WO2018001062A1 - 一种计算转发路径的方法及网络设备 - Google Patents

一种计算转发路径的方法及网络设备 Download PDF

Info

Publication number
WO2018001062A1
WO2018001062A1 PCT/CN2017/087553 CN2017087553W WO2018001062A1 WO 2018001062 A1 WO2018001062 A1 WO 2018001062A1 CN 2017087553 W CN2017087553 W CN 2017087553W WO 2018001062 A1 WO2018001062 A1 WO 2018001062A1
Authority
WO
WIPO (PCT)
Prior art keywords
forwarding
delay
node
interface
forwarding node
Prior art date
Application number
PCT/CN2017/087553
Other languages
English (en)
French (fr)
Inventor
董杰
陈国义
杜宗鹏
徐玲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17819059.1A priority Critical patent/EP3468116B1/en
Priority to EP19215081.1A priority patent/EP3687124B1/en
Publication of WO2018001062A1 publication Critical patent/WO2018001062A1/zh
Priority to US16/232,854 priority patent/US10855574B2/en
Priority to US17/094,538 priority patent/US11431611B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/121Shortest path evaluation by minimising delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/03Topology update or discovery by updating link state protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/123Evaluation of link metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/127Shortest path evaluation based on intermediate node capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method for calculating a forwarding path and a network device.
  • IP Internet Protocol
  • MPLS Multi-Protocol Label Switching
  • 5G fifth-generation
  • IoT Internet of Things
  • the embodiment of the present application provides a method for calculating a forwarding path in a network. It is advantageous to solve the technical problem that the low transmission delay path cannot be provided when forwarding service packets in the prior art.
  • an embodiment of the present application provides a method for calculating a forwarding path, where the method includes:
  • the network device receives the advertisement packet sent by the multiple forwarding nodes, and each of the advertisement packets includes: an interface forwarding delay information of the forwarding node that sends the advertisement packet, and a device that sends the advertisement packet to the forwarding node. Transmitting delay information and a transmission delay of a link connected to a forwarding node that sends the advertisement message;
  • the network device calculates, according to the interface forwarding delay information, the device forwarding delay information, and the transmission delay of the link between the multiple forwarding nodes, the first forwarding node to the second forwarding node.
  • the forwarding path between the first forwarding node and the second forwarding node is a node of the multiple forwarding nodes, and the forwarding delay of the forwarding path meets the delay requirement of the service.
  • the network device forwards the delay information, the device forwarding delay information, and the transmission delay of the link between each forwarding node by receiving the interface of the forwarding node sent by the forwarding node, and then calculating the service satisfaction time according to the delay information. Delaying the required forwarding path, that is, providing a method of calculating a low transmission delay path.
  • the service packet is forwarded to provide a deterministic low transmission delay for service packet forwarding, ensuring the reliability of service packet transmission.
  • the interface forwarding delay information of the forwarding node includes a forwarding delay range of the interface of the forwarding node
  • the device forwarding delay information of the forwarding node includes a forwarding delay range of the forwarding node, and the forwarding delay range of the forwarding node is: after the data packet enters the forwarding node from the inbound interface, the data packet arrives.
  • the internal processing before the interface can guarantee a delay range, and the inbound interface and the outbound interface are interfaces on the forwarding node.
  • the interface delay forwarding information of the forwarding node further includes: determining a delay forwarding capability of the interface of the forwarding node, and determining a delay forwarding capability of the interface of the forwarding node is:
  • the interface of the forwarding node can support the ability to complete packet forwarding within a fixed delay range when performing packet forwarding
  • the device forwarding delay information of the forwarding node further includes: a determining delay forwarding capability of the forwarding node, and the determining delay forwarding capability of the forwarding node is:
  • the internal processing stage of the data packet includes: the data packet enters from the inbound interface. After the forwarding node goes to the internal processing before the data packet arrives at the outbound interface, the inbound interface and the outbound interface are interfaces on the forwarding node, and correspondingly,
  • the interface of the node on the forwarding path supports determining the delay forwarding capability, and the node on the forwarding path supports determining the delay forwarding capability.
  • the network device may first determine whether the forwarding node has the determined delay forwarding capability, and then perform path calculation in the forwarding node having the determined delay forwarding capability.
  • the advertisement message further includes resource information of the forwarding node that sends the advertisement message, and correspondingly, the resource information of each node on the forwarding path meets the needs of the service. That is, each node on the forwarding path can provide resources that meet the service delay requirements.
  • the network device can calculate the forwarding path in the forwarding node that the resource information can support the specific delay guarantee.
  • the delay of the forwarding path meets the delay requirement of the service, and specifically includes:
  • the sum of the interface forwarding delay, the node forwarding delay, and the transmission delay of the link on the forwarding path of each node on the forwarding path meets the delay requirement of the service.
  • the network device is a controller in a control forwarding separate network architecture, or the control device is a Path Computation Element (PCE), or the network The device is the first node to access user services in the network.
  • PCE Path Computation Element
  • the advertisement message is an extended Open Shortest Path First (OSPF) protocol message, or an extended intermediate system to the intermediate system (Intermediate System-to-Intermediate System, IS-IS protocol packet, or extended Border Gateway Protocol (BGP) packet.
  • OSPF Open Shortest Path First
  • BGP extended Border Gateway Protocol
  • the network device establishes the forwarding path between the first forwarding node and the second forwarding node according to the calculated information of the forwarding path, and sends the forwarding path to the forwarding path. Every The node sends a resource reservation request message to ensure that the service meets the delay requirement of the service when forwarding along the forwarding path.
  • the network device may be a head node device in the network, and the calculation of the collection and forwarding path of the advertisement packet by the head node device may eliminate the need for an additional control device, which may simplify the network. Structure, easy to maintain and manage.
  • the embodiment of the present application further provides a method for calculating a forwarding path, where the method includes:
  • the forwarding node generates an advertisement packet, where the advertisement packet includes: an interface forwarding delay information of the forwarding node, a device forwarding delay information of the forwarding node, and a transmission delay of a link connected to the forwarding node. ;
  • the forwarding node sends the advertisement packet to the network device, and triggers the network device to store the interface forwarding delay information, the device forwarding delay information, and the transmission of the link connected to the forwarding node of the forwarding node. And delaying, and triggering, by the network device, the forwarding delay information, the device forwarding delay information, and the transmission delay of the link between the forwarding nodes according to the stored interface of the multiple forwarding nodes, and calculating from the first forwarding node to the first
  • the forwarding path between the two forwarding nodes, the first forwarding node and the second forwarding node are nodes of the multiple forwarding nodes, and the forwarding delay of the forwarding path meets the delay requirement of the service.
  • the interface forwarding delay information of the forwarding node includes a forwarding delay range of the interface of the forwarding node
  • the device forwarding delay information of the forwarding node includes a forwarding delay range of the forwarding node, and the forwarding delay range of the forwarding node is: after the data packet enters the forwarding node from the inbound interface, the data packet arrives.
  • the internal processing before the interface can guarantee a delay range, and the inbound interface and the outbound interface are interfaces on the forwarding node.
  • the interface delay forwarding information of the forwarding node further includes: determining a delay forwarding capability of the interface of the forwarding node, and determining a delay forwarding capability of the interface of the forwarding node is:
  • the interface of the forwarding node can support the ability to complete packet forwarding within a fixed delay range when performing packet forwarding
  • the device forwarding delay information of the forwarding node further includes: a determining delay forwarding capability of the forwarding node, and the determining delay forwarding capability of the forwarding node is:
  • the internal processing of the data packet includes: the data packet enters the interface from the inbound interface. After forwarding the node to the internal processing before the data packet arrives at the outbound interface, the inbound interface and the outbound interface are interfaces on the forwarding node, and correspondingly,
  • the interface of the node on the forwarding path supports determining the delay forwarding capability, and the node on the forwarding path supports determining the delay forwarding capability.
  • the embodiment of the present application further provides a network device that calculates a forwarding path, where the network device includes:
  • the receiving unit is configured to receive the advertisement packet sent by the multiple forwarding nodes, where the advertisement packet includes: forwarding delay information of the interface of the forwarding node that sends the advertisement packet, and forwarding of the advertisement packet The device forwarding delay information of the node and the transmission delay of the link connected to the forwarding node that sends the advertisement packet;
  • An obtaining unit configured to obtain, according to the advertisement packet, an interface forwarding delay information and a device forwarding delay information of each forwarding node of the multiple forwarding nodes, and obtain the multiple forwarding nodes according to the advertisement packet Between The transmission delay of the link;
  • a processing unit configured to calculate a delay from the first forwarding node to the second forwarding according to the interface forwarding delay information, the device forwarding delay information, and the transmission delay of the link between the multiple forwarding nodes a forwarding path between the nodes, where the first forwarding node and the second forwarding node are nodes of the multiple forwarding nodes, and the forwarding delay of the forwarding path meets a delay requirement of the service.
  • the embodiment of the present application further provides a forwarding node that calculates a forwarding path, where the forwarding node includes:
  • the processing unit is configured to generate an advertisement packet, where the advertisement packet includes: an interface forwarding delay information of the forwarding node, a device forwarding delay information of the forwarding node, and a link connected to the forwarding node.
  • Transmission delay includes: an interface forwarding delay information of the forwarding node, a device forwarding delay information of the forwarding node, and a link connected to the forwarding node.
  • a sending unit configured to send the advertisement packet to the network device, to trigger the network device to store the interface forwarding delay information, the device forwarding delay information, and the link connected to the forwarding node of the forwarding node Transmitting the delay, and triggering the network device to calculate the delay information, the device forwarding delay information, and the transmission delay of the link between the forwarding nodes according to the stored interface of the multiple forwarding nodes, and calculate from the first forwarding node to And a forwarding path between the second forwarding node, where the first forwarding node and the second forwarding node are nodes of the multiple forwarding nodes, and the forwarding delay of the forwarding path meets a delay requirement of the service.
  • the embodiment of the present application further provides a network device that calculates a forwarding path, where the network device may include a processor, a memory, and a communication unit.
  • the memory can be used to store program code and data of the network device, and the processor is configured to invoke program instructions in the memory to perform the method described in the first aspect embodiment above.
  • the embodiment of the present application provides a forwarding node that calculates a forwarding path
  • the forwarding node may include a processor, a memory, and a communication unit.
  • the memory may be used to store program code and data of the network device, and the processor is configured to invoke program instructions in the memory to perform the method described in the second aspect embodiment above.
  • the forwarding node in the network actively reports the forwarding delay information of the forwarding node, the device forwarding delay information, and the transmission delay of the link between each forwarding node, and then the network device according to these
  • the delay information is used to establish a forwarding path that meets the service delay requirement.
