WO2018001143A1 - 数据传输方法和装置以及光电转换装置和系统 - Google Patents

数据传输方法和装置以及光电转换装置和系统 Download PDF

Info

Publication number
WO2018001143A1
WO2018001143A1 PCT/CN2017/089245 CN2017089245W WO2018001143A1 WO 2018001143 A1 WO2018001143 A1 WO 2018001143A1 CN 2017089245 W CN2017089245 W CN 2017089245W WO 2018001143 A1 WO2018001143 A1 WO 2018001143A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
frame
transmitted
ethernet
cpri
Prior art date
Application number
PCT/CN2017/089245
Other languages
English (en)
French (fr)
Inventor
周文彬
刘凯
张迪强
邱明清
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17819140.9A priority Critical patent/EP3468298B1/en
Publication of WO2018001143A1 publication Critical patent/WO2018001143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking

Definitions

  • the present disclosure relates to the field of communications, and optionally to a data transmission method and apparatus and a photoelectric conversion apparatus and system.
  • the traditional radio remote unit is connected to the baseband processing unit (BBU) by optical fiber, but the optical fiber resources are less when the indoor coverage is used. More resources, in order to maximize resources and better layout.
  • the indoor coverage uses a remote radio device based on network cable transmission. The remote radio device communicates with the Ethernet interface cable. It cannot directly interface with the Common Public Radio Interface (CPRI) of the baseband processing unit.
  • CPRI Common Public Radio Interface
  • Embodiments of the present disclosure provide a data transmission method and apparatus, and a photoelectric conversion apparatus and system to at least solve the problem that the CPRI frame data and the Ethernet frame data cannot be synchronously transmitted in the related art.
  • a data transmission method comprising: extracting data to be transmitted from a received general public radio interface CPRI frame; inserting the data to be transmitted into an Ethernet frame, wherein the ether The period of the net frame is the same as the period of the CPRI frame; the Ethernet frame is transmitted.
  • inserting the to-be-transmitted data into the Ethernet frame includes: acquiring an effective data amount of an average bearer of each Ethernet basic frame included in the Ethernet frame; and performing basic CPRI according to the CPRI frame.
  • the first number of frames and the format of the Ethernet frame determine a second number of CPRI basic frames that are averagely carried by each Ethernet basic frame included in the Ethernet frame; determining an average per average according to the effective data amount and the second number
  • the amount of data of each CPRI basic frame carried in the Ethernet basic frame according to the average data amount of each CPRI basic frame carried in each Ethernet basic frame and the format of the Ethernet frame, the Ethernet
  • the network basic frame allocates the data to be transmitted; and the allocated data to be transmitted is correspondingly inserted into the Ethernet basic frame.
  • C R/(N ⁇ M); Wherein C represents the second quantity, R represents the first quantity, N represents the number of slot Slot frames included in the Ethernet frame, and M represents the number of Ethernet basic frames included in each Slot frame. Y represents the amount of valid data, and D represents the amount of data of each CPRI basic frame carried in each Ethernet basic frame.
  • inserting the to-be-transmitted data into the Ethernet frame includes: determining, according to a data transmission rate of an interface for transmitting an Ethernet frame, an amount of data carried in each Ethernet frame; determining a bearer in each Ethernet frame Whether the amount of data is smaller than the amount of data of the data to be transmitted; and if it is determined that the amount of data carried in each Ethernet frame is smaller than the amount of data of the data to be transmitted, inserting the data to be transmitted into multiple Ethernet networks Formatting the data of the preset data amount from the data to be transmitted; inserting the data of the preset data amount into an Ethernet frame, and discarding the preset in the data to be transmitted The remaining data other than the data of the data amount; and/or, in the case of determining that the amount of data carried in each Ethernet frame is not less than the amount of data of the data to be transmitted, inserting the data to be transmitted into one ether Net frame.
  • the amount of data carried in the Ethernet frame is determined according to the following formula: Wherein P represents the data transmission rate of the interface transmitting the Ethernet frame, and T represents the period of the Ethernet frame.
  • the method before the data to be transmitted is inserted into the Ethernet frame, the method further includes: determining whether to compress the data to be transmitted; and determining to compress the data to be transmitted. Compressing the data to be transmitted according to a preset compression algorithm, and using the compressed data to be transmitted as the data to be transmitted to be inserted into the Ethernet frame; or determining that the data to be transmitted is not compressed. In case, the data to be transmitted is transparently transmitted.
  • the Ethernet frame includes: a data transmission area, where the data transmission area is used to transmit the to-be-transmitted data.
  • the Ethernet frame further includes: a control information transmission area, where the control information transmission area is used to transmit control information of the Ethernet frame.
  • a data transmission method comprising: extracting data to be transmitted from a received Ethernet frame, wherein a period of the Ethernet frame and a period of a general public radio interface CPRI frame The same; the data to be transmitted is inserted into the CPRI frame; the CPRI frame is transmitted.
  • extracting the to-be-transmitted data from the received Ethernet frame includes: acquiring a valid data quantity carried by each Ethernet basic frame included in the Ethernet frame; according to an format of an Ethernet frame, and The amount of valid data carried by each Ethernet basic frame extracts data from each Ethernet basic frame to obtain the data to be transmitted.
  • the inserting the data to be transmitted into the CPRI frame includes: allocating the to-be-transmitted data to a CPRI basic frame included in the CPRI frame according to a format of a CPRI frame; and inserting the allocated data to be transmitted correspondingly The CPRI basic frame.
  • the inserting the data to be transmitted into the CPRI frame includes: determining whether the data amount of the data to be transmitted is greater than a data amount carried by each CPRI frame; determining that the data volume of the data to be transmitted is greater than each Inserting the data to be transmitted into multiple CPRI frames in the case of the amount of data carried by the CPRI frame; or screening from the data to be transmitted Presetting data of the data amount; inserting the data of the preset data amount into a CPRI frame, and discarding the remaining data of the data to be transmitted except the data of the preset data amount; and/or And determining, in the case that the data volume of the data to be transmitted is not greater than the amount of data carried by each CPRI frame, inserting the data to be transmitted into one CPRI frame.
  • the method before the data to be transmitted is inserted into the CPRI frame, the method further includes: determining whether to decompress the data to be transmitted; and determining to decompress the data to be transmitted. And decompressing the to-be-transmitted data according to a preset decompression algorithm, and using the decompressed data to be transmitted as the to-be-transmitted data to be inserted into the CPRI frame; or determining that the data to be transmitted is not performed. In the case of decompression, the data to be transmitted is transparently transmitted.
  • a data transmission apparatus comprising: a first extraction module configured to extract data to be transmitted from a received general public radio interface CPRI frame; a first insertion module configured to The data to be transmitted is inserted into an Ethernet frame, wherein a period of the Ethernet frame is the same as a period of the CPRI frame; and a first sending module is configured to send the Ethernet frame.
  • the first insertion module includes: a first acquiring unit, configured to acquire an effective data amount of an average bearer of each Ethernet basic frame included in the Ethernet frame; and a first determining unit, configured to The first number of CPRI basic frames included in the CPRI frame and the format of the Ethernet frame determine a second number of CPRI basic frames that are averagely carried by each Ethernet basic frame included in the Ethernet frame; a second determining unit, And determining, according to the effective data amount and the second quantity, determining an average data amount of each CPRI basic frame carried in each Ethernet basic frame; the first allocation unit is set to be based on the average of each Ethernet basic The data amount of each CPRI basic frame carried in the frame and the format of the Ethernet frame are the data to be transmitted allocated to the Ethernet basic frame; the first insertion unit is configured to correspond to the allocated data to be transmitted Insert the Ethernet basic frame.
  • the first insertion module includes: a third determining unit, configured to determine, according to a data transmission rate of an interface that transmits an Ethernet frame, an amount of data carried in each Ethernet frame; the first determining unit is configured to determine Whether the amount of data carried in each Ethernet frame is smaller than the amount of data of the data to be transmitted; the first processing unit is set to determine each of If the amount of data carried in the Ethernet frame is smaller than the data volume of the data to be transmitted, the data to be transmitted is inserted into multiple Ethernet frames; or the data of the preset data volume is filtered from the data to be transmitted.
  • a third determining unit configured to determine, according to a data transmission rate of an interface that transmits an Ethernet frame, an amount of data carried in each Ethernet frame
  • the first determining unit is configured to determine Whether the amount of data carried in each Ethernet frame is smaller than the amount of data of the data to be transmitted
  • the first processing unit is set to determine each of If the amount of data carried in the Ethernet frame is smaller than the data volume of the data to be transmitted, the data
  • the device further includes: a first determining module, configured to determine whether to compress the data to be transmitted; and a compression module, configured to: when it is determined that the data to be transmitted is compressed, according to the pre The compression algorithm compresses the data to be transmitted, and uses the compressed data to be transmitted as the data to be transmitted to be inserted into the Ethernet frame; or, if it is determined that the data to be transmitted is not compressed, Transmitting the data to be transmitted.
  • a first determining module configured to determine whether to compress the data to be transmitted
  • a compression module configured to: when it is determined that the data to be transmitted is compressed, according to the pre The compression algorithm compresses the data to be transmitted, and uses the compressed data to be transmitted as the data to be transmitted to be inserted into the Ethernet frame; or, if it is determined that the data to be transmitted is not compressed, Transmitting the data to be transmitted.
  • a data transmission apparatus comprising: a second extraction module configured to extract data to be transmitted from a received Ethernet frame, wherein a period and a generality of the Ethernet frame The period of the common radio interface CPRI frame is the same; the second insertion module is configured to insert the data to be transmitted into the CPRI frame; and the second sending module is configured to send the CPRI frame.
  • the second extraction module includes: a second obtaining unit, configured to acquire a valid data amount carried by each Ethernet basic frame included in the Ethernet frame; and an extracting unit, configured to be according to an Ethernet frame The format and the amount of valid data carried by each Ethernet basic frame extract data from each of the Ethernet basic frames to obtain the data to be transmitted.
  • the second insertion module includes: a second allocation unit, configured to allocate the data to be transmitted to a CPRI basic frame included in the CPRI frame according to a format of the CPRI frame; and the second insertion unit is set to The allocated data to be transmitted is correspondingly inserted into the CPRI basic frame.
  • the second insertion module includes: a second determining unit, configured to determine whether the data amount of the data to be transmitted is greater than a data amount carried by each CPRI frame; and the third processing unit is configured to determine The amount of data to be transmitted is greater than each CPRI frame Inserting the data to be transmitted into multiple CPRI frames in the case of the amount of data to be transmitted; or filtering data of a preset data amount from the data to be transmitted; inserting the data of the preset data amount into a CPRI frame And discarding the remaining data of the data to be transmitted except the filtered data amount of the preset data; and/or, the fourth processing unit is configured to determine that the data volume of the data to be transmitted is not In the case that the amount of data carried by each CPRI frame is larger than the amount of data carried by each CPRI frame, the data to be transmitted is inserted into one CPRI frame.
  • the device further includes: a second determining module, configured to determine whether to decompress the data to be transmitted; and a decompression module, configured to determine, in the case of decompressing the data to be transmitted Decompressing the data to be transmitted according to a preset decompression algorithm, and using the data to be transmitted as the data to be transmitted to be inserted into the CPRI frame; or determining that the data to be transmitted is not solved In the case of compression, the data to be transmitted is transparently transmitted.
  • a photoelectric conversion apparatus including: a first processing chip, a first interface, and a second interface, wherein the first processing chip is connected to the first interface and the Between the second interfaces; the first interface is configured to receive a general public radio interface CPRI frame; the first processing chip is configured to extract data to be transmitted from the received CPRI frame; insert the data to be transmitted An Ethernet frame, wherein a period of the Ethernet frame is the same as a period of the CPRI frame; and the second interface is configured to send the Ethernet frame.
  • the first processing chip is configured to: obtain an effective data amount of each Ethernet basic frame average bearer included in the Ethernet frame; and according to the first number of CPRI basic frames included in the CPRI frame And determining, by the format of the Ethernet frame, a second number of CPRI basic frames that are averagely carried by each Ethernet basic frame included in the Ethernet frame; determining an average of each Ethernet basic frame according to the effective data amount and the second quantity The amount of data of each CPRI basic frame carried in the medium; according to the average data amount of each CPRI basic frame carried in each Ethernet basic frame and the format of the Ethernet frame, the Ethernet basic frame allocation Transmitting the data; inserting the allocated data to be transmitted into the Ethernet basic frame.
  • the first processing chip is configured to: according to the number of interfaces that transmit Ethernet frames Determining, according to the transmission rate, the amount of data carried in each Ethernet frame; determining whether the amount of data carried in each Ethernet frame is smaller than the amount of data to be transmitted; determining the amount of data carried in each Ethernet frame If the amount of data to be transmitted is smaller than the data amount of the data to be transmitted, the data to be transmitted is inserted into a plurality of Ethernet frames; or the data of the preset data amount is filtered from the data to be transmitted; Inserting an Ethernet frame and discarding the remaining data of the data to be transmitted except the filtered predetermined amount of data; and/or determining the data carried in each Ethernet frame In the case where the amount is not less than the amount of data of the data to be transmitted, the data to be transmitted is inserted into an Ethernet frame.
  • the first processing chip is configured to: before the data to be transmitted is inserted into the Ethernet frame, determine whether to compress the data to be transmitted; and determine to compress the data to be transmitted. And compressing the data to be transmitted according to a preset compression algorithm, and using the compressed data to be transmitted as the data to be transmitted to be inserted into the Ethernet frame; or determining that the data to be transmitted is not In the case where the data is compressed, the data to be transmitted is transparently transmitted.
  • a photoelectric conversion apparatus including: a second processing chip, a third interface, and a fourth interface, wherein the second processing chip is connected to the third interface and the The third interface is configured to receive an Ethernet frame; the second processing chip is configured to extract data to be transmitted from the received Ethernet frame, where the period and the universality of the Ethernet frame are The period of the common radio interface CPRI frame is the same; the data to be transmitted is inserted into the CPRI frame; and the fourth interface is used to send the CPRI frame.
  • the second processing chip is configured to: acquire an effective data amount carried by each Ethernet basic frame included in the Ethernet frame; according to a format of an Ethernet frame and a hosted by each Ethernet basic frame The effective data amount is extracted from each Ethernet basic frame to obtain the data to be transmitted.
  • the second processing chip is configured to allocate the to-be-transmitted data to a CPRI basic frame included in the CPRI frame according to a format of a CPRI frame, and insert the allocated data to be transmitted into the CPRI basic frame.
  • the second processing chip is configured to: determine a data volume of the data to be transmitted Whether it is greater than the amount of data carried by each CPRI frame; if it is determined that the data amount of the data to be transmitted is greater than the amount of data carried by each CPRI frame, the data to be transmitted is inserted into multiple CPRI frames; or, Filtering, by the data to be transmitted, the data of the preset data amount; inserting the data of the preset data amount into a CPRI frame, and discarding the data of the to-be-transmitted data except the filtered preset data amount The remaining data is; and/or, in the case where it is determined that the amount of data of the data to be transmitted is not greater than the amount of data carried by each CPRI frame, the data to be transmitted is inserted into a CPRI frame.
  • the second processing chip is configured to: before the data to be transmitted is inserted into the CPRI frame, determine whether to decompress the data to be transmitted; and determine to solve the data to be transmitted. Decompressing the data to be transmitted according to a preset decompression algorithm, and using the decompressed data to be transmitted as the data to be transmitted to be inserted into the CPRI frame; or determining that the In the case of transmitting data for decompression, the data to be transmitted is transparently transmitted.
  • a photoelectric conversion system including: a first device, a photoelectric conversion device, and a second device, wherein the photoelectric conversion device includes: a processing chip, an optical port, and an electrical port, wherein The processing chip is connected between the optical port and the electrical port, the optical port is connected to the first device, and the electrical port is connected to the second device; Extracting data to be transmitted from the general public radio interface CPRI frame received by the optical port, and inserting the data to be transmitted into the Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the CPRI frame; and/or, from the The data to be transmitted is extracted from the Ethernet frame received by the port, wherein the period of the Ethernet frame is the same as the period of the CPRI frame, and the data to be transmitted is inserted into the CPRI frame; the optical port is used to receive or transmit the CPRI frame;
