WO2018001267A1 - 同步信令的映射方法、基站和用户设备 - Google Patents

同步信令的映射方法、基站和用户设备 Download PDF

Info

Publication number
WO2018001267A1
WO2018001267A1 PCT/CN2017/090510 CN2017090510W WO2018001267A1 WO 2018001267 A1 WO2018001267 A1 WO 2018001267A1 CN 2017090510 W CN2017090510 W CN 2017090510W WO 2018001267 A1 WO2018001267 A1 WO 2018001267A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
subcarrier
different
synchronization
subcarrier spacing
Prior art date
Application number
PCT/CN2017/090510
Other languages
English (en)
French (fr)
Inventor
刘仁茂
常宁娟
Original Assignee
夏普株式会社
刘仁茂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 刘仁茂 filed Critical 夏普株式会社
Publication of WO2018001267A1 publication Critical patent/WO2018001267A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to the field of wireless communication technologies, and more particularly, to a method for generating, mapping, and detecting a base station, a user equipment, and synchronization signaling.
  • NTT DOCOMO proposed a new research project on 5G technology standards (see Non-patent literature: RP-160671) :New SID Proposal: Study on New Radio Access Technology), and approved.
  • the goal of the research project is to develop a new wireless (New Radio: NR) access technology to meet all 5G usage scenarios, requirements and deployment environments.
  • NR mainly has three usage scenarios: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC), and Ultra reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra reliable and low latency communications
  • the standardization of NR is carried out in two phases: the first phase of standardization will be completed in mid-2018; the second phase of standardization will be completed by the end of 2019.
  • the first-stage standard specification is forward-compatible with the second-stage standard specification, while the second-stage standard specification is based on the first-stage standard specification and meets all the requirements of the 5G NR technical standard.
  • a working assumption was reached on the subcarrier spacing of NR, that is, the design assumption based on the subcarrier spacing of 15 kHz.
  • the other subcarrier spacing is 2 n multiples of 15 kHz, such as: 30 kHz, 60 kHz, 120 kHz, etc.
  • time alignment of 1 millisecond is supported in the time domain.
  • different numerology can be multiplexed on the same NR carrier bandwidth.
  • the same NR carrier can be divided into multiple frequency resource groups (FRG), or multiple time-frequency portions exist on the same NR carrier.
  • FSG frequency resource groups
  • Different frequency resource groups (or time-frequency parts) use different numerology.
  • Multiple frequency resource groups (or time-frequency portions) using different numerology can share one synchronization signaling.
  • only one numerology may be used on one NR carrier bandwidth, or only one subcarrier spacing is used on one NR carrier bandwidth.
  • the subcarrier spacing may be 15 kHz, or may be 30 kHz, 60 kHz, or the like. It is also possible to use multiple numerology on one NR carrier bandwidth, that is, to divide one NR carrier bandwidth into multiple frequency resource groups, and different frequency resource groups adopt different subcarrier spacings.
  • the subcarrier spacing used by the frequency resource group carrying the synchronization signaling may be 15 kHz or 30 kHz, 60 kHz, or the like. Therefore, it is necessary to design synchronization signaling for frequency resource groups with different subcarrier spacing.
  • a base station comprising: a generating unit configured to generate a synchronization signal sequence and map the synchronization signal to a corresponding subcarrier and orthogonal frequency division multiplexing OFDM according to a size of the subcarrier spacing And a transmitting unit configured to transmit a corresponding synchronization signal according to a size of the subcarrier spacing.
  • the corresponding synchronization signals occupy the same frequency bandwidth and occupy the same length of time and/or time position.
  • the sequence of synchronization signals for different subcarrier spacings is generated by the same sequence.
  • the lengths of the signal sequences are different for different subcarrier spaced sync signals.
  • the signal sequences have the same length for different subcarrier spaced sync signals.
  • the size of the subcarrier spacing is obtained by detection of the synchronization signal.
  • the synchronization signal only occurs on a particular subcarrier spacing.
  • a user equipment comprising: a detecting unit configured to detect a synchronization signal in a time domain and/or a frequency domain according to a size of a subcarrier interval; and a receiving unit configured to Physical signals are received at the same frequency bandwidth and/or time location.
  • the corresponding synchronization signals occupy the same frequency bandwidth and occupy the same length of time and/or time position.
  • the sequence of synchronization signals for different subcarrier spacing is the same The sequence produced.
  • the lengths of the signal sequences are different for different subcarrier spaced sync signals.
  • the signal sequences have the same length for different subcarrier spaced sync signals.
  • the size of the subcarrier spacing is obtained by detection of the synchronization signal.
  • the synchronization signal only occurs on a particular subcarrier spacing.
  • a method performed by a base station comprising: generating a synchronization signal sequence; mapping a synchronization signal to a corresponding subcarrier and an orthogonal frequency division multiplexing OFDM symbol according to a size of a subcarrier spacing And transmitting a corresponding synchronization signal according to the size of the subcarrier spacing.
  • the corresponding synchronization signals occupy the same frequency bandwidth and occupy the same length of time and/or time position.
  • the sequence of synchronization signals for different subcarrier spacings is generated by the same sequence.
  • the lengths of the signal sequences are different for different subcarrier spaced sync signals.
  • the signal sequences have the same length for different subcarrier spaced sync signals.
  • the size of the subcarrier spacing is obtained by detection of the synchronization signal.
  • the synchronization signal only occurs on a particular subcarrier spacing.
  • a method performed by a user equipment comprising: detecting a synchronization signal in a time domain and/or a frequency domain according to a size of a subcarrier spacing; and at the same frequency bandwidth and/or The physical signal is received at the time position.
  • the corresponding synchronization signals occupy the same frequency bandwidth and occupy the same length of time and/or time position.
  • the sequence of synchronization signals for different subcarrier spacings is generated by the same sequence.
  • the lengths of the signal sequences are different for different subcarrier spaced sync signals.
  • the signal sequences have the same length for different subcarrier spaced sync signals.
  • the size of the subcarrier spacing is obtained by detection of the synchronization signal.
  • the synchronization signal only occurs on a particular subcarrier spacing.
  • This application simplifies the synchronization process by optimizing the design of the synchronization signaling.
  • FIG. 1 shows a block diagram of a base station in accordance with one embodiment of the present application.
  • FIG. 2 shows a block diagram of a user equipment in accordance with one embodiment of the present application.
