WO2018000861A1 - 显示装置及其制作方法 - Google Patents

显示装置及其制作方法 Download PDF

Info

Publication number
WO2018000861A1
WO2018000861A1 PCT/CN2017/077401 CN2017077401W WO2018000861A1 WO 2018000861 A1 WO2018000861 A1 WO 2018000861A1 CN 2017077401 W CN2017077401 W CN 2017077401W WO 2018000861 A1 WO2018000861 A1 WO 2018000861A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display device
light
display screen
crystal grating
Prior art date
Application number
PCT/CN2017/077401
Other languages
English (en)
French (fr)
Inventor
畅丽萍
于德泽
张万宁
Original Assignee
畅丽萍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 畅丽萍 filed Critical 畅丽萍
Publication of WO2018000861A1 publication Critical patent/WO2018000861A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to the field of flat display technologies, and in particular, to a display device and a method of fabricating the same.
  • the human eye perceives the depth of the object by the slight difference of the object seen by the right eye and the left eye, thereby recognizing the stereoscopic image. This difference is called parallax.
  • Stereoscopic display technology is to create the parallax of the left and right eyes of human beings by artificial means, and send two images with parallax to the left and right eyes respectively, so that the brain can observe the real three-dimensional objects after acquiring different images seen by the left and right eyes. a feeling of.
  • the glasses-type three-dimensional display technology mainly realizes the timing separation of the two images of the left and right eyes by wearing the switch glasses or the polarized glasses, thereby providing the parallax images for the eyes of the observer.
  • the naked-eye three-dimensional display technology mainly realizes optical path separation through optical components, and provides images for the left and right eyes of the observer to generate a stereoscopic display effect.
  • the technical solution of the present invention is a display device for displaying different depth of fields for displaying different depth of fields, including a display screen and one or more liquid crystal gratings; wherein the display screen is for providing an image light source, incident on the liquid crystal a grating; the liquid crystal grating refracts or scatters light, and transmits the display light source to the liquid crystal grating to form a projected image; The opening and closing of different positions of the liquid crystal grating are realized to achieve different depth of field.
  • the liquid crystal grating comprises a substrate, a thin film transistor array, a liquid crystal layer and a cathode which are sequentially located on the substrate.
  • a micro lens is further disposed on the back surface of the substrate.
  • the liquid crystal layer controls a switching state thereof by a voltage control signal.
  • the liquid crystal layer In the on state, the liquid crystal layer is in a transparent state, and the incident light is transmitted through; in the off state, the liquid crystal layer is in a non-transparent state, and is incident. Light scatters or refracts.
  • the thin film transistor array includes a plurality of data lines and a plurality of scan lines and a plurality of display units defined by intersections of the data lines and the scan lines;
  • the display screen has a plurality of pixel units, and the plurality of display units and The plurality of pixel units are in one-to-one correspondence.
  • the display unit includes a thin film transistor and a storage capacitor, a gate of the thin film transistor is connected to the scan line, a source or a drain is connected to the data line, and a drain or a source is connected to the
  • the storage capacitor is connected to the other one of the scan lines.
  • a light shielding material is further disposed around the liquid crystal layer and between the liquid crystal layers, and the light shielding material divides the liquid crystal layer into a plurality of liquid crystal cells, and the plurality of liquid crystal cells and the plurality of displays Units correspond one by one.
  • the display device further includes a driving chip, and the driving chip provides a voltage control signal, and the liquid crystal grating controls an opening and closing state of the liquid crystal in each liquid crystal unit through the driving chip.
  • a cathode side of the liquid crystal grating is adhered to the display screen by a glue.
  • a liquid crystal grating is disposed on the light emitting side of the display screen.
  • two light-crystal gratings are disposed on the light-emitting side of the display screen, and the two liquid crystal gratings share the substrate.
  • the display screen is an LCD, an LED or an OLED.
  • the invention also provides a method for manufacturing a display device, which can display different depth of field, including:
  • the display screen is for providing an image light source, incident on the liquid crystal grating; the liquid crystal grating controls a switch by a control signal, when the light is turned on, the light passes through the liquid crystal grating; when closed, the liquid crystal grating generates light Refraction or scattering, the display screen light source is transmitted onto the liquid crystal grating to form a projected image; different depth of field is achieved by controlling opening and closing of different positions in the liquid crystal grating.
  • the manufacturing method of the liquid crystal grating includes:
  • a cathode is formed on the light shielding material and the liquid crystal layer.
  • a cavity is formed in the light-shielding material by exposure or development or by using a 3D printer.
  • the process of forming a liquid crystal layer in the cavity comprises: coating a liquid crystal material in the cavity, curing the liquid crystal material with high temperature or ultraviolet light, and performing a planarization process.
  • microlens is formed on the back surface of the substrate.
  • the micro lens is formed by using a UV glue or a heat sensitive glue, using a mold stamping or ink printing method, using microgravity and surface tension.
  • the display device and the manufacturing method thereof provided by the invention have the following beneficial effects:
  • the present invention provides one or more liquid crystal gratings on a display screen for providing an image light source incident on the liquid crystal grating, the liquid crystal grating controlling a switch by a control signal, and when the light is turned on, the light is transmitted through the a liquid crystal grating; when closed, the liquid crystal grating refracts or scatters light, and transmits the display light source to the liquid crystal grating to form a projection image, which is different by controlling opening and closing of different positions of the liquid crystal grating
  • the depth of field which converts the two-dimensional image of the display into images with different depths of field, forming a three-dimensional image with parallax.
  • FIG. 1 is a schematic structural diagram of a display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing the operation of a liquid crystal layer according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a thin film transistor array according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of the working principle of a display device according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of a display device according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of a method for fabricating a display device according to Embodiment 3 of the present invention.
  • the core idea of the present invention is: by providing one or more liquid crystal gratings on a display screen, the display screen is for providing an image light source, incident on the liquid crystal grating, and the liquid crystal grating controls the switch through a control signal, when turned on, Light passing through the liquid crystal grating; when closed, the liquid crystal light
  • the grid refracts or scatters light, transmits the display light source to the liquid crystal grating to form a projection image, and realizes different depth of field by controlling opening and closing of different positions of the liquid crystal grating, thereby Dimensional images are transformed into images with different depths of field, forming a three-dimensional image with parallax.