  • the port is configured to send or receive an Ethernet frame;
  • the first device is configured to receive a CPRI frame sent by the photoelectric conversion device;
  • the first device includes: a baseband processing unit BBU; the second device includes at least one of: one or more radio remote units RRU, one or more of the photoelectric conversion devices; or The first device includes at least one of the following: One or more radio remote units RRU, one or more of the photoelectric conversion devices; the second device includes: a baseband processing unit BBU.
  • the data to be transmitted is extracted from the received general public radio interface CPRI frame; the data to be transmitted is inserted into the Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the CPRI frame; It can be seen that the data to be transmitted is inserted into the same Ethernet frame as the CPRI frame period for transmission. Therefore, the synchronous transmission of the CPRI frame data and the Ethernet frame data is realized, thereby solving the problem that the CPRI frame data cannot be obtained in the related art. The problem of synchronous transmission with Ethernet frame data.
  • a computer storage medium storing an execution instruction for executing the data transmission method in the above embodiment.
  • FIG. 1 is a flowchart 1 of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a second flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram 1 of a structure of a data transmission device according to an embodiment of the present disclosure
  • FIG. 4 is a block diagram 2 of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram 3 of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram 4 of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram 5 of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram 6 of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram 7 of a structure of a data transmission device according to an embodiment of the present disclosure.
  • FIG. 10 is a block diagram VIII of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram IX of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a frame structure of an Ethernet frame in accordance with an alternative embodiment of the present disclosure.
  • FIG. 14 is a block diagram 1 of a structure of a data transmission device according to an alternative example of the present disclosure.
  • 15 is a structural block diagram 2 of a data transmission device according to an embodiment of the present disclosure.
  • 16 is a block diagram 3 of a structure of a data transmission device according to an alternative example of the present disclosure.
  • 17 is a structural block diagram 4 of a data transmission device according to an alternative example of the present disclosure.
  • FIG. 18 is a block diagram 5 of a structure of a data transmission device according to an alternative example of the present disclosure.
  • 19 is a structural block diagram 6 of a data transmission device according to an embodiment of the present disclosure.
  • FIG. 20 is a block diagram showing the structure of a photoelectric conversion device according to an embodiment of the present disclosure
  • 21 is a block diagram showing the structure of another photoelectric conversion device according to an embodiment of the present disclosure.
  • FIG. 22 is a structural block diagram of a photoelectric conversion system according to an embodiment of the present disclosure.
  • FIG. 1 is a flowchart 1 of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 1, the process includes the following steps:
  • Step S102 extracting data to be transmitted from the received common public radio interface CPRI frame
  • Step S104 inserting data to be transmitted into an Ethernet frame, wherein a period of the Ethernet frame is the same as a period of the CPRI frame;
  • step S106 an Ethernet frame is transmitted.
  • the foregoing data transmission method may be, but is not limited to, applied to a scenario covered by a communication network.
  • a scenario in which an interface network cable that transmits an Ethernet frame communicates with an optical port of a baseband processing unit when the communication network is indoorly covered.
  • the data to be transmitted is extracted from the received common public radio interface CPRI frame; the data to be transmitted is inserted into the Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the CPRI frame; It can be seen that the data to be transmitted is inserted into the same Ethernet frame as the CPRI frame period for transmission. Therefore, the synchronous transmission of the CPRI frame data and the Ethernet frame data is realized, thereby solving the problem that the CPRI frame data cannot be obtained in the related art. The problem of synchronous transmission with Ethernet frame data.
  • the Ethernet interface of the Ethernet frame into which the data to be transmitted is received may be, but is not limited to, the packet number control word is set for the Ethernet basic frame, and the control word according to the packet sequence number of the Ethernet basic frame may be controlled.
  • the analysis analyzes the frame header position of the Ethernet frame, thereby realizing the synchronous transmission of the CPRI frame data and the Ethernet frame data.
  • the average data carried by each Ethernet basic frame and the number of CPRI basic frames that are averagely carried by each Ethernet basic frame may be averaged in each Ethernet basic frame.
  • the amount of data of each CPRI basic frame is allocated according to the data amount of each CPRI basic frame carried in each Ethernet basic frame, and the data to be transmitted is inserted into the Ethernet basic frame according to the allocation result. For example, obtaining the effective data amount of each Ethernet basic frame included in the Ethernet frame, and determining each of the included in the Ethernet frame according to the first number of CPRI basic frames included in the CPRI frame and the format of the Ethernet frame.
  • the second number of CPRI basic frames carried by the Ethernet basic frame is averaged, and the average data amount of each CPRI basic frame carried in each Ethernet basic frame is determined according to the effective data amount and the second quantity, according to the average of each Ethernet basic frame.
  • the data volume of each CPRI basic frame and the format of the Ethernet frame carried in the frame are the data to be transmitted for the Ethernet basic frame, and the allocated data to be transmitted is correspondingly inserted into the Ethernet basic frame.
  • the data in the CPRI frame can be inserted into the Ethernet frame according to the format of the Ethernet frame and the amount of data carried by the Ethernet frame, thereby realizing synchronous transmission of the CPRI frame data and the Ethernet frame data.
  • the amount of data of each CPRI basic frame carried in each Ethernet basic frame may be determined according to the following formula:
  • C represents the second quantity
  • R represents the first quantity
  • N represents the number of time slot Slot frames included in the Ethernet frame
  • M represents the number of Ethernet basic frames included in each Slot frame
  • Y represents valid.
  • the amount of data represents the amount of data per average of each CPRI basic frame carried in each Ethernet basic frame.
  • the information may be, but is not limited to, the amount of data that can be carried by the Ethernet frame is smaller than the amount of data to be transmitted.
  • the data of the preset data amount is filtered out from the data to be transmitted as the data to be transmitted to be inserted into the Ethernet frame.
  • determining the amount of data carried in each Ethernet frame according to the data transmission rate of the interface transmitting the Ethernet frame determining whether the amount of data carried in each Ethernet frame is smaller than the amount of data to be transmitted, and determining each If the amount of data carried in the Ethernet frame is smaller than the amount of data to be transmitted, insert the data to be transmitted into multiple Ethernet frames; or, filter the data of the preset data amount from the data to be transmitted; The data is inserted into an Ethernet frame, and the remaining data of the data to be transmitted except the preset preset data amount is discarded; and/or, it is determined that the amount of data carried in each Ethernet frame is not less than In the case of the amount of data transmitted, the data to be transmitted is inserted into an Ethernet frame.
  • the data to be transmitted may be inserted into a plurality of Ethernet frames in a routing manner.
  • the data to be transmitted is filtered for multiple Ethernet frames according to the preset routing information, and the filtered data is routed to multiple interfaces for transmitting Ethernet frames, and the data is correspondingly inserted into the Ethernet frame for transmission.
  • the data path to be transmitted is adopted by the routing mechanism. From the multiple interfaces, the data to be transmitted is transmitted through multiple Ethernet frames. It can be seen that the above scheme ensures the integrity of the data transmission while ensuring the synchronization of the data transmission.
  • the amount of data carried in the Ethernet frame may be determined, but not limited to, according to the following formula:
  • P represents the data transmission rate of the interface transmitting the Ethernet frame and T represents the period of the Ethernet frame.
  • the data to be transmitted may be compressed. For example, it is determined whether the data to be transmitted is compressed. When it is determined that the data to be transmitted is compressed, the data to be transmitted is compressed according to a preset compression algorithm, and the compressed data to be transmitted is used as the data to be transmitted to be inserted into the Ethernet frame.
  • the data to be transmitted may be inserted into the Ethernet frame by transparent transmission.
  • the foregoing Ethernet frame may include, but is not limited to, a data transmission area, where the data transmission area is used to transmit data to be transmitted.
  • the foregoing Ethernet frame may also include, but is not limited to, a control information transmission area, where the control information transmission area is used to transmit control information of the Ethernet frame.
  • FIG. 2 is a second flowchart of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 extracting data to be transmitted from the received Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the general public radio interface CPRI frame;
  • Step S204 inserting data to be transmitted into the CPRI frame
  • step S206 a CPRI frame is transmitted.
  • the foregoing data transmission method may be, but is not limited to, applied to a scenario covered by a communication network.
  • a scenario in which an interface network cable that transmits an Ethernet frame communicates with an optical port of a baseband processing unit when the communication network is indoorly covered.
  • the data to be transmitted is extracted from the received Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the general public radio interface CPRI frame; the data to be transmitted is inserted into the CPRI frame; and the CPRI frame is transmitted, thereby being visible
  • the above scheme is used to insert the data to be transmitted in the Ethernet frame with the same CPRI frame period into the CPRI frame and transmit the data, thereby realizing the synchronous transmission of the CPRI frame data and the Ethernet frame data, thereby solving the problem.
  • the problem of synchronous transmission of CPRI frame data and Ethernet frame data cannot be performed in the related art.
  • the packet sequence control word may be set for the Ethernet basic frame, so that after the Ethernet frame inserted with the data to be transmitted is received, the packet number control word of the Ethernet basic frame may be analyzed. The frame header position of the Ethernet frame is analyzed, thereby realizing the synchronous transmission of the CPRI frame data and the Ethernet frame data.
  • the data to be transmitted may be obtained according to the format of the Ethernet frame and the effective data amount carried by each Ethernet basic frame. For example, obtaining the effective data amount carried by each Ethernet basic frame included in the Ethernet frame, and extracting data from each Ethernet basic frame according to the format of the Ethernet frame and the effective data amount carried by each Ethernet basic frame, Data to be transmitted.
  • the data to be transmitted may be allocated to the CPRI basic frame.
  • the data to be transmitted is allocated to the CPRI basic frame included in the CPRI frame according to the format of the CPRI frame, and the allocated data to be transmitted is correspondingly inserted into the CPRI basic frame.
  • the data to be transmitted may be filtered if the data amount of the data to be transmitted is greater than the amount of data carried by each CPRI frame. For example, determining whether the data volume of the data to be transmitted is greater than the data amount carried by each CPRI frame, and inserting the data to be transmitted into multiple CPRIs when determining that the data volume of the data to be transmitted is greater than the data amount carried by each CPRI frame.
  • the data to be transmitted may be decompressed. For example, it is determined whether the data to be transmitted is decompressed, and when it is determined that the data to be transmitted is decompressed, the data to be transmitted is decompressed according to a preset decompression algorithm, and the decompressed data to be transmitted is used as a CPRI frame to be inserted. Data to be transmitted; or, in the case of determining that the data to be transmitted is not decompressed, the data to be transmitted is transparently transmitted.
  • a data transmission device is also provided, which is used to implement the above-mentioned embodiments and optional implementation manners, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram 1 of a data transmission apparatus according to an embodiment of the present disclosure. As shown in FIG. 3, the apparatus includes:
  • the first extraction module 32 is configured to extract data to be transmitted from the received common public radio interface CPRI frame;
  • the first insertion module 34 is coupled to the first extraction module 32 and configured to insert the data to be transmitted into the Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the CPRI frame;
  • the first transmitting module 36 coupled to the first plug-in module 34, is configured to transmit an Ethernet frame.
  • the above data transmission device may be, but is not limited to, applied to a scenario covered by a communication network.
  • a scenario in which an interface network cable that transmits an Ethernet frame communicates with an optical port of a baseband processing unit when the communication network is indoorly covered.
  • the first extraction module extracts data to be transmitted from the received common public radio interface CPRI frame; the first insertion module inserts the data to be transmitted into the Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the CPRI frame.
  • the first sending module sends The Ethernet frame is sent, and thus the data to be transmitted is inserted into the same Ethernet frame as the CPRI frame period for transmission, thereby realizing the synchronous transmission of the CPRI frame data and the Ethernet frame data, thereby solving the correlation.
  • the problem of synchronous transmission of CPRI frame data and Ethernet frame data cannot be performed in the technology.
  • the Ethernet interface of the Ethernet frame into which the data to be transmitted is received may be, but is not limited to, the packet number control word is set for the Ethernet basic frame, and the control word according to the packet sequence number of the Ethernet basic frame may be controlled.
  • the analysis analyzes the frame header position of the Ethernet frame, thereby realizing the synchronous transmission of the CPRI frame data and the Ethernet frame data.
  • FIG. 4 is a structural block diagram 2 of a data transmission apparatus according to an embodiment of the present disclosure.
  • the first insertion module 34 includes:
  • the first obtaining unit 402 is coupled to the second determining unit 406, and configured to obtain an effective data amount of an average bearer of each Ethernet basic frame included in the Ethernet frame;
  • the first determining unit 404 is coupled to the second determining unit 406, configured to determine, according to the first number of CPRI basic frames included in the CPRI frame and the format of the Ethernet frame, the average bearer of each Ethernet basic frame included in the Ethernet frame.
  • the second determining unit 406 is configured to determine, according to the effective data amount and the second quantity, an average data amount of each CPRI basic frame carried in each Ethernet basic frame;
  • the first allocating unit 408 is coupled to the second determining unit 406, and is configured to allocate data to be transmitted to the Ethernet basic frame according to an average data amount of each CPRI basic frame and an Ethernet frame format carried in each Ethernet basic frame. ;
  • the first insertion unit 410 is coupled to the first allocation unit 408 and configured to insert the allocated data to be transmitted into the Ethernet basic frame.
  • the amount of data of each CPRI basic frame carried in each Ethernet basic frame may be determined according to the following formula:
  • C represents the second quantity
  • R represents the first quantity
  • N represents the ether.
  • M indicates the number of Ethernet basic frames included in each Slot frame
  • Y indicates the effective data amount
  • D indicates the average of each CPRI carried in each Ethernet basic frame. The amount of data in the frame.
  • FIG. 5 is a structural block diagram 3 of a data transmission apparatus according to an embodiment of the present disclosure.
  • the first insertion module 34 includes:
  • the third determining unit 52 is configured to determine, according to a data transmission rate of the interface that transmits the Ethernet frame, an amount of data carried in each Ethernet frame;
  • the first determining unit 54 coupled to the third determining unit 52, is configured to determine whether the amount of data carried in each Ethernet frame is smaller than the amount of data to be transmitted;
  • the first processing unit 56 is coupled to the first determining unit 54 and configured to insert the data to be transmitted into multiple Ethernet frames in a case where it is determined that the amount of data carried in each Ethernet frame is smaller than the amount of data to be transmitted. Or, the data of the preset data amount is filtered from the data to be transmitted; the data of the preset data amount is inserted into an Ethernet frame, and the remaining data of the data to be transmitted except the preset preset data amount is discarded. ;and / or,
  • the second processing unit 58 is coupled to the first determining unit 54 and configured to insert the data to be transmitted into an Ethernet frame in a case where it is determined that the amount of data carried in each Ethernet frame is not less than the amount of data to be transmitted. .
  • the amount of data carried in the Ethernet frame may be determined, but not limited to, according to the following formula:
  • P represents the data transmission rate of the interface transmitting the Ethernet frame and T represents the period of the Ethernet frame.
  • FIG. 6 is a structural block diagram of a data transmission apparatus according to an embodiment of the present disclosure. As shown in FIG. 6, the apparatus further includes:
  • the first determining module 62 is coupled to the first extracting module 32 and configured to determine whether to compress the data to be transmitted;
  • a compression module 64 coupled between the first determination module 62 and the first insertion module 34, When it is determined that the data to be transmitted is compressed, the data to be transmitted is compressed according to a preset compression algorithm, and the compressed data to be transmitted is used as data to be transmitted to be inserted into the Ethernet frame; or, it is determined that the data is not to be transmitted. In the case where the data is compressed, the data to be transmitted is transparently transmitted.
  • the Ethernet frame may include, but is not limited to, a data transmission area, where the data transmission area is used to transmit data to be transmitted.