  • the service packet is forwarded by the path to provide a deterministic low transmission delay for service packet forwarding. This ensures the reliability of service packet transmission.
  • FIG. 1 is a schematic diagram of an application scenario of a method for calculating a forwarding path according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for calculating a forwarding path according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another method for calculating a forwarding path according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of another method for calculating a forwarding path according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a forwarding node according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another forwarding node according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of an application scenario in a network according to an embodiment of the present disclosure.
  • the network includes: a network device 108, a forwarding node 101, a forwarding node 102, a forwarding node 103, a forwarding node 104, a forwarding node 105, and forwarding.
  • the network device 108 can control and manage the forwarding nodes 101-107 for controlling the controller under the forwarding separation architecture.
  • the network device 108 can also be a PCE.
  • the forwarding node 101 is the first node of the user service packet entering the network, and may also be called the head node.
  • the head node is determined by the access location of the user service.
  • the network device 108 can calculate the path information required for service forwarding from the network according to the service requirement, and establish a forwarding path, or the forwarding node 101 can calculate the path information required for service forwarding according to the service requirement, and establish a forwarding path.
  • the embodiment of the present application provides a method for calculating a forwarding path, where the method includes:
  • the multiple forwarding nodes in the network respectively send an advertisement packet to the network device, where the advertisement packet includes: an interface forwarding delay information of the forwarding node that sends the advertisement packet, and a forwarding node that sends the advertisement packet.
  • the device forwards the delay information and the transmission delay of the link connected to the forwarding node that sends the advertisement message.
  • the network device may be the network device 108 in FIG. 1, and the plurality of forwarding nodes may be forwarding nodes in the forwarding nodes 101-107 in FIG.
  • the network device obtains the interface forwarding delay information and the device forwarding delay information of each forwarding node of the multiple forwarding nodes according to the advertisement packet, and obtains the multiple forwarding according to the advertisement packet.
  • the interface forwarding delay information of the forwarding node includes a forwarding delay range of the interface of the forwarding node
  • the device forwarding delay information of the forwarding node includes a forwarding delay range of the forwarding node
  • the forwarding delay range of the forwarding node is: a delay range that can be guaranteed by the internal processing of the data packet from the ingress interface to the forwarding node until the data packet arrives at the outbound interface, where the ingress interface and the outbound interface are Forward the interface on the node.
  • the forwarding delay of the interface of the forwarding node is the delay range of the data packet passing through the interface.
  • the forwarding delay of the interface ranges from 1 microsecond (us) to 10 us.
  • the internal processing stage of the data packet includes: an internal processing before the data packet enters the forwarding node from the inbound interface to the outbound interface, where the inbound interface and the outbound interface are interfaces on the forwarding node.
  • the forwarding delay of the forwarding node ranges from 5 us to 20 us.
  • the interface delay forwarding information of the forwarding node further includes: determining a delay forwarding capability of the interface of the forwarding node, and determining a delay forwarding capability of the interface of the forwarding node is:
  • the interface of the forwarding node can support the forwarding of packets within a fixed delay range when performing packet forwarding
  • the device forwarding delay information of the forwarding node further includes: a determining delay forwarding capability of the forwarding node, and the determining delay forwarding capability of the forwarding node is:
  • the internal processing stage of the data packet includes: the data packet enters from the inbound interface. Determining, by the forwarding node, internal processing before the data packet arrives at the outbound interface, where the ingress interface and the outbound interface are interfaces on the forwarding node, and correspondingly,
  • the interface of the node on the forwarding path supports determining the delay forwarding capability, and the node on the forwarding path supports determining the delay forwarding capability.
  • the forwarding path may be preferentially selected from the forwarding nodes that support the determining the delay forwarding capability, and the interface in the selected forwarding node also supports determining the delay forwarding capability.
  • the network device may also be a head node in the network, that is, the head node in the network receives the multiple forwarding nodes to send an advertisement message to the head node, and then the head node calculates the forwarding path.
  • the advertisement packet may be an extended OSPF protocol packet, such as an OSPF Router Information (RI) LSA, and an OSPF Node Deterministic delay TLV is configured to carry the forwarding delay range of the forwarding node.
  • the forwarding delay range of the forwarding node is represented by a minimum delay (min delay) and a maximum (max delay).
  • a new bit can be defined in the OSPF Router Informational Capabilities TLV to identify whether the forwarding node supports the determination of the delay forwarding capability, that is, the forwarding forwarding capability of the fixed delay range is supported by the node.
  • another optional extension mode is: extending the OSPF TE LSA, and defining a Local Interface Deterministic Capability TLV in the Link TLV, which is used to describe the forwarding delay capability and the capability of the interface of the forwarding node.
  • a new OSPF Node Deterministic Delay Sub-TLV is defined in the Node Attribute TLV to carry the delay range that the forwarding node can guarantee.
  • the transmission delay of the link between the forwarding nodes is determined by the length of the link, usually a fixed value, which can be carried by the Unidirectional Link Delay Sub-TLV in RFC7471 or by the Unidirectional Link Delay Sub-TLV in RFC 7810. .
  • the advertisement packet is an extended IS-IS protocol packet, and the IS-IS Router CAPABILITY TLV is extended, and the IS-IS Node Deterministic Delay Sub-TLV is defined to carry the delay range that the forwarding node can guarantee.
  • a new IS-IS TE Sub-TLV such as the local interface Deterministic Capability TLV, is used to determine the delay forwarding capability and the guaranteed delay range of the interface carrying the forwarding node.
  • the advertisement packet is an extended BGP packet.
  • the BGP-LS Attribute of the BGP-LS is extended to define a new Node Attribute TLV, which is used to carry the delay range that the forwarding node can guarantee.
  • the BGP-LS Attribute of the BGP-LS is extended to define a new Link Attribute TLV, which carries the delay range that the forwarding node interface can guarantee.
  • the network device calculates the delay information, the device forwarding delay information, and the transmission delay of the link between the multiple forwarding nodes according to the interface of each forwarding node, and calculates the first forwarding node to the second. Forwarding a forwarding path between the nodes, where the first forwarding node and the second forwarding node are in the multiple forwarding nodes The forwarding delay of the forwarding path meets the delay requirement of the service.
  • the first forwarding node is the first node of the incoming network of the service, and before the network device performs the path calculation, the service type is obtained in advance and from which node the network managed by the network device is obtained.
  • the network needs to meet the specific delay requirement when forwarding the service packet.
  • the end-to-end delay should be between 20 us and 50 us. This ensures timely transmission of video services or voice services and improves user experience.
  • the sum of the forwarding delay of the interface for forwarding the service packet, the internal forwarding delay of each node, and the transmission delay of the link on the forwarding path of each node on the forwarding path satisfy the service. Delay requirements. That is to say, the minimum and maximum of the sum of the delays can meet the delay range of the business requirements.
  • the method may further include the following steps 204 and 205 to complete the establishing the forwarding path:
  • the network device separately sends a road construction message to the forwarding node on the calculated forwarding path, where the road construction message includes information required to establish the forwarding path.
  • the forwarding node on the forwarding path After receiving the road setup message, the forwarding node on the forwarding path generates forwarding information required to establish the forwarding path, so as to complete establishment of the forwarding path.
  • each node's forwarding entry such as an inbound label, an outgoing label, and an outgoing interface
  • the forwarding on the forwarding path generates a corresponding forwarding entry after receiving the road construction message.
  • the forwarding path is established.
  • the forwarding node in the network actively reports the forwarding delay information of the forwarding node, the device forwarding delay information, and the link between each forwarding node. Based on the delay information, the network device establishes a forwarding path that meets the service delay requirement, thereby providing a deterministic low transmission delay for service packet forwarding.
  • the embodiment of the present application provides a method for calculating a forwarding path, where the network device in FIG. 3 may be the network device in the embodiment shown in FIG. include:
  • the network device receives the advertisement packet sent by the multiple forwarding nodes, where the advertisement packet includes: an interface forwarding delay information of the forwarding node that sends the advertisement packet, and a forwarding node that sends the advertisement packet.
  • the device forwards the delay information and the transmission delay of the link connected to the forwarding node that sends the advertisement message.
  • the network device may be a controller that controls forwarding in a separate network architecture, or the control device is a PCE, or the network device is a first node that is accessed by user services in the network.
  • the network device obtains the interface forwarding delay information and the device forwarding delay information of each forwarding node of the multiple forwarding nodes according to the advertisement packet, and obtains the multiple forwarding according to the advertisement packet.
  • the network device calculates the delay information, the device forwarding delay information, and the transmission delay of the link between the multiple forwarding nodes according to the interface of each forwarding node, and calculates the first forwarding node to the second. Forwarding a forwarding path between the nodes, where the first forwarding node and the second forwarding node are nodes of the multiple forwarding nodes, and the forwarding delay of the forwarding path meets a delay requirement of the service.
  • the advertisement packet is an extended OSPF protocol packet, or an extended IS-IS protocol packet, or an extended BGP packet, and the specific content can participate in the embodiment shown in FIG. 2, and details are not described herein.
  • the advertisement message further includes resource information for supporting the deterministic delay forwarding of the forwarding node that sends the advertisement message, where the resource information may include: bandwidth, buffer, queue, time slot, and the like.
  • the network device needs to consider whether the resources of each forwarding node can support the forwarding of the service packet. For example, if the service needs to occupy 10M bandwidth, the network device can support the forwarding of 10M bandwidth from the resource of the forwarding node. Select the way to establish a path in the node.
  • a specific cache or queue needs to be reserved on the forwarding node, and the network device selects the forwarding path calculation in the forwarding node where the resource information can ensure the service delay requirement.
  • the delay of the forwarding path meets a delay requirement of the service, and specifically includes:
  • the sum of the interface forwarding delay, the node forwarding delay, and the transmission delay of the link on the forwarding path on the forwarding path meets the delay requirement of the service. It can be understood that the interface of each forwarding node on the forwarding path is that the interface is on the forwarding node, and the interface is on the forwarding path.
  • the network device establishes, according to the calculated information about the forwarding path, the forwarding path between the first forwarding node and the second forwarding node, and each of the first paths
  • the node sends a resource reservation request message to ensure that each forwarding node can provide a specific delay guarantee and ensure that the service packet is forwarded smoothly.
  • the method for calculating a path is provided by the network device, and the network device receives the delay information, the device forwarding delay information, and the chain between each forwarding node by receiving the interface of the forwarding node sent by the forwarding node.
  • the transmission delay of the path is calculated, and then the forwarding path that meets the service delay requirement is calculated according to the delay information, and the service packet is forwarded by using the path, which can provide a deterministic low transmission delay for the service packet forwarding and ensure the service.
