WO2018001149A1 - 一种基于渐变节距微透镜阵列的集成成像3d显示装置、渐变节距微透镜阵列及显示屏 - Google Patents

一种基于渐变节距微透镜阵列的集成成像3d显示装置、渐变节距微透镜阵列及显示屏 Download PDF

Info

Publication number
WO2018001149A1
WO2018001149A1 PCT/CN2017/089324 CN2017089324W WO2018001149A1 WO 2018001149 A1 WO2018001149 A1 WO 2018001149A1 CN 2017089324 W CN2017089324 W CN 2017089324W WO 2018001149 A1 WO2018001149 A1 WO 2018001149A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
microlens array
horizontal
array
progressive
Prior art date
Application number
PCT/CN2017/089324
Other languages
English (en)
French (fr)
Inventor
吴非
樊为
Original Assignee
成都工业学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都工业学院 filed Critical 成都工业学院
Publication of WO2018001149A1 publication Critical patent/WO2018001149A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/10Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images using integral imaging methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses

Definitions

  • the present invention relates to an integrated imaging 3D display, and more particularly to an integrated imaging 3D display device based on a progressive pitch microlens array, a progressive pitch microlens array, and a display screen.
  • Integrated imaging 3D display technology is a true 3D display technology that does not require any visual aids.
  • the technology has the characteristics of naked eye viewing, the process of recording and display is relatively simple, and can display stereoscopic images of full parallax and full true color, and is one of the hotspot technologies in current 3D display technology.
  • the current integrated imaging 3D display device still has shortcomings such as narrow viewing angle, thereby limiting its practical application.
  • the viewing viewport is a common part of the imaging area of all image elements.
  • the horizontal viewing angle ⁇ of the conventional integrated imaging 3D display is:
  • p is the horizontal pitch of the image element
  • f is the focal length of the lens element
  • m is the number of image elements in the horizontal direction of the micro image array.
  • the horizontal viewing angle is inversely proportional to the number of image elements in the micro image array.
  • the object of the present invention is to overcome the problem that the existing integrated imaging 3D display device in the prior art has a narrow viewing angle, and provides an integrated imaging 3D display device having a wider horizontal viewing angle.
  • the present invention provides the following technical solutions:
  • An integrated imaging 3D display device based on a progressive pitch microlens array comprising a display screen and a progressive pitch microlens array; the display screen configured to display a micro image array; the progressive pitch microlens array being placed in the In front of the display screen, image elements in the micro image array reconstruct a 3D scene through lens elements in the progressive pitch microlens array;
  • the lens elements in the same column have the same horizontal pitch; the lens elements in the same row have the same vertical pitch, and the horizontal pitch gradually increases from the center of the row to the edge of the row;
  • the image elements in the micro image array are in one-to-one correspondence with the lens elements in the progressive pitch microlens array, and the horizontal pitch and the vertical pitch of the image elements are respectively horizontal and vertical with their corresponding lens elements.
  • the pitch is the same.
  • the horizontal pitch of the lens elements is related to the horizontal distance index of the lens elements from the center column.
  • the horizontal pitch Hi of the i-th column of lens elements in the progressive pitch microlens array is:
  • ceil() is rounded up
  • floor() is rounded down
  • i is a positive integer less than or equal to m
  • p is the horizontal pitch of the lens element at the center of the progressive pitch microlens array
  • l is The viewing distance
  • f is the focal length of the lens element
  • m is the number of lens elements in the horizontal direction in the progressive pitch microlens array.
  • the progressive pitch microlens array has 11 rows and 11 columns.
  • the horizontal viewing angle of view ⁇ of the integrated imaging 3D display device based on the progressive pitch microlens array is:
  • p is the horizontal pitch of the lens elements located at the center of the progressive pitch microlens array
  • f is the focal length of the lens elements
  • the display screen is one of a liquid crystal display, a plasma display, and an organic electroluminescent display.
  • the present invention also provides a progressive pitch microlens array disposed in front of a display configured to display a micro image array through which image elements in the micro image array pass the tapered pitch microlens A lens element in the array reconstructs a 3D scene;
  • the lens elements in the same column have the same horizontal pitch; the lens elements in the same row have the same vertical pitch, and the horizontal pitch gradually increases from the center of the row to the edge of the row.
  • the horizontal pitch of the lens element is related to the horizontal distance index of the lens element from the center column of the progressive pitch microlens array.
  • the horizontal pitch Hi of the i-th column of lens elements in the progressive pitch microlens array is:
  • ceil() is rounded up
  • floor() is rounded down
  • i is a positive integer less than or equal to m
  • p is the horizontal pitch of the lens element at the center of the progressive pitch microlens array
  • l is The viewing distance
  • f is the focal length of the lens element
  • m is the number of lens elements in the horizontal direction in the progressive pitch microlens array.
  • the progressive pitch microlens array has 11 rows and 11 columns.
  • the horizontal viewing angle of view ⁇ of the integrated imaging 3D display device based on the progressive pitch microlens array is:
  • p is the horizontal pitch of the lens elements located at the center of the progressive pitch microlens array
  • f is the focal length of the lens elements
  • the present invention also provides a display screen configured to display a micro image array, the micro image array comprising a plurality of image elements distributed in an array; the display screen being disposed at a gradation pitch including a plurality of lens elements After the microlens array, the image elements in the micro image array reconstruct a 3D scene through lens elements disposed in the progressive pitch microlens array in front of the display;