  • the Ethernet frame may also include, but is not limited to, a control information transmission area, where the control information transmission area is used to transmit control information of the Ethernet frame.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • a data transmission device is also provided, which is used to implement the above-mentioned embodiments and optional implementation manners, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 7 is a structural block diagram 5 of a data transmission apparatus according to an embodiment of the present disclosure. As shown in FIG. 7, the apparatus includes:
  • the second extraction module 72 is configured to extract data to be transmitted from the received Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the general public radio interface CPRI frame;
  • a second insertion module 74 coupled to the second extraction module 72, configured to insert data to be transmitted into the CPRI frame;
  • a second transmitting module 76 coupled to the second plug-in module 74, is configured to transmit a CPRI frame.
  • the foregoing data transmission device may be, but is not limited to, applied to a communication network coverage.
  • a communication network coverage For example, a scenario in which an interface network cable that transmits an Ethernet frame communicates with an optical port of a baseband processing unit when the communication network is indoorly covered.
  • the second extraction module is configured to extract data to be transmitted from the received Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the general public radio interface CPRI frame; the second insertion module is set to be The data to be transmitted is inserted into the CPRI frame; the second sending module is configured to send the CPRI frame, and thus it can be seen that the data to be transmitted is inserted into the same Ethernet frame as the CPRI frame period for transmission by using the above scheme, thereby implementing CPRI frame data.
  • Synchronous transmission with Ethernet frame data solves the problem that the related art cannot synchronously transmit CPRI frame data and Ethernet frame data.
  • the data transmission device that receives the Ethernet frame inserted with the data to be transmitted may be configured by the packet number control word for the Ethernet basic frame, and may be controlled according to the packet sequence number of the Ethernet basic frame.
  • the analysis analyzes the frame header position of the Ethernet frame, thereby realizing the synchronous transmission of the CPRI frame data and the Ethernet frame data.
  • FIG. 8 is a structural block diagram 6 of a data transmission apparatus according to an embodiment of the present disclosure.
  • the second extraction module 72 includes:
  • the second obtaining unit 82 is configured to acquire a valid data amount carried by each Ethernet basic frame included in the Ethernet frame;
  • the extracting unit 84 is coupled to the second obtaining unit 82, and is configured to extract data from each Ethernet basic frame according to the format of the Ethernet frame and the effective data amount carried by each Ethernet basic frame, to obtain data to be transmitted.
  • FIG. 9 is a structural block diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • the second insertion module 74 includes:
  • the second allocating unit 92 is configured to allocate data to be transmitted for the CPRI basic frame included in the CPRI frame according to the format of the CPRI frame;
  • the second insertion unit 94 coupled to the second allocation unit 92, is arranged to insert the assigned data to be transmitted into the CPRI basic frame.
  • FIG. 10 is a structural block diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • the second insertion module 74 includes:
  • the second determining unit 102 is configured to determine whether the data amount of the data to be transmitted is greater than the amount of data carried by each CPRI frame;
  • the third processing unit 104 is coupled to the second determining unit 102, and configured to insert the data to be transmitted into multiple CPRI frames in a case where it is determined that the data amount of the data to be transmitted is greater than the data amount carried by each CPRI frame; or Filtering data of a preset data amount from the data to be transmitted; inserting the filtered data to be transmitted into a CPRI frame, and discarding the remaining data of the data to be transmitted except the preset preset data amount; and/or
  • the fourth processing unit 106 is coupled to the second determining unit 102, and is configured to insert the data to be transmitted into a CPRI frame in a case where it is determined that the data amount of the data to be transmitted is not greater than the amount of data carried by each CPRI frame.
  • Figure 11 is a block diagram of a structure of a data transmission device according to an embodiment of the present disclosure. As shown in Figure 11, optionally, the device further includes:
  • the second determining module 112 is coupled to the second extracting module 72, and configured to determine whether to decompress the data to be transmitted;
  • the decompression module 114 is coupled between the second judging module 112 and the second interpolating module 74, and is configured to decompress the data to be transmitted according to a preset decompression algorithm in a case where it is determined that the data to be transmitted is decompressed, and the solution is decompressed.
  • the compressed data to be transmitted is used as the data to be transmitted to be inserted into the CPRI frame; or, in the case where it is determined that the data to be transmitted is not decompressed, the data to be transmitted is transparently transmitted.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • An optional embodiment of the present disclosure provides an electrical interface frame for data synchronization conversion of a CPRI frame and an Ethernet frame, and the synchronous conversion of the CPRI frame data and the Ethernet frame data can be well completed by the defined frame format. Based on this, a method and device for realizing synchronous transmission of photoelectric data are also proposed.
  • the photoelectric conversion device can well complete the bridge communication between the baseband processing unit and the remote radio frequency device.
  • a device In an indoor coverage system, a device is needed to perform data synchronous conversion between optoelectronic lines, thereby ensuring communication between the BBU and the remote radio device.
  • the photoelectric conversion method and apparatus provided by the alternative embodiments of the present disclosure can perform data conversion between photoelectrics well by using defined electrical port frames.
  • FIG. 12 is a flowchart of a data transmission method according to an optional embodiment of the present disclosure, such as As shown in Figure 12, the following describes the uplink and downlink separately:
  • step S1202 the optical port of the photoelectric conversion device receives the data transmitted from the opposite end (ie, the CPRI frame), and extracts the data.
  • step S1204 the photoelectric conversion device processes the extracted data.
  • step S1206 the photoelectric conversion device completes the synchronous conversion between the CPRI frame and the Ethernet frame.
  • Step S1208 The electrical port of the photoelectric conversion device sends an Ethernet frame to the peer Ethernet interface device, and the Ethernet interface device can extract data by parsing the frame header of the 10 ms Ethernet frame.
  • step S1212 the signal received by the Ethernet interface device is processed and transmitted to the photoelectric conversion device.
  • step S1214 the photoelectric conversion device parses the 10 ms frame header according to the frame format according to the data received by the electrical port, and extracts data.
  • step S1216 the photoelectric conversion device processes the extracted data.
  • step S1218 the photoelectric conversion device inserts the data into the corresponding CPRI frame structure, and then transmits the data to the opposite optical port device through the optical fiber.
  • the first step of the downlink processing is:
  • the optical port of the photoelectric conversion device receives the data in the CPRI frame format sent from the opposite end, and correspondingly extracts the data portion and the control word portion according to the CPRI frame format definition.
  • the second step of the downlink processing is:
  • the extracted data portion is selected for processing by the compression algorithm. If the compression processing is not used, the transparent transmission method is adopted. If the compression algorithm is used, the corresponding algorithm is selected to compress the data.
  • the third step of the downlink processing is:
  • Photoelectric synchronous conversion uses the following methods:
  • the period of the CPRI radio frame is T (for example, a period of 10 ms);
  • FIG. 13 is a frame structure of an Ethernet frame according to an alternative embodiment of the present disclosure. Schematic diagram.
  • the transmission limit of the amount of data carried by each CPRI basic frame in the optical interface CPRI frame in the Ethernet interface of the electrical interface can be determined.
  • the amount of data transmitted by the electrical port within 10 ms is:
  • the electrical interface frame format is based on 10 ms, and the following segmentation is completed.
  • Each 10ms Ethernet frame consists of N Slot frames, and each Slot frame contains an amount of data of (X/N) Bytes.
  • Each Slot frame consists of one electrical port superframe and K Byte interval control information.
  • the electrical port superframe contains the data amount of (X/N-K) Byte.
  • the control information area occupies K Bytes in each Slot frame and can carry multiple non-contiguous Ethernet signaling messages.
  • Each electrical port superframe consists of M Ethernet basic frames, and each Ethernet basic frame contains an average of Z Bytes.
  • Each Ethernet basic frame is an Ethernet message, in which the average effective data is transferred to the Y Byte data amount.
  • the number of CPRI basic frames carried by each Ethernet basic frame is:
  • the amount of data of each CPRI basic frame carried in the basic frame of the average electrical port can be obtained as follows:
  • N, K, M, and Y are all randomly selectable values.
  • the extracted data is inserted into the Ethernet frame based on the information obtained above.
  • the control word of the packet sequence number can be defined, that is, all Ethernet basic frames within 10 ms are cyclically counted. In this way, the data synchronization between the photoelectrics is completed as a whole.
  • the fourth step of the downlink processing is:
  • the peer end recovers the frame header of the 10 ms Ethernet frame through the parsing of the 0th packet, thereby completing synchronization between the photoelectric conversion device and the Ethernet interface device, and simultaneously parsing the corresponding data according to the electrical port frame format. This ensures the synchronization of the entire link.
  • the first step of the uplink processing is:
  • the signal received by the Ethernet interface device, after processing, according to the defined photoelectric synchronization The converted 10ms electrical port frame format inserts data into the corresponding Ethernet packet and transmits it to the photoelectric conversion device through the network cable.
  • the second step of the uplink processing is:
  • the electrical port of the photoelectric conversion device recovers the 10 ms frame header by parsing the 0th packet according to the format of the photoelectric synchronous conversion electrical interface frame (ie, Ethernet frame), thereby completing synchronization between devices. At the same time, the data in all Ethernet packets within 10ms is extracted.
  • the third step of the uplink processing is:
  • the extracted data is selected for processing by a decompression algorithm. If decompression is not used, a transparent transmission method is adopted. If a decompression algorithm is used, the corresponding algorithm is selected to decompress the data.
  • the fourth step of the uplink processing is the fourth step of the uplink processing:
  • the optical port of the photoelectric conversion device inserts the data within 10 ms after the decompression process into the corresponding CPRI frame structure within 10 ms, and then transmits the data to the opposite optical port device through the optical fiber. This completes the synchronous conversion between electro-optical data as a whole.
  • the data transmission method provided by the alternative embodiment of the present disclosure is capable of performing conversion between photoelectric data while maintaining the overall link synchronization characteristic.
  • the photoelectric conversion device based on this method is of great significance for the indoor coverage application scenario in the communication system, and can support the bridging between the BBU and the remote radio equipment, and complete the conversion between the optical fiber and the network cable.
  • FIG. 14 is a structural block diagram of a data transmission apparatus according to an alternative example of the present disclosure
  • FIG. 15 is a structural block diagram of a data transmission apparatus according to an embodiment of the present disclosure, as shown in FIGS. 14 and 15, data transmission
  • the connection form of the device (ie, the photoelectric conversion device) in the network may be, but is not limited to, a BBU--optoelectronic conversion device--a remote radio device, wherein, in this example, the Y value data is all fixed as an example, to be transmitted.
  • the data takes the protocol A and B data as an example.
  • step 11 the BBU inserts the sampled protocol A and B data into the CPRI basic frame data.
  • the photoelectric conversion device extracts the data according to the frame format of the CPRI according to the background configuration. According to the background configuration, it is determined whether to perform compression processing or direct transmission to the electrical port.
  • the photoelectric conversion device is in a frame format as shown in FIG. 13, and the value of Y in each Ethernet frame is fixed, and the corresponding data is inserted into the Ethernet packet included in the Ethernet frame (ie, the Ethernet basic frame).
  • the relevant control information can be inserted in the control information portion at the same time, thereby completing the synchronous conversion between the photoelectric data.
  • the packet sequence number is defined in the Ethernet packet, and all the packets within 10 ms are cyclically counted by the packet sequence number, and used for system synchronization timing extraction.
  • Step 13 The remote radio device receives the Ethernet packet sent by the photoelectric conversion device, and according to the packet sequence number of the Ethernet packet, extracts a 10 ms frame header when receiving the 0th packet, and according to FIG.
  • the frame format extracts the data for processing, thereby completing synchronization between devices.
  • step 14 the A and B signals received by the remote radio equipment antenna are selected for compression processing through the background configuration.
  • the data is inserted into the Ethernet message according to the frame format as shown in FIG. 13, and the control information is inserted into the control message and sent to the photoelectric conversion device through the network cable.
  • step 15 the electrical interface of the photoelectric conversion device recovers the 10 ms header when receiving the 0th packet data.
  • the corresponding data in the message and the data of the control information part are extracted.
  • the data is extracted and processed by the decompression algorithm to be transmitted to the optical port processing part.
  • the optical port processing section inserts data in accordance with the CPRI frame format.
  • step 16 the photoelectric conversion device transmits the data to the BBU through the optical fiber.
  • the BBU and the photoelectric conversion device are connected by an optical fiber.
  • the photoelectric conversion device and the remote RF device are connected by a network cable.
  • Support photoelectric conversion device to connect one or more remote RF devices.
  • connection form of the data transmission device (ie, the photoelectric conversion device) in the network may be, but is not limited to, a BBU--optoelectronic conversion device--a remote radio device, wherein In this example, the Y value can be flexibly configured as an example.
  • the data to be transmitted is exemplified by protocol A and B data.
  • step 21 the BBU inserts the sampled protocol A and B data into the CPRI basic frame data.
  • the photoelectric conversion device extracts the data according to the frame format of the CPRI according to the background configuration.
  • the background configuration it is determined whether the signal is compressed or directly transmitted to the electrical port.
  • the Y of each Ethernet message frame can be dynamically changed according to requirements, and the relevant control information can be inserted in the control information part, thereby completing the data conversion between the photoelectrics.
  • the packet sequence number is defined in the Ethernet packet, and all the packets within 10 ms are cyclically counted by the packet sequence number, and used for system synchronization timing extraction.
  • Step 23 The remote radio device transmits the Ethernet packet sent by the photoelectric conversion device according to the packet number of the Ethernet packet, and when the 0th packet is received, the 10 ms header is solved, and the frame is as shown in FIG.
  • the format extracts the data, which completes the synchronization between devices.
  • Step 24 Select whether to perform compression processing on the A and B signals received by the remote radio equipment antenna through the background configuration. Inserting data into the Ethernet packet according to the frame format as shown in FIG. 13, and inserting the control information into the control message, and sending the data to the photoelectric conversion device through the network cable;
  • step 25 the electrical port of the photoelectric conversion device recovers the 10 ms header when receiving the 0th packet data.
  • the corresponding data in the message and the data of the control information part are extracted.
  • the signal is determined to be compressed according to the background configuration, and transmitted to the optical port processing portion.
  • the optical port processing section inserts data in accordance with the CPRI frame format.
  • step 26 the photoelectric conversion device transmits the data to the BBU through the optical fiber.
  • the BBU and the photoelectric conversion device are connected by an optical fiber.
  • the photoelectric conversion device and the remote RF device are connected by a network cable.
  • Support photoelectric conversion device to connect one or more remote RF devices.
  • FIG. 16 is a structural block diagram 3 of a data transmission apparatus according to an alternative example of the present disclosure.
  • the connection form of the data transmission apparatus ie, the photoelectric conversion apparatus
  • the connection form of the data transmission apparatus may be, but not limited to,: BBU--optoelectronic conversion device 1--optical conversion device 2--remote radio frequency device, wherein, in this example, the data to be transmitted is exemplified by protocol A, B data.
  • Step 31 The BBU inserts the sampled protocol A and B data into the CPRI basic frame data.
  • the photoelectric conversion device 1 extracts all the frame formats according to the CPRI according to the background configuration. According to the background configuration, it is decided whether to perform compression processing or direct transmission to the cascade port.
  • the photoelectric conversion device 1 inserts the corresponding data into the data portion of the Ethernet message according to the frame format as shown in FIG. 13, and at the same time, can transmit relevant control information in the control information portion, thereby completing the conversion between the photoelectrics.
  • the packet sequence number is defined in the Ethernet packet, and all packets within 10 ms are cyclically counted by the packet sequence number, and used for system synchronization timing extraction.
  • the photoelectric conversion device 2 extracts the optical port data sent from the photoelectric conversion device 1 in accordance with the frame format of the CPRI. According to the background configuration, decide whether to perform compression processing.
  • the photoelectric conversion device 2 inserts the corresponding data into the data portion of the Ethernet message according to the frame format as shown in FIG. 13, and at the same time, the relevant control information can be transmitted in the control information portion, thereby completing the conversion between the photoelectrics.
