WO2018000888A1 - Flue gas desulfurization and denitrification method and device capable of preventing corrosion - Google Patents

Flue gas desulfurization and denitrification method and device capable of preventing corrosion Download PDF

Info

Publication number
WO2018000888A1
WO2018000888A1 PCT/CN2017/080044 CN2017080044W WO2018000888A1 WO 2018000888 A1 WO2018000888 A1 WO 2018000888A1 CN 2017080044 W CN2017080044 W CN 2017080044W WO 2018000888 A1 WO2018000888 A1 WO 2018000888A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
gas
adsorption tower
activated carbon
pipe
Prior art date
Application number
PCT/CN2017/080044
Other languages
French (fr)
Chinese (zh)
Inventor
刘昌齐
彭建宏
魏进超
叶恒棣
李勇
Original Assignee
中冶长天国际工程有限责任公司
湖南中冶长天节能环保技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶长天国际工程有限责任公司, 湖南中冶长天节能环保技术有限公司 filed Critical 中冶长天国际工程有限责任公司
Publication of WO2018000888A1 publication Critical patent/WO2018000888A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents

Definitions

  • the invention relates to a flue gas desulfurization and denitration device using activated carbon and a flue gas desulfurization and denitration method. More particularly, the present invention relates to a flue gas desulfurization and denitration apparatus in which an acid gas delivery pipe of an activated carbon desorption column is preheated by using a heating gas and an acid gas delivery pipe is purged after the end of the resolving operation to prevent the Pipeline corrosion, these are in the field of flue gas treatment.
  • the activated carbon process for flue gas technology has been used for more than 50 years.
  • the early technical research and application are mainly concentrated in Germany, Japan, the United States and other countries.
  • Germany's BF Company began to develop Reinbuch desulfurization technology in 1957 (now DMT Company), Japan began to study activated carbon desulfurization in the mid-1960s, and Germany's Luqi Company also carried out water washing and regeneration activated carbon flue gas desulfurization earlier. Process research.
  • Some representative ones such as German BF method, Reinbuch method and Lurgi method; Japan's Japanese legislation, Sumitomo law; and US Westraco method have been produced.
  • an activated carbon adsorption tower is used for adsorbing sulfur oxides and nitrogen from sintering flue gas or exhaust gas (especially sintering flue gas of a sintering machine of the steel industry).
  • Contaminants such as oxides, dust and dioxins, and analytical towers for thermal regeneration of activated carbon.
  • Activated carbon desulfurization has the advantages of high desulfurization rate, simultaneous denitrification, deodorization, dust removal, and no waste water residue. It is a promising method for flue gas purification. Activated carbon can be regenerated at high temperatures. At temperatures above 350 °C, pollutants such as sulfur oxides, nitrogen oxides, and dioxins adsorbed on activated carbon are rapidly resolved or decomposed (sulphur dioxide is analyzed, nitrogen oxides and dioxins). English is broken down). And as the temperature increases, the regeneration rate of activated carbon is further accelerated, and the regeneration time is shortened. It is preferred that the regeneration temperature of the activated carbon in the general control analytical tower is approximately equal to 430 ° C. Therefore, The desired resolution temperature (or regeneration temperature) is, for example, in the range of 390 to 450 ° C, more preferably in the range of 400 to 440 ° C.
  • the traditional activated carbon desulfurization process is shown in Figure 1.
  • the flue gas is introduced into the adsorption tower by the booster fan, and a mixed gas of ammonia gas and air is injected into the inlet port to improve the NOx removal efficiency, and the purified flue gas enters the sintering main chimney to discharge.
  • the activated carbon is added to the adsorption tower from the top of the column and moves downward by gravity and the bottom discharge device.
  • the activated carbon from the analytical tower is transported to the adsorption tower by the activated carbon conveyor.
  • the activated carbon adsorbed by the adsorption tower is discharged from the bottom, and the discharged activated carbon is transported by the activated carbon conveyor to the analytical tower for regeneration of the activated carbon.
  • Activated carbon flue gas purification technology has the characteristics of simultaneous desulfurization and denitrification, resource utilization of by-products, recyclability of adsorbents, high efficiency of desulfurization and denitrification, and is a promising technology for desulfurization and denitrification.
  • an activated carbon adsorption tower is used for adsorbing sulfur oxides and nitrogen from sintering flue gas or exhaust gas (especially sintering flue gas of a sintering machine of the steel industry).
  • Contaminants such as oxides and dioxins, and analytical towers for thermal regeneration of activated carbon.
  • Activated carbon method flue gas purification technology has the function of simultaneous desulfurization and denitrification.
  • the main equipment included in this process includes adsorption tower, regeneration tower and activated carbon conveying device. Compared with NOx, SO 2 is easier to remove. Under normal circumstances, a group of adsorption towers can obtain a desulfurization rate of up to 90%, but the denitration rate is low.
  • the activated carbon method flue gas purification technology has the characteristics of high desulfurization and denitrification rate, resource utilization of by-products, and recycling of activated carbon.
  • the principle of desulfurization and denitrification is as follows:
  • reaction rate of SO 2 with NH 3 is faster than the reaction rate of NO with NH 3 .
  • SO 3 , HF, and HCl in the flue gas also react with NH 3 .
  • the function of the analytical tower is to release the SO 2 adsorbed by the activated carbon.
  • the dioxins can be decomposed by more than 80%, and the activated carbon is re-used after being cooled and sieved.
  • the released SO 2 can be made into sulfuric acid or the like, and the analyzed activated carbon is sent to the adsorption tower through a transfer device to be used for adsorbing SO 2 and NO X .
  • the activated carbon method is used for purifying the flue gas, and in order to improve the purifying effect, the flue gas can be passed through the multi-layer activated carbon bed.
  • the multi-layer activated carbon bed layout is mainly divided into upper and lower structures and front and rear structures, as shown in FIG. 2 .
  • the activated carbon bed in the tower is a whole, and the activated carbon is uniformly moved downward by gravity.
  • the activated carbon in contact with the flue gas first adsorbs more pollutants in the flue gas, and is discharged together with the activated carbon, which will cause the activated carbon to be discharged into the tower without being adsorbed and saturated, or the activated carbon is saturated in the front. There is no smoke purification effect inside the tower.
  • Activated carbon (coke) sintering flue gas purification technology is a resource-based dry flue gas treatment technology, which has water-saving, desulfurization, denitrification, deodorization, de-lifting metals, dust removal and removal of other trace harmful flue gas components ( The functions of HCl, HF, SO 3 , etc., can also recover sulfur resources that are scarce in China (high concentration of SO 2 can produce concentrated sulfuric acid, etc.).
  • FIG. 2 shows the activated carbon adsorption unit of Sumitomo Corporation of Japan: the activated carbon bed in the tower is divided into three In each chamber, the activated carbon in each chamber is uniformly moved downward by gravity. According to the flow direction of the flue gas, the activated carbon in the front chamber which is first contacted with the flue gas adsorbs more pollutants in the flue gas, and the activated carbon in the middle and rear chambers sequentially adsorbs the flue gas. The pollutants, thereby controlling the rotation speed of the discharge valve at the bottom of the activated carbon bed to control the discharge speed of the activated carbon, thereby achieving the effect of purifying the flue gas.
  • Figure 3 shows the activated carbon adsorption unit of Shanghai Keshi Company: the activated carbon bed in the tower is a whole, and the multi-stage activated carbon bed layout is mainly divided into upper and lower structures, and the activated carbon is uniformly moved downward by gravity. Following the flow direction of the flue gas, the activated carbon in contact with the flue gas first adsorbs more pollutants in the flue gas, and is discharged together with the activated carbon, which will cause the activated carbon to be discharged into the tower without being adsorbed and saturated, or the activated carbon is saturated in the front. There is no smoke purification effect inside the tower.
  • the inventors of the present application have found through intensive research that the concentration of pollutants in the flue gas (referred to as the upper layer flue gas) entering the gas outlet from the middle and upper portions of the activated carbon bed of the adsorption tower is very low (ppm). Level), often meet emission requirements or emission standards, or the flue gas in this part is treated separately.
  • the concentration of pollutants in the flue gas referred to as the upper layer flue gas
  • the invention aims at purifying the environmental protection requirements of flue gas purification requirements, purifying the flue gas, and must reach the higher requirements, and must perform secondary treatment on all flue gases.
  • the technology is based on the fact that the flue gas component is gradually increased from top to bottom after the first treatment of the flue gas purification device (because the activated carbon (coke) entering the upper part of the purification device is activated carbon (focal) activated by the analytical tower, When the activated carbon (coke) moves from top to bottom, the adsorption of activated carbon (coke) on the harmful components of the flue gas increases, and the adsorption capacity is weaker, so that the concentration of the harmful components that emit the flue gas is higher.
  • part of the flue gas in which the harmful components exceed the standard is extracted into the secondary flue gas purification device or returned to the first-stage adsorption tower, and part of the flue gas that meets the discharge requirement after the first-stage treatment is directly discharged into the atmosphere through the chimney.
  • the process and device of the invention divides the gas outlet chamber of the adsorption tower into two layers or a plurality of layers, and adjusts the amount of smoke entering the adsorption tower of the next stage according to the concentration of harmful components of the exhausted smoke, so that the next stage is entered.
  • the amount of flue gas will be reduced by 30% to 50%, which can reduce the capacity of the booster fan and the secondary adsorption tower, thereby reducing investment and operating costs.
  • the clean flue gas in the upper part of the air outlet chamber and the flue gas containing the contaminant in the lower part are avoided.
  • the harmful components in the flue gas are purified. Since the activated carbon in the adsorption tower is from top to bottom, the upper part is activated carbon with strong adsorption capacity, and the activated carbon moves downwards, adsorbing. The increase of harmful components, the adsorption and purification capacity is reduced, and the harmful components in the flue gas are gradually increased after the purification, so that the average mixing of the upper and lower sides may not meet the requirements of the flue gas emission, and if the upper concentration is lower, the flue gas can be discharged to the standard. Direct discharge, the lower than the standard flue gas is returned to the adsorption tower inlet for purification, or enter the secondary adsorption tower for purification.
  • a flue gas desulfurization and denitration apparatus comprising a primary adsorption tower (T1) and an activated carbon regeneration tower (or analytical tower) (T3), wherein the activated carbon analysis tower (T3) has an upper portion
  • the heating zone, the middle buffer zone and the lower cooling zone are connected to the heating gas inlet pipe (L1a) and the heating gas outlet pipe (L1b) in the lower side portion and the upper side portion of the upper heating zone, respectively, in the lower cooling zone
  • the lower side portion and the upper side portion are respectively connected to the cooling gas input pipe (L2a) and the cooling gas output pipe (L2b), and the acid gas delivery pipe (L3a) drawn from the buffer side portion in the middle of the analysis tower (T3) is connected to the system.
  • An acid system characterized in that a heating gas branch pipe (L3a') is branched from a starting end (or a front end) of the acid gas delivery pipe (L3a), and the other end of the heating gas branch pipe (L3a') is heated with a heating gas
  • the input pipe (L1a) is in communication with or in communication with the heating gas outlet pipe (L1b) such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a slave heating gas output pipe (L1b) a branch pipe that is branched up;
  • the first adsorption tower (T1) comprises a main structure (1), a feed bin (2) at the top of the primary adsorption tower (T1), an inlet chamber (3), and a raw smoke leading to the inlet chamber (3).
  • the gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
  • the outlet chamber is divided into an upper outlet chamber (a) and a lower outlet chamber (b), wherein A second flue gas duct (L2) outputting pure flue gas in the upper air outlet chamber (a) is connected to the exhaust chimney, and a third flue gas duct (L3) for outputting flue gas from the lower air outlet chamber (b) is returned
  • a second flue gas duct (L2) outputting pure flue gas in the upper air outlet chamber (a) is connected to the exhaust chimney, and a third flue gas duct (L3) for outputting flue gas from the lower air outlet chamber (b) is returned
  • the upstream of the inlet chamber (3) merges or merges with the original flue gas conveying flue, that is, the first flue gas duct (L1).
  • the primary adsorption column (T1) has an activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2-5 beds.
  • the column height of the primary adsorption column (T1) is 10-50 m, preferably 13-45 m, preferably 15-40 m, more preferably 18-35 m.
  • the ratio of the height of the upper outlet chamber (a) to the lower outlet chamber (b) in the vertical direction is 0.7-1.3:1, preferably 0.8-1.2:1, preferably 0.9-1.1:1, such as 1:1.
  • the two or more beds of activated carbon are formed by separating the perforated plates.
  • the column height of the primary adsorption column (T1) is 10-50 m, preferably 13-45 m, preferably 15-40 m, more preferably 18-35 m.
  • a flue gas desulfurization and denitration apparatus comprising:
  • the activated carbon analysis tower (T3) has an upper heating zone, a middle buffer zone and a lower cooling zone, and a heating gas inlet pipe (L1a) and a heating gas output pipe are respectively connected to the lower side portion and the upper side portion of the upper heating zone.
  • the gas delivery pipe (L3a) is connected to the acid production system, characterized in that a heating gas branch pipe (L3a') is branched from the start end (or front end) of the acid gas delivery pipe (L3a), and the heating gas branch pipe ( The other end of L3a') is in communication with the heating gas input pipe (L1a) or with the heating gas output pipe (L1b) such that the heating gas branch pipe (L3a') serves as a branch pipe branched from the heating gas input pipe (L1a) or As a branch pipe branched from the heating gas outlet pipe (L1b);
  • the primary adsorption tower (T1) comprises a main structure (1), a feed bin (2) located at the top of the primary adsorption tower (T1), an inlet chamber (3), and an inlet to the inlet chamber (3)
  • the flue gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
  • the secondary adsorption tower (T2) comprises a main structure (1), a feed bin (2) at the top of the adsorption tower (T2), an inlet chamber (3'), and a third passage to the inlet chamber (3').
  • the lower outlet chamber (b) of the primary adsorption tower (T1) is connected by piping to the inlet chamber (3') of the secondary adsorption column (T2).
  • the outlet chamber of the primary adsorption tower (T1) is divided into an upper outlet chamber (a) and a lower outlet chamber (b), wherein the second flue gas for outputting pure flue gas from the upper outlet chamber (a) is divided.
  • the pipe (L2) is connected to the discharge chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the intake chamber (3') of the secondary adsorption tower (T2),
  • the fourth flue gas duct (L4) outputting flue gas from the outlet chamber (9) of the secondary adsorption tower (T2) merges or merges with the second flue gas duct (L2) and leads to the discharge chimney; or
  • the outlet chamber of the primary adsorption tower (T1) is divided into an upper outlet chamber (a), a middle outlet chamber (c) and a lower outlet chamber (b), wherein the first outlet for outputting pure flue gas from the upper outlet chamber (a)
  • the two flue gas duct (L2) is connected to the exhaust chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the intake chamber of the secondary adsorption tower (T2) (3) ')
  • the fifth flue gas duct (L5) for outputting flue gas from the central air outlet chamber (c) is respectively connected to the second flue gas duct (L2) or the third flue gas duct (L3) via the switching valve (10)
  • the fourth flue gas duct (L4) that outputs flue gas from the outlet chamber (9) of the secondary adsorption tower (T2) merges or merges with the second flue gas duct (L2) and then leads to discharge chimney.
  • the primary adsorption column (T1) can be used in parallel in two or more.
  • the secondary adsorption column (T2) can also be used in parallel in two or more.
  • the outlet chambers of the juxtaposed primary adsorption tower (T1) are separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or Three levels, and, more preferably, the tubes that exhaust the flue gases from the chambers of the same level of different adsorption towers may be combined or merged.
  • the first-stage adsorption tower (T1) in the form of a symmetrical double column is in the form of two or more juxtaposed adsorption towers (T1), it is juxtaposed as each of the symmetric double towers of the first-stage adsorption tower (T1).
  • the outlet chambers are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels, and, more preferably,
  • the pipes that exhaust the flue gas from the chambers of the same level of different adsorption towers may be combined or merged.
  • the primary adsorption tower (T1) or the secondary adsorption tower (T2) each independently has one activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2-5 Bed.
  • the two or more activated carbon beds are formed by separating the porous plates.
  • the primary adsorption column (T1) and the secondary adsorption column (T2) have the same or different structures and sizes from each other.
  • the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) are each independently from 10 to 50 m, preferably from 13 to 45 m, preferably from 15 to 40 m, more preferably from 18 to 35 m.
  • the primary adsorption tower (T1) has an upper outlet chamber (a) and a lower outlet chamber (b)
  • the heights of both the upper outlet chamber (a) and the lower outlet chamber (b) in the vertical direction are The ratio is 0.7-1.3:1, preferably 0.8-1.2:1, preferably 0.9-1.1:1, such as 1:1.
  • the ratio of the heights of the three in the vertical direction is 0.5-1.0: 0.5-1.0: 0.8-1, preferably 0.6-0.9: 0.6-0.9: 0.8-1, preferably 0.7-0.8: 0.7-0.8: 0.8-1 .
  • the primary adsorption column (T1) and the secondary adsorption column (T2) have the same or different structures and sizes from each other.
  • the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) are each independently from 10 to 50 m, preferably from 13 to 45 m, preferably from 15 to 40 m, more preferably from 18 to 35 m.
  • the activated carbon analysis column (T3) has an upper heating zone, a middle buffer zone, and a lower cooling zone, on the lower side and upper portion of the upper heating zone.
  • a heating gas input pipe (L1a) and a heating gas output pipe (L1b) are respectively connected to the side portions, and a cooling gas input pipe (L2a) and a cooling gas output pipe (L2b) are respectively connected to the lower side portion and the upper side portion of the lower cooling zone.
  • the acid gas delivery pipe (L3a) drawn from the side of the buffer zone in the middle of the analytical column (T3) is connected to the acid-making system (or acid-making zone).
  • a heating gas branch pipe (L3a') is branched from the start end (or front end) of the acid gas delivery pipe (L3a), and the other end of the heating gas branch pipe (L3a') (for example, via a valve) is
  • the heating gas input pipe (L1a) is in communication with or in communication with the heating gas output pipe (L1b) such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a slave heating gas output pipe ( Branch branch on L1b).
  • the primary adsorption column (T1) can be used in parallel in two or more.
  • the secondary adsorption column (T2) can also be used in parallel in two or more.
  • the outlet chambers of the parallel primary adsorption tower are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels.
  • the conduits for exhausting the flue gases from the chambers of the same level of different adsorption towers may be combined or merged.
  • the first-stage adsorption tower (T1) in the form of a symmetrical double tower is used as two or more juxtaposed primary adsorption towers, it is juxtaposed as each of the first-stage adsorption towers.
  • the outlet chambers of the double towers are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels, and More preferably, the conduits for exhausting fumes from the chambers of the same level of different adsorption columns may be combined or merged.
  • the flue gas is treated by the primary adsorption tower, a part of the original flue gas (for example, 20-60% of the original flue gas, preferably 30-50% of the original flue gas) reaches the discharge standard, and can be directly discharged, so
  • the number of stages of adsorption towers is greater than the number of secondary adsorption towers.
  • the primary adsorption column is 2-8, preferably 3-6, more preferably 4-5;
  • the secondary adsorption column is 1-6, preferably 2-5, more preferably 3-4 One.
  • Desulfurization and denitration step the original flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1) and then sequentially flows through one of the primary adsorption towers (T1) or In multiple activated carbon beds, the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the flue gas contains pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxins).
  • pollutants such as sulfur oxides, nitrogen oxides, dust, dioxins
  • the flue gas is then introduced into the outlet chamber of the primary adsorption tower (T1), and the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); preferably At the same time as the above operation, the diluted ammonia gas is introduced into the flue gas input pipe (L1) of the primary adsorption tower (T1) and optionally into the primary adsorption tower (T1);
  • Activated carbon analysis step transferring the activated carbon adsorbed by the pollutant from the bottom of the primary adsorption tower (T1) to the heating zone of an activated carbon analytical tower (T3) having an upper heating zone and a lower cooling zone, The activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon is discharged from the bottom of the desorption column (T3) after passing through the cooling zone; wherein: nitrogen is introduced into the upper part of the analytical column (T3) during the analysis, and optional At the same time, nitrogen is introduced into the lower portion of the analytical column (T3) via the second nitrogen gas line; and the gas introduced into the analytical column (T3) is thermally desorbed from the activated carbon, including SO 2 and NH 3 .
  • the material is taken out from the intermediate section between the heating zone and the cooling zone of the desorption column (T3) and sent to the acid production system via the acid gas pipeline (L3a);
  • the heating gas branch pipe (L3a') is used from the heating gas inlet pipe (L1a).
  • heating the gas from the heated gas output pipe (L1b), and flowing the heated gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) for example, preheating to a temperature of 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing through the acid gas pipeline
  • the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas output pipe (L1b) by the heating gas branch pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) to The acid gas remaining in the acid gas pipe (L3a) is removed.
  • the I) desulfurization and denitration step is carried out as follows: the raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through the first stage.
  • One or more activated carbon beds of the adsorption tower (T1) the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the flue gas contains pollutants (such as sulfur oxides, nitrogen) Oxide, dust, dioxin, etc.) are removed or partially removed by activated carbon, and then the flue gas enters the upper air outlet chamber (a) and the lower air outlet chamber (b) of the primary adsorption tower (T1), from one
  • the flue gas discharged from the upper air outlet chamber (a) of the stage adsorption tower (T1) is sent to the discharge chimney via the second flue gas duct (L2) for discharge, from the lower air outlet chamber of the primary adsorption tower (T1) (b)
  • the flue gas containing a small amount of pollutants discharged through the third flue gas pipeline (L3) is returned to merge with the original flue gas in the first flue gas pipeline (L1), and the activated carbon adsorbing the pollutants is
  • the residence time or the downward movement speed of the activated carbon in the activated carbon bed in the primary adsorption tower (T1) is adjusted by adjusting the rotation speed of the discharge valve (5) at the bottom of the activated carbon bed of the primary adsorption tower (T1), so that the first stage
  • the pollutant content of the flue gas in the upper air outlet chamber (a) of the adsorption tower (T1) is within the scope of compliance with the requirements or compliance with regulations. That is, the content is lower than the set limit value.
  • a heated gas branch before the activation of the activated carbon analysis step or before the gaseous contaminants including SO 2 and NH 3 (ie, acid gases) are transported to the acid production system via the acid gas conduit (L3a) ( L3a') outputting a heating gas from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and flowing the heating gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C).
  • the heated gas branch pipe (L3a') is used to heat the gas.
  • the heating gas is output from the heating pipe (L1b) in the input pipe (L1a), and the heating gas is purged by the acid gas pipe (L3a) to remove the acid gas remaining in the acid gas pipe (L3a).
  • the raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through one or more activated carbon beds of the primary adsorption tower (T1) in sequence.
  • the flue gas is in cross-flow contact with the activated carbon added from the top of the first adsorption tower (T1), wherein the pollutants contained in the flue gas (such as sulfur oxides, nitrogen oxides, dust, dioxin, etc.) are removed by the activated carbon. Except or partial removal, after
  • the flue gas enters the outlet chamber of the first adsorption tower (T1), and the activated carbon adsorbed with the pollutants is discharged from the bottom of the first adsorption tower (T1); from the lower outlet chamber of the first adsorption tower (T1) (b
  • the flue gas containing a small amount of pollutants discharged through the pipeline is sent to the inlet chamber (3') of the secondary adsorption tower (T2) and sequentially flows through one or more activated carbon beds of the secondary adsorption tower (2) a layer in which pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxins, etc.) contained in the flue gas are further removed by the activated carbon; discharged from the outlet chamber (10) of the secondary adsorption tower (T2)
  • the flue gas is discharged through the chimney, and the activated carbon adsorbing the pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the dilute ammonia gas is introduced into the first adsorption tower (
  • a flue gas duct (L1) is neutralized and optionally passed to a conduit for transporting flue gas to the secondary adsorption tower (T2) and optionally to a primary adsorption tower (T1) and/or a secondary adsorption tower ( Within T2);
  • Activated carbon analysis step transferring activated carbon adsorbed with pollutants from the bottom of the primary adsorption tower (T1) and/or the bottom of the secondary adsorption tower (T2) to a cooling zone having an upper heating zone and a lower cooling zone
  • the activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon flows downward through the cooling zone and is discharged from the bottom of the desorption column (T3); wherein: nitrogen is introduced during the analysis process.
  • the heating gas branch pipe (L3a') is used from the heating gas inlet pipe (L1a).
  • heating the gas from the heated gas output pipe (L1b), and flowing the heated gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) for example, preheating to a temperature of 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing through the acid gas pipeline
  • the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas output pipe (L1b) by the heating gas branch pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) to The acid gas remaining in the acid gas pipe (L3a) is removed.
  • the primary adsorption column (T1) can be used in parallel in two or more (for example 2-6, such as 3 or 4); and/or the secondary adsorption column (T2) can be used in two or more Parallel (for example, 2-4, such as 3) to use.
  • the I) desulfurization and denitration steps are carried out as follows:
  • the raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through one or more activated carbon beds of the primary adsorption tower (T1) in sequence.
  • the flue gas is in cross-flow contact with the activated carbon added from the top of the first adsorption tower (T1), wherein the pollutants contained in the flue gas (such as sulfur oxides, nitrogen oxides, dust, dioxin, etc.) are removed by the activated carbon. Except or partial removal, after
  • the primary adsorption tower (T1) has an upper outlet chamber (a) and a lower outlet chamber (b)
  • the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1) and the lower outlet chamber (b)
  • the activated carbon adsorbed by the pollutant is discharged from the bottom of the first adsorption tower (T1); wherein the flue gas discharged from the upper outlet chamber (a) of the primary adsorption tower (T1) passes through the second flue gas pipeline (L2) is sent to the discharge chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower outlet chamber (b) of the adsorption tower (T1) is sent to the secondary adsorption tower via the third flue gas duct (L3) ( In the inlet chamber (3') of T2) and sequentially flowing through one or more activated carbon beds of the secondary adsorption tower (T2), the flue gas discharged from the outlet chamber (9) of the secondary adsorption tower (
  • the primary adsorption tower (T1) When the primary adsorption tower (T1) has an upper outlet chamber (a), a central outlet chamber (c), and a lower outlet chamber (b), the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1), In the central venting chamber (c) and the lower venting chamber (b), the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); wherein, from the upper venting chamber of the primary adsorption tower (T1) (a The flue gas discharged in the second flue gas duct (L2) is sent to the exhaust chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower air outlet chamber (b) of the adsorption tower (T1) passes through the third smoke
  • the gas pipeline (L3) is sent to the inlet chamber (3') of the secondary adsorption tower (T2) and sequentially flows through one or more activated carbon beds of the secondary ad
  • the flue gas in the third flue gas pipeline (L3) merges, and the activated carbon adsorbing the pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the diluted ammonia gas is introduced into the first stage simultaneously with the above operation.
  • the residence time of the activated carbon in the activated carbon bed by adjusting the discharge valve (5) at the bottom of the activated carbon bed of the adsorption column to ensure the adsorption column from the first stage.
  • the content of contaminants in the upper venting chamber (a) of (T1) or from the upper venting chamber (a) of the primary adsorption tower (T1) and the central venting chamber (c) is in compliance with regulations or compliance with regulations.
  • the hot acid gas flows through the cold (for example, at ambient temperature) acid gas pipeline (L3a) at the beginning or in the early stage, causing the temperature to decrease, thereby causing condensation to form a liquid acid.
  • the liquid acid has a strong corrosive effect on the acid gas pipeline (L3a).
  • a heat insulating tube and an outermost layer are generally provided with an insulating layer on the outer periphery of the acid gas pipe (L3a). The gas is heated by the heat tracing tube to ensure that the temperature of the acid gas flowing through the acid gas pipe (L3a) is higher than the dew point, that is, the acidic component is maintained in a gaseous state.
  • the inventors of the present application have found through research that preheating the pipe to a temperature higher than the dew point of the acid gas by preheating the gas into the acid gas pipe (L3a) before the start of the activated carbon analysis step, for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C.
  • the acid gas carries enough heat to maintain the temperature of the acid gas pipe (L3a) and prevent it from cooling.
  • the heating gas branch pipe (L3a') is used immediately after the gas contaminant (i.e., acid gas) including SO 2 and NH 3 stops flowing through the acid gas pipe (L3a) or after the end of the activated carbon analysis step. Heating gas is supplied from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and the heating gas is purged by the acid gas pipe (L3a) to remove acid gas remaining or retained in the acid gas pipe (L3a). .
  • the gas contaminant i.e., acid gas
  • Heating gas is supplied from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and the heating gas is purged by the acid gas pipe (L3a) to remove acid gas remaining or retained in the acid gas pipe (L3a).
  • the heated gas branch (L3a) is used before the activated carbon analysis step is initiated or before the gaseous contaminants (ie, acid gases) including SO 2 and NH 3 are transported to the acid production system via the acid gas pipeline (L3a).
  • the heating gas is output from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and the heating gas flows through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, preheating)
  • the temperature to 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C).
  • the heated gas branch pipe (L3a') is used to input from the heating gas.
  • the heating gas is output from the heating gas output pipe (L1b) in the pipe (L1a), and the heating gas is purged by the acid gas pipe (L3a) to remove the acid gas remaining in the acid gas pipe (L3a).
  • Activated carbon is fed from the top of the analytical column and discharged from the bottom of the column.
  • the activated carbon adsorbed with the pollutants is heated to 400 ° C or higher and maintained for more than 3 hours, and the SO 2 adsorbed by the activated carbon is released to generate "sulfur-rich gas (SRG)", and the SRG is transported to
  • SRG sulfur-rich gas
  • the acid production section (or acid production system) produces H 2 SO 4 .
  • NO X adsorbed activated SCR or SNCR reaction occurs, while most of dioxins are decomposed.
  • the heat required for the analytical tower analysis is provided by a hot blast stove.
  • the hot flue gas (via the pipeline L1a) is sent to the shell side of the analytical tower. Most of the hot gas (L1b) after heat exchange returns to the hot air circulation fan (the other part is discharged to the atmosphere), which is fed into the hot blast stove and mixed with the newly burned high temperature hot gas.
  • a cooling section is provided at the lower portion of the analytical tower, and air is blown through the duct (L2a) to carry the heat of the activated carbon.
  • the cooling section is provided with a cooling fan, and the cold air is blown to cool the activated carbon, and then discharged to the atmosphere.
  • the activated carbon from the analytical tower is sieved by activated carbon sieve to remove fine activated carbon particles and dust of less than 1.2 mm, which can improve the adsorption capacity of the activated carbon.
  • the activated carbon sieve on the sieve is activated carbon with strong adsorption capacity, and the activated carbon is transported to the adsorption tower through the activated carbon conveyor for recycling, and the sieved material enters the ash silo.
  • Nitrogen is required for protection during the analysis, and nitrogen is used as a carrier to carry out the harmful gases such as SO 2 which are resolved.
  • Nitrogen gas is introduced from the upper and lower portions of the analytical column, and is collected and discharged in the middle of the analytical column. At the same time, the SO 2 adsorbed in the activated carbon is taken out and sent to the acid-making system to produce acid.
  • nitrogen gas was passed over the analytical column, it was heated to about 100 ° C with a nitrogen heater and passed to the analytical column.
  • the first-stage adsorption tower and the second-stage adsorption tower in series refer to: the flue gas outlet of the first-stage adsorption tower Connected to the flue gas inlet of the secondary adsorption tower via a pipeline.
  • a single tower single bed design can be used for the adsorption tower (T1) or for the primary adsorption tower (T1) or the secondary adsorption tower (T2); or a single tower multiple bed design, such as an inlet chamber (3)-Desulfurized activated carbon bed (A)-Denitrated activated carbon bed (B)-Exhaust chamber, or for example, inlet chamber (3)-Desulfurized activated carbon bed (A)-Desulfurization and denitration activated carbon bed (B)-Denitration Activated carbon bed (C) - outlet chamber.
  • a symmetric two-tower multi-bed design can also be used, as shown in Figures 7 and 8.
  • the primary adsorption column (T1) serves as a primary adsorption column.
  • the secondary adsorption tower (T2) acts as a secondary adsorption tower.
  • the primary adsorption column (T1) as a primary adsorption column can be used in parallel in two or more.
  • the secondary adsorption column (T2) as a secondary adsorption column can also be used in parallel in two or more.
  • the outlet chambers of each of the symmetric double towers which are juxtaposed as the primary adsorption tower are respectively separated into upper and lower chambers (a, b) or upper, lower, middle and lower chambers (a, c, b), ie divided into two levels or three levels, and, preferably, the flue gas is discharged from chambers of the same level of different adsorption towers Pipes can be merged or merged.