  • FIG. 3 shows a block diagram of a frequency domain mapping of synchronization signals at different subcarrier spacings in accordance with an embodiment of the present application.
  • FIG. 4 shows a block diagram of a synchronization signal time domain mapping at different subcarrier spacings in accordance with an embodiment of the present application.
  • FIG. 5 shows a flow chart of a method in accordance with one embodiment of the present application.
  • FIG. 6 shows a flow chart of a method in accordance with another embodiment of the present application.
  • FIG. 1 shows a block diagram of a base station 100 in accordance with an embodiment of the present application.
  • the base station 100 includes a generating unit 110 and a transmitting unit 120.
  • base station 100 may also include other functional units necessary to perform its functions, such as various processors, memories, radio frequency signal processing units, baseband signal processing units, and other physical downlink channel transmission processing units, to name a few.
  • processors such as various processors, memories, radio frequency signal processing units, baseband signal processing units, and other physical downlink channel transmission processing units, to name a few.
  • radio frequency signal processing units such as radio frequency signal processing units
  • baseband signal processing units such as baseband signal processing units
  • other physical downlink channel transmission processing units such as Wi-Fi
  • the generating unit 110 generates a synchronization signal sequence, and maps the synchronization signal to the corresponding subcarrier and Orthogonal Frequency Division Multiplexing (OFDM) symbols according to the size of the subcarrier spacing.
  • the transmitting unit 120 transmits a synchronization signal corresponding thereto according to the size of the subcarrier interval.
  • the corresponding synchronization signals occupy the same frequency bandwidth and occupy the same length of time and/or time position.
  • FIG. 2 shows a block diagram of a user equipment UE 200 in accordance with an embodiment of the present application.
  • the UE 200 includes a detecting unit 210 and a receiving unit 220.
  • the UE 200 may also include other functional units necessary to perform its functions, such as various processors, memories, radio frequency signal processing units, baseband signal processing units, and other physical uplink channel transmission processing units, to name a few.
  • processors such as various processors, memories, radio frequency signal processing units, baseband signal processing units, and other physical uplink channel transmission processing units, to name a few.
  • radio frequency signal processing units such as radio frequency signal processing units, baseband signal processing units, and other physical uplink channel transmission processing units
  • the detecting unit 210 detects the synchronization signal in the time domain and/or the frequency domain according to the size of the subcarrier spacing.
  • Receive unit 220 receives the physical signals over the same frequency bandwidth.
  • the corresponding synchronization signals occupy the same frequency bandwidth and occupy the same length of time and/or time position.
  • the synchronization signal refers to a primary synchronization signal (PSS) and/or a secondary synchronization signal (SSS) or a newly defined synchronization signal of the 5G NR.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • one carrier can be divided into multiple frequency resource groups, and the subcarrier spacing of each frequency resource group can be the same or different.
  • the carrier bandwidth of the 5G NR is 80 MHz
  • the carrier can be divided into four frequency resource groups FRG1, FRG2, FRG3, and FRG4.
  • the subcarrier spacing of FRG1 is 15 kHz
  • the subcarrier spacing of FRG2 is 30 kHz
  • the subcarrier spacing of FRG3 is 60 kHz
  • the subcarrier spacing of FRG4 is 120 kHz.
  • the bandwidth of each of the divided frequency resource groups may be the same or different.
  • Even the entire 5G NR carrier can be an FRG with a subcarrier spacing of 15 kHz or other values.
  • Multiple FRGs under one 5G NR carrier can share the same synchronization signal. That is to say, among a plurality of FRGs under one 5G NR carrier, only one FRG may have a synchronization signal, and the other FRGs do not have a synchronization signal.
  • the FRG with the synchronization signal may have a subcarrier spacing of 15 kHz or other values.
  • the synchronization signals occupy the same frequency bandwidth for different subcarrier spacings and/or different frequency bandwidths FRGs.
  • Figure 3 shows three subcarrier spacing FRGs with the same frequency bandwidth occupied by the synchronization signals, both at 1.08 MHz. It should be noted that the value of the frequency bandwidth of 1.08 MHz is only a schematic, and does not exclude any other values. Since the synchronization signals of different subcarrier intervals occupy the same frequency bandwidth, For different subcarrier spacings, the number of resource elements (Resource Element: RE) included in one OFDM symbol is different on the same frequency bandwidth.
  • RE resource elements
  • one OFDM symbol contains a number of REs of 72; and for a subcarrier spacing of 30 kHz, one OFDM symbol contains a number of REs of 36; for a 60 kHz Subcarrier spacing, the number of REs included in one OFDM symbol is 18. Therefore, a synchronization signal with a sequence length of 72 is transmitted on a subcarrier spacing of 15 kHz, requiring one OFDM symbol, and transmitting on a subcarrier spacing of 30 kHz requires 2 OFDM symbols and is transmitted on a subcarrier spacing of 60 kHz. , then 4 OFDM symbols are needed.
  • the signal sequence can be generated in the same way.
  • its synchronization signal sequence is generated in a frequency domain Zadoff-Chu sequence.
  • the length of the signal sequence may be the same or different.
  • FIG. 4 is a block diagram of a synchronization signal time domain mapping at different subcarrier intervals in accordance with an embodiment of the present application.
  • the frame structure of the existing LTE is taken as an example, that is, there are 10 subframes in one radio frame, and the synchronization signals are located on the 0th subframe and the 5th subframe.
  • the UE can obtain frequency synchronization, symbol and frame synchronization, length of a Cyclic Prefix (CP), and a physical layer cell identity by detecting a synchronization signal.
  • CP Cyclic Prefix
  • the 15 kHz subcarrier spacing For a 15 kHz subcarrier spacing, one subframe has 2 slots, each slot has 7 OFDM symbols; and for a 30 kHz subcarrier spacing, there are 14 OFDM symbols per slot; for a 60 kHz subcarrier spacing There are 28 OFDM symbols per slot. From the time domain, the 15 kHz subcarrier spacing, the length of its OFDM symbol is twice the OFDM symbol length of the subcarrier spacing of 30 kHz, which is four times the OFDM symbol length of the subcarrier spacing of 60 kHz.
  • the OFDM symbol length of one 15 kHz subcarrier spacing corresponds to the OFDM symbol length of two 30 kHz subcarrier spacings, corresponding to the OFDM symbol length of four 60 kHz subcarrier spacings.
  • their synchronization signals will occupy the same length of time and/or time position in the time domain.
  • the primary synchronization signal or the newly designed 5G NR synchronization signal is located in the 0 (or 10) time slot for the subcarrier spacing of 15 kHz.