  • the packet sequence number is defined in the Ethernet packet, and all packets within 10 ms are cyclically counted by the packet sequence number, and used for system synchronization timing extraction.
  • Step 34 The remote radio device transmits the Ethernet packet sent by the photoelectric conversion device 1 or the photoelectric conversion device 2 according to the packet number of the Ethernet packet, when receiving the 0th packet, The 10ms header is solved, and the data of the data portion is extracted and processed according to the frame format as shown in FIG. 13, thereby completing the synchronization between the devices.
  • Step 35 Select whether to perform compression processing on the A and B signals received by the remote radio equipment antenna through the background configuration. Inserting the data into the Ethernet packet according to the frame format as shown in FIG. 13, and inserting the control information into the control message, and sending the data to the photoelectric conversion device 1 and the photoelectric conversion device 2 through the network cable;
  • step 36 the electrical ports of the photoelectric conversion device 1 and the photoelectric conversion device 2 will receive the Ethernet message, and when the 0th packet data is received, the 10 ms header is recovered. At the same time, the corresponding data in the message and the data of the control information part are extracted. Extracted according to the background configuration, decide whether to perform decompression processing. The data is then transferred to the optical port processing section.
  • the optical port processing section inserts data in accordance with the CPRI frame format.
  • step 37 the photoelectric conversion device 1 receives the optical port message sent by the photoelectric conversion device 2, and combines the data sent from the electrical port of the current level, and performs corresponding insertion according to the CPRI frame format.
  • step 38 the photoelectric conversion device 1 transmits the data to the BBU through the optical fiber.
  • the BBU and the photoelectric conversion device are connected by an optical fiber.
  • the photoelectric conversion device 1 and the photoelectric conversion device 2 are connected by an optical fiber.
  • Support photoelectric conversion device to connect one or more remote RF devices.
  • the photoelectric conversion device and the remote RF device are connected by a network cable.
  • FIG. 17 is a structural block diagram of a data transmission apparatus according to an alternative example of the present disclosure.
  • the connection form of the data transmission apparatus (ie, the photoelectric conversion apparatus) in the network may be, but is not limited to,: BBU--optoelectronic conversion device 1--optoelectronic conversion device 2--remote radio frequency equipment
  • step 41 the BBU inserts the sampled protocol A and B data into the CPRI basic frame data.
  • the photoelectric conversion device 1 extracts all the frame formats according to the CPRI according to the background configuration. According to the background configuration, it is decided whether to perform compression processing or direct transmission to the cascade port.
  • the photoelectric conversion device 1 inserts the corresponding data into the data portion of the Ethernet message according to the frame format as shown in FIG. 13, and at the same time, can transmit relevant control information in the control information portion, thereby completing the conversion between the photoelectrics.
  • the packet sequence number is defined in the Ethernet packet, and all packets within 10 ms are cyclically counted by the packet sequence number, and used for system synchronization timing extraction.
  • Step 43 The photoelectric conversion device 2 or the remote radio frequency device receives the Ethernet packet sent by the photoelectric conversion device 1, and according to the packet serial number of the Ethernet packet, extracts a 10 ms header when receiving the 0th packet, and simultaneously according to The frame format shown in FIG. 13 extracts the data for processing, thereby completing synchronization between devices.
  • Step 44 Select whether to perform compression processing on the A and B signals received by the remote radio equipment antenna through the background configuration.
  • the data is inserted into the Ethernet packet according to the frame format as shown in FIG. 13, and the control information is inserted into the control message and sent to the photoelectric conversion device through the network cable.
  • Step 45 The electrical port of the photoelectric conversion device 1 recovers the 10 ms header when the received Ethernet packet receives the 0th packet data. At the same time, the corresponding data in the message and the data of the control information part are extracted. The data is extracted and processed by the decompression algorithm to be transmitted to the optical port processing part. The optical port processing section inserts data in accordance with the CPRI frame format.
  • step 46 the photoelectric conversion device 1 transmits data to the BBU through the optical fiber.
  • the BBU and the photoelectric conversion device are connected by an optical fiber.
  • the photoelectric conversion device 1 and the photoelectric conversion device 2 are connected by a network cable.
  • Support photoelectric conversion device to connect one or more remote RF devices.
  • the photoelectric conversion device and the remote RF device are connected by a network cable.
  • FIG. 18 is a structural block diagram 5 of a data transmission apparatus according to an alternative example of the present disclosure
  • FIG. 19 is a structural block diagram of a data transmission apparatus according to an embodiment of the present disclosure, as shown in FIGS. 18 and 19, data transmission
  • the connection form of the device (ie, the photoelectric conversion device) in the network may be, but is not limited to, a BBU--optoelectronic conversion device--a remote radio device, wherein, in this example, the Y value may be set to a fixed or flexible configuration
  • the data is transmitted using the protocol A and B data as an example.
  • step 51 the BBU selects whether the sampled protocol A and B data signals are subjected to compression processing through the background configuration.
  • the data is inserted into the Ethernet packet according to the frame format as shown in FIG. 13, and the control information is inserted into the control message and sent to the photoelectric conversion device through the network cable.
  • Step 52 The electrical port of the photoelectric conversion device recovers the 10 ms header when receiving the 0th packet data. At the same time, the corresponding data in the message and the data of the control information part are extracted. The data is extracted and processed by the decompression algorithm to be transmitted to the optical port processing part. The optical port processing section inserts data in accordance with the CPRI frame format.
  • step 53 the photoelectric conversion device transmits the data to the remote radio unit through the optical fiber.
  • step 54 the remote radio unit inserts the sampled protocol A and B data into the CPRI basic frame data.
  • the photoelectric conversion device extracts the data according to the frame format of the CPRI according to the background configuration. According to the background configuration, it is determined whether to perform compression processing or direct transmission to the electrical port.
  • the photoelectric conversion device follows the frame format as shown in FIG. 13, and the value of Y in each Ethernet frame can be set to a fixed or flexible configuration, and the corresponding data is inserted into the data portion of the Ethernet message. In the sub-center, the relevant control information can be inserted in the control information portion, thereby completing the conversion between the photoelectrics.
  • the packet sequence number is defined in the Ethernet packet, and all the packets within 10 ms are cyclically counted by the packet sequence number, and used for system synchronization timing extraction.
  • Step 56 The BBU receives the Ethernet packet sent by the photoelectric conversion device, and according to the packet sequence number of the Ethernet packet, extracts a 10 ms header when receiving the 0th packet, and according to the frame format shown in FIG. The data is extracted and processed to complete synchronization between devices.
  • the BBU and the photoelectric conversion device are connected by a network cable.
  • Support photoelectric conversion device to connect one or more remote RF devices.
  • the photoelectric conversion device and the remote RF device are connected by optical fibers.
  • FIG. 20 is a structural block diagram of a photoelectric conversion device according to an embodiment of the present disclosure.
  • the device includes: a first processing chip 2002, and a first The interface 2004 and the second interface 2006, wherein the first processing chip 2002 is connected between the first interface 2004 and the second interface 2006; the first interface 2004 is for receiving a general public radio interface CPRI frame; the first processing chip 2002 is used for The data to be transmitted is extracted from the received CPRI frame; the data to be transmitted is inserted into the Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the CPRI frame; the second interface 2006 is used to transmit the Ethernet frame.
  • the above-described photoelectric conversion device may be, but not limited to, applied to a scene covered by a communication network.
  • a communication network For example, a scenario in which an interface network cable that transmits an Ethernet frame communicates with an optical port of a baseband processing unit when the communication network is indoorly covered.
  • the first processing chip extracts the data to be transmitted from the general public radio interface CPRI frame received by the first interface by using the above-mentioned photoelectric conversion device; inserts the data to be transmitted into the Ethernet frame, wherein the period of the Ethernet frame and the period of the CPRI frame
  • the second interface sends an Ethernet frame. It can be seen that the data to be transmitted is inserted into the same Ethernet frame as the CPRI frame period for transmission. Therefore, synchronous transmission of CPRI frame data and Ethernet frame data is realized. Therefore, the problem that the CPRI frame data and the Ethernet frame data cannot be synchronously transmitted in the related art is solved.
  • the first processing chip may be, but not limited to, an FPGA chip or the like.
  • the first interface may be, but is not limited to, an optical interface
  • the second interface may be, but not limited to, an electrical interface
  • the functions of the first extraction module and/or the first insertion module may be implemented by a first processing chip.
  • the function of the first sending module described above may be implemented by the first interface.
  • the first processing chip is configured to: obtain an effective data amount of each Ethernet basic frame average bearer included in the Ethernet frame; according to the first number of CPRI basic frames included in the CPRI frame and the format of the Ethernet frame Determining a second number of CPRI basic frames that are averagely carried by each Ethernet basic frame included in the Ethernet frame; determining, according to the effective data amount and the second quantity, an average data of each CPRI basic frame carried in each Ethernet basic frame
  • the data is to be transmitted according to the average data volume of each CPRI basic frame and the format of the Ethernet frame carried in each Ethernet basic frame; the allocated data to be transmitted is correspondingly inserted into the Ethernet basic frame.
  • the first processing chip is configured to: determine, according to a data transmission rate of the interface that transmits the Ethernet frame, the amount of data carried in each Ethernet frame; determine whether the amount of data carried in each Ethernet frame is smaller than the data to be transmitted. The amount of data; if it is determined that the amount of data carried in each Ethernet frame is smaller than the amount of data to be transmitted, the data to be transmitted is inserted into multiple Ethernet frames; or, the preset data is filtered from the data to be transmitted.
  • the amount of data inserting the data of the preset data amount into an Ethernet frame, and discarding the rest of the data of the data to be transmitted except the preset amount of data filtered; and/or, judging each Ethernet
  • the data to be transmitted is inserted into an Ethernet frame.
  • the first processing chip is configured to: before the data to be transmitted is inserted into the Ethernet frame, determine whether to compress the data to be transmitted; and if it is determined that the data to be transmitted is compressed, compress the to-be-transmitted according to a preset compression algorithm.
  • Data, the compressed data to be transmitted is used as the data to be transmitted to be inserted into the Ethernet frame; or, in the case where it is determined that the data to be transmitted is not compressed, the data to be transmitted is transparently transmitted.
  • FIG. 21 is a structural block diagram of another photoelectric conversion device according to an embodiment of the present disclosure.
  • the device includes: a second processing chip 2102. a third interface 2104 and a fourth interface 2106, wherein the second processing chip connection 2102 is between the third interface 2104 and the fourth interface 2106; the third interface 2104 is for receiving an Ethernet frame; and the second processing chip 2102 is for The data to be transmitted is extracted from the received Ethernet frame, wherein the period of the Ethernet frame is the same as the period of the general public radio interface CPRI frame; the data to be transmitted is inserted into the CPRI frame; and the fourth interface 2106 is used to transmit the CPRI frame.
  • the above-described photoelectric conversion device may be, but not limited to, applied to a scene covered by a communication network.
  • a communication network For example, a scenario in which an interface network cable that transmits an Ethernet frame communicates with an optical port of a baseband processing unit when the communication network is indoorly covered.
  • the second processing chip extracts data to be transmitted from the Ethernet frame received by the third interface, wherein the period of the Ethernet frame is the same as the period of the general public radio interface CPRI frame; and the data to be transmitted is inserted into the CPRI
  • the fourth interface sends the CPRI frame. It can be seen that the received data to be transmitted in the same Ethernet frame as the CPRI frame period is inserted into the CPRI frame and transmitted, and thus the CPRI frame data is implemented. Synchronous transmission with Ethernet frame data solves the problem that the related art cannot synchronously transmit CPRI frame data and Ethernet frame data.
  • the second processing chip may be, but not limited to, an FPGA chip or the like.
  • the third interface may be, but not limited to, an electrical interface
  • the fourth interface may be, but is not limited to, an optical interface
  • the functions of the second extraction module and/or the second insertion module may be implemented by a second processing chip.
  • the function of the foregoing second sending module can be implemented by the fourth interface.
  • the second processing chip is configured to: obtain a valid data amount carried by each Ethernet basic frame included in the Ethernet frame; according to the format of the Ethernet frame and the effective data amount carried by each Ethernet basic frame from each The Ethernet basic frame extracts data and obtains data to be transmitted.
  • the second processing chip is configured to allocate data to be transmitted to the CPRI basic frame included in the CPRI frame according to the format of the CPRI frame, and insert the allocated data to be transmitted into the CPRI basic frame.
  • the second processing chip is configured to: determine whether the data quantity of the data to be transmitted is greater than the data quantity carried by each CPRI frame; and determine that the data quantity of the data to be transmitted is greater than the data quantity carried by each CPRI frame. Inserting the data to be transmitted into multiple CPRI frames; or filtering the data of the preset data amount from the data to be transmitted; inserting the data of the preset data amount into a CPRI frame, and discarding the preset data in the data to be transmitted The remaining data other than the data amount; and/or, in the case where it is judged that the data amount of the data to be transmitted is not larger than the data amount carried by each CPRI frame, the data to be transmitted is inserted into one CPRI frame.
  • the second processing chip is configured to: before the data to be transmitted is inserted into the CPRI frame, determine whether to decompress the data to be transmitted; and if it is determined that the data to be transmitted is decompressed, according to a preset decompression algorithm
  • the data to be transmitted is compressed, and the data to be transmitted after being decompressed is used as the data to be transmitted to be inserted into the CPRI frame; or, when it is determined that the data to be transmitted is not decompressed, the data to be transmitted is transparently transmitted.
  • FIG. 22 is a structural block diagram of a photoelectric conversion system according to an embodiment of the present disclosure. As shown in FIG. 22, the system includes: a first device 2202 and a photoelectric conversion device. 2204 and a second device 2206, wherein
  • the photoelectric conversion device 2204 includes a processing chip 2204-1, an optical port 2204-2, and an electrical port 2204-3, wherein the processing chip 2204-1 is connected between the optical port 2204-2 and the electrical port 2204-3, and the optical port 2204 -2 is connected to the first device 2202, and the electrical port 2204-3 is connected to the second device 2206;
  • the processing chip 2204-1 is configured to extract data to be transmitted from the common public radio interface CPRI frame received by the optical port 2204-2, and insert the data to be transmitted into the Ethernet frame, where The period of the Ethernet frame is the same as the period of the CPRI frame; and/or, the data to be transmitted is extracted from the Ethernet frame received by the electrical port 2204-3, wherein the period of the Ethernet frame is the same as the period of the CPRI frame, and is to be Transmitting data into a CPRI frame; optical port 2204-2 for receiving or transmitting a CPRI frame; and electrical port 2204-3 for transmitting or receiving an Ethernet frame;
  • the first device 2202 is configured to receive a CPRI frame sent by the photoelectric conversion device 2204; and obtain data to be transmitted from the CPRI frame;
  • the second device 2206 is configured to receive an Ethernet frame sent by the photoelectric conversion device 2204; and acquire data to be transmitted from the Ethernet frame.
  • the first device may include, but is not limited to, a baseband processing unit BBU; and the second device may include, but is not limited to, at least one of: one or more radio remote units RRU, one or more photoelectric conversion devices; or
  • the first device may include, but is not limited to, at least one of: one or more radio remote units RRU, one or more photoelectric conversion devices; and the second device may include, but is not limited to, a baseband processing unit BBU.
  • the processing chip 2204-1 may be, but not limited to, an FPGA chip.
  • the optical port 2204-2 may be, but is not limited to, connected to the first device by using an optical fiber.
  • the electrical port 2204-3 may be, but is not limited to, connected to the second device through a super five-category line.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the method steps recited in the above embodiments:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor executes the method steps described in the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the data to be transmitted is extracted from the received general public radio interface CPRI frame; the data to be transmitted is inserted into an Ethernet frame, wherein a period of the Ethernet frame and the CPRI frame The same period; send the Ethernet frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法和装置以及光电转换装置和系统,其中,该方法包括:从接收到的通用公共无线电接口CPRI帧中提取待传输数据;将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;发送以太网帧,解决了相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题,实现了CPRI帧数据和以太网帧数据的同步传输。