  • the flue gas is treated by the primary adsorption tower, a part of the original flue gas (for example, 20-60% of the original flue gas, preferably 30-50% of the original flue gas) reaches the discharge standard, and can be directly discharged, so
  • the number of stages of adsorption towers is greater than the number of secondary adsorption towers.
  • the primary adsorption column is 2-8, preferably 3-6, more preferably 4-5;
  • the secondary adsorption column is 1-6, preferably 2-5, more preferably 3-4 One.
  • the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) used in the present application are each independently, for example, 10 to 50 m, preferably 13 to 45 m, preferably 15 to 40 m, more preferably 18-35m.
  • the primary adsorption column (T1) and the secondary adsorption column (T2) may adopt the same or different structures and sizes from each other, and preferably adopt the same structure and size.
  • the tower height of the adsorption tower refers to the height from the activated carbon outlet at the bottom of the adsorption tower to the activated carbon inlet at the top of the adsorption tower, that is, the height of the main structure of the tower.
  • the analytical tower is a shell-type vertical analytical tower, wherein activated carbon is input from the top of the tower, flows downward through the tube, and then reaches the bottom of the tower, and the heated gas flows through the shell side to heat the gas.
  • the body enters from one side of the column, is cooled by heat exchange with the activated carbon flowing through the tube, and is then output from the other side of the column.
  • the analytical column there is no particular requirement for the analytical column, and the prior art analytical column can be used in the present invention.
  • the analytical column is a shell-type (or shell-and-tube type) vertical analytical column in which activated carbon is input from the top of the column, flows downward through the tube section of the upper heating zone, and then reaches an upper heating zone and a lower cooling zone.
  • a buffer space between them then flows through the tube section of the lower cooling zone and then reaches the bottom of the tower, while the heated gas (or high temperature hot air) flows through the shell side of the heating zone, heating the gas (400-450 ° C) from the analytical tower
  • One side of the heating zone enters, is cooled by indirect heat exchange with activated carbon flowing through the heating zone, and is then output from the other side of the heating zone of the column.
  • the cooling air enters from one side of the cooling zone of the analytical column and is indirectly heat exchanged with the resolved, regenerated activated carbon flowing through the cooling zone. After indirect heat exchange, the cooling air is warmed to 90-130 ° C (eg, about 100 ° C).
  • the analytical column used in the present invention usually has a column height of 10 to 45 m, preferably 15 to 40 m, more preferably 20 to 35 m.
  • the desorption column usually has a cross-sectional area of the main body of 6 to 100 m 2 , preferably 8 to 50 m 2 , more preferably 10 to 30 m 2 , further preferably 15 to 20 m 2 .
  • the same level of chamber refers to two or more adsorption towers, and the outlet chamber of each adsorption tower is divided into upper and lower chambers (or divided into upper, middle and lower three chambers). Chamber), the upper chambers of all the adsorption tower outlet chambers are the same level chambers, and the middle chambers of all the adsorption tower outlet chambers are also the same level chambers. Similarly, the lower chambers of all the adsorption tower outlet chambers are The same level of chambers.
  • a heated gas branch (L3a') before the activated carbon analysis step is initiated or before the gaseous contaminants (ie, acid gases) including SO 2 and NH 3 are transported to the acid system via the acid gas line (L3a).
  • the heating gas is outputted from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b) for preheating the acid gas pipe, and after the carbonization analysis step is finished, the heating gas is purged by the acid gas pipe ( L3a) to remove the acid gas remaining in the acid gas pipe (L3a). It can significantly prevent the corrosive action of acid gas on the acid gas delivery pipeline.
  • the process and device of the present application utilizes the adsorption capacity of the activated carbon in the upper part of the adsorption tower to have a large purification capacity, a good purification effect, and a low concentration of harmful components in the flue gas after purification, and the adsorption tower outlet chamber is divided into a whole by the past. Two or more layers above and below, so that the flue gas purified by the adsorption tower is segmented into different flue according to the degree of purification, and the concentration of harmful components in the flue gas reaches the standard flue.
  • the flue gas that can not reach the standard discharge enters the next-stage adsorption tower or is returned to the inlet of the adsorption tower for further purification, so that the amount of flue gas entering the next stage will be reduced by 30% to 50%, which can be reduced.
  • FIG. 1 is a schematic diagram of a prior art desulfurization and denitration apparatus including an activated carbon adsorption tower and an activated carbon regeneration tower.
  • FIG. 2 is a schematic view showing the process flow of a prior art flue gas desulfurization and unsalable device (Sumitomo Corporation of Japan).
  • FIG. 3 is a schematic view showing the process flow of another flue gas desulfurization and unsalable device (Shanghai Ke Sulphur Co., Ltd.) of the prior art.
  • Fig. 4 is a schematic view showing the process flow of the flue gas desulfurization and denitration apparatus of the first embodiment of the present invention.
  • Fig. 5 is a schematic view showing the process flow of a flue gas desulfurization and denitration apparatus according to a second embodiment of the present invention.
  • Fig. 6 is a schematic view showing the process flow of another flue gas desulfurization and denitration apparatus according to a second embodiment of the present invention.
  • Fig. 7 is a schematic view of an adsorption tower designed according to the symmetrical two-bed multi-bed layer of the present invention (with no interstitial spaces between the beds).
  • Fig. 8 is a schematic view of an adsorption tower designed according to the symmetrical two-bed multi-bed layer of the present invention (with a gap space between each bed layer).
  • T1 adsorption tower or primary adsorption tower
  • T2 secondary adsorption tower
  • 1 main body of adsorption tower
  • 2 activated carbon feed silo
  • 3 or 3' adsorption tower inlet chamber
  • 4 adsorption tower bottom silo unloading Feed valve (or rotary valve);
  • 5 roller feeder (or rotary valve) at the bottom of the activated carbon bed
  • 6 porous separator
  • 7 booster fan
  • 8, 8a, 8b activated carbon conveyor
  • 10 switching valve.
  • A, B, C, D, E activated carbon bed
  • a upper venting chamber
  • c central venting chamber
  • b lower venting chamber
  • L1 original flue gas conveying flue or first flue gas duct
  • L2 Two flue gas pipelines (or Net flue gas conveying pipeline)
  • L3 third flue gas pipeline
  • L4 fourth flue gas pipeline
  • L5 fifth flue gas pipeline.
  • T3 desorption tower (or regeneration tower); S1: activated carbon shaker; N2: nitrogen delivery pipe.
  • L1a heating gas input pipe
  • L1b heating gas output pipe ();
  • L2a cooling gas input pipe;
  • L2b cooling gas output pipe;
  • L3a acid gas delivery pipe;
  • L3a' heating gas branch pipe.
  • h height of the adsorption section.
  • the original flue gas SO 2 and NOx contents were 300mg / Nm 3 -4000mg / Nm 3 and 200mg / Nm 3 -500mg / Nm 3 .
  • a flue gas desulfurization and denitration apparatus comprising a primary adsorption tower (T1) and an activated carbon regeneration tower (or analytical tower) (T3), wherein the activated carbon analysis tower (T3) has an upper portion
  • the heating zone, the middle buffer zone and the lower cooling zone are connected to the heating gas inlet pipe (L1a) and the heating gas outlet pipe (L1b) in the lower side portion and the upper side portion of the upper heating zone, respectively, in the lower cooling zone
  • the lower side portion and the upper side portion are respectively connected to the cooling gas input pipe (L2a) and the cooling gas output pipe (L2b), and the acid gas delivery pipe (L3a) drawn from the buffer side portion in the middle of the analysis tower (T3) is connected to the system.
  • An acid system characterized in that a heating gas branch pipe (L3a') is branched from a starting end (or a front end) of the acid gas delivery pipe (L3a), and the other end of the heating gas branch pipe (L3a') is heated with a heating gas
  • the input pipe (L1a) is in communication with or in communication with the heating gas outlet pipe (L1b) such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a slave heating gas output pipe (L1b) a branch pipe that is branched up;
  • the first adsorption tower (T1) comprises a main structure (1), a feed bin (2) at the top of the primary adsorption tower (T1), an inlet chamber (3), and a raw smoke leading to the inlet chamber (3).
  • the gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
  • the outlet chamber is partitioned into an upper outlet chamber (a) and a lower outlet chamber (b), wherein the second flue gas duct (L2) for outputting pure flue gas from the upper outlet chamber (a) is connected to the discharge a chimney, and a third flue gas duct (L3) for outputting flue gas from the lower air outlet chamber (b) is returned to the intake chamber (3)
  • the swim merges or merges with the original flue gas conveying flue, the first flue gas duct (L1).
  • the primary adsorption column (T1) has an activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2-5 beds.
  • the column height of the primary adsorption column (T1) is 10-50 m, preferably 13-45 m, preferably 15-40 m, more preferably 18-35 m.
  • the ratio of the height of the upper outlet chamber (a) to the lower outlet chamber (b) in the vertical direction is 0.7-1.3:1, preferably 0.8-1.2:1, preferably 0.9-1.1:1, such as 1:1.
  • the two or more beds of activated carbon are formed by separating the perforated plates.
  • the column height of the primary adsorption column (T1) is 10-50 m, preferably 13-45 m, preferably 15-40 m, more preferably 18-35 m.
  • a flue gas desulfurization and denitration apparatus comprising:
  • the activated carbon analysis tower (T3) has an upper heating zone, a middle buffer zone and a lower cooling zone, and a heating gas inlet pipe (L1a) and a heating gas output pipe are respectively connected to the lower side portion and the upper side portion of the upper heating zone.
  • the gas delivery pipe (L3a) is connected to the acid production system, characterized in that a heating gas branch pipe (L3a') is branched from the start end (or front end) of the acid gas delivery pipe (L3a), and the heating gas branch pipe ( The other end of L3a') is in communication with the heating gas input pipe (L1a) or with the heating gas output pipe (L1b) such that the heating gas branch pipe (L3a') serves as a branch pipe branched from the heating gas input pipe (L1a) or As a branch pipe branched from the heating gas outlet pipe (L1b);
  • the primary adsorption tower (T1) comprises a main structure (1), a feed bin (2) located at the top of the primary adsorption tower (T1), an inlet chamber (3), and an inlet to the inlet chamber (3)
  • the flue gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
  • the secondary adsorption tower (T2) comprises a main structure (1), a feed bin (2) at the top of the adsorption tower (T2), an inlet chamber (3'), and a third passage to the inlet chamber (3').
  • the lower outlet chamber (b) of the primary adsorption tower (T1) is connected by piping to the inlet chamber (3') of the secondary adsorption column (T2).
  • the outlet chamber of the primary adsorption tower (T1) is divided into an upper outlet chamber (a) and a lower outlet chamber (b), wherein the second flue gas for outputting pure flue gas from the upper outlet chamber (a) is divided.
  • the pipe (L2) is connected to the discharge chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the intake chamber (3') of the secondary adsorption tower (T2),
  • the fourth flue gas duct (L4) outputting flue gas from the outlet chamber (9) of the secondary adsorption tower (T2) merges or merges with the second flue gas duct (L2) and leads to the discharge chimney; or
  • the outlet chamber of the primary adsorption tower (T1) is divided into an upper outlet chamber (a), a middle outlet chamber (c) and a lower outlet chamber (b), wherein the first outlet for outputting pure flue gas from the upper outlet chamber (a)
  • the two flue gas duct (L2) is connected to the exhaust chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the intake chamber of the secondary adsorption tower (T2) (3) ')
  • the fifth flue gas duct (L5) for outputting flue gas from the central air outlet chamber (c) is respectively connected to the second flue gas duct (L2) or the third flue gas duct (L3) via the switching valve (10)
  • the fourth flue gas duct (L4) that outputs flue gas from the outlet chamber (9) of the secondary adsorption tower (T2) merges or merges with the second flue gas duct (L2) and then leads to discharge chimney.
  • the primary adsorption column (T1) can be used in parallel in two or more.
  • the secondary adsorption column (T2) can also be used in parallel in two or more.
  • the outlet chambers of the juxtaposed primary adsorption tower (T1) are separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or Three levels, and, more preferably, the tubes that exhaust the flue gases from the chambers of the same level of different adsorption towers may be combined or merged.
  • the first-stage adsorption tower (T1) in the form of a symmetrical double column is in the form of two or more juxtaposed adsorption towers (T1), it is juxtaposed as each of the symmetric double towers of the first-stage adsorption tower (T1).
  • the outlet chambers are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels, and, more preferably,
  • the pipes that exhaust the flue gas from the chambers of the same level of different adsorption towers may be combined or merged.
  • the primary adsorption tower (T1) or the secondary adsorption tower (T2) each independently has one activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2-5 Bed.
  • the two or more activated carbon beds are formed by separating the porous plates.
  • the primary adsorption column (T1) and the secondary adsorption column (T2) have the same or different structures and sizes from each other.
  • the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) are each independently from 10 to 50 m, preferably from 13 to 45 m, preferably from 15 to 40 m, more preferably from 18 to 35 m.
  • the ratio of the heights of the upper outlet chamber (a) and the lower outlet chamber (b) in the vertical direction is 0.7-1.3:1, preferably 0.8-1.2:1, preferably 0.9-1.1:1, such as 1:1.
  • the ratio of the heights of the three in the vertical direction is 0.5-1.0: 0.5-1.0: 0.8-1, preferably 0.6-0.9: 0.6-0.9: 0.8-1, preferably 0.7-0.8: 0.7-0.8: 0.8-1 .
  • the primary adsorption column (T1) and the secondary adsorption column (T2) have the same or different structures and sizes from each other.
  • the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) are each independently from 10 to 50 m, preferably from 13 to 45 m, preferably from 15 to 40 m, more preferably from 18 to 35 m.
  • the activated carbon analysis column (T3) has an upper heating zone, a middle buffer zone, and a lower cooling zone, on the lower side and upper portion of the upper heating zone.
  • a heating gas input pipe (L1a) and a heating gas output pipe (L1b) are respectively connected to the side portions, and a cooling gas input pipe (L2a) and a cooling gas output pipe (L2b) are respectively connected to the lower side portion and the upper side portion of the lower cooling zone.
  • the acid gas delivery pipe (L3a) drawn from the side of the buffer zone in the middle of the analytical column (T3) is connected to the acid-making system (or acid-making zone).
  • a heating gas branch pipe (L3a') is branched from the start end (or front end) of the acid gas delivery pipe (L3a), and the other end of the heating gas branch pipe (L3a') (for example, via a valve) is
  • the heating gas input pipe (L1a) is in communication with and/or in communication with the heating gas output pipe (L1b) such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a heating gas output a branch pipe that is branched on the tube (L1b).
  • the primary adsorption column (T1) can be used in parallel in two or more.
  • the secondary adsorption column (T2) can also be used in parallel in two or more.
  • the outlet chambers of the juxtaposed primary adsorption tower (T1) are separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or Three levels, and, more preferably, the tubes that exhaust the flue gases from the chambers of the same level of different adsorption towers may be combined or merged.
  • the first-stage adsorption tower (T1) in the form of a symmetrical double column is in the form of two or more juxtaposed adsorption towers (T1), it is juxtaposed as each of the symmetric double towers of the first-stage adsorption tower (T1).
  • the outlet chambers are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels, and, more preferably, From different adsorption towers
  • the pipes for discharging the flue gas in the chambers of the same level may be combined or merged.
  • Desulfurization and denitration step the original flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1) and then sequentially flows through one of the primary adsorption towers (T1) or In multiple activated carbon beds, the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the flue gas contains pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxins).
  • pollutants such as sulfur oxides, nitrogen oxides, dust, dioxins
  • the flue gas is then introduced into the outlet chamber of the primary adsorption tower (T1), and the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); preferably At the same time as the above operation, the diluted ammonia gas is introduced into the flue gas input pipe (L1) of the primary adsorption tower (T1) and optionally into the primary adsorption tower (T1);
  • Activated carbon analysis step transferring the activated carbon adsorbed by the pollutant from the bottom of the primary adsorption tower (T1) to the heating zone of an activated carbon analytical tower (T3) having an upper heating zone and a lower cooling zone, The activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon is discharged from the bottom of the desorption column (T3) after passing through the cooling zone; wherein: nitrogen is introduced into the upper part of the analytical column (T3) during the analysis, and optional At the same time, nitrogen is introduced into the lower portion of the analytical column (T3) via the second nitrogen gas line; and the gas contaminants including SO2 and NH3 which are thermally desorbed from the activated carbon by the nitrogen gas flowing into the analytical column (T3) are The intermediate section between the heating zone and the cooling zone of the desorption column (T3) is taken out and sent to the acid production system via the acid gas pipeline (L3a);
  • the heating gas branch pipe (L3a') is used from the heating gas inlet pipe (L1a).
  • heating the gas from the heated gas output pipe (L1b), and flowing the heated gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) for example, preheating to a temperature of 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing through the acid gas pipeline
  • the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas output pipe (L1b) by the heating gas branch pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) to The acid gas remaining in the acid gas pipe (L3a) is removed.
  • the I) desulfurization and denitration step is carried out as follows: the raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through the first stage.
  • Adsorption tower (T1) One or more activated carbon beds, the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the flue gas contains pollutants (such as sulfur oxides, nitrogen oxides, dust, Dioxins, etc.) are removed or partially removed by activated carbon, and then the flue gas enters the upper outlet chamber (a) and the lower outlet chamber (b) of the primary adsorption tower (T1), from the primary adsorption tower (T1).
  • pollutants such as sulfur oxides, nitrogen oxides, dust, Dioxins, etc.
  • the flue gas discharged from the upper air outlet chamber (a) is sent to the discharge chimney via the second flue gas duct (L2) for discharge, and the small amount discharged from the lower air outlet chamber (b) of the primary adsorption tower (T1)
  • the flue gas of the pollutant is transported back through the third flue gas pipeline (L3) to merge with the original flue gas in the first flue gas duct (L1), and the activated carbon adsorbing the pollutant is discharged from the bottom of the first adsorption tower (T1).
  • the diluted ammonia gas is introduced into the flue gas input line (L1) of the primary adsorption column (T1) and optionally into the primary adsorption column (T1).
  • the residence time or the downward movement speed of the activated carbon in the activated carbon bed in the primary adsorption tower (T1) is adjusted by adjusting the rotation speed of the discharge valve (5) at the bottom of the first adsorption tower (T1), so that the first adsorption
  • the pollutant content of the flue gas in the upper air outlet chamber (a) of the tower (T1) is within the scope of compliance with the requirements or compliance with regulations. That is, the content is lower than the set limit value.
  • a heated gas branch before the activation of the activated carbon analysis step or before the gaseous contaminants including SO 2 and NH 3 (ie, acid gases) are transported to the acid production system via the acid gas conduit (L3a) ( L3a') outputting a heating gas from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and flowing the heating gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C).
  • the heated gas branch pipe (L3a') is used to heat the gas.
  • the heating gas is output from the heating pipe (L1b) in the input pipe (L1a), and the heating gas is purged by the acid gas pipe (L3a) to remove the acid gas remaining in the acid gas pipe (L3a).
  • the raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through one or more activated carbon beds of the primary adsorption tower (T1) in sequence. , smoke and suck from the first
  • the activated carbon added to the top of the tower (T1) is subjected to cross-flow contact, in which the pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxin, etc.) contained in the flue gas are removed or partially removed by the activated carbon, after which ,
  • the flue gas enters the outlet chamber of the first adsorption tower (T1), and the activated carbon adsorbed with the pollutants is discharged from the bottom of the first adsorption tower (T1); from the lower outlet chamber of the first adsorption tower (T1) (b
  • the flue gas containing a small amount of pollutants discharged through the pipeline is sent to the inlet chamber (3') of the secondary adsorption tower (T2) and sequentially flows through one or more activated carbon beds of the secondary adsorption tower (2) a layer in which pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxins, etc.) contained in the flue gas are further removed by the activated carbon; discharged from the outlet chamber (10) of the secondary adsorption tower (T2)
  • the flue gas is discharged through the chimney, and the activated carbon adsorbing the pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the dilute ammonia gas is introduced into the first adsorption tower (
  • a flue gas duct (L1) is neutralized and optionally passed to a conduit for transporting flue gas to the secondary adsorption tower (T2) and optionally to a primary adsorption tower (T1) and/or a secondary adsorption tower ( Within T2);
  • Activated carbon analysis step transferring activated carbon adsorbed with pollutants from the bottom of the primary adsorption tower (T1) and/or the bottom of the secondary adsorption tower (T2) to a cooling zone having an upper heating zone and a lower cooling zone
  • the activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon flows downward through the cooling zone and is discharged from the bottom of the desorption column (T3); wherein: nitrogen is introduced during the analysis process.
  • the heating gas branch pipe (L3a') is used from the heating gas inlet pipe (L1a).
  • heating the gas from the heated gas output pipe (L1b), and flowing the heated gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) for example, preheating to a temperature of 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing through the acid gas pipeline
  • the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas output pipe (L1b) by the heating gas branch pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) to The acid gas remaining in the acid gas pipe (L3a) is removed.
  • the primary adsorption column (T1) can be used in parallel in two or more (for example 2-6, such as 3 or 4); and/or the secondary adsorption column (T2) can be used in two or more Parallel (for example, 2-4, such as 3) to use.
  • the I) desulfurization and denitration steps are carried out as follows:
  • the raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through one or more activated carbon beds of the primary adsorption tower (T1) in sequence.
  • the flue gas is in cross-flow contact with the activated carbon added from the top of the first adsorption tower (T1), wherein the pollutants contained in the flue gas (such as sulfur oxides, nitrogen oxides, dust, dioxin, etc.) are removed by the activated carbon. Except or partial removal, after
  • the primary adsorption tower (T1) has an upper outlet chamber (a) and a lower outlet chamber (b)
  • the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1) and the lower outlet chamber (b)
  • the activated carbon adsorbed by the pollutant is discharged from the bottom of the first adsorption tower (T1); wherein the flue gas discharged from the upper outlet chamber (a) of the primary adsorption tower (T1) passes through the second flue gas pipeline (L2) is sent to the discharge chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower outlet chamber (b) of the adsorption tower (T1) is sent to the secondary adsorption tower via the third flue gas duct (L3) ( In the inlet chamber (3') of T2) and sequentially flowing through one or more activated carbon beds of the secondary adsorption tower (T2), the flue gas discharged from the outlet chamber (9) of the secondary adsorption tower (
  • the primary adsorption tower (T1) When the primary adsorption tower (T1) has an upper outlet chamber (a), a central outlet chamber (c), and a lower outlet chamber (b), the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1), In the central venting chamber (c) and the lower venting chamber (b), the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); wherein, from the upper venting chamber of the primary adsorption tower (T1) (a The flue gas discharged in the second flue gas duct (L2) is sent to the exhaust chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower air outlet chamber (b) of the adsorption tower (T1) passes through the third smoke
  • the gas pipeline (L3) is sent to the inlet chamber (3') of the secondary adsorption tower (T2) and sequentially flows through one or more activated carbon beds of the secondary ad
  • Flue gas pipeline (L3) The flue gas merges, and the activated carbon adsorbing the pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the first smoke of the diluted ammonia gas is introduced into the primary adsorption tower (T1) at the same time as the above operation.
  • the residence time of the activated carbon in the activated carbon bed by adjusting the discharge valve (5) at the bottom of the activated carbon bed of the adsorption column to ensure the adsorption tower (T1)
  • the discharge valve (5) at the bottom of the activated carbon bed of the adsorption column to ensure the adsorption tower (T1)
  • the content of pollutants in the flue gas meets the requirements or meets the regulations.
  • the residence time or the downward movement speed of the activated carbon in the activated carbon bed in the primary adsorption tower (T1) is adjusted by adjusting the rotation speed or opening degree of the discharge valve (5) at the bottom of the activated carbon bed of the primary adsorption tower (T1). , such that the pollutant content of the flue gas in the upper air outlet chamber (a) of the primary adsorption tower (T1) and optionally the pollutant content of the flue gas in the central air outlet chamber (c) are in compliance with requirements or comply with regulations Within the scope. That is, the content is lower than the set limit value.
  • a heated gas branch before the activation of the activated carbon analysis step or before the gaseous contaminants including SO 2 and NH 3 (ie, acid gases) are transported to the acid production system via the acid gas conduit (L3a) ( L3a') outputting a heating gas from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and flowing the heating gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C).
  • the heated gas branch pipe (L3a') is used to heat the gas.
  • the heating gas is output from the heating pipe (L1b) in the input pipe (L1a), and the heating gas is purged by the acid gas pipe (L3a) to remove the acid gas remaining in the acid gas pipe (L3a).
  • the residence time of the activated carbon in the activated carbon bed is adjusted by adjusting the bottom discharge valve (5) of the primary adsorption tower (T1) bed to ensure the upper outlet chamber from the primary adsorption tower (T1) (a).
  • the content of pollutants in the flue gas discharged from the upper air outlet chamber (a) and the central air outlet chamber (c) of the primary adsorption tower (T1) is within the scope of compliance with the requirements or compliance with regulations.
  • the hot acid gas is opened.
  • the cold or low (for example, at ambient temperature) acid gas pipeline (L3a) flows, the temperature is lowered, condensation occurs, and a liquid acid is formed.
  • the liquid acid has a strong corrosive effect on the acid gas pipeline (L3a).
  • a sleeve and an outermost layer are generally provided with an insulating layer on the outer periphery of the acid gas pipe (L3a).
  • the inventors of the present application have found through research that preheating the pipe to a temperature higher than the dew point of the acid gas by preheating the gas into the acid gas pipe (L3a) before the start of the activated carbon analysis step, for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C.
  • the acid gas carries enough heat to maintain the temperature of the acid gas pipe (L3a) and prevent it from cooling.
  • the heating gas branch pipe (L3a') is used immediately after the gas contaminant (i.e., acid gas) including SO 2 and NH 3 stops flowing through the acid gas pipe (L3a) or after the end of the activated carbon analysis step. Heating gas is supplied from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and the heating gas is purged by the acid gas pipe (L3a) to remove acid gas remaining or retained in the acid gas pipe (L3a). .
  • the gas contaminant i.e., acid gas
  • Heating gas is supplied from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and the heating gas is purged by the acid gas pipe (L3a) to remove acid gas remaining or retained in the acid gas pipe (L3a).
  • Activated carbon is fed from the top of the analytical column and discharged from the bottom of the column.
  • the activated carbon adsorbed with the pollutants is heated to 400 ° C or higher and maintained for more than 3 hours, and the SO 2 adsorbed by the activated carbon is released to generate "sulfur-rich gas (SRG)", and the SRG is transported to
  • SRG sulfur-rich gas
  • the acid production section (or acid production system) produces H 2 SO 4 .
  • NO X adsorbed activated SCR or SNCR reaction occurs, while most of dioxins are decomposed.
  • the heat required for the analytical tower analysis is provided by a hot blast stove.
  • the hot flue gas (via the pipeline L1a) is sent to the shell side of the analytical tower. Most of the hot gas (L1b) after heat exchange returns to the hot air circulation fan (the other part is discharged to the atmosphere), which is fed into the hot blast stove and mixed with the newly burned high temperature hot gas.
  • a cooling section is provided at the lower portion of the analytical tower, and air is blown through the duct (L2a) to carry the heat of the activated carbon.
  • the cooling section is provided with a cooling fan, and the cold air is blown to cool the activated carbon, and then discharged to the atmosphere.
  • the activated carbon from the analytical tower is sieved by activated carbon sieve to remove fine activated carbon particles and dust of less than 1.2 mm, which can improve the adsorption capacity of the activated carbon.
  • the activated carbon sieve on the sieve is activated carbon with strong adsorption capacity, and the activated carbon is transported to the adsorption tower through the activated carbon conveyor for recycling, and the sieved material enters the ash silo.
  • Nitrogen is required for protection during the analysis, and nitrogen is used as a carrier to carry out the harmful gases such as SO 2 which are resolved.
  • Nitrogen gas is introduced from the upper and lower portions of the analytical column, and is collected and discharged in the middle of the analytical column. At the same time, the SO 2 adsorbed in the activated carbon is taken out and sent to the acid-making system to produce acid.
  • nitrogen gas was passed over the analytical column, it was heated to about 100 ° C with a nitrogen heater and passed to the analytical column.
  • the first-stage adsorption tower and the second-stage adsorption tower in series mean that the flue gas outlet of the primary adsorption tower is connected to the flue gas inlet of the secondary adsorption tower via a pipeline.
  • a single tower single bed design can be used for the adsorption tower (T1) or for the primary adsorption tower (T1) or the secondary adsorption tower (T2); or a single tower multiple bed design, such as an inlet chamber (3)-Desulfurization activated carbon bed (A)-Denitration activated carbon bed (B)-Exhaust chamber or, for example, inlet chamber (3)-Desulfurization activated carbon bed (A)-Desulfurization and denitration activated carbon bed (B)-Denitration activated carbon Bed (C) - venting chamber.
  • a symmetrical twin tower design can also be used, as shown in Figure 7 or 8.
  • the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) used in the present application are each independently, for example, 10 to 50 m, preferably 13 to 45 m, preferably 15 to 40 m, more preferably 18-35m.
  • the primary adsorption column (T1) and the secondary adsorption column (T2) may adopt the same or different structures and sizes from each other, and preferably adopt the same structure and size.
  • the tower height of the adsorption tower refers to the height from the activated carbon outlet at the bottom of the adsorption tower to the activated carbon inlet at the top of the adsorption tower, that is, the height of the main structure of the tower.
  • the analytical column is a shell-type vertical analytical column in which activated carbon is input from the top of the column, flows downward through the tube, and then reaches the bottom of the column, while the heated gas flows through the shell side, and the heated gas enters from one side of the column. It is cooled by heat exchange with activated carbon flowing through the tube and then output from the other side of the column.
  • the analytical column there is no particular requirement for the analytical column, and the prior art analytical column can be used in the present invention.
  • the analytical column is a shell-type (or shell-and-tube type) vertical analytical column in which activated carbon is input from the top of the column, flows downward through the tube section of the upper heating zone, and then reaches an upper heating zone and a lower cooling zone.
  • a buffer space between them then flows through the tube section of the lower cooling zone and then reaches the bottom of the tower, while the heated gas (or high temperature hot air) flows through the shell side of the heating zone, heating the gas (400-450 ° C) from the analytical tower
  • One side of the heating zone enters, is cooled by indirect heat exchange with activated carbon flowing through the heating zone, and is then output from the other side of the heating zone of the column. Cooling wind From the side of the cooling zone of the analytical column, indirect heat exchange with the resolved, regenerated activated carbon flowing through the cooling zone tube. After indirect heat exchange, the cooling air is warmed to 90-130 ° C (eg, about 100 ° C).
  • the analytical column used in the present invention usually has a column height of 10 to 45 m, preferably 15 to 40 m, more preferably 20 to 35 m.
  • the desorption column usually has a cross-sectional area of the main body of 6 to 100 m 2 , preferably 8 to 50 m 2 , more preferably 10 to 30 m 2 , further preferably 15 to 20 m 2 .
  • JP3217627B2 JPH08155299A discloses an analytical tower (ie, a desorption tower) which uses a double sealing valve and is sealed by an inert gas. Screening, water cooling (see Figure 3 in this patent).
  • JP 3485453 B2 JPH 11104457 A discloses a regeneration column (see Figs. 23 and 24) which can be used in a preheating section, a double sealing valve, an inert gas, air cooling or water cooling.
  • JPS59142824A discloses a gas from a cooling section for preheating activated carbon.
  • 201210050541.6 (Shanghai Keshi Company) discloses a scheme for energy reuse of a regeneration tower in which a dryer 2 is used.
  • JPS 4918355 B discloses the use of blast furnace gas to regenerate activated carbon.
  • JPH08323144A discloses a regeneration tower employing fuel (heavy or light oil) using an air heating furnace (see Figure 2 of the patent, 11-hot blast stove, 12-fuel supply).
  • the Chinese utility model 201320075942.7 relates to a heating device and an exhaust gas treatment device (combustion coal, air heating) provided with the heating device, see Fig. 2 in the utility model patent.
  • the analytical tower of the present invention is air cooled.
  • the conventional process maintains the temperature in the analytical column at 420 ° C.
  • the required coke oven gas is about 400 Nm 3 /h
  • the combustion air is about 2200 Nm 3 /h
  • the exhaust heat is about 2500 Nm 3 /h
  • required cooling air of 30000 Nm 3 /h
  • the activated carbon temperature after cooling is 140 °C.
  • Embodiment 5 (preferred)
  • Embodiment 6 (preferred)
  • Embodiment 7 (most preferred)
  • the apparatus and flow shown in Fig. 6 were employed, but the adsorption tower apparatus shown in Fig. 7 was used instead of the secondary adsorption tower shown in Fig. 5.
  • the first-stage adsorption tower has three juxtaposed arrangement, and the flue gas output pipelines of the same level of the flue gas chamber of the first-stage adsorption tower merge, and then the flue gas is divided into two inlet chambers which respectively pass into two juxtaposed secondary adsorption towers. . From the outlet chamber of the secondary adsorption tower (T2), the desulfurization rate of 99.2% and the denitration rate of 92% were measured.