  • the primary synchronization signal or the newly designed 5G NR synchronization signal will be the same as the 15 kHz subcarrier spacing, at the same time position and/or the same for the same radio frame.
  • the length of time That is, for the subcarrier spacing of 30 kHz, the primary synchronization signal is located in the 0 (or 10) time slot of the 10 and 11 OFDM Symbolically; for a subcarrier spacing of 60 kHz, its primary synchronization signal is located on OFDM symbols 20, 21, 22 and 23 of time slot 0 (or 10).
  • the secondary synchronization signals are also located at the same time position and/or the same length of time of the same radio frame for different subcarrier intervals.
  • their synchronization signals will occupy the same length of time and/or different time positions in the time domain.
  • their synchronization signals will occupy different time lengths and/or the same time position in the time domain.
  • their synchronization signals will occupy different time lengths and/or different time positions in the time domain.
  • the synchronization signals of different subcarrier intervals will occupy a certain length of time and/or a specific time position in the time domain.
  • the sampling frequency is the same.
  • the waveforms of the synchronization signals (or primary synchronization signals) are different for different subcarrier intervals, and therefore, the size of the subcarrier spacing can be obtained by time domain correlation detection of the synchronization signals. That is, the size of the subcarrier spacing can be obtained by detecting the synchronization signal.
  • the synchronization signal occurs only on a certain subcarrier interval, and no synchronization signal occurs in the other subcarrier intervals.
  • the synchronization signal occurs only at sub-carrier spacing of 15 kHz, and synchronization and/or access of other sub-carrier spacing is obtained or configured by FRG of sub-carrier spacing of 15 kHz.
  • FIG. 5 shows a flow chart of a method in accordance with one embodiment of the present application.
  • the method can be performed, for example, by the base station shown in FIG. Specifically, as shown in FIG. 5, method 50 begins at step S510.
  • a synchronization signal sequence is generated.
  • the synchronization signal is mapped onto the corresponding subcarrier and the orthogonal frequency division multiplexing OFDM symbol according to the size of the subcarrier spacing.
  • a corresponding synchronization signal is transmitted according to the size of the subcarrier interval.
  • the corresponding synchronization signals occupy the same frequency bandwidth and occupy the same length of time and/or time position.
  • the sequence of synchronization signals for different subcarrier spacings is generated by the same sequence.
  • the length of the signal sequence can be the same. Can be different.
  • the size of the subcarrier spacing can be obtained by detecting the synchronization signal.
  • the sync signal can only appear on a particular subcarrier spacing.
  • method 50 ends at step S550.
  • FIG. 6 shows a flow chart of a method in accordance with another embodiment of the present application.
  • the method can be performed, for example, by the user equipment shown in FIG. 2. Specifically, as shown in FIG. 6, method 60 begins at step S610.
  • the synchronization signal is detected in the time domain and/or the frequency domain according to the size of the subcarrier spacing.
  • the corresponding synchronization signals occupy the same frequency bandwidth and occupy the same length of time and/or time position.
  • step S630 physical signals are received at the same frequency bandwidth and/or the same length of time and/or time location.
  • the sequence of synchronization signals for different subcarrier spacings is generated by the same sequence.
  • the length of the signal sequence may be the same or different.
  • the size of the subcarrier spacing can be obtained by detecting the synchronization signal.
  • the sync signal can only appear on a particular subcarrier spacing.
  • method 60 ends at step S640.
  • the method of the present application and the apparatus involved have been described above in connection with the preferred embodiments. Those skilled in the art will appreciate that the methods shown above are merely exemplary. The methods of the present application are not limited to the steps and sequences shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that may be developed or developed in the future for base stations, or UEs, and the like.
  • the various logos shown above are merely exemplary and not limiting, and the application is not limited to specific cells as examples of such identifications. Many variations and modifications can be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present application can be implemented by software, hardware, or a combination of both software and hardware.
  • the base station and various components within the user equipment in the above embodiments may be implemented by various devices including, but not limited to, analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, and programmable processing. , Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), and more.
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station refers to a mobile communication data and control switching center having a large transmission power and a relatively large coverage area, including resource allocation scheduling, data reception and transmission, and the like.
  • User equipment means a user mobile terminal, for example, including a mobile phone, a notebook, etc., and a base station or A terminal device that performs wireless communication by a micro base station.
  • the computer program product is a product having a computer readable medium encoded with computer program logic that, when executed on a computing device, provides related operations to implement The above technical solution of the present application.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in this application.
  • Such an arrangement of the present application is typically provided as software, code, and/or other data structures, such as one or more, that are arranged or encoded on a computer readable medium such as an optical medium (eg, CD-ROM), floppy disk, or hard disk.
  • Software or firmware or such a configuration may be installed on the computing device such that one or more processors in the computing device perform the technical solutions described in the embodiments of the present application.
  • each functional module or individual feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by circuitry, typically one or more integrated circuits.
  • Circuitry designed to perform the various functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs), or others.
  • a general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the above general purpose processor or each circuit may be configured by a digital circuit or may be configured by a logic circuit.
  • the present application can also use integrated circuits obtained using the advanced technology.
  • the program running on the device according to the present invention may be a program that causes a computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
  • a program for realizing the functions of the embodiments of the present invention can be recorded on a computer readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, the present invention can also be implemented using these new integrated circuit technologies.