Description

数据传输方法和装置以及光电转换装置和系统 技术领域
本公开涉及通信领域,可选地而言,涉及一种数据传输方法和装置以及光电转换装置和系统。
背景技术
随着人们对数据的需求量越来越大,室内场景的应用越来越多,室外宏站不能够很好的解决室内覆盖问题。为了更好的提升室内场景的用户体验,于是应运产生了室内分布系统。传统的宏射频拉远单元(Radio Remote Unit,简称为RRU)采用光纤方式与基带处理单元(Building Baseband Unit,简称为BBU)相连进行通信,但在室内覆盖时,光纤资源较少,而以太网线资源较多,为了最大限度的节约资源及更好的布局。室内覆盖采用基于网线传输的远端射频设备。远端射频设备采用以太网接口网线进行通信,无法直接与基带处理单元的通用公共无线电接口(Common Public Radio Interface,简称为CPRI)进行对接。
针对相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题,目前还没有有效地解决方案。
发明内容
本公开实施例提供了一种数据传输方法和装置以及光电转换装置和系统,以至少解决相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题。
根据本公开的一个实施例,提供了一种数据传输方法,包括:从接收到的通用公共无线电接口CPRI帧中提取待传输数据;将所述待传输数据插入以太网帧,其中,所述以太网帧的周期与所述CPRI帧的周期相同;发送所述以太网帧。
可选地,将所述待传输数据插入所述以太网帧包括:获取所述以太网帧中包括的每个以太网基本帧平均承载的有效数据量;根据所述CPRI帧中包括的CPRI基本帧的第一数量以及以太网帧的格式确定以太网帧中包括的每个以太网基本帧平均承载的CPRI基本帧的第二数量;根据所述有效数据量和所述第二数量确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量;根据所述平均每个以太网基本帧中承载的每个CPRI基本帧的数据量和所述以太网帧的格式为所述以太网基本帧分配所述待传输数据;将所述分配的待传输数据对应插入所述以太网基本帧。
可选地,根据以下公式确定所述平均每个以太网基本帧中承载的每个CPRI基本帧的数据量:C=R/(N×M);
Figure PCTCN2017089245-appb-000001
其中,C表示所述第二数量,R表示所述第一数量,N表示所述以太网帧中包括的时隙Slot帧的数量,M表示每个Slot帧中包括的以太网基本帧的数量,Y表示所述有效数据量,D表示所述平均每个以太网基本帧中承载的每个CPRI基本帧的数据量。
可选地,将所述待传输数据插入所述以太网帧包括:根据传输以太网帧的接口的数据传输速率确定每个以太网帧中承载的数据量;判断每个以太网帧中承载的数据量是否小于所述待传输数据的数据量;在判断出每个以太网帧中承载的数据量小于所述待传输数据的数据量的情况下,将所述待传输数据插入多个以太网帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个以太网帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,在判断出每个以太网帧中承载的数据量不小于所述待传输数据的数据量的情况下,将所述待传输数据插入一个以太网帧。
可选地,根据以下公式确定所述以太网帧中承载的数据量:
Figure PCTCN2017089245-appb-000002
其中,P表示所述传输以太网帧的接口的所述数据传输速率,T表示所述以太网帧的周期。
可选地,在将所述待传输数据插入所述以太网帧之前,所述方法还包括:判断是否对所述待传输数据进行压缩;在判断出对所述待传输数据进行压缩的情况下,根据预设压缩算法压缩所述待传输数据,将压缩后的所述待传输数据作为待插入所述以太网帧的所述待传输数据;或者,在判断出不对所述待传输数据进行压缩的情况下,透传所述待传输数据。
可选地,所述以太网帧包括:数据传输区域,其中,所述数据传输区域用于传输所述待传输数据。
可选地,所述以太网帧还包括:控制信息传输区域,其中,所述控制信息传输区域用于传输所述以太网帧的控制信息。
根据本公开的另一个实施例,提供了一种数据传输方法,包括:从接收到的以太网帧中提取待传输数据,其中,所述以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;将所述待传输数据插入所述CPRI帧;发送所述CPRI帧。
可选地,从接收到的所述以太网帧中提取所述待传输数据包括:获取所述以太网帧中包括的每个以太网基本帧承载的有效数据量;根据以太网帧的格式以及每个以太网基本帧承载的有效数据量从每个以太网基本帧提取数据,得到所述待传输数据。
可选地,将所述待传输数据插入所述CPRI帧包括:根据CPRI帧的格式为所述CPRI帧包括的CPRI基本帧分配所述待传输数据;将分配的所述待传输数据对应插入所述CPRI基本帧。
可选地,将所述待传输数据插入所述CPRI帧包括:判断所述待传输数据的数据量是否大于每个CPRI帧承载的数据量;在判断出所述待传输数据的数据量大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入多个CPRI帧;或者,从所述待传输数据中筛选 预设数据量的数据;将所述预设数据量的数据插入一个CPRI帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,在判断出所述待传输数据的数据量不大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入一个CPRI帧。
可选地,在将所述待传输数据插入所述CPRI帧之前,所述方法还包括:判断是否对所述待传输数据进行解压缩;在判断出对所述待传输数据进行解压缩的情况下,根据预设解压缩算法解压缩所述待传输数据,将解压缩后的待传输数据作为待插入所述CPRI帧的所述待传输数据;或者,在判断出不对所述待传输数据进行解压缩的情况下,透传所述待传输数据。
根据本公开的另一个实施例,提供了一种数据传输装置,包括:第一提取模块,设置为从接收到的通用公共无线电接口CPRI帧中提取待传输数据;第一插入模块,设置为将所述待传输数据插入以太网帧,其中,所述以太网帧的周期与所述CPRI帧的周期相同;第一发送模块,设置为发送所述以太网帧。
可选地,所述第一插入模块包括:第一获取单元,设置为获取所述以太网帧中包括的每个以太网基本帧平均承载的有效数据量;第一确定单元,设置为根据所述CPRI帧中包括的CPRI基本帧的第一数量以及以太网帧的格式确定所述以太网帧中包括的每个以太网基本帧平均承载的CPRI基本帧的第二数量;第二确定单元,设置为根据所述有效数据量和所述第二数量确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量;第一分配单元,设置为根据所述平均每个以太网基本帧中承载的每个CPRI基本帧的数据量和所述以太网帧的格式为所述以太网基本帧分配所述待传输数据;第一插入单元,设置为将所述分配的待传输数据对应插入所述以太网基本帧。
可选地,所述第一插入模块包括:第三确定单元,设置为根据传输以太网帧的接口的数据传输速率确定每个以太网帧中承载的数据量;第一判断单元,设置为判断每个以太网帧中承载的数据量是否小于所述待传输数据的数据量;第一处理单元,设置为在判断出每个以 太网帧中承载的数据量小于所述待传输数据的数据量的情况下,将所述待传输数据插入多个以太网帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个以太网帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,第二处理单元,设置为在判断出每个以太网帧中承载的数据量不小于所述待传输数据的数据量的情况下,将所述待传输数据插入一个以太网帧。
可选地,所述装置还包括:第一判断模块,设置为判断是否对所述待传输数据进行压缩;压缩模块,设置为在判断出对所述待传输数据进行压缩的情况下,根据预设压缩算法压缩所述待传输数据,将压缩后的所述待传输数据作为待插入所述以太网帧的所述待传输数据;或者,在判断出不对所述待传输数据进行压缩的情况下,透传所述待传输数据。
根据本公开的另一个实施例,提供了一种数据传输装置,包括:第二提取模块,设置为从接收到的以太网帧中提取待传输数据,其中,所述以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;第二插入模块,设置为将所述待传输数据插入所述CPRI帧;第二发送模块,设置为发送所述CPRI帧。
可选地,所述第二提取模块包括:第二获取单元,设置为获取所述以太网帧中包括的每个以太网基本帧承载的有效数据量;提取单元,设置为根据以太网帧的格式以及每个以太网基本帧承载的有效数据量从每个所述以太网基本帧提取数据,得到所述待传输数据。
可选地,所述第二插入模块包括:第二分配单元,设置为根据所述CPRI帧的格式为所述CPRI帧包括的CPRI基本帧分配所述待传输数据;第二插入单元,设置为将分配的所述待传输数据对应插入所述CPRI基本帧。
可选地,所述第二插入模块包括:第二判断单元,设置为判断所述待传输数据的数据量是否大于每个CPRI帧承载的数据量;第三处理单元,设置为在判断出所述待传输数据的数据量大于每个CPRI帧 承载的数据量的情况下,将所述待传输数据插入多个CPRI帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个CPRI帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,第四处理单元,设置为在判断出所述待传输数据的数据量不大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入一个CPRI帧。
可选地,所述装置还包括:第二判断模块,设置为判断是否对所述待传输数据进行解压缩;解压缩模块,设置为在判断出对所述待传输数据进行解压缩的情况下,根据预设解压缩算法解压缩所述待传输数据,将解压缩后的待传输数据作为待插入所述CPRI帧的所述待传输数据;或者,在判断出不对所述待传输数据进行解压缩的情况下,透传所述待传输数据。
根据本公开的另一个实施例,提供了一种光电转换装置,包括:第一处理芯片、第一接口和第二接口,其中,所述第一处理芯片连接在所述第一接口和所述第二接口之间;所述第一接口用于接收通用公共无线电接口CPRI帧;所述第一处理芯片用于从接收到的所述CPRI帧中提取待传输数据;将所述待传输数据插入以太网帧,其中,所述以太网帧的周期与所述CPRI帧的周期相同;所述第二接口用于发送所述以太网帧。
可选地,所述第一处理芯片用于:获取所述以太网帧中包括的每个以太网基本帧平均承载的有效数据量;根据所述CPRI帧中包括的CPRI基本帧的第一数量以及以太网帧的格式确定以太网帧中包括的每个以太网基本帧平均承载的CPRI基本帧的第二数量;根据所述有效数据量和所述第二数量确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量;根据所述平均每个以太网基本帧中承载的每个CPRI基本帧的数据量和所述以太网帧的格式为所述以太网基本帧分配所述待传输数据;将所述分配的待传输数据对应插入所述以太网基本帧。
可选地,所述第一处理芯片用于:根据传输以太网帧的接口的数 据传输速率确定每个以太网帧中承载的数据量;判断每个以太网帧中承载的数据量是否小于所述待传输数据的数据量;在判断出每个以太网帧中承载的数据量小于所述待传输数据的数据量的情况下,将所述待传输数据插入多个以太网帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个以太网帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,在判断出每个以太网帧中承载的数据量不小于所述待传输数据的数据量的情况下,将所述待传输数据插入一个以太网帧。
可选地,所述第一处理芯片用于:在将所述待传输数据插入所述以太网帧之前,判断是否对所述待传输数据进行压缩;在判断出对所述待传输数据进行压缩的情况下,根据预设压缩算法压缩所述待传输数据,将压缩后的所述待传输数据作为待插入所述以太网帧的所述待传输数据;或者,在判断出不对所述待传输数据进行压缩的情况下,透传所述待传输数据。
根据本公开的另一个实施例,提供了一种光电转换装置,包括:第二处理芯片、第三接口和第四接口,其中,所述第二处理芯片连接在所述第三接口和所述第四接口之间;所述第三接口用于接收以太网帧;所述第二处理芯片用于从接收到的以太网帧中提取待传输数据,其中,所述以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;将所述待传输数据插入所述CPRI帧;所述第四接口用于发送所述CPRI帧。
可选地,所述第二处理芯片用于:获取所述以太网帧中包括的每个以太网基本帧承载的有效数据量;根据以太网帧的格式以及每个以太网基本帧承载的所述有效数据量从每个以太网基本帧提取数据,得到所述待传输数据。
可选地,所述第二处理芯片用于:根据CPRI帧的格式为所述CPRI帧包括的CPRI基本帧分配所述待传输数据;将分配的所述待传输数据对应插入所述CPRI基本帧。
可选地,所述第二处理芯片用于:判断所述待传输数据的数据量 是否大于每个CPRI帧承载的数据量;在判断出所述待传输数据的数据量大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入多个CPRI帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个CPRI帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,在判断出所述待传输数据的数据量不大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入一个CPRI帧。
可选地,所述第二处理芯片用于:在将所述待传输数据插入所述CPRI帧之前,判断是否对所述待传输数据进行解压缩;在判断出对所述待传输数据进行解压缩的情况下,根据预设解压缩算法解压缩所述待传输数据,将解压缩后的待传输数据作为待插入所述CPRI帧的所述待传输数据;或者,在判断出不对所述待传输数据进行解压缩的情况下,透传所述待传输数据。
根据本公开的另一个实施例,提供了一种光电转换系统,包括:第一设备、光电转换装置和第二设备,其中,所述光电转换装置包括:处理芯片、光口和电口,其中,所述处理芯片连接在所述光口和所述电口之间,所述光口与所述第一设备连接,所述电口与所述第二设备连接;所述处理芯片用于从所述光口接收到的通用公共无线电接口CPRI帧中提取待传输数据,将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;和/或,从所述电口接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与CPRI帧的周期相同,将待传输数据插入CPRI帧;所述光口用于接收或者发送CPRI帧;所述电口用于发送或者接收以太网帧;所述第一设备用于接收所述光电转换装置发送的CPRI帧;从CPRI帧中获取待传输数据;所述第二设备用于接收所述光电转换装置发送的以太网帧;从以太网帧中获取待传输数据。
可选地,所述第一设备包括:基带处理单元BBU;所述第二设备包括以下至少之一:一个或者多个射频拉远单元RRU、一个或者多个所述光电转换装置;或者,所述第一设备包括以下至少之一:一 个或者多个射频拉远单元RRU、一个或者多个所述光电转换装置;所述第二设备包括:基带处理单元BBU。
通过本公开,从接收到的通用公共无线电接口CPRI帧中提取待传输数据;将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;发送以太网帧,由此可见,采用上述方案将待传输数据插入与CPRI帧周期相同的以太网帧中进行传输,因此,实现了CPRI帧数据和以太网帧数据的同步传输,从而解决了相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题。
根据本公开的另一个实施例,提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述实施例中的数据传输方法。
附图说明
此处所说明的附图用来提供对本公开的理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的一种数据传输方法的流程图一;
图2是根据本公开实施例的一种数据传输方法的流程图二;
图3是根据本公开实施例的一种数据传输装置的结构框图一;
图4是根据本公开实施例的一种数据传输装置的结构框图二;
图5是根据本公开实施例的一种数据传输装置的结构框图三;
图6是根据本公开实施例的一种数据传输装置的结构框图四;
图7是根据本公开实施例的一种数据传输装置的结构框图五;
图8是根据本公开实施例的一种数据传输装置的结构框图六;
图9是根据本公开实施例的一种数据传输装置的结构框图七;
图10是根据本公开实施例的一种数据传输装置的结构框图八;
图11是根据本公开实施例的一种数据传输装置的结构框图九;
图12是根据本公开可选实施例的数据传输方法的流程图;
图13是根据本公开可选实施例的以太网帧的帧结构的示意图;
图14是根据本公开可选示例的数据传输装置的结构框图一;
图15是根据本公开实施示例的数据传输装置的结构框图二;
图16是根据本公开可选示例的数据传输装置的结构框图三;
图17是根据本公开可选示例的数据传输装置的结构框图四;
图18是根据本公开可选示例的数据传输装置的结构框图五;
图19是根据本公开实施示例的数据传输装置的结构框图六;
图20是根据本公开实施例的一种光电转换装置的结构框图;
图21是根据本公开实施例的另一种光电转换装置的结构框图;
图22是根据本公开实施例的一种光电转换系统的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种数据传输方法,图1是根据本公开实施例的一种数据传输方法的流程图一,如图1所示,该流程包括如下步骤:
步骤S102,从接收到的通用公共无线电接口CPRI帧中提取待传输数据;
步骤S104,将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;
步骤S106,发送以太网帧。
可选地,上述数据传输方法可以但不限于应用于通信网络覆盖的场景中。例如:通信网络室内覆盖时传输以太网帧的接口网线与基带处理单元的光口进行对接的场景。
通过上述步骤,从接收到的通用公共无线电接口CPRI帧中提取待传输数据;将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;发送以太网帧,由此可见,采用上述方案将待传输数据插入与CPRI帧周期相同的以太网帧中进行传输,因此,实现了CPRI帧数据和以太网帧数据的同步传输,从而解决了相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题。
在本实施例中,可以但不限于通过为以太网基本帧设置包序号控制字,使接收到插入了待传输数据的以太网帧的以太网接口可以根据对以太网基本帧的包序号控制字的解析,分析出以太网帧的帧头位置,从而实现了CPRI帧数据和以太网帧数据的同步传输。
可选地,在上述步骤S104中,可以根据每个以太网基本帧平均承载的有效数据量以及每个以太网基本帧平均承载的CPRI基本帧的数量得到平均每个以太网基本帧中承载的每个CPRI基本帧的数据量,再根据平均每个以太网基本帧中承载的每个CPRI基本帧的数据量分配待传输数据,根据分配结果将待传输数据插入以太网基本帧中。例如:获取以太网帧中包括的每个以太网基本帧平均承载的有效数据量,根据CPRI帧中包括的CPRI基本帧的第一数量以及以太网帧的格式确定以太网帧中包括的每个以太网基本帧平均承载的CPRI基本帧的第二数量,根据有效数据量和第二数量确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量,根据平均每个以太网基本帧中承载的每个CPRI基本帧的数据量和以太网帧的格式为以太网基本帧分配待传输数据,将分配的待传输数据对应插入以太网基本帧。
