CN108476463B - 终端装置、基站装置以及通信方法 - Google Patents

终端装置、基站装置以及通信方法 Download PDF

Info

Publication number
CN108476463B
CN108476463B CN201780004116.4A CN201780004116A CN108476463B CN 108476463 B CN108476463 B CN 108476463B CN 201780004116 A CN201780004116 A CN 201780004116A CN 108476463 B CN108476463 B CN 108476463B
Authority
CN
China
Prior art keywords
cell
iot
lte
channel
downlink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780004116.4A
Other languages
English (en)
Other versions
CN108476463A (zh
Inventor
铃木翔一
相羽立志
高桥宏树
山田升平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN108476463A publication Critical patent/CN108476463A/zh
Application granted granted Critical
Publication of CN108476463B publication Critical patent/CN108476463B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0079Acquisition of downlink reference signals, e.g. detection of cell-ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Abstract

终端装置和基站装置能相互使用下行链路来高效地进行通信。终端装置通过小区搜索来获取与小区的同步,接收至少与(i)NB‑IoT的部署、以及(ii)栅格偏移关联的系统信息,所述栅格偏移是下行链路载波频率从规定间隔的信道栅格的偏移,所述下行链路载波频率是所述NB‑IoT的载波频率。

Description

终端装置、基站装置以及通信方法
技术领域
本发明涉及终端装置、通信方法以及集成电路。
本申请基于2016年1月7日在日本申请的日本专利申请2016-001557号主张优先权,并将其内容援引于此。
背景技术
通过第三代合作伙伴计划(3rd Generation Partnership Project:3GPP),进行蜂窝移动通信的无线接入方式以及无线网络(以下,称为“长期演进(Long TermEvolution:LTE)”或“演进通用陆地无线接入(Evolved Universal Terrestrial RadioAccess:EUTRA)”。)的标准化作业(非专利文献1、2、3)。在LTE中,也将基站装置称为eNodeB(evolved NodeB:演进型节点B),将终端装置称为UE(User Equipment:用户设备)。LTE是使基站装置所覆盖的区域以小区状配置多个的蜂窝通信系统。单个基站装置也可以管理多个小区。
在3GPP中,为了终端装置的成本削减和终端装置的功耗削减,进行NB-IoT(Narrowband-Internet of Things:窄带-物联网)的标准化作业。(非专利文献4)。对于NB-IoT的下行链路,正在研究独立部署(standalone)、带内部署(in-band)、以及保护带部署(guardband)的场景。独立部署是NB-IoT的下行链路不包含于LTE小区的信道带宽的场景。带内部署是NB-IoT的下行链路包含于LTE小区的发送带宽的场景。保护带部署是NB-IoT的下行链路包含于LTE小区的保护带部署的场景。
现有技术文献
非专利文献
非专利文献1:3GPP TS 36.211 V12.7.0(2015-09),25th September,2015.
非专利文献2:3GPP TS 36.212 V12.6.0(2015-09),25th September,2015.
非专利文献3:3GPP TS 36.213 V12.7.0(2015-03),25th September,2015.
非专利文献4:Status Report for WI:NarrowBand IOT,RP-151931,Vodafone,Huawei,Ericsson,Qualcomm,3GPP TSG RAN Meeting#70,Sitges,Spain,7th-10thDecember 2015.
发明内容
发明要解决的问题
本发明提供能使用下行链路与基站装置高效地进行通信的终端装置、与该终端装置通信的基站装置、用于该终端装置的通信方法、用于该基站装置的通信方法、安装于该终端装置的集成电路、以及安装于该基站装置的集成电路。例如,用于该终端装置的通信方法可以包含基于终端装置的高效的NB-IoT小区的小区搜索的方法、或者初始接入的方法。
技术方案
(1)本发明的实施方式采用了以下的方案。即,本发明的第一方案是一种终端装置,其通过小区搜索来获取与小区的同步,接收至少与(i)NB-IoT的部署、以及(ii)栅格偏移关联的系统信息,所述栅格偏移是下行链路载波频率从规定间隔的信道栅格的偏移,所述下行链路载波频率是所述NB-IoT的载波频率。
(2)本发明的第二方案是一种基站装置,其发送作为用于获取与小区的同步的过程的小区搜索用的同步信号,发送至少与(i)NB-IoT的部署、以及(ii)栅格偏移关联的系统信息,所述栅格偏移是下行链路载波频率从规定间隔的信道栅格的偏移,所述下行链路载波频率是所述NB-IoT的载波频率。
(3)本发明的第三方案是用于终端装置的通信方法,其中,通过小区搜索来获取与小区的同步,接收至少与(i)NB-IoT的部署、以及(ii)栅格偏移关联的系统信息,所述栅格偏移是下行链路载波频率从规定间隔的信道栅格的偏移,所述下行链路载波频率是所述NB-IoT的载波频率。
(4)本发明的第四方案是用于基站装置的通信方法,其中,发送作为用于获取与小区的同步的过程的小区搜索用的同步信号,发送至少与(i)NB-IoT的部署、以及(ii)栅格偏移关联的系统信息,所述栅格偏移是下行链路载波频率从规定间隔的信道栅格的偏移,所述下行链路载波频率是所述NB-IoT的载波频率。
有益效果
根据本发明,终端装置以及基站装置能相互使用下行链路来高效地进行通信。
附图说明
图1是本实施方式的无线通信系统的概念图。
图2是表示本实施方式的无线帧的概略构成的图。
图3是表示本实施方式的下行链路时隙的概略构成的图。
图4是表示本实施方式的服务小区的信道带宽以及发送带宽的一个示例的图。
图5是表示本实施方式中的NB-IoT小区的信道带宽设定的一个示例的图。
图6是表示本实施方式中的LTE小区的信道带宽设定{1.4MHz,10MHz,20MHz}的一个示例的图。
图7是表示本实施方式中的LTE小区的信道带宽设定{3MHz,5MHz,15MHz}的一个示例的图。
图8是表示本实施方式的独立部署的场景中的、NB-IoT小区的载波中心频率的一个示例的图。
图9是表示本实施方式的带内部署的场景中的、NB-IoT小区的载波中心频率的一个示例的图。
图10是表示本实施方式的带内部署的场景中的、NB-IoT小区的载波中心频率的一个示例的图。
图11是表示本实施方式中的信道带宽为10MHz或者20MHz的LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(fNB-IoT-fLTE)kHz的图。
图12是表示本实施方式中的信道带宽为10MHz或者20MHz的LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(fNB-IoT-fLTE)kHz的图。
图13是表示本实施方式中的信道带宽为10MHz或者20MHz的LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(fNB-IoT-fLTE)kHz的图。
图14是表示本实施方式中的信道带宽为10MHz或者20MHz的LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(fNB-IoT-fLTE)kHz的图。
图15是表示本实施方式中的信道带宽为3MHz、5MHz或者15MHz的LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(fNB-IoT-fLTE)kHz的图。
图16是表示本实施方式中的信道带宽为3MHz、5MHz或者15MHz的LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(fNB-IoT-fLTE)kHz的图。
图17是表示本实施方式中的信道带宽为3MHz、5MHz或者15MHz的LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(fNB-IoT-fLTE)kHz的图。
图18是表示本实施方式中的信道栅格与能通过该信道栅格检测出的NB-IoT小区所对应的LTE小区的物理资源索引的关系的一个示例的图。
图19是表示本实施方式中的配置于一个物理资源块的CRS/NB-CRS的一个示例的图。
图20是表示本实施方式中的CRS与NB-CRS的关系的一个示例的图。
图21是表示本实施方式中的用于确定NB-CRS的序列的流程的图。
