current of the light emitting element 186
  • the horizontal axis represents the temperature T.
  • the white circle is a plot of the cathode current when the register 140 holds the set value 1 for emitting light with relatively high luminance.
  • the x mark is a plot of the cathode current when the register 140 holds the set value 3 for emitting light at a relatively low luminance.
  • the black circle is a plot of the cathode current when the register 140 holds the setting value 2 for emitting light at a luminance between the setting value 1 and the setting value 3.
  • the cathode current of the light-emitting element 186 has a constant value regardless of the temperature. That is, a change in luminance accompanying a change in temperature is suppressed. This is because the output current I OUT is generated in accordance with the temperature characteristics of the drive transistor 185 that drives the light emitting element 186 as illustrated in FIG.
  • FIG. 21 is a flowchart illustrating an example of the operation of the display device 100 according to the first embodiment. This operation is started, for example, when the display device 100 receives display data.
  • Temperature compensation unit 300 generates a constant current I A (step S901), it generates the entire temperature range dependent current I B (step S902).
  • the current-voltage conversion unit 240 converts the output current I OUT into the gradation voltage VG255 (Step S904).
  • the horizontal driver 170 at the subsequent stage selects the gradation voltage VGn corresponding to the pixel data and supplies it to the pixel circuit (step S905).
  • the display device 100 determines whether the display is finished (step S906). When the display is not completed (step S906: No), the display device 100 repeatedly executes step S905 and subsequent steps. On the other hand, when the display ends (step S906: Yes), the display device 100 ends the operation for display.
  • the light emitting element 186 can emit light with a certain luminance.
  • the temperature compensation unit 300 together with the entire temperature range dependent current I B and the low temperature region dependent current I C and generates a constant current I A, the output current I OUT by the constant current I A The level was adjusted. However, only entire temperature range dependent current I B and the low temperature region dependent current I C, when the output current I OUT of the appropriate level is obtained, it is not necessary to generate a constant current I A. Temperature compensating unit 300 of a modification of the first embodiment is different from the first embodiment in that only generate the entire temperature range dependent current I B and the low temperature region dependent current I C.
  • FIG. 22 is a circuit diagram showing a configuration example of the temperature compensation unit 300 in the modification of the first embodiment.
  • the temperature compensation unit 300 according to the second embodiment is different from the first embodiment in that the bias voltage supply circuit 310 and the constant current generation unit 350 are not provided.
  • the bias voltage supply circuit 310 for generating an output current I OUT from only entire temperature range dependent current I B and the low temperature region dependent current I C, the bias voltage supply circuit 310 And it is not necessary to provide the constant current generator 350. Thereby, the circuit scale can be reduced as compared with the first embodiment.
  • the temperature sensor 320 is provided outside the BGR circuit 311. However, since the resistance value of the resistor in the BGR circuit 311 changes according to the temperature, this resistance is used instead of the temperature sensor. Can be used.
  • the temperature compensation unit 300 of the second embodiment is different from the first embodiment in that the measurement voltage V TEMP corresponding to the temperature is generated by the resistance in the BGR circuit.
  • FIG. 23 is a circuit diagram showing a configuration example of the temperature compensation unit 300 according to the second embodiment.
  • the temperature compensation unit 300 of the second embodiment includes a BGR circuit 410 and a temperature compensation circuit 420.
  • the temperature compensation circuit 420 includes a voltage / current converter 430, a low temperature region dependent current generator 440, and an entire temperature region dependent current generator 450.
  • the BGR circuit 410 generates a constant reference voltage BGR OUT and a measurement voltage V TEMP corresponding to the temperature and supplies it to the voltage / current converter 430.
  • the voltage-current converter 430 converts the difference between the reference voltage BGR OUT and the measurement voltage V TEMP into a differential signal composed of a pair of currents.
  • the voltage / current converter 430 supplies the differential signal to the low temperature region dependent current generator 440 and the entire temperature region dependent current generator 450.
  • Low temperature range dependent current generator 440 is for generating a low temperature range dependent current I C from the differential signals.
  • Entire temperature range dependent current generator 450 is for generating the entire temperature range dependent current I B from the differential signals. These difference currents are output to the current-voltage converter 240 as the output current I OUT .
  • the temperature compensation unit 300 can not be adjusted and the total temperature range dependent current I B and the low temperature range dependent current I C individually, there is no hindrance to emit light at an appropriate luminance
  • the above-described circuit that is simpler than that of the first embodiment can be used.
  • FIG. 24 is a circuit diagram showing a configuration example of the BGR circuit 410 according to the second embodiment.
  • the BGR circuit 410 includes a P-type transistor 411, resistors 412, 413, 418 and 415, bipolar transistors 414 and 416, and an operational amplifier 417.
  • a MOS transistor is used as the P-type transistor 411.
  • the bipolar transistors 414 and 416 for example, an npn type is used.
  • the P-type transistor 411, the resistor 412, the resistor 413, the bipolar transistor 414, and the resistor 418 are connected in series between the power supply and the ground terminal.
  • the base is connected to the collector (so-called diode connection).
  • a circuit including a resistor 415 and a bipolar transistor 416 is connected in parallel with a circuit including a resistor 412, a resistor 413, and a bipolar transistor 414.
  • the inverting input terminal ( ⁇ ) of the operational amplifier 417 is connected to the connection point between the resistors 412 and 413, and the non-inverting input terminal (+) is connected to the connection point between the resistor 415 and the bipolar transistor 416.
  • the output terminal of the operational amplifier 417 is connected to the gate of the P-type transistor 411.
  • the resistance value of the resistor 418 changes as the temperature changes. For this reason, the voltage at the connection point between the bipolar transistor 414 and the resistor 418 changes with a temperature change. For example, a voltage increase of 1.6 millivolts (mV) with a temperature increase of 1 degree (° C.). This voltage is supplied to the voltage / current converter 430 as the measurement voltage V TEMP .
  • the voltage at the connection point of the resistor 415 and the bipolar transistor 416 is a constant voltage independent of the temperature due to the above-described connection configuration. Become. This voltage is supplied to the voltage / current converter 430 as the reference voltage BGR OUT .
  • FIG. 25 is a circuit diagram showing a configuration example of the voltage / current converter 430 and the entire temperature region dependent current generator 450 in the second embodiment.
  • the voltage / current converter 430 includes operational amplifiers 431 and 432, N-type transistors 433 and 434, and resistors 435, 436, and 437.
  • the entire temperature region dependent current generation unit 450 includes N-type transistors 451 and 452. As the N-type transistors 433, 434, 451, and 452, for example, MOS transistors are used.
  • N-type transistors 433 and 434 are connected in series between the power supply and the ground terminal.
  • the reference voltage BGR OUT is input to the inverting input terminal ( ⁇ ) of the operational amplifier 431.
  • a non-inverting input terminal (+) of the operational amplifier 431 is connected to a connection point between the N-type transistors 433 and 434.
  • the inverting output terminal of the operational amplifier 431 is connected to the gate of the N-type transistor 433, the low temperature region dependent current generator 440, and the entire temperature region dependent current generator 450.
  • the non-inverting output terminal of the operational amplifier 431 is connected to the gate of the N-type transistor 434, the low temperature region dependent current generator 440, and the entire temperature region dependent current generator 450.
  • Resistor 437, resistor 435, and resistor 436 are connected in series between the connection point of N-type transistors 433 and 434 and the ground terminal.
  • the measurement voltage V TEMP is input to the inverting input terminal ( ⁇ ) of the operational amplifier 432.
  • a non-inverting input terminal (+) of the operational amplifier 432 is connected to a connection point between the resistors 435 and 436.
  • the output terminal of the operational amplifier 432 is connected to a connection point between the resistors 435 and 437.
  • the N-type transistors 451 and 452 are connected in series between the power supply and the ground terminal.
  • a differential signal from the voltage / current converter 430 is input to the gates of the N-type transistors 451 and 452.
  • the connection point of N-type transistors 451 and 452 is connected to current-voltage conversion unit 240.
  • the operational amplifier 431 compares the voltage according to the measurement voltage V TEMP with the reference voltage BGR OUT and generates a differential signal according to the difference between them.
  • the operational amplifier 431 outputs the differential signal to the low temperature region dependent current generation unit 440 and the entire temperature region dependency current generation unit 450.
  • the entire temperature range dependent current generator 450 generates and outputs the entire temperature range dependent current I B from the differential signals.
  • FIG. 26 is a circuit diagram showing a configuration example of the low-temperature region dependent current generation unit 440 in the second embodiment.
  • the low temperature region dependent current generation unit 440 includes N-type transistors 441, 442, 443, 444, 445 and 446. As these transistors, for example, MOS transistors are used.
  • N-type transistors 441 and 442 are connected in series between the power supply and the ground terminal.
  • the drain of the N-type transistor 443 is connected to the connection point of the N-type transistors 441 and 442, and the source is grounded.
  • the gate of the N-type transistor 443 is connected to the drain of the N-type transistor 443 itself and the gate of the N-type transistor 445.
  • N-type transistors 444 and 445 are connected in series between the power supply and the ground terminal.
  • the gate of the N-type transistor 444 is connected to the drain of the N-type transistor 444 itself and the gate of the N-type transistor 446.
  • the source of the N-type transistor 446 is connected to the power supply, and the drain is connected to the current-voltage conversion unit 240.
  • a current corresponding to the differential signal from the voltage / current conversion unit 430 is generated, and the current is duplicated by the N-type transistors 443 and 445. Then, the source current component among the replicated current is taken out by the N-type transistors 444 and 446 is output as a low-temperature range dependent current I C.
  • the BGR circuit 410 since the BGR circuit 410 generates the measurement voltage V TEMP corresponding to the temperature, it is not necessary to provide the temperature sensor 320 outside the BGR circuit 410. Thereby, the circuit scale of the temperature compensation unit 300 can be reduced.
  • this technique can also take the following structures.
  • a low temperature region dependent current generating unit that generates a current having a smaller value as a low temperature region dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature;
  • a temperature-dependent current generation unit that generates a current having a larger value as the temperature-dependent current as the measurement temperature is higher;
  • a current-voltage conversion unit that converts a current from a connection point of the low-temperature region-dependent current generation unit and the all-temperature region-dependent current generation unit into a voltage and supplies it as a gradation voltage;
  • a display device comprising: a drive transistor that supplies a light-emitting element with a drive current corresponding to the gradation voltage to emit light.
  • the display device further including a constant current generation unit that generates a constant constant current and supplies the constant constant current to the connection point.
  • a constant current generation unit that generates a constant constant current and supplies the constant constant current to the connection point.
  • the holding unit further holds the adjustment value of the low temperature region dependent current as a low temperature region dependent current adjustment value, The display device according to (3), wherein the low temperature region dependent current generation unit generates the low temperature region dependent current adjusted according to the low temperature region dependent current adjustment value.
  • the holding unit further holds the adjustment value of the entire temperature region dependent current as a low temperature region dependent current adjustment value,
  • the display device according to (3), wherein the entire temperature region dependent current generation unit generates the entire temperature region dependent current adjusted according to the entire temperature region dependent current adjustment value.
  • (6) a temperature sensor that supplies a measurement voltage corresponding to the measurement temperature;
  • the low temperature region dependent current generation unit supplies, as the low temperature region dependent current, a current corresponding to a difference between a voltage corresponding to the measurement voltage and a predetermined voltage,
  • the display device according to any one of (1) to (5), wherein the entire temperature region dependent current generation unit supplies a current corresponding to the measurement voltage as the entire temperature region dependent current.
  • a band gap reference circuit that generates a measurement voltage and a constant reference voltage according to the measurement temperature;
  • a voltage-current converter that outputs a differential signal according to the difference between the voltage according to the measurement voltage and the reference voltage;
  • the low temperature region dependent current generation unit generates the low temperature region dependent current from the differential signal,
  • the display device according to any one of (1) to (5), wherein the entire temperature region dependent current generation unit generates the entire temperature region dependent current from the differential signal.
  • the driving transistor is a MOS transistor.
  • a low temperature region dependent current generating unit that generates a current having a smaller value as a low temperature region dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature;
  • a temperature compensation circuit comprising: an entire temperature region dependent current generation unit that generates a current having a larger value as the entire temperature region dependent current as the measurement temperature is higher.
  • a low temperature region dependent current generation procedure for generating a current having a smaller value as a low temperature region dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature;
  • a temperature-dependent current generation procedure for generating a current having a larger value as the temperature-dependent current as the measurement temperature is higher,
  • a control method for a display device comprising: a driving procedure for supplying a light-emitting element with a driving current corresponding to the gradation voltage to emit light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A display device in which a transistor drives a light-emitting element, wherein fluctuation in the luminance of the light-emitting element due to a temperature change is suppressed. A low temperature region dependent current generation unit generates, as a low temperature region dependent current, a current having a value that gets smaller as a measured temperature increases in a temperature range where the measured temperature is lower than a prescribed temperature. A general temperature region dependent current generation unit generates, as a total temperature region dependent current, a current having a value that gets larger as the measured temperature increased. A current-voltage conversion unit converts a current from a connection point of the low temperature region dependent current generation unit and the general temperature region dependent current generation unit into voltage and supplies the converted voltage as a gradient voltage. A drive transistor supplies a drive current that corresponds to the gradient voltage to the light-emitting element, causing the light-emitting element to emit light.

Description

表示装置、温度補償回路、および、表示装置の制御方法Display device, temperature compensation circuit, and display device control method
 本技術は、表示装置、温度補償回路、および、表示装置の制御方法に関する。詳しくは、トランジスタが発光素子を駆動する表示装置、温度補償回路、および、表示装置の制御方法に関する。 The present technology relates to a display device, a temperature compensation circuit, and a display device control method. Specifically, the present invention relates to a display device in which a transistor drives a light emitting element, a temperature compensation circuit, and a display device control method.
 近年、液晶と比較して薄型軽量、低消費電力、高速応答、高コントラストなどの利点を持つことから、有機発光ダイオード(OLED:Organic Light-Emitting Diode)を用いた表示装置の開発や研究が進められている。この表示装置内の画素回路には、OLEDと、そのOLEDを駆動するMOS(Metal-Oxide-Semiconductor)トランジスタとが設けられる。そして、このMOSトランジスタに対し、階調に応じた階調電圧をドライバが印加することにより、OLEDに駆動電流を供給して発光させることができる。ここで、MOSトランジスタの閾値電圧は温度の上昇に伴って低下することが知られている。そして、この閾値電圧の変動により、一定の階調電圧を印加したときにMOSトランジスタが出力する駆動電流も変化することが知られている。そこで、温度が変化しても駆動電流を一定にして輝度の変動を抑制するために、温度ごとの補正量を記載したテーブルを参照して階調電圧を補正する表示装置が提案されている(例えば、特許文献1参照。)。 In recent years, it has advantages such as thin and light weight, low power consumption, high-speed response, and high contrast compared with liquid crystal, and therefore, development and research of display devices using organic light-emitting diodes (OLEDs) are progressing. It has been. A pixel circuit in this display device is provided with an OLED and a MOS (Metal-Oxide-Semiconductor) transistor that drives the OLED. A driver applies a gradation voltage corresponding to the gradation to the MOS transistor, so that a driving current can be supplied to the OLED to emit light. Here, it is known that the threshold voltage of the MOS transistor decreases as the temperature increases. It is known that the drive current output from the MOS transistor changes when a certain gradation voltage is applied due to the fluctuation of the threshold voltage. In view of this, a display device has been proposed that corrects the gradation voltage with reference to a table that describes the correction amount for each temperature in order to keep the drive current constant and suppress fluctuations in luminance even when the temperature changes (see FIG. For example, see Patent Document 1.)
特開2012-141456号公報JP 2012-141456 A
 上述の従来技術では、閾値電圧の温度特性に基づいて階調電圧を補正している。しかしながら、MOSトランジスタの駆動電流は、厳密には閾値電圧のみならず、キャリア移動度にも依存する。そして、温度をTとすると、閾値電圧がT-1に比例するのに対して、キャリア移動度はT(-1.5)に比例する。このため、温度が比較的高いときには、キャリア移動度の影響の方が大きくなる。したがって、閾値電圧の温度特性のみを考慮して補正を行う上述の表示装置では、キャリア移動度の変化による輝度の変動分を補正しきれず、適切な輝度で発光素子を発光させることができないという問題がある。 In the above-described prior art, the gradation voltage is corrected based on the temperature characteristic of the threshold voltage. However, strictly speaking, the driving current of the MOS transistor depends not only on the threshold voltage but also on the carrier mobility. When the temperature is T, the threshold voltage is proportional to T −1 , while the carrier mobility is proportional to T (−1.5) . For this reason, when the temperature is relatively high, the influence of the carrier mobility becomes larger. Therefore, in the above-described display device that performs correction considering only the temperature characteristics of the threshold voltage, the luminance variation due to the change in carrier mobility cannot be corrected, and the light emitting element cannot emit light with appropriate luminance. There is.