Abstract

本申请提供了一种基站,包括:生成单元,被配置为生成同步信号序列,并根据子载波间隔的大小将同步信号映射到相应的子载波和正交频分复用OFDM符号上;以及发送单元,被配置为根据子载波间隔的大小发送相应的同步信号。其中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。本申请还提供了一种用户设备、以及相应的同步信令的生成、映射和检测的方法。本申请通过对同步信令的设计进行优化,简化了同步过程。

Description

同步信令的映射方法、基站和用户设备 技术领域
本申请涉及无线通信技术领域,更具体地,本申请涉及基站、用户设备和同步信令的生成、映射和检测的方法。
背景技术
2016年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#71次全会上,NTT DOCOMO提出了一个关于5G技术标准的新的研究项目(参见非专利文献:RP-160671:New SID Proposal:Study on New Radio Access Technology),并获批准。该研究项目的目的是开发一个新的无线(New Radio:NR)接入技术以满足5G的所有使用场景、需求和部署环境。NR主要有三个使用场景:增强的移动宽带通信(Enhanced mobile broadband:eMBB)、大规模机器类通信(massive Machine type communication:mMTC)和超可靠低延迟通信(Ultra reliable and low latency communications:URLLC)。按照该研究项目的规划,NR的标准化分二个阶段进行:第一阶段的标准化工作将于2018年中期完成;第二阶段的标准化工作将于2019年底完成。第一阶段的标准规范要前向兼容于第二阶段的标准规范,而第二阶段的标准规范要建立在第一阶段的标准规范之上,并满足5G NR技术标准的所有要求。
2016年5月,在南京举行的3GPP RAN1#85次会议上,就NR的子载波间隔达成一个工作设想(Working assumption),即以15kHz的子载波间隔为基础的设计设想,其它子载波间隔是15kHz的2n倍数,如:30kHz,60kHz,120kHz等等。而且,对于采用15kHz的子载波间隔和大于15kHz的子载波间隔的命理学(numerology),在时域上,支持1毫秒的时间对齐。而且,从网络侧的观点来看,在同一个NR载波带宽上可以复用不同的命理学。即可以将同一个NR载波分成多个频率资源组(Frequency Resource Group:FRG),或说在同一个NR载波上存在多个时频部分。不同的频率资源组(或时频部分)采用不同的命理学。使用不同命理学的多个频率资源组(或时频部分)可以共享一个同步信令。
在实际部署网络时,在一个NR载波带宽上可能只使用一个命理学,或者说在一个NR载波带宽上只采用一种子载波间隔。该子载波间隔可以是15kHz,也可以是30kHz、60kHz等。也可能在一个NR载波带宽上使用多个命理学,即将一个NR载波带宽分成多个频率资源组,不同的频率资源组采用不同的子载波间隔。而承载同步信令的频率资源组采用的子载波间隔可能可以是15kHz,也可以是30kHz、60kHz等。因此,需要为不同子载波间隔的频率资源组设计同步信令。
发明内容
为了简化用户设备(UE)同步过程,需要优化同步信令的设计,以适应不同子载波间隔的频率资源组。
根据本发明的一个方面,提供了一种基站,包括:生成单元,被配置为生成同步信号序列,并根据子载波间隔的大小将同步信号映射到相应的子载波和正交频分复用OFDM符号上;以及发送单元,被配置为根据子载波间隔的大小发送相应的同步信号。其中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
在一个实施例中,针对不同的子载波间隔的同步信号的序列是由相同的序列产生的。
在一个实施例中,对于不同的子载波间隔的同步信号,其信号序列的长度不同。
在一个实施例中,对于不同的子载波间隔的同步信号,其信号序列的长度相同。
在一个实施例中,通过同步信号的检测来获得子载波间隔的大小。
在一个实施例中,同步信号仅在特定子载波间隔上出现。
根据本发明的另一个方面,提供了一种用户设备,包括:检测单元,被配置为根据子载波间隔的大小,在时域和/或频域上检测同步信号;以及接收单元,被配置为在相同的频率带宽和/或时间位置上接收物理信号。其中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
在一个实施例中,针对不同的子载波间隔的同步信号的序列是由相同 的序列产生的。
在一个实施例中,对于不同的子载波间隔的同步信号,其信号序列的长度不同。
在一个实施例中,对于不同的子载波间隔的同步信号,其信号序列的长度相同。
在一个实施例中,通过同步信号的检测来获得子载波间隔的大小。
在一个实施例中,同步信号仅在特定子载波间隔上出现。
根据本发明的另一个方面,提供了一种由基站执行的方法,包括:生成同步信号序列;根据子载波间隔的大小,将同步信号映射到相应的子载波和正交频分复用OFDM符号上;以及根据子载波间隔的大小发送相应的同步信号。其中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
在一个实施例中,针对不同的子载波间隔的同步信号的序列是由相同的序列产生的。
在一个实施例中,对于不同的子载波间隔的同步信号,其信号序列的长度不同。
在一个实施例中,对于不同的子载波间隔的同步信号,其信号序列的长度相同。
在一个实施例中,通过同步信号的检测来获得子载波间隔的大小。
在一个实施例中,同步信号仅在特定子载波间隔上出现。
根据本发明的另一个方面,提供了一种由用户设备执行的方法,包括:根据子载波间隔的大小,在时域和/或频域上检测同步信号;以及在相同的频率带宽和/或时间位置上接收物理信号。其中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
在一个实施例中,针对不同的子载波间隔的同步信号的序列是由相同的序列产生的。
在一个实施例中,对于不同的子载波间隔的同步信号,其信号序列的长度不同。
在一个实施例中,对于不同的子载波间隔的同步信号,其信号序列的长度相同。
在一个实施例中,通过同步信号的检测来获得子载波间隔的大小。
在一个实施例中,同步信号仅在特定子载波间隔上出现。
本申请通过对同步信令的设计进行优化,简化了同步过程。
附图说明
通过下文结合附图的详细描述,本申请的上述和其它特征将会变得更加明显,其中:
图1示出了根据本申请一个实施例的基站的框图。
图2示出了根据本申请一个实施例的用户设备的框图。
图3示出了根据本申请一个实施例的不同子载波间隔下的同步信号频域映射的框图。
图4示出了根据本申请一个实施例的不同子载波间隔下的同步信号时域映射的框图。
图5示出了根据本申请一个实施例的方法的流程图。
图6示出了根据本申请另一个实施例的方法的流程图。
具体实施方式
下面结合附图和具体实施方式对本申请进行详细阐述。应当注意,本申请不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本申请没有直接关联的公知技术的详细描述,以防止对本申请的理解造成混淆。
图1示出了根据本申请实施例的基站100的框图。如图所示,基站100包括生成单元110和发送单元120。本领域技术人员应理解,基站100还可以包括实现其功能所必需的其他功能单元,如各种处理器、存储器、射频信号处理单元、基带信号处理单元和其它物理下行信道发射处理单元等等。然而为了简便,省略了这些公知元件的详细描述。
生成单元110生成同步信号序列,并根据子载波间隔的大小,将同步信号映射到相应的子载波和正交频分复用(Orthogonal Frequency Division Multiplexing:OFDM)符号上。发送单元120根据子载波间隔的大小发送与其相对应的同步信号。
在本实施例中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
图2示出了根据本申请实施例的用户设备UE 200的框图。如图所示,UE 200包括检测单元210和接收单元220。本领域技术人员应理解,UE 200还可以包括实现其功能所必需的其他功能单元,如各种处理器、存储器、射频信号处理单元、基带信号处理单元和其它物理上行信道发射处理单元等等。然而为了简便,省略了这些公知元件的详细描述。
检测单元210根据子载波间隔的大小,在时域和/或频域上检测同步信号。接收单元220在相同的频率带宽上接收物理信号。
在本实施例中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
图3示出了根据本申请实施例的不同子载波间隔下的同步信号频域映射的框图。在本申请中,同步信号指主同步信号(Primary synchronization signal:PSS)和/或辅同步信号(Secondary synchronization signal:SSS)或5G NR新定义的同步信号等。在5G NR系统中,一个载波可以分为多个频率资源组,每个频率资源组的子载波间隔可以相同,也可以不同。例如,5G NR的载波带宽为80MHz,可以将该载波分为4个频率资源组FRG1、FRG2、FRG3和FRG4。其中,FRG1的子载波间隔为15kHz,FRG2的子载波间隔为30kHz,FRG3的子载波间隔为60kHz,FRG4的子载波间隔为120kHz。
备选地,所分的每个频率资源组的带宽可以相同,也可以不同。甚至,整个5G NR载波可以是一个FRG,其子载波间隔可以是15kHz,也可以是其它的数值。一个5G NR载波下的多个FRGs可以共享同一个同步信号。也就是说,在一个5G NR载波下的多个FRGs中,可以只有一个FRG上带有同步信号,其它的FRG上不存在同步信号。而所带有同步信号的FRG,其子载波间隔可以是15kHz,也可以是其它数值。
为了简化5G NR用户设备的同步过程,在本申请中,对于不同子载波间隔和/或不同频率带宽FRGs,其同步信号所占据的频率带宽相同。图3示出了三种子载波间隔的FRG,其同步信号所占据的频率带宽相同,均为1.08MHz。需要注意,频率带宽的数值1.08MHz只是示意,不排除其它任何的数值。由于不同子载波间隔的同步信号占据相同的频率带宽,因此, 对于不同子载波间隔,在相同频率带宽上,一个OFDM符号所包含的资源单元(Resource Element:RE)数不同。例如,在1.08MHz的频率带宽上,对于15kHz的子载波间隔,一个OFDM符号所包含的RE数为72;而对于30kHz的子载波间隔,一个OFDM符号所包含的RE数为36;对于60kHz的子载波间隔,一个OFDM符号所包含的RE数为18。因此,一个序列长为72的同步信号,在15kHz的子载波间隔上发送,需要一个OFDM符号,而在30kHz的子载波间隔上发送,则需要2个OFDM符号,在60kHz的子载波间隔上发送,则需要4个OFDM符号。
对于不同子载波间隔的同步信号,其信号序列的生成方式可以是相同的。例如,其同步信号序列都产生于一个频域的Zadoff-Chu序列。
对于不同子载波间隔的同步信号,其信号序列的长度可以相同,也可以不同。
图4出了根据本申请实施例的不同子载波间隔下的同步信号时域映射的框图。图4中是按现有LTE的帧结构来作为示例的,即在一个无线帧中有10个子帧,同步信号位于0号子帧和5号子帧上。UE通过检测同步信号可以获取频率同步、符号及帧同步、循环前缀(Cyclic Prefix:CP)的长度和小区ID号(Physical layer cell identity)。对于15kHz的子载波间隔,一个子帧有2个时隙,每个时隙有7个OFDM符号;而对于30kHz的子载波间隔,每个时隙有14个OFDM符号;对于60kHz的子载波间隔,每个时隙有28个OFDM符号。从时域上看,15kHz的子载波间隔,其OFDM符号的长度是30kHz的子载波间隔的OFDM符号长度的2倍,是60kHz的子载波间隔的OFDM符号长度的4倍。