  • FIG. 1 is a schematic structural diagram of a display device according to Embodiment 1 of the present invention. As shown in FIG. 1 , the present invention provides a display device for displaying different depth of fields, including a display screen 100 and being located on the display screen 100. The liquid crystal grating 200.
  • the display screen 100 is configured to provide an image light source, incident on the liquid crystal grating 200, the liquid crystal grating 200 controls a switch by a control signal, when the light is turned on, light is transmitted through the liquid crystal grating 200; when closed, the liquid crystal
  • the grating 200 refracts or scatters light, transmits the light source of the display screen 100 to the liquid crystal grating 200 to form a projected image, and realizes different depth of field by controlling opening and closing of different positions of the liquid crystal grating 200.
  • the liquid crystal grating 200 includes a substrate 201, a thin film transistor array 202, a liquid crystal layer 203, and a cathode 204 which are sequentially disposed on the substrate 201.
  • the liquid crystal layer 203 controls the switching state of the liquid crystal layer 203 through the voltage control signal provided by the thin film transistor 202 and the cathode 204. In the on state, the liquid crystal layer 203 is in a transparent state, and the incident light is transmitted, and the liquid crystal layer 203 is The light transmittance exceeds 90%.
  • the liquid crystal layer 203 In the closed state, the liquid crystal layer 203 is in a non-transparent state, and the incident light is scattered or refracted to form a projection image, so that the human eye can see the effect of different depth of field on the screen, as shown in FIG. 2 . Shown.
  • the thin film transistor array 202 includes a plurality of data lines and a plurality of scan lines and a plurality of display units defined by intersections of the data lines and the scan lines. As shown in FIG. 3, the thin film transistor array 202 includes three data lines S1 and S2. And S3, three scan lines D1, D2, and D3, and a plurality of display units 2020 defined by intersections of the data lines and the scan lines.
  • the display unit 2020 includes a thin film transistor T and a storage capacitor Cs, and the thin film transistor T a gate is connected to the scan line (eg D2), a source or a drain is connected to the data line (for example, S2), a drain or a source is connected to the storage capacitor Cs, and the other end of the storage capacitor Cs is connected to the previous scan line (for example) D1). Further, due to the presence of the liquid crystal layer 203, a liquid crystal capacitor CLC exists between the drain or source of the thin film transistor T connected to the storage capacitor Cs and the cathode 204.
  • the display screen 100 is a TFT-LCD (thin film transistor liquid crystal display), and the display screen 100 includes a color filter substrate 101, an array substrate 102, and the color filter substrate 101.
  • the array substrate 102 is connected to the sealant 103.
  • the color filter substrate 101 is provided with a color resist 104, a black matrix 105, and a transparent electrode 106.
  • a thin film transistor array 107 and a liquid crystal layer 108 are disposed on the array substrate 102.
  • the thin film transistor array 107 specifically includes a thin film transistor, a display electrode, and a storage electrode; at the edge of the array substrate 102, a terminal 110 is further disposed, the terminal 110 and the thin film transistor
  • the arrays 107 are connected to each other.
  • the terminals 110 are connected to the transparent electrodes 106 through the connection ends 111 for respectively providing signals to the color filter substrate 101 and the array substrate 102.
  • the color filter substrate 101 and the array substrate 102 are respectively disposed.
  • the upper polarizer 112 and the lower polarizer 113 are respectively disposed on the back surface.
  • the liquid crystal grating 200 is disposed on the upper polarizer 112. It should be noted that the present embodiment specifically describes the specific structure of the TFT-LCD, but the TFT-LCD is not limited to this structure, and may be other TFT-LCD structures known to those skilled in the art.
  • the display screen 100 can also be an LED (Light Emitting Diode), an OLED (Organic Light Emitting Diode), an AMOLED (Active Organic Light Emitting Diode), or other display screen known to those skilled in the art.
  • the display screen has a plurality of pixel units, and the plurality of display units 2020 are in one-to-one correspondence with the plurality of pixel units. Therefore, the number of data lines and scan lines in the thin film transistor array 202 can be related to the display screen 100.
  • the number of data lines is consistent with the number of scan lines, and the configuration of the thin film transistor array 202 is similar to that of the array substrate in the display screen 100, and it is only necessary to supply a voltage or a turn-off voltage to the single display unit 2020 to realize the liquid crystal layer. 203 is turned on and off.
  • a light shielding material 205 is further disposed around the liquid crystal layer 203 and the liquid crystal layer 203 , and the light shielding material 205 divides the liquid crystal layer 203 into a plurality of liquid crystal cells.
  • the liquid crystal cells are in one-to-one correspondence with the plurality of display units 2020.
  • the display device further includes a driving chip (not shown) that supplies voltage control signals to the thin film transistor 202 and the cathode 204, respectively, and the liquid crystal grating 200 controls each liquid crystal cell through the driving chip
  • the liquid crystal is turned on and off.
  • the working principle is as shown in FIG. 4 , and the three liquid crystal cells in the liquid crystal grating are taken as an example.
  • the three liquid crystal cells in the liquid crystal grating are the first liquid crystal cell A and the second liquid crystal cell B and The three liquid crystal cells C are separated by a light shielding material 205, wherein the first liquid crystal cells A and the third liquid crystal cells C are in a closed state, and the liquid crystal layer 203 at this time is in a non-transparent state, which is generated by the pixel unit 101.
  • the distance from the image to the human eye is e, which is the distance from the liquid crystal cell 101 to the human eye; the second liquid crystal cell B is in an on state, and the liquid crystal layer 203 at this time is in a transparent state, the pixel
  • the light emitted by the unit 101 is incident on the second liquid crystal unit B, and is transmitted by the second liquid crystal unit B.
  • the distance from the image to the human eye is e+d, which is the distance from the pixel unit 101 to the human eye.
  • the state of the same liquid crystal cell can also be changed at any time, and can be turned on at a certain time and turned off in another time, and the on and off states of different liquid crystal cells can be changed with time.
  • the cathode 204 side of the liquid crystal grating 200 is adhered to the display screen 100 by the adhesive 206 , and a support column may be disposed on the cathode 204 corresponding to the position of the light shielding material 205 .
  • the support box is thick, and the support column may be a PS or a metal ball, or A supporting material known to those skilled in the art.
  • the liquid crystal grating 200 further includes a micro lens 208 to adjust the scattered light to achieve a better visual effect.
  • the micro lens 208 is an optional component, and it may be determined according to actual requirements whether the micro lens needs to be set.
  • two liquid crystal gratings are disposed on the light emitting side of the display screen, and the two liquid crystal gratings share the substrate.
  • FIG. 5 is a schematic structural diagram of a display device according to Embodiment 2 of the present invention.
  • the present invention provides a display device for displaying different depths of field, including a display screen 100 and a lighthouse located at the display screen 100.
  • the liquid crystal grating on the side, the first liquid crystal grating 200 and the second liquid crystal grating 300.
  • the display screen 100 is configured to provide an image light source, incident on the first liquid crystal grating 200 and the second liquid crystal grating 300, and the first liquid crystal grating 200 and the second liquid crystal grating 300 are controlled by a control signal.