 本技術はこのような状況に鑑みて生み出されたものであり、トランジスタが発光素子を駆動する表示装置において、温度変化に伴う発光素子の輝度の変動を抑制することを目的とする。 The present technology has been developed in view of such a situation, and an object of the present technology is to suppress a change in luminance of a light emitting element accompanying a temperature change in a display device in which a transistor drives the light emitting element.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、測定された測定温度が所定温度よりも低い温度範囲において前記測定温度が高いほど小さな値の電流を低温域依存電流として生成する低温域依存電流生成部と、前記測定温度が高いほど大きな値の電流を全温度域依存電流として生成する全温度域依存電流生成部と、前記低温域依存電流生成部および前記全温度域依存電流生成部の接続点からの電流を電圧に変換して階調電圧として供給する電流電圧変換部と、前記階調電圧に応じた駆動電流を発光素子に供給して発光させる駆動トランジスタとを具備する表示装置、および、その制御方法である。これにより、低温域依存電流生成部および全温度域依存電流生成部の接続点からの電流を変換した電圧に応じた駆動電流により発光素子が発光するという作用をもたらす。 The present technology has been made to solve the above-described problems, and a first aspect of the present technology is that a current having a smaller value as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature. A low temperature region dependent current generating unit that generates a current as a low temperature region dependent current, a full temperature region dependent current generating unit that generates a current having a larger value as the entire temperature region dependent current as the measurement temperature is higher, and the low temperature region dependent current generating unit. A current-voltage conversion unit that converts a current from a connection point of the temperature-dependent current generation unit to a voltage and supplies it as a gradation voltage, and supplies a drive current corresponding to the gradation voltage to the light emitting element. A display device including a driving transistor that emits light, and a control method thereof. This brings about the effect that the light emitting element emits light by the drive current corresponding to the voltage converted from the current from the connection point of the low temperature region dependent current generator and the all temperature region dependent current generator.
 また、この第1の側面において、一定の定電流を生成して前記接続点へ供給する定電流生成部をさらに具備してもよい。これにより、定電流生成部、低温域依存電流生成部および全温度域依存電流生成部の接続点からの電流を変換した電圧に応じた駆動電流により発光素子が発光するという作用をもたらす。 Further, in the first aspect, a constant current generation unit that generates a constant constant current and supplies the constant constant current to the connection point may be further provided. This brings about the effect that the light emitting element emits light by the drive current corresponding to the voltage obtained by converting the current from the connection point of the constant current generating unit, the low temperature region dependent current generating unit, and the all temperature region dependent current generating unit.
 また、この第1の側面において、前記定電流の調整値を定電流調整値として保持する保持部をさらに具備し、前記定電流生成部は、前記定電流調整値に従って調整した前記定電流を生成してもよい。これにより、調整値によって調整された定電流が生成されるという作用をもたらす。 The first aspect may further include a holding unit that holds the constant current adjustment value as a constant current adjustment value, and the constant current generation unit generates the constant current adjusted according to the constant current adjustment value. May be. This brings about the effect that a constant current adjusted by the adjustment value is generated.
 また、この第1の側面において、前記保持部は、前記低温域依存電流の調整値を低温域依存電流調整値としてさらに保持し、前記低温域依存電流生成部は、前記低温域依存電流調整値に従って調整した前記低温域依存電流を生成してもよい。これにより、調整値によって調整された低温域依存電流が生成されるという作用をもたらす。 In the first aspect, the holding unit further holds an adjustment value of the low temperature region dependent current as a low temperature region dependent current adjustment value, and the low temperature region dependent current generation unit includes the low temperature region dependent current adjustment value. The low temperature region dependent current adjusted in accordance with the method may be generated. As a result, the low temperature region dependent current adjusted by the adjustment value is generated.
 また、この第1の側面において、前記保持部は、前記全温度域依存電流の調整値を低温域依存電流調整値としてさらに保持し、前記全温度域依存電流生成部は、前記全温度域依存電流調整値に従って調整した前記全温度域依存電流を生成してもよい。これにより、調整値によって調整された全温度域依存電流が生成されるという作用をもたらす。 In the first aspect, the holding unit further holds the adjustment value of the total temperature region dependent current as a low temperature region dependent current adjustment value, and the total temperature region dependent current generation unit is dependent on the total temperature region. The entire temperature region dependent current adjusted according to the current adjustment value may be generated. This brings about the effect | action that the whole temperature range dependence electric current adjusted with the adjustment value is produced | generated.
 また、この第1の側面において、前記測定温度に応じた測定電圧を供給する温度センサをさらに具備し、前記低温域依存電流生成部は、前記測定電圧に応じた電圧と所定電圧との差に応じた電流を前記低温域依存電流として供給し、前記全温度域依存電流生成部は、前記測定電圧に応じた電流を前記全温度域依存電流として供給してもよい。これにより、測定電圧に応じた電圧と所定電圧との差に応じた低温域依存電流が生成され、測定電圧に応じた全温度域依存電流が生成されるという作用をもたらす。 The first aspect may further include a temperature sensor that supplies a measurement voltage corresponding to the measurement temperature, and the low-temperature region dependent current generation unit is configured to calculate a difference between the voltage corresponding to the measurement voltage and a predetermined voltage. A corresponding current may be supplied as the low temperature region dependent current, and the all temperature region dependent current generator may supply a current corresponding to the measurement voltage as the all temperature region dependent current. Thereby, a low temperature region-dependent current corresponding to the difference between the voltage corresponding to the measured voltage and the predetermined voltage is generated, and the entire temperature region dependent current corresponding to the measured voltage is generated.
 また、この第1の側面において、前記測定温度に応じた測定電圧と一定の参照電圧とを生成するバンドギャップリファレンス回路と、前記測定電圧に応じた電圧と前記参照電圧との差に応じた差動信号を出力する電圧電流変換部とをさらに具備し、前記低温域依存電流生成部は、前記差動信号から前記低温域依存電流を生成し、前記全温度域依存電流生成部は、前記差動信号から前記全温度域依存電流を生成してもよい。これにより、測定電圧と一定の参照電圧とがバンドギャップリファレンス回路により生成されるという作用をもたらす。 Further, in the first aspect, a band gap reference circuit that generates a measurement voltage according to the measurement temperature and a constant reference voltage, and a difference according to a difference between the voltage according to the measurement voltage and the reference voltage A voltage-current converter that outputs a dynamic signal, wherein the low temperature region dependent current generation unit generates the low temperature region dependent current from the differential signal, and the all temperature region dependent current generation unit includes the difference The entire temperature region dependent current may be generated from a dynamic signal. This brings about the effect that the measurement voltage and the constant reference voltage are generated by the band gap reference circuit.
 また、この第1の側面において、前記駆動トランジスタは、MOSトランジスタであってもよい。これにより、MOSトランジスタからの駆動電流により発光素子が発光するという作用をもたらす。 In this first aspect, the drive transistor may be a MOS transistor. Thereby, the light emitting element emits light by the drive current from the MOS transistor.
 また、本技術の第2の側面は、測定された測定温度が所定温度よりも低い温度範囲において前記測定温度が高いほど小さな値の電流を低温域依存電流として生成する低温域依存電流生成部と、前記測定温度が高いほど大きな値の電流を全温度域依存電流として生成する全温度域依存電流生成部とを具備する温度補償回路である。これにより、低温域依存電流および全温度域依存電流が生成されるという作用をもたらす。 In addition, a second aspect of the present technology is a low temperature region dependent current generation unit that generates a current having a smaller value as a low temperature region dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature. The temperature compensation circuit includes an entire temperature region dependent current generation unit that generates a current having a larger value as the entire temperature region dependent current as the measurement temperature is higher. This brings about the effect that a low temperature region dependent current and a whole temperature region dependent current are generated.
 本技術によれば、トランジスタが発光素子を駆動する表示装置において、温度変化に伴う発光素子の輝度の変動を抑制することができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, in a display device in which a transistor drives a light-emitting element, it is possible to achieve an excellent effect that a change in luminance of the light-emitting element accompanying a temperature change can be suppressed. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の第1の実施の形態における表示装置の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a display in a 1st embodiment of this art. 本技術の第1の実施の形態におけるデータ入力インターフェースの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a data input interface in a 1st embodiment of this art. 本技術の第1の実施の形態におけるタイミングコントローラの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a timing controller in a 1st embodiment of this art. 本技術の第1の実施の形態におけるディスプレイコントローラの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a display controller in a 1st embodiment of this art. 本技術の第1の実施の形態におけるガンマ補正回路の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a gamma correction circuit in a 1st embodiment of this art. 本技術の第1の実施の形態における階調電圧と階調との関係を示すグラフの一例である。It is an example of the graph which shows the relationship between the gradation voltage and gradation in 1st Embodiment of this technique. 本技術の第1の実施の形態における水平ドライバの一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a horizontal driver in a 1st embodiment of this art. 本技術の第1の実施の形態における有機ELパネルの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of an organic EL panel in a 1st embodiment of this art. 本技術の第1の実施の形態における副画素回路の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a sub pixel circuit in a 1st embodiment of this art. 本技術の第1の実施の形態における一定輝度に対応する駆動電圧と温度との関係の一例を示すグラフである。It is a graph which shows an example of the relation between drive voltage and temperature corresponding to fixed brightness in a 1st embodiment of this art. 本技術の第1の実施の形態における温度補償部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a temperature compensation part in a 1st embodiment of this art. 本技術の第1の実施の形態における電流と温度との関係の一例を示すグラフである。It is a graph which shows an example of relation between current and temperature in a 1st embodiment of this art. 本技術の第1の実施の形態における出力電流と温度との関係の一例を示す図である。It is a figure showing an example of relation between output current and temperature in a 1st embodiment of this art. 本技術の第1の実施の形態における温度補償の方法を説明するための図である。It is a figure for demonstrating the method of the temperature compensation in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるバイアス電圧供給回路の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a bias voltage supply circuit in a 1st embodiment of this art. 本技術の第1の実施の形態における定電流生成部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a constant current generation part in a 1st embodiment of this art. 本技術の第1の実施の形態における全温度域依存電流生成部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a whole temperature range dependence current generating part in a 1st embodiment of this art. 本技術の第1の実施の形態における低温域依存電流生成部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a low temperature range dependence current generation part in a 1st embodiment of this art. 本技術の第1の実施の形態における設定値ごとの階調電圧と温度との関係の一例を示すグラフである。It is a graph which shows an example of the relation between gradation voltage and temperature for every set value in a 1st embodiment of this art. 本技術の第1の実施の形態における設定値ごとのカソード電流と温度との関係の一例を示すグラフである。It is a graph which shows an example of the relation between cathode current and temperature for every set value in a 1st embodiment of this art. 本技術の第1の実施の形態における表示装置の動作の一例を示すフローチャートである。7 is a flowchart illustrating an example of the operation of the display device according to the first embodiment of the present technology. 本技術の第1の実施の形態の変形例における温度補償部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a temperature compensation part in a modification of a 1st embodiment of this art. 本技術の第2の実施の形態における温度補償部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a temperature compensation part in a 2nd embodiment of this art. 本技術の第2の実施の形態におけるBGR(Band Gap Reference)回路の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a BGR (Band Gap Reference) circuit in a 2nd embodiment of this art. 本技術の第2の実施の形態における電圧電流変換部および全温度域依存電流生成部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a voltage current conversion part in a 2nd embodiment of this art, and a whole temperature range dependence current generating part. 本技術の第2の実施の形態における低温域依存電流生成部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a low temperature range dependence current generation part in a 2nd embodiment of this art.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(定電流、低温域依存電流および全温度域依存電流を生成する例)
 2.第2の実施の形態(低温域依存電流および全温度域依存電流を生成する例)
 3.第3の実施の形態(BGR回路で温度を測定し、低温域依存電流および全温度域依存電流を生成する例)
Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. First Embodiment (Example of generating constant current, low temperature region dependent current and full temperature region dependent current)
2. Second embodiment (example of generating low temperature region dependent current and full temperature region dependent current)
3. Third Embodiment (Example in which temperature is measured by a BGR circuit and a low temperature region dependent current and a whole temperature region dependent current are generated)
 <1.第1の実施の形態>
 [表示装置の構成例]
 図1は、第1の実施の形態における表示装置100の一構成例を示すブロック図である。この表示装置100は、画像を表示するための装置であり、データ入力インターフェース110、タイミングコントローラ120およびディスプレイコントローラ130を備える。また、表示装置100は、レジスタ140、駆動回路150および有機EL(Electro Luminescence)パネル180を備える。駆動回路150は、垂直ドライバ160、水平ドライバ170およびガンマ補正回路200を備える。
<1. First Embodiment>
[Configuration example of display device]
FIG. 1 is a block diagram illustrating a configuration example of the display device 100 according to the first embodiment. The display device 100 is a device for displaying an image, and includes a data input interface 110, a timing controller 120, and a display controller 130. The display device 100 includes a register 140, a drive circuit 150, and an organic EL (Electro Luminescence) panel 180. The drive circuit 150 includes a vertical driver 160, a horizontal driver 170, and a gamma correction circuit 200.
 そして、有機ELパネル180には、二次元格子状に複数の画素回路が配列される。以下、水平方向に配列された画素回路の集合を「行」と称し、行に垂直な方向に配列された画素回路の集合を「列」と称する。 In the organic EL panel 180, a plurality of pixel circuits are arranged in a two-dimensional lattice pattern. Hereinafter, a set of pixel circuits arranged in the horizontal direction is referred to as “row”, and a set of pixel circuits arranged in the direction perpendicular to the row is referred to as “column”.
 データ入力インターフェース110は、表示装置100の外部の機器(ソース機器など)から、シリアル転送された表示データを受信するものである。この表示データは、表示装置100に表示するためのデータであり、例えば、複数の画像データを時系列順に含む動画データや、静止画データが表示データとして入力される。データ入力インターフェース110は、シリアルの表示データをパラレルデータに変換する。また、データ入力インターフェース110は、垂直同期信号および水平同期信号を生成して、パラレルデータとともにタイミングコントローラ120に信号線119を介して供給する。ここで、垂直同期信号は、画像データを表示するタイミングを示す信号であり、水平同期信号は、行を表示するタイミングを示す信号である。 The data input interface 110 receives serially transferred display data from an external device (such as a source device) of the display device 100. The display data is data to be displayed on the display device 100. For example, moving image data including a plurality of pieces of image data in time series and still image data are input as display data. The data input interface 110 converts serial display data into parallel data. Further, the data input interface 110 generates a vertical synchronization signal and a horizontal synchronization signal and supplies them to the timing controller 120 via the signal line 119 together with parallel data. Here, the vertical synchronization signal is a signal indicating timing for displaying image data, and the horizontal synchronization signal is a signal indicating timing for displaying a row.
 タイミングコントローラ120は、ディスプレイコントローラ130が動作するタイミングを制御するものである。このタイミングコントローラ120は、パラレルデータから画素データを生成して、タイミング信号とともに信号線129を介してディスプレイコントローラ130に供給する。 The timing controller 120 controls the timing at which the display controller 130 operates. The timing controller 120 generates pixel data from the parallel data and supplies the pixel data together with the timing signal to the display controller 130 via the signal line 129.
 ディスプレイコントローラ130は、駆動回路150を制御するものである。このディスプレイコントローラ130は、タイミング信号に同期して画素データを水平ドライバ170に信号線138を介して供給する。この画素データは、R(Red)、G(Green)、B(Blue)およびW(White)などの色ごとに、その階調を示す階調情報を含む。また、ディスプレイコントローラ130は、タイミング信号に同期して垂直ドライバ160を制御する。 The display controller 130 controls the drive circuit 150. The display controller 130 supplies pixel data to the horizontal driver 170 via the signal line 138 in synchronization with the timing signal. This pixel data includes gradation information indicating the gradation for each color such as R (Red), G (Green), B (Blue), and W (White). The display controller 130 controls the vertical driver 160 in synchronization with the timing signal.
 垂直ドライバ160は、ディスプレイコントローラ130の制御に従って、有機ELパネル180の行を順に駆動するものである。 The vertical driver 160 drives the rows of the organic EL panels 180 in order under the control of the display controller 130.