也就是说,一个15kHz子载波间隔的OFDM符号长度对应于2个30kHz子载波间隔的OFDM符号长度,对应于4个60kHz子载波间隔的OFDM符号长度。对于不同子载波间隔,其同步信号在时域上将占据相同的时间长度和/或时间位置。如图4所示,在一个无线帧的0(或5)号子帧上,对于15kHz的子载波间隔,其主同步信号或新设计的5G NR同步信号位于0(或10)号时隙的5号OFDM符号上,对于30kHz和60kHz的子载波间隔,其主同步信号或新设计的5G NR同步信号将与15kHz的子载波间隔一样,位于同一无线帧的相同的时间位置和/或相同的时间长度上。即对于30kHz的子载波间隔,其主同步信号位于0(或10)号时隙的10和11号OFDM 符号上;对于60kHz的子载波间隔,其主同步信号位于0(或10)号时隙的20、21、22和23号OFDM符号上。对于辅同步信号而言,对于不同的子载波间隔,其辅同步信号也位于同一无线帧的相同时间位置和/或相同的时间长度上。
备选地,对于不同子载波间隔,其同步信号在时域上将占据相同的时间长度和/或不同的时间位置。
备选地,对于不同子载波间隔,其同步信号在时域上将占据不同的时间长度和/或相同的时间位置。
备选地,对于不同子载波间隔,其同步信号在时域上将占据不同的时间长度和/或不同的时间位置。
备选地,不同子载波间隔的同步信号在时域上将占据特定的时间长度和/或特定的时间位置。
由于不同的子载波间隔的同步信号所占据的频率带宽相同,因此,其采样频率相同。而在时域上,对于不同的子载波间隔,其同步信号(或主同步信号)的波形是不同的,因此,通过同步信号的时域相关检测可以得到子载波间隔的大小。即子载波间隔的大小可以通过检测同步信号而获得。
备选地,在5G NR系统中,只采用某一子载波间隔作为初始接入,即同步信号只在某一子载波间隔上出现,在其它子载波间隔上不出现同步信号。例如,同步信号只在15kHz的子载波间隔出现,其它子载波间隔的同步和/或接入通过15kHz的子载波间隔的FRG获得或配置。
图5示出了根据本申请一个实施例的方法的流程图。该方法例如可以由图1所示的基站来执行。具体地,如图5所示,方法50从步骤S510处开始。
在步骤S520处,生成同步信号序列。
在步骤S530处,根据子载波间隔的大小,将同步信号映射到相应的子载波和正交频分复用OFDM符号上。
在步骤S540处,根据子载波间隔的大小发送相应的同步信号。在本实施例中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
优选地,针对不同的子载波间隔的同步信号的序列是由相同的序列产生的。对于不同的子载波间隔的同步信号,其信号序列的长度可以相同也 可以不同。另外,可以通过同步信号的检测来获得子载波间隔的大小。此外,同步信号可以仅在特定子载波间隔上出现。
最后,方法50在步骤S550处结束。
图6示出了根据本申请另一个实施例的方法的流程图。该方法例如可以由图2所示的用户设备来执行。具体地,如图6所示,方法60从步骤S610处开始。
在步骤S620处,根据子载波间隔的大小,在时域和/或频域上检测同步信号。在本实施例中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
在步骤S630处,在相同的频率带宽和/或相同的时间长度和/或时间位置上接收物理信号。
优选地,针对不同的子载波间隔的同步信号的序列是由相同的序列产生的。对于不同的子载波间隔的同步信号,其信号序列的长度可以相同也可以不同。另外,可以通过同步信号的检测来获得子载波间隔的大小。此外,同步信号可以仅在特定子载波间隔上出现。
最后,方法60在步骤S640处结束。
上文已经结合优选实施例对本申请的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本申请的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本申请并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本申请的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”是指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”是指用户移动终端,例如包括移动电话、笔记本等可以与基站或者 微基站进行无线通信的终端设备。
此外,这里所公开的本申请的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本申请的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本申请实施例所述的操作(方法)。本申请的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本申请实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本申请也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本申请的优选实施例示出了本申请,但是本领域的技术人员将会理解,在不脱离本申请的精神和范围的情况下,可以对本申请进行各种修改、替换和改变。因此,本申请不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。
运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明也可以使用这些新的集成电路技术来实现。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (24)