Abstract

A flue gas desulfurization and denitrification method and device. The device comprises an adsorption tower (T1) and an activated carbon regeneration tower (T3). An acid gas conveying pipeline (L3a) of the activated carbon regeneration tower (T3) is preheated by using heating gas of the activated carbon regeneration tower (T3), and the acid gas conveying pipeline (L3a) is purged after the regeneration operation is ended, so as to prevent the acid gas conveying pipeline (L3a) from being corroded.

Description

防止腐蚀的烟气脱硫脱硝方法和装置Flue gas desulfurization and denitration method and device for preventing corrosion
本申请要求2016年06月30日提交中国专利局、申请号为201610507677.3、发明名称为“防止腐蚀的烟气脱硫脱硝方法和装置”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of the invention patent application filed on June 30, 2016, the Chinese Patent Office, the application number is 201610507677.3, and the invention is entitled "Fouling and Desulfurization Denitration Method and Device for Corrosion Prevention", the entire contents of which are incorporated herein by reference. In the application.
技术领域Technical field
本发明涉及采用活性炭的烟气脱硫脱硝装置和烟气脱硫脱硝方法。更具体地说,本发明涉及一种烟气脱硫脱硝装置,其中通过使用加热气体对于活性炭解吸塔的酸性气体输送管道进行预热以及在解析操作结束之后对酸性气体输送管道进行吹扫,防止该管道腐蚀,这些属于烟气处理领域。The invention relates to a flue gas desulfurization and denitration device using activated carbon and a flue gas desulfurization and denitration method. More particularly, the present invention relates to a flue gas desulfurization and denitration apparatus in which an acid gas delivery pipe of an activated carbon desorption column is preheated by using a heating gas and an acid gas delivery pipe is purged after the end of the resolving operation to prevent the Pipeline corrosion, these are in the field of flue gas treatment.
背景技术Background technique
活性炭法处理烟气技术已经有五十多年研究应用历史,早期的技术研究及应用主要集中在德国、日本、美国等国。德国的BF公司于1957年(现在的DMT公司)就开始研制了Reinluft法脱硫技术,日本则在60年代中期开始研究活性炭脱硫,德国的鲁奇公司也较早的进行了水洗再生活性炭烟气脱硫工艺的研究。随着活性炭法烟气脱硫技术在国外的发展与成熟,产生了一些比较有代表性的如德国的BF法、Reinluft法、Lurgi法;日本的日立法、住友法;美国的Westraco法。The activated carbon process for flue gas technology has been used for more than 50 years. The early technical research and application are mainly concentrated in Germany, Japan, the United States and other countries. Germany's BF Company began to develop Reinluft desulfurization technology in 1957 (now DMT Company), Japan began to study activated carbon desulfurization in the mid-1960s, and Germany's Luqi Company also carried out water washing and regeneration activated carbon flue gas desulfurization earlier. Process research. With the development and maturity of activated carbon flue gas desulfurization technology abroad, some representative ones such as German BF method, Reinluft method and Lurgi method; Japan's Japanese legislation, Sumitomo law; and US Westraco method have been produced.
对于工业烟气、尤其钢铁工业的烧结机烟气而言,采用包括活性炭吸附塔和解析塔的脱硫、脱硝装置和工艺是比较理想的。在包括活性炭吸附塔和解析塔(或再生塔)的脱硫、脱硝装置中,活性炭吸附塔用于从烧结烟气或废气(尤其钢铁工业的烧结机的烧结烟气)吸附包括硫氧化物、氮氧化物、粉尘和二恶英在内的污染物,而解析塔用于活性炭的热再生。For industrial flue gas, especially for the sintering machine flue gas of the steel industry, it is desirable to use a desulfurization and denitration device and a process including an activated carbon adsorption tower and an analytical column. In a desulfurization and denitration device including an activated carbon adsorption tower and an analytical tower (or a regeneration tower), an activated carbon adsorption tower is used for adsorbing sulfur oxides and nitrogen from sintering flue gas or exhaust gas (especially sintering flue gas of a sintering machine of the steel industry). Contaminants such as oxides, dust and dioxins, and analytical towers for thermal regeneration of activated carbon.
活性炭法脱硫具有脱硫率高、可同时实现脱硝、脱二噁英、除尘、不产生废水废渣等优点,是极有前景的烟气净化方法。活性炭可以在高温下再生,在温度高于350℃时,吸附在活性炭上的硫氧化物、氮氧化物、二恶英等污染物发生快速解析或分解(二氧化硫被解析,氮氧化物和二噁英被分解)。并且随着温度的升高,活性炭的再生速度进一步加快,再生时间缩短,优选的是一般控制解析塔中活性炭再生温度约等于430℃,因此,理 想的解析温度(或再生温度)是例如在390-450℃范围、更优选在400-440℃范围。Activated carbon desulfurization has the advantages of high desulfurization rate, simultaneous denitrification, deodorization, dust removal, and no waste water residue. It is a promising method for flue gas purification. Activated carbon can be regenerated at high temperatures. At temperatures above 350 °C, pollutants such as sulfur oxides, nitrogen oxides, and dioxins adsorbed on activated carbon are rapidly resolved or decomposed (sulphur dioxide is analyzed, nitrogen oxides and dioxins). English is broken down). And as the temperature increases, the regeneration rate of activated carbon is further accelerated, and the regeneration time is shortened. It is preferred that the regeneration temperature of the activated carbon in the general control analytical tower is approximately equal to 430 ° C. Therefore, The desired resolution temperature (or regeneration temperature) is, for example, in the range of 390 to 450 ° C, more preferably in the range of 400 to 440 ° C.
传统的活性炭脱硫工艺如图1中所示。烟气由增压风机引入吸附塔,在入塔口喷入氨气和空气的混合气体,以提高NOx的脱除效率,净化后的烟气进入烧结主烟囱排放。活性炭由塔顶加入到吸附塔中,并在重力和塔底出料装置的作用下向下移动。解析塔出来的活性炭由活性炭输送机输送至吸附塔,吸附塔吸附污染物饱和后的活性炭由底部排出,排出的活性炭由活性炭输送机输送至解析塔,进行活性炭再生。The traditional activated carbon desulfurization process is shown in Figure 1. The flue gas is introduced into the adsorption tower by the booster fan, and a mixed gas of ammonia gas and air is injected into the inlet port to improve the NOx removal efficiency, and the purified flue gas enters the sintering main chimney to discharge. The activated carbon is added to the adsorption tower from the top of the column and moves downward by gravity and the bottom discharge device. The activated carbon from the analytical tower is transported to the adsorption tower by the activated carbon conveyor. The activated carbon adsorbed by the adsorption tower is discharged from the bottom, and the discharged activated carbon is transported by the activated carbon conveyor to the analytical tower for regeneration of the activated carbon.
活性炭烟气净化技术具有能够同时脱硫脱硝、实现副产物资源化、吸附剂可循环使用、脱硫脱硝效率高等特点,是非常具有发展前景的脱硫脱硝一体化技术。在包括活性炭吸附塔和解析塔(或再生塔)的脱硫、脱硝装置中,活性炭吸附塔用于从烧结烟气或废气(尤其钢铁工业的烧结机的烧结烟气)吸附包括硫氧化物、氮氧化物和二恶英在内的污染物,而解析塔用于活性炭的热再生。Activated carbon flue gas purification technology has the characteristics of simultaneous desulfurization and denitrification, resource utilization of by-products, recyclability of adsorbents, high efficiency of desulfurization and denitrification, and is a promising technology for desulfurization and denitrification. In a desulfurization and denitration device including an activated carbon adsorption tower and an analytical tower (or a regeneration tower), an activated carbon adsorption tower is used for adsorbing sulfur oxides and nitrogen from sintering flue gas or exhaust gas (especially sintering flue gas of a sintering machine of the steel industry). Contaminants such as oxides and dioxins, and analytical towers for thermal regeneration of activated carbon.
活性炭法烟气净化技术具有同时脱硫脱硝的功能,此工艺包含的主体设备有吸附塔、再生塔及活性炭输送装置。相对于NOx而言,SO2更容易脱除,正常情况下一组吸附塔即可得到高达90%的脱硫率,但脱硝率较低。Activated carbon method flue gas purification technology has the function of simultaneous desulfurization and denitrification. The main equipment included in this process includes adsorption tower, regeneration tower and activated carbon conveying device. Compared with NOx, SO 2 is easier to remove. Under normal circumstances, a group of adsorption towers can obtain a desulfurization rate of up to 90%, but the denitration rate is low.
通常,活性炭法烟气净化技术具有脱硫脱硝率高、副产物可资源化利用、活性炭可循环使用等特点,其脱硫脱硝的原理如下:Generally, the activated carbon method flue gas purification technology has the characteristics of high desulfurization and denitrification rate, resource utilization of by-products, and recycling of activated carbon. The principle of desulfurization and denitrification is as follows:
在吸附塔中,烟气中一部分的SO2被活性炭吸附,但是,另一部分的SO2,即在活性炭的表面SO2被氧化吸收形成硫酸,其反应式:In the adsorption tower, a part of the SO 2 in the flue gas is adsorbed by the activated carbon, but another part of the SO 2 , that is, the surface of the activated carbon, SO 2 is oxidized and absorbed to form sulfuric acid, and its reaction formula:
2SO2+O2+2H2O→2H2SO4 2SO 2 +O 2 +2H 2 O→2H 2 SO 4
如果在烟气中或在吸附塔中喷入少量氨,可加快SO2的吸收,其反应式:If a small amount of ammonia is sprayed into the flue gas or in the adsorption tower, the absorption of SO 2 can be accelerated, and its reaction formula:
NH3+H2SO4→NH4HSO4 NH 3 +H 2 SO 4 →NH 4 HSO 4
但是,为了在脱硫的同时达到脱硝的效果,一般会在吸附塔烟气入口处喷射较多的氨,既要满足脱硫所需的氨,同时满足脱硝所需的氨。脱硝反应式为:However, in order to achieve the effect of denitration at the same time of desulfurization, a large amount of ammonia is generally injected at the inlet of the adsorption tower flue gas, which satisfies both the ammonia required for desulfurization and the ammonia required for denitration. The denitration reaction formula is:
4NO+O2+4NH3→4N2+6H2O4NO+O 2 +4NH 3 →4N 2 +6H 2 O
与此同时在吸附塔内还存在以下的副反应: At the same time, the following side reactions exist in the adsorption tower:
2NH3+H2SO4→(NH4)2SO42NH 3 +H 2 SO 4 →(NH 4 ) 2 SO 4 .
一般,SO2与NH3的反应速率比NO与NH3的反应速率更快。另外,烟气中的SO3、HF、和HCl也会和NH3反应。In general, the reaction rate of SO 2 with NH 3 is faster than the reaction rate of NO with NH 3 . In addition, SO 3 , HF, and HCl in the flue gas also react with NH 3 .
解析塔的作用是将活性炭吸附的SO2释放出来,同时在400℃以上的温度和一定的停留时间下,二噁英可分解80%以上,活性炭经冷却、筛分后重新再利用。释放出来的SO2可制硫酸等,解析后的活性炭经传送装置送往吸附塔重新用来吸附SO2和NOX等。The function of the analytical tower is to release the SO 2 adsorbed by the activated carbon. At the same temperature and a certain residence time of 400 ° C, the dioxins can be decomposed by more than 80%, and the activated carbon is re-used after being cooled and sieved. The released SO 2 can be made into sulfuric acid or the like, and the analyzed activated carbon is sent to the adsorption tower through a transfer device to be used for adsorbing SO 2 and NO X .
在吸附塔与解析塔中NOX与氨发生SCR、SNCR等反应,从而去除NOX。粉尘在通过吸附塔时被活性炭吸附,在解析塔底端的振动筛被分离,筛下的为活性炭粉末送去灰仓,然后可送往高炉或烧结作为燃料使用。In the adsorption tower with the analytical column with ammonia in the NO X occurs SCR, SNCR reactions, thereby removing the NO X. The dust is adsorbed by the activated carbon when passing through the adsorption tower, and the vibrating screen at the bottom end of the analytical tower is separated, and the activated carbon powder under the sieve is sent to the ash silo, which can then be sent to the blast furnace or sintered for use as a fuel.
采用活性炭法进行烟气净化,为了提高净化效果,可使烟气通过多层活性炭床层。多层活性炭床层布置主要分为上下结构和前后结构,如图2中所示。塔内活性炭床层为一整体,活性炭利用重力均匀下移。顺着烟气的流动方向,首先与烟气接触的活性炭吸附了烟气中更多污染物,与后面活性炭一起排出,会导致后面活性炭未吸附饱和就排出塔内或者前面活性炭吸附饱和了仍在塔内未起到烟气净化效果。The activated carbon method is used for purifying the flue gas, and in order to improve the purifying effect, the flue gas can be passed through the multi-layer activated carbon bed. The multi-layer activated carbon bed layout is mainly divided into upper and lower structures and front and rear structures, as shown in FIG. 2 . The activated carbon bed in the tower is a whole, and the activated carbon is uniformly moved downward by gravity. Following the flow direction of the flue gas, the activated carbon in contact with the flue gas first adsorbs more pollutants in the flue gas, and is discharged together with the activated carbon, which will cause the activated carbon to be discharged into the tower without being adsorbed and saturated, or the activated carbon is saturated in the front. There is no smoke purification effect inside the tower.
钢铁行业为推进我国工业化、城镇化的发展做出了重要贡献,但同时我国钢铁工业环保水平低,单位产量污染物排放量较高,已严重制约钢铁产业整体竞争力的提高。为控制污染物排放,国家环保部制定了《钢铁烧结、球团工业大气污染物排放标准》,指出自2015年1月1日,现有钢铁企业烧结、球团执行以下大气污染物排放限值:SO2 200mg/m3、NOx 300mg/m3、二噁英类0.5ng-TEG/m3。可见,钢铁行业大气污染治理已由原来的除尘、脱硫提升为SO2-NOx-二恶英等多污染物协同控制。目前,国内脱硫技术趋于成熟,脱硝脱二噁英仍处于起步阶段。国内上海克硫公司在燃煤锅炉及有色冶炼行业已采用活性焦技术,其结构形式和原理与住友一致。The iron and steel industry has made important contributions to promoting the development of China's industrialization and urbanization. At the same time, China's steel industry has a low level of environmental protection and high emissions per unit of output, which has seriously restricted the overall competitiveness of the steel industry. In order to control pollutant emissions, the Ministry of Environmental Protection has formulated the "Steel Sintering and Pellet Industry Air Pollutant Emission Standards", stating that since January 1, 2015, existing steel companies have sintered and pellets to implement the following atmospheric pollutant emission limits. : SO 2 200 mg/m 3 , NOx 300 mg/m 3 , dioxins 0.5 ng-TEG/m 3 . It can be seen that the air pollution control in the steel industry has been upgraded from the original dust removal and desulfurization to the coordinated control of multi-pollutants such as SO 2 -NOx-dioxin. At present, domestic desulfurization technology is maturing, and denitrification and dioxins are still in their infancy. Domestic Shanghai Keshi Company has adopted active coke technology in coal-fired boilers and non-ferrous smelting industry, and its structural form and principle are consistent with Sumitomo.
活性炭(焦)法烧结烟气净化技术是一种可资源化的干法烟气处理技术,具有节水、脱硫、脱硝、脱二噁英、脱重金属、除尘及除去其他微量有害烟气成分(如HCl、HF、SO3等)的功能,同时可回收国内紧缺的硫资源(高浓度SO2可制备浓硫酸等)。Activated carbon (coke) sintering flue gas purification technology is a resource-based dry flue gas treatment technology, which has water-saving, desulfurization, denitrification, deodorization, de-lifting metals, dust removal and removal of other trace harmful flue gas components ( The functions of HCl, HF, SO 3 , etc., can also recover sulfur resources that are scarce in China (high concentration of SO 2 can produce concentrated sulfuric acid, etc.).
图2示出了日本住友公司的活性炭吸附装置:塔内活性炭床层分为三 个室,各室活性炭利用重力均匀下移,顺着烟气的流动方向,首先与烟气接触的前室活性炭吸附了烟气中更多污染物,中后室的活性炭依次吸附烟气中的污染物,由此控制活性炭床层底部的卸料阀的转速来控制活性炭从的排出速度,从而达到烟气净化效果。Figure 2 shows the activated carbon adsorption unit of Sumitomo Corporation of Japan: the activated carbon bed in the tower is divided into three In each chamber, the activated carbon in each chamber is uniformly moved downward by gravity. According to the flow direction of the flue gas, the activated carbon in the front chamber which is first contacted with the flue gas adsorbs more pollutants in the flue gas, and the activated carbon in the middle and rear chambers sequentially adsorbs the flue gas. The pollutants, thereby controlling the rotation speed of the discharge valve at the bottom of the activated carbon bed to control the discharge speed of the activated carbon, thereby achieving the effect of purifying the flue gas.
图3示出了上海克硫公司的活性炭吸附装置:塔内活性炭床层为一整体,多级活性炭床层布置主要分为上下结构,活性炭利用重力均匀下移。顺着烟气的流动方向,首先与烟气接触的活性炭吸附了烟气中更多污染物,与后面活性炭一起排出,会导致后面活性炭未吸附饱和就排出塔内或者前面活性炭吸附饱和了仍在塔内未起到烟气净化效果。Figure 3 shows the activated carbon adsorption unit of Shanghai Keshi Company: the activated carbon bed in the tower is a whole, and the multi-stage activated carbon bed layout is mainly divided into upper and lower structures, and the activated carbon is uniformly moved downward by gravity. Following the flow direction of the flue gas, the activated carbon in contact with the flue gas first adsorbs more pollutants in the flue gas, and is discharged together with the activated carbon, which will cause the activated carbon to be discharged into the tower without being adsorbed and saturated, or the activated carbon is saturated in the front. There is no smoke purification effect inside the tower.
由于原烟气进入吸附塔经过吸附塔的净化后烟气中的有害成份的浓度自上而下逐渐增加,现有工艺和装置需要将全部烟气进入下一级吸附塔,不仅增加了投资及运行费用,还增加额外设备维护工作量。Since the concentration of harmful components in the flue gas gradually increases from the top to the bottom after the original flue gas enters the adsorption tower through the adsorption tower, the existing processes and devices need to transfer all the flue gas into the next-stage adsorption tower, which not only increases the investment and Operating costs also add additional equipment maintenance effort.
为了节约投资及运行费用,需采用更合理的活性炭净化工艺和装置。In order to save investment and operating costs, a more rational activated carbon purification process and equipment is required.
发明内容Summary of the invention
针对以上缺陷和问题,本申请的发明人经过深入研究之后发现,从吸附塔的活性炭床层的中、上部进入出气室中的烟气(简称上层烟气)中的污染物浓度很低(ppm级),往往达到了排放要求或排放标准,或者该部分的烟气另外单独处理。In view of the above drawbacks and problems, the inventors of the present application have found through intensive research that the concentration of pollutants in the flue gas (referred to as the upper layer flue gas) entering the gas outlet from the middle and upper portions of the activated carbon bed of the adsorption tower is very low (ppm). Level), often meet emission requirements or emission standards, or the flue gas in this part is treated separately.
本发明针对烟气净化要求越来越严的环保要求,对烟气进行净化,要到达更高要求,必须对全部烟气进行二级处理。本技术是根据在烟气净化装置一级处理后烟气成份从上至下有害成份逐步增加(由于进入净化装置上部的活性炭(焦)均为经解析塔活化后的活性炭(焦),随着活性炭(焦)从上往下移动,活性炭(焦)吸附烟气中的有害成份的增加,其吸附能力也就越弱,由此其排放出烟气的有害成份的浓度也就越高),从而提取其中有害成份超标的部分烟气进入二级烟气净化装置或再次回到一级吸附塔,经一级处理后满足排放要求的一部分烟气则直接通过烟囱排入大气。The invention aims at purifying the environmental protection requirements of flue gas purification requirements, purifying the flue gas, and must reach the higher requirements, and must perform secondary treatment on all flue gases. The technology is based on the fact that the flue gas component is gradually increased from top to bottom after the first treatment of the flue gas purification device (because the activated carbon (coke) entering the upper part of the purification device is activated carbon (focal) activated by the analytical tower, When the activated carbon (coke) moves from top to bottom, the adsorption of activated carbon (coke) on the harmful components of the flue gas increases, and the adsorption capacity is weaker, so that the concentration of the harmful components that emit the flue gas is higher. Therefore, part of the flue gas in which the harmful components exceed the standard is extracted into the secondary flue gas purification device or returned to the first-stage adsorption tower, and part of the flue gas that meets the discharge requirement after the first-stage treatment is directly discharged into the atmosphere through the chimney.
本发明的工艺和装置将吸附塔出气室分为上下两层或多层,根据排放的烟气有害成份的浓度调节进入下一级吸附塔的烟气量,这样进入下一级 的烟气量将缩减30%~50%,可以减小增压风机和二级吸附塔的能力,从而降低投资和运行费用。避免了现有技术中出气室中上部干净烟气与下部含污染物的烟气相互串混。The process and device of the invention divides the gas outlet chamber of the adsorption tower into two layers or a plurality of layers, and adjusts the amount of smoke entering the adsorption tower of the next stage according to the concentration of harmful components of the exhausted smoke, so that the next stage is entered. The amount of flue gas will be reduced by 30% to 50%, which can reduce the capacity of the booster fan and the secondary adsorption tower, thereby reducing investment and operating costs. In the prior art, the clean flue gas in the upper part of the air outlet chamber and the flue gas containing the contaminant in the lower part are avoided.
烟气进入吸附塔通过活性炭床层的过程中,烟气中的有害成份得到净化,由于吸附塔中的活性炭自上而下,上部为吸附能力较强的活性炭,随着活性炭向下移动,吸附的有害成份的增多,其吸附净化能力降低,净化后烟气中的有害成份逐渐增多,这样将上下一起混合平均后势必不能达到烟气排放要求,如果将上部浓度较低能够达标排放的烟气直接排放,将下部超标的烟气返回吸附塔进气口再进行净化,或是进入二级吸附塔进行净化。During the process of the flue gas entering the adsorption tower passing through the activated carbon bed, the harmful components in the flue gas are purified. Since the activated carbon in the adsorption tower is from top to bottom, the upper part is activated carbon with strong adsorption capacity, and the activated carbon moves downwards, adsorbing. The increase of harmful components, the adsorption and purification capacity is reduced, and the harmful components in the flue gas are gradually increased after the purification, so that the average mixing of the upper and lower sides may not meet the requirements of the flue gas emission, and if the upper concentration is lower, the flue gas can be discharged to the standard. Direct discharge, the lower than the standard flue gas is returned to the adsorption tower inlet for purification, or enter the secondary adsorption tower for purification.
本发明的目的是提供一种新型的烟气脱硫脱硝装置,其中将吸附塔的出气室分为上下两层或多层。通过调节吸附塔活性炭床层底部卸料阀(5)来调节活性炭在活性炭床层中的停留时间,确保从出气室上层或中上层排出的烟气中污染物含量在符合要求或符合法规的范围内。即,含量低于设定的限定值。It is an object of the present invention to provide a novel flue gas desulfurization and denitration apparatus in which an outlet chamber of an adsorption tower is divided into two or more layers. Adjust the residence time of activated carbon in the activated carbon bed by adjusting the discharge valve (5) at the bottom of the activated carbon bed of the adsorption tower to ensure that the pollutant content in the flue gas discharged from the upper or upper middle layer of the gas outlet is in compliance with the requirements or in compliance with regulations. Inside. That is, the content is lower than the set limit value.
根据本发明的第一个实施方案,提供一种烟气脱硫脱硝装置,它包括一级吸附塔(T1)和活性炭再生塔(或解析塔)(T3),其中活性炭解析塔(T3)具有上部的加热区、中部的缓冲区和下部的冷却区,在上部加热区的下侧部和上侧部分别连接了加热气体输入管(L1a)和加热气体输出管(L1b),在下部冷却区的下侧部和上侧部分别连接了冷却气体输入管(L2a)和冷却气体输出管(L2b),从解析塔(T3)中部的缓冲区侧部引出的酸性气体输送管道(L3a)连接至制酸系统,其特征在于:从酸性气体输送管道(L3a)的起始端(或前端)分出了一个加热气体支管(L3a'),并且,该加热气体支管(L3a')的另一端与加热气体输入管(L1a)连通或与加热气体输出管(L1b)连通,使得该加热气体支管(L3a')作为从加热气体输入管(L1a)上分出的支管或作为从加热气体输出管(L1b)上分出的支管;According to a first embodiment of the present invention, there is provided a flue gas desulfurization and denitration apparatus comprising a primary adsorption tower (T1) and an activated carbon regeneration tower (or analytical tower) (T3), wherein the activated carbon analysis tower (T3) has an upper portion The heating zone, the middle buffer zone and the lower cooling zone are connected to the heating gas inlet pipe (L1a) and the heating gas outlet pipe (L1b) in the lower side portion and the upper side portion of the upper heating zone, respectively, in the lower cooling zone The lower side portion and the upper side portion are respectively connected to the cooling gas input pipe (L2a) and the cooling gas output pipe (L2b), and the acid gas delivery pipe (L3a) drawn from the buffer side portion in the middle of the analysis tower (T3) is connected to the system. An acid system characterized in that a heating gas branch pipe (L3a') is branched from a starting end (or a front end) of the acid gas delivery pipe (L3a), and the other end of the heating gas branch pipe (L3a') is heated with a heating gas The input pipe (L1a) is in communication with or in communication with the heating gas outlet pipe (L1b) such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a slave heating gas output pipe (L1b) a branch pipe that is branched up;
其中一级吸附塔(T1)包括主体结构(1)、位于一级吸附塔(T1)顶部的进料仓(2)、进气室(3)、通向进气室(3)的原烟气输送烟道即第一烟气管道(L1)、吸附塔底仓卸料阀(4)、活性炭床层底部卸料阀(5)、多孔板(6)以及出气室。The first adsorption tower (T1) comprises a main structure (1), a feed bin (2) at the top of the primary adsorption tower (T1), an inlet chamber (3), and a raw smoke leading to the inlet chamber (3). The gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
优选的是,出气室分隔为上部出气室(a)和下部出气室(b),其中用于从 上部出气室(a)中输出纯净烟气的第二烟气管道(L2)被连通至排放烟囱,和用于从下部出气室(b)中输出烟气的第三烟气管道(L3)返回进气室(3)的上游与原烟气输送烟道即第一烟气管道(L1)合并或汇合。Preferably, the outlet chamber is divided into an upper outlet chamber (a) and a lower outlet chamber (b), wherein A second flue gas duct (L2) outputting pure flue gas in the upper air outlet chamber (a) is connected to the exhaust chimney, and a third flue gas duct (L3) for outputting flue gas from the lower air outlet chamber (b) is returned The upstream of the inlet chamber (3) merges or merges with the original flue gas conveying flue, that is, the first flue gas duct (L1).
一般,其中一级吸附塔(T1)具有一个活性炭床层、两个活性炭床层或多个活性炭床层(A,B,C),优选2-5个床层。Typically, the primary adsorption column (T1) has an activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2-5 beds.
一般,一级吸附塔(T1)的塔高是10-50m,优选13-45m,优选15-40m,更优选18-35m。In general, the column height of the primary adsorption column (T1) is 10-50 m, preferably 13-45 m, preferably 15-40 m, more preferably 18-35 m.
一般,上部出气室(a)与下部出气室(b)在垂直方向上的高度之比是0.7-1.3:1,优选0.8-1.2:1,优选0.9-1.1:1,如1:1。Generally, the ratio of the height of the upper outlet chamber (a) to the lower outlet chamber (b) in the vertical direction is 0.7-1.3:1, preferably 0.8-1.2:1, preferably 0.9-1.1:1, such as 1:1.
一般,所述两个或多个活性炭床层由多孔板隔开所形成。Typically, the two or more beds of activated carbon are formed by separating the perforated plates.
一般,一级吸附塔(T1)的塔高是10-50m,优选13-45m,优选15-40m,更优选18-35m。In general, the column height of the primary adsorption column (T1) is 10-50 m, preferably 13-45 m, preferably 15-40 m, more preferably 18-35 m.
根据本发明的第二个实施方案,提供一种烟气脱硫脱硝装置,它包括:According to a second embodiment of the present invention, there is provided a flue gas desulfurization and denitration apparatus comprising:
1)串联的一级吸附塔(T1)和二级吸附塔(T2),该吸附塔(T1)和(T2)的塔高各自独立地是,例如10-50m,优选13-45m,优选15-40m,更优选18-35m;和1) a primary adsorption column (T1) and a secondary adsorption column (T2) connected in series, the column heights of the adsorption columns (T1) and (T2) being independently, for example, 10-50 m, preferably 13-45 m, preferably 15 -40m, more preferably 18-35m; and
2)活性炭再生塔(或解析塔)(T3),2) Activated carbon regeneration tower (or analytical tower) (T3),
其中活性炭解析塔(T3)具有上部的加热区、中部的缓冲区和下部的冷却区,在上部加热区的下侧部和上侧部分别连接了加热气体输入管(L1a)和加热气体输出管(L1b),在下部冷却区的下侧部和上侧部分别连接了冷却气体输入管(L2a)和冷却气体输出管(L2b),从解析塔(T3)中部的缓冲区侧部引出的酸性气体输送管道(L3a)连接至制酸系统,其特征在于:从酸性气体输送管道(L3a)的起始端(或前端)分出了一个加热气体支管(L3a'),并且,该加热气体支管(L3a')的另一端与加热气体输入管(L1a)连通或与加热气体输出管(L1b)连通,使得该加热气体支管(L3a')作为从加热气体输入管(L1a)上分出的支管或作为从加热气体输出管(L1b)上分出的支管;The activated carbon analysis tower (T3) has an upper heating zone, a middle buffer zone and a lower cooling zone, and a heating gas inlet pipe (L1a) and a heating gas output pipe are respectively connected to the lower side portion and the upper side portion of the upper heating zone. (L1b), a cooling gas inlet pipe (L2a) and a cooling gas output pipe (L2b) are connected to the lower side portion and the upper side portion of the lower cooling zone, respectively, and the acidity is extracted from the buffer side portion in the middle of the analysis tower (T3) The gas delivery pipe (L3a) is connected to the acid production system, characterized in that a heating gas branch pipe (L3a') is branched from the start end (or front end) of the acid gas delivery pipe (L3a), and the heating gas branch pipe ( The other end of L3a') is in communication with the heating gas input pipe (L1a) or with the heating gas output pipe (L1b) such that the heating gas branch pipe (L3a') serves as a branch pipe branched from the heating gas input pipe (L1a) or As a branch pipe branched from the heating gas outlet pipe (L1b);
其中,一级吸附塔(T1)包括主体结构(1)、位于一级吸附塔(T1)顶部的进料仓(2)、进气室(3)、通向进气室(3)的原烟气输送烟道即第一烟气管道(L1)、吸附塔底仓卸料阀(4)、活性炭床层底部卸料阀(5)、多孔板(6)以及出气室, Wherein, the primary adsorption tower (T1) comprises a main structure (1), a feed bin (2) located at the top of the primary adsorption tower (T1), an inlet chamber (3), and an inlet to the inlet chamber (3) The flue gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
二级吸附塔(T2)分别包括主体结构(1)、位于吸附塔(T2)顶部的进料仓(2)、进气室(3’)、通向进气室(3’)的第三烟气管道(L3)、吸附塔底仓卸料阀(4)、活性炭床层底部卸料阀(5)、多孔板(6)以及出气室(9),和The secondary adsorption tower (T2) comprises a main structure (1), a feed bin (2) at the top of the adsorption tower (T2), an inlet chamber (3'), and a third passage to the inlet chamber (3'). Flue gas pipeline (L3), adsorption tower bottom discharge valve (4), activated carbon bed bottom discharge valve (5), perforated plate (6), and outlet chamber (9), and
一级吸附塔(T1)的下部出气室(b)通过管道连接至二级吸附塔(T2)的进气室(3’)。The lower outlet chamber (b) of the primary adsorption tower (T1) is connected by piping to the inlet chamber (3') of the secondary adsorption column (T2).
优选的是,一级吸附塔(T1)的出气室分隔为上部出气室(a)、下部出气室(b),其中用于从上部出气室(a)中输出纯净烟气的第二烟气管道(L2)被连通至排放烟囱,用于从下部出气室(b)中输出烟气的第三烟气管道(L3)连通至二级吸附塔(T2)的进气室(3’),以及任选地,从二级吸附塔(T2)的出气室(9)中输出烟气的第四烟气管道(L4)与第二烟气管道(L2)合并或汇合后通向排放烟囱;或Preferably, the outlet chamber of the primary adsorption tower (T1) is divided into an upper outlet chamber (a) and a lower outlet chamber (b), wherein the second flue gas for outputting pure flue gas from the upper outlet chamber (a) is divided. The pipe (L2) is connected to the discharge chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the intake chamber (3') of the secondary adsorption tower (T2), And optionally, the fourth flue gas duct (L4) outputting flue gas from the outlet chamber (9) of the secondary adsorption tower (T2) merges or merges with the second flue gas duct (L2) and leads to the discharge chimney; or
一级吸附塔(T1)的出气室分隔为上部出气室(a)、中部出气室(c)和下部出气室(b),其中用于从上部出气室(a)中输出纯净烟气的第二烟气管道(L2)被连通至排放烟囱,用于从下部出气室(b)中输出烟气的第三烟气管道(L3)连通至二级吸附塔(T2)的进气室(3’),用于从中部出气室(c)中输出烟气的第五烟气管道(L5)经由切换阀(10)分别连通至第二烟气管道(L2)或第三烟气管道(L3),以及任选地,从二级吸附塔(T2)的出气室(9)中输出烟气的第四烟气管道(L4)与第二烟气管道(L2)合并或汇合后通向排放烟囱。The outlet chamber of the primary adsorption tower (T1) is divided into an upper outlet chamber (a), a middle outlet chamber (c) and a lower outlet chamber (b), wherein the first outlet for outputting pure flue gas from the upper outlet chamber (a) The two flue gas duct (L2) is connected to the exhaust chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the intake chamber of the secondary adsorption tower (T2) (3) '), the fifth flue gas duct (L5) for outputting flue gas from the central air outlet chamber (c) is respectively connected to the second flue gas duct (L2) or the third flue gas duct (L3) via the switching valve (10) And, optionally, the fourth flue gas duct (L4) that outputs flue gas from the outlet chamber (9) of the secondary adsorption tower (T2) merges or merges with the second flue gas duct (L2) and then leads to discharge chimney.
在本申请中,优选,一级吸附塔(T1)能够以两个或多个并列来使用。二级吸附塔(T2)也能够以两个或多个并列来使用。并列的一级吸附塔(T1)的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合。当对称式双塔形式的一级吸附塔(T1)以两个或多个并列的一级吸附塔(T1)时,则并列的作为一级吸附塔(T1)的每一个对称式双塔的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合。In the present application, preferably, the primary adsorption column (T1) can be used in parallel in two or more. The secondary adsorption column (T2) can also be used in parallel in two or more. The outlet chambers of the juxtaposed primary adsorption tower (T1) are separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or Three levels, and, more preferably, the tubes that exhaust the flue gases from the chambers of the same level of different adsorption towers may be combined or merged. When the first-stage adsorption tower (T1) in the form of a symmetrical double column is in the form of two or more juxtaposed adsorption towers (T1), it is juxtaposed as each of the symmetric double towers of the first-stage adsorption tower (T1). The outlet chambers are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels, and, more preferably, The pipes that exhaust the flue gas from the chambers of the same level of different adsorption towers may be combined or merged.
一般,一级吸附塔(T1)或二级吸附塔(T2)各自独立地具有一个活性炭床层、两个活性炭床层或多个活性炭床层(A,B,C),优选2-5个床层。所述两个或多个活性炭床层由多孔板隔开所形成。 Generally, the primary adsorption tower (T1) or the secondary adsorption tower (T2) each independently has one activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2-5 Bed. The two or more activated carbon beds are formed by separating the porous plates.