图22是表示本实施方式的终端装置1的构成的概略框图。
图23是表示本实施方式的基站装置3的构成的概略框图。
具体实施方式
以下,对本发明的实施方式进行说明。
LTE(Long Term Evolution:长期演进)(注册商标)和NB-IoT(Narrow BandInternet of Things:窄带物联网)可以定义为不同的RAT(Radio Access Technology:无线接入技术)。NB-IoT可以定义为包含于LTE的技术。
图1是本实施方式的无线通信系统的概念图。在图1中,无线通信系统具备NB终端装置1、LTE终端装置2、以及基站装置3。基站装置3包含NB基站装置3A和LTE基站装置3B。NB基站装置3A和LTE基站装置3B也可以定义为其他装置。基站装置3也可以包含核心网络装置。
NB终端装置1和NB基站装置3A支持NB-IoT。NB终端装置1和NB基站装置3A使用NB-IoT来相互进行通信。LTE终端装置2和LTE基站装置3B支持LTE。LTE终端装置2和LTE基站装置3B使用LTE来相互进行通信。
本实施方式的无线通信系统应用TDD(Time Division Duplex:时分双工)和/或FDD(Frequency Division Duplex:频分双工)。在本实施方式中,为终端装置1设定一个服务小区。也将为终端装置1设定的服务小区称为NB小区。也将为LTE终端装置2设定的服务小区称为LTE小区。
该所设定的一个服务小区也可以是一个辅小区。主小区是进行了初始连接建立(initial connection establishment)过程的服务小区、开始了连接重新建立(connection re-establishment)过程的服务小区、或在切换过程中被指示为主小区的小区。
在下行链路中,将与服务小区对应的载波称为下行链路分量载波(DownlinkComponent Carrier)。在上行链路中,将与服务小区对应的载波称为上行链路分量载波(Uplink Component Carrier)。将下行链路分量载波以及上行链路分量载波统称为分量载波。
本实施方式也可以应用于独立部署(standalone)、保护带部署(guard band)、以及带内部署(in-band)这三个场景。独立部署是NB-IoT的下行链路不包含于LTE小区的信道带宽的场景。保护带部署是NB-IoT的下行链路包含于LTE小区的保护带部署的场景。带内部署是NB-IoT的下行链路包含于LTE小区的发送带宽的场景。例如,LTE小区的保护带部署是包含于LTE小区的信道带宽,但不包含于该LTE小区的发送带宽的频带。
图2是表示本实施方式的无线帧的构成的图。在图2中,横轴为时间轴。图2的无线帧的构成可以应用于NB-IoT和LTE这两方。
时域的各种字段的大小由时间单元Ts=1/(15000·2048)秒的个数来表现。无线帧的长度是Tf=307200·Ts=10ms。各无线帧包含在时域上连续的10个子帧。各子帧的长度是Tsubframe=30720·Ts=1ms。各子帧i包含在时域上连续的两个时隙。在该时域上连续的两个时隙是无线帧内的时隙编号ns为2i的时隙、以及无线帧内的时隙编号ns为2i+1的时隙。各时隙的长度是Tslot=153600·ns=0.5ms。各无线帧包含在时域上连续的10个子帧。各无线帧包含在时域上连续的20个时隙(ns=0,1,……,19)。
以下,对本实施方式的时隙的构成进行说明。图3是表示本实施方式的下行链路时隙的概略构成的图。图3的时隙的构成可以应用于NB-IoT和LTE这两方。在图3中,示出了一个小区的下行链路时隙的构成。在图3中,横轴是时间轴,纵轴是频率轴。在图3中,l是OFDM(orthogonal frequency-division multiplexing:正交频分多路复用)符号编号/索引,k是副载波编号/索引。
通过资源网格来表现在各时隙中发送的物理信号或者物理信道。在下行链路中,通过多个副载波和多个OFDM符号来定义资源网格。将资源网格内的各元素称为资源元素。通过副载波编号/索引k以及OFDM符号编号/索引l来表示资源元素。
按天线端口来定义资源网格。在本实施方式中,针对一个天线端口进行说明。也可以对多个天线端口的每个应用本实施方式。
下行链路时隙在时域上包含多个OFDM符号l(l=0,1,……,NDL symb)。NDL symb表示一个下行链路时隙中所包含的OFDM符号的个数。对于常规CP(normal Cyclic Prefix:常规循环前缀),NDL symb是7。对于扩展CP(extended Cyclic Prefix:扩展循环前缀),NDL symb是6。
下行链路时隙在频域上包含多个副载波k(k=0,1,……,NDL RB×NRB sc)。NDL RB是通过NRB sc的倍数来表现的、针对服务小区的下行链路带宽设定。NRB sc是通过副载波的个数来表现的、频域中的(物理)资源块大小。在本实施方式中,副载波间隔Δf是15kHz,NRB sc是12个副载波。即,在本实施方式中NRB sc是180kHz。
资源块用于表示物理信道向资源元素的映射。资源块定义有虚拟资源块(VRB)和物理资源块(PRB)。物理信道首先映射至虚拟资源块。之后,虚拟资源块映射至物理资源块。根据在时域上NDL symb的连续的OFDM符号、频域上NRB sc的连续的副载波来定义一个物理资源块。因此,一个物理资源块由(NDL symb×NRB sc)个资源元素构成。一个物理资源块在时域上与一个时隙对应。物理资源块在频域上从低频开始按顺序附加编号/索引(0,1,……,NDL RB-1)。
对本实施方式的物理信道以及物理信号进行说明。
在图1中,在从基站装置3B向LTE终端装置2的下行链路的无线通信中,使用以下的下行链路物理信道。下行链路物理信道为了发送从上层输出的信息而被物理层使用。
·PBCH(Physical Broadcast Channel:物理广播信道)
·PCFICH(Physical Control Format Indicator Channel:物理控制格式指示信道)
·PHICH(Physical Hybrid automatic repeat request Indicator Channel:物理混合自动重传请求指示信道)
·PDCCH(Physical Downlink Control Channel:物理下行链路控制信道)
·EPDCCH(Enhanced Physical Downlink Control Channel:增强型物理下行链路控制信道)
·PDSCH(Physical Downlink Shared Channel:物理下行链路共享信道)
·PMCH(Physical Multicast Channel:物理多播信道)
PBCH用于广播在LTE终端装置2共用的主信息块(Master Information Block:MIB、Broadcast Channel:BCH(广播信道))。
PCFICH用于发送指示该PCFICH被发送的子帧中的PDCCH的发送所使用的区域(OFDM符号)的信息。
PHICH用于发送HARQ指示符,该HARQ指示符指示针对基站装置3所接收的上行链路数据(Uplink Shared Channel:UL-SCH)的ACK(Acknowledgement:肯定应答)或NACK(Negative Acknowledgement:否定应答)。
PDCCH以及EPDCCH用于发送下行链路控制信息(Downlink Control Information:DCI)。
PDSCH用于发送下行链路数据(Downlink Shared Channel:DL-SCH)。
PMCH用于发送多播数据(Multicast Channel:MCH)。
在图1中,在从基站装置3B向LTE终端装置2的下行链路的无线通信中,使用以下的下行链路物理信号。下行链路物理信号不用于发送从上层输出的信息,但被物理层使用。
·同步信号(Synchronization signal:SS)
·下行链路参考信号(Downlink Reference Signal:DL RS)
同步信号用于供LTE终端装置2在LTE小区的下行链路中取得频率以及时间的同步。同步信号配置于LTE小区的中心。
下行链路参考信号也可以用于供LTE终端装置2进行LTE小区的下行链路物理信道的传输路径校正。下行链路参考信号用于供LTE终端装置2计算LTE小区的下行链路的信道状态信息。
在本实施方式中,使用以下7种类型的下行链路参考信号。
·CRS(Cell-specific Reference Signal:小区特定参考信号)
·与PDSCH关联的URS(UE-specific Reference Signal:用户装置特定参考信号)
·与EPDCCH关联的DMRS(Demodulation Reference Signal:解调参考信号)
·NZP CSI-RS(Non-Zero Power Chanel State Information-ReferenceSignal:非零功率信道状态信息参考信号)
·ZP CSI-RS(Zero Power Chanel State Information-Reference Signal:零功率信道状态信息参考信号)
·MBSFN RS(Multimedia Broadcast and Multicast Service over SingleFrequency Network Reference signal:单频网络上的多媒体广播/多播服务参考信号)
·PRS(Positioning Reference Signal:定位参考信号)
在图1中,在从基站装置3A向终端装置1的下行链路的无线通信中,使用以下的下行链路物理信道。下行链路物理信道为了发送从上层输出的信息而被物理层使用。