  1. 一种基站,包括:
    生成单元,被配置为生成同步信号序列,并根据子载波间隔的大小将同步信号映射到相应的子载波和正交频分复用OFDM符号上;以及
    发送单元,被配置为根据子载波间隔的大小发送相应的同步信号;
    其中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
  2. 根据权利要求1所述的基站,其中,针对不同的子载波间隔的同步信号的序列是由相同的序列产生的。
  3. 根据权利要求1所述的基站,其中,对于不同的子载波间隔的同步信号,其信号序列的长度不同。
  4. 根据权利要求1所述的基站,其中,对于不同的子载波间隔的同步信号,其信号序列的长度相同。
  5. 根据权利要求1所述的基站,其中,通过同步信号的检测来获得子载波间隔的大小。
  6. 根据权利要求1所述的基站,其中,同步信号仅在特定子载波间隔上出现。
  7. 一种用户设备,包括:
    检测单元,被配置为根据子载波间隔的大小,在时域和/或频域上检测同步信号;以及
    接收单元,被配置为在相同的频率带宽和/或时间位置上接收物理信号;
    其中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
  8. 根据权利要求7所述的用户设备,其中,针对不同的子载波间隔的同步信号的序列是由相同的序列产生的。
  9. 根据权利要求7所述的用户设备,其中,对于不同的子载波间隔的同步信号,其信号序列的长度不同。
  10. 根据权利要求7所述的用户设备,其中,对于不同的子载波间隔的同步信号,其信号序列的长度相同。
  11. 根据权利要求7所述的用户设备,其中,通过同步信号的检测来获得子载波间隔的大小。
  12. 根据权利要求7所述的用户设备,其中,同步信号仅在特定子载波间隔上出现。
  13. 一种由基站执行的方法,包括:
    生成同步信号序列;
    根据子载波间隔的大小,将同步信号映射到相应的子载波和正交频分复用OFDM符号上;以及
    根据子载波间隔的大小发送相应的同步信号;
    其中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
  14. 根据权利要求13所述的方法,其中,针对不同的子载波间隔的同步信号的序列是由相同的序列产生的。
  15. 根据权利要求13所述的方法,其中,对于不同的子载波间隔的同步信号,其信号序列的长度不同。
  16. 根据权利要求13所述的方法,其中,对于不同的子载波间隔的同步信号,其信号序列的长度相同。
  17. 根据权利要求13所述的方法,其中,通过同步信号的检测来获得子载波间隔的大小。
  18. 根据权利要求13所述的方法,其中,同步信号仅在特定子载波间隔上出现。
  19. 一种由用户设备执行的方法,包括:
    根据子载波间隔的大小,在时域和/或频域上检测同步信号;以及
    在相同的频率带宽和/或时间位置上接收物理信号;
    其中,对于不同的子载波间隔,相应的同步信号所占据的频率带宽相同并且所占据的时间长度和/或时间位置相同。
  20. 根据权利要求19所述的方法,其中,针对不同的子载波间隔的同步信号的序列是由相同的序列产生的。
  21. 根据权利要求19所述的方法,其中,对于不同的子载波间隔的同步信号,其信号序列的长度不同。
  22. 根据权利要求19所述的方法,其中,对于不同的子载波间隔的同 步信号,其信号序列的长度相同。
  23. 根据权利要求19所述的方法,其中,通过同步信号的检测来获得子载波间隔的大小。
  24. 根据权利要求19所述的方法,其中,同步信号仅在特定子载波间隔上出现。
PCT/CN2017/090510 2016-06-29 2017-06-28 同步信令的映射方法、基站和用户设备 WO2018001267A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610494341.8A CN107547463A (zh) 2016-06-29 2016-06-29 同步信令的映射方法、基站和用户设备
CN201610494341.8 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018001267A1 true WO2018001267A1 (zh) 2018-01-04