一般,一级吸附塔(T1)与二级吸附塔(T2)彼此具有相同或不同的结构和尺寸。Generally, the primary adsorption column (T1) and the secondary adsorption column (T2) have the same or different structures and sizes from each other.
一般,一级吸附塔(T1)和二级吸附塔(T2)的塔高各自独立地是10-50m,优选13-45m,优选15-40m,更优选18-35m。In general, the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) are each independently from 10 to 50 m, preferably from 13 to 45 m, preferably from 15 to 40 m, more preferably from 18 to 35 m.
一般,一般,当一级吸附塔(T1)具有上部出气室(a)和下部出气室(b)时,上部出气室(a)和下部出气室(b)两者在垂直方向上的高度之比是0.7-1.3:1,优选0.8-1.2:1,优选0.9-1.1:1,如1:1。而当一级吸附塔(T1)具有上部出气室(a)、中部出气室(c)和下部出气室(b)时,上部出气室(a)、中部出气室(c)和下部出气室(b)三者在垂直方向上的高度之比是0.5-1.0:0.5-1.0:0.8-1,优选0.6-0.9:0.6-0.9:0.8-1,优选0.7-0.8:0.7-0.8:0.8-1。Generally, generally, when the primary adsorption tower (T1) has an upper outlet chamber (a) and a lower outlet chamber (b), the heights of both the upper outlet chamber (a) and the lower outlet chamber (b) in the vertical direction are The ratio is 0.7-1.3:1, preferably 0.8-1.2:1, preferably 0.9-1.1:1, such as 1:1. When the primary adsorption tower (T1) has an upper outlet chamber (a), a central outlet chamber (c), and a lower outlet chamber (b), the upper outlet chamber (a), the central outlet chamber (c), and the lower outlet chamber ( b) The ratio of the heights of the three in the vertical direction is 0.5-1.0: 0.5-1.0: 0.8-1, preferably 0.6-0.9: 0.6-0.9: 0.8-1, preferably 0.7-0.8: 0.7-0.8: 0.8-1 .
一级吸附塔(T1)与二级吸附塔(T2)彼此具有相同或不同的结构和尺寸。The primary adsorption column (T1) and the secondary adsorption column (T2) have the same or different structures and sizes from each other.
一般,一级吸附塔(T1)和二级吸附塔(T2)的塔高各自独立地是10-50m,优选13-45m,优选15-40m,更优选18-35m。In general, the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) are each independently from 10 to 50 m, preferably from 13 to 45 m, preferably from 15 to 40 m, more preferably from 18 to 35 m.
一般,在根据第一个实施方案和第二个实施方案的装置,活性炭解析塔(T3)具有上部的加热区、中部的缓冲区和下部的冷却区,在上部加热区的下侧部和上侧部分别连接了加热气体输入管(L1a)和加热气体输出管(L1b),在下部冷却区的下侧部和上侧部分别连接了冷却气体输入管(L2a)和冷却气体输出管(L2b),从解析塔(T3)中部的缓冲区侧部引出的酸性气体输送管道(L3a)连接至制酸系统(或制酸区)。In general, in the apparatus according to the first embodiment and the second embodiment, the activated carbon analysis column (T3) has an upper heating zone, a middle buffer zone, and a lower cooling zone, on the lower side and upper portion of the upper heating zone. A heating gas input pipe (L1a) and a heating gas output pipe (L1b) are respectively connected to the side portions, and a cooling gas input pipe (L2a) and a cooling gas output pipe (L2b) are respectively connected to the lower side portion and the upper side portion of the lower cooling zone. The acid gas delivery pipe (L3a) drawn from the side of the buffer zone in the middle of the analytical column (T3) is connected to the acid-making system (or acid-making zone).
优选的是,从酸性气体输送管道(L3a)的起始端(或前端)分出了一个加热气体支管(L3a'),并且,该加热气体支管(L3a')的另一端(例如经由阀门)与加热气体输入管(L1a)连通或与加热气体输出管(L1b)连通,使得该加热气体支管(L3a')作为从加热气体输入管(L1a)上分出的支管或作为从加热气体输出管(L1b)上分出的支管。Preferably, a heating gas branch pipe (L3a') is branched from the start end (or front end) of the acid gas delivery pipe (L3a), and the other end of the heating gas branch pipe (L3a') (for example, via a valve) is The heating gas input pipe (L1a) is in communication with or in communication with the heating gas output pipe (L1b) such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a slave heating gas output pipe ( Branch branch on L1b).
在本申请中,优选,一级吸附塔(T1)能够以两个或多个并列来使用。二级吸附塔(T2)也能够以两个或多个并列来使用。并列的一级吸附塔的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合。当对称式双塔形式的一级吸附塔(T1)以两个或多个并列的一级吸附塔时,则并列的作为一级吸附塔的每一个对称 式双塔的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合。In the present application, preferably, the primary adsorption column (T1) can be used in parallel in two or more. The secondary adsorption column (T2) can also be used in parallel in two or more. The outlet chambers of the parallel primary adsorption tower are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels. And, more preferably, the conduits for exhausting the flue gases from the chambers of the same level of different adsorption towers may be combined or merged. When the first-stage adsorption tower (T1) in the form of a symmetrical double tower is used as two or more juxtaposed primary adsorption towers, it is juxtaposed as each of the first-stage adsorption towers. The outlet chambers of the double towers are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels, and More preferably, the conduits for exhausting fumes from the chambers of the same level of different adsorption columns may be combined or merged.
一般地,由于烟气经过一级吸附塔处理后,有一部分原烟气(例如20-60%的原烟气,优选30-50%的原烟气)达到排放标准,可以直接排放,所以一级吸附塔的个数比二级吸附塔的个数要多。一般地,一级吸附塔为2-8个,优选3-6个,更优选为4-5个;二级吸附塔为1-6个,优选为2-5个,更优选为3-4个。例如:一级吸附塔为4个,二级吸附塔为2个。Generally, since the flue gas is treated by the primary adsorption tower, a part of the original flue gas (for example, 20-60% of the original flue gas, preferably 30-50% of the original flue gas) reaches the discharge standard, and can be directly discharged, so The number of stages of adsorption towers is greater than the number of secondary adsorption towers. Generally, the primary adsorption column is 2-8, preferably 3-6, more preferably 4-5; the secondary adsorption column is 1-6, preferably 2-5, more preferably 3-4 One. For example, there are 4 primary adsorption towers and 2 secondary adsorption towers.
根据本发明的第三个实施方案,提供一种使用根据第一个实施方案的脱硫脱硝装置的烟气脱硫脱硝方法,该方法包括以下步骤:According to a third embodiment of the present invention, there is provided a flue gas desulfurization and denitration method using the desulfurization and denitration apparatus according to the first embodiment, the method comprising the steps of:
I)脱硫、脱硝步骤:原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分地脱除,之后烟气进入到一级吸附塔(T1)的出气室中,吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的烟气输入管道(L1)中以及任选地通入到一级吸附塔(T1)内;和I) Desulfurization and denitration step: the original flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1) and then sequentially flows through one of the primary adsorption towers (T1) or In multiple activated carbon beds, the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the flue gas contains pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxins). After being removed or partially removed by the activated carbon, the flue gas is then introduced into the outlet chamber of the primary adsorption tower (T1), and the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); preferably At the same time as the above operation, the diluted ammonia gas is introduced into the flue gas input pipe (L1) of the primary adsorption tower (T1) and optionally into the primary adsorption tower (T1);
II)活性炭解析步骤:将吸附了污染物的活性炭从一级吸附塔(T1)的底部转移到具有上部的加热区和下部的冷却区的一种活性炭解析塔(T3)的加热区中,让活性炭进行解析、再生,而解析、再生后的活性炭向下通过冷却区之后从解吸塔(T3)底部排出;其中:在解析过程中将氮气通入到解析塔(T3)的上部,并且任选地同时将氮气经由第二氮气管道通入解析塔(T3)的下部;和,通入解析塔(T3)内的氮气将从活性炭上热解吸的包括SO2和NH3在内的气体污染物从解吸塔(T3)的加热区和冷却区之间的中间区段中带出并经由酸性气体管道(L3a)送至制酸系统;II) Activated carbon analysis step: transferring the activated carbon adsorbed by the pollutant from the bottom of the primary adsorption tower (T1) to the heating zone of an activated carbon analytical tower (T3) having an upper heating zone and a lower cooling zone, The activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon is discharged from the bottom of the desorption column (T3) after passing through the cooling zone; wherein: nitrogen is introduced into the upper part of the analytical column (T3) during the analysis, and optional At the same time, nitrogen is introduced into the lower portion of the analytical column (T3) via the second nitrogen gas line; and the gas introduced into the analytical column (T3) is thermally desorbed from the activated carbon, including SO 2 and NH 3 . The material is taken out from the intermediate section between the heating zone and the cooling zone of the desorption column (T3) and sent to the acid production system via the acid gas pipeline (L3a);
其中,在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的 温度、优选280-400℃、进一步优选300-380℃,更优选320-360℃);和,任选地,在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。Wherein, before the gaseous pollutants including SO 2 and NH 3 (ie, acid gases) are transported to the acid generating system via the acid gas pipeline (L3a), the heating gas branch pipe (L3a') is used from the heating gas inlet pipe (L1a). Or heating the gas from the heated gas output pipe (L1b), and flowing the heated gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, preheating to a temperature of 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing through the acid gas pipeline After (L3a), the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas output pipe (L1b) by the heating gas branch pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) to The acid gas remaining in the acid gas pipe (L3a) is removed.
优选的是,所述I)脱硫、脱硝步骤如下进行:原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分地脱除,之后烟气进入到一级吸附塔(T1)的上部出气室(a)和下部出气室(b)中,从一级吸附塔(T1)的上部出气室(a)中排出的烟气经由第二烟气管道(L2)输送至排放烟囱以便进行排放,从一级吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由第三烟气管道(L3)输送返回与第一烟气管道(L1)中的原烟气汇合,而吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的烟气输入管道(L1)中以及任选地通入到一级吸附塔(T1)内。Preferably, the I) desulfurization and denitration step is carried out as follows: the raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through the first stage. One or more activated carbon beds of the adsorption tower (T1), the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the flue gas contains pollutants (such as sulfur oxides, nitrogen) Oxide, dust, dioxin, etc.) are removed or partially removed by activated carbon, and then the flue gas enters the upper air outlet chamber (a) and the lower air outlet chamber (b) of the primary adsorption tower (T1), from one The flue gas discharged from the upper air outlet chamber (a) of the stage adsorption tower (T1) is sent to the discharge chimney via the second flue gas duct (L2) for discharge, from the lower air outlet chamber of the primary adsorption tower (T1) (b) The flue gas containing a small amount of pollutants discharged through the third flue gas pipeline (L3) is returned to merge with the original flue gas in the first flue gas pipeline (L1), and the activated carbon adsorbing the pollutants is from the primary adsorption tower. (T1) bottom discharge; preferably, while the above operation is performed, the diluted ammonia gas is introduced into the flue gas input pipe (L1) of the primary adsorption tower (T1) and An optionally opens into the adsorption column (T1).
优选,通过调节一级吸附塔(T1)活性炭床层底部卸料阀(5)的转速,来调节一级吸附塔(T1)中活性炭床层中活性炭的停留时间或下移速度,使得一级吸附塔(T1)的上部出气室(a)中的烟气的污染物含量在符合要求或符合法规的范围内。即,含量低于设定的限定值。Preferably, the residence time or the downward movement speed of the activated carbon in the activated carbon bed in the primary adsorption tower (T1) is adjusted by adjusting the rotation speed of the discharge valve (5) at the bottom of the activated carbon bed of the primary adsorption tower (T1), so that the first stage The pollutant content of the flue gas in the upper air outlet chamber (a) of the adsorption tower (T1) is within the scope of compliance with the requirements or compliance with regulations. That is, the content is lower than the set limit value.
进一步优选的是,在活性炭解析步骤启动之前或在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的温度、优选280-400℃、进一步优选300-380℃,更优选320-360℃)。It is further preferred to utilize a heated gas branch before the activation of the activated carbon analysis step or before the gaseous contaminants including SO 2 and NH 3 (ie, acid gases) are transported to the acid production system via the acid gas conduit (L3a) ( L3a') outputting a heating gas from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and flowing the heating gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C).
更优选,在活性炭解析步骤结束之后或在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气 体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。More preferably, after the end of the activated carbon analysis step or after the gas contaminant (ie, acid gas) including SO 2 and NH 3 stops flowing through the acid gas pipe (L3a), the heated gas branch pipe (L3a') is used to heat the gas. The heating gas is output from the heating pipe (L1b) in the input pipe (L1a), and the heating gas is purged by the acid gas pipe (L3a) to remove the acid gas remaining in the acid gas pipe (L3a).
根据本发明的第四个实施方案,提供一种使用根据第二实施方案2的脱硫脱硝装置的烟气脱硫脱硝方法,该方法包括以下步骤:According to a fourth embodiment of the present invention, there is provided a flue gas desulfurization and denitration method using the desulfurization and denitration apparatus according to the second embodiment 2, the method comprising the steps of:
I)脱硫、脱硝步骤:I) Desulfurization and denitration steps:
1)原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分脱除,之后,1) The raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through one or more activated carbon beds of the primary adsorption tower (T1) in sequence. The flue gas is in cross-flow contact with the activated carbon added from the top of the first adsorption tower (T1), wherein the pollutants contained in the flue gas (such as sulfur oxides, nitrogen oxides, dust, dioxin, etc.) are removed by the activated carbon. Except or partial removal, after
2)烟气进入到一级吸附塔(T1)的出气室中,吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;从一级吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由管道被输送至二级吸附塔(T2)的进气室(3’)中并且依次流过二级吸附塔(2)的一个或多个活性炭床层,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)进一步被活性炭脱除;从二级吸附塔(T2)的出气室(10)中排出的烟气通过烟囱被排放,吸附了污染物的活性炭则从二级吸附塔(T2)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的第一烟气管道(L1)中和任选地通入为二级吸附塔(T2)输送烟气的管道中以及任选地通入到一级吸附塔(T1)和/或二级吸附塔(T2)内;2) The flue gas enters the outlet chamber of the first adsorption tower (T1), and the activated carbon adsorbed with the pollutants is discharged from the bottom of the first adsorption tower (T1); from the lower outlet chamber of the first adsorption tower (T1) (b The flue gas containing a small amount of pollutants discharged through the pipeline is sent to the inlet chamber (3') of the secondary adsorption tower (T2) and sequentially flows through one or more activated carbon beds of the secondary adsorption tower (2) a layer in which pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxins, etc.) contained in the flue gas are further removed by the activated carbon; discharged from the outlet chamber (10) of the secondary adsorption tower (T2) The flue gas is discharged through the chimney, and the activated carbon adsorbing the pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the dilute ammonia gas is introduced into the first adsorption tower (T1) at the same time as the above operation. A flue gas duct (L1) is neutralized and optionally passed to a conduit for transporting flue gas to the secondary adsorption tower (T2) and optionally to a primary adsorption tower (T1) and/or a secondary adsorption tower ( Within T2);
with
II)活性炭解析步骤:将吸附了污染物的活性炭从一级吸附塔(T1)的底部和/或二级吸附塔(T2)的底部转移到具有上部的加热区和下部的冷却区的一种活性炭解析塔(T3)的加热区中,让活性炭进行解析、再生,而解析、再生后的活性炭向下流过冷却区之后从解吸塔(T3)底部排出;其中:在解析过程中将氮气通入到解析塔(T3)的上部,并且任选地同时将氮气经由第二氮气管道通入解析塔(T3)的下部;和,通入解析塔(T3)内的氮气将从活性炭上热解吸的包括SO2和NH3在内的气体污染物从解吸塔(T3)的加热区和冷却区之间的中间区段中带出并经由酸性气体管道(L3a)送至制酸系统;II) Activated carbon analysis step: transferring activated carbon adsorbed with pollutants from the bottom of the primary adsorption tower (T1) and/or the bottom of the secondary adsorption tower (T2) to a cooling zone having an upper heating zone and a lower cooling zone In the heating zone of the activated carbon analysis tower (T3), the activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon flows downward through the cooling zone and is discharged from the bottom of the desorption column (T3); wherein: nitrogen is introduced during the analysis process. Going to the upper part of the analytical column (T3), and optionally simultaneously passing nitrogen gas into the lower portion of the analytical column (T3) via the second nitrogen gas line; and, the nitrogen gas flowing into the analytical column (T3) is thermally desorbed from the activated carbon The gaseous contaminants including SO 2 and NH 3 are taken out from the intermediate section between the heating zone and the cooling zone of the desorption column (T3) and sent to the acid production system via the acid gas pipeline (L3a);
其中,在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体 输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的温度、优选280-400℃、进一步优选300-380℃,更优选320-360℃);和,任选地,在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。优选,一级吸附塔(T1)能够以两个或多个(例如2-6个,如3或4个)并列来使用;和/或,二级吸附塔(T2)能够以两个或多个并列(例如2-4个,如3个)来使用。Wherein, before the gaseous pollutants including SO 2 and NH 3 (ie, acid gases) are transported to the acid generating system via the acid gas pipeline (L3a), the heating gas branch pipe (L3a') is used from the heating gas inlet pipe (L1a). Or heating the gas from the heated gas output pipe (L1b), and flowing the heated gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, preheating to a temperature of 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing through the acid gas pipeline After (L3a), the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas output pipe (L1b) by the heating gas branch pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) to The acid gas remaining in the acid gas pipe (L3a) is removed. Preferably, the primary adsorption column (T1) can be used in parallel in two or more (for example 2-6, such as 3 or 4); and/or the secondary adsorption column (T2) can be used in two or more Parallel (for example, 2-4, such as 3) to use.
优选的是,所述I)脱硫、脱硝步骤如下进行:Preferably, the I) desulfurization and denitration steps are carried out as follows:
1)原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分脱除,之后,1) The raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through one or more activated carbon beds of the primary adsorption tower (T1) in sequence. The flue gas is in cross-flow contact with the activated carbon added from the top of the first adsorption tower (T1), wherein the pollutants contained in the flue gas (such as sulfur oxides, nitrogen oxides, dust, dioxin, etc.) are removed by the activated carbon. Except or partial removal, after
2)当一级吸附塔(T1)具有上部出气室(a)和下部出气室(b)时,烟气进入到一级吸附塔(T1)的上部出气室(a)和下部出气室(b)中,而吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;其中,从一级吸附塔(T1)的上部出气室(a)中排出的烟气经由第二烟气管道(L2)输送至排放烟囱以便进行排放,从吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由第三烟气管道(L3)输送至二级吸附塔(T2)的进气室(3’)中并且依次流过二级吸附塔(T2)的一个或多个活性炭床层,从二级吸附塔(T2)的出气室(9)中排出的烟气经由第四烟气管道(L4)输送至与第二烟气管道(L2)内的烟气汇合和然后排放,或,2) When the primary adsorption tower (T1) has an upper outlet chamber (a) and a lower outlet chamber (b), the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1) and the lower outlet chamber (b) In the middle, the activated carbon adsorbed by the pollutant is discharged from the bottom of the first adsorption tower (T1); wherein the flue gas discharged from the upper outlet chamber (a) of the primary adsorption tower (T1) passes through the second flue gas pipeline (L2) is sent to the discharge chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower outlet chamber (b) of the adsorption tower (T1) is sent to the secondary adsorption tower via the third flue gas duct (L3) ( In the inlet chamber (3') of T2) and sequentially flowing through one or more activated carbon beds of the secondary adsorption tower (T2), the flue gas discharged from the outlet chamber (9) of the secondary adsorption tower (T2) Conveyed to the flue gas in the second flue gas duct (L2) via the fourth flue gas duct (L4) and then discharged, or
当一级吸附塔(T1)具有上部出气室(a)、中部出气室(c)和下部出气室(b)时,烟气进入到一级吸附塔(T1)的上部出气室(a)、中部出气室(c)和下部出气室(b)中,而吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;其中,从一级吸附塔(T1)的上部出气室(a)中排出的烟气经由第二烟气管道(L2)输送至排放烟囱以便进行排放,从吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由第三烟气管道(L3)输送至二级吸附塔(T2)的进气室(3’)中并且依次流过二级吸附塔(T2)的一个或多个活性炭床层,从二级吸附塔 (T2)的出气室(9)中排出的烟气经由第四烟气管道(L4)输送至与第二烟气管道(L2)内的烟气汇合和然后排放,从一级吸附塔(T1)的中部出气室(c)中排出的烟气经由第五烟气管道(L5)输送并通过切换阀门(10)的切换而分别与第二烟气管道(L2)内的烟气汇合或与第三烟气管道(L3)内的烟气汇合,吸附了污染物的活性炭则从二级吸附塔(T2)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的第一烟气管道(L1)中和任选地通入为二级吸附塔(T2)输送烟气的第三烟气管道(L3)中以及任选地通入到一级吸附塔(T1)和/或二级吸附塔(T2)内。When the primary adsorption tower (T1) has an upper outlet chamber (a), a central outlet chamber (c), and a lower outlet chamber (b), the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1), In the central venting chamber (c) and the lower venting chamber (b), the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); wherein, from the upper venting chamber of the primary adsorption tower (T1) (a The flue gas discharged in the second flue gas duct (L2) is sent to the exhaust chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower air outlet chamber (b) of the adsorption tower (T1) passes through the third smoke The gas pipeline (L3) is sent to the inlet chamber (3') of the secondary adsorption tower (T2) and sequentially flows through one or more activated carbon beds of the secondary adsorption tower (T2) from the secondary adsorption tower The flue gas discharged from the outlet chamber (9) of (T2) is sent to the flue gas in the second flue gas duct (L2) via the fourth flue gas duct (L4) and then discharged, from the first adsorption tower (T1) The flue gas discharged from the central air outlet chamber (c) is transported via the fifth flue gas duct (L5) and merged with the flue gas in the second flue gas duct (L2) by switching of the switching valve (10), respectively. The flue gas in the third flue gas pipeline (L3) merges, and the activated carbon adsorbing the pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the diluted ammonia gas is introduced into the first stage simultaneously with the above operation. a first flue gas duct (L1) of the adsorption tower (T1) and optionally a third flue gas duct (L3) for transporting flue gas to the secondary adsorption tower (T2) and optionally to a In the adsorption tower (T1) and/or the secondary adsorption tower (T2).
在根据第三和第四实施方案的方法中,优选的是,通过调节吸附塔活性炭床层底部的卸料阀(5)来调节活性炭在活性炭床层中的停留时间,确保从一级吸附塔(T1)的上部出气室(a)中或从一级吸附塔(T1)的上部出气室(a)和中部出气室(c)中排出的烟气中污染物含量在符合要求或符合法规的范围内。In the processes according to the third and fourth embodiments, it is preferred to adjust the residence time of the activated carbon in the activated carbon bed by adjusting the discharge valve (5) at the bottom of the activated carbon bed of the adsorption column to ensure the adsorption column from the first stage. The content of contaminants in the upper venting chamber (a) of (T1) or from the upper venting chamber (a) of the primary adsorption tower (T1) and the central venting chamber (c) is in compliance with regulations or compliance with regulations. Within the scope.
在本申请中,“任选地”表示进行或不进行。“任选的”表示有或没有。In the present application, "optionally" means with or without. "Optional" means yes or no.
现有技术中,当活性炭解析步骤启动时,热的酸性气体在一开始或前期流过冷的(例如处于环境温度)酸性气体管道(L3a)时而导致温度降低,从而发生结露,形成液体酸,液体酸对酸性气体管道(L3a)有强烈腐蚀作用。为了解决这一问题,一般在酸性气体管道(L3a)外周设置伴热管和最外层设置保温层。通过伴热管加热气体来确保酸性气体在流过酸性气体管道(L3a)时的温度高于露点,即,让酸性组分保持气体状态。In the prior art, when the activated carbon analysis step is started, the hot acid gas flows through the cold (for example, at ambient temperature) acid gas pipeline (L3a) at the beginning or in the early stage, causing the temperature to decrease, thereby causing condensation to form a liquid acid. The liquid acid has a strong corrosive effect on the acid gas pipeline (L3a). In order to solve this problem, a heat insulating tube and an outermost layer are generally provided with an insulating layer on the outer periphery of the acid gas pipe (L3a). The gas is heated by the heat tracing tube to ensure that the temperature of the acid gas flowing through the acid gas pipe (L3a) is higher than the dew point, that is, the acidic component is maintained in a gaseous state.
本申请的发明人通过研究发现,在活性炭解析步骤启动之前,通过用加热气体预先通入酸性气体管道(L3a)中对该管道进行预热,预热至高于酸性气体的露点的温度,例如预热至250-450℃的温度、优选280-400℃、进一步优选为300-380℃,更优选320-360℃的温度。当酸性气体持续流过酸性气体管道(L3a)时,酸性气体所携带的热量足以维持酸性气体管道(L3a)的温度,防止其降温。The inventors of the present application have found through research that preheating the pipe to a temperature higher than the dew point of the acid gas by preheating the gas into the acid gas pipe (L3a) before the start of the activated carbon analysis step, for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C. When the acid gas continues to flow through the acid gas pipe (L3a), the acid gas carries enough heat to maintain the temperature of the acid gas pipe (L3a) and prevent it from cooling.
进一步优选地,在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后或在活性炭解析步骤结束之后,立即利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道 (L3a)中残留或滞留的酸性气体。Further preferably, the heating gas branch pipe (L3a') is used immediately after the gas contaminant (i.e., acid gas) including SO 2 and NH 3 stops flowing through the acid gas pipe (L3a) or after the end of the activated carbon analysis step. Heating gas is supplied from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and the heating gas is purged by the acid gas pipe (L3a) to remove acid gas remaining or retained in the acid gas pipe (L3a). .
也就是说,在活性炭解析步骤启动之前或在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的温度、优选280-400℃、进一步优选为300-380℃,更优选320-360℃)。That is, the heated gas branch (L3a) is used before the activated carbon analysis step is initiated or before the gaseous contaminants (ie, acid gases) including SO 2 and NH 3 are transported to the acid production system via the acid gas pipeline (L3a). ') The heating gas is output from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and the heating gas flows through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, preheating) The temperature to 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C).
另外,在活性炭解析步骤结束之后或在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。In addition, after the end of the activated carbon analysis step or after the gas contaminant (ie, acid gas) including SO 2 and NH 3 stops flowing through the acid gas pipe (L3a), the heated gas branch pipe (L3a') is used to input from the heating gas. The heating gas is output from the heating gas output pipe (L1b) in the pipe (L1a), and the heating gas is purged by the acid gas pipe (L3a) to remove the acid gas remaining in the acid gas pipe (L3a).
活性炭从解析塔顶部送入,从塔底部排出。在解析塔上部的加热段,吸附了污染物质的活性炭被加热到400℃以上,并保持3小时以上,被活性炭吸附的SO2被释放出来,生成“富硫气体(SRG)”,SRG输送至制酸工段(或制酸系统)制取H2SO4。被活性炭吸附的NOX发生SCR或者SNCR反应,同时其中二噁英大部分被分解。解析塔解析所需热量由一台热风炉提供,高炉煤气在热风炉内燃烧后,热烟气(经由管道L1a)送入解析塔的壳程。换热后的热气(L1b)大部分回到热风循环风机中(另一小部分则外排至大气),由其送入热风炉和新燃烧的高温热气混合。在解析塔下部设有冷却段,经由管道(L2a)鼓入空气将活性炭的热量带出。冷却段设置有冷却风机,鼓入冷风将活性炭冷却,然后外排至大气中。解析塔出来的活性炭经过活性炭筛筛分,将小于1.2mm的细小活性炭颗粒及粉尘去除,可提高活性炭的吸附能力。活性炭筛筛上物为吸附能力强的活性炭,活性炭通过活性炭输送机输送至吸附塔循环利用,筛下物则进入灰仓。解析过程中需要用氮气进行保护,氮气同时作为载体将解析出来的SO2等有害气体带出。氮气从解析塔上部和下部通入,在解析塔中间汇集排出,同时将活性炭中吸附了的SO2带出,并送至制酸系统去制酸。氮气通入解析塔上方时,用氮气加热器将其加热至100℃左右再通入解析塔中。Activated carbon is fed from the top of the analytical column and discharged from the bottom of the column. In the heating section of the upper part of the analytical tower, the activated carbon adsorbed with the pollutants is heated to 400 ° C or higher and maintained for more than 3 hours, and the SO 2 adsorbed by the activated carbon is released to generate "sulfur-rich gas (SRG)", and the SRG is transported to The acid production section (or acid production system) produces H 2 SO 4 . NO X adsorbed activated SCR or SNCR reaction occurs, while most of dioxins are decomposed. The heat required for the analytical tower analysis is provided by a hot blast stove. After the blast furnace gas is burned in the hot blast stove, the hot flue gas (via the pipeline L1a) is sent to the shell side of the analytical tower. Most of the hot gas (L1b) after heat exchange returns to the hot air circulation fan (the other part is discharged to the atmosphere), which is fed into the hot blast stove and mixed with the newly burned high temperature hot gas. A cooling section is provided at the lower portion of the analytical tower, and air is blown through the duct (L2a) to carry the heat of the activated carbon. The cooling section is provided with a cooling fan, and the cold air is blown to cool the activated carbon, and then discharged to the atmosphere. The activated carbon from the analytical tower is sieved by activated carbon sieve to remove fine activated carbon particles and dust of less than 1.2 mm, which can improve the adsorption capacity of the activated carbon. The activated carbon sieve on the sieve is activated carbon with strong adsorption capacity, and the activated carbon is transported to the adsorption tower through the activated carbon conveyor for recycling, and the sieved material enters the ash silo. Nitrogen is required for protection during the analysis, and nitrogen is used as a carrier to carry out the harmful gases such as SO 2 which are resolved. Nitrogen gas is introduced from the upper and lower portions of the analytical column, and is collected and discharged in the middle of the analytical column. At the same time, the SO 2 adsorbed in the activated carbon is taken out and sent to the acid-making system to produce acid. When nitrogen gas was passed over the analytical column, it was heated to about 100 ° C with a nitrogen heater and passed to the analytical column.
这里,串联的一级吸附塔和二级吸附塔是指:一级吸附塔的烟气出口 经由管道连接至二级吸附塔的烟气进口。Here, the first-stage adsorption tower and the second-stage adsorption tower in series refer to: the flue gas outlet of the first-stage adsorption tower Connected to the flue gas inlet of the secondary adsorption tower via a pipeline.
对于烟气(或废气)吸附塔的设计及其吸附工艺,现有技术中已经有很多文献进行了披露,参见例如US5932179,JP2004209332A,和JP3581090B2(JP2002095930A)和JP3351658B2(JPH08332347A),JP2005313035A。本申请不再进行详细描述。For the design of the flue gas (or exhaust gas) adsorption column and its adsorption process, a number of documents have been disclosed in the prior art, see, for example, US Pat. No. 5,932,179, JP 2004209332 A, and JP 3,518,090 B2 (JP 2002 095 930 A) and JP 3 351 658 B2 (J PH 083 332 347 A), JP 2005 313 035 A. This application is not described in detail.
在本发明中,对于吸附塔(T1)或对于一级吸附塔(T1)或二级吸附塔(T2),可以采用单塔单床层设计;或单塔多床层设计,例如进气室(3)-脱硫活性炭床层(A)-脱硝活性炭床层(B)-出气室,或例如进气室(3)-脱硫活性炭床层(A)-脱硫脱硝活性炭床层(B)-脱硝活性炭床层(C)-出气室。还可以采用对称式双塔多床层设计,如图7和图8中所示。In the present invention, for the adsorption tower (T1) or for the primary adsorption tower (T1) or the secondary adsorption tower (T2), a single tower single bed design can be used; or a single tower multiple bed design, such as an inlet chamber (3)-Desulfurized activated carbon bed (A)-Denitrated activated carbon bed (B)-Exhaust chamber, or for example, inlet chamber (3)-Desulfurized activated carbon bed (A)-Desulfurization and denitration activated carbon bed (B)-Denitration Activated carbon bed (C) - outlet chamber. A symmetric two-tower multi-bed design can also be used, as shown in Figures 7 and 8.