 レジスタ140は、輝度レベルを調整するための設定値を保持するものである。ガンマ補正回路200は、ガンマ補正を行うものである。このガンマ補正回路200は、レジスタ140の設定値を読み出し、その設定値に基づいて、階調を示す階調電圧を生成する。階調を256段階に制御する場合には、例えば、互いに異なる256個の階調電圧が生成される。そして、ガンマ補正回路200は、それらの階調電圧を水平ドライバ170に信号線209を介して供給する。なお、レジスタ140は、特許請求の範囲に記載の保持部の一例である。 The register 140 holds a setting value for adjusting the luminance level. The gamma correction circuit 200 performs gamma correction. The gamma correction circuit 200 reads the setting value of the register 140 and generates a gradation voltage indicating a gradation based on the setting value. When the gradation is controlled in 256 steps, for example, 256 different gradation voltages are generated. Then, the gamma correction circuit 200 supplies these gradation voltages to the horizontal driver 170 via the signal line 209. The register 140 is an example of a holding unit described in the claims.
 水平ドライバ170は、選択された行内の画素ごとに、その画素データ内の階調情報に対応する階調電圧を選択して有機ELパネル180に供給するものである。 The horizontal driver 170 selects a gradation voltage corresponding to the gradation information in the pixel data for each pixel in the selected row and supplies it to the organic EL panel 180.
 [データ入力インターフェースの構成例]
 図2は、第1の実施の形態におけるデータ入力インターフェース110の一構成例を示すブロック図である。このデータ入力インターフェース110は、クロック制御部111、高速インターフェース112、同期信号生成部113およびシリアルパラレル変換部114を備える。
[Data input interface configuration example]
FIG. 2 is a block diagram illustrating a configuration example of the data input interface 110 according to the first embodiment. The data input interface 110 includes a clock control unit 111, a high-speed interface 112, a synchronization signal generation unit 113, and a serial / parallel conversion unit 114.
 高速インターフェース112は、シリアル転送された表示データを受信するものである。クロック制御部111は、タイミングコントローラ120を制御して、表示データを表示する期間に亘ってクロック信号を生成させるものである。同期信号生成部113は、表示データに基づいて、水平同期信号および垂直同期信号を生成するものである。また、シリアルパラレル変換部114は、シリアルの表示データをパラレルデータに変換するものである。 The high speed interface 112 receives serially transferred display data. The clock control unit 111 controls the timing controller 120 to generate a clock signal over a period for displaying display data. The synchronization signal generator 113 generates a horizontal synchronization signal and a vertical synchronization signal based on the display data. The serial / parallel converter 114 converts serial display data into parallel data.
 [タイミングコントローラの構成例]
 図3は、第1の実施の形態におけるタイミングコントローラ120の一構成例を示すブロック図である。このタイミングコントローラ120は、クロックジェネレータ121、タイミングジェネレータ122および画像処理部123を備える。
[Timing controller configuration example]
FIG. 3 is a block diagram illustrating a configuration example of the timing controller 120 according to the first embodiment. The timing controller 120 includes a clock generator 121, a timing generator 122, and an image processing unit 123.
 クロックジェネレータ121は、クロック制御部111の制御に従って、所定の周波数のクロック信号を生成するものである。このクロック信号の周波数は、水平同期信号より高いものとする。クロックジェネレータ121は、クロック信号をディスプレイコントローラ130に供給する。 The clock generator 121 generates a clock signal having a predetermined frequency under the control of the clock control unit 111. The frequency of this clock signal is higher than that of the horizontal synchronizing signal. The clock generator 121 supplies a clock signal to the display controller 130.
 タイミングジェネレータ122は、垂直同期信号および水平同期信号に基づいて、タイミング信号を生成してディスプレイコントローラ130に供給するものである。 The timing generator 122 generates a timing signal based on the vertical synchronization signal and the horizontal synchronization signal and supplies the timing signal to the display controller 130.
 画像処理部123は、パラレルデータに対して様々な画像処理を行うものである。例えば、解像度を変換する処理や、画素毎に色情報(Wなど)を補間する処理などが行われる。この画像処理部123は、画像処理により、画素毎に画素データを生成し、ディスプレイコントローラ130に供給する。 The image processing unit 123 performs various image processing on the parallel data. For example, a process for converting the resolution and a process for interpolating color information (such as W) for each pixel are performed. The image processing unit 123 generates pixel data for each pixel by image processing and supplies the pixel data to the display controller 130.
 [ディスプレイコントローラの構成例]
 図4は、第1の実施の形態におけるディスプレイコントローラ130の一構成例を示すブロック図である。このディスプレイコントローラ130は、垂直ロジック回路131および水平ロジック回路132を備える。
[Configuration example of display controller]
FIG. 4 is a block diagram illustrating a configuration example of the display controller 130 according to the first embodiment. The display controller 130 includes a vertical logic circuit 131 and a horizontal logic circuit 132.
 垂直ロジック回路131は、タイミング信号に同期して垂直ドライバ160を制御するものである。水平ロジック回路132は、タイミング信号に同期して、水平ドライバ170に画素データを供給するものである。 The vertical logic circuit 131 controls the vertical driver 160 in synchronization with the timing signal. The horizontal logic circuit 132 supplies pixel data to the horizontal driver 170 in synchronization with the timing signal.
 [ガンマ補正回路の構成例]
 図5は、第1の実施の形態におけるガンマ補正回路200の一構成例を示す回路図である。このガンマ補正回路200は、最大電圧生成部210、最小電圧生成部230および抵抗220を備える。
[Configuration example of gamma correction circuit]
FIG. 5 is a circuit diagram showing a configuration example of the gamma correction circuit 200 in the first embodiment. The gamma correction circuit 200 includes a maximum voltage generation unit 210, a minimum voltage generation unit 230, and a resistor 220.
 最大電圧生成部210は、最小の輝度で発光させるための階調電圧VG0を生成するものである。この最大電圧生成部210は、オペアンプ211と、スイッチ212、213および214と、抵抗215と、定電流源216とを備える。 The maximum voltage generator 210 generates a gradation voltage VG0 for causing light emission with the minimum luminance. The maximum voltage generator 210 includes an operational amplifier 211, switches 212, 213 and 214, a resistor 215, and a constant current source 216.
 抵抗215は、電源と定電流源216との間に挿入される。そして、スイッチ212、213および214は、互いに異なる接続点で抵抗215に接続される。また、オペアンプ211の出力端子は、オペアンプ211自身の反転入力端子(-)と抵抗220とに接続される。 The resistor 215 is inserted between the power source and the constant current source 216. The switches 212, 213, and 214 are connected to the resistor 215 at connection points different from each other. The output terminal of the operational amplifier 211 is connected to the inverting input terminal (−) of the operational amplifier 211 itself and the resistor 220.
 スイッチ212は、オペアンプ211の非反転入力端子(+)と、抵抗215の対応する接続点との間の経路を開閉するものである。スイッチ213は、オペアンプ211の非反転入力端子(+)と、抵抗215の対応する接続点との間の経路を開閉するものである。スイッチ214は、オペアンプ211の非反転入力端子(+)と、抵抗215の対応する接続点との間の経路を開閉するものである。 The switch 212 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 211 and a corresponding connection point of the resistor 215. The switch 213 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 211 and a corresponding connection point of the resistor 215. The switch 214 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 211 and a corresponding connection point of the resistor 215.
 ここで、レジスタ140には、最大電圧生成部210が生成する電圧を調整するための最大電圧調整値と、最小電圧生成部230が生成する電圧を調整するための最小電圧調整値と、電流調整値とが保持される。電流調整値は、最小電圧生成部230内部で生成される電流を調整するための値である。最大電圧調整値は、最大電圧生成部210に入力され、最小電圧調整値および電流調整値は、最小電圧生成部230に入力される。 Here, the register 140 includes a maximum voltage adjustment value for adjusting the voltage generated by the maximum voltage generation unit 210, a minimum voltage adjustment value for adjusting the voltage generated by the minimum voltage generation unit 230, and a current adjustment. Value. The current adjustment value is a value for adjusting the current generated in the minimum voltage generation unit 230. The maximum voltage adjustment value is input to the maximum voltage generation unit 210, and the minimum voltage adjustment value and the current adjustment value are input to the minimum voltage generation unit 230.
 スイッチ212、213および214のそれぞれは、レジスタ140内の最大電圧調整値に従って開閉する。これらのスイッチのいずれか1つのみが閉状態になるように、最大電圧調整値が設定される。 Each of the switches 212, 213 and 214 opens and closes according to the maximum voltage adjustment value in the register 140. The maximum voltage adjustment value is set so that only one of these switches is closed.
 上述の構成により、スイッチ212、213および214のいずれかが、その接続点に対応する電圧を直流電圧VDCbとしてオペアンプ211に供給する。また、オペアンプ211は、その直流電圧VDCbに応じた電圧を階調電圧VG0として生成し、抵抗220の一端に印加する。 With the above-described configuration, any of the switches 212, 213, and 214 supplies a voltage corresponding to the connection point to the operational amplifier 211 as the DC voltage VDCb. The operational amplifier 211 generates a voltage corresponding to the DC voltage VDCb as the gradation voltage VG0 and applies it to one end of the resistor 220.
 また、最小電圧生成部230は、最大の輝度最小電圧で発光させるための階調電圧VG255を生成するものである。この最小電圧生成部230は、電流電圧変換部240と、オペアンプ236と、温度補償部300と、スイッチ231、232および233と、抵抗234と、定電流源235とを備える。また、電流電圧変換部240は、抵抗241およびオペアンプ242を備える。 The minimum voltage generator 230 generates a gradation voltage VG255 for causing light emission with the maximum luminance minimum voltage. The minimum voltage generation unit 230 includes a current-voltage conversion unit 240, an operational amplifier 236, a temperature compensation unit 300, switches 231, 232, and 233, a resistor 234, and a constant current source 235. In addition, the current-voltage conversion unit 240 includes a resistor 241 and an operational amplifier 242.
 抵抗234は、電源と定電流源235との間に挿入される。そして、スイッチ231、232および233は、互いに異なる接続点で抵抗234に接続される。 The resistor 234 is inserted between the power source and the constant current source 235. The switches 231, 232 and 233 are connected to the resistor 234 at connection points different from each other.
 スイッチ231は、オペアンプ242の非反転入力端子(+)と、抵抗234の対応する接続点との間の経路を開閉するものである。スイッチ232は、オペアンプ242の非反転入力端子(+)と、抵抗234の対応する接続点との間の経路を開閉するものである。スイッチ233は、オペアンプ242の非反転入力端子(+)と、抵抗234の対応する接続点との間の経路を開閉するものである。 The switch 231 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 242 and a corresponding connection point of the resistor 234. The switch 232 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 242 and a corresponding connection point of the resistor 234. The switch 233 opens and closes a path between the non-inverting input terminal (+) of the operational amplifier 242 and a corresponding connection point of the resistor 234.
 温度補償部300は、温度に依存した出力電流IOUTを生成するものである。この温度補償部300は、出力電流IOUTをオペアンプ242の反転入力端子(-)に出力する。 The temperature compensation unit 300 generates an output current I OUT depending on temperature. The temperature compensation unit 300 outputs the output current I OUT to the inverting input terminal (−) of the operational amplifier 242.
 抵抗241は、オペアンプ242の反転入力端子(-)と出力端子との間に挿入される。また、オペアンプ242の出力端子は、オペアンプ236の非反転入力端子(+)に接続される。オペアンプ236の出力端子は、オペアンプ236自身の反転入力端子(-)と、抵抗220の両端のうち、最大電圧生成部210が接続されていない方とに接続される。このオペアンプ236は、インピーダンス変換に用いられる。 The resistor 241 is inserted between the inverting input terminal (−) and the output terminal of the operational amplifier 242. The output terminal of the operational amplifier 242 is connected to the non-inverting input terminal (+) of the operational amplifier 236. The output terminal of the operational amplifier 236 is connected to the inverting input terminal (−) of the operational amplifier 236 itself and to the end of the resistor 220 to which the maximum voltage generator 210 is not connected. The operational amplifier 236 is used for impedance conversion.
 上述の構成により、スイッチ231、232および233のいずれかが、その接続点に対応する電圧を直流電圧VDCwとしてオペアンプ242に供給する。また、抵抗241は、出力電流IOUTを電圧に変換する。オペアンプ242は、抵抗241の電圧に直流電圧VDCwを加算した電圧を生成し、オペアンプ236が、その電圧を階調電圧VG225として抵抗220の一端に供給する。 With the above-described configuration, any of the switches 231, 232, and 233 supplies a voltage corresponding to the connection point to the operational amplifier 242 as the DC voltage VDCw. The resistor 241 converts the output current I OUT into a voltage. The operational amplifier 242 generates a voltage obtained by adding the DC voltage VDCw to the voltage of the resistor 241, and the operational amplifier 236 supplies the voltage to one end of the resistor 220 as the gradation voltage VG225.
 また、抵抗220は、最大電圧生成部210と最小電圧生成部230との間に挿入される。そして、抵抗220は、階調数に応じた個数の接続点で水平ドライバ170と接続される。例えば、階調が256段階である場合には、256個の接続点で水平ドライバ170と接続される。最大電圧生成部210に近い方からn(nは0乃至255の整数)番目の接続点の電圧は、n段回目の階調を示す階調電圧VGnとして水平ドライバ170に供給される。 Also, the resistor 220 is inserted between the maximum voltage generation unit 210 and the minimum voltage generation unit 230. The resistor 220 is connected to the horizontal driver 170 at the number of connection points corresponding to the number of gradations. For example, when the gradation is in 256 levels, the horizontal driver 170 is connected at 256 connection points. The voltage at the n-th connection point (n is an integer from 0 to 255) from the side closer to the maximum voltage generation unit 210 is supplied to the horizontal driver 170 as the gradation voltage VGn indicating the n-th gradation.
 なお、温度補償部300を、表示装置100内のガンマ補正回路200に設けているが、温度補償が必要な装置であれば、表示装置100以外の装置に温度補償部300を設けてもよい。 Although the temperature compensation unit 300 is provided in the gamma correction circuit 200 in the display device 100, the temperature compensation unit 300 may be provided in a device other than the display device 100 as long as the device requires temperature compensation.
 図6は、第1の実施の形態における階調電圧と階調との関係を示すグラフの一例である。同図における縦軸は、階調電圧VG0乃至VG255を示す。また、同図における横軸は、階調電圧を印加した際の画素の階調を示す。同図に例示するように、白の階調電圧VG0が最も低く、黒の階調電圧VG255が最も高い。また、階調電圧VGnの軌跡は、曲線であり、この非線形の階調電圧印加により、階調の変化に伴って輝度を直線的に変化させることができる。このように、パネルの特性に合わせて階調電圧を非線形に調整する処理は、ガンマ補正処理と呼ばれる。 FIG. 6 is an example of a graph showing the relationship between the gradation voltage and the gradation in the first embodiment. The vertical axis in the figure indicates the gradation voltages VG0 to VG255. In addition, the horizontal axis in the figure shows the gradation of the pixel when the gradation voltage is applied. As illustrated in the figure, the white gradation voltage VG0 is the lowest and the black gradation voltage VG255 is the highest. Further, the locus of the gradation voltage VGn is a curve, and the luminance can be linearly changed with the change of gradation by applying this nonlinear gradation voltage. In this manner, the process of adjusting the gradation voltage nonlinearly in accordance with the panel characteristics is called a gamma correction process.
 図7は、第1の実施の形態における水平ドライバ170の一構成例を示す回路図である。この水平ドライバ170には、列ごとに水平アナログセル171が設けられる。水平アナログセル171は、DA変換部172、階調電圧生成部174を備える。また、DA変換部172は、階調数と同数(例えば、256個)のスイッチ173を備える。階調電圧生成部174は、オペアンプ175と、画素内の副画素数に等しい個数(例えば、12個)のスイッチ176とを備える。 FIG. 7 is a circuit diagram showing a configuration example of the horizontal driver 170 in the first embodiment. The horizontal driver 170 is provided with a horizontal analog cell 171 for each column. The horizontal analog cell 171 includes a DA converter 172 and a gradation voltage generator 174. The DA conversion unit 172 includes the same number (for example, 256) of switches 173 as the number of gradations. The gradation voltage generation unit 174 includes an operational amplifier 175 and a number (for example, twelve) of switches 176 equal to the number of subpixels in the pixel.
 ここで、画素データは、副画素のいずれかを示す副画素イネーブルと、階調を示す階調情報とを含む。画素内の副画素が12個であり、階調が256段階である場合には、例えば、4ビットの副画素イネーブルと、8ビットの階調情報とがディスプレイコントローラ130により生成される。 Here, the pixel data includes sub-pixel enable indicating any of the sub-pixels and gradation information indicating the gradation. When there are 12 subpixels in a pixel and the gradation is 256 levels, for example, a 4-bit subpixel enable and 8-bit gradation information are generated by the display controller 130.