·NB-PBCH(Narrow Band Physical Broadcast Channel:窄带物理广播信道)
·NB-PDCCH(Narrow Band Physical Downlink Control Channel:窄带物理下行链路控制信道)
·NB-PDSCH(Narrow Band Physical Downlink Shared Channel:窄带物理下行链路共享信道)
NB-PBCH用于广播在终端装置1共用的系统信息。
NB-PDCCH用于发送NB-PDSCH的调度中所使用的下行链路控制信息(Narrow BandDownlink Control Information:DCI)。
NB-PDSCH用于发送下行链路数据(Downlink Shared Channel:DL-SCH)。
在图1中,在从基站装置3A向终端装置1的下行链路的无线通信中,使用以下的下行链路物理信号。下行链路物理信号不用于发送从上层输出的信息,但被物理层使用。
·NB-SS(Narrow Band Synchronization Signal:窄带同步信号)
·NB-DL RS(Narrow Band Downlink Reference Signal:窄带下行链路参考信号)
NB-SS用于供终端装置1在NB-IoT小区的下行链路中取得频率以及时间的同步。
NB-DL RS也可以用于供终端装置1进行NB-IoT小区的下行链路物理信道的传输路径校正。NB-DL RS也可以用于供终端装置1计算NB-IoT小区的下行链路的信道状态信息。在此,NB-DL RS用于进行NB-PBCH的传输路径校正。
在带内部署的场景的情况下,CRS包含在NB-IoT小区的发送带宽中。可以将包含于NB-IoT小区的发送带宽的CRS定义为NB-CRS。在独立部署和保护带部署的场景的情况下,NB-CRS也可以包含在NB-IoT小区的发送带宽中。
NB-CRS也可以用于供终端装置1进行NB-IoT小区的下行链路物理信道的传输路径校正。NB-CRS也可以用于供终端装置1计算NB-IoT小区的下行链路的信道状态信息。在此,NB-CRS不用于进行NB-PBCH的传输路径校正。
将下行链路物理信道以及下行链路物理信号统称为下行链路信号。将上行链路物理信道以及上行链路物理信号统称为上行链路信号。将下行链路物理信道以及上行链路物理信道统称为物理信道。将下行链路物理信号以及上行链路物理信号统称为物理信号。
DL-SCH是传输信道。将在媒体接入控制(Medium Access Control:MAC)层所使用的信道称为传输信道。也将在MAC层使用的传输信道的单位称为传输块(transport block:TB)或MAC PDU(Protocol Data Unit:协议数据单元)。在MAC层按传输块来进行HARQ(Hybrid Automatic Repeat reQuest)的控制。传输块为MAC层转发(deliver)至物理层的数据的单位。在物理层,将传输块映射至码字并按码字来进行编码处理。
基站装置3和终端装置1在上层(higher layer)交换(发送/接收)信号。例如,基站装置3和终端装置1可以在无线资源控制(RRC:Radio Resource Control)层发送/接收RRC信令(也称为RRC message:Radio Resource Control message(无线资源控制消息)、RRCinformation:Radio Resource Control information(无线资源控制信息))。此外,基站装置3和终端装置1也可以在媒体接入控制(MAC:Medium Access Control)层发送/接收MACCE(Control Element:控制元素)。在此,也将RRC信令和/或MAC CE称为上层的信号(higherlayer signaling)。
PDSCH用于发送RRC信令以及MAC CE。在此,通过PDSCH从基站装置3发送的RRC信令可以是对小区内的多个终端装置1的共用信令。通过PDSCH从基站装置3发送的RRC信令也可以是对某个终端装置1的专用信令(也称为dedicated signaling或者UE specificsignaling)。也可以使用共用信令对小区内的多个终端装置1、或者使用专用信令对某个终端装置1发送小区特定参数。也可以使用专用信令对某个终端装置1发送UE特定参数。
图4是表示本实施方式的服务小区的信道带宽以及发送带宽的一个示例的图。发送带宽通过作为频域中的物理资源块大小的NRB sc的倍数(multiples)来表现。NB-IoT小区的信道带宽是0.2MHz,发送带宽是1PRB。LTE小区的信道带宽是{1.4MHz,3MHz,5MHz,10MHz,15MHz,20MHz}中的任一个。LTE小区的发送带宽是{6PRB,15PRB,25PRB,50PRB,75PRB,100PRB}中的任一个。LTE小区的最大的发送带宽Nmax,DL RB是100。
图5是表示本实施方式中的NB-IoT小区的信道带宽设定的一个示例的图。图6是表示本实施方式中的LTE小区的信道带宽设定{1.4MHz,10MHz,20MHz}的一个示例的图。图7是表示本实施方式中的LTE小区的信道带宽设定{3MHz,5MHz,15MHz}的一个示例的图。
NB-IoT小区不包含一个未使用的副载波。LTE小区包含一个未使用的副载波。该一个未被格式化的副载波位于LTE小区的中心。除了该一个未被格式化的副载波,定义信道带宽设定{3MHz,5MHz,15MHz}的LTE小区的中心的物理资源块。信道带宽设定{3MHz,5MHz,15MHz}的LTE小区的中心的物理资源块也可以不用于NB-IoT。
LTE小区的载波中心频率fLTE是100kHz的倍数。LTE终端装置2也可以每100kHz来进行LTE的小区搜索。即,LTE的信道栅格(channel raster)是100kHz。LTE的小区搜索是LTE终端装置2获取与LTE小区的时间以及频率同步并且检测LTE小区的PCI(Physical layerCell Identity:物理层小区标识)的过程。LTE终端装置2也可以为了LTE的小区搜索而使用同步信号。LTE的小区搜索是LTE终端装置2获取与LTE小区的时间以及频率同步并且检测LTE小区的PCI(Physical layer Cell Identity)的过程。NB-IoT的小区搜索是终端装置1获取与NB-IoT小区的时间以及频率同步并且检测NB-IoT小区的PCI(Physical layer CellIdentity)的过程。也将PCI称为小区标识符。
也将载波中心频率称为载波频率、中心频率。
图8是表示本实施方式的独立部署的场景中的、NB-IoT小区的载波中心频率的一个示例的图。在独立部署的场景中,NB-IoT小区的载波中心频率fNB-IoT也可以是100kHz的倍数。NB-IoT小区的载波中心频率fNB-IoT也可以通过公式(1)来求出。在此,在公式(1)中,n是正整数。
(数式1)
fNB-IoT=100·n[kHz]
在带内部署的场景中,LTE小区的保护带部署中所包含的NB-IoT小区的载波中心频率也可以不与该LTE小区的物理资源块的中心频率相同。在此,该NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(Channel space)也可以是300kHz的倍数。300kHz是下行链路副载波间隔15kHz和信道栅格100kHz的最小公倍数。由此,该NB-IoT小区的载波中心频率为100kHz的倍数,终端装置1能通过基于100kHz的信道栅格的小区搜索来检测该NB-IoT小区。此外,由于NB-IoT小区的副载波与LTE小区的副载波的间隔为15kHz的倍数,因此能抑制NB-IoT小区的副载波与LTE小区的副载波之间的干扰。但是,在LTE小区的保护带部署中所包含的NB-IoT小区的载波中心频率与该LTE小区的物理资源块的中心频率不同的情况下,需要为了该NB-IoT小区而停止LTE小区的多个物理资源块中的LTE的信道发送。由此,频率利用效率会下降。因此,在以下的本实施方式中,以LTE小区的保护带部署中所包含的NB-IoT小区的载波中心频率与该LTE小区的物理资源块的中心频率相同为前提。
图9以及图10是表示本实施方式的带内部署的场景中的、NB-IoT小区的载波中心频率的一个示例的图。LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的物理资源块的中心频率相同。即,LTE小区的发送带宽中所包含的NB-IoT小区的发送频带与该LTE小区的一个物理资源块的发送频带一致。
信道带宽是10MHz或者20MHz的LTE小区中所包含的NB-IoT小区的载波中心频率通过公式(2)或者公式(3)来求出。信道带宽是3MHz、5MHz、或者15MHz的LTE小区中所包含的NB-IoT小区的载波中心频率也可以通过公式(4)或者公式(5)来求出。在此,公式(2)至公式(5)中,n和m是正整数。
(数式2)
fNB-IoT=100·n-180·m-97.5[kHz]
(数式3)
fNB-IoT=100·n+180·m+97.5[kHz]
(数式4)
fNB-IoT=100·n-180·m-7.5[kHz]
(数式5)
fNB-IoT=100·n+180·m+7.5[kHz]
发送带宽为50、或者100的LTE小区中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(Channel space)是(180·m+97.5)kHz。发送带宽为15、25、或者75的LTE小区中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(Channel space)是(180·m+7.5)kHz。