在本申请中,一级吸附塔(T1)作为一级吸附塔。二级吸附塔(T2)作为二级吸附塔。作为一级吸附塔的一级吸附塔(T1)能够以两个或多个并列来使用。作为二级吸附塔的二级吸附塔(T2)也能够以两个或多个并列来使用。当对称式双塔以两个或多个并列作为一级吸附塔时,则并列的作为一级吸附塔的每一个对称式双塔的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,并且,优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合。In the present application, the primary adsorption column (T1) serves as a primary adsorption column. The secondary adsorption tower (T2) acts as a secondary adsorption tower. The primary adsorption column (T1) as a primary adsorption column can be used in parallel in two or more. The secondary adsorption column (T2) as a secondary adsorption column can also be used in parallel in two or more. When two or more symmetric double towers are juxtaposed as a first-stage adsorption tower, the outlet chambers of each of the symmetric double towers which are juxtaposed as the primary adsorption tower are respectively separated into upper and lower chambers (a, b) or upper, lower, middle and lower chambers (a, c, b), ie divided into two levels or three levels, and, preferably, the flue gas is discharged from chambers of the same level of different adsorption towers Pipes can be merged or merged.
一般地,由于烟气经过一级吸附塔处理后,有一部分原烟气(例如20-60%的原烟气,优选30-50%的原烟气)达到排放标准,可以直接排放,所以一级吸附塔的个数比二级吸附塔的个数要多。一般地,一级吸附塔为2-8个,优选3-6个,更优选为4-5个;二级吸附塔为1-6个,优选为2-5个,更优选为3-4个。例如:一级吸附塔为4个,二级吸附塔为2个。Generally, since the flue gas is treated by the primary adsorption tower, a part of the original flue gas (for example, 20-60% of the original flue gas, preferably 30-50% of the original flue gas) reaches the discharge standard, and can be directly discharged, so The number of stages of adsorption towers is greater than the number of secondary adsorption towers. Generally, the primary adsorption column is 2-8, preferably 3-6, more preferably 4-5; the secondary adsorption column is 1-6, preferably 2-5, more preferably 3-4 One. For example, there are 4 primary adsorption towers and 2 secondary adsorption towers.
一般来说,用于本申请中的一级吸附塔(T1)和二级吸附塔(T2)的塔高各自独立地是,例如10-50m,优选13-45m,优选15-40m,更优选18-35m。一级吸附塔(T1)与二级吸附塔(T2)彼此可以采用相同或不同的结构和尺寸,优选的是采用相同的结构和尺寸。吸附塔的塔高是指从吸附塔底部活性炭出口到吸附塔顶部活性炭入口的高度,即塔的主体结构的高度。In general, the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) used in the present application are each independently, for example, 10 to 50 m, preferably 13 to 45 m, preferably 15 to 40 m, more preferably 18-35m. The primary adsorption column (T1) and the secondary adsorption column (T2) may adopt the same or different structures and sizes from each other, and preferably adopt the same structure and size. The tower height of the adsorption tower refers to the height from the activated carbon outlet at the bottom of the adsorption tower to the activated carbon inlet at the top of the adsorption tower, that is, the height of the main structure of the tower.
在本发明中,对于解析塔没有特别的要求,现有技术的解析塔都可用于本发明中。优选的是,解析塔是管壳型的立式解析塔,其中活性炭从塔顶输入,向下流经管程,然后到达塔底,而加热气体则流经壳程,加热气 体从塔的一侧进入,与流经管程的活性炭进行热交换而降温,然后从塔的另一侧输出。在本发明中,对于解析塔没有特别的要求,现有技术的解析塔都可用于本发明中。优选的是,解析塔是管壳型(或壳管型)的立式解析塔,其中活性炭从塔顶输入,向下流经上部加热区的管程,然后到达一个处于上部加热区与下部冷却区之间的一个缓冲空间,然后流经下部冷却区的管程,然后到达塔底,而加热气体(或高温热风)则流经加热区的壳程,加热气体(400-450℃)从解析塔的加热区的一侧进入,与流经加热区管程的活性炭进行间接热交换而降温,然后从塔的加热区的另一侧输出。冷却风从解析塔的冷却区的一侧进入,与流经冷却区管程的已解析、再生的活性炭进行间接热交换。在间接热交换之后,冷却风升温至90-130℃(如约100℃)。In the present invention, there is no particular requirement for the analytical column, and the prior art analytical column can be used in the present invention. Preferably, the analytical tower is a shell-type vertical analytical tower, wherein activated carbon is input from the top of the tower, flows downward through the tube, and then reaches the bottom of the tower, and the heated gas flows through the shell side to heat the gas. The body enters from one side of the column, is cooled by heat exchange with the activated carbon flowing through the tube, and is then output from the other side of the column. In the present invention, there is no particular requirement for the analytical column, and the prior art analytical column can be used in the present invention. Preferably, the analytical column is a shell-type (or shell-and-tube type) vertical analytical column in which activated carbon is input from the top of the column, flows downward through the tube section of the upper heating zone, and then reaches an upper heating zone and a lower cooling zone. A buffer space between them then flows through the tube section of the lower cooling zone and then reaches the bottom of the tower, while the heated gas (or high temperature hot air) flows through the shell side of the heating zone, heating the gas (400-450 ° C) from the analytical tower One side of the heating zone enters, is cooled by indirect heat exchange with activated carbon flowing through the heating zone, and is then output from the other side of the heating zone of the column. The cooling air enters from one side of the cooling zone of the analytical column and is indirectly heat exchanged with the resolved, regenerated activated carbon flowing through the cooling zone. After indirect heat exchange, the cooling air is warmed to 90-130 ° C (eg, about 100 ° C).
一般来说,用于本发明中的解析塔通常具有10-45m、优选15-40m、更优选20-35米的塔高。解吸塔通常具有6-100㎡、优选8-50㎡、更优选10-30㎡、进一步优选15-20㎡的主体横截面积。In general, the analytical column used in the present invention usually has a column height of 10 to 45 m, preferably 15 to 40 m, more preferably 20 to 35 m. The desorption column usually has a cross-sectional area of the main body of 6 to 100 m 2 , preferably 8 to 50 m 2 , more preferably 10 to 30 m 2 , further preferably 15 to 20 m 2 .
在本发明中,“相同层级的腔室”是指两个或者多个吸附塔,每个吸附塔的出气室均分为上、下两个腔室(或分为上、中、下三个腔室),所有吸附塔出气室的上腔室为相同层级的腔室,所有吸附塔出气室的中腔室也为相同层级的腔室,同理,所有吸附塔出气室的下腔室为相同层级的腔室。In the present invention, "the same level of chamber" refers to two or more adsorption towers, and the outlet chamber of each adsorption tower is divided into upper and lower chambers (or divided into upper, middle and lower three chambers). Chamber), the upper chambers of all the adsorption tower outlet chambers are the same level chambers, and the middle chambers of all the adsorption tower outlet chambers are also the same level chambers. Similarly, the lower chambers of all the adsorption tower outlet chambers are The same level of chambers.
在本申请中“解析”与“再生”可互换使用。In this application, "analysis" and "regeneration" are used interchangeably.
本发明的优点Advantages of the invention
1、在活性炭解析步骤启动之前或在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体用于预热该酸性气体管道,以及,在活性炭解析步骤结束之后,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。能够显著防止酸性气体对酸性气体输送管道的腐蚀作用。1. Use a heated gas branch (L3a') before the activated carbon analysis step is initiated or before the gaseous contaminants (ie, acid gases) including SO 2 and NH 3 are transported to the acid system via the acid gas line (L3a). The heating gas is outputted from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b) for preheating the acid gas pipe, and after the carbonization analysis step is finished, the heating gas is purged by the acid gas pipe ( L3a) to remove the acid gas remaining in the acid gas pipe (L3a). It can significantly prevent the corrosive action of acid gas on the acid gas delivery pipeline.
2、本申请的工艺和装置利用吸附塔上部活性炭的吸附容量大净化能力强,净化效果好,净化后烟气中的有害成份浓度低的特点,将吸附塔出气室由过去的一个整体划分为上下两层或多层,使通过吸附塔净化后的烟气根据净化程度进行分段进入不同的烟道,烟气中有害成份浓度达标的烟道 直接排入烟囱,不能达标排放的烟气则进入下一级吸附塔或是还回吸附塔入口再一次净化,这样进入下一级的烟气量将缩减30%~50%,可以减小增压风机和二级吸附塔的能力,从而降低投资和运行费用。2. The process and device of the present application utilizes the adsorption capacity of the activated carbon in the upper part of the adsorption tower to have a large purification capacity, a good purification effect, and a low concentration of harmful components in the flue gas after purification, and the adsorption tower outlet chamber is divided into a whole by the past. Two or more layers above and below, so that the flue gas purified by the adsorption tower is segmented into different flue according to the degree of purification, and the concentration of harmful components in the flue gas reaches the standard flue. Directly discharged into the chimney, the flue gas that can not reach the standard discharge enters the next-stage adsorption tower or is returned to the inlet of the adsorption tower for further purification, so that the amount of flue gas entering the next stage will be reduced by 30% to 50%, which can be reduced. The ability of the pressure blower and secondary adsorption tower to reduce investment and operating costs.
附图说明DRAWINGS
图1是现有技术的包括活性炭吸附塔和活性炭再生塔的脱硫脱硝装置及工艺流程示意图。1 is a schematic diagram of a prior art desulfurization and denitration apparatus including an activated carbon adsorption tower and an activated carbon regeneration tower.
图2是现有技术的烟气脱硫脱销装置(日本住友公司)的工艺流程示意图。2 is a schematic view showing the process flow of a prior art flue gas desulfurization and unsalable device (Sumitomo Corporation of Japan).
图3是现有技术的另一种烟气脱硫脱销装置(上海克硫公司)的工艺流程示意图。3 is a schematic view showing the process flow of another flue gas desulfurization and unsalable device (Shanghai Ke Sulphur Co., Ltd.) of the prior art.
图4是本发明的第一个实施方案的烟气脱硫脱硝装置的工艺流程示意图。Fig. 4 is a schematic view showing the process flow of the flue gas desulfurization and denitration apparatus of the first embodiment of the present invention.
图5是本发明的第二个实施方案的烟气脱硫脱硝装置的工艺流程示意图。Fig. 5 is a schematic view showing the process flow of a flue gas desulfurization and denitration apparatus according to a second embodiment of the present invention.
图6是本发明的第二个实施方案的另一种烟气脱硫脱硝装置的工艺流程示意图。Fig. 6 is a schematic view showing the process flow of another flue gas desulfurization and denitration apparatus according to a second embodiment of the present invention.
图7是本发明的对称式双塔多床层(各床层之间无间隙空间)设计的吸附塔的示意图。Fig. 7 is a schematic view of an adsorption tower designed according to the symmetrical two-bed multi-bed layer of the present invention (with no interstitial spaces between the beds).
图8是本发明的对称式双塔多床层(各床层之间有间隙空间)设计的吸附塔的示意图。Fig. 8 is a schematic view of an adsorption tower designed according to the symmetrical two-bed multi-bed layer of the present invention (with a gap space between each bed layer).
附图标记Reference numeral
T1:吸附塔或一级吸附塔;T2:二级吸附塔;1:吸附塔的主体;2:活性炭进料仓;3或3’:吸附塔进气室,4:吸附塔底仓的卸料阀(或旋转阀);5:活性炭床层底部的辊式给料机(或旋转阀);6:多孔隔板;7:增压风机;8、8a、8b:活性炭输送机;9:二级吸附塔的出气室;10:切换阀。T1: adsorption tower or primary adsorption tower; T2: secondary adsorption tower; 1: main body of adsorption tower; 2: activated carbon feed silo; 3 or 3': adsorption tower inlet chamber, 4: adsorption tower bottom silo unloading Feed valve (or rotary valve); 5: roller feeder (or rotary valve) at the bottom of the activated carbon bed; 6: porous separator; 7: booster fan; 8, 8a, 8b: activated carbon conveyor; The outlet chamber of the secondary adsorption tower; 10: switching valve.
A、B、C、D、E:活性炭床层;a:上部出气室,c:中部出气室,b:下部出气室;L1:原烟气输送烟道或第一烟气管道;L2:第二烟气管道(或 净烟气输送管道);L3:第三烟气管道;L4:第四烟气管道;L5:第五烟气管道。A, B, C, D, E: activated carbon bed; a: upper venting chamber, c: central venting chamber, b: lower venting chamber; L1: original flue gas conveying flue or first flue gas duct; L2: Two flue gas pipelines (or Net flue gas conveying pipeline); L3: third flue gas pipeline; L4: fourth flue gas pipeline; L5: fifth flue gas pipeline.
T3:解吸塔(或再生塔);S1:活性炭振动筛;N2:氮气输送管。T3: desorption tower (or regeneration tower); S1: activated carbon shaker; N2: nitrogen delivery pipe.
L1a:加热气体输入管;L1b:加热气体输出管();L2a:冷却气体输入管;L2b:冷却气体输出管;L3a:酸性气体输送管道;L3a':加热气体支管。L1a: heating gas input pipe; L1b: heating gas output pipe (); L2a: cooling gas input pipe; L2b: cooling gas output pipe; L3a: acid gas delivery pipe; L3a': heating gas branch pipe.
h:吸附段高度。h: height of the adsorption section.
具体实施方式detailed description
在所有的实施方式,原烟气中SO2和NOx的含量分别为300mg/Nm3-4000mg/Nm3和200mg/Nm3-500mg/Nm3In all embodiments, the original flue gas SO 2 and NOx contents were 300mg / Nm 3 -4000mg / Nm 3 and 200mg / Nm 3 -500mg / Nm 3 .
下面描述本申请的具体实施方式:Specific embodiments of the present application are described below:
根据本发明的第一个实施方案,提供一种烟气脱硫脱硝装置,它包括一级吸附塔(T1)和活性炭再生塔(或解析塔)(T3),其中活性炭解析塔(T3)具有上部的加热区、中部的缓冲区和下部的冷却区,在上部加热区的下侧部和上侧部分别连接了加热气体输入管(L1a)和加热气体输出管(L1b),在下部冷却区的下侧部和上侧部分别连接了冷却气体输入管(L2a)和冷却气体输出管(L2b),从解析塔(T3)中部的缓冲区侧部引出的酸性气体输送管道(L3a)连接至制酸系统,其特征在于:从酸性气体输送管道(L3a)的起始端(或前端)分出了一个加热气体支管(L3a'),并且,该加热气体支管(L3a')的另一端与加热气体输入管(L1a)连通或与加热气体输出管(L1b)连通,使得该加热气体支管(L3a')作为从加热气体输入管(L1a)上分出的支管或作为从加热气体输出管(L1b)上分出的支管;According to a first embodiment of the present invention, there is provided a flue gas desulfurization and denitration apparatus comprising a primary adsorption tower (T1) and an activated carbon regeneration tower (or analytical tower) (T3), wherein the activated carbon analysis tower (T3) has an upper portion The heating zone, the middle buffer zone and the lower cooling zone are connected to the heating gas inlet pipe (L1a) and the heating gas outlet pipe (L1b) in the lower side portion and the upper side portion of the upper heating zone, respectively, in the lower cooling zone The lower side portion and the upper side portion are respectively connected to the cooling gas input pipe (L2a) and the cooling gas output pipe (L2b), and the acid gas delivery pipe (L3a) drawn from the buffer side portion in the middle of the analysis tower (T3) is connected to the system. An acid system characterized in that a heating gas branch pipe (L3a') is branched from a starting end (or a front end) of the acid gas delivery pipe (L3a), and the other end of the heating gas branch pipe (L3a') is heated with a heating gas The input pipe (L1a) is in communication with or in communication with the heating gas outlet pipe (L1b) such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a slave heating gas output pipe (L1b) a branch pipe that is branched up;
其中一级吸附塔(T1)包括主体结构(1)、位于一级吸附塔(T1)顶部的进料仓(2)、进气室(3)、通向进气室(3)的原烟气输送烟道即第一烟气管道(L1)、吸附塔底仓卸料阀(4)、活性炭床层底部卸料阀(5)、多孔板(6)以及出气室。The first adsorption tower (T1) comprises a main structure (1), a feed bin (2) at the top of the primary adsorption tower (T1), an inlet chamber (3), and a raw smoke leading to the inlet chamber (3). The gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
优选的是,出气室分隔为上部出气室(a)和下部出气室(b),其中用于从上部出气室(a)中输出纯净烟气的第二烟气管道(L2)被连通至排放烟囱,和用于从下部出气室(b)中输出烟气的第三烟气管道(L3)返回进气室(3)的上 游与原烟气输送烟道即第一烟气管道(L1)合并或汇合。Preferably, the outlet chamber is partitioned into an upper outlet chamber (a) and a lower outlet chamber (b), wherein the second flue gas duct (L2) for outputting pure flue gas from the upper outlet chamber (a) is connected to the discharge a chimney, and a third flue gas duct (L3) for outputting flue gas from the lower air outlet chamber (b) is returned to the intake chamber (3) The swim merges or merges with the original flue gas conveying flue, the first flue gas duct (L1).
一般,其中一级吸附塔(T1)具有一个活性炭床层、两个活性炭床层或多个活性炭床层(A,B,C),优选2-5个床层。Typically, the primary adsorption column (T1) has an activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2-5 beds.
一般,一级吸附塔(T1)的塔高是10-50m,优选13-45m,优选15-40m,更优选18-35m。In general, the column height of the primary adsorption column (T1) is 10-50 m, preferably 13-45 m, preferably 15-40 m, more preferably 18-35 m.
一般,上部出气室(a)与下部出气室(b)在垂直方向上的高度之比是0.7-1.3:1,优选0.8-1.2:1,优选0.9-1.1:1,如1:1。Generally, the ratio of the height of the upper outlet chamber (a) to the lower outlet chamber (b) in the vertical direction is 0.7-1.3:1, preferably 0.8-1.2:1, preferably 0.9-1.1:1, such as 1:1.
一般,所述两个或多个活性炭床层由多孔板隔开所形成。Typically, the two or more beds of activated carbon are formed by separating the perforated plates.
一般,一级吸附塔(T1)的塔高是10-50m,优选13-45m,优选15-40m,更优选18-35m。In general, the column height of the primary adsorption column (T1) is 10-50 m, preferably 13-45 m, preferably 15-40 m, more preferably 18-35 m.
根据本发明的第二个实施方案,提供一种烟气脱硫脱硝装置,它包括:According to a second embodiment of the present invention, there is provided a flue gas desulfurization and denitration apparatus comprising:
1)串联的一级吸附塔(T1)和二级吸附塔(T2),该吸附塔(T1)和(T2)的塔高各自独立地是,例如10-50m,优选13-45m,优选15-40m,更优选18-35m;和1) a primary adsorption column (T1) and a secondary adsorption column (T2) connected in series, the column heights of the adsorption columns (T1) and (T2) being independently, for example, 10-50 m, preferably 13-45 m, preferably 15 -40m, more preferably 18-35m; and
2)活性炭再生塔(或解析塔)(T3),2) Activated carbon regeneration tower (or analytical tower) (T3),
其中活性炭解析塔(T3)具有上部的加热区、中部的缓冲区和下部的冷却区,在上部加热区的下侧部和上侧部分别连接了加热气体输入管(L1a)和加热气体输出管(L1b),在下部冷却区的下侧部和上侧部分别连接了冷却气体输入管(L2a)和冷却气体输出管(L2b),从解析塔(T3)中部的缓冲区侧部引出的酸性气体输送管道(L3a)连接至制酸系统,其特征在于:从酸性气体输送管道(L3a)的起始端(或前端)分出了一个加热气体支管(L3a'),并且,该加热气体支管(L3a')的另一端与加热气体输入管(L1a)连通或与加热气体输出管(L1b)连通,使得该加热气体支管(L3a')作为从加热气体输入管(L1a)上分出的支管或作为从加热气体输出管(L1b)上分出的支管;The activated carbon analysis tower (T3) has an upper heating zone, a middle buffer zone and a lower cooling zone, and a heating gas inlet pipe (L1a) and a heating gas output pipe are respectively connected to the lower side portion and the upper side portion of the upper heating zone. (L1b), a cooling gas inlet pipe (L2a) and a cooling gas output pipe (L2b) are connected to the lower side portion and the upper side portion of the lower cooling zone, respectively, and the acidity is extracted from the buffer side portion in the middle of the analysis tower (T3) The gas delivery pipe (L3a) is connected to the acid production system, characterized in that a heating gas branch pipe (L3a') is branched from the start end (or front end) of the acid gas delivery pipe (L3a), and the heating gas branch pipe ( The other end of L3a') is in communication with the heating gas input pipe (L1a) or with the heating gas output pipe (L1b) such that the heating gas branch pipe (L3a') serves as a branch pipe branched from the heating gas input pipe (L1a) or As a branch pipe branched from the heating gas outlet pipe (L1b);
其中,一级吸附塔(T1)包括主体结构(1)、位于一级吸附塔(T1)顶部的进料仓(2)、进气室(3)、通向进气室(3)的原烟气输送烟道即第一烟气管道(L1)、吸附塔底仓卸料阀(4)、活性炭床层底部卸料阀(5)、多孔板(6)以及出气室,Wherein, the primary adsorption tower (T1) comprises a main structure (1), a feed bin (2) located at the top of the primary adsorption tower (T1), an inlet chamber (3), and an inlet to the inlet chamber (3) The flue gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
二级吸附塔(T2)分别包括主体结构(1)、位于吸附塔(T2)顶部的进料仓(2)、进气室(3’)、通向进气室(3’)的第三烟气管道(L3)、吸附塔底仓卸料阀 (4)、活性炭床层底部卸料阀(5)、多孔板(6)以及出气室(9),和The secondary adsorption tower (T2) comprises a main structure (1), a feed bin (2) at the top of the adsorption tower (T2), an inlet chamber (3'), and a third passage to the inlet chamber (3'). Flue gas pipeline (L3), adsorption tower bottom discharge valve (4) a bottom discharge valve (5), a perforated plate (6), and an outlet chamber (9) of the activated carbon bed, and
一级吸附塔(T1)的下部出气室(b)通过管道连接至二级吸附塔(T2)的进气室(3’)。The lower outlet chamber (b) of the primary adsorption tower (T1) is connected by piping to the inlet chamber (3') of the secondary adsorption column (T2).
优选的是,一级吸附塔(T1)的出气室分隔为上部出气室(a)、下部出气室(b),其中用于从上部出气室(a)中输出纯净烟气的第二烟气管道(L2)被连通至排放烟囱,用于从下部出气室(b)中输出烟气的第三烟气管道(L3)连通至二级吸附塔(T2)的进气室(3’),以及任选地,从二级吸附塔(T2)的出气室(9)中输出烟气的第四烟气管道(L4)与第二烟气管道(L2)合并或汇合后通向排放烟囱;或Preferably, the outlet chamber of the primary adsorption tower (T1) is divided into an upper outlet chamber (a) and a lower outlet chamber (b), wherein the second flue gas for outputting pure flue gas from the upper outlet chamber (a) is divided. The pipe (L2) is connected to the discharge chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the intake chamber (3') of the secondary adsorption tower (T2), And optionally, the fourth flue gas duct (L4) outputting flue gas from the outlet chamber (9) of the secondary adsorption tower (T2) merges or merges with the second flue gas duct (L2) and leads to the discharge chimney; or
一级吸附塔(T1)的出气室分隔为上部出气室(a)、中部出气室(c)和下部出气室(b),其中用于从上部出气室(a)中输出纯净烟气的第二烟气管道(L2)被连通至排放烟囱,用于从下部出气室(b)中输出烟气的第三烟气管道(L3)连通至二级吸附塔(T2)的进气室(3’),用于从中部出气室(c)中输出烟气的第五烟气管道(L5)经由切换阀(10)分别连通至第二烟气管道(L2)或第三烟气管道(L3),以及任选地,从二级吸附塔(T2)的出气室(9)中输出烟气的第四烟气管道(L4)与第二烟气管道(L2)合并或汇合后通向排放烟囱。The outlet chamber of the primary adsorption tower (T1) is divided into an upper outlet chamber (a), a middle outlet chamber (c) and a lower outlet chamber (b), wherein the first outlet for outputting pure flue gas from the upper outlet chamber (a) The two flue gas duct (L2) is connected to the exhaust chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the intake chamber of the secondary adsorption tower (T2) (3) '), the fifth flue gas duct (L5) for outputting flue gas from the central air outlet chamber (c) is respectively connected to the second flue gas duct (L2) or the third flue gas duct (L3) via the switching valve (10) And, optionally, the fourth flue gas duct (L4) that outputs flue gas from the outlet chamber (9) of the secondary adsorption tower (T2) merges or merges with the second flue gas duct (L2) and then leads to discharge chimney.
在本申请中,优选,一级吸附塔(T1)能够以两个或多个并列来使用。二级吸附塔(T2)也能够以两个或多个并列来使用。并列的一级吸附塔(T1)的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合。当对称式双塔形式的一级吸附塔(T1)以两个或多个并列的一级吸附塔(T1)时,则并列的作为一级吸附塔(T1)的每一个对称式双塔的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合。In the present application, preferably, the primary adsorption column (T1) can be used in parallel in two or more. The secondary adsorption column (T2) can also be used in parallel in two or more. The outlet chambers of the juxtaposed primary adsorption tower (T1) are separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or Three levels, and, more preferably, the tubes that exhaust the flue gases from the chambers of the same level of different adsorption towers may be combined or merged. When the first-stage adsorption tower (T1) in the form of a symmetrical double column is in the form of two or more juxtaposed adsorption towers (T1), it is juxtaposed as each of the symmetric double towers of the first-stage adsorption tower (T1). The outlet chambers are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels, and, more preferably, The pipes that exhaust the flue gas from the chambers of the same level of different adsorption towers may be combined or merged.
一般,一级吸附塔(T1)或二级吸附塔(T2)各自独立地具有一个活性炭床层、两个活性炭床层或多个活性炭床层(A,B,C),优选2-5个床层。所述两个或多个活性炭床层由多孔板隔开所形成。Generally, the primary adsorption tower (T1) or the secondary adsorption tower (T2) each independently has one activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2-5 Bed. The two or more activated carbon beds are formed by separating the porous plates.
一般,一级吸附塔(T1)与二级吸附塔(T2)彼此具有相同或不同的结构和尺寸。 Generally, the primary adsorption column (T1) and the secondary adsorption column (T2) have the same or different structures and sizes from each other.
一般,一级吸附塔(T1)和二级吸附塔(T2)的塔高各自独立地是10-50m,优选13-45m,优选15-40m,更优选18-35m。In general, the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) are each independently from 10 to 50 m, preferably from 13 to 45 m, preferably from 15 to 40 m, more preferably from 18 to 35 m.
一般,当一级吸附塔(T1)具有上部出气室(a)和下部出气室(b)时,上部出气室(a)和下部出气室(b)两者在垂直方向上的高度之比是0.7-1.3:1,优选0.8-1.2:1,优选0.9-1.1:1,如1:1。而当一级吸附塔(T1)具有上部出气室(a)、中部出气室(c)和下部出气室(b)时,上部出气室(a)、中部出气室(c)和下部出气室(b)三者在垂直方向上的高度之比是0.5-1.0:0.5-1.0:0.8-1,优选0.6-0.9:0.6-0.9:0.8-1,优选0.7-0.8:0.7-0.8:0.8-1。Generally, when the primary adsorption tower (T1) has an upper outlet chamber (a) and a lower outlet chamber (b), the ratio of the heights of the upper outlet chamber (a) and the lower outlet chamber (b) in the vertical direction is 0.7-1.3:1, preferably 0.8-1.2:1, preferably 0.9-1.1:1, such as 1:1. When the primary adsorption tower (T1) has an upper outlet chamber (a), a central outlet chamber (c), and a lower outlet chamber (b), the upper outlet chamber (a), the central outlet chamber (c), and the lower outlet chamber ( b) The ratio of the heights of the three in the vertical direction is 0.5-1.0: 0.5-1.0: 0.8-1, preferably 0.6-0.9: 0.6-0.9: 0.8-1, preferably 0.7-0.8: 0.7-0.8: 0.8-1 .
一级吸附塔(T1)与二级吸附塔(T2)彼此具有相同或不同的结构和尺寸。The primary adsorption column (T1) and the secondary adsorption column (T2) have the same or different structures and sizes from each other.
一般,一级吸附塔(T1)和二级吸附塔(T2)的塔高各自独立地是10-50m,优选13-45m,优选15-40m,更优选18-35m。In general, the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) are each independently from 10 to 50 m, preferably from 13 to 45 m, preferably from 15 to 40 m, more preferably from 18 to 35 m.
一般,在根据第一个实施方案和第二个实施方案的装置,活性炭解析塔(T3)具有上部的加热区、中部的缓冲区和下部的冷却区,在上部加热区的下侧部和上侧部分别连接了加热气体输入管(L1a)和加热气体输出管(L1b),在下部冷却区的下侧部和上侧部分别连接了冷却气体输入管(L2a)和冷却气体输出管(L2b),从解析塔(T3)中部的缓冲区侧部引出的酸性气体输送管道(L3a)连接至制酸系统(或制酸区)。In general, in the apparatus according to the first embodiment and the second embodiment, the activated carbon analysis column (T3) has an upper heating zone, a middle buffer zone, and a lower cooling zone, on the lower side and upper portion of the upper heating zone. A heating gas input pipe (L1a) and a heating gas output pipe (L1b) are respectively connected to the side portions, and a cooling gas input pipe (L2a) and a cooling gas output pipe (L2b) are respectively connected to the lower side portion and the upper side portion of the lower cooling zone. The acid gas delivery pipe (L3a) drawn from the side of the buffer zone in the middle of the analytical column (T3) is connected to the acid-making system (or acid-making zone).
优选的是,从酸性气体输送管道(L3a)的起始端(或前端)分出了一个加热气体支管(L3a'),并且,该加热气体支管(L3a')的另一端(例如经由阀门)与加热气体输入管(L1a)连通和/或与加热气体输出管(L1b)连通,使得该加热气体支管(L3a')作为从加热气体输入管(L1a)上分出的支管或作为从加热气体输出管(L1b)上分出的支管。Preferably, a heating gas branch pipe (L3a') is branched from the start end (or front end) of the acid gas delivery pipe (L3a), and the other end of the heating gas branch pipe (L3a') (for example, via a valve) is The heating gas input pipe (L1a) is in communication with and/or in communication with the heating gas output pipe (L1b) such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a heating gas output a branch pipe that is branched on the tube (L1b).
在本申请中,优选,一级吸附塔(T1)能够以两个或多个并列来使用。二级吸附塔(T2)也能够以两个或多个并列来使用。并列的一级吸附塔(T1)的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合。当对称式双塔形式的一级吸附塔(T1)以两个或多个并列的一级吸附塔(T1)时,则并列的作为一级吸附塔(T1)的每一个对称式双塔的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔 的相同层级的腔室中排出烟气的管道可以合并或汇合。In the present application, preferably, the primary adsorption column (T1) can be used in parallel in two or more. The secondary adsorption column (T2) can also be used in parallel in two or more. The outlet chambers of the juxtaposed primary adsorption tower (T1) are separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or Three levels, and, more preferably, the tubes that exhaust the flue gases from the chambers of the same level of different adsorption towers may be combined or merged. When the first-stage adsorption tower (T1) in the form of a symmetrical double column is in the form of two or more juxtaposed adsorption towers (T1), it is juxtaposed as each of the symmetric double towers of the first-stage adsorption tower (T1). The outlet chambers are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels, and, more preferably, From different adsorption towers The pipes for discharging the flue gas in the chambers of the same level may be combined or merged.
根据本发明的第三个实施方案,提供一种使用根据第一个实施方案的脱硫脱硝装置的烟气脱硫脱硝方法,该方法包括以下步骤:According to a third embodiment of the present invention, there is provided a flue gas desulfurization and denitration method using the desulfurization and denitration apparatus according to the first embodiment, the method comprising the steps of:
I)脱硫、脱硝步骤:原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分地脱除,之后烟气进入到一级吸附塔(T1)的出气室中,吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的烟气输入管道(L1)中以及任选地通入到一级吸附塔(T1)内;和I) Desulfurization and denitration step: the original flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1) and then sequentially flows through one of the primary adsorption towers (T1) or In multiple activated carbon beds, the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the flue gas contains pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxins). After being removed or partially removed by the activated carbon, the flue gas is then introduced into the outlet chamber of the primary adsorption tower (T1), and the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); preferably At the same time as the above operation, the diluted ammonia gas is introduced into the flue gas input pipe (L1) of the primary adsorption tower (T1) and optionally into the primary adsorption tower (T1);
II)活性炭解析步骤:将吸附了污染物的活性炭从一级吸附塔(T1)的底部转移到具有上部的加热区和下部的冷却区的一种活性炭解析塔(T3)的加热区中,让活性炭进行解析、再生,而解析、再生后的活性炭向下通过冷却区之后从解吸塔(T3)底部排出;其中:在解析过程中将氮气通入到解析塔(T3)的上部,并且任选地同时将氮气经由第二氮气管道通入解析塔(T3)的下部;和,通入解析塔(T3)内的氮气将从活性炭上热解吸的包括SO2和NH3在内的气体污染物从解吸塔(T3)的加热区和冷却区之间的中间区段中带出并经由酸性气体管道(L3a)送至制酸系统;II) Activated carbon analysis step: transferring the activated carbon adsorbed by the pollutant from the bottom of the primary adsorption tower (T1) to the heating zone of an activated carbon analytical tower (T3) having an upper heating zone and a lower cooling zone, The activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon is discharged from the bottom of the desorption column (T3) after passing through the cooling zone; wherein: nitrogen is introduced into the upper part of the analytical column (T3) during the analysis, and optional At the same time, nitrogen is introduced into the lower portion of the analytical column (T3) via the second nitrogen gas line; and the gas contaminants including SO2 and NH3 which are thermally desorbed from the activated carbon by the nitrogen gas flowing into the analytical column (T3) are The intermediate section between the heating zone and the cooling zone of the desorption column (T3) is taken out and sent to the acid production system via the acid gas pipeline (L3a);
其中,在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的温度、优选280-400℃、进一步优选300-380℃,更优选320-360℃);和,任选地,在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。Wherein, before the gaseous pollutants including SO 2 and NH 3 (ie, acid gases) are transported to the acid generating system via the acid gas pipeline (L3a), the heating gas branch pipe (L3a') is used from the heating gas inlet pipe (L1a). Or heating the gas from the heated gas output pipe (L1b), and flowing the heated gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, preheating to a temperature of 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing through the acid gas pipeline After (L3a), the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas output pipe (L1b) by the heating gas branch pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) to The acid gas remaining in the acid gas pipe (L3a) is removed.