 DA変換部172は、デジタルの階調情報をアナログの階調電圧に変換するものである。DA変換部172において、n番目のスイッチ173は、階調電圧VGnが供給される電源線と、オペアンプ175の非反転入力端子(+)との間の経路を開閉する。そして、n段回目の階調を示す階調情報が入力されると、n番目のスイッチ173のみが閉状態に移行する。これにより、階調電圧VGnが階調電圧生成部174に供給される。 The DA converter 172 converts digital gradation information into an analog gradation voltage. In the DA converter 172, the nth switch 173 opens and closes a path between the power supply line to which the gradation voltage VGn is supplied and the non-inverting input terminal (+) of the operational amplifier 175. When the gradation information indicating the nth gradation is input, only the nth switch 173 shifts to the closed state. As a result, the gradation voltage VGn is supplied to the gradation voltage generation unit 174.
 階調電圧生成部174は、副画素イネーブルの示す副画素に階調電圧VGnを供給するものである。オペアンプ175は、階調電圧VGnを増幅してスイッチ176のそれぞれに供給する。副画素イネーブルがm(mは0乃至11の整数)番目の副画素を示す場合に、m番目のスイッチ176は、その副画素に、階調電圧VGnの画素信号OTmを供給する。 The gradation voltage generation unit 174 supplies the gradation voltage VGn to the subpixel indicated by the subpixel enable. The operational amplifier 175 amplifies the gradation voltage VGn and supplies it to each of the switches 176. When the subpixel enable indicates the mth subpixel (m is an integer from 0 to 11), the mth switch 176 supplies the pixel signal OTm of the gradation voltage VGn to the subpixel.
 [有機ELパネルの構成例]
 図8は、第1の実施の形態における有機ELパネル180の一構成例を示すブロック図である。この有機ELパネル180には、二次元格子状に複数の画素回路181が配列される。画素回路181のそれぞれには、互いに異なる色で発光する所定数(例えば、12個)の副画素回路182が配置される。副画素回路182のそれぞれは、垂直方向に配線された垂直信号線と、水平方向に配線された水平信号線と、電源線とに接続される。
[Configuration example of organic EL panel]
FIG. 8 is a block diagram illustrating a configuration example of the organic EL panel 180 according to the first embodiment. In the organic EL panel 180, a plurality of pixel circuits 181 are arranged in a two-dimensional lattice pattern. In each of the pixel circuits 181, a predetermined number (for example, 12) of sub-pixel circuits 182 that emit light in different colors are arranged. Each of the sub-pixel circuits 182 is connected to a vertical signal line wired in the vertical direction, a horizontal signal line wired in the horizontal direction, and a power supply line.
 垂直信号線のそれぞれは、水平ドライバ170に接続され、水平信号線のそれぞれは垂直ドライバ160に接続される。また、垂直信号線を介して画素信号OTmが供給され、水平信号線を介して選択信号SELp(pは整数)が供給される。この選択信号SELpは、p行目を駆動するための信号である。 Each of the vertical signal lines is connected to the horizontal driver 170, and each of the horizontal signal lines is connected to the vertical driver 160. Further, the pixel signal OTm is supplied through the vertical signal line, and the selection signal SELp (p is an integer) is supplied through the horizontal signal line. This selection signal SELp is a signal for driving the p-th row.
 図9は、第1の実施の形態における副画素回路182の一構成例を示す回路図である。副画素回路182は、選択トランジスタ183、コンデンサ184、駆動トランジスタ185および発光素子186を備える。選択トランジスタ183および駆動トランジスタ185として、例えば、N型のMOSトランジスタが用いられる。また、発光素子186として、OLEDが用いられる。 FIG. 9 is a circuit diagram illustrating a configuration example of the sub-pixel circuit 182 according to the first embodiment. The subpixel circuit 182 includes a selection transistor 183, a capacitor 184, a driving transistor 185, and a light emitting element 186. As the selection transistor 183 and the driving transistor 185, for example, an N-type MOS transistor is used. An OLED is used as the light emitting element 186.
 選択トランジスタ183のゲートは水平信号線に接続され、ソースは、垂直信号線に接続され、ドレインはコンデンサ184および駆動トランジスタ185に接続される。コンデンサ184の両端は、駆動トランジスタ185のゲートおよびソースに接続される。駆動トランジスタ185のソースは、電源線に接続され、ドレインは発光素子186に接続される。 The gate of the selection transistor 183 is connected to the horizontal signal line, the source is connected to the vertical signal line, and the drain is connected to the capacitor 184 and the drive transistor 185. Both ends of the capacitor 184 are connected to the gate and source of the driving transistor 185. The source of the driving transistor 185 is connected to the power supply line, and the drain is connected to the light emitting element 186.
 上述の構成により、水平信号線にハイレベルの選択信号SELpが供給されると、選択トランジスタ183は、画素信号OTmに応じた電流をコンデンサ184に出力する。ここで、画素信号OTmの電圧(階調電圧VGn)が高いほど、選択トランジスタ183のゲート-ソース間電圧が低くなり、コンデンサ184への電流が小さくなって、その結果、コンデンサ184の充電電圧が低くなる。そして、コンデンサ184の充電電圧が低いほど、駆動トランジスタ185が発光素子186に出力する駆動電流(ドレイン電流)が小さくなり、発光素子186の輝度が低下する。すなわち、階調電圧VGnが高いほど、駆動トランジスタ185の駆動電圧(ゲート-ソース間電圧)が低くなり、輝度が低下する。一方、階調電圧VGnが低いほど、輝度は高くなる。 With the above configuration, when the high level selection signal SELp is supplied to the horizontal signal line, the selection transistor 183 outputs a current corresponding to the pixel signal OTm to the capacitor 184. Here, the higher the voltage of the pixel signal OTm (gradation voltage VGn), the lower the gate-source voltage of the selection transistor 183 and the smaller the current to the capacitor 184. As a result, the charging voltage of the capacitor 184 becomes lower. Lower. The lower the charging voltage of the capacitor 184, the smaller the drive current (drain current) output from the drive transistor 185 to the light emitting element 186, and the luminance of the light emitting element 186 decreases. In other words, the higher the gradation voltage VGn, the lower the drive voltage (gate-source voltage) of the drive transistor 185 and the lower the luminance. On the other hand, the lower the gradation voltage VGn, the higher the luminance.
 図10は、第1の実施の形態における一定輝度に対応する駆動電圧と温度との関係の一例を示すグラフである。同図における縦軸は、電圧を示し、横軸は、温度Tを示す。 FIG. 10 is a graph showing an example of the relationship between the driving voltage and the temperature corresponding to the constant luminance in the first embodiment. In the figure, the vertical axis represents voltage, and the horizontal axis represents temperature T.
 ここで、MOSトランジスタのドレイン電流は、次の式により表すことができる。
  Ids=(1/2)×μCox×(W/L)×(Vgs-Vth・・・式1
上式においてIdsは、ドレイン電流であり、単位は、例えば、アンペア(A)である。μは、キャリア移動度であり、単位は、例えば、平方センチメートル毎ボルト秒(cm/V・s)である。Coxは、単位面積当たりの酸化膜容量であり、単位は、例えば、ファラッド毎平方センチメートル(F/cm)である。Wは、ゲート幅であり、単位は、例えば、センチメートル(cm)である。Lはゲート長であり、単位は、例えば、センチメートル(cm)である。Vgsは、ゲート-ソース間電圧であり、単位は、例えば、ボルト(V)である。Vthは、閾値電圧であり、単位は、例えば、ボルト(V)である。
Here, the drain current of the MOS transistor can be expressed by the following equation.
I ds = (1/2) × μC ox × (W / L) × (V gs −V th ) 2 Equation 1
In the above formula, I ds is the drain current, and the unit is, for example, ampere (A). μ is the carrier mobility, and the unit is, for example, square centimeter per volt second (cm 2 / V · s). C ox is the oxide film capacity per unit area, and the unit is, for example, farad per square centimeter (F / cm 2 ). W is the gate width, and the unit is, for example, centimeter (cm). L is the gate length, and the unit is, for example, centimeter (cm). V gs is a gate-source voltage, and its unit is, for example, volts (V). Vth is a threshold voltage, and its unit is, for example, volts (V).
 式1の変形により、ゲート-ソース間電圧Vgsは、次の式により表される。
  Vgs={2Ids/(μ・Cox・W/L)}0.5+Vth   ・・・式2
The gate-source voltage V gs is expressed by the following expression by modifying Expression 1.
V gs = {2I ds / (μ · C ox · W / L)} 0.5 + V th.
 そして、式2におけるゲート-ソース間電圧Vgsの温度特性は、式2の両辺を温度で微分した次の式により表される。
Figure JPOXMLDOC01-appb-M000001
上式において、Tは、測定温度であり、単位は例えば、度(℃)である。
The temperature characteristic of the gate-source voltage V gs in Equation 2 is expressed by the following equation obtained by differentiating both sides of Equation 2 with respect to temperature.
Figure JPOXMLDOC01-appb-M000001
In the above formula, T is the measurement temperature, and the unit is, for example, degree (° C.).
 式3において、右辺の閾値電圧Vthは、T-1に比例するのに対し、右辺のキャリア移動度μはT(-1.5)に比例する。図10における実線は、式3から得られた、一定輝度に対応する駆動電圧(すなわち、Vgs)の温度特性を示し、一点鎖線は、閾値電圧Vthの特性を示す。同図に例示するように、ゲート-ソース間電圧Vgsの温度特性は、低温側で閾値電圧Vthの温度特性が支配的になり、高温側では閾値電圧Vthの項(式3の右辺の第2項)をキャリア移動度μの項(式3の右辺の第1項)が打ち消す形になる。 In Equation 3, the threshold voltage V th on the right side is proportional to T −1 , while the carrier mobility μ on the right side is proportional to T (−1.5) . The solid line in FIG. 10 indicates the temperature characteristic of the drive voltage (that is, V gs ) corresponding to the constant luminance obtained from Equation 3, and the alternate long and short dash line indicates the characteristic of the threshold voltage Vth . As illustrated in the figure, the gate - temperature characteristics of the source voltage V gs between the low temperature side temperature characteristic of the threshold voltage V th becomes dominant at the right side of the threshold voltage V th term (Equation 3 at the high temperature side The second term) is canceled by the carrier mobility μ term (the first term on the right side of Equation 3).
 そして、前述したように、階調電圧VGnと、選択トランジスタ183(MOSトランジスタ)のゲート-ソース間電圧Vgsとは反比例の関係にある。このため、図10の実線の曲線を上下反転した温度特性の階調電圧VGnを印加することにより、温度変化に伴う輝度の変動を抑制することができる。 As described above, the gradation voltage VGn and the gate-source voltage Vgs of the selection transistor 183 (MOS transistor) are in an inversely proportional relationship. For this reason, by applying the gradation voltage VGn having a temperature characteristic obtained by inverting the solid curve in FIG. 10 up and down, fluctuations in luminance due to temperature changes can be suppressed.
 [温度補償部の構成例]
 図11は、第1の実施の形態における温度補償部300の一構成例を示す回路図である。この温度補償部300は、バイアス電圧供給回路310、温度センサ320および温度補償回路330を備える。また、温度補償回路330は、低温域依存電流生成部340、定電流生成部350および全温度域依存電流生成部360を備える。
[Configuration example of temperature compensation unit]
FIG. 11 is a circuit diagram illustrating a configuration example of the temperature compensation unit 300 according to the first embodiment. The temperature compensation unit 300 includes a bias voltage supply circuit 310, a temperature sensor 320, and a temperature compensation circuit 330. The temperature compensation circuit 330 includes a low temperature region dependent current generation unit 340, a constant current generation unit 350, and an entire temperature region dependency current generation unit 360.
 バイアス電圧供給回路310は、一定のバイアス電圧Vbを生成して定電流生成部350に供給するものである。 The bias voltage supply circuit 310 generates a constant bias voltage Vb and supplies it to the constant current generator 350.
 温度センサ320は、温度を測定するものである。この温度センサ320は、測定温度が高いほどレベルが高い電圧を測定電圧VTEMPとして生成して低温域依存電流生成部340および全温度域依存電流生成部360に供給する。 The temperature sensor 320 measures temperature. The temperature sensor 320 generates a voltage having a higher level as the measurement temperature is higher as the measurement voltage V TEMP and supplies the generated voltage to the low temperature region dependent current generation unit 340 and the entire temperature region dependency current generation unit 360.
 定電流生成部350は、測定温度に依存しない定電流Iを生成するものである。低温域依存電流生成部340は、測定温度が所定温度よりも低い温度範囲において、測定温度が高いほど小さな値の電流を低温域依存電流Iとして生成するものである。また、全温度域依存電流生成部360は、測定温度が高いほど大きな値の電流を全温度域依存電流Iとして生成するものである。 Constant current generation unit 350, and generates a not dependent on the measured temperature constant current I A. Low temperature range dependent current generator 340, the measured temperature is a temperature range lower than the predetermined temperature, a current of about the measured temperature is higher small value and generates the low temperature range dependent current I C. Also, the entire temperature range dependent current generator 360, a current of greater value as the measured temperature is higher and generates the entire temperature range dependent current I B.
 ここで、定電流生成部350および全温度域依存電流生成部360は、電源と接地端子との間において直列に接続される。低温域依存電流生成部340は、定電流生成部350および全温度域依存電流生成部360の接続点と電源との間に挿入される。これらの接続点は、電流電圧変換部240に接続される。この接続関係により、接続点から電流電圧変換部240へ、次の式で表される出力電流IOUTが出力される。
  IOUT=I-I-I                  ・・・式4
Here, constant current generator 350 and full temperature region dependent current generator 360 are connected in series between the power supply and the ground terminal. The low temperature region dependent current generation unit 340 is inserted between the connection point of the constant current generation unit 350 and the entire temperature region dependency current generation unit 360 and the power source. These connection points are connected to the current-voltage conversion unit 240. With this connection relationship, an output current I OUT represented by the following equation is output from the connection point to the current-voltage conversion unit 240.
I OUT = I B −I A −I C Expression 4
 また、式4における電流I、IおよびIのそれぞれの値は、レジスタ140の設定値により個別に調整することができる。 Further, the values of the currents I A , I B, and I C in Equation 4 can be individually adjusted by the set value of the register 140.
 図12は、第1の実施の形態における電流と温度との関係の一例を示すグラフである。同図における縦軸は、電流を示し、横軸は温度を示す。同図におけるaは、定電流Iと温度Tとの関係の一例を示すグラフである。同図におけるaに例示するように定電流Iは、温度に依存せず、一定の値である。 FIG. 12 is a graph showing an example of the relationship between current and temperature in the first embodiment. In the figure, the vertical axis represents current, and the horizontal axis represents temperature. A in the figure is a graph showing an example of the relationship between the constant current I A and the temperature T. As illustrated in a in the figure, the constant current I A does not depend on the temperature and is a constant value.
 図12におけるbは、全温度域依存電流Iと温度Tとの関係の一例を示すグラフである。同図におけるbに例示するように、全温度域依存電流Iは、温度Tが高いほど、大きな値となる。なお、同図におけるbの一点鎖線は、定電流Iを示す。定電流Iと全温度域依存電流Iとが一致する温度は、例えば、40度(℃)である。 B in FIG. 12 is a graph showing an example of the relationship between the total temperature range dependent current I B and the temperature T. As illustrated in b in the figure, the entire temperature range dependent current I B is, as the temperature T is high, a large value. Incidentally, one-dot chain line b in the figure shows a constant current I A. Temperature constant current I A and the entire temperature range dependent current I B match, for example, is 40 degrees (° C.).
 図12におけるcは、低温域依存電流Iと温度Tとの関係の一例を示すグラフである。同図におけるcに例示するように、低温域依存電流Iは、所定温度(例えば、40度)よりも低い温度範囲において、測定温度が高いほど小さな値となる。 C in FIG. 12 is a graph showing an example of the relationship between the low temperature range dependent current I C and the temperature T. As illustrated in c in the figure, the low temperature region dependent current I C becomes smaller as the measurement temperature is higher in a temperature range lower than a predetermined temperature (for example, 40 degrees).
 図13は、第1の実施の形態における出力電流と温度との関係の一例を示す図である。同図における縦軸は、出力電流IOUTを示し、横軸は温度Tを示す。式4より、低温域依存電流Iが生成されない40度(℃)以上の高温域においては、出力電流IOUTがI-Iの値となり、その軌跡は、直線となる。この出力電流IOUTは、電流電圧変換部240により、次の式で表される階調電圧VG255に変換される。
  VG255=VDCw+R(I-I)        ・・・式5
上式において、Rは、抵抗241の抵抗値であり、単位は、例えば、オーム(Ω)である。
FIG. 13 is a diagram illustrating an example of the relationship between the output current and the temperature in the first embodiment. In the figure, the vertical axis represents the output current I OUT , and the horizontal axis represents the temperature T. From Equation 4, in the high temperature range of 40 ° C. (° C.) or higher where the low temperature region dependent current I C is not generated, the output current I OUT has a value of I B −I A , and its locus is a straight line. This output current I OUT is converted into a gradation voltage VG255 expressed by the following equation by the current-voltage conversion unit 240.