  • image elements located in the same column have the same horizontal pitch
  • Image elements located on the same line have the same vertical pitch, and their horizontal pitch gradually increases from the center of the line to the edge of the line.
  • the horizontal pitch of the image element is related to the horizontal distance index of the image element from the central column of the micro image array.
  • the horizontal pitch Hi of the i-th column of image elements in the micro image array is:
  • ceil() is rounded up
  • floor() is rounded down
  • i is a positive integer less than or equal to m
  • p is the horizontal pitch of the image element at the center of the micro image array
  • l is for viewing
  • the distance f is the focal length of the lens element of the progressive pitch microlens array disposed in front of the display
  • m is the number of image elements in the horizontal direction in the micro image array.
  • the number of rows of the micro image array is 11 and the number of columns is 11.
  • the present invention provides an integrated imaging 3D display device, a gradation pitch microlens array and a display screen based on a gradual pitch microlens array, in the gradation pitch microlens array
  • the lens elements in the same column have the same horizontal pitch, and the lens elements in the same row have the same vertical pitch, and the horizontal pitch gradually increases from the center of the line to the edge of the line; the horizontal section of the image element in the micro image array
  • the distance and vertical pitch are the same as the horizontal and vertical pitches of their corresponding lens elements.
  • FIG. 1 is a schematic view showing a horizontal viewing angle of an existing microlens integrated imaging 3D display device
  • 2 is an integrated imaging 3D display device based on a progressive pitch microlens array of the present invention
  • FIG. 3 is a schematic view showing a horizontal viewing angle of an integrated imaging 3D display device based on a progressive pitch microlens array according to the present invention
  • the viewing viewport is a common portion of the imaging area of all image elements.
  • the horizontal viewing angle ⁇ of the conventional integrated imaging 3D display is:
  • p is the horizontal pitch of the image element
  • f is the focal length of the lens element
  • m is the number of image elements in the horizontal direction of the micro image array.
  • the viewing angle of view is inversely proportional to the number of image elements in the micro image array.
  • the present invention provides an integrated imaging 3D display device based on a progressive pitch microlens array, as shown in FIG. 2, comprising a display screen and a progressive pitch microlens array; the display screen configured to display a micro image array; A progressive pitch microlens array is placed in front of the display screen, and image elements in the micro image array reconstruct a 3D scene through lens elements in the progressive pitch microlens array;
  • the lens elements in the same column have the same horizontal pitch; the lens elements in the same row have the same vertical pitch, and the horizontal pitch gradually increases from the center of the row to the edge of the row;
  • the lens element The horizontal pitch refers to the horizontal width of the lens element, and the vertical pitch of the lens element refers to the vertical height of the lens element.
  • the image elements in the micro image array are in one-to-one correspondence with the lens elements in the progressive pitch microlens array, and the horizontal pitch and the vertical pitch of the image elements are respectively horizontal and vertical with their corresponding lens elements.
  • the pitch is the same.
  • the horizontal pitch of the lens elements is related to the horizontal distance index of the lens elements from the center column.
  • the horizontal pitch Hi of the i-th column of the gradation pitch microlens array is:
  • ceil() is rounded up
  • floor() is rounded down
  • i is a positive integer less than or equal to m
  • p is the horizontal pitch of the lens element at the center of the progressive pitch microlens array
  • l is The viewing distance
  • f is the focal length of the lens element
  • m is the number of lens elements in the horizontal direction in the progressive pitch microlens array. In the present embodiment, m is preferably an odd number.
  • the horizontal viewing angle of view ⁇ of the integrated imaging 3D display device based on the progressive pitch microlens array is:
  • p is the horizontal pitch of the lens elements located at the center of the progressive pitch microlens array
  • f is the focal length of the lens elements
  • the micro image array and the progressive pitch microlens array each comprise 11 ⁇ 11 cells, wherein 11 cells in the horizontal direction and 11 cells in the vertical direction are located at the center of the progressive pitch microlens array.
  • the horizontal pitch of the lens elements of the first to the eleventh columns are 8.05255mm, 7.3205mm, 6.655mm, respectively. 6.05mm, 5.5mm, 5mm, 5.5mm, 6.05mm, 6.655mm, 7.3205mm, 8.025255mm. According to the formula:
  • the horizontal viewing angle of the integrated imaging 3D display device based on the progressive pitch microlens array of the present invention is 54°; and the horizontal viewing angle of the conventional integrated imaging 3D display with the lens element pitch of 5 mm is 30°. Therefore, the integrated imaging 3D display device based on the progressive pitch microlens array of the present invention realizes a wide viewing angle integrated imaging 3D display.
  • the setting layout manner of the micro image array of the display screen is referred to the setting layout mode of the lens element in the gradation pitch microlens array, and details are not described herein again.
  • the display screen may be in a liquid crystal display, a plasma display, and an organic electroluminescent display. one.
  • the present invention provides an integrated imaging 3D display device, a gradation pitch microlens array and a display screen based on a gradual pitch microlens array, which are located in the same column
  • the lens elements have the same horizontal pitch, and the lens elements in the same row have the same vertical pitch, and the horizontal pitch gradually increases from the center column to the line edge; the horizontal pitch and vertical section of the image element in the micro image array
  • the horizontal pitch and the vertical pitch of the lens elements respectively corresponding to them are the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