优选的是,所述I)脱硫、脱硝步骤如下进行:原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1) 的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分地脱除,之后烟气进入到一级吸附塔(T1)的上部出气室(a)和下部出气室(b)中,从一级吸附塔(T1)的上部出气室(a)中排出的烟气经由第二烟气管道(L2)输送至排放烟囱以便进行排放,从一级吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由第三烟气管道(L3)输送返回与第一烟气管道(L1)中的原烟气汇合,而吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的烟气输入管道(L1)中以及任选地通入到一级吸附塔(T1)内。Preferably, the I) desulfurization and denitration step is carried out as follows: the raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through the first stage. Adsorption tower (T1) One or more activated carbon beds, the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the flue gas contains pollutants (such as sulfur oxides, nitrogen oxides, dust, Dioxins, etc.) are removed or partially removed by activated carbon, and then the flue gas enters the upper outlet chamber (a) and the lower outlet chamber (b) of the primary adsorption tower (T1), from the primary adsorption tower (T1). The flue gas discharged from the upper air outlet chamber (a) is sent to the discharge chimney via the second flue gas duct (L2) for discharge, and the small amount discharged from the lower air outlet chamber (b) of the primary adsorption tower (T1) The flue gas of the pollutant is transported back through the third flue gas pipeline (L3) to merge with the original flue gas in the first flue gas duct (L1), and the activated carbon adsorbing the pollutant is discharged from the bottom of the first adsorption tower (T1). Preferably, at the same time as the above operation, the diluted ammonia gas is introduced into the flue gas input line (L1) of the primary adsorption column (T1) and optionally into the primary adsorption column (T1).
优选,通过调节一级吸附塔(T1)床层底部卸料阀(5)的转速,来调节一级吸附塔(T1)中活性炭床层中活性炭的停留时间或下移速度,使得一级吸附塔(T1)的上部出气室(a)中的烟气的污染物含量在符合要求或符合法规的范围内。即,含量低于设定的限定值。Preferably, the residence time or the downward movement speed of the activated carbon in the activated carbon bed in the primary adsorption tower (T1) is adjusted by adjusting the rotation speed of the discharge valve (5) at the bottom of the first adsorption tower (T1), so that the first adsorption The pollutant content of the flue gas in the upper air outlet chamber (a) of the tower (T1) is within the scope of compliance with the requirements or compliance with regulations. That is, the content is lower than the set limit value.
进一步优选的是,在活性炭解析步骤启动之前或在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的温度、优选280-400℃、进一步优选300-380℃,更优选320-360℃)。It is further preferred to utilize a heated gas branch before the activation of the activated carbon analysis step or before the gaseous contaminants including SO 2 and NH 3 (ie, acid gases) are transported to the acid production system via the acid gas conduit (L3a) ( L3a') outputting a heating gas from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and flowing the heating gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C).
更优选,在活性炭解析步骤结束之后或在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。More preferably, after the end of the activated carbon analysis step or after the gas contaminant (ie, acid gas) including SO 2 and NH 3 stops flowing through the acid gas pipe (L3a), the heated gas branch pipe (L3a') is used to heat the gas. The heating gas is output from the heating pipe (L1b) in the input pipe (L1a), and the heating gas is purged by the acid gas pipe (L3a) to remove the acid gas remaining in the acid gas pipe (L3a).
根据本发明的第四个实施方案,提供一种使用根据第二实施方案2的脱硫脱硝装置的烟气脱硫脱硝方法,该方法包括以下步骤:According to a fourth embodiment of the present invention, there is provided a flue gas desulfurization and denitration method using the desulfurization and denitration apparatus according to the second embodiment 2, the method comprising the steps of:
I)脱硫、脱硝步骤:I) Desulfurization and denitration steps:
1)原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸 附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分脱除,之后,1) The raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through one or more activated carbon beds of the primary adsorption tower (T1) in sequence. , smoke and suck from the first The activated carbon added to the top of the tower (T1) is subjected to cross-flow contact, in which the pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxin, etc.) contained in the flue gas are removed or partially removed by the activated carbon, after which ,
2)烟气进入到一级吸附塔(T1)的出气室中,吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;从一级吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由管道被输送至二级吸附塔(T2)的进气室(3’)中并且依次流过二级吸附塔(2)的一个或多个活性炭床层,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)进一步被活性炭脱除;从二级吸附塔(T2)的出气室(10)中排出的烟气通过烟囱被排放,吸附了污染物的活性炭则从二级吸附塔(T2)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的第一烟气管道(L1)中和任选地通入为二级吸附塔(T2)输送烟气的管道中以及任选地通入到一级吸附塔(T1)和/或二级吸附塔(T2)内;2) The flue gas enters the outlet chamber of the first adsorption tower (T1), and the activated carbon adsorbed with the pollutants is discharged from the bottom of the first adsorption tower (T1); from the lower outlet chamber of the first adsorption tower (T1) (b The flue gas containing a small amount of pollutants discharged through the pipeline is sent to the inlet chamber (3') of the secondary adsorption tower (T2) and sequentially flows through one or more activated carbon beds of the secondary adsorption tower (2) a layer in which pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxins, etc.) contained in the flue gas are further removed by the activated carbon; discharged from the outlet chamber (10) of the secondary adsorption tower (T2) The flue gas is discharged through the chimney, and the activated carbon adsorbing the pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the dilute ammonia gas is introduced into the first adsorption tower (T1) at the same time as the above operation. A flue gas duct (L1) is neutralized and optionally passed to a conduit for transporting flue gas to the secondary adsorption tower (T2) and optionally to a primary adsorption tower (T1) and/or a secondary adsorption tower ( Within T2);
with
II)活性炭解析步骤:将吸附了污染物的活性炭从一级吸附塔(T1)的底部和/或二级吸附塔(T2)的底部转移到具有上部的加热区和下部的冷却区的一种活性炭解析塔(T3)的加热区中,让活性炭进行解析、再生,而解析、再生后的活性炭向下流过冷却区之后从解吸塔(T3)底部排出;其中:在解析过程中将氮气通入到解析塔(T3)的上部,并且任选地同时将氮气经由第二氮气管道通入解析塔(T3)的下部;和,通入解析塔(T3)内的氮气将从活性炭上热解吸的包括SO2和NH3在内的气体污染物从解吸塔(T3)的加热区和冷却区之间的中间区段中带出并经由酸性气体管道(L3a)送至制酸系统;II) Activated carbon analysis step: transferring activated carbon adsorbed with pollutants from the bottom of the primary adsorption tower (T1) and/or the bottom of the secondary adsorption tower (T2) to a cooling zone having an upper heating zone and a lower cooling zone In the heating zone of the activated carbon analysis tower (T3), the activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon flows downward through the cooling zone and is discharged from the bottom of the desorption column (T3); wherein: nitrogen is introduced during the analysis process. Going to the upper part of the analytical column (T3), and optionally simultaneously passing nitrogen gas into the lower portion of the analytical column (T3) via the second nitrogen gas line; and, the nitrogen gas flowing into the analytical column (T3) is thermally desorbed from the activated carbon The gaseous contaminants including SO 2 and NH 3 are taken out from the intermediate section between the heating zone and the cooling zone of the desorption column (T3) and sent to the acid production system via the acid gas pipeline (L3a);
其中,在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的温度、优选280-400℃、进一步优选300-380℃,更优选320-360℃);和,任选地,在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。 Wherein, before the gaseous pollutants including SO 2 and NH 3 (ie, acid gases) are transported to the acid generating system via the acid gas pipeline (L3a), the heating gas branch pipe (L3a') is used from the heating gas inlet pipe (L1a). Or heating the gas from the heated gas output pipe (L1b), and flowing the heated gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, preheating to a temperature of 250-450 ° C, preferably 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing through the acid gas pipeline After (L3a), the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas output pipe (L1b) by the heating gas branch pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) to The acid gas remaining in the acid gas pipe (L3a) is removed.
优选,一级吸附塔(T1)能够以两个或多个(例如2-6个,如3或4个)并列来使用;和/或,二级吸附塔(T2)能够以两个或多个并列(例如2-4个,如3个)来使用。Preferably, the primary adsorption column (T1) can be used in parallel in two or more (for example 2-6, such as 3 or 4); and/or the secondary adsorption column (T2) can be used in two or more Parallel (for example, 2-4, such as 3) to use.
优选的是,所述I)脱硫、脱硝步骤如下进行:Preferably, the I) desulfurization and denitration steps are carried out as follows:
1)原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分脱除,之后,1) The raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through one or more activated carbon beds of the primary adsorption tower (T1) in sequence. The flue gas is in cross-flow contact with the activated carbon added from the top of the first adsorption tower (T1), wherein the pollutants contained in the flue gas (such as sulfur oxides, nitrogen oxides, dust, dioxin, etc.) are removed by the activated carbon. Except or partial removal, after
2)当一级吸附塔(T1)具有上部出气室(a)和下部出气室(b)时,烟气进入到一级吸附塔(T1)的上部出气室(a)和下部出气室(b)中,而吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;其中,从一级吸附塔(T1)的上部出气室(a)中排出的烟气经由第二烟气管道(L2)输送至排放烟囱以便进行排放,从吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由第三烟气管道(L3)输送至二级吸附塔(T2)的进气室(3’)中并且依次流过二级吸附塔(T2)的一个或多个活性炭床层,从二级吸附塔(T2)的出气室(9)中排出的烟气经由第四烟气管道(L4)输送至与第二烟气管道(L2)内的烟气汇合和然后排放,或,2) When the primary adsorption tower (T1) has an upper outlet chamber (a) and a lower outlet chamber (b), the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1) and the lower outlet chamber (b) In the middle, the activated carbon adsorbed by the pollutant is discharged from the bottom of the first adsorption tower (T1); wherein the flue gas discharged from the upper outlet chamber (a) of the primary adsorption tower (T1) passes through the second flue gas pipeline (L2) is sent to the discharge chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower outlet chamber (b) of the adsorption tower (T1) is sent to the secondary adsorption tower via the third flue gas duct (L3) ( In the inlet chamber (3') of T2) and sequentially flowing through one or more activated carbon beds of the secondary adsorption tower (T2), the flue gas discharged from the outlet chamber (9) of the secondary adsorption tower (T2) Conveyed to the flue gas in the second flue gas duct (L2) via the fourth flue gas duct (L4) and then discharged, or
当一级吸附塔(T1)具有上部出气室(a)、中部出气室(c)和下部出气室(b)时,烟气进入到一级吸附塔(T1)的上部出气室(a)、中部出气室(c)和下部出气室(b)中,而吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;其中,从一级吸附塔(T1)的上部出气室(a)中排出的烟气经由第二烟气管道(L2)输送至排放烟囱以便进行排放,从吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由第三烟气管道(L3)输送至二级吸附塔(T2)的进气室(3’)中并且依次流过二级吸附塔(T2)的一个或多个活性炭床层,从二级吸附塔(T2)的出气室(9)中排出的烟气经由第四烟气管道(L4)输送至与第二烟气管道(L2)内的烟气汇合和然后排放,从一级吸附塔(T1)的中部出气室(c)中排出的烟气经由第五烟气管道(L5)输送并通过切换阀门(10)的切换而分别与第二烟气管道(L2)内的烟气汇合或与第三烟气管道(L3)内的烟气汇合,吸附了污染物的活性炭则从二级吸附塔(T2)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的第一烟气管道(L1)中和任选地通 入为二级吸附塔(T2)输送烟气的第三烟气管道(L3)中以及任选地通入到一级吸附塔(T1)和/或二级吸附塔(T2)内。When the primary adsorption tower (T1) has an upper outlet chamber (a), a central outlet chamber (c), and a lower outlet chamber (b), the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1), In the central venting chamber (c) and the lower venting chamber (b), the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); wherein, from the upper venting chamber of the primary adsorption tower (T1) (a The flue gas discharged in the second flue gas duct (L2) is sent to the exhaust chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower air outlet chamber (b) of the adsorption tower (T1) passes through the third smoke The gas pipeline (L3) is sent to the inlet chamber (3') of the secondary adsorption tower (T2) and sequentially flows through one or more activated carbon beds of the secondary adsorption tower (T2) from the secondary adsorption tower (T2) The flue gas discharged from the outlet chamber (9) is sent to the flue gas in the second flue gas duct (L2) via the fourth flue gas duct (L4) and then discharged, from the first adsorption tower (T1) The flue gas discharged from the central air outlet chamber (c) is transported via the fifth flue gas duct (L5) and merged with the flue gas in the second flue gas duct (L2) or the third by switching of the switching valve (10), respectively. Flue gas pipeline (L3) The flue gas merges, and the activated carbon adsorbing the pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the first smoke of the diluted ammonia gas is introduced into the primary adsorption tower (T1) at the same time as the above operation. Gas pipeline (L1) and optionally pass Into the third flue gas line (L3) which transports flue gas for the secondary adsorption column (T2) and optionally into the primary adsorption column (T1) and/or the secondary adsorption column (T2).
在根据第三和第四实施方案的方法中,优选的是,通过调节吸附塔活性炭床层底部的卸料阀(5)来调节活性炭在活性炭床层中的停留时间,确保从吸附塔(T1)的上部出气室(a)中或从一级吸附塔(T1)的上部出气室(a)和中部出气室(c)中排出的烟气中污染物含量在符合要求或符合法规的范围内。In the processes according to the third and fourth embodiments, it is preferred to adjust the residence time of the activated carbon in the activated carbon bed by adjusting the discharge valve (5) at the bottom of the activated carbon bed of the adsorption column to ensure the adsorption tower (T1) In the upper venting chamber (a) or in the flue gas discharged from the upper venting chamber (a) and the central venting chamber (c) of the primary adsorption tower (T1), the content of pollutants in the flue gas meets the requirements or meets the regulations. .
在本申请中,“任选地”表示进行或不进行。“任选的”表示有或没有。In the present application, "optionally" means with or without. "Optional" means yes or no.
优选,通过调节一级吸附塔(T1)活性炭床层底部的卸料阀(5)的转速或开度,来调节一级吸附塔(T1)中活性炭床层中活性炭的停留时间或下移速度,使得一级吸附塔(T1)的上部出气室(a)中的烟气的污染物含量和任选地使得中部出气室(c)中的烟气的污染物含量在符合要求或符合法规的范围内。即,含量低于设定的限定值。Preferably, the residence time or the downward movement speed of the activated carbon in the activated carbon bed in the primary adsorption tower (T1) is adjusted by adjusting the rotation speed or opening degree of the discharge valve (5) at the bottom of the activated carbon bed of the primary adsorption tower (T1). , such that the pollutant content of the flue gas in the upper air outlet chamber (a) of the primary adsorption tower (T1) and optionally the pollutant content of the flue gas in the central air outlet chamber (c) are in compliance with requirements or comply with regulations Within the scope. That is, the content is lower than the set limit value.
进一步优选的是,在活性炭解析步骤启动之前或在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的温度、优选280-400℃、进一步优选300-380℃,更优选320-360℃)。It is further preferred to utilize a heated gas branch before the activation of the activated carbon analysis step or before the gaseous contaminants including SO 2 and NH 3 (ie, acid gases) are transported to the acid production system via the acid gas conduit (L3a) ( L3a') outputting a heating gas from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and flowing the heating gas through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C).
更优选,在活性炭解析步骤结束之后或在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。More preferably, after the end of the activated carbon analysis step or after the gas contaminant (ie, acid gas) including SO 2 and NH 3 stops flowing through the acid gas pipe (L3a), the heated gas branch pipe (L3a') is used to heat the gas. The heating gas is output from the heating pipe (L1b) in the input pipe (L1a), and the heating gas is purged by the acid gas pipe (L3a) to remove the acid gas remaining in the acid gas pipe (L3a).
在本申请中,通过调节一级吸附塔(T1)床层底部卸料阀(5)来调节活性炭在活性炭床层中的停留时间,确保从一级吸附塔(T1)的上部出气室(a)中或从一级吸附塔(T1)的上部出气室(a)和中部出气室(c)中排出的烟气中污染物含量在符合要求或符合法规的范围内。In the present application, the residence time of the activated carbon in the activated carbon bed is adjusted by adjusting the bottom discharge valve (5) of the primary adsorption tower (T1) bed to ensure the upper outlet chamber from the primary adsorption tower (T1) (a The content of pollutants in the flue gas discharged from the upper air outlet chamber (a) and the central air outlet chamber (c) of the primary adsorption tower (T1) is within the scope of compliance with the requirements or compliance with regulations.
在本申请中,“任选地”表示进行或不进行。“任选的”表示有或没有。In the present application, "optionally" means with or without. "Optional" means yes or no.
另外,现有技术中,当活性炭解析步骤启动时,热的酸性气体在一开 始或前期流过冷的(例如处于环境温度)酸性气体管道(L3a)时而导致温度降低,从而发生结露,形成液体酸,液体酸对酸性气体管道(L3a)有强烈腐蚀作用。为了解决这一问题,一般在酸性气体管道(L3a)外周设置套管和最外层设置保温层。通过在套管内通入高温的加热气体来确保酸性气体在流过酸性气体管道(L3a)时的温度高于露点,即,让酸性组分保持气体状态。In addition, in the prior art, when the activated carbon analysis step is started, the hot acid gas is opened. When the cold or low (for example, at ambient temperature) acid gas pipeline (L3a) flows, the temperature is lowered, condensation occurs, and a liquid acid is formed. The liquid acid has a strong corrosive effect on the acid gas pipeline (L3a). In order to solve this problem, a sleeve and an outermost layer are generally provided with an insulating layer on the outer periphery of the acid gas pipe (L3a). By passing a high-temperature heating gas into the casing, it is ensured that the temperature of the acid gas flowing through the acid gas pipe (L3a) is higher than the dew point, that is, the acidic component is maintained in a gaseous state.
本申请的发明人通过研究发现,在活性炭解析步骤启动之前,通过用加热气体预先通入酸性气体管道(L3a)中对该管道进行预热,预热至高于酸性气体的露点的温度,例如预热至250-450℃的温度、优选280-400℃、进一步优选为300-380℃,更优选320-360℃的温度。当酸性气体持续流过酸性气体管道(L3a)时,酸性气体所携带的热量足以维持酸性气体管道(L3a)的温度,防止其降温。The inventors of the present application have found through research that preheating the pipe to a temperature higher than the dew point of the acid gas by preheating the gas into the acid gas pipe (L3a) before the start of the activated carbon analysis step, for example, It is heated to a temperature of from 250 to 450 ° C, preferably from 280 to 400 ° C, further preferably from 300 to 380 ° C, more preferably from 320 to 360 ° C. When the acid gas continues to flow through the acid gas pipe (L3a), the acid gas carries enough heat to maintain the temperature of the acid gas pipe (L3a) and prevent it from cooling.
进一步优选地,在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后或在活性炭解析步骤结束之后,立即利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留或滞留的酸性气体。Further preferably, the heating gas branch pipe (L3a') is used immediately after the gas contaminant (i.e., acid gas) including SO 2 and NH 3 stops flowing through the acid gas pipe (L3a) or after the end of the activated carbon analysis step. Heating gas is supplied from the heating gas input pipe (L1a) or from the heating gas output pipe (L1b), and the heating gas is purged by the acid gas pipe (L3a) to remove acid gas remaining or retained in the acid gas pipe (L3a). .
活性炭从解析塔顶部送入,从塔底部排出。在解析塔上部的加热段,吸附了污染物质的活性炭被加热到400℃以上,并保持3小时以上,被活性炭吸附的SO2被释放出来,生成“富硫气体(SRG)”,SRG输送至制酸工段(或制酸系统)制取H2SO4。被活性炭吸附的NOX发生SCR或者SNCR反应,同时其中二噁英大部分被分解。解析塔解析所需热量由一台热风炉提供,高炉煤气在热风炉内燃烧后,热烟气(经由管道L1a)送入解析塔的壳程。换热后的热气(L1b)大部分回到热风循环风机中(另一小部分则外排至大气),由其送入热风炉和新燃烧的高温热气混合。在解析塔下部设有冷却段,经由管道(L2a)鼓入空气将活性炭的热量带出。冷却段设置有冷却风机,鼓入冷风将活性炭冷却,然后外排至大气中。解析塔出来的活性炭经过活性炭筛筛分,将小于1.2mm的细小活性炭颗粒及粉尘去除,可提高活性炭的吸附能力。活性炭筛筛上物为吸附能力强的活性炭,活性炭通过活性炭输送机输送至吸附塔循环利用,筛下物则进入灰仓。解析过程中需要用氮气进行保护,氮气同时作为载体将解析出来的SO2等有害气体带出。氮气 从解析塔上部和下部通入,在解析塔中间汇集排出,同时将活性炭中吸附了的SO2带出,并送至制酸系统去制酸。氮气通入解析塔上方时,用氮气加热器将其加热至100℃左右再通入解析塔中。Activated carbon is fed from the top of the analytical column and discharged from the bottom of the column. In the heating section of the upper part of the analytical tower, the activated carbon adsorbed with the pollutants is heated to 400 ° C or higher and maintained for more than 3 hours, and the SO 2 adsorbed by the activated carbon is released to generate "sulfur-rich gas (SRG)", and the SRG is transported to The acid production section (or acid production system) produces H 2 SO 4 . NO X adsorbed activated SCR or SNCR reaction occurs, while most of dioxins are decomposed. The heat required for the analytical tower analysis is provided by a hot blast stove. After the blast furnace gas is burned in the hot blast stove, the hot flue gas (via the pipeline L1a) is sent to the shell side of the analytical tower. Most of the hot gas (L1b) after heat exchange returns to the hot air circulation fan (the other part is discharged to the atmosphere), which is fed into the hot blast stove and mixed with the newly burned high temperature hot gas. A cooling section is provided at the lower portion of the analytical tower, and air is blown through the duct (L2a) to carry the heat of the activated carbon. The cooling section is provided with a cooling fan, and the cold air is blown to cool the activated carbon, and then discharged to the atmosphere. The activated carbon from the analytical tower is sieved by activated carbon sieve to remove fine activated carbon particles and dust of less than 1.2 mm, which can improve the adsorption capacity of the activated carbon. The activated carbon sieve on the sieve is activated carbon with strong adsorption capacity, and the activated carbon is transported to the adsorption tower through the activated carbon conveyor for recycling, and the sieved material enters the ash silo. Nitrogen is required for protection during the analysis, and nitrogen is used as a carrier to carry out the harmful gases such as SO 2 which are resolved. Nitrogen gas is introduced from the upper and lower portions of the analytical column, and is collected and discharged in the middle of the analytical column. At the same time, the SO 2 adsorbed in the activated carbon is taken out and sent to the acid-making system to produce acid. When nitrogen gas was passed over the analytical column, it was heated to about 100 ° C with a nitrogen heater and passed to the analytical column.
这里,串联的一级吸附塔和二级吸附塔是指:一级吸附塔的烟气出口经由管道连接至二级吸附塔的烟气进口。Here, the first-stage adsorption tower and the second-stage adsorption tower in series mean that the flue gas outlet of the primary adsorption tower is connected to the flue gas inlet of the secondary adsorption tower via a pipeline.
对于烟气(或废气)吸附塔的设计及其吸附工艺,现有技术中已经有很多文献进行了披露,参见例如US5932179,JP2004209332A,和JP3581090B2(JP2002095930A)和JP3351658B2(JPH08332347A),JP2005313035A。本申请不再进行详细描述。For the design of the flue gas (or exhaust gas) adsorption column and its adsorption process, a number of documents have been disclosed in the prior art, see, for example, US Pat. No. 5,932,179, JP 2004209332 A, and JP 3,518,090 B2 (JP 2002 095 930 A) and JP 3 351 658 B2 (J PH 083 332 347 A), JP 2005 313 035 A. This application is not described in detail.
在本发明中,对于吸附塔(T1)或对于一级吸附塔(T1)或二级吸附塔(T2),可以采用单塔单床层设计;或单塔多床层设计,例如进气室(3)-脱硫活性炭床层(A)-脱硝活性炭床层(B)-出气室或例如进气室(3)-脱硫活性炭床层(A)-脱硫脱硝活性炭床层(B)-脱硝活性炭床层(C)-出气室。还可以采用对称双塔设计,如图7或8中所示。In the present invention, for the adsorption tower (T1) or for the primary adsorption tower (T1) or the secondary adsorption tower (T2), a single tower single bed design can be used; or a single tower multiple bed design, such as an inlet chamber (3)-Desulfurization activated carbon bed (A)-Denitration activated carbon bed (B)-Exhaust chamber or, for example, inlet chamber (3)-Desulfurization activated carbon bed (A)-Desulfurization and denitration activated carbon bed (B)-Denitration activated carbon Bed (C) - venting chamber. A symmetrical twin tower design can also be used, as shown in Figure 7 or 8.
一般来说,用于本申请中的一级吸附塔(T1)和二级吸附塔(T2)的塔高各自独立地是,例如10-50m,优选13-45m,优选15-40m,更优选18-35m。一级吸附塔(T1)与二级吸附塔(T2)彼此可以采用相同或不同的结构和尺寸,优选的是采用相同的结构和尺寸。吸附塔的塔高是指从吸附塔底部活性炭出口到吸附塔顶部活性炭入口的高度,即塔的主体结构的高度。In general, the column heights of the primary adsorption column (T1) and the secondary adsorption column (T2) used in the present application are each independently, for example, 10 to 50 m, preferably 13 to 45 m, preferably 15 to 40 m, more preferably 18-35m. The primary adsorption column (T1) and the secondary adsorption column (T2) may adopt the same or different structures and sizes from each other, and preferably adopt the same structure and size. The tower height of the adsorption tower refers to the height from the activated carbon outlet at the bottom of the adsorption tower to the activated carbon inlet at the top of the adsorption tower, that is, the height of the main structure of the tower.
在本发明中,对于解析塔没有特别的要求,现有技术的解析塔都可用于本发明中。优选的是,解析塔是管壳型的立式解析塔,其中活性炭从塔顶输入,向下流经管程,然后到达塔底,而加热气体则流经壳程,加热气体从塔的一侧进入,与流经管程的活性炭进行热交换而降温,然后从塔的另一侧输出。在本发明中,对于解析塔没有特别的要求,现有技术的解析塔都可用于本发明中。优选的是,解析塔是管壳型(或壳管型)的立式解析塔,其中活性炭从塔顶输入,向下流经上部加热区的管程,然后到达一个处于上部加热区与下部冷却区之间的一个缓冲空间,然后流经下部冷却区的管程,然后到达塔底,而加热气体(或高温热风)则流经加热区的壳程,加热气体(400-450℃)从解析塔的加热区的一侧进入,与流经加热区管程的活性炭进行间接热交换而降温,然后从塔的加热区的另一侧输出。冷却风 从解析塔的冷却区的一侧进入,与流经冷却区管程的已解析、再生的活性炭进行间接热交换。在间接热交换之后,冷却风升温至90-130℃(如约100℃)。In the present invention, there is no particular requirement for the analytical column, and the prior art analytical column can be used in the present invention. Preferably, the analytical column is a shell-type vertical analytical column in which activated carbon is input from the top of the column, flows downward through the tube, and then reaches the bottom of the column, while the heated gas flows through the shell side, and the heated gas enters from one side of the column. It is cooled by heat exchange with activated carbon flowing through the tube and then output from the other side of the column. In the present invention, there is no particular requirement for the analytical column, and the prior art analytical column can be used in the present invention. Preferably, the analytical column is a shell-type (or shell-and-tube type) vertical analytical column in which activated carbon is input from the top of the column, flows downward through the tube section of the upper heating zone, and then reaches an upper heating zone and a lower cooling zone. A buffer space between them then flows through the tube section of the lower cooling zone and then reaches the bottom of the tower, while the heated gas (or high temperature hot air) flows through the shell side of the heating zone, heating the gas (400-450 ° C) from the analytical tower One side of the heating zone enters, is cooled by indirect heat exchange with activated carbon flowing through the heating zone, and is then output from the other side of the heating zone of the column. Cooling wind From the side of the cooling zone of the analytical column, indirect heat exchange with the resolved, regenerated activated carbon flowing through the cooling zone tube. After indirect heat exchange, the cooling air is warmed to 90-130 ° C (eg, about 100 ° C).
一般来说,用于本发明中的解析塔通常具有10-45m、优选15-40m、更优选20-35米的塔高。解吸塔通常具有6-100㎡、优选8-50㎡、更优选10-30㎡、进一步优选15-20㎡的主体横截面积。In general, the analytical column used in the present invention usually has a column height of 10 to 45 m, preferably 15 to 40 m, more preferably 20 to 35 m. The desorption column usually has a cross-sectional area of the main body of 6 to 100 m 2 , preferably 8 to 50 m 2 , more preferably 10 to 30 m 2 , further preferably 15 to 20 m 2 .
对于活性炭解析塔的设计及活性炭再生方法,现有技术中已经有很多文献进行了披露,JP3217627B2(JPH08155299A)公开了一种解析塔(即解吸塔),它采用双密封阀,通惰气密封,筛分,水冷(参见该专利中的图3)。JP3485453B2(JPH11104457A)公开了再生塔(参见图23和24),可采用预热段,双密封阀,通惰气,空气冷却或水冷。JPS59142824A公开了来自冷却段的气体用于预热活性炭。中国专利申请201210050541.6(上海克硫公司)公开了再生塔的能量再利用的方案,其中使用了干燥器2。JPS4918355B公开了采用高炉煤气(blast furnace gas)来再生活性炭。JPH08323144A公开了采用燃料(重油或轻油)的再生塔,使用空气加热炉(参见该专利的图2,11-热风炉,12-燃料供给装置)。中国实用新型201320075942.7涉及加热装置及具备该加热装置的废气处理装置(燃煤、空气加热),参见该实用新型专利中的图2。For the design of activated carbon analytical towers and activated carbon regeneration methods, many documents have been disclosed in the prior art. JP3217627B2 (JPH08155299A) discloses an analytical tower (ie, a desorption tower) which uses a double sealing valve and is sealed by an inert gas. Screening, water cooling (see Figure 3 in this patent). JP 3485453 B2 (JPH 11104457 A) discloses a regeneration column (see Figs. 23 and 24) which can be used in a preheating section, a double sealing valve, an inert gas, air cooling or water cooling. JPS59142824A discloses a gas from a cooling section for preheating activated carbon. Chinese Patent Application No. 201210050541.6 (Shanghai Keshi Company) discloses a scheme for energy reuse of a regeneration tower in which a dryer 2 is used. JPS 4918355 B discloses the use of blast furnace gas to regenerate activated carbon. JPH08323144A discloses a regeneration tower employing fuel (heavy or light oil) using an air heating furnace (see Figure 2 of the patent, 11-hot blast stove, 12-fuel supply). The Chinese utility model 201320075942.7 relates to a heating device and an exhaust gas treatment device (combustion coal, air heating) provided with the heating device, see Fig. 2 in the utility model patent.
本发明的解析塔采用风冷。The analytical tower of the present invention is air cooled.
对于解析塔解析能力为每小时10t活性炭的情形,传统工艺保持解析塔内的温度在420℃所需焦炉煤气约为400Nm3/h,助燃空气约为2200Nm3/h,外排热风约为2500Nm3/h;所需冷却空气30000Nm3/h,冷却后活性炭温度为140℃。For the case where the analytical tower resolution capacity is 10 tons of activated carbon per hour, the conventional process maintains the temperature in the analytical column at 420 ° C. The required coke oven gas is about 400 Nm 3 /h, the combustion air is about 2200 Nm 3 /h, and the exhaust heat is about 2500 Nm 3 /h; required cooling air of 30000 Nm 3 /h, and the activated carbon temperature after cooling is 140 °C.
实施方式1 Embodiment 1
采用图4中所示的装置和流程。The apparatus and flow shown in Figure 4 are employed.
实施方式2 Embodiment 2
采用图4中所示的装置和流程,但是,用图7中所示的吸附塔装置替代图4中所示的吸附塔。The apparatus and flow shown in Fig. 4 were employed, but the adsorption tower shown in Fig. 4 was replaced with the adsorption tower apparatus shown in Fig. 7.
实施方式3 Embodiment 3
采用图5中所示的装置和流程。 The apparatus and flow shown in Figure 5 are employed.
实施方式4 Embodiment 4
采用图5中所示的装置和流程,但是,用图7中所示的吸附塔装置替代图5中所示的二级吸附塔。The apparatus and flow shown in Fig. 5 were employed, but the adsorption tower apparatus shown in Fig. 7 was used instead of the secondary adsorption tower shown in Fig. 5.
实施方式5(优选)Embodiment 5 (preferred)
采用图6中所示的装置和流程。The apparatus and flow shown in Figure 6 are employed.
实施方式6(优选)Embodiment 6 (preferred)
采用图6中所示的装置和流程,但是,用图7中所示的吸附塔装置替代图5中所示的二级吸附塔。The apparatus and flow shown in Fig. 6 were employed, but the adsorption tower apparatus shown in Fig. 7 was used instead of the secondary adsorption tower shown in Fig. 5.
实施方式7(最优选)Embodiment 7 (most preferred)
采用图6中所示的装置和流程,但是,用图7中所示的吸附塔装置替代图5中所示的二级吸附塔。并且一级吸附塔有3个并列设置,一级吸附塔的相同层级的烟气室的烟气输出管道汇合,之后烟气分成两股分别通入2个并列的二级吸附塔的进气室。从二级吸附塔(T2)的出气室测得:99.2%的脱硫率及92%的脱硝率。 The apparatus and flow shown in Fig. 6 were employed, but the adsorption tower apparatus shown in Fig. 7 was used instead of the secondary adsorption tower shown in Fig. 5. And the first-stage adsorption tower has three juxtaposed arrangement, and the flue gas output pipelines of the same level of the flue gas chamber of the first-stage adsorption tower merge, and then the flue gas is divided into two inlet chambers which respectively pass into two juxtaposed secondary adsorption towers. . From the outlet chamber of the secondary adsorption tower (T2), the desulfurization rate of 99.2% and the denitration rate of 92% were measured.

Claims (12)

  1. 一种烟气脱硫脱硝装置,它包括一级吸附塔(T1)和活性炭再生塔(或解析塔)(T3),其中活性炭解析塔(T3)具有上部的加热区、中部的缓冲区和下部的冷却区,在上部加热区的下侧部和上侧部分别连接了加热气体输入管(L1a)和加热气体输出管(L1b),在下部冷却区的下侧部和上侧部分别连接了冷却气体输入管(L2a)和冷却气体输出管(L2b),从解析塔(T3)中部的缓冲区侧部引出的酸性气体输送管道(L3a)连接至制酸系统,其特征在于:从酸性气体输送管道(L3a)的起始端(或前端)分出了一个加热气体支管(L3a'),并且,该加热气体支管(L3a')的另一端与加热气体输入管(L1a)连通或与加热气体输出管(L1b)连通,使得该加热气体支管(L3a')作为从加热气体输入管(L1a)上分出的支管或作为从加热气体输出管(L1b)上分出的支管;A flue gas desulfurization and denitration device comprises a first adsorption tower (T1) and an activated carbon regeneration tower (or analytical tower) (T3), wherein the activated carbon analysis tower (T3) has an upper heating zone, a middle buffer zone and a lower zone In the cooling zone, a heating gas inlet pipe (L1a) and a heating gas outlet pipe (L1b) are respectively connected to the lower side portion and the upper side portion of the upper heating zone, and cooling is respectively connected to the lower side portion and the upper side portion of the lower cooling zone. The gas input pipe (L2a) and the cooling gas output pipe (L2b) are connected to the acid generating system (L3a) from the side of the buffer zone in the middle of the analytical tower (T3), which is characterized in that it is transported from the acid gas. A heating gas branch pipe (L3a') is branched from the start end (or front end) of the pipe (L3a), and the other end of the heating gas branch pipe (L3a') is connected to the heating gas input pipe (L1a) or is heated to be outputted. The tube (L1b) is connected such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a branch pipe branched from the heating gas output pipe (L1b);
    其中一级吸附塔(T1)包括主体结构(1)、位于一级吸附塔(T1)顶部的进料仓(2)、进气室(3)、通向进气室(3)的原烟气输送烟道即第一烟气管道(L1)、吸附塔底仓卸料阀(4)、活性炭床层底部卸料阀(5)、多孔板(6)以及出气室。The first adsorption tower (T1) comprises a main structure (1), a feed bin (2) at the top of the primary adsorption tower (T1), an inlet chamber (3), and a raw smoke leading to the inlet chamber (3). The gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
  2. 根据权利要求1所述的装置,其特征在于:出气室分隔为上部出气室(a)和下部出气室(b),其中用于从上部出气室(a)中输出纯净烟气的第二烟气管道(L2)被连通至排放烟囱,和用于从下部出气室(b)中输出烟气的第三烟气管道(L3)返回进气室(3)的上游与原烟气输送烟道即第一烟气管道(L1)合并或汇合。The apparatus according to claim 1, wherein the air outlet chamber is partitioned into an upper air outlet chamber (a) and a lower air outlet chamber (b), wherein the second smoke for outputting pure smoke from the upper air outlet chamber (a) is The gas pipe (L2) is connected to the discharge chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is returned to the upstream of the intake chamber (3) and the original flue gas conveying flue That is, the first flue gas pipeline (L1) merges or merges.
  3. 根据权利要求1或2所述的装置,其中一级吸附塔(T1)具有一个活性炭床层、两个活性炭床层或多个活性炭床层(A,B,C),优选2-5个床层;所述两个或多个活性炭床层由多孔板隔开所形成。The apparatus according to claim 1 or 2, wherein the primary adsorption column (T1) has an activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2 to 5 beds. a layer; the two or more activated carbon beds are formed by separating the porous plates.
  4. 一种烟气脱硫脱硝装置,它包括:A flue gas desulfurization and denitration device, which comprises:
    1)串联的一级吸附塔(T1)和二级吸附塔(T2),和1) a primary adsorption tower (T1) and a secondary adsorption tower (T2) connected in series, and
    2)活性炭再生塔(或解析塔)(T3),2) Activated carbon regeneration tower (or analytical tower) (T3),
    其中活性炭解析塔(T3)具有上部的加热区、中部的缓冲区和下部的冷却区,在上部加热区的下侧部和上侧部分别连接了加热气体输入管(L1a)和加热气体输出管(L1b),在下部冷却区的下侧部和上侧部分别连接了冷却气体输入管(L2a)和冷却气体输出管(L2b),从解析塔(T3)中部的缓冲区侧部引出的酸性气体输送管道(L3a)连接至制酸系统,其特征在于:从酸性气体输 送管道(L3a)的起始端(或前端)分出了一个加热气体支管(L3a'),并且,该加热气体支管(L3a')的另一端与加热气体输入管(L1a)连通或与加热气体输出管(L1b)连通,使得该加热气体支管(L3a')作为从加热气体输入管(L1a)上分出的支管或作为从加热气体输出管(L1b)上分出的支管;The activated carbon analysis tower (T3) has an upper heating zone, a middle buffer zone and a lower cooling zone, and a heating gas inlet pipe (L1a) and a heating gas output pipe are respectively connected to the lower side portion and the upper side portion of the upper heating zone. (L1b), a cooling gas inlet pipe (L2a) and a cooling gas output pipe (L2b) are connected to the lower side portion and the upper side portion of the lower cooling zone, respectively, and the acidity is extracted from the buffer side portion in the middle of the analysis tower (T3) The gas delivery conduit (L3a) is connected to the acid production system and is characterized by: transport from acid gas A heating gas branch pipe (L3a') is branched at the start end (or front end) of the pipe (L3a), and the other end of the heating gas branch pipe (L3a') is connected to the heating gas input pipe (L1a) or heated gas The output pipe (L1b) is connected such that the heating gas branch pipe (L3a') acts as a branch pipe branched from the heating gas input pipe (L1a) or as a branch pipe branched from the heating gas output pipe (L1b);
    其中,一级吸附塔(T1)包括主体结构(1)、位于一级吸附塔(T1)顶部的进料仓(2)、进气室(3)、通向进气室(3)的原烟气输送烟道即第一烟气管道(L1)、吸附塔底仓卸料阀(4)、活性炭床层底部卸料阀(5)、多孔板(6)以及出气室,Wherein, the primary adsorption tower (T1) comprises a main structure (1), a feed bin (2) located at the top of the primary adsorption tower (T1), an inlet chamber (3), and an inlet to the inlet chamber (3) The flue gas conveying flue is the first flue gas pipeline (L1), the adsorption tower bottom silo discharge valve (4), the activated carbon bed bottom discharge valve (5), the perforated plate (6), and the outlet chamber.
    二级吸附塔(T2)分别包括主体结构(1)、位于吸附塔(T2)顶部的进料仓(2)、进气室(3’)、通向进气室(3’)的第三烟气管道(L3)、吸附塔底仓卸料阀(4)、活性炭床层底部卸料阀(5)、多孔板(6)以及出气室(9),和The secondary adsorption tower (T2) comprises a main structure (1), a feed bin (2) at the top of the adsorption tower (T2), an inlet chamber (3'), and a third passage to the inlet chamber (3'). Flue gas pipeline (L3), adsorption tower bottom discharge valve (4), activated carbon bed bottom discharge valve (5), perforated plate (6), and outlet chamber (9), and
    一级吸附塔(T1)的下部出气室(b)通过管道连接至二级吸附塔(T2)的进气室(3’)。The lower outlet chamber (b) of the primary adsorption tower (T1) is connected by piping to the inlet chamber (3') of the secondary adsorption column (T2).
  5. 根据权利要求4所述的装置,其特征在于:一级吸附塔(T1)的出气室分隔为上部出气室(a)、下部出气室(b),其中用于从上部出气室(a)中输出纯净烟气的第二烟气管道(L2)被连通至排放烟囱,用于从下部出气室(b)中输出烟气的第三烟气管道(L3)连通至二级吸附塔(T2)的进气室(3’),以及任选地,从二级吸附塔(T2)的出气室(9)中输出烟气的第四烟气管道(L4)与第二烟气管道(L2)合并或汇合后通向排放烟囱;或The apparatus according to claim 4, characterized in that the outlet chamber of the primary adsorption tower (T1) is partitioned into an upper outlet chamber (a) and a lower outlet chamber (b) for use in the outlet chamber (a) from the upper portion A second flue gas duct (L2) for outputting pure flue gas is connected to the exhaust stack, and a third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the secondary adsorption tower (T2) An inlet chamber (3'), and optionally a fourth flue gas duct (L4) and a second flue gas duct (L2) for outputting flue gas from an outlet chamber (9) of the secondary adsorption tower (T2) Merging or converging to the exhaust chimney; or
    一级吸附塔(T1)的出气室分隔为上部出气室(a)、中部出气室(c)和下部出气室(b),其中用于从上部出气室(a)中输出纯净烟气的第二烟气管道(L2)被连通至排放烟囱,用于从下部出气室(b)中输出烟气的第三烟气管道(L3)连通至二级吸附塔(T2)的进气室(3’),用于从中部出气室(c)中输出烟气的第五烟气管道(L5)经由切换阀(10)分别连通至第二烟气管道(L2)或第三烟气管道(L3),以及任选地,从二级吸附塔(T2)的出气室(9)中输出烟气的第四烟气管道(L4)与第二烟气管道(L2)合并或汇合后通向排放烟囱。The outlet chamber of the primary adsorption tower (T1) is divided into an upper outlet chamber (a), a middle outlet chamber (c) and a lower outlet chamber (b), wherein the first outlet for outputting pure flue gas from the upper outlet chamber (a) The two flue gas duct (L2) is connected to the exhaust chimney, and the third flue gas duct (L3) for outputting flue gas from the lower outlet chamber (b) is connected to the intake chamber of the secondary adsorption tower (T2) (3) '), the fifth flue gas duct (L5) for outputting flue gas from the central air outlet chamber (c) is respectively connected to the second flue gas duct (L2) or the third flue gas duct (L3) via the switching valve (10) And, optionally, the fourth flue gas duct (L4) that outputs flue gas from the outlet chamber (9) of the secondary adsorption tower (T2) merges or merges with the second flue gas duct (L2) and then leads to discharge chimney.
  6. 根据权利要求4或5所述的装置,其中一级吸附塔(T1)或二级吸附塔(T2)各自独立地具有一个活性炭床层、两个活性炭床层或多个活性炭床层(A,B,C),优选2-5个床层;所述两个或多个活性炭床层由多孔板隔开所形成; The apparatus according to claim 4 or 5, wherein the primary adsorption tower (T1) or the secondary adsorption tower (T2) each independently has one activated carbon bed, two activated carbon beds or a plurality of activated carbon beds (A, B, C), preferably 2-5 beds; the two or more activated carbon beds are formed by separating the porous plates;
    和/或and / or
    一级吸附塔(T1)与二级吸附塔(T2)彼此具有相同或不同的结构和尺寸。The primary adsorption column (T1) and the secondary adsorption column (T2) have the same or different structures and sizes from each other.
  7. 根据权利要求1-6中任何一项所述的装置,其中一级吸附塔(T1)能够以两个或多个并列来使用和/或二级吸附塔(T2)也能够以两个或多个并列来使用;优选,并列的一级吸附塔的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合;Apparatus according to any one of claims 1 to 6, wherein the primary adsorption column (T1) can be used in two or more juxtaposition and/or the secondary adsorption column (T2) can also be used in two or more Preferably, the outlet chambers of the parallel primary adsorption tower are respectively separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), ie, divided into Two or three levels, and, more preferably, pipes that discharge flue gas from chambers of the same level of different adsorption columns may be combined or merged;
    优选的是,当对称式双塔形式的一级吸附塔(T1)以两个或多个并列的一级吸附塔时,则并列的作为一级吸附塔的每一个对称式双塔的出气室分别隔离成上、下两个腔室(a,b)或上中下三个腔室(a,c,b),即,分成两个层级或三个层级,和,更优选的是,从不同吸附塔的相同层级的腔室中排出烟气的管道可以合并或汇合。Preferably, when the first-stage adsorption tower (T1) in the form of a symmetrical double column is used as two or more juxtaposed first-stage adsorption towers, the venting chambers of each of the symmetric double towers of the first-stage adsorption tower are juxtaposed. Separated into upper and lower chambers (a, b) or upper, middle and lower chambers (a, c, b), that is, divided into two levels or three levels, and, more preferably, from The pipes for discharging flue gas in the chambers of the same level of different adsorption towers may be combined or merged.
  8. 使用权利要求1-3或7中任何一项所述的脱硫脱硝装置的烟气脱硫脱硝方法,该方法包括以下步骤:A flue gas desulfurization and denitration method using the desulfurization and denitration apparatus according to any one of claims 1 to 3, wherein the method comprises the following steps:
    I)脱硫、脱硝步骤:原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分地脱除,之后烟气进入到一级吸附塔(T1)的出气室中,吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的烟气输入管道(L1)中以及任选地通入到一级吸附塔(T1)内;和I) Desulfurization and denitration step: the original flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1) and then sequentially flows through one of the primary adsorption towers (T1) or In multiple activated carbon beds, the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the flue gas contains pollutants (such as sulfur oxides, nitrogen oxides, dust, dioxins). After being removed or partially removed by the activated carbon, the flue gas is then introduced into the outlet chamber of the primary adsorption tower (T1), and the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); preferably At the same time as the above operation, the diluted ammonia gas is introduced into the flue gas input pipe (L1) of the primary adsorption tower (T1) and optionally into the primary adsorption tower (T1);
    II)活性炭解析步骤:将吸附了污染物的活性炭从一级吸附塔(T1)的底部转移到具有上部的加热区和下部的冷却区的一种活性炭解析塔(T3)的加热区中,让活性炭进行解析、再生,而解析、再生后的活性炭向下通过冷却区之后从解吸塔(T3)底部排出;其中:在解析过程中将氮气通入到解析塔(T3)的上部,并且任选地同时将氮气经由第二氮气管道通入解析塔(T3)的下部;和,通入解析塔(T3)内的氮气将从活性炭上热解吸的包括SO2和NH3在内的气体污染物从解吸塔(T3)的加热区和冷却区之间的中间区段中带出并经由酸性气体管道(L3a)送至制酸系统; II) Activated carbon analysis step: transferring the activated carbon adsorbed by the pollutant from the bottom of the primary adsorption tower (T1) to the heating zone of an activated carbon analytical tower (T3) having an upper heating zone and a lower cooling zone, The activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon is discharged from the bottom of the desorption column (T3) after passing through the cooling zone; wherein: nitrogen is introduced into the upper part of the analytical column (T3) during the analysis, and optional At the same time, nitrogen is introduced into the lower portion of the analytical column (T3) via the second nitrogen gas line; and the gas introduced into the analytical column (T3) is thermally desorbed from the activated carbon, including SO 2 and NH 3 . The material is taken out from the intermediate section between the heating zone and the cooling zone of the desorption column (T3) and sent to the acid production system via the acid gas pipeline (L3a);
    其特征在于:在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的温度、优选280-400℃、进一步优选为300-380℃,更优选320-360℃);和,任选地,在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体。It is characterized in that a heating gas branch pipe (L3a') is used from the heating gas inlet pipe before the gas pollutants including SO 2 and NH 3 (ie, acid gas) are sent to the acid production system via the acid gas pipe (L3a). (L1a) or the heating gas is outputted from the heating gas outlet pipe (L1b), and the heating gas flows through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, preheating to a temperature of 250-450 ° C Preferably, 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing After the acid gas pipe (L3a), the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas outlet pipe (L1b) by the heating gas pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) ) to remove the acid gas remaining in the acid gas pipe (L3a).
  9. 根据权利要求8所述的方法,其中I)脱硫、脱硝步骤如下进行:原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分地脱除,之后烟气进入到一级吸附塔(T1)的上部出气室(a)和下部出气室(b)中,从一级吸附塔(T1)的上部出气室(a)中排出的烟气经由第二烟气管道(L2)输送至排放烟囱以便进行排放,从一级吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由第三烟气管道(L3)输送返回与第一烟气管道(L1)中的原烟气汇合,而吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的烟气输入管道(L1)中以及任选地通入到一级吸附塔(T1)内。The method according to claim 8, wherein the I) desulfurization and denitration steps are carried out as follows: the raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas duct (L1), followed by Flowing through one or more activated carbon beds of the primary adsorption tower (T1), the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the pollutants contained in the flue gas (such as sulfur Oxide, nitrogen oxides, dust, dioxins, etc.) are removed or partially removed by activated carbon, after which the flue gas enters the upper outlet chamber (a) and the lower outlet chamber (b) of the primary adsorption tower (T1) The flue gas discharged from the upper air outlet chamber (a) of the primary adsorption tower (T1) is sent to the discharge chimney via the second flue gas duct (L2) for discharge, and is discharged from the lower portion of the primary adsorption tower (T1). The flue gas containing a small amount of pollutants discharged from the chamber (b) is returned to the original flue gas in the first flue gas duct (L1) via the third flue gas duct (L3), and the activated carbon adsorbing the pollutants is The bottom of the primary adsorption tower (T1) is discharged; preferably, the diluted ammonia gas is introduced into the primary adsorption tower (T1) at the same time as the above operation. Pipe (L1) and optionally in an adsorption column into the (T1) inside.
  10. 使用权利要求4-7中任何一项所述的脱硫脱硝装置的烟气脱硫脱硝方法,该方法包括以下步骤:A flue gas desulfurization and denitration method using the desulfurization and denitration apparatus according to any one of claims 4 to 7, the method comprising the steps of:
    I)脱硫、脱硝步骤:I) Desulfurization and denitration steps:
    1)原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分脱除,之后,1) The raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1), and then flows through one or more activated carbon beds of the primary adsorption tower (T1) in sequence. The flue gas is in cross-flow contact with the activated carbon added from the top of the first adsorption tower (T1), wherein the pollutants contained in the flue gas (such as sulfur oxides, nitrogen oxides, dust, dioxin, etc.) are removed by the activated carbon. Except or partial removal, after
    2)烟气进入到一级吸附塔(T1)的出气室中,吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;从一级吸附塔(T1)的下部出气室(b)中排出的 含少量污染物的烟气经由管道被输送至二级吸附塔(T2)的进气室(3’)中并且依次流过二级吸附塔(2)的一个或多个活性炭床层,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)进一步被活性炭脱除;从二级吸附塔(T2)的出气室(10)中排出的烟气通过烟囱被排放,吸附了污染物的活性炭则从二级吸附塔(T2)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的第一烟气管道(L1)中和任选地通入为二级吸附塔(T2)输送烟气的管道中以及任选地通入到一级吸附塔(T1)和/或二级吸附塔(T2)内;2) The flue gas enters the outlet chamber of the first adsorption tower (T1), and the activated carbon adsorbed with the pollutants is discharged from the bottom of the first adsorption tower (T1); from the lower outlet chamber of the first adsorption tower (T1) (b Discharged The flue gas containing a small amount of pollutants is sent to the inlet chamber (3') of the secondary adsorption tower (T2) via a pipeline and sequentially flows through one or more activated carbon beds of the secondary adsorption tower (2), wherein the smoke The pollutants contained in the gas (such as sulfur oxides, nitrogen oxides, dust, dioxins, etc.) are further removed by the activated carbon; the flue gas discharged from the outlet chamber (10) of the secondary adsorption tower (T2) passes through the chimney The activated carbon that is discharged and adsorbed with pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the diluted ammonia gas is introduced into the first flue gas pipeline of the primary adsorption tower (T1) at the same time as the above operation. (L1) neutralization optionally in the conduit for the delivery of flue gas to the secondary adsorption column (T2) and optionally to the primary adsorption column (T1) and/or the secondary adsorption column (T2);
    with
    II)活性炭解析步骤:将吸附了污染物的活性炭从一级吸附塔(T1)的底部和/或二级吸附塔(T2)的底部转移到具有上部的加热区和下部的冷却区的一种活性炭解析塔(T3)的加热区中,让活性炭进行解析、再生,而解析、再生后的活性炭向下流过冷却区之后从解吸塔(T3)底部排出;其中:在解析过程中将氮气通入到解析塔(T3)的上部,并且任选地同时将氮气经由第二氮气管道通入解析塔(T3)的下部;和,通入解析塔(T3)内的氮气将从活性炭上热解吸的包括SO2和NH3在内的气体污染物从解吸塔(T3)的加热区和冷却区之间的中间区段中带出并经由酸性气体管道(L3a)送至制酸系统;II) Activated carbon analysis step: transferring activated carbon adsorbed with pollutants from the bottom of the primary adsorption tower (T1) and/or the bottom of the secondary adsorption tower (T2) to a cooling zone having an upper heating zone and a lower cooling zone In the heating zone of the activated carbon analysis tower (T3), the activated carbon is analyzed and regenerated, and the analyzed and regenerated activated carbon flows downward through the cooling zone and is discharged from the bottom of the desorption column (T3); wherein: nitrogen is introduced during the analysis process. Going to the upper part of the analytical column (T3), and optionally simultaneously passing nitrogen gas into the lower portion of the analytical column (T3) via the second nitrogen gas line; and, the nitrogen gas flowing into the analytical column (T3) is thermally desorbed from the activated carbon The gaseous contaminants including SO 2 and NH 3 are taken out from the intermediate section between the heating zone and the cooling zone of the desorption column (T3) and sent to the acid production system via the acid gas pipeline (L3a);
    其特征在于:在让包括SO2和NH3在内的气体污染物(即酸性气体)经由酸性气体管道(L3a)输送至制酸系统之前,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,使加热气体流过酸性气体管道(L3a)来预热该酸性气体管道(L3a)(例如预热至250-450℃的温度、优选280-400℃、进一步优选为300-380℃,更优选320-360℃);和,任选地,在包括SO2和NH3在内的气体污染物(即酸性气体)停止流过酸性气体管道(L3a)之后,利用加热气体支管(L3a')从加热气体输入管(L1a)中或从加热气体输出管(L1b)中输出加热气体,让加热气体吹扫该酸性气体管道(L3a),以除去酸性气体管道(L3a)中残留的酸性气体;优选,一级吸附塔(T1)能够以两个或多个并列来使用;和/或,二级吸附塔(T2)能够以两个或多个并列来使用。It is characterized in that a heating gas branch pipe (L3a') is used from the heating gas inlet pipe before the gas pollutants including SO 2 and NH 3 (ie, acid gas) are sent to the acid production system via the acid gas pipe (L3a). (L1a) or the heating gas is outputted from the heating gas outlet pipe (L1b), and the heating gas flows through the acid gas pipe (L3a) to preheat the acid gas pipe (L3a) (for example, preheating to a temperature of 250-450 ° C Preferably, 280-400 ° C, further preferably 300-380 ° C, more preferably 320-360 ° C); and, optionally, gas contaminants (ie, acid gases) including SO 2 and NH 3 stop flowing After the acid gas pipe (L3a), the heating gas is supplied from the heating gas inlet pipe (L1a) or from the heating gas outlet pipe (L1b) by the heating gas pipe (L3a'), and the heating gas is purged by the acid gas pipe (L3a) ) to remove the acid gas remaining in the acid gas pipe (L3a); preferably, the primary adsorption column (T1) can be used in parallel in two or more; and/or the secondary adsorption column (T2) can be used in two One or more are used side by side.
  11. 根据权利要求10所述的方法,其中I)脱硫、脱硝步骤如下进行:The method of claim 10 wherein the I) desulfurization and denitration steps are carried out as follows:
    1)原烟气经由第一烟气管道(L1)输送到一级吸附塔(T1)的进气室(3)中 之后依次流过一级吸附塔(T1)的一个或多个活性炭床层,烟气与从一级吸附塔(T1)顶部加入的活性炭进行错流式接触,其中烟气所含的污染物(如硫氧化物、氮氧化物、粉尘、二恶英等)被活性炭脱除或部分脱除,之后,1) The raw flue gas is sent to the inlet chamber (3) of the primary adsorption tower (T1) via the first flue gas pipeline (L1) Then, one or more activated carbon beds of the first adsorption tower (T1) are sequentially flowed, and the flue gas is in cross-flow contact with the activated carbon added from the top of the primary adsorption tower (T1), wherein the pollutants contained in the flue gas ( Such as sulfur oxides, nitrogen oxides, dust, dioxins, etc.) are removed or partially removed by activated carbon, after
    2)当一级吸附塔(T1)具有上部出气室(a)和下部出气室(b)时,烟气进入到一级吸附塔(T1)的上部出气室(a)和下部出气室(b)中,而吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;其中,从一级吸附塔(T1)的上部出气室(a)中排出的烟气经由第二烟气管道(L2)输送至排放烟囱以便进行排放,从吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由第三烟气管道(L3)输送至二级吸附塔(T2)的进气室(3’)中并且依次流过二级吸附塔(T2)的一个或多个活性炭床层,从二级吸附塔(T2)的出气室(9)中排出的烟气经由第四烟气管道(L4)输送至与第二烟气管道(L2)内的烟气汇合和然后排放,或,2) When the primary adsorption tower (T1) has an upper outlet chamber (a) and a lower outlet chamber (b), the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1) and the lower outlet chamber (b) In the middle, the activated carbon adsorbed by the pollutant is discharged from the bottom of the first adsorption tower (T1); wherein the flue gas discharged from the upper outlet chamber (a) of the primary adsorption tower (T1) passes through the second flue gas pipeline (L2) is sent to the discharge chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower outlet chamber (b) of the adsorption tower (T1) is sent to the secondary adsorption tower via the third flue gas duct (L3) ( In the inlet chamber (3') of T2) and sequentially flowing through one or more activated carbon beds of the secondary adsorption tower (T2), the flue gas discharged from the outlet chamber (9) of the secondary adsorption tower (T2) Conveyed to the flue gas in the second flue gas duct (L2) via the fourth flue gas duct (L4) and then discharged, or
    当一级吸附塔(T1)具有上部出气室(a)、中部出气室(c)和下部出气室(b)时,烟气进入到一级吸附塔(T1)的上部出气室(a)、中部出气室(c)和下部出气室(b)中,而吸附了污染物的活性炭则从一级吸附塔(T1)底部排出;其中,从一级吸附塔(T1)的上部出气室(a)中排出的烟气经由第二烟气管道(L2)输送至排放烟囱以便进行排放,从吸附塔(T1)的下部出气室(b)中排出的含少量污染物的烟气经由第三烟气管道(L3)输送至二级吸附塔(T2)的进气室(3’)中并且依次流过二级吸附塔(T2)的一个或多个活性炭床层,从二级吸附塔(T2)的出气室(9)中排出的烟气经由第四烟气管道(L4)输送至与第二烟气管道(L2)内的烟气汇合和然后排放,从一级吸附塔(T1)的中部出气室(c)中排出的烟气经由第五烟气管道(L5)输送并通过切换阀门(10)的切换而分别与第二烟气管道(L2)内的烟气汇合或与第三烟气管道(L3)内的烟气汇合,吸附了污染物的活性炭则从二级吸附塔(T2)底部排出;优选的是,在上述操作的同时,将稀释氨气通入一级吸附塔(T1)的第一烟气管道(L1)中和任选地通入为二级吸附塔(T2)输送烟气的第三烟气管道(L3)中以及任选地通入到一级吸附塔(T1)和/或二级吸附塔(T2)内。When the primary adsorption tower (T1) has an upper outlet chamber (a), a central outlet chamber (c), and a lower outlet chamber (b), the flue gas enters the upper outlet chamber (a) of the primary adsorption tower (T1), In the central venting chamber (c) and the lower venting chamber (b), the activated carbon adsorbing the pollutants is discharged from the bottom of the primary adsorption tower (T1); wherein, from the upper venting chamber of the primary adsorption tower (T1) (a The flue gas discharged in the second flue gas duct (L2) is sent to the exhaust chimney for discharge, and the flue gas containing a small amount of pollutant discharged from the lower air outlet chamber (b) of the adsorption tower (T1) passes through the third smoke The gas pipeline (L3) is sent to the inlet chamber (3') of the secondary adsorption tower (T2) and sequentially flows through one or more activated carbon beds of the secondary adsorption tower (T2) from the secondary adsorption tower (T2) The flue gas discharged from the outlet chamber (9) is sent to the flue gas in the second flue gas duct (L2) via the fourth flue gas duct (L4) and then discharged, from the first adsorption tower (T1) The flue gas discharged from the central air outlet chamber (c) is transported via the fifth flue gas duct (L5) and merged with the flue gas in the second flue gas duct (L2) or the third by switching of the switching valve (10), respectively. Flue gas pipeline (L3) The flue gas merges, and the activated carbon adsorbing the pollutants is discharged from the bottom of the secondary adsorption tower (T2); preferably, the first smoke of the diluted ammonia gas is introduced into the primary adsorption tower (T1) at the same time as the above operation. The gas line (L1) is neutralized and optionally passed into a third flue gas line (L3) conveying flue gas for the secondary adsorption column (T2) and optionally passed to the primary adsorption column (T1) and/or Within the secondary adsorption tower (T2).
  12. 根据权利要求8-11中任何一项所述的方法,其中通过调节吸附塔活性炭床层底部的卸料阀(5)来调节活性炭在活性炭床层中的停留时间,确保从一级吸附塔(T1)的上部出气室(a)中或从一级吸附塔(T1)的上部出气 室(a)和中部出气室(c)中排出的烟气中污染物含量在符合要求或符合法规的范围内。 The method according to any one of claims 8 to 11, wherein the residence time of the activated carbon in the activated carbon bed is adjusted by adjusting the discharge valve (5) at the bottom of the activated carbon bed of the adsorption column to ensure the adsorption column from the first stage ( In the upper outlet chamber (a) of T1) or in the upper part of the primary adsorption tower (T1) The content of contaminants in the flue gas discharged from chamber (a) and central outlet chamber (c) is within the scope of compliance with regulations or compliance with regulations.
PCT/CN2017/080044 2016-06-30 2017-04-11 Flue gas desulfurization and denitrification method and device capable of preventing corrosion WO2018000888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610507677.3A CN107551756A (en) 2016-06-30 2016-06-30 Prevent the flue gas desulfurization and denitration method and device of corrosion
CN201610507677.3 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018000888A1 true WO2018000888A1 (en) 2018-01-04