VG255 = VDCw + R (I B −I A ) Equation 5
In the above formula, R is the resistance value of the resistor 241, and the unit is, for example, ohm (Ω).
 式5より、定電流Iが全温度域依存電流Iよりも大きい場合、電流電圧変換部240へ電流が流入し、階調電圧VG255は、直流電圧VDCwより低い値に低下する。また、定電流Iと全温度域依存電流Iとが等しい場合、階調電圧VG255は、直流電圧VDCwと等しい値となる。また、定電流Iが全温度域依存電流Iよりも小さい場合、電流電圧変換部240から電流が流れ出し、階調電圧VG255は、直流電圧VDCwより高い値に上昇する。定電流Iと全温度域依存電流Iとが等しいときの温度(40度など)を高温域と低温域の境界の温度に設定すれば、その温度を境に温度特性を持つ電流を流入または流出させ、階調電圧VG255に所望の温度特性を持たせることができる。 If the equation 5, a constant current I A is larger than the entire temperature range dependent current I B, the current flows into the current-voltage conversion unit 240, the gradation voltage VG255 is reduced to a value lower than the DC voltage VDCw. Further, if the constant current I A and the entire temperature range dependent current I B are equal, gradation voltage VG255 is a value equal to the DC voltage VDCw. Further, if the constant current I A is smaller than the entire temperature range dependent current I B, a current flows from the current-to-voltage converter 240, the gradation voltage VG255 rises to a higher value than the DC voltage VDCw. By setting the temperature (such as 40 degrees) when a constant current I A and the entire temperature range dependent current I B is equal to the temperature of the boundary of the high temperature region and low temperature region, flowing a current having a temperature characteristic as a boundary the temperature Alternatively, the gradation voltage VG255 can have a desired temperature characteristic.
 そして、式5の両辺を温度で微分した次の式により階調電圧VG255の温度特性が表される。
  ΔVG255/ΔT=R(ΔI/ΔT)       ・・・式6
The temperature characteristic of the gradation voltage VG255 is expressed by the following expression obtained by differentiating both sides of Expression 5 with respect to temperature.
ΔVG255 / ΔT = R (ΔI B / ΔT) ··· Equation 6
 一方、低温域依存電流Iが生成される40度(℃)より低い低温域においては、式4より、出力電流IOUTがI-I-Icの値となり、その軌跡は、曲線となる。この出力電流IOUTは、電流電圧変換部240により、次の式で表される階調電圧VG255に変換される。
  VG255=VDCw+R(I-I-Ic)    ・・・式7
上式において、Rは、抵抗241の抵抗値であり、単位は、例えば、オーム(Ω)である。
On the other hand, in the low temperature range lower than 40 degrees (° C.) where the low temperature region dependent current I C is generated, the output current I OUT becomes the value of I B −I A −Ic according to Equation 4, and the locus is a curve and Become. This output current I OUT is converted into a gradation voltage VG255 expressed by the following equation by the current-voltage conversion unit 240.
VG255 = VDCw + R (I B -I A -Ic) ··· formula 7
In the above formula, R is the resistance value of the resistor 241, and the unit is, for example, ohm (Ω).
 そして、式7の両辺を温度で微分した次の式により階調電圧VG255の温度特性が表される。
  ΔVG255/ΔT=R{(ΔI/ΔT)-(ΔI/T)}…式8
Then, the temperature characteristic of the gradation voltage VG255 is expressed by the following expression obtained by differentiating both sides of Expression 7 with respect to temperature.
ΔVG255 / ΔT = R {(ΔI B / ΔT) − (ΔI C / T)} Expression 8
 式6および式8より、階調電圧VG255の温度特性は、所定温度(40度など)以上の高温域と、その所定温度未満の低温域とで異なるものとなる。この階調電圧VG255と温度との間の関係を示す曲線は、図10に例示した駆動電圧の曲線を上下反転したものと形状が略一致するように設定される。これにより、温度変化に伴う駆動電流の変動を補償して、温度変化に関わらず、駆動電流を一定にし、温度変化に伴う輝度の変動を抑制することができる。 From Equation 6 and Equation 8, the temperature characteristics of the gradation voltage VG255 are different between a high temperature range above a predetermined temperature (such as 40 degrees) and a low temperature range below the predetermined temperature. The curve indicating the relationship between the gradation voltage VG255 and the temperature is set so that the shape thereof substantially coincides with that obtained by vertically inverting the drive voltage curve illustrated in FIG. As a result, it is possible to compensate for fluctuations in the drive current associated with temperature changes, make the drive current constant regardless of temperature changes, and suppress fluctuations in luminance associated with temperature changes.
 なお、レジスタ140の設定値によってIやIの値を変化させることにより、式6や式8の右辺の温度傾斜を調整することができる。 Incidentally, by changing the value of I B and I C by the set value of the register 140, it is possible to adjust the temperature gradient of the right side of Equation 6 and Equation 8.
 図14は、第1の実施の形態における温度補償の方法を説明するための図である。温度補償回路330は、一定の定電流Iと全温度域依存電流Iと低温域依存電流Iとを生成し、式4で表される出力電流IOUTを電流電圧変換部240に供給する。そして、電流電圧変換部240は、出力電流IOUTを、式5または式7で表される階調電圧VG255に変換する。 FIG. 14 is a diagram for explaining a temperature compensation method according to the first embodiment. Temperature compensation circuit 330 generates a constant of the constant current I A and the entire temperature range dependent current I B and the low temperature range dependent current I C, supplying an output current I OUT of the formula 4 to the current-to-voltage conversion unit 240 To do. Then, the current-voltage conversion unit 240 converts the output current I OUT into a gradation voltage VG255 expressed by Equation 5 or Equation 7.
 そして、水平ドライバ170は、階調電圧VGnの画素信号OTmを生成して副画素回路182に供給する。副画素回路182内の駆動トランジスタ185のゲート-ソース間には、階調電圧VGnに逆比例した駆動電圧が印加される。この駆動電圧は、図10に例示した温度特性と略一致するため、温度変化に伴う駆動電流の変動が補償される。これにより、温度変化に伴う輝度の変動を抑制することができる。 Then, the horizontal driver 170 generates the pixel signal OTm having the gradation voltage VGn and supplies it to the sub-pixel circuit 182. A drive voltage inversely proportional to the gradation voltage VGn is applied between the gate and source of the drive transistor 185 in the sub-pixel circuit 182. Since this drive voltage substantially coincides with the temperature characteristics illustrated in FIG. 10, fluctuations in the drive current due to temperature changes are compensated. Thereby, the fluctuation | variation of the brightness accompanying a temperature change can be suppressed.
 ここで、低温域依存電流Iを生成せずに、定電流Iおよび全温度域依存電流Iのみを生成する比較例を想定する。図10に例示したように、所定温度(40度など)を境に、一定輝度に対応するゲート-ソース間電圧の温度特性が異なるのに対し、比較例の構成では、全温度域で温度特性が変わらない。このため、例えば、低温域において温度補償することができなくなり、温度変化に伴って輝度が変動してしまう。 Here, assume a comparative example without generating low temperature range dependent current I C, produces only constant current I A and the total temperature range dependent current I B. As illustrated in FIG. 10, the temperature characteristics of the gate-source voltage corresponding to a constant luminance differ from a predetermined temperature (such as 40 ° C.), whereas in the configuration of the comparative example, the temperature characteristics are in the entire temperature range. Does not change. For this reason, for example, temperature compensation cannot be performed in a low-temperature region, and the luminance varies with a temperature change.
 これに対して、低温域依存電流Iを生成すれば、高温域と低温域とでゲート-ソース間電圧の温度特性を変えることができるため、全温度域において、輝度の変動を抑制することができる。 In contrast, if generating a low temperature range dependent current I C, the gate in the high temperature region and low temperature region - it is possible to change the temperature characteristic of the source voltage, the entire temperature range, to suppress the variation in luminance Can do.
 一般に、有機ELパネルでは、液晶パネルと異なり、パネル自身の低温時の応答速度により、画像の応答速度が律速されることがない。このため、特に有機ELパネルを用いた表示装置に温度補償部300を設けることにより、画像の応答速度を高速にすることができる。 Generally, in the organic EL panel, unlike the liquid crystal panel, the response speed of the image is not limited by the response speed of the panel itself at a low temperature. For this reason, in particular, by providing the temperature compensation unit 300 in a display device using an organic EL panel, the response speed of the image can be increased.
 また、温度ごとの補正値をテーブルに記載しておく方式もあるが、温度補償部300では、テーブルを保持させるメモリ等は不要であるため、そのような方式と比較して低コストかつ小面積で温度補償を行うことができる。 In addition, there is a method of describing correction values for each temperature in a table, but the temperature compensation unit 300 does not require a memory or the like for holding the table, and therefore is lower in cost and smaller in area than such a method. Temperature compensation.
 さらに、温度補償により水平ドライバ170内のアンプの動作振幅が広がるため、チップ内の発熱が生じやすくなる。特に、高温域と比較して低温域で回路が発熱するため、その発熱量が外気による冷却量と相殺されて、パネルの温度が安定する。 Furthermore, since the operation amplitude of the amplifier in the horizontal driver 170 is widened by temperature compensation, heat generation in the chip is likely to occur. In particular, since the circuit generates heat in a low temperature region as compared with the high temperature region, the generated heat amount is offset with the cooling amount by the outside air, and the panel temperature is stabilized.
 [バイアス電圧供給回路]
 図15は、第1の実施の形態におけるバイアス電圧供給回路の一構成例を示す回路図である。このバイアス電圧供給回路310は、BGR回路311と、オペアンプ312と、P型トランジスタ313および316と、N型トランジスタ314と、抵抗315とを備える。P型トランジスタ313、N型トランジスタ314およびP型トランジスタ316として、例えば、MOSトランジスタが用いられる。
[Bias voltage supply circuit]
FIG. 15 is a circuit diagram illustrating a configuration example of the bias voltage supply circuit according to the first embodiment. The bias voltage supply circuit 310 includes a BGR circuit 311, an operational amplifier 312, P- type transistors 313 and 316, an N-type transistor 314, and a resistor 315. As the P-type transistor 313, the N-type transistor 314, and the P-type transistor 316, for example, MOS transistors are used.
 P型トランジスタ313、N型トランジスタ314および抵抗315は、電源と接地端子との間において直列に接続される。また、オペアンプ312の非反転入力端子(+)は、N型トランジスタ314および抵抗315の接続点に接続され、オペアンプ312の出力端子は、N型トランジスタ314のゲートに接続される。 The P-type transistor 313, the N-type transistor 314, and the resistor 315 are connected in series between the power supply and the ground terminal. The non-inverting input terminal (+) of the operational amplifier 312 is connected to the connection point of the N-type transistor 314 and the resistor 315, and the output terminal of the operational amplifier 312 is connected to the gate of the N-type transistor 314.
 また、P型トランジスタ313のゲートは、P型トランジスタ313のドレインとP型トランジスタ316のゲートと定電流生成部350とに共通に接続される。P型トランジスタ316のソースは電源に接続される。 The gate of the P-type transistor 313 is connected in common to the drain of the P-type transistor 313, the gate of the P-type transistor 316, and the constant current generator 350. The source of the P-type transistor 316 is connected to the power source.
 BGR回路311は、温度に依存しない一定の電圧を生成し、オペアンプの反転入力端子(-)に供給するものである。 The BGR circuit 311 generates a constant voltage independent of temperature and supplies it to the inverting input terminal (−) of the operational amplifier.
 上述の構成により、温度に依存しない一定のバイアス電圧Vbが生成され、定電流生成部350に供給される。 With the above configuration, a constant bias voltage Vb independent of temperature is generated and supplied to the constant current generator 350.
 [定電流生成部]
 図16は、第1の実施の形態における定電流生成部350の一構成例を示す回路図である。この定電流生成部350は、P型トランジスタ351と、複数のP型トランジスタ352と、複数のスイッチ353とを備える。
[Constant current generator]
FIG. 16 is a circuit diagram showing a configuration example of the constant current generation unit 350 in the first embodiment. The constant current generator 350 includes a P-type transistor 351, a plurality of P-type transistors 352, and a plurality of switches 353.
 P型トランジスタ351は、電源と、定電流生成部350の出力端子との間に挿入される。スイッチ353は、P型トランジスタ352ごとに設けられ、P型トランジスタ352と、そのトランジスタに対応するスイッチ353とは、電源と出力端子との間において直列に接続される。 The P-type transistor 351 is inserted between the power supply and the output terminal of the constant current generator 350. The switch 353 is provided for each P-type transistor 352, and the P-type transistor 352 and the switch 353 corresponding to the transistor are connected in series between the power supply and the output terminal.
 また、P型トランジスタ351と、複数のP型トランジスタ352とのそれぞれのゲートには、バイアス電圧Vbが印加される。そして、スイッチ353のそれぞれは、対応するP型トランジスタ352と出力端子との間の経路を、レジスタ140の設定値に従って開閉する。 Also, a bias voltage Vb is applied to the gates of the P-type transistor 351 and the plurality of P-type transistors 352. Each of the switches 353 opens and closes the path between the corresponding P-type transistor 352 and the output terminal according to the set value of the register 140.
 上述の構成により、定電流Iが生成される。レジスタ140内の設定値は、定電流Iの調整値を含み、その調整値によりカレントミラー比を変更してIの値を調整することができる。 The construction described above, the constant current I A is generated. Set value in register 140 includes an adjustment value of the constant current I A, it is possible to adjust the value of I A by changing the current mirror ratio by the adjustment value.
 [全温度域依存電流生成部]
 図17は、第1の実施の形態における全温度域依存電流生成部360の一構成例を示す回路図である。この全温度域依存電流生成部360は、オペアンプ361と、P型トランジスタ362および365と、N型トランジスタ363と、抵抗364とを備える。また、全温度域依存電流生成部360は、N型トランジスタ366および367と、複数のスイッチ368と、複数のN型トランジスタ369とを備える。P型トランジスタ362、N型トランジスタ363、P型トランジスタ365、N型トランジスタ366、N型トランジスタ367およびN型トランジスタ369として、例えば、MOSトランジスタが用いられる。
[All temperature range dependent current generator]
FIG. 17 is a circuit diagram showing a configuration example of the entire temperature region dependent current generation unit 360 in the first embodiment. The entire temperature region dependent current generation unit 360 includes an operational amplifier 361, P- type transistors 362 and 365, an N-type transistor 363, and a resistor 364. The total temperature region dependent current generation unit 360 includes N- type transistors 366 and 367, a plurality of switches 368, and a plurality of N-type transistors 369. As the P-type transistor 362, the N-type transistor 363, the P-type transistor 365, the N-type transistor 366, the N-type transistor 367, and the N-type transistor 369, for example, MOS transistors are used.
 P型トランジスタ362、N型トランジスタ363および抵抗364は、電源と接地端子との間において直列に接続される。また、オペアンプ361の非反転入力端子(+)は、N型トランジスタ363および抵抗364の接続点に接続され、オペアンプ361の出力端子は、N型トランジスタ363のゲートに接続される。オペアンプ361の反転入力端子(-)には、測定電圧VTEMPが入力される。 P-type transistor 362, N-type transistor 363 and resistor 364 are connected in series between the power supply and the ground terminal. The non-inverting input terminal (+) of the operational amplifier 361 is connected to the connection point of the N-type transistor 363 and the resistor 364, and the output terminal of the operational amplifier 361 is connected to the gate of the N-type transistor 363. The measurement voltage V TEMP is input to the inverting input terminal (−) of the operational amplifier 361.
 また、P型トランジスタ362のゲートは、P型トランジスタ362自身のドレインとP型トランジスタ365のゲートとに共通に接続される。 The gate of the P-type transistor 362 is connected in common to the drain of the P-type transistor 362 itself and the gate of the P-type transistor 365.
 また、P型トランジスタ365およびN型トランジスタ366は、電源と接地端子との間において直列に接続される。そして、N型トランジスタ366のゲートは、N型トランジスタ366自身のドレインと、N型トランジスタ367のゲートと、N型トランジスタ369のそれぞれのゲートとに接続される。N型トランジスタ367のドレインは、低温域依存電流生成部340との接続点に接続される。 The P-type transistor 365 and the N-type transistor 366 are connected in series between the power supply and the ground terminal. The gate of the N-type transistor 366 is connected to the drain of the N-type transistor 366 itself, the gate of the N-type transistor 367, and the gate of the N-type transistor 369. The drain of the N-type transistor 367 is connected to a connection point with the low temperature region dependent current generation unit 340.