通过上述步骤,可以根据以太网帧的格式和其承载的数据量将CPRI帧中的数据插入到以太网帧中,从而实现CPRI帧数据和以太网帧数据同步传输。
可选地,可以但不限于根据以下公式确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量:
C=R/(N×M);
Figure PCTCN2017089245-appb-000003
其中,C表示上述第二数量,R表示上述第一数量,N表示以太网帧中包括的时隙Slot帧的数量,M表示每个Slot帧中包括的以太网基本帧的数量,Y表示有效数据量,D表示平均每个以太网基本帧中承载的每个CPRI基本帧的数据量。
可选地,在上述步骤S104中,为了使以太网帧中可以同步传输CPRI帧中携带的数据,可以但不限于在以太网帧可以承载的数据量小于待传输数据的数据量的情况下,从待传输的数据中筛选出预设数据量的数据作为待插入以太网帧中的待传输数据。例如:根据传输以太网帧的接口的数据传输速率确定每个以太网帧中承载的数据量,判断每个以太网帧中承载的数据量是否小于待传输数据的数据量,在判断出每个以太网帧中承载的数据量小于待传输数据的数据量的情况下,将待传输数据插入多个以太网帧;或者,从待传输数据中筛选预设数据量的数据;将预设数据量的数据插入一个以太网帧,并丢弃待传输数据中除筛选出的预设数据量的数据之外的其余数据;和/或,在判断出每个以太网帧中承载的数据量不小于待传输数据的数据量的情况下,将待传输数据插入一个以太网帧。
可选地,可以但不限于以路由的方式将待传输数据插入多个以太网帧。例如:根据预设的路由信息分别为多个以太网帧筛选待传输数据,将筛选出的数据路由到多个用于传输以太网帧的接口,将数据对应插入以太网帧进行传输。通过上述步骤,在待传输数据的数据量大于一个以太网帧能够传输的数据量时,通过路由机制将待传输数据路 由到多个接口,通过多个以太网帧对待传输数据进行传输,可见,采用上述方案,在保证了数据传输的同步性的同时也保证了传输数据的完整性。
可选地,可以但不限于根据以下公式确定以太网帧中承载的数据量:
Figure PCTCN2017089245-appb-000004
其中,P表示传输以太网帧的接口的数据传输速率,T表示以太网帧的周期。
可选地,在上述步骤S104之前,为了使数据传输的效率更高,可以对待传输数据进行压缩。例如:判断是否对待传输数据进行压缩,在判断出对待传输数据进行压缩的情况下,根据预设压缩算法压缩待传输数据,将压缩后的待传输数据作为待插入以太网帧的待传输数据。
可选地,在判断出不对待传输数据进行压缩的情况下,可以通过透传的方式将待传输数据插入以太网帧。
可选地,上述以太网帧可以但不限于包括:数据传输区域,其中,数据传输区域用于传输待传输数据。
可选地,上述以太网帧还可以但不限于包括:控制信息传输区域,其中,控制信息传输区域用于传输以太网帧的控制信息。
实施例2
在本实施例中提供了一种数据传输方法,图2是根据本公开实施例的一种数据传输方法的流程图二,如图2所示,该流程包括如下步骤:
步骤S202,从接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;
步骤S204,将待传输数据插入CPRI帧;
步骤S206,发送CPRI帧。
可选地,上述数据传输方法可以但不限于应用于通信网络覆盖的场景中。例如:通信网络室内覆盖时传输以太网帧的接口网线与基带处理单元的光口进行对接的场景。
通过上述步骤,从接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;将待传输数据插入CPRI帧;发送CPRI帧,由此可见,采用上述方案将接收到的与CPRI帧周期相同的以太网帧中的待传输数据插入到CPRI帧中并进行传输,因此,实现了CPRI帧数据和以太网帧数据的同步传输,从而解决了相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题。
在本实施例中,可以但不限于通过为以太网基本帧设置包序号控制字,使接收到插入了待传输数据的以太网帧后可以根据对以太网基本帧的包序号控制字的解析,分析出以太网帧的帧头位置,从而实现了CPRI帧数据和以太网帧数据的同步传输。
可选地,在上述步骤S202中,可以但不限于根据以太网帧的格式以及每个以太网基本帧承载的有效数据量得到待传输数据。例如:获取以太网帧中包括的每个以太网基本帧承载的有效数据量,根据以太网帧的格式以及每个以太网基本帧承载的有效数据量从每个以太网基本帧提取数据,得到待传输数据。
可选地,在上述步骤S204中,可以但不限于为CPRI基本帧分配待传输数据。例如:根据CPRI帧的格式为CPRI帧包括的CPRI基本帧分配待传输数据,将分配的待传输数据对应插入CPRI基本帧。
可选地,在上述步骤S204中,为了使数据传输的效率更高,可以在待传输数据的数据量大于每个CPRI帧承载的数据量的情况下,对待传输数据进行筛选。例如:判断待传输数据的数据量是否大于每个CPRI帧承载的数据量,在判断出待传输数据的数据量大于每个CPRI帧承载的数据量的情况下,将待传输数据插入多个CPRI帧;或者,从待传输数据中筛选预设数据量的数据;将筛选的待传输数据插入一个CPRI帧,并丢弃待传输数据中除筛选出的预设数据量的数 据之外的其余数据;和/或,在判断出待传输数据的数据量不大于每个CPRI帧承载的数据量的情况下,将待传输数据插入一个CPRI帧。
可选地,在上述步骤S204之前,为了提高数据传输效率,可以但不限于对待传输数据进行解压缩。例如:判断是否对待传输数据进行解压缩,在判断出对待传输数据进行解压缩的情况下,根据预设解压缩算法解压缩待传输数据,将解压缩后的待传输数据作为待插入CPRI帧的待传输数据;或者,在判断出不对待传输数据进行解压缩的情况下,透传待传输数据。
实施例3
在本实施例中还提供了一种数据传输装置,该装置用于实现上述实施例及可选地实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本公开实施例的一种数据传输装置的结构框图一,如图3所示,该装置包括:
第一提取模块32,设置为从接收到的通用公共无线电接口CPRI帧中提取待传输数据;
第一插入模块34,耦合至第一提取模块32,设置为将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;
第一发送模块36,耦合至第一插入模块34,设置为发送以太网帧。
可选地,上述数据传输装置可以但不限于应用于通信网络覆盖的场景中。例如:通信网络室内覆盖时传输以太网帧的接口网线与基带处理单元的光口进行对接的场景。
通过上述装置,第一提取模块从接收到的通用公共无线电接口CPRI帧中提取待传输数据;第一插入模块将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;第一发送模块发 送以太网帧,由此可见,采用上述方案将待传输数据插入与CPRI帧周期相同的以太网帧中进行传输,因此,实现了CPRI帧数据和以太网帧数据的同步传输,从而解决了相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题。
在本实施例中,可以但不限于通过为以太网基本帧设置包序号控制字,使接收到插入了待传输数据的以太网帧的以太网接口可以根据对以太网基本帧的包序号控制字的解析,分析出以太网帧的帧头位置,从而实现了CPRI帧数据和以太网帧数据的同步传输。
图4是根据本公开实施例的一种数据传输装置的结构框图二,如图4所示,可选地,第一插入模块34包括:
第一获取单元402,耦合至第二确定单元406,设置为获取以太网帧中包括的每个以太网基本帧平均承载的有效数据量;
第一确定单元404,耦合至第二确定单元406,设置为根据CPRI帧中包括的CPRI基本帧的第一数量以及以太网帧的格式确定以太网帧中包括的每个以太网基本帧平均承载的CPRI基本帧的第二数量;
第二确定单元406,设置为根据有效数据量和第二数量确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量;
第一分配单元408,耦合至第二确定单元406,设置为根据平均每个以太网基本帧中承载的每个CPRI基本帧的数据量和以太网帧的格式为以太网基本帧分配待传输数据;
第一插入单元410,耦合至第一分配单元408,设置为将分配的待传输数据对应插入以太网基本帧。
可选地,可以但不限于根据以下公式确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量:
C=R/(N×M);
Figure PCTCN2017089245-appb-000005
其中,C表示上述第二数量,R表示上述第一数量,N表示以太 网帧中包括的时隙Slot帧的数量,M表示每个Slot帧中包括的以太网基本帧的数量,Y表示有效数据量,D表示平均每个以太网基本帧中承载的每个CPRI基本帧的数据量。
图5是根据本公开实施例的一种数据传输装置的结构框图三,如图5所示,可选地,第一插入模块34包括:
第三确定单元52,设置为根据传输以太网帧的接口的数据传输速率确定每个以太网帧中承载的数据量;
第一判断单元54,耦合至第三确定单元52,设置为判断每个以太网帧中承载的数据量是否小于待传输数据的数据量;
第一处理单元56,耦合至第一判断单元54,设置为在判断出每个以太网帧中承载的数据量小于待传输数据的数据量的情况下,将待传输数据插入多个以太网帧;或者,从待传输数据中筛选预设数据量的数据;将预设数据量的数据插入一个以太网帧,并丢弃待传输数据中除筛选出的预设数据量的数据之外的其余数据;和/或,
第二处理单元58,耦合至第一判断单元54,设置为在判断出每个以太网帧中承载的数据量不小于待传输数据的数据量的情况下,将待传输数据插入一个以太网帧。
可选地,可以但不限于根据以下公式确定以太网帧中承载的数据量:
Figure PCTCN2017089245-appb-000006
其中,P表示传输以太网帧的接口的数据传输速率,T表示以太网帧的周期。
图6是根据本公开实施例的一种数据传输装置的结构框图四,如图6所示,可选地,上述装置还包括:
第一判断模块62,耦合至第一提取模块32,设置为判断是否对待传输数据进行压缩;
压缩模块64,耦合至第一判断模块62和第一插入模块34之间, 设置为在判断出对待传输数据进行压缩的情况下,根据预设压缩算法压缩待传输数据,将压缩后的待传输数据作为待插入以太网帧的待传输数据;或者,在判断出不对待传输数据进行压缩的情况下,透传待传输数据。
可选地,以太网帧可以但不限于包括:数据传输区域,其中,数据传输区域用于传输待传输数据。
可选地,以太网帧还可以但不限于包括:控制信息传输区域,其中,控制信息传输区域用于传输以太网帧的控制信息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
实施例4
在本实施例中还提供了一种数据传输装置,该装置用于实现上述实施例及可选地实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本公开实施例的一种数据传输装置的结构框图五,如图7所示,该装置包括:
第二提取模块72,设置为从接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;
第二插入模块74,耦合至第二提取模块72,设置为将待传输数据插入CPRI帧;
第二发送模块76,耦合至第二插入模块74,设置为发送CPRI帧。
可选地,上述数据传输装置可以但不限于应用于通信网络覆盖的 场景中。例如:通信网络室内覆盖时传输以太网帧的接口网线与基带处理单元的光口进行对接的场景。
通过上述装置,第二提取模块,设置为从接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;第二插入模块,设置为将待传输数据插入CPRI帧;第二发送模块,设置为发送CPRI帧,由此可见,采用上述方案将待传输数据插入与CPRI帧周期相同的以太网帧中进行传输,因此,实现了CPRI帧数据和以太网帧数据的同步传输,从而解决了相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题。
在本实施例中,可以但不限于通过为以太网基本帧设置包序号控制字,使接收到插入了待传输数据的以太网帧的数据传输装置可以根据对以太网基本帧的包序号控制字的解析,分析出以太网帧的帧头位置,从而实现了CPRI帧数据和以太网帧数据的同步传输。
图8是根据本公开实施例的一种数据传输装置的结构框图六,如图8所示,可选地,第二提取模块72包括:
第二获取单元82,设置为获取以太网帧中包括的每个以太网基本帧承载的有效数据量;
提取单元84,耦合至第二获取单元82,设置为根据以太网帧的格式以及每个以太网基本帧承载的有效数据量从每个以太网基本帧提取数据,得到待传输数据。
图9是根据本公开实施例的一种数据传输装置的结构框图七,如图9所示,可选地,第二插入模块74包括:
第二分配单元92,设置为根据CPRI帧的格式为CPRI帧包括的CPRI基本帧分配待传输数据;
第二插入单元94,耦合至第二分配单元92,设置为将分配的待传输数据对应插入CPRI基本帧。
图10是根据本公开实施例的一种数据传输装置的结构框图八,如图10所示,可选地,第二插入模块74包括:
第二判断单元102,设置为判断待传输数据的数据量是否大于每个CPRI帧承载的数据量;
第三处理单元104,耦合至第二判断单元102,设置为在判断出待传输数据的数据量大于每个CPRI帧承载的数据量的情况下,将待传输数据插入多个CPRI帧;或者,从待传输数据中筛选预设数据量的数据;将筛选的待传输数据插入一个CPRI帧,并丢弃待传输数据中除筛选出的预设数据量的数据之外的其余数据;和/或
第四处理单元106,耦合至第二判断单元102,设置为在判断出待传输数据的数据量不大于每个CPRI帧承载的数据量的情况下,将待传输数据插入一个CPRI帧。
图11是根据本公开实施例的一种数据传输装置的结构框图九,如图11所示,可选地,上述装置还包括:
第二判断模块112,耦合至第二提取模块72,设置为判断是否对待传输数据进行解压缩;
解压缩模块114,耦合至第二判断模块112和第二插入模块74之间,设置为在判断出对待传输数据进行解压缩的情况下,根据预设解压缩算法解压缩待传输数据,将解压缩后的待传输数据作为待插入CPRI帧的待传输数据;或者,在判断出不对待传输数据进行解压缩的情况下,透传待传输数据。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面结合本公开可选实施例进行详细说明。
本公开可选实施例提供了一种CPRI帧和以太网帧的数据同步转换的电口帧,通过定义的帧格式能够很好的完成CPRI帧数据和以太网帧数据的同步转换。基于此还提出了一种实现光电数据同步传输的方法和装置,此光电转换装置能够很好的完成基带处理单元与远端射频设备之间的桥接通信。
在室内覆盖系统中,需要一种装置来完成光电线路之间的数据同步转换,从而保证BBU与远端射频设备进行通信。本公开可选实施例提供的光电转换方法及装置通过使用定义的电口帧,从而能很好的完成光电之间的数据转换。
本可选实施例提供的数据传输方法包括以下几个基本步骤,以CPRI帧转换到以太网帧为下行处理为例,图12是根据本公开可选实施例的数据传输方法的流程图,如图12所示,下面针对上下行分别进行说明:
对于下行处理:
步骤S1202,光电转换装置的光口接收来自对端发送的数据(即CPRI帧),并将数据提取出来。
步骤S1204,光电转换装置对提取出的数据进行处理。
步骤S1206,光电转换装置完成CPRI帧到以太网帧之间的同步转换。
步骤S1208,光电转换装置的电口发送以太网帧到对端以太网接口设备,以太网接口设备可以通过解析出10ms以太网帧的帧头提取数据。
对于上行处理:
步骤S1212,以太网接口设备接收的信号处理后传送给光电转换装置。
步骤S1214,光电转换装置依据电口接收的数据根据帧格式,解析出10ms帧头,并提取数据。
步骤S1216,光电转换装置对提取出的数据进行处理。
步骤S1218,光电转换装置将数据插入到对应的CPRI帧结构中,然后通过光纤将数据传给对端光口设备。
下面对上述各步骤进行解析:
下行处理第一步解析:
光电转换装置的光口接收来自对端发送的CPRI帧格式的数据,按照CPRI帧格式定义,将其数据部分及控制字部分对应提取出来。
下行处理第二步解析:
对提取出来的数据部分选择是否进行压缩算法的处理,若不采用压缩处理则采用透传的方式,若采用压缩算法,则相应选择对应算法对数据进行压缩。
下行处理第三步解析:
光电同步转换采用如下方法:
CPRI无线帧的周期为T(例如为10ms周期);
CPRI无线帧由R(例如:R=38400)个基本帧组成;
基于上述思想,电口应在CPRI 10ms周期内,完成38400个CPRI基本帧数据向电口帧(即以太网帧)的映射,图13是根据本公开可选实施例的以太网帧的帧结构的示意图。
根据电口在不同速率下的传输能力,可以确定光口CPRI帧中每个CPRI基本帧承载数据量在电口以太网帧内的传输限制。
在电口速率为1Gbit/s的情况下,那么在10ms内电口传输数据量为:
Figure PCTCN2017089245-appb-000007
在电口速率为P Gbit/s的情况下,那么在10ms内电口传输数据量为:
X=P×g Byte
如图13所示,参考CPRI帧格式,电口帧格式以10ms为基准,并完成如下的区段划分。
(1)10ms以太网帧
每个10ms以太网帧由N个Slot帧组成,平均每个Slot帧包含(X/N)Byte的数据量。
(2)Slot帧
每个Slot帧由1个电口超帧和K Byte区间范围的控制信息组成。
电口超帧包含(X/N-K)Byte的数据量。
控制信息区在每个Slot帧里面占K Byte,可以承载多个非连续的以太网信令报文。
(3)电口超帧
每个电口超帧由M个以太网基本帧组成,每个以太网基本帧平均包含Z Byte。
(4)以太网基本帧
每个以太网基本帧即一个以太网报文,其中平均传递有效数据占Y Byte的数据量。
每个以太网基本帧承载的CPRI基本帧个数为:
C=38400/(N×M)
那么可以得到平均电口基本帧里承载的每个CPRI基本帧数据量为:
Figure PCTCN2017089245-appb-000008
其中N,K、M、Y都是随机可选的值。根据上述得到的信息将提取出的数据插入到以太网帧中。为了保持同步特性,在以太网基本帧中,可以定义包序号的控制字,即对10ms内的所有以太网基本帧进行循环计数。这样整体就完成了光电之间的数据同步转换。
下行处理第四步解析:
对端通过第0包的解析来恢复出10ms以太网帧的帧头,从而完成光电转换装置与以太网接口设备间的同步,同时根据电口帧格式进行对应数据的解析。这样就保证了整条链路的同步特性。
上行处理第一步解析:
以太网接口设备接收的信号,经过处理后,按照定义的光电同步 转换的10ms电口帧格式,将数据插入到对应的以太网包文中,通过网线传送给光电转换装置。
上行处理第二步解析:
光电转换装置电口根据光电同步转换电口帧(即以太网帧)格式,通过对第0包的解析,恢复出10ms帧头,从而完成设备间同步。同时将10ms内的所有以太网报文中的数据提取出来。
上行处理第三步解析:
对提取出来的数据选择是否进行解压缩算法的处理,若不采用解压缩则采用透传的方式,若采用解压缩算法,则相应选择对应算法对数据进行解压缩。
上行处理第四步解析:
光电转换装置光口将解压缩处理后的10ms内的数据插入到对应的10ms内CPRI帧结构中,然后通过光纤将数据传给对端光口设备。这样整体就完成了电光数据之间的同步转换。
本公开可选实施例提供的数据传输方法,能够在保持整体链路同步特性的状态下完成光电数据之间的转换。基于此方法的光电转换装置对于通信系统中的室内覆盖应用场景具有重要意义,能支持BBU与远端射频设备的桥接,完成光纤、网线之间的转换。
下面以可选示例对本公开可选实施例提供的数据传输方法及装置进行说明和描述:
可选示例1:图14是根据本公开可选示例的数据传输装置的结构框图一,图15是根据本公开实施示例的数据传输装置的结构框图二,如图14和15所示,数据传输装置(即光电转换装置)在网络中的连接形式可以但不限于为:BBU--光电转换装置--远端射频设备,其中,在本示例中,以Y值数据全部固定为例,待传输数据以协议A,B数据为例。
对于下行处理,可以包括以下步骤:
步骤11,BBU将采样的协议A,B数据插入到CPRI基本帧数据中。
步骤12,光电转换装置根据后台配置,按照CPRI的帧格式提取出来数据。并根据后台配置决定是进行压缩处理还是直接透传给电口。光电转换装置按照如图13所示的帧格式,每个以太网帧中Y的值都是固定的,将对应的数据插入到以太网帧中包括的以太网报文(即以太网基本帧)中的数据部分中,同时在控制信息部分可以插入相关的控制信息,从而完成了光电数据之间的同步转换。并在以太网报文中定义了包序号,通过包序号对10ms内的所有包进行循环计数,用于系统同步定时提取。
步骤13,远端射频设备将接收光电转换装置送过来的以太网报文,并根据以太网包的包序号,在接收到第0包时提取出10ms帧头,同时按照如图13所示的帧格式将数据提取出来进行处理,从而完成了设备间的同步。
对于上行处理,可以包括以下步骤:
步骤14,对远端射频设备天线接收的A,B信号,通过后台配置选择是否进行压缩处理。按照如图13所示的帧格式将数据插入到以太网报文中,同时将控制信息插入到控制报文中,通过网线送给光电转换装置。
步骤15,光电转换装置电口将接收的以太网报文,在接收到第0包数据的时候,恢复出10ms头。同时将报文中对应的数据和控制信息部分的数据提取出来。提取出来经过解压缩算法处理得到数据传送到光口处理部分。光口处理部分将数据按照CPRI帧格式进行对应插入。
步骤16,光电转换装置通过光纤将数据传送给BBU。
在本示例中,还可以但不限于包括以下拓扑连接结构:
1、BBU和光电转换装置通过光纤连接。
2、光电转换装置和远端射频设备通过网线连接。
3、支持光电转换装置连接1个或多个远端射频设备。
可选示例2:如图14和15所示,数据传输装置(即光电转换装置)在网络中的连接形式可以但不限于为:BBU--光电转换装置--远端射频设备,其中,在本示例中,以Y值可以灵活配置为例,待传输数据以协议A,B数据为例。
对于下行处理,可以包括以下步骤:
步骤21,BBU将采样的协议A,B数据插入到CPRI基本帧数据中。
步骤22,光电转换装置根据后台配置,将按照CPRI的帧格式提取出来数据。根据后台配置决定信号是进行压缩处理还是直接透传给电口。根据后台的灵活配置,每个以太网报文帧的Y可以按需求动态变化,同时在控制信息部分可以插入相关的控制信息,从而完成了光电之间的数据转换。并在以太网报文中定义了包序号,通过包序号对10ms内的所有包进行循环计数,用于系统同步定时提取。
步骤23,远端射频设备将光电转换装置送过来的以太网报文,根据以太网包的包号,在接收到第0包的时候,解出10ms头,同时按照如图13所示的帧格式将数据提取,从而完成了设备间的同步。
对于上行处理,可以包括以下步骤:
步骤24,对远端射频设备天线接收的A,B信号,通过后台配置选择是否进行压缩处理。按照如图13所示的帧格式将数据插入到以太网包文中,同时将控制信息插入到控制报文中,通过网线送给光电转换装置;
步骤25,光电转换装置电口将接收的以太网报文,在接收到第0包数据的时候,恢复出10ms头。同时将报文中对应的数据和控制信息部分的数据提取出来。提取出来后根据后台配置决定信号是进行压缩处理,并传送到光口处理部分。光口处理部分将数据按照CPRI帧格式进行对应插入。
步骤26,光电转换装置将数据通过光纤传送给BBU。
在本示例中,还可以但不限于包括以下拓扑连接结构:
1、BBU和光电转换装置通过光纤连接。
2、光电转换装置和远端射频设备通过网线连接。
3、支持光电转换装置连接1个或多个远端射频设备。
可选示例3:图16是根据本公开可选示例的数据传输装置的结构框图三,如图16所示,数据传输装置(即光电转换装置)在网络中的连接形式可以但不限于为:BBU--光电转换装置1--光电转换装置2--远端射频设备,其中,在本示例中,待传输数据以协议A,B数据为例。
对于下行处理,可以包括以下步骤:
步骤31,BBU将采样的协议A,B数据插入到CPRI基本帧数据中;
步骤32,光电转换装置1根据后台配置,将按照CPRI的帧格式全部提取出来。根据后台配置,决定是进行压缩处理还是直接透传给级联口。光电转换装置1按照如图13所示的帧格式,将对应的数据插入到以太网报文中的数据部分中,同时在控制信息部分可以传递相关的控制信息,从而完成了光电之间的转换。并在以太网包中定义了包序号,通过包序号对10ms内的所有包进行循环计数,用于系统同步定时提取。
步骤33,光电转换装置2将光电转换装置1送来的光口数据,按照CPRI的帧格式全部提取出来。根据后台配置,决定是否进行压缩处理。光电转换装置2按照如图13所示的帧格式,将对应的数据插入到以太网报文中的数据部分中,同时在控制信息部分可以传递相关的控制信息,从而完成了光电之间的转换。并在以太网包中定义了包序号,通过包序号对10ms内的所有包进行循环计数,用于系统同步定时提取。
步骤34,远端射频设备将光电转换装置1或者光电转换装置2送过来的以太网报文,根据以太网包的包号,在接收到第0包的时候, 解出10ms头,同时按照如图13所示的帧格式将数据部分的数据提取出来进行处理,从而完成了设备间的同步。
对于上行处理,可以包括以下步骤:
步骤35,对远端射频设备天线接收的A,B信号,通过后台配置选择是否进行压缩处理。按照如图13所示的帧格式将数据插入到以太网包文中,同时将控制信息插入到控制报文中,通过网线送给光电转换装置1和光电转换装置2;
步骤36,光电转换装置1和光电转换装置2的电口将接收以太网报文,在接收到第0包数据的时候,恢复出10ms头。同时将报文中对应的数据和控制信息部分的数据提取出来。提取出来根据后台配置,决定是否进行解压缩处理。然后将数据传送到光口处理部分。光口处理部分将数据按照CPRI帧格式进行对应插入。
步骤37,光电转换装置1将接收光电转换装置2送过来的光口报文,并和本级电口送来的数据进行合并,按照CPRI帧格式进行对应插入。
步骤38,光电转换装置1将数据通过光纤传送给BBU。
在本示例中,还可以但不限于包括以下拓扑连接结构:
1、BBU和光电转换装置通过光纤连接。
2、支持光电转换装置1和光电转换装置2级联。
3、光电转换装置1和光电转换装置2通过光纤连接。
4、支持光电转换装置连接1个或多个远端射频设备。
5、光电转换装置和远端射频设备通过网线连接。
可选示例4:图17是根据本公开可选示例的数据传输装置的结构框图四,如图17所示,数据传输装置(即光电转换装置)在网络中的连接形式可以但不限于为:BBU--光电转换装置1--光电转换装置2--远端射频设备
对于下行处理,可以包括以下步骤:
步骤41,BBU将采样的协议A,B数据插入到CPRI基本帧数据中.
步骤42,光电转换装置1根据后台配置,将按照CPRI的帧格式全部提取出来。根据后台配置,决定是进行压缩处理还是直接透传给级联口。光电转换装置1按照如图13所示的帧格式,将对应的数据插入到以太网报文中的数据部分中,同时在控制信息部分可以传递相关的控制信息,从而完成了光电之间的转换。并在以太网包中定义了包序号,通过包序号对10ms内的所有包进行循环计数,用于系统同步定时提取。
步骤43,光电转换装置2或远端射频设备将接收光电转换装置1送过来的以太网报文,并根据以太网包的包序号,在接收到第0包的时提取出10ms头,同时按照如图13所示的帧格式将数据提取出来进行处理,从而完成了设备间的同步。
对于上行处理,可以包括以下步骤:
步骤44,对远端射频设备天线接收的A,B信号,通过后台配置选择是否进行压缩处理。按照如图13所示的帧格式将数据插入到以太网包文中,同时将控制信息插入到控制报文中,通过网线送给光电转换装置。
步骤45,光电转换装置1电口将接收的以太网报文,在接收到第0包数据的时候,恢复出10ms头。同时将报文中对应的数据和控制信息部分的数据提取出来。提取出来经过解压缩算法处理得到数据传送到光口处理部分。光口处理部分将数据按照CPRI帧格式进行对应插入。
步骤46,光电转换装置1将数据通过光纤传送给BBU。
在本示例中,还可以但不限于包括以下拓扑连接结构:
1、BBU和光电转换装置通过光纤连接。
2、支持光电转换装置1和光电转换装置2级联。
3、光电转换装置1和光电转换装置2通过网线连接。
4、支持光电转换装置连接1个或多个远端射频设备。
5、光电转换装置和远端射频设备通过网线连接。
可选示例5:图18是根据本公开可选示例的数据传输装置的结构框图五,图19是根据本公开实施示例的数据传输装置的结构框图六,如图18和19所示,数据传输装置(即光电转换装置)在网络中的连接形式可以但不限于为:BBU--光电转换装置--远端射频设备,其中,在本示例中,Y值可设置为固定或灵活配置,待传输数据以协议A,B数据为例。
对于下行处理,可以包括以下步骤:
步骤51,BBU将采样的协议A,B数据信号通过后台配置选择是否进行压缩处理。按照如图13所示的帧格式将数据插入到以太网包文中,同时将控制信息插入到控制报文中,通过网线送给光电转换装置。
步骤52,光电转换装置电口将接收的以太网报文,在接收到第0包数据的时候,恢复出10ms头。同时将报文中对应的数据和控制信息部分的数据提取出来。提取出来经过解压缩算法处理得到数据传送到光口处理部分。光口处理部分将数据按照CPRI帧格式进行对应插入。
步骤53,光电转换装置通过光纤将数据传送给远端射频单元。
对于上行处理,可以包括以下步骤:
步骤54,远端射频单元将采样的协议A,B数据插入到CPRI基本帧数据中。
步骤55,光电转换装置根据后台配置,按照CPRI的帧格式提取出来数据。并根据后台配置决定是进行压缩处理还是直接透传给电口。光电转换装置按照如图13所示的帧格式,每个以太网帧中Y的值可设置为固定或灵活配置,将对应的数据插入到以太网报文中的数据部 分中,同时在控制信息部分可以插入相关的控制信息,从而完成了光电之间的转换。并在以太网报文中定义了包序号,通过包序号对10ms内的所有包进行循环计数,用于系统同步定时提取。
步骤56,BBU将接收光电转换装置送过来的以太网报文,并根据以太网包的包序号,在接收到第0包的时提取出10ms头,同时按照如图13所示的帧格式将数据提取出来进行处理,从而完成了设备间的同步。
在本示例中,还可以但不限于包括以下拓扑连接结构:
1、BBU和光电转换装置通过网线连接。
2、支持光电转换装置连接1个或多个远端射频设备。
3、光电转换装置和远端射频设备通过光纤连接。
以上实施例仅用以说明本公开的技术方案而非对其进行限制,本领域的普通技术人员可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开的精神和范围,本公开的保护范围应以权利要求所述为准。
实施例5
在本实施例中还提供了一种光电转换装置,图20是根据本公开实施例的一种光电转换装置的结构框图,如图20所示,该装置包括:第一处理芯片2002、第一接口2004和第二接口2006,其中,第一处理芯片2002连接在第一接口2004和第二接口2006之间;第一接口2004用于接收通用公共无线电接口CPRI帧;第一处理芯片2002用于从接收到的CPRI帧中提取待传输数据;将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;第二接口2006用于发送以太网帧。
可选地,上述光电转换装置可以但不限于应用于通信网络覆盖的场景中。例如:通信网络室内覆盖时传输以太网帧的接口网线与基带处理单元的光口进行对接的场景。
通过上述光电转换装置,第一处理芯片从第一接口接收到的通用公共无线电接口CPRI帧中提取待传输数据;将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;第二接口发送以太网帧,由此可见,采用上述方案将待传输数据插入与CPRI帧周期相同的以太网帧中进行传输,因此,实现了CPRI帧数据和以太网帧数据的同步传输,从而解决了相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题。
在本实施例中,第一处理芯片可以但不限于为FPGA芯片等。
在本实施例中,第一接口可以但不限于为光口,第二接口可以但不限于为电口。
可选地,上述第一提取模块和/或上述第一插入模块的功能可以由第一处理芯片实现。上述第一发送模块的功能可以由第一接口实现。
可选地,第一处理芯片用于:获取以太网帧中包括的每个以太网基本帧平均承载的有效数据量;根据CPRI帧中包括的CPRI基本帧的第一数量以及以太网帧的格式确定以太网帧中包括的每个以太网基本帧平均承载的CPRI基本帧的第二数量;根据有效数据量和第二数量确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量;根据平均每个以太网基本帧中承载的每个CPRI基本帧的数据量和以太网帧的格式为以太网基本帧分配待传输数据;将分配的待传输数据对应插入以太网基本帧。
可选地,第一处理芯片用于:根据传输以太网帧的接口的数据传输速率确定每个以太网帧中承载的数据量;判断每个以太网帧中承载的数据量是否小于待传输数据的数据量;在判断出每个以太网帧中承载的数据量小于待传输数据的数据量的情况下,将待传输数据插入多个以太网帧;或者,从待传输数据中筛选预设数据量的数据;将预设数据量的数据插入一个以太网帧,并丢弃待传输数据中除筛选出的预设数据量的数据之外的其余数据;和/或,在判断出每个以太网帧中承载的数据量不小于待传输数据的数据量的情况下,将待传输数据插入一个以太网帧。
可选地,第一处理芯片用于:在将待传输数据插入以太网帧之前,判断是否对待传输数据进行压缩;在判断出对待传输数据进行压缩的情况下,根据预设压缩算法压缩待传输数据,将压缩后的待传输数据作为待插入以太网帧的待传输数据;或者,在判断出不对待传输数据进行压缩的情况下,透传待传输数据。
在本实施例中还提供了另一种光电转换装置,图21是根据本公开实施例的另一种光电转换装置的结构框图,如图21所示,该装置包括:第二处理芯片2102、第三接口2104和第四接口2106,其中,第二处理芯片连接2102在第三接口2104和第四接口2106之间;第三接口2104用于接收以太网帧;第二处理芯片2102用于从接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;将待传输数据插入CPRI帧;第四接口2106用于发送CPRI帧。
可选地,上述光电转换装置可以但不限于应用于通信网络覆盖的场景中。例如:通信网络室内覆盖时传输以太网帧的接口网线与基带处理单元的光口进行对接的场景。
通过上述光电转换装置,第二处理芯片从第三接口接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;将待传输数据插入CPRI帧;第四接口发送CPRI帧,由此可见,采用上述方案将接收到的与CPRI帧周期相同的以太网帧中的待传输数据插入到CPRI帧中并进行传输,因此,实现了CPRI帧数据和以太网帧数据的同步传输,从而解决了相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题。
在本实施例中,第二处理芯片可以但不限于为FPGA芯片等。
在本实施例中,第三接口可以但不限于为电口,第四接口可以但不限于为光口。
可选地,上述第二提取模块和/或上述第二插入模块的功能可以由第二处理芯片实现。上述第二发送模块的功能可以由第四接口实现。
可选地,第二处理芯片用于:获取以太网帧中包括的每个以太网基本帧承载的有效数据量;根据以太网帧的格式以及每个以太网基本帧承载的有效数据量从每个以太网基本帧提取数据,得到待传输数据。
可选地,第二处理芯片用于:根据CPRI帧的格式为CPRI帧包括的CPRI基本帧分配待传输数据;将分配的待传输数据对应插入CPRI基本帧。
可选地,第二处理芯片用于:判断待传输数据的数据量是否大于每个CPRI帧承载的数据量;在判断出待传输数据的数据量大于每个CPRI帧承载的数据量的情况下,将待传输数据插入多个CPRI帧;或者,从待传输数据中筛选预设数据量的数据;将预设数据量的数据插入一个CPRI帧,并丢弃待传输数据中除筛选出的预设数据量的数据之外的其余数据;和/或,在判断出待传输数据的数据量不大于每个CPRI帧承载的数据量的情况下,将待传输数据插入一个CPRI帧。
可选地,第二处理芯片用于:在将待传输数据插入CPRI帧之前,判断是否对待传输数据进行解压缩;在判断出对待传输数据进行解压缩的情况下,根据预设解压缩算法解压缩待传输数据,将解压缩后的待传输数据作为待插入CPRI帧的待传输数据;或者,在判断出不对待传输数据进行解压缩的情况下,透传待传输数据。
实施例6
在本实施例中还提供了一种光电转换系统,图22是根据本公开实施例的一种光电转换系统的结构框图,如图22所示,该系统包括:第一设备2202、光电转换装置2204和第二设备2206,其中,
光电转换装置2204包括:处理芯片2204-1、光口2204-2和电口2204-3,其中,处理芯片2204-1连接在光口2204-2和电口2204-3之间,光口2204-2与第一设备2202连接,电口2204-3与第二设备2206连接;
处理芯片2204-1用于从光口2204-2接收到的通用公共无线电接口CPRI帧中提取待传输数据,将待传输数据插入以太网帧,其中, 以太网帧的周期与CPRI帧的周期相同;和/或,从电口2204-3接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与CPRI帧的周期相同,将待传输数据插入CPRI帧;光口2204-2用于接收或者发送CPRI帧;电口2204-3用于发送或者接收以太网帧;
第一设备2202用于接收光电转换装置2204发送的CPRI帧;从CPRI帧中获取待传输数据;
第二设备2206用于接收光电转换装置2204发送的以太网帧;从以太网帧中获取待传输数据。
可选地,第一设备可以但不限于包括:基带处理单元BBU;第二设备可以但不限于包括以下至少之一:一个或者多个射频拉远单元RRU、一个或者多个光电转换装置;或者,第一设备可以但不限于包括以下至少之一:一个或者多个射频拉远单元RRU、一个或者多个光电转换装置;第二设备可以但不限于包括:基带处理单元BBU。
可选地,上述处理芯片2204-1可以但不限于为FPGA芯片。
可选地,在本实施例中,上述光口2204-2可以但不限于通过光纤与第一设备连接。上述电口2204-3可以但不限于通过超五类线与第二设备连接。
实施例7
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S11,从接收到的通用公共无线电接口CPRI帧中提取待传输数据;
S12,将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;
S13,发送以太网帧。
可选地,存储介质还被设置为存储用于执行上述实施例记载的方法步骤的程序代码:
S21,从接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;
S22,将待传输数据插入CPRI帧;
S23,发送CPRI帧。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例记载的方法步骤。
可选地,本实施例中的可选地示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的可选地实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
在本公开的技术方案中,通过从接收到的通用公共无线电接口CPRI帧中提取待传输数据;将所述待传输数据插入以太网帧,其中,所述以太网帧的周期与所述CPRI帧的周期相同;发送所述以太网帧 的方法,解决相关技术中无法对CPRI帧数据和以太网帧数据同步传输的问题。