在保护带部署的场景中,LTE小区的保护带部署中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(Channel space)也可以是300kHz的倍数。300kHz是下行链路副载波间隔15kHz和信道栅格100kHz的最小公倍数。由此,该NB-IoT小区的载波中心频率为100kHz的倍数,终端装置1能通过基于100kHz的信道栅格的小区搜索来检测该NB-IoT小区。此外,由于NB-IoT小区的副载波与LTE小区的副载波的间隔为15kHz的倍数,因此能抑制NB-IoT小区的副载波与LTE小区的副载波之间的干扰。
在保护带部署的场景中,信道带宽是10MHz或者20MHz的LTE小区的保护带部署中所包含的NB-IoT小区的载波中心频率可以通过公式(2)或者公式(3)来求出,并且,信道带宽是3MHz、5MHz或者15MHz的LTE小区的保护带部署中所包含的NB-IoT小区的载波中心频率可以通过公式(4)或者公式(5)来求出。由此,由于NB-IoT小区的副载波与LTE小区的副载波的间隔为15kHz的倍数,因此能抑制NB-IoT小区的副载波与LTE小区的副载波之间的干扰。
但是,100kHz的倍数是载波中心频率的LTE小区的发送带宽中所包含的物理资源块的中心频率不是100kHz的倍数,通过公式(2)至公式(5)的任一个来求出的NB-IoT小区的载波中心频率不是100kHz的倍数。即,终端装置1不能基于100kHz的信道栅格,来检测通过公式(2)至公式(5)中的任一个求出载波中心频率的NB-IoT小区。
图11至图14是表示本实施方式中的信道带宽为10MHz、或者20MHz的LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(fNB-IoT-fLTE)kHz的图。图15至图17是表示本实施方式中的信道带宽为3MHz、5MHz或者15MHz的LTE小区的发送带宽中所包含的NB-IoT小区的载波中心频率与该LTE小区的载波中心频率的差(fNB-IoT-fLTE)kHz的图。在图11至图17中,fraster表示与NB-IoT小区的载波中心频率最接近的100kHz信道栅格。即,在图11至图17中,(fraster-fNB-IoT)kHz表示最接近NB-IoT小区的载波中心频率的100kHz信道栅格与该NB-IoT小区的载波中心频率的差。
例如,在图11中,在NB-IoT小区与信道带宽是20MHz的LTE小区中的物理资源块索引nPRB的物理资源块对应的情况下,(fNB-IoT-fLTE)是-8917.5kHz,fraster是-8900kHz,(fraster-fNB-IoT)是-17.5kHz。
在此,通过对100kHz信道栅格应用“X”kHz的信道栅格偏移(offset),终端装置1能检测(fraster-fNB-IoT)为“X”kHz的NB-IoT小区。在对100kHz信道栅格应用“X”kHz的信道栅格偏移的情况下,终端装置1在(100·n+X)kHz进行小区搜索。在此,n是整数。
例如,通过对100kHz信道栅格应用2.5kHz的信道栅格偏移,终端装置1能检测(fraster-fNB-IoT)为2.5kHz的NB-IoT小区。例如,通过对100kHz信道栅格应用2.5kHz的信道栅格偏移,终端装置1能检测信道带宽是20MHz的LTE小区中的物理资源块索引nPRB∈{4,9,14,19,24,29,34,39,44}的物理资源块所对应的NB-IoT小区。
(fraster-fNB-IoT)为{-47.5,-42.5,-37.5,-32.5,-27.5,-22.5,-17.5,-12.5,-7.5,-2.5,2.5,7.5,12.5,17.5,22.5,27.5,32.5,37.5,42.5,47.5}这20种。通过终端装置1将全部这20种值作为相对于100kHz信道栅格的信道栅格偏移来应用,终端装置1能检测任何信道带宽的LTE小区中的任何物理资源块索引nPRB的物理资源块所对应的NB-IoT小区。将全部这20种值作为相对于100kHz信道栅格的信道栅格偏移来应用与对5kHz信道栅格应用2.5kHz的信道栅格偏移是同义。
但是,存在如下问题:通过终端装置1将全部这20种值作为针对100kHz信道栅格的信道栅格偏移来应用,小区搜索的时间和终端装置1的功耗会增加。
因此,终端装置1也可以基于用于小区搜索的辅助信息(assist information)来进行小区搜索。用于小区搜索的信道栅格也可以至少通过用于该小区搜索的辅助信息来提供。
用于小区搜索的辅助信息也可以经由基站装置3通知给终端装置1。用于小区搜索的辅助信息也可以预先保存(预先设定)在存储器,终端装置1也可以从该存储器获取用于该小区搜索的辅助信息。该存储器可以是终端装置1所具备的存储器、外部的存储器、USIM(Universal Subscriber Identity Module:通用用户识别模块)卡(card)、或者USIM应用程序(application)。
用于小区搜索的辅助信息也可以表示以下的一部分或者全部。用于小区搜索的辅助信息也可以包含表示以下的信息。
(1)信道栅格的间隔(例如,5kHz、100kHz)
(2)信道栅格偏移的值
(3)场景(独立部署、带内部署、保护带部署)
(4)包含NB-IoT小区的LTE小区的信道带宽NDL RB
(5)NB-IoT小区所对应的物理资源块的物理资源块索引nPRB
(6)通过用LTE小区中所包含的NB-IoT小区的载波中心频率除以该LTE小区的载波中心频率而求出的值
(7)通过用LTE小区的载波中心频率除以该LTE小区中所包含的NB-IoT小区的载波中心频率而求出的值
(8)NB-IoT小区的载波中心频率
该(6)也可以通过信道栅格的间隔和信道栅格偏移的值来表现。在此,该信道栅格偏移的值比该信道栅格的间隔小。
可以通过规格书等预先定义用于小区搜索的辅助信息的一部分或者全部。
图18是表示本实施方式中的信道栅格与能通过该信道栅格检测的NB-IoT小区对应的LTE小区的物理资源索引的关系的一个示例的图。例如,在信道栅格的间隔是100kHz、信道栅格偏移的值是-7.5kHz的情况下,终端装置1能检测信道带宽是5MHz的LTE小区的物理资源块索引{2,7}所对应的NB-IoT小区。
根据公式(6)来求出通过间隔是100kHz、信道栅格偏移的值是-7.5kHz的信道栅格所检测出的NB-IoT小区的载波中心频率。
(数式6)
fNB-IoT=100·n-180·5·m-7.5[kHz]
根据公式(7)来求出通过间隔是100kHz、信道栅格偏移的值是7.5kHz的信道栅格所检测出的NB-IoT小区的载波中心频率。
(数式7)
fNB-IoT=100·n+180·5·m+7.5[kHz]
根据公式(8)来求出通过间隔是100kHz、信道栅格偏移的值是-2.5kHz的信道栅格所检测出的NB-IoT小区的载波中心频率。
(数式8)
fNB-IoT=100·n+180·5·m+97.5[kHz]
根据公式(9)来求出通过间隔是100kHz、信道栅格偏移的值是2.5kHz的信道栅格所检测出的NB-IoT小区的载波中心频率。
(数式9)
fNB-IoT=100·n-180·5·m-97.5[kHz]
基站装置3可以将请求用于小区搜索的辅助信息的发送的信息发送至终端装置1。终端装置1可以基于该请求的接收来将用于小区搜索的辅助信息发送至基站装置3。基站装置3可以基于所接收到的用于小区搜索的辅助信息来将用于小区搜索的辅助信息的重新设定用的信息发送至终端装置1。终端装置1可以基于用于该小区搜索的辅助信息的重新设定用的信息来重新设定用于该小区搜索的辅助信息。由此,基站装置3可以适当地重新设定用于小区搜索的辅助信息。
终端装置1可以根据通过小区搜索所检测到的NB-IoT小区的载波中心频率来确定场景(独立部署、带内部署、保护带部署)。例如可以是:终端装置1在NB-IoT小区的载波中心频率是100kHz的倍数的情况下,将场景判断为独立部署。例如也可以是:终端装置1在NB-IoT小区的载波中心频率是100kHz的倍数的情况下,将场景判断为带内部署。
终端装置1可以基于用于NB-IoT小区的检测的信道栅格来确定场景(独立部署、带内部署、保护带部署)。例如可以是:在终端装置1通过第一信道栅格检测到NB-IoT小区的情况下,终端装置1将场景判断为独立部署。在此,第一信道栅格也可以是100kHz。例如也可以是:在终端装置1通过第二信道栅格检测到NB-IoT小区的情况下,终端装置1将场景判断为带内部署。在此,第二信道栅格也可以是(100·n+α)kHz。在此,n是整数,α是比100小的偏移值,是上述(fraster-fNB-IoT)中的一个。
以下,对NB-CRS进行详细说明。
在带内部署的场景中,NB-CRS与LTE小区的CRS相同。
图19是表示本实施方式中的配置于一个物理资源块的CRS/NB-CRS的一个示例的图。CRS/NB-CRS配置于第0个和第(NDL symb-3)个OFDM符号。每1个OFDM符号配置2个CRS。
通过公式(10)来求出CRS/NB-CRS的序列。
(数式10)
rl,ns(m)=1/sqrt(2)·(1-2·c(2m))+j·1/sqrt(2)·(1-2·c(2m+1))
其中
m=0,1,……,2·Nmax,DL RB-1
j是虚数单位。l是OFDM符号的索引。ns是时隙的编号。sqrt(X)是返回X的正平方根的函数。Nmax,DL RB是LTE小区的发送带宽的最大值。c()是伪随机序列。在此,伪随机序列c也可以基于时隙的编号、OFDM符号的索引、以及PCI(Physical layer Cell Identity)来初始化。在此,PCI也可以是LTE小区的PCI或者NB-IoT小区的PCI。