Family

ID=60785941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090510 WO2018001267A1 (zh) 2016-06-29 2017-06-28 同步信令的映射方法、基站和用户设备

Country Status (2)

Country Link
CN (1) CN107547463A (zh)
WO (1) WO2018001267A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689837B (zh) * 2016-08-05 2019-04-05 北京信威通信技术股份有限公司 一种同步的方法及装置
CN107733545B (zh) * 2016-08-11 2019-10-01 华为技术有限公司 传输信号的方法和装置
WO2019183920A1 (en) * 2018-03-30 2019-10-03 Nokia Shanghai Bell Co., Ltd. Grouping of orthogonal subcarriers
WO2019191898A1 (zh) * 2018-04-03 2019-10-10 Oppo广东移动通信有限公司 免授权频谱的信道传输方法及网络设备、终端
CN110830211A (zh) 2018-08-10 2020-02-21 华为技术有限公司 一种同步信号的传输方法和装置
CN111092701B (zh) 2018-10-24 2021-05-18 华为技术有限公司 同步信号块的传输方法及通信装置
CN117295146A (zh) * 2022-06-17 2023-12-26 华为技术有限公司 同步方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101904125A (zh) * 2007-11-09 2010-12-01 中兴通讯美国公司 用于通信系统的灵活的ofdm/ofdma帧结构
CN103795668A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 一种信号处理方法、基站、终端、及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101904125A (zh) * 2007-11-09 2010-12-01 中兴通讯美国公司 用于通信系统的灵活的ofdm/ofdma帧结构
CN103795668A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 一种信号处理方法、基站、终端、及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Draft Report of 3GPP TSG RAN WG1 #85 v0. 1. 0", DRAFT_MINUTES_REPORT_RANL#85_V010, 3 June 2016 (2016-06-03) *
SHARP: "Scalable numerology for New RAT", R1-165316; 3GPP TSG RAN WG1 MEETING #85, 27 May 2016 (2016-05-27), XP051096182 *

Also Published As

Publication number Publication date
CN107547463A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
US11916813B2 (en) Method and device for indicating sub-band configuration, and method and device for accessing sub-band
WO2018001267A1 (zh) 同步信令的映射方法、基站和用户设备
CN110603873B (zh) 基站装置、终端装置、通信方法以及集成电路
RU2629165C1 (ru) Система и способ передачи сигнала синхронизации
RU2721757C1 (ru) Способ и устройство для передачи информации
CN108476464B (zh) 终端装置、基站装置以及通信方法
CN108476463B (zh) 终端装置、基站装置以及通信方法
WO2017054771A1 (en) Methods and apparatus for decoding dl phy channels in a narrow band system
WO2018082600A1 (zh) 上行发送波形的配置方法、基站和用户设备
CN110050452B (zh) 基站装置、终端装置、通信方法及集成电路
US11889446B2 (en) Method performed by user equipment, and user equipment
JPWO2018199243A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
CN110831226B (zh) 由用户设备执行的方法以及用户设备
JPWO2018199074A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2019504543A (ja) 未ライセンスキャリアのためのアップリンク制御チャネル構成
WO2018126886A1 (zh) 无线信号的频率位置指示方法、基站和用户设备
WO2014113088A1 (en) Systems and methods for generating a discovery signal in a device-to-device or network communication
BR112013019566A2 (pt) Sistema de telecomunicações móvel, método de transmitir dados de terminais móveis,terminal móvel, e, aparelho para transmitir dados de terminais móveis
WO2016112543A1 (zh) 一种传输消息的方法和装置
KR102299133B1 (ko) 방송 신호 송신 방법, 방송 신호 수신 방법, 네트워크 장치, 및 단말 장치
BR112017009534B1 (pt) Método, aparelho e meio legível por computador não transitório
CN111465022B (zh) 一种信号发送、接收方法及设备
CN115884073A (zh) 由用户设备执行的方法以及用户设备
EP3634033B1 (en) Information transmission method and device and information receiving method and device
RU2796259C2 (ru) Способ, выполняемый оборудованием пользователя, и оборудование пользователя

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819264

Country of ref document: EP

Kind code of ref document: A1