 また、スイッチ368は、N型トランジスタ369ごとに設けられる。スイッチ368と対応するN型トランジスタ369とは、N型トランジスタ367のドレインと接地端子との間において直列に接続される。そして、スイッチ368は、レジスタ140の設定値に従って、N型トランジスタ367のドレインと対応するN型トランジスタ369との間の経路を開閉する。 Further, the switch 368 is provided for each N-type transistor 369. The N-type transistor 369 corresponding to the switch 368 is connected in series between the drain of the N-type transistor 367 and the ground terminal. The switch 368 opens and closes a path between the drain of the N-type transistor 367 and the corresponding N-type transistor 369 according to the set value of the register 140.
 上述の構成により、測定電圧VTEMPに応じた電流がN型トランジスタ363により生成され、その電流が、P型トランジスタ362および365と、N型トランジスタ366および367により複製されて全温度域依存電流Iとして出力される。レジスタ140内の設定値は、全温度域依存電流Iの調整値を含み、その調整値によりカレントミラー比を変更してIの値を調整することができる。 With the above-described configuration, a current corresponding to the measurement voltage V TEMP is generated by the N-type transistor 363, and the current is duplicated by the P- type transistors 362 and 365 and the N- type transistors 366 and 367, so that the entire temperature region dependent current I Output as B. Set value in register 140 includes an adjustment value of the entire temperature range dependent current I B, it is possible to adjust the value of I B by changing the current mirror ratio by the adjustment value.
 [低温域依存電流生成部]
 図18は、第1の実施の形態における低温域依存電流生成部340の一構成例を示す回路図である。この低温域依存電流生成部340は、定電圧源341と、オペアンプ342および343と、P型トランジスタ344および347と、N型トランジスタ345と、抵抗346とを備える。また、低温域依存電流生成部340は、複数のP型トランジスタ348と、複数のスイッチ349とを備える。P型トランジスタ344、N型トランジスタ345、P型トランジスタ347およびP型トランジスタ348として、例えば、MOSトランジスタが用いられる。
[Low temperature region dependent current generator]
FIG. 18 is a circuit diagram illustrating a configuration example of the low-temperature region dependent current generation unit 340 in the first embodiment. The low temperature region dependent current generation unit 340 includes a constant voltage source 341, operational amplifiers 342 and 343, P- type transistors 344 and 347, an N-type transistor 345, and a resistor 346. The low temperature region dependent current generation unit 340 includes a plurality of P-type transistors 348 and a plurality of switches 349. As the P-type transistor 344, the N-type transistor 345, the P-type transistor 347, and the P-type transistor 348, for example, MOS transistors are used.
 定電圧源341は、一定の直流電圧VBENDを生成してオペアンプ342の反転入力端子(-)に入力するものである。この直流電圧VBENDは、定電流Iと全温度域依存電流Iとが一致するときの温度(例えば、40度)において、オペアンプ342の出力が反転するような値に設定される。 The constant voltage source 341 generates a constant DC voltage VB END and inputs it to the inverting input terminal (−) of the operational amplifier 342. The DC voltage VB END, the temperature at which a constant current I A and the entire temperature range dependent current I B match (e.g., 40 degrees), the output of the operational amplifier 342 is set to such a value as to invert.
 また、オペアンプ343の反転入力端子(-)には測定電圧VTEMPが入力される。そして、オペアンプ343の非反転入力端子(+)は、オペアンプ343自身の出力端子と接続される。 Further, the measurement voltage V TEMP is input to the inverting input terminal (−) of the operational amplifier 343. The non-inverting input terminal (+) of the operational amplifier 343 is connected to the output terminal of the operational amplifier 343 itself.
 また、P型トランジスタ344、N型トランジスタ345および抵抗346は、電源と、オペアンプ343の出力端子との間において直列に接続される。オペアンプ342の非反転入力端子(+)は、N型トランジスタ345および抵抗346の接続点に接続され、オペアンプ342の出力端子は、N型トランジスタのゲートに接続される。 The P-type transistor 344, the N-type transistor 345, and the resistor 346 are connected in series between the power supply and the output terminal of the operational amplifier 343. The non-inverting input terminal (+) of the operational amplifier 342 is connected to the connection point of the N-type transistor 345 and the resistor 346, and the output terminal of the operational amplifier 342 is connected to the gate of the N-type transistor.
 P型トランジスタ344のドレインは、P型トランジスタ344および347のゲートと、P型トランジスタ348のそれぞれのゲートとに接続される。P型トランジスタ347は、電源と、低温域依存電流生成部340の出力端子との間に挿入される。 The drain of the P-type transistor 344 is connected to the gates of the P- type transistors 344 and 347 and the respective gates of the P-type transistor 348. The P-type transistor 347 is inserted between the power supply and the output terminal of the low temperature region dependent current generation unit 340.
 また、スイッチ349は、P型トランジスタ348ごとに設けられる。P型トランジスタ348と、対応するスイッチ349とは、電源と出力端子との間において直列に接続される。スイッチ349のそれぞれは、レジスタ140の設定値に従って、対応するP型トランジスタ348と出力端子との間の経路を開閉する。 Further, the switch 349 is provided for each P-type transistor 348. The P-type transistor 348 and the corresponding switch 349 are connected in series between the power supply and the output terminal. Each of the switches 349 opens and closes a path between the corresponding P-type transistor 348 and the output terminal according to the set value of the register 140.
 上述の構成により、オペアンプ343は、測定電圧VTEMPに応じた電圧VBを出力する。その電圧VBが、所定温度(40度など)に対応する値以上(すなわち、高温域)の場合にオペアンプ342は、ローレベルを出力し、低温域依存電流Iは出力されない。一方、電圧VBが、所定温度(40度など)に対応する値より低い(すなわち、低温域)の場合にオペアンプ342は、電圧VBに応じたハイレベルを出力し、そのレベルに応じた電流がN型トランジスタ345で生成される。その電流は、P型トランジスタ344、347などで複製され、低温域依存電流Iとして出力される。 With the above configuration, the operational amplifier 343 outputs the voltage VB corresponding to the measurement voltage V TEMP . The voltage VB is above the value corresponding to a predetermined temperature (such as 40 degrees) (i.e., high temperature range) operational amplifier 342 in the case of, it outputs a low level, the low temperature region dependent current I C is not outputted. On the other hand, when the voltage VB is lower than a value corresponding to a predetermined temperature (such as 40 degrees) (that is, a low temperature region), the operational amplifier 342 outputs a high level corresponding to the voltage VB, and a current corresponding to the level is It is generated by the N-type transistor 345. Its current is replicated in such P-type transistors 344,347, it is outputted as a low-temperature range dependent current I C.
 また、レジスタ140内の設定値は、低温域依存電流Iの調整値を含み、その調整値によりカレントミラー比を変更してIの値を調整することができる。 The set value in the register 140 includes an adjustment value of the low temperature region dependent current I C , and the value of I C can be adjusted by changing the current mirror ratio by the adjustment value.
 図19は、第1の実施の形態における設定値ごとの階調電圧と温度との関係の一例を示すグラフである。同図における縦軸は、階調電圧VG255を示し、横軸は、温度Tを示す。また、白丸は、比較的高い輝度で発光させるための設定値1をレジスタ140に保持させた場合の階調電圧VG255をプロットしたものである。×印は、比較的低い輝度で発光させるための設定値3をレジスタ140に保持させた場合の階調電圧VG255をプロットしたものである。黒丸は、設定値1と設定値3との間の輝度で発光させるための設定値2をレジスタ140に保持させた場合の階調電圧VG255をプロットしたものである。 FIG. 19 is a graph showing an example of the relationship between the gradation voltage and the temperature for each set value in the first embodiment. In the drawing, the vertical axis indicates the gradation voltage VG255, and the horizontal axis indicates the temperature T. The white circle is a plot of the gradation voltage VG255 when the register 140 holds the setting value 1 for emitting light with relatively high luminance. The x mark plots the gradation voltage VG255 when the register 140 holds the setting value 3 for emitting light with a relatively low luminance. The black circle is a plot of the gradation voltage VG255 when the register 140 holds the setting value 2 for emitting light at a luminance between the setting value 1 and the setting value 3.
 図19に例示するように、階調電圧VG255を低くするほど、輝度を高くすることができる。また、階調電圧VG255の軌跡は、直線ではなく、所定温度(40度など)を境に傾きが変化する。仮に、一点鎖線のように、一定の傾きの階調電圧VG255を供給すると、低温域において、電圧が不足し、階調情報の示す値よりも輝度が低くなってしまう。 As illustrated in FIG. 19, the luminance can be increased as the gradation voltage VG255 is decreased. Further, the locus of the gradation voltage VG255 is not a straight line, but the slope changes at a predetermined temperature (such as 40 degrees). If the gradation voltage VG255 having a constant slope is supplied as shown by the alternate long and short dash line, the voltage becomes insufficient in the low temperature range, and the luminance becomes lower than the value indicated by the gradation information.
 これに対して、表示装置100では、図10に例示したように、低温域と高温域とで温度特性の異なる出力電流IOUTを階調電圧VG255に変換しているため、温度変化に伴う輝度の変動を抑制することができる。 On the other hand, in the display device 100, as illustrated in FIG. 10, since the output current I OUT having different temperature characteristics in the low temperature region and the high temperature region is converted into the gradation voltage VG255, the luminance accompanying the temperature change. Fluctuations can be suppressed.
 図20は、第1の実施の形態における設定値ごとのカソード電流と温度との関係の一例を示すグラフである。同図における縦軸は、発光素子186のカソード電流を示し、横軸は温度Tを示す。また、白丸は、比較的高い輝度で発光させるための設定値1をレジスタ140に保持させた場合のカソード電流をプロットしたものである。×印は、比較的低い輝度で発光させるための設定値3をレジスタ140に保持させた場合のカソード電流をプロットしたものである。黒丸は、設定値1と設定値3との間の輝度で発光させるための設定値2をレジスタ140に保持させた場合のカソード電流をプロットしたものである。 FIG. 20 is a graph showing an example of the relationship between the cathode current and temperature for each set value in the first embodiment. In the drawing, the vertical axis represents the cathode current of the light emitting element 186, and the horizontal axis represents the temperature T. The white circle is a plot of the cathode current when the register 140 holds the set value 1 for emitting light with relatively high luminance. The x mark is a plot of the cathode current when the register 140 holds the set value 3 for emitting light at a relatively low luminance. The black circle is a plot of the cathode current when the register 140 holds the setting value 2 for emitting light at a luminance between the setting value 1 and the setting value 3.
 図20に例示するように、発光素子186のカソード電流は、温度に関わらず、一定の値となる。すなわち、温度変化に伴う輝度の変化が抑制されている。これは、図10に例示したように、発光素子186を駆動する駆動トランジスタ185の温度特性に合わせた出力電流IOUTを生成したためである。 As illustrated in FIG. 20, the cathode current of the light-emitting element 186 has a constant value regardless of the temperature. That is, a change in luminance accompanying a change in temperature is suppressed. This is because the output current I OUT is generated in accordance with the temperature characteristics of the drive transistor 185 that drives the light emitting element 186 as illustrated in FIG.
 [表示装置の動作例]
 図21は、第1の実施の形態における表示装置100の動作の一例を示すフローチャートである。この動作は、例えば、表示装置100が表示データを受信したときに開始される。
[Operation example of display device]
FIG. 21 is a flowchart illustrating an example of the operation of the display device 100 according to the first embodiment. This operation is started, for example, when the display device 100 receives display data.
 温度補償部300は、定電流Iを生成し(ステップS901)、全温度域依存電流Iを生成する(ステップS902)。また、温度補償部300は、低温域依存電流Iも生成して、式4により表される出力電流IOUTを生成する(ステップS903)。そして、電流電圧変換部240は、出力電流IOUTを階調電圧VG255に変換する(ステップS904)。その後段の水平ドライバ170は、画素データに対応する階調電圧VGnを選択して、画素回路に供給する(ステップS905)。 Temperature compensation unit 300 generates a constant current I A (step S901), it generates the entire temperature range dependent current I B (step S902). The temperature compensation unit 300, the low temperature region dependent current I C be generated, generates an output current I OUT represented by the formula 4 (step S903). Then, the current-voltage conversion unit 240 converts the output current I OUT into the gradation voltage VG255 (Step S904). The horizontal driver 170 at the subsequent stage selects the gradation voltage VGn corresponding to the pixel data and supplies it to the pixel circuit (step S905).
 表示装置100は、表示が終了したか否かを判断する(ステップS906)。表示が終了していない場合に(ステップS906:No)、表示装置100は、ステップS905以降を繰り返し実行する。一方、表示が終了した場合に(ステップS906:Yes)、表示装置100は、表示のための動作を終了する。 The display device 100 determines whether the display is finished (step S906). When the display is not completed (step S906: No), the display device 100 repeatedly executes step S905 and subsequent steps. On the other hand, when the display ends (step S906: Yes), the display device 100 ends the operation for display.
 このように、本技術の第1の実施の形態では、全温度域依存電流Iと低温域依存電流Iとの差を用いて低温域と高温域とで温度特性の異なる電圧を生成するため、低温域と高温域とで異なる温度特性を有するトランジスタに一定電流を出力させることができる。これにより、発光素子186を一定の輝度で発光させることができる。 Thus, in the first embodiment of the present technology, to produce a different voltage temperature characteristics at a low temperature region and high temperature region by using the difference between the total temperature range dependent current I B and the low temperature range dependent current I C Therefore, a constant current can be output to a transistor having different temperature characteristics in a low temperature region and a high temperature region. Accordingly, the light emitting element 186 can emit light with a certain luminance.
 [変形例]
 上述の第1の実施の形態では、温度補償部300が全温度域依存電流Iおよび低温域依存電流Iとともに定電流Iを生成して、その定電流Iにより出力電流IOUTのレベルを調整していた。しかし、全温度域依存電流Iおよび低温域依存電流Iのみで、適切なレベルの出力電流IOUTが得られる場合には、定電流Iを生成する必要はない。この第1の実施の形態の変形例の温度補償部300は、全温度域依存電流Iおよび低温域依存電流Iのみを生成する点において第1の実施の形態と異なる。
[Modification]
In the first embodiment described above, the temperature compensation unit 300 together with the entire temperature range dependent current I B and the low temperature region dependent current I C and generates a constant current I A, the output current I OUT by the constant current I A The level was adjusted. However, only entire temperature range dependent current I B and the low temperature region dependent current I C, when the output current I OUT of the appropriate level is obtained, it is not necessary to generate a constant current I A. Temperature compensating unit 300 of a modification of the first embodiment is different from the first embodiment in that only generate the entire temperature range dependent current I B and the low temperature region dependent current I C.
 図22は、第1の実施の形態の変形例における温度補償部300の一構成例を示す回路図である。この第2の実施の形態の温度補償部300は、バイアス電圧供給回路310および定電流生成部350を備えない点において第1の実施の形態と異なる。 FIG. 22 is a circuit diagram showing a configuration example of the temperature compensation unit 300 in the modification of the first embodiment. The temperature compensation unit 300 according to the second embodiment is different from the first embodiment in that the bias voltage supply circuit 310 and the constant current generation unit 350 are not provided.
 このように、本技術の第1の実施の形態の変形例によれば、全温度域依存電流Iおよび低温域依存電流Iのみから出力電流IOUTを生成するため、バイアス電圧供給回路310および定電流生成部350を設ける必要がなくなる。これにより、第1の実施の形態と比較して回路規模を小さくすることができる。 Thus, according to a modification of the first embodiment of the present technology, for generating an output current I OUT from only entire temperature range dependent current I B and the low temperature region dependent current I C, the bias voltage supply circuit 310 And it is not necessary to provide the constant current generator 350. Thereby, the circuit scale can be reduced as compared with the first embodiment.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、BGR回路311の外部に温度センサ320を設けていたが、BGR回路311内の抵抗の抵抗値は温度に応じて変化するため、この抵抗を温度センサの代わりに用いることができる。この第2の実施の形態の温度補償部300は、BGR回路内の抵抗により、温度に応じた測定電圧VTEMPを生成する点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the temperature sensor 320 is provided outside the BGR circuit 311. However, since the resistance value of the resistor in the BGR circuit 311 changes according to the temperature, this resistance is used instead of the temperature sensor. Can be used. The temperature compensation unit 300 of the second embodiment is different from the first embodiment in that the measurement voltage V TEMP corresponding to the temperature is generated by the resistance in the BGR circuit.