在LTE小区使用的CRS序列也可以是通过公式(10)来求出的序列的一部分或者全部。NB-IoT小区中所使用的CRS序列也可以是通过公式(10)来求出的序列中的一部分(2个)。图20是表示本实施方式中的CRS与NB-CRS的关系的一个示例的图。根据公式(11)来求出通过公式(10)求出的CRS序列中配置于LTE小区的资源元素ak,l的序列。k是副载波的编号。
(数式11)
ak,l=rl,ns(m’)
其中
k=6·n+(v+vshift)mod 6
vshift=NLTE cell ID mod 6
v=0如果p=0
l=0,NDL symb-3如果p=0
m’=n+Nmax,DL RB-NDL RB
n=0,1,……,2·NDL RB-1
NLTE cell ID是LTE小区的PCI。p是发送CRS的发送天线端口的索引。NDL RB是LTE小区的发送带宽。NDL symb是一个时隙中所包含的OFDM符号数量。X mod Y是返回X除以Y时得到的余数的函数。
在带内部署的场景中,通过公式(10)来求出的CRS序列中NB-IoT小区的配置于资源元素a’k,l的序列通过公式(12)来求出。
(数式12)
a’k,l=rl,ns(m”)
其中
k=6·n+(v+v’shift)mod 6
v’shift=NNB-IoTcell ID mod 6
v=0如果p=0
l=0,NDL symb-3如果p=0
m”n+β
n=0,1
NNB-IoT cell ID是NB-IoT小区的PCI。β是用于供终端装置1确定NB-CRS序列的偏移值。终端装置1可以基于NB-IoT小区的载波中心频率、在检测到NB-IoT小区时所使用的信道栅格、和/或NB-PBCH中所包含的信息,来确定β。β可以通过公式(13)来求出。即,终端装置1可以基于在发送频带包含NB-IoT小区的LTE小区的物理资源块索引nPRB、以及在发送频带包含NB-IoT小区的LTE小区的发送带宽NDL RB,来确定β。NB-PBCH中所包含的信息也可以表示在发送频带包含NB-IoT小区的LTE小区的物理资源块索引nPRB、以及在发送频带包含NB-IoT小区的LTE小区的发送带宽NDL RB
(数式13)
β=2·nPRB+Nmax,DL RB-NDL RB
v’shift可以由NB-PBCH中所包含的信息表示。
图21是表示本实施方式中的用于确定NB-CRS的序列的流程的图。终端装置1检测NB-SS,获取NB-IoT小区的PCI(步骤210)。终端装置1对NB-PBCH进行解码,获取NB-PBCH中所包含的信息(步骤211)。终端装置1确定NB-CRS的序列(步骤212)。终端装置1也可以为了NB-PBCH以外的物理信道的接收处理、以及与NB-IoT小区的同步而使用NB-CRS。
终端装置1使用与NB-PBCH的发送关联的NB-DL RS来进行NB-PBCH的接收处理。该NB-DL RS和NB-PBCH也可以配置于未配置NB-CRS的OFDM符号。该NB-DL RS的序列可以通过在步骤210获取的NB-IoT小区的PCI来求出。
在LTE小区的PCI与该LTE小区的发送带宽中所包含的NB-IoT小区的PCI相同的情况下,终端装置1可以基于NB-IoT小区的PCI,来确定与NB-CRS的生成关联的伪随机序列c。
在LTE小区的PCI与该LTE小区的发送带宽中所包含的NB-IoT小区的PCI不同的情况下,终端装置1可以基于NB-PBCH中所包含的信息,来确定与NB-CRS的生成关联的伪随机序列c。
NB-PBCH中所包含的信息也可以表示以下的一部分或者全部。用于小区搜索的辅助信息也可以包含表示以下的信息。此外,以下的一部分或者全部也可以通过应用于NB-PBCH中所包含的CRC的掩码来表现。此外,可以单独地对下行链路和上行链路定义以下的一部分或者全部。
(9)NB-IoT小区所对应的信道栅格的间隔(例如,5kHz、100kHz)
(10)NB-IoT小区所对应的信道栅格偏移的值
(11)场景(独立部署、带内部署、保护带部署)
(12)NB-IoT小区所包含的LTE小区的信道带宽NDL RB
(13)与NB-IoT小区对应的物理资源块的物理资源块索引nPRB
(14)与NB-IoT小区对应的副载波的编号/索引
(15)NB-IoT小区的发送带宽所对应的LTE小区的最小的物理资源块索引nPRB、和/或距离与NB-IoT小区的发送带宽所对应的该最小的物理资源块索引nPRB对应的物理资源块的边界的副载波数(偏移值)
(16)NB-IoT小区的发送带宽所对应的、LTE小区的最小的物理资源块索引nPRB
(17)通过用LTE小区中所包含的NB-IoT小区的载波中心频率除以该LTE小区的载波中心频率而求出的值
(18)通过用LTE小区的载波中心频率除以该LTE小区中所包含的NB-IoT小区的载波中心频率而求出的值
(19)NB-IoT小区的载波中心频率
(20)在发送频带包含NB-IoT小区的LTE小区的载波中心频率
(21)在发送频带包含NB-IoT小区的LTE小区的PCI
(22)终端装置1用于确定NB-CRS序列的偏移值β
(23)用于确定配置NB-CRS的资源元素的v’shift
(24)针对NB-CRS的发送天线端口的数量
上述(21)也可以定义为用于伪随机序列c的初始化的参数。
以下,对本实施方式中的装置的构成进行说明。
图22是表示本实施方式的终端装置1的构成的概略框图。如图所示,终端装置1构成为包含无线发送/接收部10以及上层处理部14。无线发送/接收部10构成为包含天线部11、RF(Radio Frequency:射频)部12、以及基带部13。上层处理部14构成为包含媒体接入控制层处理部15以及无线资源控制层处理部16。也将无线发送/接收部10称为发送部、接收部或物理层处理部。
上层处理部14将通过用户的操作等而生成的上行链路数据(传输块)输出至无线发送/接收部10。上层处理部14进行媒体接入控制(MAC:Medium Access Control)层、分组数据汇聚协议(Packet Data Convergence Protocol:PDCP)层、无线链路控制(Radio LinkControl:RLC)层、无线资源控制(Radio Resource Control:RRC)层的处理。
上层处理部14所具备的媒体接入控制层处理部15进行媒体接入控制层的处理。媒体接入控制层处理部15基于由无线资源控制层处理部16管理的各种设定信息/参数,进行调度请求的转发的控制。
上层处理部14所具备的无线资源控制层处理部16进行无线资源控制层的处理。无线资源控制层处理部16进行装置自身的各种设定信息/参数的管理。无线资源控制层处理部16基于从基站装置3接收的上层的信号来设定各种设定信息/参数。即,无线资源控制层处理部16基于从基站装置3接收的表示各种设定信息/参数的信息来设定各种设定信息/参数。
无线发送/接收部10进行调制、解调、编码、解码等物理层的处理。无线发送/接收部10对从基站装置3接收的信号进行分离、解调、解码,并将解码后的信息输出至上层处理部14。无线发送/接收部10通过对数据进行调制、编码来生成发送信号,并发送至基站装置3。
RF部12通过正交解调将经由天线部11接收的信号转换为基带信号(下变频:downcovert),去除不需要的频率成分。RF部12将进行处理后的模拟信号输出至基带部。
基带部13将从RF部12输入的模拟信号转换为数字信号。基带部13从转换后的数字信号中去除相当于CP(Cyclic Prefix:循环前缀)的部分,对去除CP后的信号进行快速傅里叶变换(Fast Fourier Transform:FFT),提取频域的信号。
基带部13对数据进行快速傅里叶逆变换(Inverse Fast Fourier Transform:IFFT),生成SC-FDMA符号,并对生成的SC-FDMA符号附加CP来生成基带的数字信号,并将基带的数字信号转换为模拟信号。基带部13将转换后的模拟信号输出至RF部12。
RF部12使用低通滤波器来从由基带部13输入的模拟信号中去除多余的频率成分,将模拟信号上变频(up convert)为载波频率,并经由天线部11发送。此外,RF部12将功率放大。此外,RF部12也可以具备控制发射功率的功能。也将RF部1称为发射功率控制部。
图23是表示本实施方式的基站装置3的构成的概略框图。如图所示,基站装置3构成为包含无线发送/接收部30以及上层处理部34。无线发送/接收部30构成为包含天线部31、RF部32、以及基带部33。上层处理部34构成为包含媒体接入控制层处理部35以及无线资源控制层处理部36。也将无线发送/接收部30称为发送部、接收部或物理层处理部。
上层处理部34进行媒体接入控制(MAC:Medium Access Control)层、分组数据汇聚协议(Packet Data Convergence Protocol:PDCP)层、无线链路控制(Radio LinkControl:RLC)层、无线资源控制(Radio Resource Control:RRC)层的处理。
上层处理部34所具备的媒体接入控制层处理部35进行媒体接入控制层的处理。媒体接入控制层处理部35基于由无线资源控制层处理部36管理的各种设定信息/参数,进行与调度请求有关的处理。
上层处理部34所具备的无线资源控制层处理部36进行无线资源控制层的处理。无线资源控制层处理部36生成或从上位节点取得配置于物理下行链路共享信道的下行链路数据(传输块)、系统信息、RRC消息、MAC CE(Control Element)等,并输出至无线发送/接收部30。此外,无线资源控制层处理部36进行各终端装置1的各种设定信息/参数的管理。无线资源控制层处理部36可以经由上层的信号对各终端装置1设定各种设定信息/参数。即,无线资源控制层处理部36发送/通知表示各种设定信息/参数的信息。
由于无线发送/接收部30的功能与无线发送/接收部10相同,因此省略说明。
终端装置1所具备的标注有符号10至符号16的各部分也可以构成为电路。基站装置3所具备的标注有符号30至符号36的各部分也可以构成为电路。
