WO2018000668A1 - 成像雷达、车辆以及成像方法 - Google Patents

成像雷达、车辆以及成像方法 Download PDF

Info

Publication number
WO2018000668A1
WO2018000668A1 PCT/CN2016/103168 CN2016103168W WO2018000668A1 WO 2018000668 A1 WO2018000668 A1 WO 2018000668A1 CN 2016103168 W CN2016103168 W CN 2016103168W WO 2018000668 A1 WO2018000668 A1 WO 2018000668A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
echo data
radar
signal
radio frequency
Prior art date
Application number
PCT/CN2016/103168
Other languages
English (en)
French (fr)
Inventor
戴春杨
高明亮
于彬彬
赵捷
Original Assignee
北京行易道科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京行易道科技有限公司 filed Critical 北京行易道科技有限公司
Publication of WO2018000668A1 publication Critical patent/WO2018000668A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present application relates to the field of radar, and in particular to imaging radars, vehicles, and imaging methods.
  • the senor installed on the vehicle can be used to collect and analyze the three-dimensional image data around the vehicle at any time during the driving process, so that the driver can detect the danger that may occur in advance, and can effectively increase the safety of driving the vehicle. .
  • the surroundings of the car are sensed by laser radar.
  • the technical principle is that real-time monitoring of objects around the vehicle is carried out by multi-line lasers to form a high-precision and high-real-time three-dimensional point cloud, and the surrounding environment of the vehicle is reconstructed, thereby realizing functions such as lane departure warning, front vehicle collision avoidance, and pedestrian detection.
  • Lasers are used to acquire three-dimensional image data of the surrounding environment of the car, which is susceptible to weather and other factors. In the fog, rain and snow, the effect is not very good, so that the original function of the vehicle is almost impossible to work properly. In addition, the cost of laser radar is high.
  • a solution has not been proposed in view of the problems caused by using a laser radar to obtain a driving environment around a vehicle in the related art.
  • the present application provides an imaging radar, a vehicle, and an imaging method to at least solve the problems caused by using a laser radar to obtain a driving environment around a vehicle.
  • an imaging radar comprising: a plurality of transmitting antennas disposed on a side of a vehicle, coupled to a radio frequency module, configured to transmit signals generated by the radio frequency module; and a plurality of receiving antennas, configured and configured a side of the vehicle coupled to the radio frequency module for receiving a scatter signal formed by scattering a signal transmitted by the target around the vehicle to the plurality of transmit antennas; the radio frequency module coupled to the processor for generating for transmitting The above signal, and the scatter signal received by the plurality of receiving antennas to form echo data; the processor is configured to acquire echo data transmitted by the vehicle motion through the radio frequency module, and according to the echo The data generates a 3D radar image.
  • the radio frequency module includes: an oscillator for generating a signal for transmitting; a plurality of first power amplifiers coupled to the oscillator and the transmitting antenna, respectively, for amplifying and transmitting the signal to Transmitting a plurality of transmitting antennas for transmitting; a plurality of second power amplifiers coupled to the mixer and the receiving antenna, respectively, for amplifying the received plurality of scattered signals and transmitting the same to the mixer; And a frequency converter coupled to the plurality of second power amplifiers and the oscillator for mixing the signal and the scattered signal to generate the echo data.
  • the number of the above-mentioned transmitting antennas is the same as or different from the number of the above-mentioned receiving antennas.
  • the processor is configured to acquire echo data transmitted by the vehicle motion, form a synthetic aperture according to the echo data, and generate a three-dimensional radar image.
  • the radio frequency module is configured to generate a millimeter wave as the transmitted signal.
  • a vehicle comprising: the imaging radar described above.
  • the imaging radar described above is disposed on a side of the vehicle.
  • the imaging radar is disposed at a side of the vehicle at a predetermined distance from a rear wheel of the vehicle and/or a front wheel of the vehicle.
  • the imaging radar is disposed at a side of the vehicle at a predetermined distance from a headlight of the vehicle and/or a backlight of the vehicle.
  • imaging radars described above are one or more.
  • an imaging method comprising: transmitting a plurality of signals; receiving a scatter signal formed by scattering of the plurality of signals transmitted by a target around the vehicle; forming the scatter signal received Echo data; acquiring echo data transmitted along with the above vehicle motion, and generating a three-dimensional radar image based on the echo data.
  • generating the three-dimensional radar image according to the echo data includes: forming a synthetic aperture based on the echo data to generate a three-dimensional radar image.
  • generating the three-dimensional radar image according to the echo data includes: performing Fourier transform on the echo data, waiting for the transformed data; obtaining pixel points according to the transformed data, calculating a distance history on the pixel point, and Scattering intensity; the above-described three-dimensional radar image is obtained based on the above-described distance history and the above-described scattering intensity.
  • the number of transmitting antennas transmitting the above signals is the same as the number of receiving antennas receiving the above-mentioned scattered signals; and/or the height of the transmitting antennas transmitting the above signals is different from the height of the receiving antennas receiving the scattered signals.
  • the above signal is a millimeter wave signal.
  • An imaging radar is used by the present application, and the imaging radar includes: a plurality of transmitting antennas disposed on the side of the vehicle And a signal coupled to the radio frequency module for transmitting the signal generated by the radio frequency module; and a plurality of receiving antennas disposed on the side of the vehicle and coupled to the radio frequency module for respectively receiving the plurality of transmissions by the target around the vehicle a scatter signal formed by scattering of a signal transmitted by the antenna; the radio frequency module coupled to the processor for generating the signal for transmitting, and forming the scatter signal received by the plurality of receiving antennas to form echo data;
  • the device is configured to acquire echo data transmitted by the vehicle motion by using the radio frequency module, and generate a three-dimensional radar image according to the echo data.
  • FIG. 1 is a block diagram showing the structure of an imaging radar according to the present embodiment
  • FIG. 2 is a flow chart of an imaging method according to the present embodiment
  • FIG. 3 is a schematic illustration of an imaging radar setup in accordance with the present embodiment
  • FIG. 4 is a block diagram showing the structure of an optional three-dimensional imaging radar according to the present embodiment
  • FIG. 5 is a schematic structural diagram of a radio frequency module according to the embodiment.
  • Fig. 6 is a flow chart showing the internal processing of the signal processor according to the present embodiment.
  • FIG. 1 is a structural block diagram of an imaging radar according to the present embodiment.
  • the imaging radar includes a plurality of transmitting antennas 10 disposed on a side of the vehicle. Coupled with the radio frequency module 30 for transmitting signals generated by the radio frequency module 30; a plurality of receiving antennas 20, disposed with the side of the vehicle, coupled to the radio frequency module 30 for receiving signals transmitted by the target around the vehicle to the plurality of transmitting antennas 10 a plurality of scattered signals formed by signal scattering; a radio frequency module 30 coupled to the processor 40 for generating a signal for transmission, and a scatter signal received by the receiving antenna 20 to form echo data; a processor 40 for Radio frequency Module 30 acquires echo data transmitted as a function of vehicle motion and generates a three-dimensional radar image from the echo data.
  • the processing of the signal is used, and the characteristics of the vehicle's continuous motion are utilized, so that the radar can be used to identify the target around the vehicle, thereby solving the problem caused by using the laser radar to obtain the driving environment around the vehicle, and making the vehicle Radar can adapt to a variety of environments and reduce costs.
  • the radio frequency module 30 can include an oscillator (which can employ a voltage controlled oscillator) for generating a signal for transmission, and a plurality of first power amplifiers coupled to the oscillator and the plurality of transmit antennas 10, respectively, for the signal Amplifying and transmitting to a plurality of transmitting antennas 10 for transmitting; a plurality of second power amplifiers respectively coupled to the mixer and the plurality of receiving antennas 20 for amplifying the received scattered signals and transmitting them to the mixer;
  • the frequency converter is coupled to the plurality of second power amplifiers and oscillators for mixing the signal and the scattered signals to generate echo data.
  • a power amplifier is used in this embodiment, so that the scattering of the signal and the identification of the scattered signal can be more favored.
  • the number of the transmitting antenna 10 and the receiving antenna 20 may be the same or different, and the transmitting antenna 10 and the receiving antenna 20 are different in height.
  • the synthetic aperture can be utilized to generate a three-dimensional radar image.
  • the processor 40 is configured to acquire echo data transmitted by the vehicle motion, form a synthetic aperture according to the echo data, and generate a three-dimensional radar image.
  • the transmitted signal can be processed using a variety of waves.
  • the RF module 30 is used to generate a millimeter wave as the transmitted signal.
  • a vehicle comprising: the imaging radar described above.
  • the imaging radar can be set at a position that can be set, and can be selected according to actual needs.
  • the imaging radar is disposed on the side of the vehicle.
  • An imaging radar can be provided at a plurality of locations on the side of the vehicle, for example, on the side of the vehicle at a predetermined distance from the rear wheel of the vehicle and/or the front wheel of the vehicle.
  • an imaging radar is disposed on a side of a vehicle that is a predetermined distance from a headlight of the vehicle and/or a backlight of the vehicle.
  • the imaging radar described above may be one or more.
  • FIG. 2 is a flowchart of the imaging method according to the embodiment. As shown in FIG. 2, the method includes the following steps:
  • Step S202 transmitting a plurality of signals
  • Step S204 receiving a plurality of scattered signals formed by scattering of the plurality of signals transmitted by a target around the vehicle;
  • Step S206 forming the received plurality of scattered signals into echo data
  • Step S208 acquiring echo data transmitted along with the vehicle motion, and generating a three-dimensional radar image according to the echo data.
  • the processing of the signal is used, and the characteristics of the vehicle's continuous motion are utilized, so that the radar can be used to identify the target around the vehicle, thereby solving the problem caused by using the laser radar to obtain the driving environment around the vehicle, and making the vehicle radar Ability to adapt to a variety of environments and reduce costs.
  • a synthetic aperture can be formed from the echo data to generate a three-dimensional radar image.
  • the echo data is subjected to Fourier transform, and the transformed data is waited; the pixel points are obtained according to the transformed data, the distance history and the scattering intensity are calculated for the pixel points; and the three-dimensional radar image is obtained according to the distance history and the scattering intensity.
  • the present application may also provide a computer program for executing the above embodiments and a carrier for saving the above computer program, that is, the above embodiment of the present application may conform to nature through a suitable computing architecture. Regular running process.
  • the present application is described in the above context, the above-described computer program for implementing the execution steps is not meant to be limiting, and various aspects of the described actions and operations may also be implemented in hardware.
  • the principles of the application can be operated using other general purpose or special purpose computing or communication environments or configurations.
  • Examples of well-known computing systems, environments, and configurations suitable for use with the present application include, but are not limited to, personal computers, servers, multiprocessor systems, microprocessor based systems, minicomputers, mainframe computers, smart devices, terminals (including mobile terminals) And a distributed computing environment including any of the above systems or devices.
  • a millimeter wave three-dimensional imaging radar for safe driving of a vehicle is provided. Since the millimeter wave is used, the alternative embodiment can operate normally in any lighting environment and any weather environment. And, the cost is lower.
  • a millimeter wave imaging radar is used in this embodiment.
  • the millimeter wave imaging radar is used in comparison with other common radar frequency bands, for example, the meter wave, the decimeter wave, and the centimeter wave band.
  • the millimeter wave band radar has the following advantages: the radar operating wavelength is short, and the smaller antenna size can Achieve higher angular resolution; RF transceiver chip integration is high, the entire radar RF front end can be completed with a millimeter wave RF chip; based on the highly integrated radar RF front end, the whole machine radar cost is relatively low.
  • the millimeter wave radar three-dimensional imaging radar can realize high resolution in the distance direction, the azimuth direction, and the height direction.
  • the radar can transmit a large bandwidth signal, and the pulse compression technology is used to achieve a high resolution of the distance.
  • the imaging radar Since the imaging radar is mounted on the vehicle, the vehicle is constantly moving. Therefore, the imaging radar can also be moved, so that the imaging radar utilizes its own motion, and there is a difference in the Doppler frequency of the echoes of different azimuth targets, and Doppler processing is performed to achieve high resolution in the azimuth direction. Since the height positions of the plurality of transmitting antennas and the plurality of receiving antennas are different, the phase of each echo is different, and the phase difference is processed to achieve high resolution in the height direction.
  • the millimeter wave three-dimensional imaging radar according to the embodiment may be placed on the side of the vehicle body (for example, may be disposed near the side tail of the vehicle, Or it is close to the edge of the rear door, or placed above the front wheel of the vehicle.
  • the three-dimensional imaging radar mainly uses the car's own motion to form a synthetic aperture to realize three-dimensional imaging of the radar.
  • an imaging radar is involved.
  • a three-dimensional imaging radar can be used in consideration of the amount of calculation.
  • the millimeter wave three-dimensional imaging radar may include: a transmitting and receiving antenna, a radio frequency module, and a signal processor.
  • K transmitting antennas and L receiving antennas are included, and the number of K and L is the same or different, and the number of antennas is large. It can be distributed in different places of the antenna, for example, at different heights, so that signals of the radar can be transmitted and received, and these signals can also be processed, so that the obtained three-dimensional image is more accurate.
  • FIG. 5 is a schematic structural diagram of the radio frequency module according to the embodiment.
  • the voltage control oscillator can be used.
  • a transmit signal is generated that is transmitted by the transmit antenna through a power amplifier.
  • the receiving antenna receives the target echo, passes through the power amplifier, and mixes with the transmitted signal generated by the voltage controlled oscillator, and finally transmits the mixed radar echo data to the signal processor.
  • FIG. 6 provides an alternative manner.
  • FIG. 6 is a flowchart of the internal processing of the signal processor according to the present embodiment.
  • the kth transmitting antenna is transmitted and is
  • the radar echo data received by the receiving antennas is represented by s(t, u; k, l), where t represents fast time and u represents slow time.
  • the process includes the following steps:
  • step S1 the radar echo data s(t, u; k, l) is subjected to Fourier transform according to the fast time t, and the transformed data S(f, u; k, l) is obtained, that is,
  • the y-axis represents a vehicle motion direction vector
  • the x-axis represents a direction vector of the vehicle that is perpendicular to the y-axis and lies in a ground plane
  • h T represents the height of the first radar transmitting antenna relative to the ground plane
  • d T represents the distance between the transmitting antennas
  • h R represents the height of the first radar receiving antenna relative to the ground plane
  • d R Indicates the distance between receiving antennas
  • v represents the speed of vehicle motion
  • x n and y n represent the coordinates of the image pixel points on the x and y axes, respectively.
  • B is the bandwidth of the transmitted signal
  • T is the width of the transmitted signal
  • f c is the operating frequency of the radar
  • c is the propagation speed of the electromagnetic wave.
  • the millimeter wave three-dimensional imaging radar is disposed on the side of the automobile, and performs radar imaging on the side target.
  • the millimeter wave three-dimensional imaging radar may include: a transmitting antenna, a receiving antenna, a radio frequency module, and a signal processing module. Then, through the millimeter wave three-dimensional imaging radar signal processing method, the radar echo data is processed to finally obtain the radar image.
  • module or “unit” may refer to a software object or routine that is executed on the apparatus described above.
  • the various modules and units described herein can be implemented as objects or processes executing on the above-described devices (eg, as separate threads), while implementations of the above-described devices using hardware or a combination of software and hardware are also possible and contemplated. .
  • modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in a storage device by a computing device, or they may be fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, the application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种成像雷达、车辆以及成像方法。成像雷达包括:多个发射天线(10),设置于车辆的侧面,与射频模块(30)耦合,用于发射射频模块(30)生成的信号;多个接收天线(20),设置于车辆的侧面,与射频模块(30)耦合,用于接收被车辆周围的目标对发射天线(10)发射的信号散射形成的散射信号;射频模块(30),与处理器(40)耦合,用于生成用于发射的信号,以及将通过接收天线(20)接收到的散射信号形成回波数据;处理器(40),用于通过射频模块(30)获取随车辆运动传输回来的回波数据,并根据回波数据生成三维雷达图像。解决了使用激光雷达得到车辆周边行驶环境所导致的问题,使车辆雷达能够适应各种环境,并且降低了成本。

Description

成像雷达、车辆以及成像方法 技术领域
本申请涉及雷达领域,具体而言,涉及成像雷达、车辆以及成像方法。
背景技术
为了使车辆行驶更加安全,或者是为了适应将来自动驾驶的需要,需要得到汽车周边的环境情况。在现有技术中,可以利用安装在车上的传感器,在行驶过程中随时采集并分析汽车周围的三维图像数据,从而预先让驾驶者察觉到可能发生的危险,能够有效增加汽车驾驶的安全性。
在现有技术中,是通过激光雷达来感知汽车周围环境。其技术原理是,通过多线激光器对汽车周围物体进行实时监测,形成高精度高实时性三维点云,重建汽车周围环境,从而实现车道偏离警告、前车防撞、行人探测等功能。以激光来获取汽车周围环境的三维图像数据,这种方式,易受到天气等因素的影响。在大雾、雨雪等环境下,效果并不是很好,从而使车辆原有的功能几乎无法正常工作。另外,激光雷达的成本较高。
针对相关技术中的使用激光雷达得到车辆周边行驶环境所导致的问题,尚未提出解决方案。
发明内容
本申请提供了一种成像雷达、车辆以及成像方法,以至少解决使用激光雷达得到车辆周边行驶环境所导致的问题。
根据本申请的一个方面,提供了一种成像雷达,包括:多个发射天线,设置于车辆的侧面,与射频模块耦合,用于发射上述射频模块生成的信号;多个接收天线,设置与上述车辆的侧面,与上述射频模块耦合,用于分别接收被上述车辆周围的目标对上述多个发射天线发射的信号散射形成的散射信号;上述射频模块,与处理器耦合,用于生成用于发射的上述信号,以及将通过上述多个接收天线接收到的上述散射信号形成回波数据;上述处理器,用于通过上述射频模块获取随上述车辆运动传输回来的回波数据,并根据上述回波数据生成三维雷达图像。
进一步地,上述射频模块包括:振荡器,用于生成用于发射的信号;多个第一功率放大器,分别耦合至上述振荡器和上述发射天线,用于对上述信号放大并传输至上 述多个发射天线进行发射;多个第二功率放大器,分别耦合至混频器和上述接收天线,用于对接收到的上述多个散射信号进行放大,并传输至上述混频器;上述混频器,耦合至上述多个第二功率放大器和上述振荡器,用于将上述信号和上述散射信号进行混频产生上述回波数据。
进一步地,上述发射天线的数量与上述接收天线的数量相同或不同。
进一步地,上述处理器,用于获取随上述车辆运动传输回来的回波数据,根据上述回波数据形成合成孔径,生成三维雷达图像。
进一步地,上述射频模块用于生成毫米波作为发射的上述信号。
根据本申请的另一个方面,还提供了一种车辆,包括:上述的成像雷达。
进一步地,上述成像雷达设置于上述车辆的侧面。
进一步地,上述成像雷达,设置在距离上述车辆的后轮和/或上述车辆的前轮预定距离的上述车辆的侧面。
进一步地,上述成像雷达,设置在距离上述车辆的前灯和/或上述车辆的后灯预定距离的上述车辆的侧面。
进一步地,上述成像雷达为一个或多个。
根据本申请的另一个方面,还提供了一种成像方法,包括:发射多个信号;接收被车辆周围的目标对发射的上述多个信号散射形成的散射信号;将接收到的上述散射信号形成回波数据;获取随上述车辆运动传输回来的回波数据,并根据上述回波数据生成三维雷达图像。
进一步地,根据上述回波数据生成上述三维雷达图像包括:根据上述回波数据形成合成孔径,生成三维雷达图像。
进一步地,根据上述回波数据生成上述三维雷达图像包括:对上述回波数据进行傅里叶变换,等到变换后的数据;根据上述变换后的数据得到像素点,对上述像素点计算距离历史以及散射强度;根据上述距离历史和上述散射强度得到上述三维雷达图像。
进一步地,发射上述信号的发射天线的数量与接收上述散射信号的接收天线数量相同;和/或发射上述信号的发射天线高度与接收上述散射信号的接收天线的高度不同。
进一步地,上述信号为毫米波信号。
通过本申请采用了成像雷达,该成像雷达包括:多个发射天线,设置于车辆的侧 面,与射频模块耦合,用于发射上述射频模块生成的信号;多个接收天线,设置与上述车辆的侧面,与上述射频模块耦合,用于分别接收被上述车辆周围的目标对上述多个发射天线发射的信号散射形成的散射信号;上述射频模块,与处理器耦合,用于生成用于发射的上述信号,以及将通过上述多个接收天线接收到的上述散射信号形成回波数据;上述处理器,用于通过上述射频模块获取随上述车辆运动传输回来的回波数据,并根据上述回波数据生成三维雷达图像。解决了使用激光雷达得到车辆周边行驶环境所导致的问题,使车辆雷达能够适应各种环境,并且降低了成本。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。并且,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是根据本实施例的成像雷达的结构框图;
图2是根据本实施例的成像方法的流程图;
图3是根据本实施例的成像雷达设置的示意图;
图4是根据本实施例的可选的三维成像雷达的结构框图;
图5是根据本实施例的射频模块的结构示意图;
图6是根据本实施例的信号处理机内部处理的流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要说明的是,在附图的流程示意图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程示意图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在本实施例中,提供了一种成像雷达,图1是根据本实施例的成像雷达的结构框图,如图1所示,该成像雷达包括:多个发射天线10,设置于车辆的侧面,与射频模块30耦合,用于发射射频模块30生成的信号;多个接收天线20,设置与车辆的侧面,与射频模块30耦合,用于接收被车辆周围的目标对多个发射天线10发射的信号散射形成的多个散射信号;射频模块30,与处理器40耦合,用于生成用于发射的信号,以及将通过接收天线20接收到的散射信号形成回波数据;处理器40,用于通过射频 模块30获取随车辆运动传输回来的回波数据,并根据回波数据生成三维雷达图像。
通过上述成像雷达,使用了对信号的处理,并且利用了车辆不断运动的特点,从而可以利用雷达来识别车辆周边的目标,从而解决了使用激光雷达得到车辆周边行驶环境所导致的问题,使车辆雷达能够适应各种环境,并且降低了成本。
射频模块30有很多的实现方式,在本实施例中,提供了一种可选的实现方式。该射频模块30可以包括:振荡器(可以采用压控振荡器),用于生成用于发射的信号;多个第一功率放大器,分别耦合至振荡器和多个发射天线10,用于对信号放大并传输至多个发射天线10进行发射;多个第二功率放大器,分别耦合至混频器和多个接收天线20,用于对接收到的散射信号进行放大,并传输至混频器;混频器,耦合至多个第二功率放大器和振荡器,用于将信号和散射信号进行混频产生回波数据。在本实施例中使用了功率放大器,从而可以更有利于信号的散射,以及对散射信号的识别。
在一个可选的实施例中,由于需要生成的是三维图像,此时,发射天线10和接收天线20数量可以相同也可以不同,发射天线10和接收天线20高度不同。
在一个可选的实施例中,可以利用合成孔径来生成三维雷达图像。此时,处理器40,用于获取随车辆运动传输回来的回波数据,根据回波数据形成合成孔径,生成三维雷达图像。
发射的信号可以采用多种波来进行处理,在一个比较优的实施方式中,射频模块30用于生成毫米波作为发射的信号。
在本实施例中,还提供了一种车辆,包括:上述的成像雷达。成像雷达可以设置在能够设置的位置,可以根据实际的需要来进行选择,例如,成像雷达设置于车辆的侧面。车辆侧面有很多个位置均可以设置成像雷达,例如,可以设置在距离车辆的后轮和/或车辆的前轮预定距离的车辆的侧面。又例如,成像雷达,设置在距离车辆的前灯和/或车辆的后灯预定距离的车辆的侧面。上述的成像雷达可以为一个或多个。
在本实施例中,还提供了一种成像方法,图2是根据本实施例的成像方法的流程图,如图2所示,该方法包括如下步骤:
步骤S202,发射多个信号;
步骤S204,接收被车辆周围的目标对发射的所述多个信号散射形成的多个散射信号;
步骤S206,将接收到的多个散射信号形成回波数据;
步骤S208,获取随车辆运动传输回来的回波数据,并根据回波数据生成三维雷达图像。
通过上述步骤,使用了对信号的处理,并且利用了车辆不断运动的特点,从而可以利用雷达来识别车辆周边的目标,从而解决了使用激光雷达得到车辆周边行驶环境所导致的问题,使车辆雷达能够适应各种环境,并且降低了成本。
在一个可选的实施例中,可以根据回波数据形成合成孔径,生成三维雷达图像。例如,对回波数据进行傅里叶变换,等到变换后的数据;根据变换后的数据得到像素点,对像素点计算距离历史以及散射强度;根据距离历史和散射强度得到三维雷达图像。
在一个可选的实施例中,本申请还可以提供一个用于执行上述实施例的计算机程序以及保存上述计算机程序的载体,即本申请上述实施例可以通过一个合适的计算体系结构来进行符合自然规律的运行过程。另外,尽管在上述上下文中描述本申请,但上述用于实现执行步骤的计算机程序并不意味着是限制性的,所描述的动作和操作的各方面也可用硬件来实现。
本申请的原理可以使用其它通用或专用计算或通信环境或配置来操作。适用于本申请的众所周知的计算系统、环境和配置的示例包括但不限于,个人计算机、服务器,多处理器系统、基于微处理的系统、小型机、大型计算机、智能设备、终端(包括移动终端)、以及包括任一上述系统或设备的分布式计算环境。
下面将结合可选的实施例对其实现过程进行详细描述。
在本实施例中,提供一种用于车辆安全驾驶的毫米波三维成像雷达,由于使用的是毫米波,因此,该可选实施例能够在任何光照环境、任何天气环境下正常工作。并且,成本较低。
对于成像雷达的选用,在本实施例中采用的是毫米波成像的雷达。当然,也可以采用米波、分米波或者厘米波段的雷达。本实施例采用毫米波成像雷达相对于其他常见的雷达频段,例如,米波、分米波和厘米波频段等,毫米波频段雷达具有如下优势:雷达工作波长短,较小的天线尺寸即能够获得较高的角度分辨率;射频收发芯片集成度高,整个雷达射频前端都可以用一个毫米波射频芯片完成;基于高集成度的雷达射频前端,整机雷达成本相对较低。
在本实施例中,利用毫米波雷达三维成像雷达,能够实现距离向、方位向和高度向的高分辨。其中,可以使雷达发射大带宽信号,利用脉冲压缩技术实现距离向高分辨。由于成像雷达安装在车辆上,车辆一直在不停的运动中。从而可以使成像雷达也可以运动,使成像雷达利用自身运动,对不同方位目标回波的多普勒频率存在差异,对其进行多普勒处理,能够实现方位向的高分辨。由于多个发射天线、多个接收天线的高度位置不同,每个回波的相位存在差异,对这种相位差进行处理,能够实现高度向的高分辨。
图3是根据本实施例的成像雷达设置的示意图,如图3所示,本实施例所涉及的毫米波三维成像雷达,可以置于车身侧方(例如,可以设置在车辆侧方尾部附近,或者是靠近后车门的边缘部分,或者设置在车辆侧方前部轮子的上方),三维成像雷达主要利用汽车自身运动,形成合成孔径,实现雷达三维成像。
本实施例中涉及到成像雷达,在本实施例中,考虑到计算量,可以采用三维的成像雷达。三维成像雷达的组成方式有很多种,在本实施例中提供了一种可选的三维成像雷达的结构框图,图4是根据本实施例的可选的三维成像雷达的结构框图,如图4所示,该毫米波三维成像雷达可以包括:收发天线、射频模块和信号处理机,在图4中包含K个发射天线和L个接收天线,K和L的数量相同或者不同,多数量的天线可以分布在天线的不同地方,例如分布在不同的高度,从而都可以来发送和接收雷达的信号,这些信号也可以进行处理,从而使得到的三维图像更加精确。
射频模块的实现方式也有很多种,在本实施例中提供了一种可选的实施方式,图5是根据本实施例的射频模块的结构示意图,如图5所示,可以由压控振荡器产生发射信号,经过功率放大器由发射天线发射。接收天线接收目标回波,经过功率放大器,并与压控振荡器产生的发射信号混频,最后将混频后的雷达回波数据传输至信号处理机。
信号处理机内部的处理方式也有很多种,图6提供了一种可选的方式,图6是根据本实施例的信号处理机内部处理的流程图,第k个发射天线发射,并且被第l个接收天线接收到的雷达回波数据用s(t,u;k,l)表示,其中t表示快时间,u表示慢时间。如图6所示,该流程包括如下步骤:
步骤S1,对雷达回波数据s(t,u;k,l)按快时间t进行傅里叶变换,得到变换后的数据S(f,u;k,l),即
S(f,u;k,l)=∫s(t,u;k,l)exp(-j2πft)dt    (1)
步骤S2,对于雷达图像中的像素点(xn,yn)(n=1,2,…,N),按照下式计算其距离历史,即
Figure PCTCN2016103168-appb-000001
其中,定义y轴表示汽车运动方向矢量;x轴表示汽车在其与y轴垂直且在位于地平面内的方向矢量;
Figure PCTCN2016103168-appb-000002
表示汽车在x方向的坐标;
Figure PCTCN2016103168-appb-000003
表示汽车在y方向的坐标;hT表 示第一个雷达发射天线相对于地平面的高度;dT表示发射天线间距离;hR表示第一个雷达接收天线相对于地平面的高度;dR表示接收天线间距离;v表示汽车运动速度;xn和yn分别表示图像像素点在x和y轴的坐标。
步骤S3,对于雷达图像中的像素点(xn,yn)(n=1,2,…,N),按照下式计算其散射强度值,即
Figure PCTCN2016103168-appb-000004
其中,B表示发射信号带宽;T表示发射信号时宽;fc表示雷达工作频率;c表示电磁波传播速度。
在本实施例中,毫米波三维成像雷达安置于汽车侧面,对侧面目标进行雷达成像,该毫米波三维成像雷达可以包括:一个发射天线、一个接收天线、射频模块及信号处理模块。然后通过毫米波三维成像雷达信号处理方法,对雷达回波数据进行处理最终得到雷达图像。
上述优选的实施方式是可以结合使用的。另外,如本申请所使用的,术语“模块”或“单元”可以指在上述装置上执行的软件对象或例程。此处所描述的不同模块和单元可被实现为在上述装置上执行(例如,作为单独的线程)的对象或进程,同时,上述装置使用硬件或软件和硬件的组合的实现也是可能并被构想的。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种成像雷达,其中,包括:
    多个发射天线,设置于车辆的侧面,与射频模块耦合,用于发射所述射频模块生成的信号;
    多个接收天线,设置与所述车辆的侧面,与所述射频模块耦合,用于接收被所述车辆周围的目标对发射天线发射的信号散射形成的散射信号;
    所述射频模块,与处理器耦合,用于生成用于发射的所述信号,以及将通过所述接收天线接收到的所述散射信号形成回波数据;
    所述处理器,用于通过所述射频模块获取随所述车辆运动传输回来的回波数据,并根据所述回波数据生成三维雷达图像。
  2. 根据权利要求1所述的成像雷达,其中,所述射频模块包括:
    振荡器,用于生成用于发射的信号;
    多个第一功率放大器,分别耦合至所述振荡器和每个发射天线,用于对所述信号放大并传输至所述每个发射天线进行发射;
    多个第二功率放大器,分别耦合至混频器和每个接收天线,用于对接收到的所述散射信号进行放大,并传输至所述混频器;
    所述混频器,耦合至所述多个第二功率放大器和所述振荡器,用于将所述信号和所述散射信号进行混频产生所述回波数据。
  3. 根据权利要求1所述的成像雷达,其中,所述发射天线的数量与所述接收天线的数量相同或不同。
  4. 根据权利要求1所述的成像雷达,其中,所述处理器,用于获取随所述车辆运动传输回来的回波数据,根据所述回波数据形成合成孔径,生成三维雷达图像。
  5. 根据权利要求1至4中任一项所述的成像雷达,其中,所述射频模块用于生成毫米波作为发射的所述信号。
  6. 一种车辆,其中,包括:权利要求1至5中任一项所述成像雷达。
  7. 根据权利要求6所述的车辆,其中,所述成像雷达设置于所述车辆的侧面。
  8. 根据权利要求7所述的车辆,其中,所述成像雷达,设置在距离所述车辆的后轮和/或所述车辆的前轮预定距离的所述车辆的侧面。
  9. 根据权利要求7所述的车辆,其中,所述成像雷达,设置在距离所述车辆的前灯 和/或所述车辆的后灯预定距离的所述车辆的侧面。
  10. 根据权利要求6至9中任一项所述的车辆,其中,所述成像雷达为一个或多个。
  11. 一种成像方法,其中,包括:
    发射多个信号;
    分别接收被车辆周围的目标对发射的所述多个信号散射形成的散射信号;
    将接收到的所述多个散射信号形成回波数据;
    获取随所述车辆运动传输回来的回波数据,并根据所述回波数据生成三维雷达图像。
  12. 根据权利要求11所述的方法,其中,根据所述回波数据生成所述三维雷达图像包括:
    根据所述回波数据形成合成孔径,生成三维雷达图像。
  13. 根据权利要求12所述的方法,其中,根据所述回波数据生成所述三维雷达图像包括:
    对所述回波数据进行傅里叶变换,等到变换后的数据;
    根据所述变换后的数据得到像素点,对所述像素点计算距离历史以及散射强度;
    根据所述距离历史和所述散射强度得到所述三维雷达图像。
  14. 根据权利要求11至13中任一项所述的方法,其中,
    发射所述信号的发射天线数量与接收所述散射信号的接收天线的数量相同或不同;和/或
    发射所述信号的发射天线高度与接收所述散射信号的接收天线的高度不同。
  15. 根据权利要求11至13中任一项所述的方法,其中,所述信号为毫米波信号。
PCT/CN2016/103168 2016-06-30 2016-10-25 成像雷达、车辆以及成像方法 WO2018000668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610505211.XA CN107561531A (zh) 2016-06-30 2016-06-30 成像雷达、车辆以及成像方法
CN201610505211.X 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018000668A1 true WO2018000668A1 (zh) 2018-01-04

Family

ID=60785059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103168 WO2018000668A1 (zh) 2016-06-30 2016-10-25 成像雷达、车辆以及成像方法

Country Status (2)

Country Link
CN (1) CN107561531A (zh)
WO (1) WO2018000668A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633649A (zh) * 2018-11-23 2019-04-16 福瑞泰克智能系统有限公司 一种双角汽车雷达系统及车辆
CN112816984A (zh) * 2019-11-15 2021-05-18 广州极飞科技股份有限公司 一种雷达电路、雷达和设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201032A (zh) * 2020-08-28 2021-01-08 武汉理工大学 一种道路车流监测方法、存储介质及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354438A (zh) * 2008-08-28 2009-01-28 阮树成 毫米波时分线性调频多目标检测汽车防撞雷达
CN101765789A (zh) * 2007-05-21 2010-06-30 空间数码系统公司 用于通过测量空间频率分量进行雷达成像的装置和方法
US8040273B2 (en) * 2009-07-14 2011-10-18 Raytheon Company Radar for imaging of buildings
CN204515166U (zh) * 2015-04-15 2015-07-29 中国人民解放军空军预警学院 一种基于合成孔径雷达的机场跑道异物检测系统
CN105699493A (zh) * 2015-12-28 2016-06-22 深圳市太赫兹科技创新研究院 高铁无损检测系统和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205176271U (zh) * 2015-12-15 2016-04-20 南京慧尔视智能科技有限公司 基于微波的路口存在检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765789A (zh) * 2007-05-21 2010-06-30 空间数码系统公司 用于通过测量空间频率分量进行雷达成像的装置和方法
CN101354438A (zh) * 2008-08-28 2009-01-28 阮树成 毫米波时分线性调频多目标检测汽车防撞雷达
US8040273B2 (en) * 2009-07-14 2011-10-18 Raytheon Company Radar for imaging of buildings
CN204515166U (zh) * 2015-04-15 2015-07-29 中国人民解放军空军预警学院 一种基于合成孔径雷达的机场跑道异物检测系统
CN105699493A (zh) * 2015-12-28 2016-06-22 深圳市太赫兹科技创新研究院 高铁无损检测系统和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633649A (zh) * 2018-11-23 2019-04-16 福瑞泰克智能系统有限公司 一种双角汽车雷达系统及车辆
CN109633649B (zh) * 2018-11-23 2023-06-16 福瑞泰克智能系统有限公司 一种双角汽车雷达系统及车辆
CN112816984A (zh) * 2019-11-15 2021-05-18 广州极飞科技股份有限公司 一种雷达电路、雷达和设备

Also Published As

Publication number Publication date
CN107561531A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2018000667A1 (zh) 成像雷达、车辆以及成像方法
US20210341598A1 (en) Electronic device, control method of electronic device, and control program of electronic device
JP6746017B2 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
CN111699406A (zh) 毫米波雷达的跟踪检测方法、毫米波雷达和车辆
JP7111181B2 (ja) 検知装置、移動体システム、及び検知方法
US20220221554A1 (en) Electronic device, method for controlling electronic device, and program for controlling electronic device
US20230152442A1 (en) Distributed Microwave Radar Imaging Method and Apparatus
WO2018000668A1 (zh) 成像雷达、车辆以及成像方法
US12044795B2 (en) Electronic device, control method of electronic device, and control program of electronic device
CN111505641A (zh) 无线电信号发送方法和装置
US11874364B2 (en) Electronic apparatus, control method for electronic apparatus, and control program for electronic apparatus
WO2018000666A1 (zh) 雷达系统、交通工具、无人机以及探测方法
US11635512B2 (en) Electronic device, control method of electronic device, and control program of electronic device
WO2020241235A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
CN206369807U (zh) 成像雷达以及车辆
CN108267737B (zh) 雷达
CN206649156U (zh) 汽车防撞雷达系统
CN206557373U (zh) 成像雷达以及车辆
KR102326545B1 (ko) 차량 주변 물체 감지 방법 및 장치
CN108267721B (zh) 雷达及交通工具
CN108267734B (zh) 雷达
CN108267735B (zh) 雷达
CN108627837A (zh) 汽车防撞雷达系统
US20210373151A1 (en) Electronic device, control method of electronic device, and control program of electronic device
JP2020012702A (ja) 車両用レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907064

Country of ref document: EP

Kind code of ref document: A1