  • the reliability of message transmission is provided by the network device, and the network device receives the delay information, the device forwarding delay information, and the chain between each forwarding node by receiving the interface of the forwarding node sent by the forwarding node.
  • the embodiment of the present application provides a method for calculating a forwarding path, where the network device in FIG. 4 may be the network device in the embodiment shown in FIG.
  • the forwarding node may be the forwarding node in the embodiment shown in FIG. 2, and the method includes:
  • the forwarding node generates an advertisement packet, where the advertisement packet includes: an interface forwarding delay information of the forwarding node, a device forwarding delay information of the forwarding node, and a transmission of a link connected to the forwarding node. Delay.
  • the forwarding node sends the advertisement packet to the network device
  • the network device is configured to store the interface forwarding delay information, the device forwarding delay information, and the link connected to the forwarding node. a transmission delay, and triggering the network device to calculate the delay from the first forwarding node according to the stored forwarding delay information, the device forwarding delay information, and the transmission delay of the link between the forwarding nodes.
  • the first forwarding node and the second forwarding node are nodes of the multiple forwarding nodes, and the forwarding delay of the forwarding path meets the delay requirement of the service.
  • the interface forwarding delay information of the forwarding node includes a forwarding delay range of the interface of the forwarding node
  • the device forwarding delay information of the forwarding node includes a forwarding delay range of the forwarding node, and the forwarding delay range of the forwarding node is: the data packet enters the forwarding node from the ingress interface to the data packet arrives at the outbound interface.
  • the previous internal processing can guarantee a delay range, and the inbound interface and the outbound interface are interfaces on the forwarding node.
  • the interface delay forwarding information of the forwarding node further includes: determining an interface of the forwarding node The delay forwarding capability, the determined delay forwarding capability of the interface of the forwarding node is:
  • the interface of the forwarding node can support the forwarding of packets within a fixed delay range when performing packet forwarding
  • the device forwarding delay information of the forwarding node further includes: a determining delay forwarding capability of the forwarding node, and the determining delay forwarding capability of the forwarding node is:
  • the internal processing of the data packet includes: the data packet enters the interface from the inbound interface. Forwarding, to the internal processing before the data packet arrives at the outbound interface, where the inbound interface and the outbound interface are interfaces on the forwarding node, and correspondingly,
  • the interface of the node on the forwarding path supports determining the delay forwarding capability, and the node on the forwarding path supports determining the delay forwarding capability.
  • the forwarding node notifies the network device of the forwarding delay information of the forwarding node, the device forwarding delay information, and the link between each forwarding node.
  • the transmission delay is such that the network device calculates the forwarding path that meets the service delay requirement according to the delay information, and uses the path to forward the service packet, which can provide a deterministic low transmission delay for the service packet forwarding. The reliability of service message transmission.
  • the embodiment of the present application provides a network device 500 for calculating a forwarding path, where the network device 500 in FIG. 5 may be the network device in the embodiment shown in FIG.
  • the network device 500 can perform the method in the embodiment shown in FIG. 2 or FIG. 3.
  • the network device 500 includes:
  • the receiving unit 501 is configured to receive, by each of the multiple forwarding nodes, an advertisement packet, where the advertisement packet includes: an interface forwarding delay information of the forwarding node that sends the advertisement packet, and the sending the advertisement packet The device forwarding delay information of the forwarding node and the transmission delay of the link connected to the forwarding node that sends the advertisement packet;
  • the obtaining unit 502 is configured to obtain the interface forwarding delay information and the device forwarding delay information of each forwarding node of the multiple forwarding nodes according to the advertisement packet, and obtain the multiple forwarding according to the advertisement packet.
  • the processing unit 503 is configured to calculate, according to the interface forwarding delay information, the device forwarding delay information, and the transmission delay of the link between the multiple forwarding nodes, the calculation from the first forwarding node to the second Forwarding a forwarding path between the nodes, where the first forwarding node and the second forwarding node are nodes of the multiple forwarding nodes, and the forwarding delay of the forwarding path meets a delay requirement of the service.
  • the interface forwarding delay information of the forwarding node includes a forwarding delay range of the interface of the forwarding node
  • the device forwarding delay information of the forwarding node includes a forwarding delay range of the forwarding node, and the forwarding delay range of the forwarding node is: the data packet enters the forwarding node from the ingress interface to the data packet arrives at the outbound interface.
  • the interface delay forwarding information of the forwarding node further includes: determining a delay forwarding capability of the interface of the forwarding node, and determining a delay forwarding capability of the interface of the forwarding node is:
  • the interface of the forwarding node can support the completion of the report within a fixed delay when the packet is forwarded.
  • the device forwarding delay information of the forwarding node further includes: a determining delay forwarding capability of the forwarding node, and the determining delay forwarding capability of the forwarding node is:
  • the internal processing stage of the data packet includes: the data packet enters from the inbound interface.
  • the interface of the node on the forwarding path supports determining the delay forwarding capability, and the node on the forwarding path supports determining the delay forwarding capability.
  • the embodiment of the present application provides that the network device 500 receives the delay information of the forwarding node, the forwarding delay information of the device, and the transmission delay of the link between each forwarding node by receiving the forwarding node sent by the forwarding node, and then The forwarding path that meets the service delay requirement is calculated according to the delay information, and the service packet is forwarded by the path to provide a deterministic low transmission delay for the service packet forwarding, thereby ensuring the reliability of the service packet transmission.
  • the embodiment of the present application provides a forwarding node 600 for calculating a forwarding path, where the network device 600 in FIG. 6 may be a forwarding node in the embodiment shown in FIG.
  • the forwarding node 600 can perform the method in the embodiment shown in FIG. 2 or FIG. 4, and the forwarding node 600 includes:
  • the processing unit 601 is configured to generate an advertisement packet, where the advertisement packet includes: an interface forwarding delay information of the forwarding node, a device forwarding delay information of the forwarding node, and a link connected to the forwarding node. Transmission delay
  • the sending unit 602 is configured to send the advertisement packet to the network device, and trigger the network device to store the interface forwarding delay information, the device forwarding delay information, and the link connected to the forwarding node of the forwarding node. a transmission delay, and triggering the network device to calculate the delay from the first forwarding node according to the stored forwarding delay information, the device forwarding delay information, and the transmission delay of the link between the forwarding nodes.
  • the first forwarding node and the second forwarding node are nodes of the multiple forwarding nodes, and the forwarding delay of the forwarding path meets the delay requirement of the service.
  • the interface forwarding delay information of the forwarding node includes a forwarding delay range of the interface of the forwarding node
  • the device forwarding delay information of the forwarding node includes a forwarding delay range of the forwarding node, and the forwarding delay range of the forwarding node is: the data packet enters the forwarding node from the ingress interface to the data packet arrives at the outbound interface.
  • the previous internal processing can guarantee a delay range, and the inbound interface and the outbound interface are interfaces on the forwarding node.
  • the interface delay forwarding information of the forwarding node further includes: determining a delay forwarding capability of the interface of the forwarding node, and determining a delay forwarding capability of the interface of the forwarding node is:
  • the interface of the forwarding node can support the ability to complete packet forwarding within a fixed delay range when performing packet forwarding
  • the device forwarding delay information of the forwarding node further includes: a determining delay forwarding capability of the forwarding node, and the determining delay forwarding capability of the forwarding node is:
  • the internal processing of the data packet includes: internal processing of the data packet from the ingress interface to the forwarding node until the data packet arrives at the egress interface, the ingress interface and the outbound
  • the interface is an interface on the forwarding node, and correspondingly,
  • the interface of the node on the forwarding path supports determining the delay forwarding capability, and the node on the forwarding path supports determining the delay forwarding capability.
  • the forwarding node notifies the network device of the forwarding delay information of the forwarding node, the device forwarding delay information, and the link between each forwarding node.
  • the transmission delay is such that the network device calculates the forwarding path that meets the service delay requirement according to the delay information, and uses the path to forward the service packet, which can provide a deterministic low transmission delay for the service packet forwarding. The reliability of service message transmission.
  • FIG. 7 is a schematic structural diagram of a network device for calculating a path according to an embodiment of the present invention.
  • the network device 700 provided in this embodiment may be applied to the method in the embodiment of FIG. 2 or FIG. 3 to implement the functions of the network device.
  • Network device 700 includes a processor 701, a receiver 702, a memory 703, and.
  • the processor 701 includes but is not limited to a CPU, a network processor (English: Network Processor, NP for short), an application-specific integrated circuit (ASIC) or a programmable logic device (English: Programmable Logic Device).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: Complex Programmable Logic Device, abbreviation: CPLD), Field-Programmable Gate Array (English: Field-Programmable Gate Array, abbreviation: FPGA), general array logic (English: Generic Array Logic, abbreviation: GAL) or any combination thereof.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • GAL Generic Array Logic
  • the memory 703 may be, but not limited to, a content-addressable memory (English: Content-Addressable Memory, CAM for short), such as a Ternary CAM (TCAM), a random access memory (English: Random-Access Memory, referred to as RAM.
  • a content-addressable memory English: Content-Addressable Memory, CAM for short
  • TCAM Ternary CAM
  • RAM Random-Access Memory
  • the receiver 702 can include a common physical interface, and the physical interface can be an Ethernet interface or an Asynchronous Transfer Mode (ATM) interface.
  • the processor 701, the receiver 702, and the memory 703 can be integrated into one or more separate circuits or hardware, such as an ASIC.
  • the memory 703 can be used to store the program code and data of the network device 700.
  • the processor 701 is configured to call the program instructions in the memory 703 to execute the method shown in the foregoing embodiment to calculate a forwarding path.
  • a forwarding path For the specific calculation path, refer to the foregoing implementation. For example, I won't go into details here.
  • FIG. 8 is a schematic structural diagram of a forwarding node of a calculation path according to an embodiment of the present invention.
  • the forwarding node 800 provided in this embodiment may be applied to the method in the embodiment of FIG. 2 or FIG. 4 to implement the function of the forwarding node.
  • the forwarding node 800 includes a processor 801, a transmitter 802, a memory 803, and.
  • Processor 801 includes, but is not limited to, one or more of a CPU, NP, ASIC, or PLD.
  • the above PLD may be a CPLD, an FPGA, a GAL, or any combination thereof.
  • Memory 803 can be, but not limited to, a CAM, such as a TCAM or RAM.
  • the transmitter 802 can include a common physical interface, and the physical interface can be an Ethernet interface or an ATM interface.
  • the processor 801, transmitter 802, and memory 803 can be integrated into one or more separate circuits or hardware, such as an ASIC.
  • the memory 803 can be used to store the program code and data of the forwarding node 800, and the processor 801 is configured to invoke the program instructions in the memory 803 to execute the method shown in the foregoing embodiment to calculate a forwarding path.
  • the steps of the path refer to the foregoing embodiment, and details are not described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种计算转发路径的方法,该方法包括:网络设备接收多个转发节点分别发送的通告报文,每个通告报文包括:发送该通告报文的转发节点的接口转发时延信息、发送所述通告报文的转发节点的设备转发时延信息、以及与发送所述通告报文的转发节点连接的链路的传输时延;网络设备根据通告报文获得所述多个转发节点中每个转发节点的接口转发时延信息和设备转发时延信息,并根据所述通告报文获得所述多个转发节点之间链路的传输时延;网络设备根据每个转发节点的接口转发时延信息、设备转发时延信息以及多个转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述转发路径的转发时延满足业务的时延要求。