以下,对本实施方式中的终端装置1以及基站装置3的各种实施方式进行说明。
(1)本实施方式的第一方案是终端装置1,其具备:接收部,获取与NB-IoT小区的频率有关的信息,并基于与所述NB-IoT小区的频率有关的信息来获取终端装置与所述NB-IoT小区的时间以及频率同步,并且进行作为检测所述NB-IoT小区的小区标识符(PCI)的过程的小区搜索,与所述NB-IoT小区的频率有关的信息表示第一值和第二值,所述NB-IoT小区的频率通过所述第一值所表示的频率以及所述第二值所表示的频率偏移来表示,所述第一值的“0”与频率A[MHz]对应,所述第一值的增量(increment)与频率B[kHz]的增量对应,所述第二值表示的频率偏移的绝对值比B小。
(2)在本实施方式的第一方案中,终端装置1具备预先设定有与所述NB-IoT小区的频率有关的信息的存储器。
(3)在本实施方式的第一方案中,所述接收部参考卡(card)或者USIM(UniversalSubscriber Identity Module)来获取与所述NB-IoT小区的频率有关的信息。
(4)在本实施方式的第一方案中,所述频率B[kHz]与LTE小区的信道栅格的值相同。
(5)在本实施方式的第一方案中,所述A、C、以及所述频率偏移的和与所述LTE小区的发送带宽中所包含的物理资源块的中心频率对应,所述C是通过乘以所述B、以及第一正整数而求出的值,所述物理资源块的中心频率与所述LTE小区的中心频率不同。
(6)在本实施方式的第一方案中,所述B是100[kHz],所述频率偏移是+2.5[kHz]、-2.5[kHz]、+7.5[kHz]、-7.5[kHz]、+12.5[kHz]、-12.5[kHz]、+17.5[kHz]、-17.5[kHz]、+22.5[kHz]、-22.5[kHz]、+27.5[kHz]、-27.5[kHz]、+32.5[kHz]、-32.5[kHz]、+37.5[kHz]、-37.5[kHz]、+42.5[kHz]、-42.5[kHz]、+47.5[kHz]、或者-47.5[kHz]。
(7)本实施方式的第二方案是终端装置1,其具备:接收部,获取终端装置与NB-IoT小区的时间以及频率同步,并且进行作为检测所述NB-IoT小区的小区标识符(PCI)的过程的小区搜索,在所述NB-IoT小区,接收包含第一信息的广播信道,所述NB-IoT小区的发送频带包含在LTE小区的发送频带中,与所述NB-IoT小区对应的所述LTE小区的物理资源块索引、和/或所述LTE小区的发送带宽至少基于所述第一信息、以及所述NB-IoT小区的中心频率是第一频率、以及第二频率的中的哪一个,所述第一频率是(100·n±x)kHz,所述第二频率是(100·n±y)kHz,所述n是整数。
(8)在本实施方式的第二方案中,与所述广播信道的发送关联的第一参考信号(NB-DL RS)的序列至少基于所述NB-IoT小区的小区标识符。
(9)在本实施方式的第二方案中,所述广播信道包含表示所述LTE小区的小区标识符的第二信息,所述NB-IoT小区中所包含的第二参考信号(CRS)的序列至少基于所述LTE小区的小区标识符、所述LTE小区的物理资源块索引、和/或所述LTE小区的发送带宽。
(10)在本实施方式的第二方案中,所述NB-IoT小区中所包含的第二参考信号(CRS/NB-CRS)的序列至少基于所述NB-IoT小区的小区标识符、所述LTE小区的物理资源块索引、和/或所述LTE小区的发送带宽。
(11)在本实施方式的第二方案中,所述广播信道包含表示针对所述第二参考信号(CRS/NB-CRS)的天线端口的数量的第三信息。
(12)在本实施方式的第二方案中,在所述NB-IoT小区的发送频带不包含在LTE小区的发送频带中的情况下,第一信息被保留。
(13)本实施方式的第三方案是终端装置1,其具备:接收部,获取终端装置与NB-IoT小区的时间以及频率同步,并且进行作为检测所述NB-IoT小区的小区标识符(PCI)的过程的小区搜索,在所述NB-IoT小区,接收包含第一信息的广播信道,所述终端装置在所述NB-IoT小区的中心频率是第一频率、以及第二频率中的任一个的情况下,视为所述NB-IoT小区的发送带宽包含在LTE小区的发送带宽中,所述终端装置在所述NB-IoT小区的中心频率是第三频率的情况下,视为所述NB-IoT小区的发送带宽不包含在LTE小区的发送带宽中,所述第一频率是(100·n±x)kHz,所述第二频率是(100·n±y)kHz,所述第三频率是(100·n)kHz,所述n是整数。
(14)在本实施方式的第三方案中,在所述NB-IoT小区的发送频带包含在所述LTE小区的发送频带中的情况下,与所述NB-IoT小区对应的所述LTE小区的物理资源块索引、和/或所述LTE小区的发送带宽至少基于所述第一信息和所述NB-IoT小区的中心频率是所述第一频率和所述第二频率中的哪一个。
(15)在本实施方式的第三方案中,与所述广播信道的发送关联的第一参考信号(DMRS)的序列至少基于所述NB-IoT小区的小区标识符。
(16)在本实施方式的第三方案中,所述广播信道包含表示所述LTE小区的小区标识符的第二信息,所述NB-IoT小区中所包含的第二参考信号(CRS)的序列至少基于所述LTE小区的小区标识符、所述LTE小区的物理资源块索引、和/或所述LTE小区的发送带宽。
(17)在本实施方式的第三方案中,所述NB-IoT小区中所包含的第二参考信号(CRS)的序列至少基于所述NB-IoT小区的小区标识符、所述LTE小区的物理资源块索引、和/或所述LTE小区的发送带宽。
(18)在本实施方式的第三方案中,在所述NB-IoT小区的发送频带不包含在所述LTE小区的发送频带中的情况下,所述NB-IoT小区中所包含的第二参考信号(CRS)的序列至少基于所述NB-IoT小区的小区标识符。
由此,终端装置以及基站装置能相互使用下行链路来高效地进行通信。
本发明涉及的基站装置3也能作为由多个装置构成的集合体(装置组)来实现。构成装置组的各装置可以具备上述实施方式的基站装置3的各功能或各功能块的部分或全部。作为装置组,具有基站装置3的所有各功能或各功能块即可。此外,上述的实施方式的终端装置1能与作为集合体的基站装置进行通信。
此外,上述实施方式中的基站装置3可以是EUTRAN(Evolved UniversalTerrestrial Radio Access Network:演进通用陆地无线接入网络)。此外,上述实施方式中的基站装置3可以具有针对eNodeB的上位节点的功能的一部分或全部。
在本发明的装置中工作的程序可以是以实现本发明的上述实施方式的功能的方式来控制Central Processing Unit(CPU:中央处理单元)等从而使计算机发挥功能的程序。程序或者由程序处理的信息在进行处理时暂时被读入Random Access Memory(RAM:随机存取存储器)等易失性存储器、或者储存于闪存(Flash Memory)等非易失性存储器、HardDisk Drive(HDD:硬盘驱动器),并根据需要由CPU来读出、修改、写入。
需要说明的是,可以通过计算机来实现上述实施方式中的装置的一部分。在此情况下,可以将用于实现该控制功能的程序记录于计算机可读记录介质,并通过将记录于该记录介质的程序读入计算机系统并执行来实现。此处所提到的“计算机系统”是指内置于装置的计算机系统,采用包含操作系统、外设等硬件的计算机系统。此外,“计算机可读记录介质”也可以是半导体记录介质、光记录介质、磁记录介质等任何记录介质。
而且,“计算机可读记录介质”可以包含:像在经由因特网等网络或电话线路等通信线路来发送程序的情况下的通信线那样,短时间内、动态地保存程序的介质;以及像作为此情况下的服务器、客户端的计算机系统内部的易失性存储器那样,对程序保存固定时间的介质。此外,上述程序可以是用于实现前述功能的一部分的程序,也可以是能进一步将前述功能与已经记录于计算机系统中的程序组合来实现的程序。
此外,上述实施方式中所使用的装置的各功能块或者各特征能通过电路,即典型地通过集成电路或者多个集成电路来安装或者执行。以执行本说明书所述的功能的方式设计的电路可以包含:通用用途处理器、数字信号处理器(DSP)、面向特定用途的集成电路(ASIC)、现场可编程门阵列(FPGA)、或者其他可编程逻辑元件、离散门或者晶体管逻辑、离散硬件零件、或者它们的组合。通用用途处理器可以是微型处理器,处理器也可以取而代之而是现有型处理器、控制器、微型控制器或者状态机。通用用途处理器或者前述各电路可以由数字电路构成,也可以由模拟电路构成。此外,在随着半导体技术的进步出现代替现有的集成电路的集成电路化的技术的情况下,也能使用基于该技术的集成电路。
需要说明的是,本申请发明并不限定于上述的实施方式。在实施方式中,记载了装置的一个示例,但本申请的发明并不限定于此,能被应用于设置在室内外的固定式或非可动式电子设备,例如AV设备、厨房设备、扫除/洗涤设备、空调设备、办公设备、自动售卖机以及其他生活设备等终端装置或通信装置。
以上,参照附图对本发明的实施方式进行了详述,但具体的构成并不限定于本实施方式,也包含不脱离本发明的主旨的范围内的设计变更等。此外,本发明能在权利要求所示的范围内进行各种变更,将分别在不同的实施方式中公开的技术方案适当地组合而得到的实施方式也包含在本发明的技术范围内。此外,还包含将上述各实施方式中所记载的要素,即,将起到同样效果的要素彼此置换而得到的构成。
符号说明
1(1A、1B、1C) 终端装置
3 基站装置
10 无线发送/接收部
11 天线部
12 RF部
13 基带部
14 上层处理部
15 媒体接入控制层处理部
16 无线资源控制层处理部
30 无线发送/接收部
31 天线部
32 RF部
33 基带部
34 上层处理部
35 媒体接入控制层处理部
36 无线资源控制层处理部