  • the first liquid crystal grating 200 and the second liquid crystal grating 300 are opened and closed at different positions to achieve different depth of field.
  • the first liquid crystal grating 20 includes a substrate 201, a thin film transistor array 202, a liquid crystal layer 203, and a cathode 204 sequentially disposed on the substrate 201.
  • the thin film transistor array 202 includes a plurality of display units; a light shielding material 205 is disposed between the liquid crystal layer 203 and the liquid crystal layer 203, and the light shielding material 205 divides the liquid crystal layer 203 into multiple
  • the plurality of liquid crystal cells are in one-to-one correspondence with the plurality of display cells, and the first liquid crystal grating 200 controls the on and off states of the liquid crystals in each of the liquid crystal cells by the driving chip.
  • the cathode 204 side of the first liquid crystal grating 200 is bonded to the display screen 100 by a glue 206.
  • the second liquid crystal grating 300 is the same as the first liquid crystal grating 200, and the second liquid crystal grating 300 shares the substrate 201 with the first liquid crystal grating 200.
  • the gate 300 includes a thin film transistor array 302, a liquid crystal layer 303, and a cathode 304 which are sequentially disposed on the substrate 201.
  • the thin film transistor array 302 includes a plurality of display units; a light shielding material 305 is disposed between the liquid crystal layer 303 and the liquid crystal layer 303, and the light shielding material 305 divides the liquid crystal layer 303 into multiple
  • the plurality of liquid crystal cells are in one-to-one correspondence with the plurality of display cells, and the first liquid crystal grating 300 controls the on and off states of the liquid crystals in each of the liquid crystal cells by the driving chip.
  • the first liquid crystal grating 200 and the second liquid crystal grating 300 have the same structure as the liquid crystal grating in the first embodiment, and therefore will not be described in detail.
  • a micro lens 208 is further disposed on the second liquid crystal grating 300 to adjust the scattered light to achieve a better visual effect.
  • the display screen 100 is also taken as an example of a TFT-LCD.
  • the display screen 100 includes a color filter substrate 101, an array substrate 102, and a cover connecting the color filter substrate 101 and the array substrate 102.
  • the edge of the substrate 102 is further provided with a terminal 110, the terminal 110 is connected to the thin film transistor array 107, and the terminal 110 is connected to the transparent electrode 106 through a connection end 111 for respectively facing the color filter substrate.
  • the present embodiment specifically describes the structure of the TFT-LCD, but the TFT-LCD is not limited to this structure, and may be other structures known to those skilled in the art.
  • the display screen 100 can also be an LED (Light Emitting Diode), an OLED (Organic Light Emitting Diode), an AMOLED (Active Organic Light Emitting Diode), or other display screen known to those skilled in the art.
  • LED Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • AMOLED Active Organic Light Emitting Diode
  • the display device in this embodiment operates in the same manner as the display device in the first embodiment, and Since two liquid crystal gratings are provided in the embodiment, by adjusting the opening and closing of the liquid crystal cells in the two liquid crystal gratings, image signals of three focal lengths can be generated, respectively e, e+d, 2e+d, thereby making The resulting three-dimensional image with parallax is sharper.
  • the quality of the finally formed image is better, but a liquid crystal grating needs to be added, and the corresponding manufacturing cost and production time are correspondingly selected, and the number of liquid crystal gratings can be selected according to the actual needs of the image. It can be understood that the above two embodiments respectively fit one or two liquid crystal gratings. In other embodiments, more liquid crystal gratings can be attached to meet the image requirements of the final formed display. limit.
  • FIG. 6 is a flowchart of a method for fabricating a display device according to Embodiment 3 of the present invention. As shown in FIG. 6 , the present invention provides a method for fabricating a display device, including:
  • Step S01 preparing a display screen and one or more liquid crystal gratings
  • Step S02 attaching the display screen to one or more liquid crystal gratings
  • the display screen is configured to provide an image light source, incident on the liquid crystal grating, the liquid crystal grating controls a switch by a control signal, when the light is turned on, the light passes through the liquid crystal grating; when closed, the liquid crystal grating generates light Refraction or scattering, the display screen light source is transmitted onto the liquid crystal grating to form a projected image; different depth of field is achieved by controlling opening and closing of different positions in the liquid crystal grating.
  • FIG. 6 and FIG. 1 a method for fabricating a display device according to the present invention will be specifically described.
  • a display screen 100 and a liquid crystal grating 200 are fabricated.
  • the display screen 100 is an LCD, an LED or an OLED, or other display screens known to those skilled in the art.
  • the display screen 100 is an LCD.
  • the manufacturing method of the liquid crystal grating 200 specifically includes: providing a substrate 201, forming a thin film transistor array 202 on the substrate 201, the thin film transistor array 202 comprising a plurality of data lines and a plurality of scan lines and by data lines and scanning Line intersection a plurality of display units 2020 defined by the forks, the display unit 2020 is in one-to-one correspondence with the pixel units in the display screen 100; then the light-shielding material 205 is coated on the thin film transistor array 202, by exposure or development, or Forming a plurality of cavities in the shading material 205 by using a 3D printer, the cavities are in one-to-one correspondence with the display unit; then coating a liquid crystal material in the cavity, and then using high temperature or ultraviolet light to The
  • step S02 the display screen 100 is attached to the liquid crystal grating 200, and specifically, the glue is applied to the cathode 204 of the liquid crystal grating 200 to adhere to the display screen 100.
  • a support post may be disposed on the cathode 204 at a position corresponding to the light shielding material 205 for supporting the thickness of the case.
  • UV or thermal glue that is, a UV or heat sensitive adhesive layer
  • mold stamp or ink printing method using microgravity and surface tension to form The micro lens 208.
  • the display device according to the first embodiment can be fabricated, and the two liquid crystal gratings can be fabricated by the above method, and attached to the light-emitting side of the display screen to fabricate the light-emitting side as described in the second embodiment.
  • the display device may also be provided with a plurality of liquid crystal gratings on the display screen.
  • the present invention provides a display device and a method of fabricating the same by providing one or more liquid crystal gratings on a display screen for providing an image light source incident on the liquid crystal grating, the liquid crystal grating Controlling the switch by the control signal, when the light is turned on, the light is transmitted through the liquid crystal grating; when closed, the liquid crystal grating refracts or scatters the light, and transmits the display light source to the liquid crystal grating to form a projection image.
  • the two-dimensional image of the display screen is converted into an image with different depth of field to form a three-dimensional image with parallax.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示装置及其制作方法,显示装置包括显示屏(100)以及一个或多个液晶光栅(200),其中,显示屏(100)用于提供图像光源,入射至液晶光栅(200),液晶光栅(200)通过控制信号控制开关,开启时,光线透过液晶光栅(200);关闭时,液晶光栅(200)对光线产生折射或散射,将显示屏(100)光源透射到液晶光栅(200)上,形成投影式图像,通过控制液晶光栅(200)不同位置的开启与关闭,实现不同的景深,从而把显示屏(100)的二维的图像转化成具有不同景深的图像,形成带有视差的三维图像。

Description

显示装置及其制作方法 技术领域
本发明涉及平面显示技术领域,特别涉及一种显示装置及其制作方法。
背景技术
随着多媒体技术的不断发展,用户对多媒体的要求也越来越高,希望鞥能够体验更加流程的三维立体画面的需求亟待解决。
人眼是通过右眼和左眼所看到的物体的细微差异来感知物体的深度,从而识别出立体图像的,这种差异被称为视差。立体显示技术就是通过人为的手段来制造人的左右眼的视差,给左、右眼分别送去有视差的两幅图像,使大脑在获取了左右眼看到的不同图像之后,产生观察真实三维物体的感觉。
在多媒体技术领域,三维立体显示技术的种类非常多,应用比较多的主要分为眼镜式和裸眼式两种类型。眼镜式三维立体显示技术主要是通过佩戴开关眼镜或者偏光眼镜实现左右眼两路图像时序分离,从而为观察者双眼提供视差图像。裸眼式三维立体显示技术主要是通过光学组件实现光路分离,并为观察者左右眼分别提供图像,产生立体显示效果。
发明内容
本发明的目的在于提供一种显示装置及其制作方法,把二维图像转换成具有不同景深的图像,形成带有视差的三维图像。
本发明的技术方案是一种显示不同景深的显示装置,用于显示不同的景深,包括显示屏以及一个或多个液晶光栅;其中,所述显示屏用于提供图像光源,入射至所述液晶光栅;所述液晶光栅对光线产生折射或散射,将所述显示屏光源透射到所述液晶光栅上,形成投影式图像;通过控制所 述液晶光栅不同位置的开启与关闭,实现不同的景深。
进一步的,所述液晶光栅包括基板,依次位于所述基板上的薄膜晶体管阵列、液晶层以及阴极。
进一步的,还包括微镜头,设置于所述基板的背面。
进一步的,所述液晶层通过电压控制信号控制其开关状态,在开启状态下,所述液晶层为透明状态,入射光透射而出;在关闭状态下,所述液晶层为非透明状态,入射光发生散射或折射。
进一步的,所述薄膜晶体管阵列包括多条数据线与多条扫描线以及由数据线和扫描线交叉限定的多个显示单元;所述显示屏具有多个像素单元,所述多个显示单元与所述多个像素单元一一对应。
进一步的,所述显示单元包括一薄膜晶体管与一存储电容,所述薄膜晶体管的栅极连接于所述扫描线,源极或漏极连接于所述数据线,漏极或源极连接于所述存储电容,所述存储电容的另一端连接于上一条所述扫描线。
进一步的,在所述液晶层周围及所述液晶层之间还设置有遮光材料,所述遮光材料将所述液晶层分割为多个液晶单元,所述多个液晶单元与所述多个显示单元一一对应。
进一步的,所述显示装置还包括驱动芯片,所述驱动芯片提供电压控制信号,所述液晶光栅通过所述驱动芯片控制每一个液晶单元中液晶的开启与关闭状态。
进一步的,所述液晶光栅的阴极一侧通过胶合剂与所述显示屏相贴合。
进一步的,所述显示屏的出光侧设置一个液晶光栅。
进一步的,所述显示屏的出光侧设置两个液晶光栅,所述两个液晶光栅共用所述基板。
进一步的,所述显示屏为LCD、LED或OLED。
本发明还提供一种显示装置的制作方法,制作出的显示装置可以显示不同的景深,包括:
制作一显示屏以及一个或多个液晶光栅;
将所述显示屏与一个或多个液晶光栅相贴合;
其中,所述显示屏用于提供图像光源,入射至所述液晶光栅;所述液晶光栅通过控制信号控制开关,开启时,光线透过所述液晶光栅;关闭时,所述液晶光栅对光线产生折射或散射,将所述显示屏光源透射到所述液晶光栅上,形成投影式图像;通过控制所述液晶光栅中不同位置的开启与关闭,实现不同的景深。
进一步的,所述液晶光栅的制作方法包括:
提供一基板,在所述基板上形成薄膜晶体管阵列;
在所述薄膜晶体管阵列上涂布遮光材料,并在所述遮光材料内形成多个空腔,所述空腔与所述显示屏内的像素单元一一对应;
在所述空腔内形成液晶层;
在所述遮光材料与液晶层上形成阴极。
进一步的,采用曝光、显影的方式或者采用3D打印机在所述遮光材料内形成空腔。
进一步的,在所述空腔中形成液晶层的过程包括:在所述空腔中涂布液晶材料,采用高温或紫外光对所述液晶材料进行固化,并进行平坦化工艺。
进一步的,在所述基板的背面形成微镜头。
进一步的,所述微镜头采用UV胶或热敏胶,使用模具压模或油墨打印的方式,利用微重力与表面张力形成。
与现有技术相比,本发明提供的显示装置及其制作方法具有以下有益效果:
本发明通过在显示屏上设置一个或多个液晶光栅,所述显示屏用于提供图像光源,入射至所述液晶光栅,所述液晶光栅通过控制信号控制开关,开启时,光线透过所述液晶光栅;关闭时,所述液晶光栅对光线产生折射或散射,将所述显示屏光源透射到所述液晶光栅上,形成投影式图像,通过控制所述液晶光栅不同位置的开启与关闭实现不同的景深,从而把显示屏的二维的图像转化成具有不同景深的图像,形成带有视差的三维图像。
附图说明
图1为本发明实施例一所提供的显示装置的结构示意图。
图2为本发明实施例一所提供的液晶层的工作示意图。
图3为本发明实施例一所提供的薄膜晶体管阵列的结构示意图。
图4为本发明实施例一所提供的显示装置的工作原理示意图
图5为本发明实施例二所提供的显示装置的结构示意图。
图6为本发明实施例三所提供的显示装置制作方法的流程图。
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容做进一步说明。当然本发明并不局限于该具体实施例,本领域的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
其次,本发明利用示意图进行了详细的表述,在详述本发明实例时,为了便于说明,示意图不依照一般比例局部放大,不应对此作为本发明的限定。
本发明的核心思想是:通过在显示屏上设置一个或多个液晶光栅,所述显示屏用于提供图像光源,入射至所述液晶光栅,所述液晶光栅通过控制信号控制开关,开启时,光线透过所述液晶光栅;关闭时,所述液晶光 栅对光线产生折射或散射,将所述显示屏光源透射到所述液晶光栅上,形成投影式图像,通过控制所述液晶光栅不同位置的开启与关闭实现不同的景深,从而把显示屏的二维的图像转化成具有不同景深的图像,形成带有视差的三维图像。
【实施例一】
图1为本发明实施例一所提供的显示装置的结构示意图,如图1所示,本发明提出一种显示装置,用于显示不同的景深,包括显示屏100以及位于所述显示屏100上的液晶光栅200。其中,所述显示屏100用于提供图像光源,入射至所述液晶光栅200,所述液晶光栅200通过控制信号控制开关,开启时,光线透过所述液晶光栅200;关闭时,所述液晶光栅200对光线产生折射或散射,将所述显示屏100光源透射到所述液晶光栅200上,形成投影式图像,通过控制所述液晶光栅200不同位置的开启与关闭,实现不同的景深。
所述液晶光栅200包括基板201,依次位于所述基板201上的薄膜晶体管阵列202、液晶层203以及阴极204。所述液晶层203通过所述薄膜晶体管202与阴极204提供的电压控制信号控制其开关状态,在开启状态下,所述液晶层203为透明状态,入射光透射而出,所述液晶层203的透光率超过90%,在关闭状态下,所述液晶层203为非透明状态,入射光发生散射或折射,形成投影式图像,这样可以使人眼看到屏幕有不同景深的效果,如图2所示。
所述薄膜晶体管阵列202包括多条数据线与多条扫描线以及由数据线和扫描线交叉限定的多个显示单元,如图3所示,所述薄膜晶体管阵列202包括三条数据线S1、S2、S3,三条扫描线D1、D2、D3,以及由数据线和扫描线交叉限定的多个显示单元2020,所述显示单元2020包括一薄膜晶体管T与一存储电容Cs,所述薄膜晶体管T的栅极连接于所述扫描线(例如 D2),源极或漏极连接于所述数据线(例如S2),漏极或源极连接于所述存储电容Cs,所述存储电容Cs的另一端连接于上一条所述扫描线(例如D1)。另外由于液晶层203的存在,在所述薄膜晶体管T与所述存储电容Cs连接的漏极或源极与阴极204之间还存在有液晶电容CLC。
请继续参考图1,在本实施例中,所述显示屏100为TFT-LCD(薄膜晶体管液晶显示屏),所述显示屏100包括彩膜基板101,阵列基板102,所述彩膜基板101与阵列基板102通过封框胶103相连接;在所述彩膜基板101上设置有色阻104、黑矩阵105以及透明电极106;在所述阵列基板102上设置有薄膜晶体管阵列107、液晶层108以及其支撑作用的金球109,其中所述薄膜晶体管阵列107具体包括薄膜晶体管、显示电极以及存储电极;在所述阵列基板102的边缘还设置有端子110,所述端子110与所述薄膜晶体管阵列107相连接,所述端子110通过连接端111与所述透明电极106相连接,用于分别向所述彩膜基板101与阵列基板102提供信号;在所述彩膜基板101与阵列基板102的背面分别设置有上偏光片112与下偏光片113。本实施例中,所述液晶光栅200设置于所述上偏光片112之上。需要说明的是,本实施例具体描述了TFT-LCD的具体结构,但是TFT-LCD并不局限于该结构,还可以是本领域技术人员已知的其他TFT-LCD结构。
所述显示屏100还可以为LED(发光二极管)、OLED(有机发光二极管)、AMOLED(有源有机发光二极管),或本领域技术人员已知的其他的显示屏。所述显示屏具有多个像素单元,所述多个显示单元2020与所述多个像素单元一一对应,因此所述薄膜晶体管阵列202中数据线与扫描线的数量可以与所述显示屏100内的数据线与扫描线的数量保持一致,并且所述薄膜晶体管阵列202的构造与所述显示屏100内阵列基板的构造类似,只需向单个显示单元2020提供电压或关闭电压,实现液晶层203的开通与关闭状态。
请继续参考图1,在所述液晶层203的周围及所述液晶层203之间还设置有遮光材料205,所述遮光材料205将所述液晶层203分割为多个液晶单元,所述多个液晶单元与所述多个显示单元2020一一对应。所述显示装置还包括驱动芯片(图中未示出),所述驱动芯片分别向所述薄膜晶体管202与阴极204提供电压控制信号,所述液晶光栅200通过所述驱动芯片控制每一个液晶单元中液晶的开启与关闭状态。其工作原理如图4所示,以所述液晶光栅中的三个液晶单元为例进行说明,所述液晶光栅中的三个液晶单元分别为第一液晶单元A、第二液晶单元B与第三液晶单元C,通过遮光材料205相隔离,其中,所述第一液晶单元A与第三液晶单元C处于关闭状态,此时的液晶层203为非透明状态,由所述像素单元101发生的光线入射至所述第一液晶单元A与第三液晶单元C,被所述第一液晶单元A与第三液晶单元C散射或折射,在所述第一液晶单元A与第三液晶单元C处形成投影式图像,图像到人眼的距离为e,是所述液晶单元101到人眼的距离;所述第二液晶单元B处于开通状态,此时的液晶层203为透明状态,所述像素单元101发出的光线入射至所述第二液晶单元B,被所述第二液晶单元B所透射,图像到人眼的距离为e+d,是所述像素单元101到人眼的距离。这样通过控制每个液晶单元,可以产生不同焦距的图像信号,从而把显示屏的二维的图像转化成具有不同景深的图像,形成带有视差的三维图像。
可以理解的是,同一个液晶单元的状态也是可以随时变化的,在某一时刻可以是开启状态,在另一时刻则变为关闭状态,可以随时间改变不同的液晶单元的开启与关闭状态。
请继续参考图1,液晶光栅200的阴极204一侧通过胶合剂206与所述显示屏100相贴合,另外,在所述阴极204上对应所述遮光材料205的位置上可以设置支撑柱来支撑盒厚,所述支撑柱可以为PS或者金属球、或者 本领域技术人员已知的起支撑作用的材料。
所述液晶光栅200还包括微镜头208,以调整散射后的光线,达到更好的视觉效果。需要说明的是,所述微镜头208为可选部件,可以根据实际的要求来决定是否需要设置微镜头。
【实施例二】
在实施例一的基础上,在显示屏的出光侧设置两个液晶光栅,所述两个液晶光栅共用所述基板。
图5为本发明实施例二所提供的显示装置的结构示意图,如图5所示,本发明提出一种显示装置,用于显示不同的景深,包括显示屏100以及位于所述显示屏100出光侧的液晶光栅,第一液晶光栅200与第二液晶光栅300。其中,所述显示屏100用于提供图像光源,入射至所述第一液晶光栅200与所述第二液晶光栅300,所述第一液晶光栅200与所述第二液晶光栅300通过控制信号控制开关,开启时,光线透过所述液晶光栅;关闭时,所述液晶光栅对光线产生折射或散射,将所述显示屏100光源透射到所述液晶光栅上,形成投影式图像,通过控制所述第一液晶光栅200与第二液晶光栅300不同位置的开启与关闭,实现不同的景深。
所述第一液晶光栅20包括基板201,依次位于所述基板201上的薄膜晶体管阵列202、液晶层203以及阴极204。所述薄膜晶体管阵列202包含有多个显示单元;在所述液晶层203的周围及所述液晶层203之间还设置有遮光材料205,所述遮光材料205将所述液晶层203分割为多个液晶单元;所述多个液晶单元与所述多个显示单元一一对应,所述第一液晶光栅200通过驱动芯片控制每一个液晶单元中液晶的开通与关闭状态。所述第一液晶光栅200的阴极204一侧通过胶合剂206与所述显示屏100相贴合。
所述第二液晶光栅300与所述第一液晶光栅200相同,并且所述第二液晶光栅300与所述第一液晶光栅200共用所述基板201。所述第二液晶光 栅300包括依次位于所述基板201上的薄膜晶体管阵列302、液晶层303以及阴极304。所述薄膜晶体管阵列302包含有多个显示单元;在所述液晶层303的周围及所述液晶层303之间还设置有遮光材料305,所述遮光材料305将所述液晶层303分割为多个液晶单元;所述多个液晶单元与所述多个显示单元一一对应,所述第一液晶光栅300通过驱动芯片控制每一个液晶单元中液晶的开通与关闭状态。
所述第一液晶光栅200与所述第二液晶光栅300与实施例一中的液晶光栅的结构相同,因此不再详细描述。并且在所述第二液晶光栅300上还设置有微镜头208,以调整散射后的光线,达到更好的视觉效果。
本实施例中,同样以所述显示屏100为TFT-LCD为例来进行说明,所述显示屏100包括彩膜基板101、阵列基板102、连接所述彩膜基板101与阵列基板102的封框胶103,位于所述彩膜基板101上的色阻104、黑矩阵105以及透明电极106,位于所述阵列基板102上的有薄膜晶体管阵列107、液晶层108以及金球109,所述阵列基板102的边缘还设置有端子110,所述端子110与所述薄膜晶体管阵列107相连接,所述端子110通过连接端111与所述透明电极106相连接,用于分别向所述彩膜基板101与阵列基板102提供信号;在所述彩膜基板101与阵列基板102的背面分别设置有上偏光片112与下偏光片113。本实施例中,所述液晶光栅200设置于所述上偏光片112之上,所述第三液晶光栅300设置于所述下偏光片113之上。需要说明的是,本实施例具体描述了TFT-LCD的结构,但是TFT-LCD并不局限于该结构,还可以是本领域技术人员已知的其他结构。
所述显示屏100还可以为LED(发光二极管)、OLED(有机发光二极管)、AMOLED(有源有机发光二极管),或本领域技术人员已知的其他的显示屏。
本实施例中显示装置与实施例一中的显示装置的工作原理相同,并且 由于在本实施例中设置有两个液晶光栅,通过调整两个液晶光栅中液晶单元的开通与关闭,可以产生三个焦距的图像信号,分别为e、e+d、2e+d,从而使得产生的带有视差的三维图像更加清晰。
实施例二与实施例一相比较,最终形成的图像的质量更好,但是需要增加一个液晶光栅,相应的增加的制作成本与制作时间,可以根据对图像的实际需要来选择液晶光栅的数量。可以理解的是,上述两个实施例分别是贴合一个或两个液晶光栅,在其余实施例中,可以贴合更多的液晶光栅以满足对最终形成的显示器的图像需求,在此不做限制。
【实施例三】
图6为本发明实施例三所提供的显示装置的制作方法的流程图,如图6所示,本发明提出一种显示装置的制作方法,包括:
步骤S01:制作一显示屏以及一个或多个液晶光栅;
步骤S02:将所述显示屏与一个或多个液晶光栅相贴合;
其中,所述显示屏用于提供图像光源,入射至所述液晶光栅,所述液晶光栅通过控制信号控制开关,开启时,光线透过所述液晶光栅;关闭时,所述液晶光栅对光线产生折射或散射,将所述显示屏光源透射到所述液晶光栅上,形成投影式图像;通过控制所述液晶光栅中不同位置的开启与关闭,实现不同的景深。
请参照图6,并结合图1所示,具体说明本发明所提出的一种显示装置的制作方法。
在步骤S01中,制作一显示屏100以及一个液晶光栅200。所述显示屏100为LCD、LED或OLED,或本领域技术人员已知的其他的显示屏,本实施例中,所述显示屏100为LCD。所述液晶光栅200的制作方法具体包括:提供一基板201,在所述基板201上形成薄膜晶体管阵列202,所述薄膜晶体管阵列202包括多条数据线与多条扫描线以及由数据线和扫描线交 叉限定的多个显示单元2020,所述显示单元2020与所述显示屏100中的像素单元一一对应;然后在所述薄膜晶体管阵列202上涂布遮光材料205,采用曝光、显影的方式或者采用3D打印机在所述遮光材料205内形成多个空腔,所述空腔与所述显示单元一一对应;然后在所述空腔内涂布液晶材料,之后采用高温或紫外光对所述液晶材料进行固化,并进行平坦化工艺,形成由多个液晶单元组成的液晶层203,;最后,在所述遮光材料205与液晶层203上沉积阴极材料,形成阴极204。
在步骤S02中,将所述显示屏100与所述液晶光栅200相贴合,具体的,通过在所述液晶光栅200的阴极204上涂布胶合剂206与所述显示屏100相贴合,另外,可以在所述阴极204上对应所述遮光材料205的位置上设置支撑柱用于支撑盒厚。
还可以包括,在所述基板201的背面制作微镜头208,采用UV或热敏胶,即对UV或热量敏感的胶层,使用模具压模或油墨打印的方式,利用微重力与表面张力形成所述微镜头208。
根据上述显示装置的制作方法可以制作出如实施例一所述的显示装置,还可以采用上述方法制作两个液晶光栅,贴合于所述显示屏的出光侧,制作如实施例二所述的显示装置,当然,也可以在所述显示屏上贴合多个液晶光栅。
综上所述,本发明提供的显示装置及其制作方法,通过在显示屏上设置一个或多个液晶光栅,所述显示屏用于提供图像光源,入射至所述液晶光栅,所述液晶光栅通过控制信号控制开关,开启时,光线透过所述液晶光栅;关闭时,所述液晶光栅对光线产生折射或散射,将所述显示屏光源透射到所述液晶光栅上,形成投影式图像,通过控制所述液晶光栅中不同位置的开启与关闭实现不同的景深,从而把显示屏的二维的图像转化成具有不同景深的图像,形成带有视差的三维图像。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (18)

  1. 一种显示装置,用于显示不同的景深,其特征在于,包括显示屏以及一个或多个液晶光栅,其中,所述显示屏用于提供图像光源,入射至所述液晶光栅;所述液晶光栅通过控制信号控制开关,开启时,光线透过所述液晶光栅;关闭时,所述液晶光栅对光线产生折射或散射,将所述显示屏光源透射到所述液晶光栅上,形成投影式图像;通过控制所述液晶光栅不同位置的开启与关闭,实现不同的景深。
  2. 如权利要求1所述的显示装置,其特征在于,所述液晶光栅包括基板,依次位于所述基板上的薄膜晶体管阵列、液晶层以及阴极。
  3. 如权利要求2所述的显示装置,其特征在于,还包括微镜头,设置于所述基板的背面。
  4. 如权利要求2所述的显示装置,其特征在于,所述液晶层通过电压控制信号控制其开关状态,在开启状态下,所述液晶层为透明状态,入射光透射而出;在关闭状态下,所述液晶层为非透明状态,入射光发生散射或折射。
  5. 如权利要求2所述的显示装置,其特征在于,所述薄膜晶体管阵列包括多条数据线与多条扫描线以及由数据线和扫描线交叉限定的多个显示单元;所述显示屏具有多个像素单元,所述多个显示单元与所述多个像素单元一一对应。
  6. 如权利要求5所述的显示装置,其特征在于,所述显示单元包括一薄膜晶体管与一存储电容,所述薄膜晶体管的栅极连接于所述扫描线,源极或漏极连接于所述数据线,漏极或源极连接于所述存储电容,所述存储电容的另一端连接于上一条所述扫描线。
  7. 如权利要求6所述的显示装置,其特征在于,在所述液晶层周围及 所述液晶层之间还设置有遮光材料,所述遮光材料将所述液晶层分割为多个液晶单元,所述多个液晶单元与所述多个显示单元一一对应。
  8. 如权利要求7所述的显示装置,其特征在于,所述显示装置还包括驱动芯片,所述驱动芯片提供电压控制信号,所述液晶光栅通过所述驱动芯片控制每一个液晶单元中液晶的开启与关闭状态。
  9. 如权利要求8所述的显示装置,其特征在于,所述液晶光栅的阴极一侧通过胶合剂与所述显示屏相贴合。
  10. 如权利要求2~9中任一项所述的显示装置,其特征在于,所述显示屏的出光侧设置一个液晶光栅。
  11. 如权利要求2~9中任一项所述的显示装置,其特征在于,所述显示屏的出光侧设置两个液晶光栅,所述两个液晶光栅共用所述基板。
  12. 如权利要求1~9中任一项所述的显示装置,其特征在于,所述显示屏为LCD、LED或OLED。
  13. 一种显示装置的制作方法,制作出的显示装置可以显示不同的景深,其特征在于,包括:
    制作一显示屏以及一个或多个液晶光栅;
    将所述显示屏与一个或多个液晶光栅相贴合;
    其中,所述显示屏用于提供图像光源,入射至所述液晶光栅;所述液晶光栅通过控制信号控制开关,开启时,光线透过所述液晶光栅;关闭时,所述液晶光栅对光线产生折射或散射,将所述显示屏光源透射到所述液晶光栅上,形成投影式图像;通过控制所述液晶光栅不同位置的开启与关闭,实现不同的景深。
  14. 如权利要求13所述的显示装置的制作方法,其特征在于,所述液晶光栅的制作方法包括:
    提供一基板,在所述基板上形成薄膜晶体管阵列;
    在所述薄膜晶体管阵列上涂布遮光材料,并在所述遮光材料内形成多个空腔,所述空腔与所述显示屏内的像素单元一一对应;
    在所述空腔内形成液晶层;
    在所述遮光材料与液晶层上形成阴极。
  15. 如权利要求14所述的显示装置的制作方法,其特征在于,采用曝光、显影的方式或者采用3D打印机在所述遮光材料内形成空腔。
  16. 如权利要求15所述的显示装置的制作方法,其特征在于,在所述空腔中形成液晶层的过程包括:在所述空腔中涂布液晶材料,采用高温或紫外光对所述液晶材料进行固化,并进行平坦化工艺。
  17. 如权利要求14所述的显示装置的制作方法,其特征在于,还包括,在所述基板的背面形成微镜头。
  18. 如权利要求17所述的显示装置的制作方法,其特征在于,所述微镜头采用UV胶或热敏胶,使用模具压模或油墨打印的方式,利用微重力与表面张力形成。
PCT/CN2017/077401 2016-06-29 2017-03-21 显示装置及其制作方法 WO2018000861A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610498255.4A CN107544156A (zh) 2016-06-29 2016-06-29 显示装置及其制作方法
CN201610498255.4 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018000861A1 true WO2018000861A1 (zh) 2018-01-04

Family

ID=60785950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077401 WO2018000861A1 (zh) 2016-06-29 2017-03-21 显示装置及其制作方法

Country Status (2)

Country Link
CN (1) CN107544156A (zh)
WO (1) WO2018000861A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646469A (zh) * 2018-05-03 2018-10-12 张家港康得新光电材料有限公司 一种2d/3d可切换面板及其制备方法、2d/3d可切换装置
CN108919552B (zh) * 2018-07-23 2021-04-30 天马微电子股份有限公司 液晶器件与3d打印系统
CN109031760B (zh) 2018-08-21 2021-10-26 京东方科技集团股份有限公司 一种3d液晶显示面板、显示装置和驱动方法
CN114609797A (zh) * 2020-12-04 2022-06-10 宁波舜宇车载光学技术有限公司 2d/3d可切换显示系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030229A (ja) * 2004-07-12 2006-02-02 Comoc:Kk 曲面レンズ及び表示装置
CN103018981A (zh) * 2013-01-09 2013-04-03 中航华东光电有限公司 液晶光栅、立体显示装置及其驱动方法
CN103048835A (zh) * 2012-12-07 2013-04-17 京东方科技集团股份有限公司 一种液晶光栅及其驱动方法和立体显示装置
CN105572930A (zh) * 2016-03-23 2016-05-11 京东方科技集团股份有限公司 一种显示模组及显示系统
CN105589277A (zh) * 2016-03-18 2016-05-18 京东方科技集团股份有限公司 一种液晶透镜及显示装置
CN205920278U (zh) * 2016-06-29 2017-02-01 畅丽萍 显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2974564B2 (ja) * 1993-12-20 1999-11-10 シャープ株式会社 液晶電子装置およびその駆動方法
KR101331900B1 (ko) * 2006-06-29 2014-01-14 엘지디스플레이 주식회사 광제어필름을 이용한 입체영상 표시장치
CN201097041Y (zh) * 2007-08-17 2008-08-06 比亚迪股份有限公司 液晶显示装置
CN100582868C (zh) * 2008-03-31 2010-01-20 北京超多维科技有限公司 一种2d/3d可切换立体显示装置
CN103135280B (zh) * 2012-11-15 2016-05-25 中航华东光电有限公司 一种液晶障栅立体显示系统
CN103995403A (zh) * 2013-07-22 2014-08-20 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置及其驱动方法
CN104168472B (zh) * 2014-08-19 2017-07-28 西安电子科技大学 一种显示参数可交互控制的集成成像显示系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030229A (ja) * 2004-07-12 2006-02-02 Comoc:Kk 曲面レンズ及び表示装置
CN103048835A (zh) * 2012-12-07 2013-04-17 京东方科技集团股份有限公司 一种液晶光栅及其驱动方法和立体显示装置
CN103018981A (zh) * 2013-01-09 2013-04-03 中航华东光电有限公司 液晶光栅、立体显示装置及其驱动方法
CN105589277A (zh) * 2016-03-18 2016-05-18 京东方科技集团股份有限公司 一种液晶透镜及显示装置
CN105572930A (zh) * 2016-03-23 2016-05-11 京东方科技集团股份有限公司 一种显示模组及显示系统
CN205920278U (zh) * 2016-06-29 2017-02-01 畅丽萍 显示装置

Also Published As

Publication number Publication date
CN107544156A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
WO2018000861A1 (zh) 显示装置及其制作方法
TWI615634B (zh) 透明自動立體顯示器
CN102231020B (zh) 一种立体显示器系统
JP6852896B2 (ja) 3d表示パネル、それを含む3d表示機器、及びその製造方法
US8836873B2 (en) Display devices and methods of manufacturing the same
US20080036759A1 (en) Three-dimensional display device
CN102830537B (zh) 一种彩膜基板及其制造方法、显示装置
US8730576B2 (en) Microretarder film
KR102207192B1 (ko) 편광 제어 필름 및 이를 이용한 입체 표시 장치
JP5589157B2 (ja) マイクロリターダフィルムを形成するための方法
WO2019127964A1 (zh) 集成成像显示系统
CN102789062A (zh) 使用图案延迟器方法的立体图像显示装置及其制造方法
WO2015154368A1 (zh) 显示面板及其制作方法、显示装置
CN106959567A (zh) 视角定向光源装置及显示装置
JP2008065022A (ja) 画像投影用スクリーン及び投影型三次元画像通信端末装置
US9041999B2 (en) Electrowetting device and method of manufacturing the same
KR102457205B1 (ko) 편광 제어 패널, 이의 제조 방법 및 이를 이용한 입체 영상 표시 장치
CN202693951U (zh) 立体显示装置
CN103913879A (zh) 液晶透镜、立体显示装置和该液晶透镜的形成方法
KR20150037012A (ko) 마이크로 렌즈 어레이를 이용한 무안경식 3차원 영상 표시 장치
CN101738760B (zh) 像素结构、光学元件、液晶显示装置及其制造方法
CN205301770U (zh) 视角定向光源装置及显示装置
US20180088345A1 (en) Liquid lens array based on electrowetting method and method of manufacturing the same, and display device using the same
CN205920278U (zh) 显示装置
KR20140141877A (ko) 3차원 표시 장치 및 3차원 표시 장치용 전환부

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818860

Country of ref document: EP

Kind code of ref document: A1