Description

一种计算转发路径的方法及网络设备
本申请要求于2016年6月29日提交中国专利局、申请号为201610493644.8、发明名称为“一种计算转发路径的方法及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,特别涉及一种计算转发路径的方法及网络设备。
背景技术
随着网际协议(Internet Protocol,IP)/多协议标签交换(Multi-Protocol Label Switching,MPLS)技术的不断发展,网络中出现了很多新的业务需求,如5G(fifth-generation)移动网络中的前传(front haul)业务和物联网(Internet of things,IoT)业务。这些新增加的业务都需要由IP/MPLS网络提供承载。另外,工业控制等业务也正在从传统网络或私有网络迁移到IP/MPLS网络。这些业务的共同特点就是对时延和时延抖动十分敏感,要求网络在任何情况下都能为业务提供确定性的低传输时延,而传统的IP/MPLS网络由各种业务共享网络中的各种资源,即使能够为部分业务提供一定的优先级,仍然无法保证满足上述业务的性能要求。
发明内容
本申请实施例提供了一种网络中计算转发路径的方法。有利于解决现有技术中在进行业务报文转发时不能提供低传输时延路径的技术问题。
第一方面,本申请实施例提供了一种计算转发路径的方法,该方法包括:
网络设备接收多个转发节点分别发送的通告报文,每个所述通告报文包括:发送所述通告报文的转发节点的接口转发时延信息、发送所述通告报文的转发节点的设备转发时延信息、以及与发送所述通告报文的转发节点连接的链路的传输时延;
所述网络设备根据所述通告报文获得所述多个转发节点中每个转发节点的接口转发时延信息和设备转发时延信息,并根据所述通告报文获得所述多个转发节点之间链路的传输时延;
所述网络设备根据所述每个转发节点的接口转发时延信息、设备转发时延信息以及所述多个转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
网络设备通过接收转发节点发送的转发节点的接口转发时延信息、设备转发时延信息以及每个转发节点之间链路的传输时延,然后根据这些时延信息计算满足业务时 延要求的转发路径,即提供提供了一种计算低传输时延路径的方法。利用该路径对业务报文进行转发,能够为业务报文转发提供确定性的低传输时延,保证了业务报文传输的可靠性。
在一种可能的实现方案中,所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;
所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口。
在一种可能的实现方案中,所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定时延转发能力,所述转发节点的接口的确定时延转发能力为:
所述转发节点的接口在进行报文转发时,是否能够支持在固定时延范围内完成报文转发的能力;
所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
所述转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成报文转发的能力,所述数据报文的内部处理阶段包括:所述数据报文从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。这样,网络设备在进行路径计算时,可以先判断转发节点是否具备确定时延转发能力,然后在具有确定时延转发能力的转发节点中进行路径计算。
在一种可能的实现方案中,所述通告报文还包含发送所述通告报文的转发节点的资源信息,相应地,所述转发路径上的每个节点的资源信息满足所述业务的需要,即所述转发路径上的每个节点都能够提供满足业务时延要求的资源。网络设备可以资源信息能够支持特定时延保证的转发节点中计算转发路径。
在一种可能的实现方案中,所述转发路径的时延满足业务的时延要求,具体包括:
所述转发路径上的每个节点的接口转发时延、节点转发时延及所述转发路径上链路的传输时延之和满足所述业务的时延要求。
在一种可能的实现方案中,所述网络设备为控制转发分离网络架构中的控制器(Controller),或者,所述控制设备为路径计算单元(Path Computation Element,PCE),或者,所述网络设备为所述网络中用户业务接入的第一个节点。
在一种可能的实现方案中,所述通告报文为扩展的开放最短路径优先(Open Shortest Path First,OSPF)协议报文,或者扩展的中间系统到中间系统(Intermediate System-to-Intermediate System,IS-IS)协议报文,或者扩展的边界网关协议(Border Gateway Protocol,BGP)报文。通过扩展现有协议的报文能够简化网络布局,实现更简洁。
在一种可能的实现方案中,所述网络设备根据计算出的所述转发路径的信息,建立所述第一转发节点到第二转发节点之间的所述转发路径,并向所述转发路径上的每 个节点发送资源预留请求消息,以保证所述业务在沿着所述转发路径转发时满足所述业务的时延要求。
在一种可能的实现方式中,所述网络设备可以是网络中的头节点设备,通过头节点设备来实现通告报文的收集和转发路径的计算可以不再需要额外的控制设备,可以简化网络结构,便于维护和管理。
第二方面,本申请实施例还提供了一种计算转发路径的方法,所述方法包括:
转发节点生成通告报文,所述通告报文包括:所述转发节点的接口转发时延信息、所述转发节点的设备转发时延信息、以及与所述转发节点连接的链路的传输时延;
所述转发节点向网络设备发送所述通告报文,触发所述网络设备存储所述转发节点的接口转发时延信息、设备转发时延信息以及所述与所述转发节点连接的链路的传输时延,并触发所述网络设备根据存储的多个转发节点的接口转发时延信息、设备转发时延信息以及所述转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
在一种可能的实现方案中,所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;
所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口。
在一种可能的实现方案中,所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定时延转发能力,所述转发节点的接口的确定时延转发能力为:
所述转发节点的接口在进行报文转发时,是否能够支持在固定时延范围内完成报文转发的能力;
所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
所转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成报文转发的能力,所述数据报文的内部处理包括:所述数据报文从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。
第三方面,本申请实施例还提供了一种计算转发路径的网络设备,所述网络设备包括:
接收单元,用于接收多个转发节点分别发送的通告报文,每个所述通告报文包括:发送所述通告报文的转发节点的接口转发时延信息、发送所述通告报文的转发节点的设备转发时延信息、以及与发送所述通告报文的转发节点连接的链路的传输时延;
获取单元,用于根据所述通告报文获得所述多个转发节点中每个转发节点的接口转发时延信息和设备转发时延信息,并根据所述通告报文获得所述多个转发节点之间 链路的传输时延;
处理单元,用于根据所述每个转发节点的接口转发时延信息、设备转发时延信息以及所述多个转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
第四方面,本申请实施例还提供了一种计算转发路径的转发节点,所述转发节点包括:
处理单元,用于生成通告报文,所述通告报文包括:所述转发节点的接口转发时延信息、所述转发节点的设备转发时延信息、以及与所述转发节点连接的链路的传输时延;
发送单元,用于向网络设备发送所述通告报文,触发所述网络设备存储所述转发节点的接口转发时延信息、设备转发时延信息以及所述与所述转发节点连接的链路的传输时延,并触发所述网络设备根据存储的多个转发节点的接口转发时延信息、设备转发时延信息以及所述转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
第五方面,本申请实施例还提供了一种计算转发路径的网络设备,该网络设备可以包括处理器、存储器和通信单元。存储器可以用于存储该网络设备的程序代码和数据,处理器用于调用存储器中的程序指令执行上述第一方面实施例描述的方法。
第六方面,本申请实施例提供了一种计算转发路径的转发节点,该转发节点可以包括处理器、存储器和通信单元。存储器可以用于存储该网络设备的程序代码和数据,处理器用于调用存储器中的程序指令执行上述第二方面实施例描述的方法。
根据本发明实施例提供的技术方案,网络中的转发节点主动上报转发节点的接口转发时延信息、设备转发时延信息以及每个转发节点之间链路的传输时延,然后网络设备根据这些时延信息建立满足业务时延要求的转发路径,利用该路径对业务报文进行转发,能够为业务报文转发提供确定性的低传输时延,保证了业务报文传输的可靠性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的一种计算转发路径的方法应用场景示意图;
图2为本申请实施例提供的一种计算转发路径的方法流程示意图;
图3为本申请实施例提供的另一种计算转发路径的方法流程示意图;
图4为本申请实施例提供的另一种计算转发路径的方法流程示意图;
图5为本申请实施例提供的一种网络设备的结构示意图;
图6为本申请实施例提供的一种转发节点的结构示意图;
图7为本申请实施例提供的另一种网络设备的结构示意图;
图8为本申请实施例提供的另一种转发节点的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1,图1为本申请实施例提供的一种网络中应用场景示意图,该网络包括:网络设备108、转发节点101、转发节点102、转发节点103、转发节点104、转发节点105、转发节点106和转发节点107。所述网络设备108可以为控制转发分离架构下的控制器,对转发节点101-107进行控制和管理。所述网络设备108还可以是PCE。转发节点101是用户业务报文进入该网络的第一个节点,也可以叫头节点,通常头节点都是由用户业务的接入位置决定的。网络设备108可以根据业务需要从网络中计算业务转发所需要的路径信息,并建立转发路径,或者转发节点101也可以根据业务需要计算业务转发需要的路径信息,并建立转发路径。
参见图2,结合图1所示的应用场景,本申请实施例提供了一种计算转发路径的方法,所述方法包括:
201,网络中的多个转发节点分别向网络设备发送通告报文,该通告报文包括:发送所述通告报文的转发节点的接口转发时延信息、发送所述通告报文的转发节点的设备转发时延信息、以及与发送所述通告报文的转发节点连接的链路的传输时延。
所述网络设备可以为图1中的网络设备108,所述多个转发节点可以为图1中的转发节点101-107中的转发节点。
202,所述网络设备根据所述通告报文获得所述多个转发节点中每个转发节点的接口转发时延信息和设备转发时延信息,并根据所述通告报文获得所述多个转发节点之间链路的传输时延。
可选地,所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口。
转发节点的接口的转发时延范围为数据报文经过该接口的时延范围,举例来说,接口的转发时延范围为1微秒(us)-10us。所述数据报文的内部处理阶段包括:数据报文从入接口进入转发节点到该数据包到达出接口之前的内部处理,其中入接口和出接口为所述转发节点上的接口。举例来说,转发节点的转发时延范围为5us-20us。
可选地,所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定时延转发能力,所述转发节点的接口的确定时延转发能力为:
所述转发节点的接口在进行报文转发时,是否能够支持固定时延范围内报文转发的能力;
所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
所转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成报文转发的能力,所述数据报文的内部处理阶段包括:所述数据报文从入接口进入所述转发节点到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。
可选地,在该网络设备计算转发路径时,可以优先从支持确定时延转发能力的转发节点中选择用于建立转发路径,并且选择的转发节点中的接口也要支持确定时延转发能力。
可选地,该网络设备也可以为该网络中的头节点,即有网络中的头节点接收该多个转发节点分别向头节点发送通告报文,然后有头节点来计算转发路径。
可选地,所述通告报文可以为扩展的OSPF协议报文,如:扩展OSPF的Router Information(RI)LSA,新定义一个OSPF Node Deterministic delay TLV,用于携带转发节点的转发时延范围,用最小时延(min delay)和最大(max delay)表示转发节点的转发时延范围。另外,可以在OSPF Router Informational Capabilities TLV中新定义一个比特位,用于标识转发节点是否支持确定时延转发能力,即标识转发按节点是否支持固定时延范围的时延转发能力。
可选地,另一种可选的扩展方式为:扩展OSPF的TE LSA,在其中的Link TLV中新定义一个Local interface Deterministic Capability TLV,用于描述转发节点的接口的确定时延转发能力和能够保证的时延范围,在Node Attribute TLV中新定义一个新的OSPF Node Deterministic Delay Sub-TLV,用于携带转发节点能够保证的时延范围。
转发节点之间链路的传输时延由链路的长度决定,通常是固定值,可以使用RFC7471中的Unidirectional Link Delay Sub-TLV来携带,或者使用RFC 7810中的Unidirectional Link Delay Sub-TLV来携带。
可选地,所述通告报文为扩展的IS-IS协议报文,扩展IS-IS Router CAPABILITY TLV,新定义IS-IS Node Deterministic delay Sub-TLV,用于携带转发节点能够保证的时延范围。定义新的IS-IS TE Sub-TLV,如:Local interface Deterministic Capability TLV,用于携带转发节点的接口的确定时延转发能力和能够保证的时延范围。
可选地,所述通告报文为扩展的BGP报文。扩展BGP-LS的BGP-LS Attribute,定义新的Node Attribute TLV,用于携带转发节点能够保证的时延范围。扩展BGP-LS的BGP-LS Attribute,定义新的Link Attribute TLV,携带转发节点接口能够保证的时延范围。
203,所述网络设备根据所述每个转发节点的接口转发时延信息、设备转发时延信息以及所述多个转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的 节点,所述转发路径的转发时延满足业务的时延要求。
所述第一转发节点为所述业务的进入网络的第一个节点,在网络设备进行路径计算之前预先获知该业务类型及从哪个节点进入该网络设备所述管理的网络。
举例来说,当该业务为视频业务或语音业务时,要求网络在转发该业务报文时,需要满足特定时延的要求,如:端到端的时延要在20us-50us之间。这样才能保证视频业务或语音业务的及时传输,提高用户体验。这时所述转发路径上的每个节点的转发所述业务报文的接口的转发时延、每个节点内部转发时延及所述转发路径上链路的传输时延之和满足所述业务的时延要求。也就是说这个时延之和的最小值和最大值能够满足业务要求的时延范围。
在所述网络设备计算出从第一转发节点到第二转发按节点之间的转发路径后,所述方法还可以包括如下步骤204和205,进而完成建立该转发路径:
204,所述网络设备向计算出的转发路径上的转发节点分别发送建路消息,所述建路消息包含建立该转发路径所需要的信息。
205,所述转发路径上的转发节点在接收到所述建路消息后,生成建立该转发路径所需要的转发信息,从而完成所述转发路径的建立。
举例来说,当网络设备为PCE或控制器时,会向转发路径上的每个转发节点发送每个节点的转发表项,如入标签、出标签和出接口等信息。转发路径上的转发在接收到建路消息后,即生成对应的转发表项,当转发路径上的每个节点都生成了对应的转发表时,即完成该转发路径的建立。
由上述描述可以看出,本申请实施例提供的一种计算路径的方法,网络中的转发节点主动上报转发节点的接口转发时延信息、设备转发时延信息以及每个转发节点之间链路的传输时延,然后网络设备根据这些时延信息建立满足业务时延要求的转发路径,从而为业务报文转发提供确定性的低传输时延。
参见图3,结合图1所示的应用场景,本申请实施例提供了一种计算转发路径的方法,其中图3中的网络设备可以为图2所示实施例中的网络设备,所述方法包括:
301,网络设备接收多个转发节点分别发送的通告报文,每个所述通告报文包括:发送所述通告报文的转发节点的接口转发时延信息、发送所述通告报文的转发节点的设备转发时延信息、以及与发送所述通告报文的转发节点连接的链路的传输时延。
所述网络设备可以为控制转发分离网络架构中的Controller,或者,所述控制设备为PCE,或者,所述网络设备为所述网络中用户业务接入的第一个节点。
302,所述网络设备根据所述通告报文获得所述多个转发节点中每个转发节点的接口转发时延信息和设备转发时延信息,并根据所述通告报文获得所述多个转发节点之间链路的传输时延。
303,所述网络设备根据所述每个转发节点的接口转发时延信息、设备转发时延信息以及所述多个转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
所述通告报文为扩展的OSPF协议报文,或者扩展的IS-IS协议报文,或者扩展的BGP报文,具体内容可以参加图2所示的实施例,此处不在赘述。
可选地,所述通告报文还包含发送所述通告报文的转发节点的用于支持确定性时延转发的资源信息,该资源信息可以包括:带宽,缓存,队列,时隙等。网络设备在计算路径时要考虑每个转发节点的资源是否能支撑该业务报文转发,举例来说,如果该业务需要占用10M带宽,则网络设备要从转发节点的资源能够支撑10M带宽的转发节点中选择建立路。再举例来说,为满足转发节点支持特定时延转发,需要在该转发节点上预留特定缓存或队列,则网络设备选择在资源信息能够保证业务时延要求的转发节点中进行转发路径计算。
可选地,所述转发路径的时延满足业务的时延要求,具体包括:
所述转发路径上的每个转发节点的接口转发时延、节点转发时延及所述转发路径上链路的传输时延之和满足所述业务的时延要求。可以理解的,所述转发路径上的每个转发节点的接口是,该接口在转发节点上,并且该接口在该转发路径上。
可选地,所述网络设备根据计算出的所述转发路径的信息,建立所述第一转发节点到第二转发节点之间的所述转发路径,并向所述第一路径上的每个节点发送资源预留请求消息,以保证每个转发节点能够提供特定的时延保证,并能够保证业务报文顺利被转发。
由上述描述可以看出,本申请实施例提供的一种计算路径的方法,网络设备通过接收转发节点发送的转发节点的接口转发时延信息、设备转发时延信息以及每个转发节点之间链路的传输时延,然后根据这些时延信息计算满足业务时延要求的转发路径,利用该路径对业务报文进行转发,能够为业务报文转发提供确定性的低传输时延,保证了业务报文传输的可靠性。
参见图4,结合图1所示的应用场景,本申请实施例提供了一种计算转发路径的方法,其中图4中的网络设备可以为图2所示实施例中的网络设备,图4中的转发节点可以为图2所示实施例中的转发节点,所述方法包括:
401,转发节点生成通告报文,所述通告报文包括:所述转发节点的接口转发时延信息、所述转发节点的设备转发时延信息、以及与所述转发节点连接的链路的传输时延。
402,所述转发节点向网络设备发送所述通告报文,触发所述网络设备存储所述转发节点的接口转发时延信息、设备转发时延信息以及所述与所述转发节点连接的链路的传输时延,并触发所述网络设备根据存储的多个转发节点的接口转发时延信息、设备转发时延信息以及所述转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
可选地,所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;
所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口。
可选地,所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定 时延转发能力,所述转发节点的接口的确定时延转发能力为:
所述转发节点的接口在进行报文转发时,是否能够支持固定时延范围内报文转发的能力;
所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
所转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成报文转发的能力,所述数据报文的内部处理包括:所述数据报文从入接口进入所述转发节点到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。
由上述描述可以看出,本申请实施例提供的一种计算路径的方法,转发节点向网络设备通告转发节点的接口转发时延信息、设备转发时延信息以及每个转发节点之间链路的传输时延,这样,网络设备就根据这些时延信息计算满足业务时延要求的转发路径,利用该路径对业务报文进行转发,能够为业务报文转发提供确定性的低传输时延,保证了业务报文传输的可靠性。
参见图5,结合图1所示的应用场景,本申请实施例提供了一种计算转发路径的网络设备500,其中图5中的网络设备500可以为图2所示实施例中的网络设备。网络设备500可以执行图2或图3所示实施例中的方法,网络设备500包括:
接收单元501,用于接收多个转发节点分别发送的通告报文,每个所述通告报文包括:发送所述通告报文的转发节点的接口转发时延信息、发送所述通告报文的转发节点的设备转发时延信息、以及与发送所述通告报文的转发节点连接的链路的传输时延;
获取单元502,用于根据所述通告报文获得所述多个转发节点中每个转发节点的接口转发时延信息和设备转发时延信息,并根据所述通告报文获得所述多个转发节点之间链路的传输时延;
处理单元503,用于根据所述每个转发节点的接口转发时延信息、设备转发时延信息以及所述多个转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
可选地,所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;
所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口
可选地,所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定时延转发能力,所述转发节点的接口的确定时延转发能力为:
所述转发节点的接口在进行报文转发时,是否能够支持在固定时延范围内完成报 文转发的能力;
所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
所述转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成报文转发的能力,所述数据报文的内部处理阶段包括:所述数据报文从入接口进入所述转发节点到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。
由上述描述可以看出,本申请实施例提供网络设备500通过接收转发节点发送的转发节点的接口转发时延信息、设备转发时延信息以及每个转发节点之间链路的传输时延,然后根据这些时延信息计算满足业务时延要求的转发路径,利用该路径对业务报文进行转发,能够为业务报文转发提供确定性的低传输时延,保证了业务报文传输的可靠性。
参见图6,结合图1所示的应用场景,本申请实施例提供了一种计算转发路径的转发节点600,其中图6中的网络设备600可以为图2所示实施例中的转发节点。转发节点600可以执行图2或图4所示实施例中的方法,转发节点600包括:
处理单元601,用于生成通告报文,所述通告报文包括:所述转发节点的接口转发时延信息、所述转发节点的设备转发时延信息、以及与所述转发节点连接的链路的传输时延;
发送单元602,用于向网络设备发送所述通告报文,触发所述网络设备存储所述转发节点的接口转发时延信息、设备转发时延信息以及所述与所述转发节点连接的链路的传输时延,并触发所述网络设备根据存储的多个转发节点的接口转发时延信息、设备转发时延信息以及所述转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
可选地,所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;
所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口。
可选地,所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定时延转发能力,所述转发节点的接口的确定时延转发能力为:
所述转发节点的接口在进行报文转发时,是否能够支持在固定时延范围内完成报文转发的能力;
所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
所转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成 报文转发的能力,所述数据报文的内部处理包括:所述数据报文从入接口进入所述转发节点到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。
由上述描述可以看出,本申请实施例提供的一种计算路径的方法,转发节点向网络设备通告转发节点的接口转发时延信息、设备转发时延信息以及每个转发节点之间链路的传输时延,这样,网络设备就根据这些时延信息计算满足业务时延要求的转发路径,利用该路径对业务报文进行转发,能够为业务报文转发提供确定性的低传输时延,保证了业务报文传输的可靠性。
参见图7,本发明实施例提供的一种计算路径的网络设备的结构示意图。本实施例提供的网络设备700可以应用于图2或图3实施例的方法中,实现网络设备的功能。网络设备700包括处理器701、接收器702、存储器703和。处理器701包括但不限于CPU,网络处理器(英文:Network Processor,简称:NP),专用集成电路(英文:Application-Specific Integrated Circuit,简称:ASIC)或者可编程逻辑器件(英文:Programmable Logic Device,缩写:PLD)中的一个或多个。上述PLD可以是复杂可编程逻辑器件(英文:Complex Programmable Logic Device,缩写:CPLD),现场可编程逻辑门阵列(英文:Field-Programmable Gate Array,缩写:FPGA),通用阵列逻辑(英文:Generic Array Logic,缩写:GAL)或其任意组合。
存储器703可以是包括但不限于内容寻址存储器(英文:Content-Addressable Memory,简称:CAM),例如三态内容寻址存储器(英文:Ternary CAM,简称:TCAM),随机存取存储器(英文:Random-Access Memory,简称:RAM)。
所述接收器702可以包含普通物理接口,所述物理接口可以为Ethernet接口或异步传输模式(Asynchronous Transfer Mode,ATM)接口。所述处理器701、接收器702和存储器703可以集成为一个或多个独立的电路或硬件,如:ASIC。
存储器703可以用于存储该网络设备700的程序代码和数据,处理器701用于调用存储器703中的程序指令执行前述实施例所示的方法来计算转发路径,具体计算路径的步骤可以参见前述实施例,此处不在赘述。
参见图8,本发明实施例提供的一种计算路径的转发节点的结构示意图。本实施例提供的转发节点800可以应用于图2或图4实施例的方法中,实现转发节点的功能。转发节点800包括处理器801、发送器802、存储器803和。处理器801包括但不限于CPU、NP、ASIC或者PLD中的一个或多个。上述PLD可以是CPLD、FPGA、GAL或其任意组合。
存储器803可以是包括但不限于CAM,例如TCAM或RAM。
所述发送器802可以包含普通物理接口,所述物理接口可以为Ethernet接口或ATM接口。所述处理器801、发送器802和存储器803可以集成为一个或多个独立的电路或硬件,如:ASIC。
存储器803可以用于存储该转发节点800的程序代码和数据,处理器801用于调用存储器803中的程序指令执行前述实施例所示的方法来计算转发路径,具体计算路 径的步骤可以参见前述实施例,此处不在赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质可以是下述介质中的至少一种:只读存储器(Read-Only Memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以示例性说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请及本申请带来的有益效果进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请权利要求的范围。

Claims (17)

  1. 一种计算转发路径的方法,其特征在于,所述方法包括:
    网络设备接收多个转发节点分别发送的通告报文,每个所述通告报文包括:发送所述通告报文的转发节点的接口转发时延信息、发送所述通告报文的转发节点的设备转发时延信息、以及与发送所述通告报文的转发节点连接的链路的传输时延;
    所述网络设备根据所述通告报文获得所述多个转发节点中每个转发节点的接口转发时延信息和设备转发时延信息,并根据所述通告报文获得所述多个转发节点之间链路的传输时延;
    所述网络设备根据所述每个转发节点的接口转发时延信息、设备转发时延信息以及所述多个转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
  2. 根据权利要求1所述的方法,其特征在于,
    所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;
    所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定时延转发能力,所述转发节点的接口的确定时延转发能力为:
    所述转发节点的接口在进行报文转发时,是否能够支持在固定时延范围内完成报文转发的能力;
    所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
    所述转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成报文转发的能力,所述数据报文的内部处理阶段包括:所述数据报文从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
    所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。
  4. 根据权利要求1至3任一权利要求所述的方法,其特征在于,所述通告报文还包含发送所述通告报文的转发节点的资源信息,相应地,所述转发路径上的每个节点的资源信息满足所述业务的需要。
  5. 根据权利要求1至4任一权利要求所述的方法,其特征在于,所述转发路径的时延满足业务的时延要求,具体包括:
    所述转发路径上的每个转发节点的接口转发时延、节点转发时延及所述转发路径 上链路的传输时延之和满足所述业务的时延要求。
  6. 根据权利要求1至5任一权利要求所述的方法,其特征在于,所述网络设备为控制转发分离网络架构中的控制器Controller,或者,所述控制设备为路径计算单元PCE,或者,所述网络设备为所述网络中用户业务接入的第一个节点。
  7. 根据权利要求4至6任一权利要求所述的方法,其特征在于,所述网络设备根据计算出的所述转发路径的信息,建立所述第一转发节点到第二转发节点之间的所述转发路径,并向所述转发路径上的每个节点发送资源预留请求消息,以保证所述业务在沿着所述转发路径转发时满足所述业务的时延要求。
  8. 一种计算转发路径的方法,其特征在于,所述方法包括:
    转发节点生成通告报文,所述通告报文包括:所述转发节点的接口转发时延信息、所述转发节点的设备转发时延信息、以及与所述转发节点连接的链路的传输时延;
    所述转发节点向网络设备发送所述通告报文,触发所述网络设备存储所述转发节点的接口转发时延信息、设备转发时延信息以及所述与所述转发节点连接的链路的传输时延,并触发所述网络设备根据存储的多个转发节点的接口转发时延信息、设备转发时延信息以及所述转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
  9. 根据权利要求8所述的方法,其特征在于,
    所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;
    所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定时延转发能力,所述转发节点的接口的确定时延转发能力为:
    所述转发节点的接口在进行报文转发时,是否能够支持在固定时延范围内完成报文转发的能力;
    所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
    所转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成报文转发的能力,所述数据报文的内部处理包括:所述数据报文从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
    所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。
  11. 一种计算转发路径的网络设备,其特征在于,所述网络设备包括:
    接收单元,用于接收多个转发节点分别发送的通告报文,每个所述通告报文包括: 发送所述通告报文的转发节点的接口转发时延信息、发送所述通告报文的转发节点的设备转发时延信息、以及与发送所述通告报文的转发节点连接的链路的传输时延;
    获取单元,用于根据所述通告报文获得所述多个转发节点中每个转发节点的接口转发时延信息和设备转发时延信息,并根据所述通告报文获得所述多个转发节点之间链路的传输时延;
    处理单元,用于根据所述每个转发节点的接口转发时延信息、设备转发时延信息以及所述多个转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
  12. 根据权利要求11所述的网络设备,其特征在于,
    所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;
    所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口
  13. 根据权利要求11或12所述的网络设备,其特征在于,
    所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定时延转发能力,所述转发节点的接口的确定时延转发能力为:
    所述转发节点的接口在进行报文转发时,是否能够支持在固定时延范围内完成报文转发的能力;
    所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
    所述转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成报文转发的能力,所述数据报文的内部处理阶段包括:所述数据报文从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
    所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。
  14. 根据权利要求11至13任一权利要求所述的网络设备,其特征在于,所述转发路径的时延满足业务的时延要求,具体包括:
    所述转发路径上的每个节点的接口转发时延、节点转发时延及所述转发路径上链路的传输时延之和满足所述业务的时延要求。
  15. 一种计算转发路径的转发节点,其特征在于,所述转发节点包括:
    处理单元,用于生成通告报文,所述通告报文包括:所述转发节点的接口转发时延信息、所述转发节点的设备转发时延信息、以及与所述转发节点连接的链路的传输时延;
    发送单元,用于向网络设备发送所述通告报文,触发所述网络设备存储所述转发节点的接口转发时延信息、设备转发时延信息以及所述与所述转发节点连接的链路的 传输时延,并触发所述网络设备根据存储的多个转发节点的接口转发时延信息、设备转发时延信息以及所述转发节点之间链路的传输时延,计算从第一转发节点到第二转发节点之间的转发路径,所述第一转发节点和所述第二转发节点为所述多个转发节点中的节点,所述转发路径的转发时延满足业务的时延要求。
  16. 根据权利要求15所述的转发节点,其特征在于,
    所述转发节点的接口转发时延信息包括所述转发节点的接口的转发时延范围;
    所述转发节点的设备转发时延信息包括所述转发节点的转发时延范围,所述转发节点的转发时延范围为:数据包从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理能够保证的时延范围,所述入接口和所述出接口为所述转发节点上的接口。
  17. 根据权利要求15或16所述的转发节点,其特征在于,
    所述转发节点的接口时延转发信息还包括:所述转发节点的接口的确定时延转发能力,所述转发节点的接口的确定时延转发能力为:
    所述转发节点的接口在进行报文转发时,是否能够支持在固定时延范围内完成报文转发的能力;
    所述转发节点的设备转发时延信息还包括:所述转发节点的确定时延转发能力,所述转发节点的确定时延转发能力为:
    所转发节点是否能够支持在数据报文的内部处理阶段,并在固定时延范围内完成报文转发的能力,所述数据报文的内部处理包括:所述数据报文从入接口进入所述转发节点之后到所述数据包到达出接口之前的内部处理,所述入接口和所述出接口为所述转发节点上的接口,相应地,
    所述转发路径上的节点的接口支持确定时延转发能力,所述转发路径上的节点支持确定时延转发能力。
PCT/CN2017/087553 2016-06-29 2017-06-08 一种计算转发路径的方法及网络设备 WO2018001062A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17819059.1A EP3468116B1 (en) 2016-06-29 2017-06-08 Method for calculating forwarding path and network device
EP19215081.1A EP3687124B1 (en) 2016-06-29 2017-06-08 Method and network device for computing forwarding path
US16/232,854 US10855574B2 (en) 2016-06-29 2018-12-26 Method and network device for computing forwarding path
US17/094,538 US11431611B2 (en) 2016-06-29 2020-11-10 Computing forwarding paths based on notification packet delays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610493644.8 2016-06-29
CN201610493644.8A CN107547393B (zh) 2016-06-29 2016-06-29 一种计算转发路径的方法及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/232,854 Continuation US10855574B2 (en) 2016-06-29 2018-12-26 Method and network device for computing forwarding path

Publications (1)

Publication Number Publication Date
WO2018001062A1 true WO2018001062A1 (zh) 2018-01-04

Family

ID=60785099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087553 WO2018001062A1 (zh) 2016-06-29 2017-06-08 一种计算转发路径的方法及网络设备

Country Status (4)