一种基于渐变节距微透镜阵列的集成成像3D显示装置,包括配置成显示微图像阵列(4)的显示屏(1)和渐变节距微透镜阵列(3),在渐变节距微透镜阵列(3)中,位于同一列的透镜元其水平节距(Hi)相同;位于同一行的透镜元其垂直节距相同,其水平节距从行中心到行边缘逐渐增大;在微图像阵列(4)中图像元的水平节距(Hi)和垂直节距分别与其对应的透镜元的水平节距和垂直节距相同。采用渐变节距微透镜阵列(3)的集成成像3D显示装置成像时,水平观看视角(θ)与微图像阵列(4)中图像元的数目无关,从而实现集成成像3D显示装置的水平观看视角(θ)增大。

Description

一种基于渐变节距微透镜阵列的集成成像3D显示装置、渐变节距微透镜阵列及显示屏
相关申请的交叉引用
本申请要求于2016年06月30日提交中国专利局的优先权号为2016105142900、名称为“一种基于渐变节距微透镜阵列的集成成像3D显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及集成成像3D显示,特别涉及一种基于渐变节距微透镜阵列的集成成像3D显示装置、渐变节距微透镜阵列及显示屏。
背景技术
集成成像3D显示技术是一种无需任何助视设备的真3D显示技术。该技术具有裸眼观看的特点,其记录和显示的过程相对简单,且能显示全视差和全真色彩的立体图像,是目前3D显示技术中的热点技术之一。但是,目前的集成成像3D显示装置仍然存在观看视角窄等缺点,从而限制了它的实际应用。
在集成成像3D显示中,观看视区是所有图像元的成像区域的公共部分。如图1所示,在观看距离l处,传统的集成成像3D显示的水平观看视角θ为:
Figure PCTCN2017089324-appb-000001
其中,p为图像元的水平节距,f为透镜元的焦距,m为微图像阵列水平方向上图像元的数目。在传统的集成成像3D显示中,水平观看视角与微图像阵列中图像元的数目成反比。
发明内容
本发明的目的在于克服现有技术中现有集成成像3D显示装置存在观看视角窄的问题,提供了一种具有更宽水平视角的集成成像3D显示装置。
为了实现上述发明目的,本发明提供了以下技术方案:
一种基于渐变节距微透镜阵列的集成成像3D显示装置,包括显示屏和渐变节距微透镜阵列;所述显示屏配置成显示微图像阵列;所述渐变节距微透镜阵列放置在所述显示屏前方,所述微图像阵列中的图像元通过所述渐变节距微透镜阵列中的透镜元重建3D场景;其中,
所述渐变节距微透镜阵列中,位于同一列的透镜元其水平节距相同;位于同一行的透镜元其垂直节距相同,其水平节距从行中心到行边缘逐渐增大;
所述微图像阵列中的图像元与所述渐变节距微透镜阵列中的透镜元一一对应,所述图像元的水平节距和垂直节距分别与其对应的透镜元的水平节距和垂直节距相同。
优选地,所述透镜元的水平节距与该透镜元距离中心列的水平距离指数相关。
优选的,所述渐变节距微透镜阵列中第i列透镜元的水平节距Hi为:
Figure PCTCN2017089324-appb-000002
其中,ceil()是向上取整,floor()是向下取整,i是小于或等于m的正整数,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,l为观看距离,f为透镜元的焦距,m为渐变节距微透镜阵列中水平方向上透镜元的个数。
优选地,所述渐变节距微透镜阵列的行数为11,列数为11。
优选的,所述基于渐变节距微透镜阵列的集成成像3D显示装置的水平观看视角θ为:
Figure PCTCN2017089324-appb-000003
其中,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,f为透镜元的焦距。