Claims (4)

1.一种终端装置,其包括处理器和与处理器相关联的存储器,所述终端装置的特征在于,
所述处理器接收系统信息,
所述系统信息至少包括用于确定第一序列的偏移值,
所述处理器至少基于所述偏移值来确定配置于参考信号序列中的NB-IoT小区的资源元素的所述第一序列,
所述处理器基于所述第一序列进行物理信道的接收处理。
2.一种基站装置,其包括处理器和与处理器相关联的存储器,所述基站装置的特征在于,
所述处理器发送系统信息,
所述系统信息至少包括用于确定第一序列的偏移值,
所述处理器至少基于所述偏移值来确定配置于参考信号序列中的NB-IoT小区的资源元素的所述第一序列,
所述处理器基于所述第一序列来进行物理信道的发送处理。
3.一种终端装置中的通信方法,其特征在于,
接收系统信息,
所述系统信息至少包括用于确定第一序列的偏移值,
至少基于所述偏移值来确定配置于参考信号序列中的NB-IoT小区的资源元素的所述第一序列,
基于所述第一序列进行物理信道的接收处理。
4.一种基站装置中的通信方法,其特征在于,
发送系统信息,
所述系统信息至少包括用于确定第一序列的偏移值,
至少基于所述偏移值来确定配置于参考信号序列中的NB-IoT小区的资源元素的所述第一序列,
基于所述第一序列来进行物理信道的发送处理。
CN201780004116.4A 2016-01-07 2017-01-05 终端装置、基站装置以及通信方法 Active CN108476463B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-001557 2016-01-07
JP2016001557 2016-01-07
PCT/JP2017/000093 WO2017119429A1 (ja) 2016-01-07 2017-01-05 端末装置、通信方法、および、集積回路