Family

ID=60785832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080044 WO2018000888A1 (en) 2016-06-30 2017-04-11 Flue gas desulfurization and denitrification method and device capable of preventing corrosion

Country Status (2)

Country Link
CN (1) CN107551756A (en)
WO (1) WO2018000888A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806704A (en) * 2019-03-19 2019-05-28 山东楚雨源环保科技有限公司 A kind of circulating high-temperature flue gas of stage type conduction oil takes off white processing system
CN112675698A (en) * 2020-12-23 2021-04-20 山东祥桓环境科技有限公司 Desulfurization, denitrification and dust removal device of turbulent bed in separate bin and process thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108295621B (en) * 2018-01-29 2019-07-12 中冶长天国际工程有限责任公司 A kind of multi-process flue gas purification system and its control method
CN108744960B (en) * 2018-06-14 2021-06-18 华北电力大学(保定) Device and method for simultaneously desulfurizing, denitrifying, removing mercury and recycling flue gas
CN110856792A (en) * 2018-08-23 2020-03-03 中国石化工程建设有限公司 System and method for purifying flue gas by active coke adsorption
CN110898608B (en) * 2018-09-18 2022-02-08 中国石化工程建设有限公司 System and method for adsorbing and purifying flue gas by using active coke
CN111841237B (en) * 2019-04-29 2022-05-03 中冶长天国际工程有限责任公司 Method for inhibiting SRG flue gas crystallization
CN112657481B (en) * 2020-12-10 2024-02-20 上海克硫环保科技股份有限公司 Active coke regeneration system and regeneration method
CN114307520A (en) * 2022-01-25 2022-04-12 中印恒盛(北京)贸易有限公司 Flue gas desulfurization device and activated carbon desulfurization method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887412A (en) * 2005-06-28 2007-01-03 王宇 Method of preventing wet desulfurized fume from dewing corrosion
CN103203158A (en) * 2012-01-11 2013-07-17 住友重机械工业株式会社 Quantitative discharge apparatus of adsorbing material
CN103405991A (en) * 2013-08-22 2013-11-27 上海克硫环保科技股份有限公司 Energy-efficient comprehensive desulfurization and purification system and method for active coke of different flue gases
CN105688622A (en) * 2014-11-28 2016-06-22 中冶长天国际工程有限责任公司 A flue gas desulphurization denitration method adopting two adsorption columns in series connection and a device therefor
CN105688625A (en) * 2014-11-28 2016-06-22 湖南中冶长天节能环保技术有限公司 A flue gas desulphurization denitration method adopting ammonia-containing wastewater for flue gas temperature control and a device therefor
CN206240258U (en) * 2016-06-30 2017-06-13 中冶长天国际工程有限责任公司 Prevent the flue gas desulfurization and denitrification device of corrosion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887412A (en) * 2005-06-28 2007-01-03 王宇 Method of preventing wet desulfurized fume from dewing corrosion
CN103203158A (en) * 2012-01-11 2013-07-17 住友重机械工业株式会社 Quantitative discharge apparatus of adsorbing material
CN103405991A (en) * 2013-08-22 2013-11-27 上海克硫环保科技股份有限公司 Energy-efficient comprehensive desulfurization and purification system and method for active coke of different flue gases
CN105688622A (en) * 2014-11-28 2016-06-22 中冶长天国际工程有限责任公司 A flue gas desulphurization denitration method adopting two adsorption columns in series connection and a device therefor
CN105688625A (en) * 2014-11-28 2016-06-22 湖南中冶长天节能环保技术有限公司 A flue gas desulphurization denitration method adopting ammonia-containing wastewater for flue gas temperature control and a device therefor
CN206240258U (en) * 2016-06-30 2017-06-13 中冶长天国际工程有限责任公司 Prevent the flue gas desulfurization and denitrification device of corrosion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806704A (en) * 2019-03-19 2019-05-28 山东楚雨源环保科技有限公司 A kind of circulating high-temperature flue gas of stage type conduction oil takes off white processing system
CN109806704B (en) * 2019-03-19 2024-03-08 山东楚雨源环保科技有限公司 Double-stage type heat conduction oil circulation type high-temperature flue gas whitening treatment system
CN112675698A (en) * 2020-12-23 2021-04-20 山东祥桓环境科技有限公司 Desulfurization, denitrification and dust removal device of turbulent bed in separate bin and process thereof
CN112675698B (en) * 2020-12-23 2023-02-28 山东祥桓环境科技有限公司 Desulfurization, denitrification and dust removal device of turbulent bed in separate bin and process thereof

Also Published As

Publication number Publication date
CN107551756A (en) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2018000857A1 (en) Flue gas desulfurization and denitrification method and device
WO2018000888A1 (en) Flue gas desulfurization and denitrification method and device capable of preventing corrosion
CN105618019B (en) Activated carbon Thermal desorption method and its device including UTILIZATION OF VESIDUAL HEAT IN
CN108939808B (en) Activated carbon treatment system for improving waste heat utilization rate and denitration rate and use method thereof
CN105688873B (en) Activated carbon Thermal desorption method and its device
CN107998818B (en) Inert gas protection system and method for activated carbon adsorption tower
WO2017080502A1 (en) Activated carbon flue gas purification device and flue gas purification method
CN105688566A (en) Desulfurization and denitrification device and method for sintering flue gas
CN108939807B (en) Flue gas purification device for improving waste heat utilization rate and denitration rate and use method thereof
CN206240259U (en) A kind of flue gas desulfurization and denitrification device
CN104190389A (en) Thermal regeneration method and device of activated carbon
CN111203083B (en) Sintering flue gas desulfurization and denitrification process
CN104190388A (en) Activated carbon thermal desorption method and device capable of utilizing afterheat
CN111773915B (en) Flue gas dry desulfurization process
CN107115775B (en) Iron ore sintering flue gas sectional enrichment self-heat exchange emission reduction SOxAnd NOxMethod of producing a composite material
CN108745331B (en) Novel activated carbon analysis tower and activated carbon analysis process
CN113834341A (en) Low-temperature desulfurization and denitrification method and system for cement plant flue gas
CN206240258U (en) Prevent the flue gas desulfurization and denitrification device of corrosion
CN209828672U (en) Grate-rotary kiln SNCR/SCR denitration and active coke desulfurization combined system
CN113834340A (en) Low-temperature desulfurization and denitrification method and system for flue gas of sintering machine of steel mill
CN107998817B (en) Single tower type fume purifier flue gas purification method
CN210495771U (en) Activated carbon desulfurization and denitrification system capable of being comprehensively utilized
CN108970328B (en) Device and process for treating high-sulfur waste gas in chemical industry and recovering sulfur
CN204503101U (en) Active carbon thermal analysis apparatus
CN107497298B (en) Low-temperature multi-pollutant comprehensive purification system and method for flue gas dry ammonia process of coal-fired power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818885

Country of ref document: EP

Kind code of ref document: A1