优选的,所述显示屏为液晶显示屏、等离子显示屏和有机电致发光显示屏中之一。
本发明还提供一种渐变节距微透镜阵列,所述渐变节距微透镜阵列设置于配置成显示微图像阵列的显示器前方,所述微图像阵列中的图像元通过所述渐变节距微透镜阵列中的透镜元重建3D场景;
所述渐变节距微透镜阵列中,位于同一列的透镜元其水平节距相同;位于同一行的透镜元其垂直节距相同,其水平节距从行中心到行边缘逐渐增大。
优选地,所述透镜元的水平节距与该透镜元距离所述渐变节距微透镜阵列中心列的水平距离指数相关。
优选地,所述渐变节距微透镜阵列中第i列透镜元的水平节距Hi为:
Figure PCTCN2017089324-appb-000004
其中,ceil()是向上取整,floor()是向下取整,i是小于或等于m的正整数,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,l为观看距离,f为透镜元的焦距,m为渐变节距微透镜阵列中水平方向上透镜元的个数。
优选地,所述渐变节距微透镜阵列的行数为11,列数为11。
优选地,所述基于渐变节距微透镜阵列的集成成像3D显示装置的水平观看视角θ为:
Figure PCTCN2017089324-appb-000005
其中,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,f为透镜元的焦距。
本发明还提供一种显示屏,所述显示屏配置成显示微图像阵列,所述微图像阵列包括多个呈阵列分布的图像元;所述显示屏设置于包括多个透镜元的渐变节距微透镜阵列之后,所述微图像阵列中的图像元通过设置于所述显示器前的渐变节距微透镜阵列中的透镜元重建3D场景;
所述微图像阵列中,位于同一列的图像元其水平节距相同;
位于同一行的图像元其垂直节距相同,其水平节距从行中心到行边缘逐渐增大。
优选地,所述图像元的水平节距与该图像元距离所述微图像阵列中心列的水平距离指数相关。
优选地,所述微图像阵列中第i列图像元的水平节距Hi为:
Figure PCTCN2017089324-appb-000006
其中,ceil()是向上取整,floor()是向下取整,i是小于或等于m的正整数,p为位于所述微图像阵列中心位置的图像元的水平节距,l为观看距离,f为设置于所述显示器前的渐变节距微透镜阵列的透镜元焦距,m为所述微图像阵列中水平方向上图像元的个数。
优选地,所述微图像阵列的行数为11,列数为11。
与现有技术相比,本发明的有益效果:提供了一种基于渐变节距微透镜阵列的集成成像3D显示装置、渐变节距微透镜阵列及显示屏,所述渐变节距微透镜阵列中,位于同一列的透镜元其水平节距相同,位于同一行的透镜元其垂直节距相同,其水平节距从行中心到行边缘逐渐增大;所述微图像阵列中图像元的水平节距和垂直节距分别与其对应的透镜元的水平节距和垂直节距相同。采用基于渐变节距微透镜阵列的集成成像3D显示装置成像时,水平观看视角与微图像阵列中图像元的数目无关,从而实现集成成像3D显示装置的水平观看视角增大。
附图说明
图1为现有微透镜集成成像3D显示装置成像的水平观看视角示意图;
图2为本发明基于渐变节距微透镜阵列的集成成像3D显示装置;
图3为本发明基于渐变节距微透镜阵列的集成成像3D显示装置的水平观看视角示意图;
图中标记:1.显示屏,2.传统的微透镜阵列,3.渐变节距微透镜阵列,4.本发明的微图像阵列。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
如图1所示,在现有的集成成像3D显示中,观看视区是所有图像元的成像区域的公共部分。在观看距离l处,传统的集成成像3D显示的水平观看视角θ为:
Figure PCTCN2017089324-appb-000007
其中,p为图像元的水平节距,f为透镜元的焦距,m为微图像阵列水平方向上图像元的数目。在传统的集成成像3D显示中,观看视角与微图像阵列中图像元的数目成反比。
本发明提供了一种基于渐变节距微透镜阵列的集成成像3D显示装置,如图2所示,包括显示屏和渐变节距微透镜阵列;所述显示屏配置成显示微图像阵列;所述渐变节距微透镜阵列放置在所述显示屏前方,所述微图像阵列中的图像元通过所述渐变节距微透镜阵列中的透镜元重建3D场景;其中,
所述渐变节距微透镜阵列中,位于同一列的透镜元其水平节距相同;位于同一行的透镜元其垂直节距相同,其水平节距从行中心到行边缘逐渐增大;在实施例中,所述透镜元 的水平节距指所述透镜元的水平宽度,所述透镜元的垂直节距指透镜元的垂直高度。
所述微图像阵列中的图像元与所述渐变节距微透镜阵列中的透镜元一一对应,所述图像元的水平节距和垂直节距分别与其对应的透镜元的水平节距和垂直节距相同。
优选地,所述透镜元的水平节距与该透镜元距离中心列的水平距离指数相关。
具体的,所述渐变节距微透镜阵列中第i列透镜元的水平节距Hi为:
Figure PCTCN2017089324-appb-000008
其中,ceil()是向上取整,floor()是向下取整,i是小于或等于m的正整数,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,l为观看距离,f为透镜元的焦距,m为渐变节距微透镜阵列中水平方向上透镜元的个数,在本实施例中,m优选为奇数,。
具体的,在最佳观看位置l处,所述基于渐变节距微透镜阵列的集成成像3D显示装置的水平观看视角θ为:
Figure PCTCN2017089324-appb-000009
其中,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,f为透镜元的焦距。
在实际应用中,所述微图像阵列与渐变节距微透镜阵列均包含11×11个单元,其中,水平方向上11个单元,垂直方向上11个单元,位于渐变节距微透镜阵列中心位置的透镜元的节距为p=5mm,透镜元的焦距为f=5mm,观看距离为l=105mm,则第1~11列透镜元的水平节距分别为8.05255mm、7.3205mm、6.655mm、6.05mm、5.5mm、5mm、5.5mm、6.05mm、6.655mm、7.3205mm、8.05255mm。根据公式:
Figure PCTCN2017089324-appb-000010
得到本发明所述基于渐变节距微透镜阵列的集成成像3D显示装置的水平观看视角为54°;而透镜元节距为5mm的传统集成成像3D显示的水平观看视角为30°。因此本发明所述基于渐变节距微透镜阵列的集成成像3D显示装置实现了宽视角集成成像3D显示。
在本实施例中,所述显示屏的微图像阵列的设置布局方式请参照所述渐变节距微透镜阵列中透镜元的设置布局方式,在此不再赘述。
在本发明中,所述显示屏可以为液晶显示屏、等离子显示屏和有机电致发光显示屏中 之一。
工业实用性
与现有技术相比,本发明提供了一种基于渐变节距微透镜阵列的集成成像3D显示装置、渐变节距微透镜阵列及显示屏,所述渐变节距微透镜阵列中,位于同一列的透镜元其水平节距相同,位于同一行的透镜元其垂直节距相同,其水平节距从中心列到行边缘逐渐增大;所述微图像阵列中图像元的水平节距和垂直节距分别与其对应的透镜元的水平节距和垂直节距相同。采用基于渐变节距微透镜阵列的集成成像3D显示装置成像时,水平观看视角与微图像阵列中图像元的数目无关,从而实现集成成像3D显示装置的水平观看视角增大。

Claims (15)

  1. 一种基于渐变节距微透镜阵列的集成成像3D显示装置,其特征在于,包括显示屏和渐变节距微透镜阵列;所述显示屏配置成显示微图像阵列;所述渐变节距微透镜阵列放置在所述显示屏前方,所述微图像阵列中的图像元通过所述渐变节距微透镜阵列中的透镜元重建3D场景;其中,
    所述渐变节距微透镜阵列中,位于同一列的透镜元其水平节距相同;位于同一行的透镜元其垂直节距相同,其水平节距从行中心到行边缘逐渐增大;
    所述微图像阵列中的图像元与所述渐变节距微透镜阵列中的透镜元一一对应,所述图像元的水平节距和垂直节距分别与其对应的透镜元的水平节距和垂直节距相同。
  2. 根据权利要求1所述的基于渐变节距微透镜阵列的集成成像3D显示装置,其特征在于,所述透镜元的水平节距与该透镜元距离微透镜阵列中心列的水平距离指数相关。
  3. 根据权利要求2所述的基于渐变节距微透镜阵列的集成成像3D显示装置,其特征在于,所述渐变节距微透镜阵列中第i列透镜元的水平节距Hi为:
    Figure PCTCN2017089324-appb-100001
    其中,ceil()是向上取整,floor()是向下取整,i是小于或等于m的正整数,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,l为观看距离,f为透镜元的焦距,m为渐变节距微透镜阵列中水平方向上透镜元的个数。
  4. 根据权利要求3所述的基于渐变节距微透镜阵列的集成成像3D显示装置,其特征在于,所述渐变节距微透镜阵列的行数为11,列数为11。
  5. 根据权利要求3所述的基于渐变节距微透镜阵列的集成成像3D显示装置,其特征在于,所述基于渐变节距微透镜阵列的集成成像3D显示装置的水平观看视角θ为:
    Figure PCTCN2017089324-appb-100002
    其中,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,f为透镜元的焦距。
  6. 根据权利要求1所述的基于渐变节距微透镜阵列的集成成像3D显示装置,其特征在于,所述显示屏为液晶显示屏、等离子显示屏和有机电致发光显示屏中之一。
  7. 一种渐变节距微透镜阵列,其特征在于,所述渐变节距微透镜阵列设置于配置成显示微图像阵列的显示器前方,所述微图像阵列中的图像元通过所述渐变节距微透镜阵列中的透镜元重建3D场景;
    所述渐变节距微透镜阵列中,位于同一列的透镜元其水平节距相同;位于同一行的透镜元其垂直节距相同,其水平节距从行中心到行边缘逐渐增大。
  8. 根据权利要求7所述的渐变节距微透镜阵列,其特征在于,所述透镜元的水平节距与该透镜元距离所述渐变节距微透镜阵列中心列的水平距离指数相关。
  9. 根据权利要求8所述的渐变节距微透镜阵列,其特征在于,所述渐变节距微透镜阵列中第i列透镜元的水平节距Hi为:
    Figure PCTCN2017089324-appb-100003
    其中,ceil()是向上取整,floor()是向下取整,i是小于或等于m的正整数,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,l为观看距离,f为透镜元的焦距,m为渐变节距微透镜阵列中水平方向上透镜元的个数。
  10. 根据权利要求9所述的渐变节距微透镜阵列,其特征在于,所述渐变节距微透镜阵列的行数为11,列数为11。
  11. 根据权利要求9所述的渐变节距微透镜阵列,其特征在于,所述基于渐变节距微透镜阵列的集成成像3D显示装置的水平观看视角θ为:
    Figure PCTCN2017089324-appb-100004
    其中,p为位于渐变节距微透镜阵列中心位置的透镜元的水平节距,f为透镜元的焦距。
  12. 一种显示屏,其特征在于,所述显示屏配置成显示微图像阵列,所述微图像阵列包括多个呈阵列分布的图像元;所述显示屏设置于包括多个透镜元的渐变节距微透镜阵列之后,所述微图像阵列中的图像元通过设置于所述显示器前的渐变节距微透镜阵列中的透镜元重建3D场景;
    所述微图像阵列中,位于同一列的图像元其水平节距相同;
    位于同一行的图像元其垂直节距相同,其水平节距从行中心到行边缘逐渐增大。
  13. 根据权利要求12所述的显示屏,其特征在于,所述图像元的水平节距与该图像元距离所述微图像阵列中心列的水平距离指数相关。
  14. 根据权利要求13所述的显示屏,其特征在于,所述微图像阵列中第i列图像元的水平节距Hi为:
    Figure PCTCN2017089324-appb-100005
    其中,ceil()是向上取整,floor()是向下取整,i是小于或等于m的正整数,p为位于所述微图像阵列中心位置的图像元的水平节距,l为观看距离,f为图像元的焦距,m为所述微图像阵列中水平方向上图像元的个数。
  15. 根据权利要求14所述的显示屏,其特征在于,所述微图像阵列的行数为11,列数为11。
PCT/CN2017/089324 2016-06-30 2017-06-21 一种基于渐变节距微透镜阵列的集成成像3d显示装置、渐变节距微透镜阵列及显示屏 WO2018001149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610514290.0 2016-06-30
CN201610514290.0A CN105911713B (zh) 2016-06-30 2016-06-30 一种基于渐变节距微透镜阵列的集成成像3d显示装置

Publications (1)

Publication Number Publication Date
WO2018001149A1 true WO2018001149A1 (zh) 2018-01-04

Family

ID=56753686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089324 WO2018001149A1 (zh) 2016-06-30 2017-06-21 一种基于渐变节距微透镜阵列的集成成像3d显示装置、渐变节距微透镜阵列及显示屏

Country Status (2)

Country Link
CN (1) CN105911713B (zh)
WO (1) WO2018001149A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513125A (zh) * 2018-06-09 2018-09-07 成都工业学院 一种基于障壁的宽视角和高亮度集成成像3d显示装置
CN110989193A (zh) * 2020-02-19 2020-04-10 成都工业学院 一种双视3d显示装置
CN110989194A (zh) * 2020-02-19 2020-04-10 成都工业学院 一种基于渐变节距矩形针孔阵列的双视3d显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911713B (zh) * 2016-06-30 2018-07-03 成都工业学院 一种基于渐变节距微透镜阵列的集成成像3d显示装置
CN113031301B (zh) * 2021-04-01 2022-11-08 成都航空职业技术学院 宽视角和高光学效率一维集成成像3d显示方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004323A (zh) * 2010-09-25 2011-04-06 四川大学 一种增大观看视角的会聚式集成成像立体显示方法及其装置
KR20120090507A (ko) * 2011-02-08 2012-08-17 엘지디스플레이 주식회사 집적 영상 방식의 입체 영상 표시 장치
US20140327763A1 (en) * 2012-01-30 2014-11-06 Olympus Corporation Image acquisition apparatus
CN105487243A (zh) * 2016-01-21 2016-04-13 成都工业学院 基于障壁和渐变孔径狭缝光栅的一维集成成像3d显示装置
CN105911713A (zh) * 2016-06-30 2016-08-31 成都工业学院 一种基于渐变节距微透镜阵列的集成成像3d显示装置
CN105929553A (zh) * 2016-06-28 2016-09-07 成都工业学院 基于渐变节距微透镜阵列的集成成像双视3d显示方法
CN205809442U (zh) * 2016-06-30 2016-12-14 成都工业学院 一种宽视角的集成成像3d显示装置
CN205809441U (zh) * 2016-06-28 2016-12-14 成都工业学院 基于渐变节距微透镜阵列的集成成像双视3d显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955302B (zh) * 2012-10-12 2015-05-27 华映视讯(吴江)有限公司 立体显示装置
CN103197426B (zh) * 2013-04-15 2015-02-18 四川大学 一种基于渐变孔径针孔阵列的集成成像3d立体显示装置
KR101771912B1 (ko) * 2014-09-05 2017-08-28 인텔 코포레이션 화상 프로젝터 및 광학 조립체
CN105301787B (zh) * 2015-11-26 2017-06-09 成都工业学院 一种宽视角集成成像3d显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004323A (zh) * 2010-09-25 2011-04-06 四川大学 一种增大观看视角的会聚式集成成像立体显示方法及其装置
KR20120090507A (ko) * 2011-02-08 2012-08-17 엘지디스플레이 주식회사 집적 영상 방식의 입체 영상 표시 장치
US20140327763A1 (en) * 2012-01-30 2014-11-06 Olympus Corporation Image acquisition apparatus
CN105487243A (zh) * 2016-01-21 2016-04-13 成都工业学院 基于障壁和渐变孔径狭缝光栅的一维集成成像3d显示装置
CN105929553A (zh) * 2016-06-28 2016-09-07 成都工业学院 基于渐变节距微透镜阵列的集成成像双视3d显示方法
CN205809441U (zh) * 2016-06-28 2016-12-14 成都工业学院 基于渐变节距微透镜阵列的集成成像双视3d显示装置
CN105911713A (zh) * 2016-06-30 2016-08-31 成都工业学院 一种基于渐变节距微透镜阵列的集成成像3d显示装置
CN205809442U (zh) * 2016-06-30 2016-12-14 成都工业学院 一种宽视角的集成成像3d显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513125A (zh) * 2018-06-09 2018-09-07 成都工业学院 一种基于障壁的宽视角和高亮度集成成像3d显示装置
CN108513125B (zh) * 2018-06-09 2023-08-25 成都工业学院 一种基于障壁的集成成像3d显示装置
CN110989193A (zh) * 2020-02-19 2020-04-10 成都工业学院 一种双视3d显示装置
CN110989194A (zh) * 2020-02-19 2020-04-10 成都工业学院 一种基于渐变节距矩形针孔阵列的双视3d显示装置

Also Published As

Publication number Publication date
CN105911713B (zh) 2018-07-03
CN105911713A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2018001150A1 (zh) 一种基于渐变节距针孔阵列的集成成像3d装置、渐变节距针孔阵列及显示屏
WO2018001243A1 (zh) 一种宽视角的集成成像双视3d显示装置
WO2018001149A1 (zh) 一种基于渐变节距微透镜阵列的集成成像3d显示装置、渐变节距微透镜阵列及显示屏
WO2018001244A1 (zh) 基于渐变节距微透镜阵列的集成成像双视3d显示方法及系统
CN108776388B (zh) 基于渐变狭缝光栅的双视3d显示装置及方法
CN108594448B (zh) 高光学效率和均匀分辨率双视3d显示装置及方法
CN105182555B (zh) 基于渐变孔径针孔阵列的无串扰集成成像3d显示装置
CN109254413A (zh) 基于渐变光栅的双视3d显示装置
CN108776387A (zh) 均匀分辨率和均匀视角的双视3d显示装置及方法
WO2016119396A1 (zh) 像素结构、阵列基板及其控制方法和显示器件
CN208432814U (zh) 一种双视3d显示装置
CN105700161A (zh) 基于障壁和针孔阵列的宽视角集成成像3d显示装置
CN110412771B (zh) 基于微透镜阵列的集成成像双视3d显示装置
CN109298538A (zh) 均匀光学效率的双视3d显示装置
CN205809442U (zh) 一种宽视角的集成成像3d显示装置
CN207440433U (zh) 一种基于渐变孔径针孔阵列的集成成像3d显示装置
CN110361871B (zh) 基于微透镜阵列的双视3d显示装置
CN110389454B (zh) 基于矩形偏振阵列的集成成像双视3d显示装置
CN209946543U (zh) 高分辨率双视3d显示装置
CN110297334B (zh) 基于渐变矩形针孔阵列的集成成像3d显示装置
CN208477225U (zh) 基于柱透镜光栅的双视3d显示装置
CN208459701U (zh) 同视区的无串扰和均匀分辨率双视3d显示装置
CN112485911B (zh) 基于阶梯渐变孔径针孔阵列的双视3d显示装置
CN110297335B (zh) 基于微透镜阵列和偏振光栅的双视3d显示装置
CN211206973U (zh) 基于渐变孔径针孔阵列的双视3d显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819146

Country of ref document: EP

Kind code of ref document: A1