Country Link
US (2) US10855574B2 (zh)
EP (2) EP3687124B1 (zh)
CN (2) CN113395210B (zh)
WO (1) WO2018001062A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10454714B2 (en) 2013-07-10 2019-10-22 Nicira, Inc. Method and system of overlay flow control
US10135789B2 (en) 2015-04-13 2018-11-20 Nicira, Inc. Method and system of establishing a virtual private network in a cloud service for branch networking
US10992568B2 (en) 2017-01-31 2021-04-27 Vmware, Inc. High performance software-defined core network
US20200036624A1 (en) 2017-01-31 2020-01-30 The Mode Group High performance software-defined core network
US11706127B2 (en) 2017-01-31 2023-07-18 Vmware, Inc. High performance software-defined core network
US20180219765A1 (en) 2017-01-31 2018-08-02 Waltz Networks Method and Apparatus for Network Traffic Control Optimization
US10999100B2 (en) 2017-10-02 2021-05-04 Vmware, Inc. Identifying multiple nodes in a virtual network defined over a set of public clouds to connect to an external SAAS provider
US10778466B2 (en) 2017-10-02 2020-09-15 Vmware, Inc. Processing data messages of a virtual network that are sent to and received from external service machines
US11115480B2 (en) 2017-10-02 2021-09-07 Vmware, Inc. Layer four optimization for a virtual network defined over public cloud
US11223514B2 (en) 2017-11-09 2022-01-11 Nicira, Inc. Method and system of a dynamic high-availability mode based on current wide area network connectivity
CN110691407A (zh) * 2018-07-06 2020-01-14 华为技术有限公司 处理测量报文的方法和设备
CN111245744A (zh) * 2018-11-29 2020-06-05 深圳市中兴微电子技术有限公司 一种报文传输控制方法及装置
EP3909205A4 (en) * 2019-01-11 2022-07-27 Telefonaktiebolaget LM Ericsson (publ) NETWORK DEVICE, CONTROL DEVICE AND METHOD THEREON
US11252105B2 (en) 2019-08-27 2022-02-15 Vmware, Inc. Identifying different SaaS optimal egress nodes for virtual networks of different entities
CN111181851B (zh) * 2019-10-24 2022-02-25 腾讯云计算(北京)有限责任公司 加速链路确定方法、装置及系统、存储介质
US11044190B2 (en) 2019-10-28 2021-06-22 Vmware, Inc. Managing forwarding elements at edge nodes connected to a virtual network
CN112769696B (zh) * 2019-11-06 2023-09-26 中兴通讯股份有限公司 路由选择方法、网络控制器、系统和存储介质
US11489783B2 (en) 2019-12-12 2022-11-01 Vmware, Inc. Performing deep packet inspection in a software defined wide area network
US11606712B2 (en) 2020-01-24 2023-03-14 Vmware, Inc. Dynamically assigning service classes for a QOS aware network link
CN113395735B (zh) * 2020-03-11 2023-07-07 华为技术有限公司 一种报文传输方法、装置和网络设备
US11709710B2 (en) 2020-07-30 2023-07-25 Vmware, Inc. Memory allocator for I/O operations
US11575591B2 (en) 2020-11-17 2023-02-07 Vmware, Inc. Autonomous distributed forwarding plane traceability based anomaly detection in application traffic for hyper-scale SD-WAN
US11929903B2 (en) 2020-12-29 2024-03-12 VMware LLC Emulating packet flows to assess network links for SD-WAN
CN114697228A (zh) * 2020-12-30 2022-07-01 华为云计算技术有限公司 一种数据集成方法、装置及相关设备
US11792127B2 (en) 2021-01-18 2023-10-17 Vmware, Inc. Network-aware load balancing
US11979325B2 (en) 2021-01-28 2024-05-07 VMware LLC Dynamic SD-WAN hub cluster scaling with machine learning
US11575599B2 (en) * 2021-02-24 2023-02-07 Nokia Solutions And Networks Oy Multi-tier deterministic networking
US11582144B2 (en) 2021-05-03 2023-02-14 Vmware, Inc. Routing mesh to provide alternate routes through SD-WAN edge forwarding nodes based on degraded operational states of SD-WAN hubs
US11729065B2 (en) 2021-05-06 2023-08-15 Vmware, Inc. Methods for application defined virtual network service among multiple transport in SD-WAN
US11943146B2 (en) 2021-10-01 2024-03-26 VMware LLC Traffic prioritization in SD-WAN
CN114070776B (zh) * 2021-11-02 2023-05-02 中国联合网络通信集团有限公司 一种改进的时间敏感网络数据传输方法、装置及设备
CN116566892A (zh) * 2022-01-28 2023-08-08 中兴通讯股份有限公司 确定路由的方法、电子设备、计算机可读介质
US11909815B2 (en) 2022-06-06 2024-02-20 VMware LLC Routing based on geolocation costs
CN117336253A (zh) * 2022-06-30 2024-01-02 华为技术有限公司 报文传输方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687229B1 (en) * 1998-11-06 2004-02-03 Lucent Technologies Inc Quality of service based path selection for connection-oriented networks
CN1941737A (zh) * 2005-09-30 2007-04-04 富士通株式会社 预测节点时延的方法和装置以及时延保证的方法和装置
CN101119303A (zh) * 2007-08-30 2008-02-06 浙江工业大学 基于动态聚类的多目标规划无线传感网路由算法
CN105471764A (zh) * 2015-11-16 2016-04-06 中国科学院信息工程研究所 一种SDN网络中端到端QoS保障的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269137B2 (en) * 2001-08-24 2007-09-11 Canon Kabushiki Kaisha Method for setting up an isochronous data stream connection, with the application of a predetermined, total isochronous delay on one or more routing paths
US8830826B2 (en) * 2010-10-15 2014-09-09 Futurewei Technologies, Inc. System and method for computing a backup egress of a point-to-multi-point label switched path
CN104734957B (zh) * 2013-12-24 2018-03-23 中国移动通信集团公司 一种软件定义网络sdn中业务传输方法及装置
US9537753B2 (en) * 2014-03-03 2017-01-03 Cisco Technology, Inc. Opaque profile identifiers for path computation element protocol
US10187298B2 (en) * 2014-10-27 2019-01-22 Juniper Networks, Inc. Merge point determination in refresh interval independent fast reroute facility protection
US10218602B2 (en) * 2015-04-15 2019-02-26 Cisco Technology, Inc. Establishing deterministic multicast paths in a network
US10142248B2 (en) * 2015-09-29 2018-11-27 Huawei Technologies Co., Ltd. Packet mis-ordering prevention in source routing hitless reroute using inter-packet delay and precompensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687229B1 (en) * 1998-11-06 2004-02-03 Lucent Technologies Inc Quality of service based path selection for connection-oriented networks
CN1941737A (zh) * 2005-09-30 2007-04-04 富士通株式会社 预测节点时延的方法和装置以及时延保证的方法和装置
CN101119303A (zh) * 2007-08-30 2008-02-06 浙江工业大学 基于动态聚类的多目标规划无线传感网路由算法
CN105471764A (zh) * 2015-11-16 2016-04-06 中国科学院信息工程研究所 一种SDN网络中端到端QoS保障的方法

Also Published As

Publication number Publication date
EP3468116A1 (en) 2019-04-10
US20210058315A1 (en) 2021-02-25
CN107547393A (zh) 2018-01-05
US10855574B2 (en) 2020-12-01
EP3687124B1 (en) 2023-10-04
US20190132234A1 (en) 2019-05-02
CN113395210A (zh) 2021-09-14
CN113395210B (zh) 2022-09-16
US11431611B2 (en) 2022-08-30
EP3468116B1 (en) 2020-01-08
EP3468116A4 (en) 2019-05-15
CN107547393B (zh) 2021-06-01
EP3687124A1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US11431611B2 (en) Computing forwarding paths based on notification packet delays
US11228526B2 (en) Flexible ethernet path establishment method and network device
US9705735B2 (en) System and method using RSVP hello suppression for graceful restart capable neighbors
US11616729B2 (en) Method and apparatus for processing low-latency service flow
US9686167B2 (en) Ingress node controlled path impairment protocol
US9571381B2 (en) System and method for inter-domain RSVP-TE LSP load balancing
Porwal et al. Traffic Analysis of MPLS and Non MPLS Network including MPLS Signaling Protocols and Traffic distribution in OSPF and MPLS
US20160301571A1 (en) Method and Device for Monitoring OAM Performance
US9166903B2 (en) System, method and apparatus to resolve RPF-vector attribute conflicts
JP2016502372A (ja) データをルーティングするための方法、ノード及びコンピュータプログラム
US20160006609A1 (en) System and Method for Using a Path Control Element as a Central Controller for Local Protection of Label Switched Path (LSP)
US20130308617A1 (en) Continuous Virtual Private Local Area Network (LAN) Service (VPLS) Over Wireline and Wireless Networks
US8442190B2 (en) Method, system and device for call processing
WO2023093422A1 (zh) 信令传输方法、vrrp组网系统、第一网络实体设备及存储介质
EP4329374A1 (en) Communication processing method and related device
Mohameda et al. RSVP BASED MPLS VERSUS IP PERFORMANCE EVALUATION
Nori et al. Improved Performance of 5G Based Software Defined Networks
Faisal et al. Performance of VoIP networks using MPLS traffic engineering
Sa-Ngiamsak et al. Local reverse backup and resiliency buffer approaches for MPLS-based recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017819059

Country of ref document: EP

Effective date: 20190103