 図23は、第2の実施の形態における温度補償部300の一構成例を示す回路図である。この第2の実施の形態の温度補償部300は、BGR回路410および温度補償回路420を備える。また、温度補償回路420は、電圧電流変換部430、低温域依存電流生成部440および全温度域依存電流生成部450を備える。 FIG. 23 is a circuit diagram showing a configuration example of the temperature compensation unit 300 according to the second embodiment. The temperature compensation unit 300 of the second embodiment includes a BGR circuit 410 and a temperature compensation circuit 420. The temperature compensation circuit 420 includes a voltage / current converter 430, a low temperature region dependent current generator 440, and an entire temperature region dependent current generator 450.
 BGR回路410は、一定の参照電圧BGROUTと、温度に応じた測定電圧VTEMPとを生成して電圧電流変換部430に供給するものである。 The BGR circuit 410 generates a constant reference voltage BGR OUT and a measurement voltage V TEMP corresponding to the temperature and supplies it to the voltage / current converter 430.
 電圧電流変換部430は、参照電圧BGROUTと測定電圧VTEMPとの差を一対の電流からなる差動信号に変換するものである。この電圧電流変換部430は、差動信号を低温域依存電流生成部440および全温度域依存電流生成部450に供給する。 The voltage-current converter 430 converts the difference between the reference voltage BGR OUT and the measurement voltage V TEMP into a differential signal composed of a pair of currents. The voltage / current converter 430 supplies the differential signal to the low temperature region dependent current generator 440 and the entire temperature region dependent current generator 450.
 低温域依存電流生成部440は、差動信号から低温域依存電流Iを生成するものである。全温度域依存電流生成部450は、差動信号から全温度域依存電流Iを生成するものである。これらの差電流が出力電流IOUTとして電流電圧変換部240に出力される。 Low temperature range dependent current generator 440 is for generating a low temperature range dependent current I C from the differential signals. Entire temperature range dependent current generator 450 is for generating the entire temperature range dependent current I B from the differential signals. These difference currents are output to the current-voltage converter 240 as the output current I OUT .
 この第2の実施の形態の温度補償部300では、全温度域依存電流Iと低温域依存電流Iとを個別に調整することはできないが、適切な輝度で発光させるのに支障がないのであれば、第1の実施の形態よりも簡易な上述の回路を用いることができる。 In this second embodiment the temperature compensation unit 300, and can not be adjusted and the total temperature range dependent current I B and the low temperature range dependent current I C individually, there is no hindrance to emit light at an appropriate luminance In this case, the above-described circuit that is simpler than that of the first embodiment can be used.
 [BGR回路の構成例]
 図24は、第2の実施の形態におけるBGR回路410の一構成例を示す回路図である。このBGR回路410は、P型トランジスタ411と、抵抗412、413、418および415と、バイポーラトランジスタ414および416と、オペアンプ417とを備える。P型トランジスタ411として、例えば、MOSトランジスタが用いられる。また、バイポーラトランジスタ414および416として、例えば、npn型が用いられる。
[Configuration example of BGR circuit]
FIG. 24 is a circuit diagram showing a configuration example of the BGR circuit 410 according to the second embodiment. The BGR circuit 410 includes a P-type transistor 411, resistors 412, 413, 418 and 415, bipolar transistors 414 and 416, and an operational amplifier 417. For example, a MOS transistor is used as the P-type transistor 411. As the bipolar transistors 414 and 416, for example, an npn type is used.
 P型トランジスタ411、抵抗412、抵抗413、バイポーラトランジスタ414、および、抵抗418は、電源と接地端子との間において直列に接続される。バイポーラトランジスタ414および416のそれぞれにおいて、ベースは、コレクタと接続(いわゆる、ダイオード接続)されている。また、抵抗412、抵抗413およびバイポーラトランジスタ414からなる回路と並列に、抵抗415およびバイポーラトランジスタ416からなる回路が接続される。 The P-type transistor 411, the resistor 412, the resistor 413, the bipolar transistor 414, and the resistor 418 are connected in series between the power supply and the ground terminal. In each of bipolar transistors 414 and 416, the base is connected to the collector (so-called diode connection). In addition, a circuit including a resistor 415 and a bipolar transistor 416 is connected in parallel with a circuit including a resistor 412, a resistor 413, and a bipolar transistor 414.
 また、オペアンプ417の反転入力端子(-)は、抵抗412および413の接続点に接続され、非反転入力端子(+)は、抵抗415およびバイポーラトランジスタ416の接続点に接続される。オペアンプ417の出力端子は、P型トランジスタ411のゲートに接続される。 The inverting input terminal (−) of the operational amplifier 417 is connected to the connection point between the resistors 412 and 413, and the non-inverting input terminal (+) is connected to the connection point between the resistor 415 and the bipolar transistor 416. The output terminal of the operational amplifier 417 is connected to the gate of the P-type transistor 411.
 抵抗418の抵抗値は、温度変化に伴って変化する。このため、バイポーラトランジスタ414および抵抗418の接続点の電圧は、温度変化に伴って変化する。例えば、1度(℃)の温度上昇により、電圧は1.6ミリボルト(mV)上昇する。この電圧が測定電圧VTEMPとして、電圧電流変換部430に供給される。 The resistance value of the resistor 418 changes as the temperature changes. For this reason, the voltage at the connection point between the bipolar transistor 414 and the resistor 418 changes with a temperature change. For example, a voltage increase of 1.6 millivolts (mV) with a temperature increase of 1 degree (° C.). This voltage is supplied to the voltage / current converter 430 as the measurement voltage V TEMP .
 また、バイポーラトランジスタ414および416のベース-エミッタ間電圧も温度に依存して変化するが、上述の接続構成により、抵抗415およびバイポーラトランジスタ416の接続点の電圧は、温度に依存しない一定の電圧となる。この電圧が参照電圧BGROUTとして電圧電流変換部430に供給される。 In addition, although the base-emitter voltages of the bipolar transistors 414 and 416 change depending on the temperature, the voltage at the connection point of the resistor 415 and the bipolar transistor 416 is a constant voltage independent of the temperature due to the above-described connection configuration. Become. This voltage is supplied to the voltage / current converter 430 as the reference voltage BGR OUT .
 図25は、第2の実施の形態における電圧電流変換部430および全温度域依存電流生成部450の一構成例を示す回路図である。この電圧電流変換部430は、オペアンプ431および432と、N型トランジスタ433および434と、抵抗435、436および437とを備える。また、全温度域依存電流生成部450は、N型トランジスタ451および452を備える。N型トランジスタ433、434、451および452として、例えば、MOSトランジスタが用いられる。 FIG. 25 is a circuit diagram showing a configuration example of the voltage / current converter 430 and the entire temperature region dependent current generator 450 in the second embodiment. The voltage / current converter 430 includes operational amplifiers 431 and 432, N-type transistors 433 and 434, and resistors 435, 436, and 437. The entire temperature region dependent current generation unit 450 includes N-type transistors 451 and 452. As the N- type transistors 433, 434, 451, and 452, for example, MOS transistors are used.
 N型トランジスタ433および434は、電源と接地端子との間において直列に接続される。 N-type transistors 433 and 434 are connected in series between the power supply and the ground terminal.
 オペアンプ431の反転入力端子(-)には、参照電圧BGROUTが入力される。オペアンプ431の非反転入力端子(+)は、N型トランジスタ433および434の接続点に接続される。また、オペアンプ431の反転出力端子は、N型トランジスタ433のゲートと低温域依存電流生成部440と全温度域依存電流生成部450とに接続される。オペアンプ431の非反転出力端子は、N型トランジスタ434のゲートと低温域依存電流生成部440と全温度域依存電流生成部450とに接続される。 The reference voltage BGR OUT is input to the inverting input terminal (−) of the operational amplifier 431. A non-inverting input terminal (+) of the operational amplifier 431 is connected to a connection point between the N-type transistors 433 and 434. The inverting output terminal of the operational amplifier 431 is connected to the gate of the N-type transistor 433, the low temperature region dependent current generator 440, and the entire temperature region dependent current generator 450. The non-inverting output terminal of the operational amplifier 431 is connected to the gate of the N-type transistor 434, the low temperature region dependent current generator 440, and the entire temperature region dependent current generator 450.
 抵抗437、抵抗435および抵抗436は、N型トランジスタ433および434の接続点と接地端子との間において直列に接続される。 Resistor 437, resistor 435, and resistor 436 are connected in series between the connection point of N-type transistors 433 and 434 and the ground terminal.
 オペアンプ432の反転入力端子(-)には、測定電圧VTEMPが入力される。オペアンプ432の非反転入力端子(+)は、抵抗435および436の接続点に接続される。また、オペアンプ432の出力端子は、抵抗435および437の接続点に接続される。 The measurement voltage V TEMP is input to the inverting input terminal (−) of the operational amplifier 432. A non-inverting input terminal (+) of the operational amplifier 432 is connected to a connection point between the resistors 435 and 436. The output terminal of the operational amplifier 432 is connected to a connection point between the resistors 435 and 437.
 また、全温度域依存電流生成部450において、N型トランジスタ451および452は、電源と接地端子との間において直列に接続される。そして、N型トランジスタ451および452のゲートには、電圧電流変換部430からの差動信号が入力される。また、N型トランジスタ451および452の接続点は、電流電圧変換部240に接続される。 In the entire temperature region dependent current generation unit 450, the N-type transistors 451 and 452 are connected in series between the power supply and the ground terminal. A differential signal from the voltage / current converter 430 is input to the gates of the N-type transistors 451 and 452. The connection point of N-type transistors 451 and 452 is connected to current-voltage conversion unit 240.
 上述の構成により、オペアンプ431は、測定電圧VTEMPに応じた電圧と、参照電圧BGROUTとを比較し、それらの差に応じた差動信号を生成する。そしてオペアンプ431は、その差動信号を低温域依存電流生成部440および全温度域依存電流生成部450に出力する。そして、全温度域依存電流生成部450は、その差動信号から全温度域依存電流Iを生成して出力する。 With the above configuration, the operational amplifier 431 compares the voltage according to the measurement voltage V TEMP with the reference voltage BGR OUT and generates a differential signal according to the difference between them. The operational amplifier 431 outputs the differential signal to the low temperature region dependent current generation unit 440 and the entire temperature region dependency current generation unit 450. The entire temperature range dependent current generator 450 generates and outputs the entire temperature range dependent current I B from the differential signals.
 図26は、第2の実施の形態における低温域依存電流生成部440の一構成例を示す回路図である。この低温域依存電流生成部440は、N型トランジスタ441、442、443、444、445および446を備える。これらのトランジスタとして、例えば、MOSトランジスタが用いられる。 FIG. 26 is a circuit diagram showing a configuration example of the low-temperature region dependent current generation unit 440 in the second embodiment. The low temperature region dependent current generation unit 440 includes N- type transistors 441, 442, 443, 444, 445 and 446. As these transistors, for example, MOS transistors are used.
 N型トランジスタ441および442は、電源と接地端子との間において直列に接続される。N型トランジスタ443のドレインは、N型トランジスタ441および442の接続点に接続され、ソースは接地される。また、N型トランジスタ443のゲートは、N型トランジスタ443自身のドレインとN型トランジスタ445のゲートとに接続される。 N- type transistors 441 and 442 are connected in series between the power supply and the ground terminal. The drain of the N-type transistor 443 is connected to the connection point of the N- type transistors 441 and 442, and the source is grounded. The gate of the N-type transistor 443 is connected to the drain of the N-type transistor 443 itself and the gate of the N-type transistor 445.
 また、N型トランジスタ444および445は、電源と接地端子との間において直列に接続される。N型トランジスタ444のゲートは、N型トランジスタ444自身のドレインとN型トランジスタ446のゲートとに接続される。また、N型トランジスタ446のソースは電源に接続され、ドレインは、電流電圧変換部240に接続される。 N- type transistors 444 and 445 are connected in series between the power supply and the ground terminal. The gate of the N-type transistor 444 is connected to the drain of the N-type transistor 444 itself and the gate of the N-type transistor 446. The source of the N-type transistor 446 is connected to the power supply, and the drain is connected to the current-voltage conversion unit 240.
 上述の構成により、電圧電流変換部430からの差動信号に応じた電流が生成され、その電流が、N型トランジスタ443および445により複製される。そして、その複製された電流のうちソース電流成分が、N型トランジスタ444および446により取り出されて低温域依存電流Iとして出力される。 With the above-described configuration, a current corresponding to the differential signal from the voltage / current conversion unit 430 is generated, and the current is duplicated by the N- type transistors 443 and 445. Then, the source current component among the replicated current is taken out by the N-type transistors 444 and 446 is output as a low-temperature range dependent current I C.
 このように、本技術の第2の実施の形態によれば、BGR回路410が、温度に応じた測定電圧VTEMPを生成するため、温度センサ320をBGR回路410の外部に設ける必要がなくなる。これにより、温度補償部300の回路規模を小さくすることができる。 As described above, according to the second embodiment of the present technology, since the BGR circuit 410 generates the measurement voltage V TEMP corresponding to the temperature, it is not necessary to provide the temperature sensor 320 outside the BGR circuit 410. Thereby, the circuit scale of the temperature compensation unit 300 can be reduced.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 The above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the invention-specific matters in the claims have a corresponding relationship. Similarly, the invention specific matter in the claims and the matter in the embodiment of the present technology having the same name as this have a corresponding relationship. However, the present technology is not limited to the embodiment, and can be embodied by making various modifications to the embodiment without departing from the gist thereof.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
 なお、本技術は以下のような構成もとることができる。
(1)測定された測定温度が所定温度よりも低い温度範囲において前記測定温度が高いほど小さな値の電流を低温域依存電流として生成する低温域依存電流生成部と、
 前記測定温度が高いほど大きな値の電流を全温度域依存電流として生成する全温度域依存電流生成部と、
 前記低温域依存電流生成部および前記全温度域依存電流生成部の接続点からの電流を電圧に変換して階調電圧として供給する電流電圧変換部と、
 前記階調電圧に応じた駆動電流を発光素子に供給して発光させる駆動トランジスタと
を具備する表示装置。
(2)一定の定電流を生成して前記接続点へ供給する定電流生成部をさらに具備する
前記(1)記載の表示装置。
(3)前記定電流の調整値を定電流調整値として保持する保持部をさらに具備し、
 前記定電流生成部は、前記定電流調整値に従って調整した前記定電流を生成する
前記(2)記載の表示装置。
(4)前記保持部は、前記低温域依存電流の調整値を低温域依存電流調整値としてさらに保持し、
 前記低温域依存電流生成部は、前記低温域依存電流調整値に従って調整した前記低温域依存電流を生成する
前記(3)記載の表示装置。
(5)前記保持部は、前記全温度域依存電流の調整値を低温域依存電流調整値としてさらに保持し、
 前記全温度域依存電流生成部は、前記全温度域依存電流調整値に従って調整した前記全温度域依存電流を生成する
前記(3)記載の表示装置。
(6)前記測定温度に応じた測定電圧を供給する温度センサをさらに具備し、
 前記低温域依存電流生成部は、前記測定電圧に応じた電圧と所定電圧との差に応じた電流を前記低温域依存電流として供給し、
 前記全温度域依存電流生成部は、前記測定電圧に応じた電流を前記全温度域依存電流として供給する
前記(1)から(5)のいずれかに記載の表示装置。
(7)前記測定温度に応じた測定電圧と一定の参照電圧とを生成するバンドギャップリファレンス回路と、
 前記測定電圧に応じた電圧と前記参照電圧との差に応じた差動信号を出力する電圧電流変換部と
をさらに具備し、
 前記低温域依存電流生成部は、前記差動信号から前記低温域依存電流を生成し、
 前記全温度域依存電流生成部は、前記差動信号から前記全温度域依存電流を生成する
前記(1)から(5)のいずれかに記載の表示装置。
(8)前記駆動トランジスタは、MOSトランジスタである
前記(1)から(7)のいずれかに記載の表示装置。
(9)測定された測定温度が所定温度よりも低い温度範囲において前記測定温度が高いほど小さな値の電流を低温域依存電流として生成する低温域依存電流生成部と、
 前記測定温度が高いほど大きな値の電流を全温度域依存電流として生成する全温度域依存電流生成部と
を具備する温度補償回路。
(10)測定された測定温度が所定温度よりも低い温度範囲において前記測定温度が高いほど小さな値の電流を低温域依存電流として生成する低温域依存電流生成手順と、
 前記測定温度が高いほど大きな値の電流を全温度域依存電流として生成する全温度域依存電流生成手順と、
 前記低温域依存電流生成部および前記全温度域依存電流生成部の接続点からの電流を電圧に変換して階調電圧として供給する電流電圧変換手順と、
 前記階調電圧に応じた駆動電流を発光素子に供給して発光させる駆動手順と
を具備する表示装置の制御方法。
In addition, this technique can also take the following structures.
(1) a low temperature region dependent current generating unit that generates a current having a smaller value as a low temperature region dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature;
A temperature-dependent current generation unit that generates a current having a larger value as the temperature-dependent current as the measurement temperature is higher;
A current-voltage conversion unit that converts a current from a connection point of the low-temperature region-dependent current generation unit and the all-temperature region-dependent current generation unit into a voltage and supplies it as a gradation voltage; and
A display device comprising: a drive transistor that supplies a light-emitting element with a drive current corresponding to the gradation voltage to emit light.
(2) The display device according to (1), further including a constant current generation unit that generates a constant constant current and supplies the constant constant current to the connection point.
(3) It further comprises a holding unit that holds the adjustment value of the constant current as a constant current adjustment value,
The display device according to (2), wherein the constant current generation unit generates the constant current adjusted according to the constant current adjustment value.
(4) The holding unit further holds the adjustment value of the low temperature region dependent current as a low temperature region dependent current adjustment value,
The display device according to (3), wherein the low temperature region dependent current generation unit generates the low temperature region dependent current adjusted according to the low temperature region dependent current adjustment value.
(5) The holding unit further holds the adjustment value of the entire temperature region dependent current as a low temperature region dependent current adjustment value,
The display device according to (3), wherein the entire temperature region dependent current generation unit generates the entire temperature region dependent current adjusted according to the entire temperature region dependent current adjustment value.
(6) a temperature sensor that supplies a measurement voltage corresponding to the measurement temperature;
The low temperature region dependent current generation unit supplies, as the low temperature region dependent current, a current corresponding to a difference between a voltage corresponding to the measurement voltage and a predetermined voltage,
The display device according to any one of (1) to (5), wherein the entire temperature region dependent current generation unit supplies a current corresponding to the measurement voltage as the entire temperature region dependent current.
(7) a band gap reference circuit that generates a measurement voltage and a constant reference voltage according to the measurement temperature;
A voltage-current converter that outputs a differential signal according to the difference between the voltage according to the measurement voltage and the reference voltage;
The low temperature region dependent current generation unit generates the low temperature region dependent current from the differential signal,
The display device according to any one of (1) to (5), wherein the entire temperature region dependent current generation unit generates the entire temperature region dependent current from the differential signal.
(8) The display device according to any one of (1) to (7), wherein the driving transistor is a MOS transistor.
(9) a low temperature region dependent current generating unit that generates a current having a smaller value as a low temperature region dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature;
A temperature compensation circuit comprising: an entire temperature region dependent current generation unit that generates a current having a larger value as the entire temperature region dependent current as the measurement temperature is higher.
(10) A low temperature region dependent current generation procedure for generating a current having a smaller value as a low temperature region dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature;
A temperature-dependent current generation procedure for generating a current having a larger value as the temperature-dependent current as the measurement temperature is higher,
A current-voltage conversion procedure for converting a current from a connection point of the low-temperature region-dependent current generation unit and the all-temperature region-dependent current generation unit into a voltage and supplying it as a gradation voltage;
A control method for a display device, comprising: a driving procedure for supplying a light-emitting element with a driving current corresponding to the gradation voltage to emit light.
 100 表示装置
 110 データ入力インターフェース
 111 クロック制御部
 112 高速インターフェース
 113 同期信号生成部
 114 シリアルパラレル変換部
 120 タイミングコントローラ
 121 クロックジェネレータ
 122 タイミングジェネレータ
 123 画像処理部
 130 ディスプレイコントローラ
 131 垂直ロジック回路
 132 水平ロジック回路
 140 レジスタ
 150 駆動回路
 160 垂直ドライバ
 170 水平ドライバ
 171 水平アナログセル
 172 DA変換部
 173、176、212、213、214、231、232、233、349、353、368 スイッチ
 174 階調電圧生成部
 175、211、236、242、312、342、343、361、417、431、432 オペアンプ
 180 有機ELパネル
 181 画素回路
 182 副画素回路
 183 選択トランジスタ
 184 コンデンサ
 185 駆動トランジスタ
 186 発光素子
 200 ガンマ補正回路
 210 最大電圧生成部
 215、220、234、241、315、346、364、412、413、415、418、435、436、437 抵抗
 216、235 定電流源
 230 最小電圧生成部
 240 電流電圧変換部
 300 温度補償部
 310 バイアス電圧供給回路
 311、410 BGR回路
 313、316、344、347、348、351、352、362、365、411 P型トランジスタ
 314、345、363、366、367、369、433、434、441、442、443、444、445、446、451、452 N型トランジスタ
 320 温度センサ
 330、420 温度補償回路
 340、440 低温域依存電流生成部
 341 定電圧源
 350 定電流生成部
 360、450 全温度域依存電流生成部
 414、416 バイポーラトランジスタ
 430 電圧電流変換部
DESCRIPTION OF SYMBOLS 100 Display apparatus 110 Data input interface 111 Clock control part 112 High-speed interface 113 Synchronization signal generation part 114 Serial parallel conversion part 120 Timing controller 121 Clock generator 122 Timing generator 123 Image processing part 130 Display controller 131 Vertical logic circuit 132 Horizontal logic circuit 140 Register 150 Driving Circuit 160 Vertical Driver 170 Horizontal Driver 171 Horizontal Analog Cell 172 DA Converter 173, 176, 212, 213, 214, 231, 232, 233, 349, 353, 368 Switch 174 Grayscale Voltage Generator 175, 211, 236 242, 312, 342, 343, 361, 417, 431, 432 operational amplifier 180 organic E Panel 181 Pixel circuit 182 Sub-pixel circuit 183 Selection transistor 184 Capacitor 185 Drive transistor 186 Light-emitting element 200 Gamma correction circuit 210 Maximum voltage generator 215, 220, 234, 241, 315, 346, 364, 412, 413, 415, 418, 435, 436, 437 Resistance 216, 235 Constant current source 230 Minimum voltage generation unit 240 Current voltage conversion unit 300 Temperature compensation unit 310 Bias voltage supply circuit 311, 410 BGR circuit 313, 316, 344, 347, 348, 351, 352, 362, 365, 411 P-type transistor 314, 345, 363, 366, 367, 369, 433, 434, 441, 442, 443, 444, 445, 446, 451, 452 N-type transistor 320 Temperature sensor Sa 330 and 420 the temperature compensation circuit 340 and 440 low temperature range dependent current generator 341 the constant voltage source 350 constant current generation unit 360,450 entire temperature range dependent current generator 414, 416 bipolar transistors 430 voltage current conversion section

Claims (10)

  1.  測定された測定温度が所定温度よりも低い温度範囲において前記測定温度が高いほど小さな値の電流を低温域依存電流として生成する低温域依存電流生成部と、
     前記測定温度が高いほど大きな値の電流を全温度域依存電流として生成する全温度域依存電流生成部と、
     前記低温域依存電流生成部および前記全温度域依存電流生成部の接続点からの電流を電圧に変換して階調電圧として供給する電流電圧変換部と、
     前記階調電圧に応じた駆動電流を発光素子に供給して発光させる駆動トランジスタと
    を具備する表示装置。
    A low temperature region-dependent current generation unit that generates a current having a smaller value as a low temperature region-dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature;
    A temperature-dependent current generation unit that generates a current having a larger value as the temperature-dependent current as the measurement temperature is higher;
    A current-voltage conversion unit that converts a current from a connection point of the low-temperature region-dependent current generation unit and the all-temperature region-dependent current generation unit into a voltage and supplies it as a gradation voltage; and
    A display device comprising: a drive transistor that supplies a light-emitting element with a drive current corresponding to the gradation voltage to emit light.
  2.  一定の定電流を生成して前記接続点へ供給する定電流生成部をさらに具備する
    請求項1記載の表示装置。
    The display device according to claim 1, further comprising a constant current generation unit that generates a constant current and supplies the constant current to the connection point.
  3.  前記定電流の調整値を定電流調整値として保持する保持部をさらに具備し、
     前記定電流生成部は、前記定電流調整値に従って調整した前記定電流を生成する
    請求項2記載の表示装置。
    A holding unit that holds the adjustment value of the constant current as a constant current adjustment value;
    The display device according to claim 2, wherein the constant current generation unit generates the constant current adjusted according to the constant current adjustment value.
  4.  前記保持部は、前記低温域依存電流の調整値を低温域依存電流調整値としてさらに保持し、
     前記低温域依存電流生成部は、前記低温域依存電流調整値に従って調整した前記低温域依存電流を生成する
    請求項3記載の表示装置。
    The holding unit further holds the adjustment value of the low temperature region dependent current as a low temperature region dependent current adjustment value,
    The display device according to claim 3, wherein the low temperature region dependent current generation unit generates the low temperature region dependent current adjusted according to the low temperature region dependent current adjustment value.
  5.  前記保持部は、前記全温度域依存電流の調整値を低温域依存電流調整値としてさらに保持し、
     前記全温度域依存電流生成部は、前記全温度域依存電流調整値に従って調整した前記全温度域依存電流を生成する
    請求項3記載の表示装置。
    The holding unit further holds the adjustment value of the total temperature region dependent current as a low temperature region dependent current adjustment value,
    The display device according to claim 3, wherein the entire temperature region dependent current generation unit generates the entire temperature region dependent current adjusted according to the entire temperature region dependent current adjustment value.
  6.  前記測定温度に応じた測定電圧を供給する温度センサをさらに具備し、
     前記低温域依存電流生成部は、前記測定電圧に応じた電圧と所定電圧との差に応じた電流を前記低温域依存電流として供給し、
     前記全温度域依存電流生成部は、前記測定電圧に応じた電流を前記全温度域依存電流として供給する
    請求項1記載の表示装置。
    A temperature sensor for supplying a measurement voltage corresponding to the measurement temperature;
    The low temperature region dependent current generation unit supplies, as the low temperature region dependent current, a current corresponding to a difference between a voltage corresponding to the measurement voltage and a predetermined voltage,
    The display device according to claim 1, wherein the entire temperature region dependent current generation unit supplies a current corresponding to the measurement voltage as the entire temperature region dependent current.
  7.  前記測定温度に応じた測定電圧と一定の参照電圧とを生成するバンドギャップリファレンス回路と、
     前記測定電圧に応じた電圧と前記参照電圧との差に応じた差動信号を出力する電圧電流変換部と
    をさらに具備し、
     前記低温域依存電流生成部は、前記差動信号から前記低温域依存電流を生成し、
     前記全温度域依存電流生成部は、前記差動信号から前記全温度域依存電流を生成する
    請求項1記載の表示装置。
    A band gap reference circuit that generates a measurement voltage and a constant reference voltage according to the measurement temperature;
    A voltage-current converter that outputs a differential signal according to the difference between the voltage according to the measurement voltage and the reference voltage;
    The low temperature region dependent current generation unit generates the low temperature region dependent current from the differential signal,
    The display device according to claim 1, wherein the entire temperature region dependent current generation unit generates the entire temperature region dependent current from the differential signal.
  8.  前記駆動トランジスタは、MOSトランジスタである
    請求項1記載の表示装置。
    The display device according to claim 1, wherein the driving transistor is a MOS transistor.
  9.  測定された測定温度が所定温度よりも低い温度範囲において前記測定温度が高いほど小さな値の電流を低温域依存電流として生成する低温域依存電流生成部と、
     前記測定温度が高いほど大きな値の電流を全温度域依存電流として生成する全温度域依存電流生成部と
    を具備する温度補償回路。
    A low temperature region-dependent current generation unit that generates a current having a smaller value as a low temperature region-dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature;
    A temperature compensation circuit comprising: an entire temperature region dependent current generation unit that generates a current having a larger value as the entire temperature region dependent current as the measurement temperature is higher.
  10.  測定された測定温度が所定温度よりも低い温度範囲において前記測定温度が高いほど小さな値の電流を低温域依存電流として生成する低温域依存電流生成手順と、
     前記測定温度が高いほど大きな値の電流を全温度域依存電流として生成する全温度域依存電流生成手順と、
     前記低温域依存電流生成部および前記全温度域依存電流生成部の接続点からの電流を電圧に変換して階調電圧として供給する電流電圧変換手順と、
     前記階調電圧に応じた駆動電流を発光素子に供給して発光させる駆動手順と
    を具備する表示装置の制御方法。
    A low temperature region dependent current generation procedure for generating a current having a smaller value as a low temperature region dependent current as the measured temperature is higher in a temperature range where the measured temperature is lower than a predetermined temperature;
    A temperature-dependent current generation procedure for generating a current having a larger value as the temperature-dependent current as the measurement temperature is higher,
    A current-voltage conversion procedure for converting a current from a connection point of the low-temperature region-dependent current generation unit and the all-temperature region-dependent current generation unit into a voltage and supplying it as a gradation voltage;
    A control method for a display device, comprising: a driving procedure for supplying a light-emitting element with a driving current corresponding to the gradation voltage to emit light.
PCT/JP2017/010839 2016-06-28 2017-03-17 Display device, temperature compensation circuit, and display device control method WO2018003204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018524892A JP6785309B2 (en) 2016-06-28 2017-03-17 Display device, temperature compensation circuit, and control method of display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-127299 2016-06-28
JP2016127299 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018003204A1 true WO2018003204A1 (en) 2018-01-04

Family

ID=60787119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010839 WO2018003204A1 (en) 2016-06-28 2017-03-17 Display device, temperature compensation circuit, and display device control method

Country Status (2)

Country Link
JP (1) JP6785309B2 (en)
WO (1) WO2018003204A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599095A (en) * 2020-12-31 2021-04-02 南京国兆光电科技有限公司 OLED micro-display brightness compensation method and system based on temperature feedback

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049678A (en) * 2005-08-08 2007-02-22 Samsung Electro Mech Co Ltd Temperature-compensated bias source circuit
JP2010152566A (en) * 2008-12-24 2010-07-08 Fujitsu Semiconductor Ltd Current producing circuit, current producing method and electronic device
US20110050676A1 (en) * 2009-09-02 2011-03-03 Wook Lee Apparatus for Outputting Gamma Filter Reference Voltage, Display Apparatus, and Method of Driving the Display Apparatus
JP2013114256A (en) * 2011-11-25 2013-06-10 Jaeyeol Park Correction system of display device using transfer function and method for correcting the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049678A (en) * 2005-08-08 2007-02-22 Samsung Electro Mech Co Ltd Temperature-compensated bias source circuit
JP2010152566A (en) * 2008-12-24 2010-07-08 Fujitsu Semiconductor Ltd Current producing circuit, current producing method and electronic device
US20110050676A1 (en) * 2009-09-02 2011-03-03 Wook Lee Apparatus for Outputting Gamma Filter Reference Voltage, Display Apparatus, and Method of Driving the Display Apparatus
JP2013114256A (en) * 2011-11-25 2013-06-10 Jaeyeol Park Correction system of display device using transfer function and method for correcting the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599095A (en) * 2020-12-31 2021-04-02 南京国兆光电科技有限公司 OLED micro-display brightness compensation method and system based on temperature feedback

Also Published As

Publication number Publication date
JPWO2018003204A1 (en) 2019-04-18
JP6785309B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP5416229B2 (en) Electroluminescent display compensated drive signal
US9305492B2 (en) Display device and method for driving the same
US7479937B2 (en) Semiconductor device for driving current load device, and display device
CN109983529B (en) Organic EL display device and method for estimating degradation amount of organic EL element
JP2019028426A (en) Electroluminescent display and method of driving the same
US20160125796A1 (en) Display device and method for driving same
US9361823B2 (en) Display device
KR101325978B1 (en) Driving circuit for organic electroluminescent display device
KR20150035130A (en) Non-linear gamma compensation current mode digital-analog convertor and display device comprising the same
KR20180057752A (en) Display Device
JP2009180765A (en) Display driving device, display apparatus and its driving method
JP2014026256A (en) Apparatus and method for compensating image of display device
KR20020096851A (en) Image display
JP2011508260A (en) Electroluminescent display compensated by analog transistor drive signal
CN109949748B (en) Display data compensation method, display data compensation device and display device
KR102648976B1 (en) Light Emitting Display Device and Driving Method thereof
US10510285B2 (en) Display device and drive method therefor
JP2013061390A (en) Display device
JP2014182346A (en) Gradation voltage generator circuit and display device
KR100663826B1 (en) Display device
JP2014182345A (en) Gradation voltage generator circuit and display device
JP2013222057A (en) Manufacturing method for display device and display device
KR20200057530A (en) Display device
US11626063B2 (en) Drive unit for display device
KR100820719B1 (en) Method of Driving Organic Electroluminescent Display To Compensate Brightness of Bad Pixel thereof and Organic Electroluminescent Display used in the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018524892

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819573

Country of ref document: EP

Kind code of ref document: A1