Claims (34)

  1. 一种数据传输方法,包括:
    从接收到的通用公共无线电接口CPRI帧中提取待传输数据;
    将所述待传输数据插入以太网帧,其中,所述以太网帧的周期与所述CPRI帧的周期相同;
    发送所述以太网帧。
  2. 根据权利要求1所述的方法,其中,将所述待传输数据插入所述以太网帧包括:
    获取所述以太网帧中包括的每个以太网基本帧平均承载的有效数据量;
    根据所述CPRI帧中包括的CPRI基本帧的第一数量以及以太网帧的格式确定以太网帧中包括的每个以太网基本帧平均承载的CPRI基本帧的第二数量;
    根据所述有效数据量和所述第二数量确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量;
    根据所述平均每个以太网基本帧中承载的每个CPRI基本帧的数据量和所述以太网帧的格式为所述以太网基本帧分配所述待传输数据;
    将所述分配的待传输数据对应插入所述以太网基本帧。
  3. 根据权利要求2所述的方法,其中,根据以下公式确定所述平均每个以太网基本帧中承载的每个CPRI基本帧的数据量:
    C=R/(N×M);
    Figure PCTCN2017089245-appb-100001
    其中,C表示所述第二数量,R表示所述第一数量,N表示所述以太网帧中包括的时隙Slot帧的数量,M表示每个Slot帧中包括的以太网基本帧的数量,Y表示所述有效数据量,D表示所述 平均每个以太网基本帧中承载的每个CPRI基本帧的数据量。
  4. 根据权利要求1所述的方法,其中,将所述待传输数据插入所述以太网帧包括:
    根据传输以太网帧的接口的数据传输速率确定每个以太网帧中承载的数据量;
    判断每个以太网帧中承载的数据量是否小于所述待传输数据的数据量;
    在判断出每个以太网帧中承载的数据量小于所述待传输数据的数据量的情况下,将所述待传输数据插入多个以太网帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个以太网帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,
    在判断出每个以太网帧中承载的数据量不小于所述待传输数据的数据量的情况下,将所述待传输数据插入一个以太网帧。
  5. 根据权利要求4所述的方法,其中,根据以下公式确定所述以太网帧中承载的数据量:
    Figure PCTCN2017089245-appb-100002
    其中,P表示所述传输以太网帧的接口的所述数据传输速率,T表示所述以太网帧的周期。
  6. 根据权利要求1至5中任一项所述的方法,其中,在将所述待传输数据插入所述以太网帧之前,所述方法还包括:
    判断是否对所述待传输数据进行压缩;
    在判断出对所述待传输数据进行压缩的情况下,根据预设压缩算法压缩所述待传输数据,将压缩后的所述待传输数据作为待插入所述以太网帧的所述待传输数据;或者,在判断出不对所述待传输数据进行压缩的情况下,透传所述待传输数据。
  7. 根据权利要求1至5中任一项所述的方法,其中,所述以太网帧包括:数据传输区域,其中,所述数据传输区域用于传输所述待传输数据。
  8. 根据权利要求7所述的方法,其中,所述以太网帧还包括:控制信息传输区域,其中,所述控制信息传输区域用于传输所述以太网帧的控制信息。
  9. 一种数据传输方法,包括:
    从接收到的以太网帧中提取待传输数据,其中,所述以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;
    将所述待传输数据插入所述CPRI帧;
    发送所述CPRI帧。
  10. 根据权利要求9所述的方法,其中,从接收到的所述以太网帧中提取所述待传输数据包括:
    获取所述以太网帧中包括的每个以太网基本帧承载的有效数据量;
    根据以太网帧的格式以及每个以太网基本帧承载的有效数据量从每个以太网基本帧提取数据,得到所述待传输数据。
  11. 根据权利要求9所述的方法,其中,将所述待传输数据插入所述CPRI帧包括:
    根据CPRI帧的格式为所述CPRI帧包括的CPRI基本帧分配所述待传输数据;
    将分配的所述待传输数据对应插入所述CPRI基本帧。
  12. 根据权利要求9所述的方法,其中,将所述待传输数据插入所述CPRI帧包括:
    判断所述待传输数据的数据量是否大于每个CPRI帧承载的 数据量;
    在判断出所述待传输数据的数据量大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入多个CPRI帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个CPRI帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或
    在判断出所述待传输数据的数据量不大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入一个CPRI帧。
  13. 根据权利要求9至12中任一项所述的方法,其中,在将所述待传输数据插入所述CPRI帧之前,所述方法还包括:
    判断是否对所述待传输数据进行解压缩;
    在判断出对所述待传输数据进行解压缩的情况下,根据预设解压缩算法解压缩所述待传输数据,将解压缩后的待传输数据作为待插入所述CPRI帧的所述待传输数据;或者,在判断出不对所述待传输数据进行解压缩的情况下,透传所述待传输数据。
  14. 一种数据传输装置,包括:
    第一提取模块,设置为从接收到的通用公共无线电接口CPRI帧中提取待传输数据;
    第一插入模块,设置为将所述待传输数据插入以太网帧,其中,所述以太网帧的周期与所述CPRI帧的周期相同;
    第一发送模块,设置为发送所述以太网帧。
  15. 根据权利要求14所述的装置,其中,所述第一插入模块包括:
    第一获取单元,设置为获取所述以太网帧中包括的每个以太网基本帧平均承载的有效数据量;
    第一确定单元,设置为根据所述CPRI帧中包括的CPRI基本 帧的第一数量以及以太网帧的格式确定以太网帧中包括的每个以太网基本帧平均承载的CPRI基本帧的第二数量;
    第二确定单元,设置为根据所述有效数据量和所述第二数量确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量;
    第一分配单元,设置为根据所述平均每个以太网基本帧中承载的每个CPRI基本帧的数据量和所述以太网帧的格式为所述以太网基本帧分配所述待传输数据;
    第一插入单元,设置为将所述分配的待传输数据对应插入所述以太网基本帧。
  16. 根据权利要求14所述的装置,其中,所述第一插入模块包括:
    第三确定单元,设置为根据传输以太网帧的接口的数据传输速率确定每个以太网帧中承载的数据量;
    第一判断单元,设置为判断每个以太网帧中承载的数据量是否小于所述待传输数据的数据量;
    第一处理单元,设置为在判断出每个以太网帧中承载的数据量小于所述待传输数据的数据量的情况下,将所述待传输数据插入多个以太网帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个以太网帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,
    第二处理单元,设置为在判断出每个以太网帧中承载的数据量不小于所述待传输数据的数据量的情况下,将所述待传输数据插入一个以太网帧。
  17. 根据权利要求14至16中任一项所述的装置,其中,所述装置还包括:
    第一判断模块,设置为判断是否对所述待传输数据进行压缩;
    压缩模块,设置为在判断出对所述待传输数据进行压缩的情况下,根据预设压缩算法压缩所述待传输数据,将压缩后的所述待传输数据作为待插入所述以太网帧的所述待传输数据;或者,在判断出不对所述待传输数据进行压缩的情况下,透传所述待传输数据。
  18. 一种数据传输装置,包括:
    第二提取模块,设置为从接收到的以太网帧中提取待传输数据,其中,所述以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;
    第二插入模块,设置为将所述待传输数据插入所述CPRI帧;
    第二发送模块,设置为发送所述CPRI帧。
  19. 根据权利要求18所述的装置,其中,所述第二提取模块包括:
    第二获取单元,设置为获取所述以太网帧中包括的每个以太网基本帧承载的有效数据量;
    提取单元,设置为根据以太网帧的格式以及每个以太网基本帧承载的有效数据量从每个以太网基本帧提取数据,得到所述待传输数据。
  20. 根据权利要求18所述的装置,其中,所述第二插入模块包括:
    第二分配单元,设置为根据所述CPRI帧的格式为所述CPRI帧包括的CPRI基本帧分配所述待传输数据;
    第二插入单元,设置为将分配的所述待传输数据对应插入所述CPRI基本帧。
  21. 根据权利要求18所述的装置,其中,所述第二插入模 块包括:
    第二判断单元,设置为判断所述待传输数据的数据量是否大于每个CPRI帧承载的数据量;
    第三处理单元,设置为在判断出所述待传输数据的数据量大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入多个CPRI帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个CPRI帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,
    第四处理单元,设置为在判断出所述待传输数据的数据量不大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入一个CPRI帧。
  22. 根据权利要求18至21中任一项所述的装置,其中,所述装置还包括:
    第二判断模块,设置为判断是否对所述待传输数据进行解压缩;
    解压缩模块,设置为在判断出对所述待传输数据进行解压缩的情况下,根据预设解压缩算法解压缩所述待传输数据,将解压缩后的待传输数据作为待插入所述CPRI帧的所述待传输数据;或者,在判断出不对所述待传输数据进行解压缩的情况下,透传所述待传输数据。
  23. 一种光电转换装置,包括:第一处理芯片、第一接口和第二接口,其中,
    所述第一处理芯片连接在所述第一接口和所述第二接口之间;
    所述第一接口用于接收通用公共无线电接口CPRI帧;
    所述第一处理芯片用于从所述第一接口接收到的所述CPRI帧中提取待传输数据;将所述待传输数据插入以太网帧,其中,所述以太网帧的周期与所述CPRI帧的周期相同;
    所述第二接口用于发送所述以太网帧。
  24. 根据权利要求23所述的光电转换装置,其中,所述第一处理芯片用于:
    获取所述以太网帧中包括的每个以太网基本帧平均承载的有效数据量;
    根据所述CPRI帧中包括的CPRI基本帧的第一数量以及以太网帧的格式确定以太网帧中包括的每个以太网基本帧平均承载的CPRI基本帧的第二数量;
    根据所述有效数据量和所述第二数量确定平均每个以太网基本帧中承载的每个CPRI基本帧的数据量;
    根据所述平均每个以太网基本帧中承载的每个CPRI基本帧的数据量和所述以太网帧的格式为所述以太网基本帧分配所述待传输数据;
    将所述分配的待传输数据对应插入所述以太网基本帧。
  25. 根据权利要求23所述的光电转换装置,其中,所述第一处理芯片用于:
    根据传输以太网帧的接口的数据传输速率确定每个以太网帧中承载的数据量;
    判断每个以太网帧中承载的数据量是否小于所述待传输数据的数据量;
    在判断出每个以太网帧中承载的数据量小于所述待传输数据的数据量的情况下,将所述待传输数据插入多个以太网帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量 的数据插入一个以太网帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,
    在判断出每个以太网帧中承载的数据量不小于所述待传输数据的数据量的情况下,将所述待传输数据插入所述以太网帧。
  26. 根据权利要求23至25中任一项所述的光电转换装置,其中,所述第一处理芯片用于:
    在将所述待传输数据插入所述以太网帧之前,判断是否对所述待传输数据进行压缩;
    在判断出对所述待传输数据进行压缩的情况下,根据预设压缩算法压缩所述待传输数据,将压缩后的所述待传输数据作为待插入所述以太网帧的所述待传输数据;或者,在判断出不对所述待传输数据进行压缩的情况下,透传所述待传输数据。
  27. 一种光电转换装置,包括:第二处理芯片、第三接口和第四接口,其中,
    所述第二处理芯片连接在所述第三接口和所述第四接口之间;
    所述第三接口用于接收以太网帧;
    所述第二处理芯片用于从所述第三接口接收到的以太网帧中提取待传输数据,其中,所述以太网帧的周期与通用公共无线电接口CPRI帧的周期相同;将所述待传输数据插入所述CPRI帧;
    所述第四接口用于发送所述CPRI帧。
  28. 根据权利要求27所述的光电转换装置,其中,所述第二处理芯片用于:
    获取所述以太网帧中包括的每个以太网基本帧承载的有效数据量;
    根据以太网帧的格式以及每个以太网基本帧承载的所述有效 数据量从每个以太网基本帧提取数据,得到所述待传输数据。
  29. 根据权利要求27所述的光电转换装置,其中,所述第二处理芯片用于:
    根据CPRI帧的格式为所述CPRI帧包括的CPRI基本帧分配所述待传输数据;
    将分配的所述待传输数据对应插入所述CPRI基本帧。
  30. 根据权利要求27所述的光电转换装置,其中,所述第二处理芯片用于:
    判断所述待传输数据的数据量是否大于每个CPRI帧承载的数据量;
    在判断出所述待传输数据的数据量大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入多个CPRI帧;或者,从所述待传输数据中筛选预设数据量的数据;将所述预设数据量的数据插入一个CPRI帧,并丢弃所述待传输数据中除筛选出的所述预设数据量的数据之外的其余数据;和/或,
    在判断出所述待传输数据的数据量不大于每个CPRI帧承载的数据量的情况下,将所述待传输数据插入一个CPRI帧。
  31. 根据权利要求27至30中任一项所述的光电转换装置,其中,所述第二处理芯片用于:
    在将所述待传输数据插入所述CPRI帧之前,判断是否对所述待传输数据进行解压缩;
    在判断出对所述待传输数据进行解压缩的情况下,根据预设解压缩算法解压缩所述待传输数据,将解压缩后的待传输数据作为待插入所述CPRI帧的所述待传输数据;或者,在判断出不对所述待传输数据进行解压缩的情况下,透传所述待传输数据。
  32. 一种光电转换系统,包括:第一设备、光电转换装置和第二设备,其中,
    所述光电转换装置包括:处理芯片、光口和电口,其中,所述处理芯片连接在所述光口和所述电口之间,所述光口与所述第一设备连接,所述电口与所述第二设备连接;
    所述处理芯片用于从所述光口接收到的通用公共无线电接口CPRI帧中提取待传输数据,将待传输数据插入以太网帧,其中,以太网帧的周期与CPRI帧的周期相同;和/或,从所述电口接收到的以太网帧中提取待传输数据,其中,以太网帧的周期与CPRI帧的周期相同,将待传输数据插入CPRI帧;所述光口用于接收或者发送CPRI帧;所述电口用于发送或者接收以太网帧;
    所述第一设备用于接收所述光电转换装置发送的CPRI帧;从CPRI帧中获取待传输数据;
    所述第二设备用于接收所述光电转换装置发送的以太网帧;从以太网帧中获取待传输数据。
  33. 根据权利要求32所述的系统,其中,
    所述第一设备包括:基带处理单元BBU;所述第二设备包括以下至少之一:一个或者多个射频拉远单元RRU、一个或者多个所述光电转换装置;或者,
    所述第一设备包括以下至少之一:一个或者多个射频拉远单元RRU、一个或者多个所述光电转换装置;所述第二设备包括:基带处理单元BBU。
  34. 一种存储介质,所述存储介质包括存储的程序,所述程序运行时执行权利要求1至13中任一项所述的方法。
PCT/CN2017/089245 2016-06-28 2017-06-20 数据传输方法和装置以及光电转换装置和系统 WO2018001143A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17819140.9A EP3468298B1 (en) 2016-06-28 2017-06-20 Data transmission method and device and photoelectric conversion device and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610488503.7 2016-06-28
CN201610488503.7A CN107547481B (zh) 2016-06-28 2016-06-28 数据传输方法和装置以及光电转换装置和系统

Publications (1)

Publication Number Publication Date
WO2018001143A1 true WO2018001143A1 (zh) 2018-01-04

Family

ID=60786550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089245 WO2018001143A1 (zh) 2016-06-28 2017-06-20 数据传输方法和装置以及光电转换装置和系统

Country Status (3)

Country Link
EP (1) EP3468298B1 (zh)
CN (1) CN107547481B (zh)
WO (1) WO2018001143A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159848A1 (en) * 2019-02-01 2020-08-06 Cisco Technology, Inc. Link establishment between a radio equipment controller (rec) and radio equipment (re) in a fronthaul network
US10863386B1 (en) 2019-09-17 2020-12-08 Cisco Technology, Inc. State machine handling at a proxy node in an ethernet-based fronthaul network
CN113347468A (zh) * 2021-04-21 2021-09-03 深圳市乐美客视云科技有限公司 一种基于以太网帧的音视频传输方法、装置及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109639713B (zh) * 2019-01-02 2021-08-31 武汉虹信科技发展有限责任公司 一种iq数据帧和传输、接收方法
CN113381964B (zh) * 2020-03-09 2022-08-02 中国电信股份有限公司 用于在室内分布系统中传输数据的方法、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247574A (zh) * 2006-02-22 2008-08-20 华为技术有限公司 连接主基站与射频拉远单元的接口装置
CN101248689A (zh) * 2005-07-13 2008-08-20 诺基亚西门子通信有限责任两合公司 通过cpri接口传输以太网分组
CN101931454A (zh) * 2009-06-19 2010-12-29 大唐移动通信设备有限公司 基于以太网的射频拉远数据传输
US20160143016A1 (en) * 2013-06-19 2016-05-19 Orange Devices for supplying service information for a microwave link

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438506C (zh) * 2006-12-15 2008-11-26 华为技术有限公司 通用公共无线接口数据传输方法及其设备和系统
CN101695192A (zh) * 2009-10-22 2010-04-14 中兴通讯股份有限公司 实现基带处理单元与射频单元之间资源分配的方法及系统
CN102118191B (zh) * 2010-01-06 2014-01-08 华为技术有限公司 一种通用公共无线接口数据的传递方法、设备及系统
CN102469571B (zh) * 2010-11-12 2014-07-02 中兴通讯股份有限公司 一种在分布式基站系统中实现时延补偿的方法及系统
US9647759B2 (en) * 2013-12-22 2017-05-09 IPLight Ltd. Efficient mapping of CPRI signals for sending over optical networks
US9749050B2 (en) * 2014-02-18 2017-08-29 Avago Technologies General Ip (Singapore) Pte. Ltd. CPRI framelets
CN104507154B (zh) * 2014-11-20 2018-04-10 上海华为技术有限公司 数据传输方法、通信设备及通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101248689A (zh) * 2005-07-13 2008-08-20 诺基亚西门子通信有限责任两合公司 通过cpri接口传输以太网分组
CN101247574A (zh) * 2006-02-22 2008-08-20 华为技术有限公司 连接主基站与射频拉远单元的接口装置
CN101931454A (zh) * 2009-06-19 2010-12-29 大唐移动通信设备有限公司 基于以太网的射频拉远数据传输
US20160143016A1 (en) * 2013-06-19 2016-05-19 Orange Devices for supplying service information for a microwave link

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3468298A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159848A1 (en) * 2019-02-01 2020-08-06 Cisco Technology, Inc. Link establishment between a radio equipment controller (rec) and radio equipment (re) in a fronthaul network
US11228991B2 (en) 2019-02-01 2022-01-18 Cisco Technology, Inc. Link auto-negotiation between a radio equipment controller (REC) and radio equipment (RE) in an ethernet-based fronthaul network
US11343781B2 (en) 2019-02-01 2022-05-24 Cisco Technology, Inc. Link establishment between a radio equipment controller (REC) and radio equipment (RE) in a fronthaul network
US11395242B2 (en) 2019-02-01 2022-07-19 Cisco Technology, Inc. Link establishment between a radio equipment controller (REC) and radio equipment (RE) in a fronthaul network
EP4040915A1 (en) * 2019-02-01 2022-08-10 Cisco Technology, Inc. Link auto-negotiation between a radio equipment controller (rec) and radio equipment (re) in an ethernet-based fronthaul network
US11601899B2 (en) 2019-02-01 2023-03-07 Cisco Technology, Inc. Link establishment between a radio equipment controller (REC) and radio equipment (RE) in a fronthaul network
US11696242B2 (en) 2019-02-01 2023-07-04 Cisco Technology, Inc. Link auto-negotiation between a radio equipment controller (REC) and radio equipment (RE) in an ethernet-based fronthaul network
US10863386B1 (en) 2019-09-17 2020-12-08 Cisco Technology, Inc. State machine handling at a proxy node in an ethernet-based fronthaul network
US11395189B2 (en) 2019-09-17 2022-07-19 Cisco Technology, Inc. State machine handling at a proxy node in an Ethernet-based fronthaul network
CN113347468A (zh) * 2021-04-21 2021-09-03 深圳市乐美客视云科技有限公司 一种基于以太网帧的音视频传输方法、装置及存储介质
CN113347468B (zh) * 2021-04-21 2023-01-13 深圳市乐美客视云科技有限公司 一种基于以太网帧的音视频传输方法、装置及存储介质

Also Published As

Publication number Publication date
EP3468298B1 (en) 2021-09-29
EP3468298A1 (en) 2019-04-10
CN107547481B (zh) 2021-09-24
CN107547481A (zh) 2018-01-05
EP3468298A4 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
WO2018001143A1 (zh) 数据传输方法和装置以及光电转换装置和系统
CN109302372B (zh) 一种通信方法、设备及存储介质
RU2310283C2 (ru) Система и способ двунаправленной пакетной передачи данных
US6366961B1 (en) Method and apparatus for providing mini packet switching in IP based cellular access networks
US20120140686A1 (en) Method and apparatus for sending, receiving, and transmission of data packets (as amended)
EP2854359A2 (en) Compression and decompression method of ethernet header and device of same
US9160656B2 (en) Base station apparatus
HK1085076A1 (en) Allocating data transmission resources in packet-switched data transmission
US9961563B2 (en) Small cell base station system, and related devices and data processing methods
JP6603816B2 (ja) 近端装置と遠端装置との間でフレームデータ伝送を行う方法及び装置
CN105578491A (zh) 一种4g用户信息与应用数据关联的方法及装置
US20180124640A1 (en) Digital fronthaul data transmission method, device, and system
CN101730307A (zh) 一种射频拉远数据传输装置及传输方法
US7403543B2 (en) TCP/IP header compression format and method over wireless network
EP3562080A1 (en) Method and device for data transmission of front-haul transport network, and computer storage medium
CN107317653B (zh) 数据传输方法及装置
EP3139699B1 (en) Data transmission method and device, and network system
EP2760173A1 (en) Data transmission method, device and system
CN109586886B (zh) 一种数据传输系统
CN116528399A (zh) Gtp传输通道的配置方法及装置
CN103179094B (zh) Ip报文头的发送、接收方法、发送装置以及接收装置
KR101111156B1 (ko) 무선 기지국에서 대화식 데이터 교환 방법, 설비 및 시스템
CN111106871B (zh) 一种数据处理方法、装置、设备和存储介质
US20080031287A1 (en) Packet transmission device and control method thereof
CN107734555B (zh) 数据收发通道、数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017819140

Country of ref document: EP

Effective date: 20190102