Publications (2)

Publication Number Publication Date
CN108476463A CN108476463A (zh) 2018-08-31
CN108476463B true CN108476463B (zh) 2022-08-16

Family

ID=59273631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780004116.4A Active CN108476463B (zh) 2016-01-07 2017-01-05 终端装置、基站装置以及通信方法

Country Status (7)

Country Link
US (1) US10998996B2 (zh)
EP (1) EP3402251B1 (zh)
JP (1) JP6898857B2 (zh)
CN (1) CN108476463B (zh)
BR (1) BR112018013709A2 (zh)
IL (1) IL260396B2 (zh)
WO (1) WO2017119429A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509659A (ja) * 2016-02-04 2019-04-04 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 広帯域キャリアのガードバンドにおける狭帯域サービスのデプロイメント
US10419199B2 (en) * 2016-05-11 2019-09-17 Qualcomm Incorporated Synchronization in wireless communications
US11102779B2 (en) 2016-07-15 2021-08-24 Qualcomm Incorporated Methods and apparatus for IOT operation in unlicensed spectrum
US11212052B2 (en) * 2017-06-23 2021-12-28 Ntt Docomo, Inc. User terminal and radio communication method
CN117222016A (zh) * 2017-08-10 2023-12-12 三星电子株式会社 确定下一代蜂窝网络中的频率资源的方法和设备
US11102736B2 (en) * 2017-10-24 2021-08-24 Qualcomm Incorporated Channel and synchronization raster
US11050598B2 (en) * 2017-11-28 2021-06-29 Qualcomm Incorporated Carrier information signaling in a 5G network
EP3753195A4 (en) * 2018-02-21 2021-11-03 Mediatek Inc. SYNCHRONIZATION SIGNAL BLOCK FRAME OFFSET IN MOBILE COMMUNICATIONS
US10798706B1 (en) * 2018-10-22 2020-10-06 Sprint Spectrum L.P. Method and system for operation of nearby access nodes on a common wideband carrier and on different respective narrowband carriers within the wideband carrier
CN109451509B (zh) * 2019-01-07 2024-04-19 上海创远仪器技术股份有限公司 Nb-iot基站信号测量设备及其测量处理方法
CN109782621B (zh) * 2019-02-02 2020-06-02 重庆医药高等专科学校 通过单片机进行智能家居控制的信号工作电路和智能家居系统
CN113348696B (zh) * 2019-06-25 2023-02-28 Oppo广东移动通信有限公司 用于小区接入的方法及设备
TWI742449B (zh) * 2019-10-15 2021-10-11 大陸商蘇州磐聯集成電路科技股份有限公司 窄頻物聯網的使用者設備端的排程方法及排程清單建立方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137639A (zh) * 2012-01-27 2014-11-05 夏普株式会社 基站装置、移动站装置、通信方法、集成电路及通信系统
WO2014193070A1 (en) * 2013-05-30 2014-12-04 Lg Electronics Inc. Reference signals extension for massive mimo system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI690179B (zh) * 2006-06-09 2020-04-01 美商進化無線責任有限公司 行動通訊系統中傳送資料之方法和裝置
US20080080463A1 (en) 2006-10-02 2008-04-03 Stewart Kenneth A Synchronization for a wireless communication device using multiple synchronization channels
KR101197389B1 (ko) * 2008-10-20 2012-11-05 인터디지탈 패튼 홀딩스, 인크 캐리어 집적
AU2010290233B2 (en) * 2009-09-07 2014-08-28 Lg Electronics Inc. Method and apparatus for transmitting/receiving a reference signal in a wireless communication system
KR101740221B1 (ko) * 2010-01-18 2017-05-29 주식회사 골드피크이노베이션즈 채널상태정보-기준신호 할당 방법 및 장치
JP2013017016A (ja) * 2011-07-04 2013-01-24 Sharp Corp 基地局装置、移動局装置、通信システムおよび通信方法
EP2749072B1 (en) * 2011-09-30 2018-05-30 SCA IPLA Holdings Inc. Communications terminal and method of communicating
JP5639287B2 (ja) * 2011-12-22 2014-12-10 京セラ株式会社 受信装置および受信方法
US20130242974A1 (en) * 2012-03-19 2013-09-19 Htc Corporation Method and Apparatus for Synchronization Mechanisms in Wireless Communication Systems
WO2014106317A1 (zh) * 2013-01-04 2014-07-10 富士通株式会社 信道测量方法、信道测量的配置方法和装置
US10251066B2 (en) * 2015-04-24 2019-04-02 Qualcomm Incorporated Evolved machine type communication design for shared radio frequency spectrum operation
US10932256B2 (en) * 2015-06-16 2021-02-23 Qualcomm Incorporated Long-term evolution compatible very narrow band design
JP6925979B2 (ja) * 2015-07-27 2021-08-25 アップル インコーポレイテッドApple Inc. セルラーIoTのためのナローバンドLTEのためのシステム動作のシステムおよび方法
US10694504B2 (en) * 2015-12-22 2020-06-23 Sony Mobile Communications Inc. Co-deployment of narrowband and wideband carriers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137639A (zh) * 2012-01-27 2014-11-05 夏普株式会社 基站装置、移动站装置、通信方法、集成电路及通信系统
WO2014193070A1 (en) * 2013-05-30 2014-12-04 Lg Electronics Inc. Reference signals extension for massive mimo system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Analysis of Channel Raster Impact on NB-IoT;Huawei, HiSilicon;《3GPP TSG RAN WG1 Meeting #83 R1-156924》;20151107;全文 *
Proposals for NB-IoT synchronization signal design;Huawei, HiSilicon, Ericsson, Sharp, U-box;《3GPP TSG RAN WG1 #83 R1-157749》;20151122;全文 *

Also Published As

Publication number Publication date
EP3402251A4 (en) 2019-08-21
IL260396A (zh) 2018-08-30
CN108476463A (zh) 2018-08-31
EP3402251B1 (en) 2024-03-06
IL260396B1 (en) 2023-01-01
EP3402251A1 (en) 2018-11-14
WO2017119429A1 (ja) 2017-07-13
JPWO2017119429A1 (ja) 2018-11-08
US10998996B2 (en) 2021-05-04
BR112018013709A2 (pt) 2018-12-11
IL260396B2 (en) 2023-05-01
US20190020436A1 (en) 2019-01-17
JP6898857B2 (ja) 2021-07-07

Similar Documents

Publication Publication Date Title
CN108476464B (zh) 终端装置、基站装置以及通信方法
CN108476463B (zh) 终端装置、基站装置以及通信方法
EP3493621B1 (en) Terminal device, communication method and integrated circuit
US20190373642A1 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
US20200045742A1 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
CN111357226A (zh) 相位追踪参考信号传输
EP3370458B1 (en) Support of 256 qam modulation for pusch
CN111328464B (zh) 终端装置、基站装置以及通信方法
US20180302254A1 (en) Systems and methods for multi-physical structure system
CN113170443B (zh) 终端装置、基站装置以及通信方法
CN110831226A (zh) 由用户设备执行的方法以及用户设备
CN111226479A (zh) 终端装置、基站装置以及通信方法
CN111247854B (zh) 终端装置、基站装置以及通信方法
WO2017169160A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
US10779267B2 (en) Terminal apparatus that performs NPUSCH transmission, base station apparatus that performs NPUSCH reception, method for NPUSCH transmission, and method for NPUSCH reception
CN108353399B (zh) 终端装置、基站装置、通信方法以及集成电路
WO2017169159A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant