WO2018000253A1 - 频谱处理方法及装置 - Google Patents

频谱处理方法及装置 Download PDF

Info

Publication number
WO2018000253A1
WO2018000253A1 PCT/CN2016/087720 CN2016087720W WO2018000253A1 WO 2018000253 A1 WO2018000253 A1 WO 2018000253A1 CN 2016087720 W CN2016087720 W CN 2016087720W WO 2018000253 A1 WO2018000253 A1 WO 2018000253A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
spectrum
determining
power
signal
Prior art date
Application number
PCT/CN2016/087720
Other languages
English (en)
French (fr)
Inventor
贾亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/087720 priority Critical patent/WO2018000253A1/zh
Priority to CN201680086726.9A priority patent/CN109314974A/zh
Publication of WO2018000253A1 publication Critical patent/WO2018000253A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a spectrum processing method and apparatus.
  • the spectrum resources can be flexibly used, that is, the uplink and downlink spectrum resources can be adjusted as needed. For example, when the downlink traffic is more than the uplink traffic, it is desirable to convert the uplink spectrum into the downlink spectrum. In order to better meet business requirements and improve spectrum utilization.
  • Embodiments of the present invention provide a spectrum processing method and apparatus, in order to improve utilization of spectrum resources.
  • an embodiment of the present invention provides a spectrum processing method, including:
  • the first base station acquires a system message and a reference signal RS of the second base station;
  • the first base station When the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station is less than or equal to a preset threshold, the first base station starts a flexible transmission function of the first spectrum, and the flexible transmission
  • the function refers to a function in which some or all resources of the first spectrum are switched between uplink transmission and downlink transmission according to service requirements.
  • the system message includes: pilot power, minimum reception level when cell reselection, and minimum reception level of cell camping.
  • the first base station determines, according to the system message and the RS of the second base station, the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station, including:
  • the first base station acquires a path loss value of the second base station receiving the signal transmitted by the first base station according to the path loss value of the second base station transmitting the signal received by the first base station;
  • the first base station acquires, according to the system message and the RS of the second base station, a path loss value that is sent by the first base station to receive the signal sent by the second base station, and includes:
  • the first base station determines, according to the path loss value of the first base station transmit signal and the system message, that the first base station determines the first spectrum of the first base station to the second base station. Before using the interference value of the spectrum currently, it also includes:
  • the second base station receives the actual power of the leakage power
  • Determining, by the first base station, the first base station according to the actual power of the second base station receiving the leakage power and the minimum useful signal power of the terminal in the coverage of the second base station The interference value of a spectrum to the spectrum currently used by the second base station.
  • an embodiment of the present invention provides a spectrum processing apparatus, where the apparatus is located in a first base station, and the apparatus includes a module for performing the foregoing first aspect and a method provided by various implementation manners of the first aspect or Means.
  • an embodiment of the present invention provides a spectrum processing apparatus, where the apparatus is located in a first base station, the apparatus includes a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to execute the application.
  • the first aspect provides a method.
  • the present application provides a spectrum processing apparatus comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • the present application provides a program for performing the method of the above first aspect when executed by a processor.
  • a program product such as a computer readable storage medium, comprising the program of the fifth aspect is provided.
  • the first base station acquires the system message and the RS of the second base station, and determines the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station, when the first spectrum pair of the first base station
  • the first base station activates the flexible transmission function of the first spectrum, which reduces the problem that the spectrum of the second base station may be interfered with after the first spectrum is directly turned on. And improve the utilization of the spectrum.
  • FIG. 1 is a schematic diagram of a flexible duplex according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a flexible duplex scenario according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a scenario of an eIMTA according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of a spectrum processing method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a method for determining interference according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of still another method for determining interference according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of still another interference determining method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a spectrum processing apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another spectrum processing apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another spectrum processing apparatus according to an embodiment of the present invention.
  • Base station used to connect the terminal to the wireless network, which may be a Global System of Mobile communication (GSM) or a code division multiple access (CDMA) base station (Base Transceiver Station, BTS for short)
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Node B referred to as eNB or eNodeB
  • a relay station or an access point or a base station in a future 5G network
  • the wireless terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal. Access Terminal, User Terminal, User Agent Agent, user equipment (User Device or User Equipment), which is not limited herein.
  • a plurality means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the spectrum adjustment of a certain base station for example, converting the uplink spectrum into the downlink spectrum for downlink data transmission, is likely to cause interference to another base station, thereby generating interference between adjacent spectrums.
  • technologies such as flexible duplex, enhanced interference management and traffic adaptation (eIMTA) may introduce interference between adjacent spectrums.
  • FIG. 1 is a schematic diagram of a flexible duplex according to an embodiment of the present invention.
  • the uplink frequency band is generally used for transmitting uplink data
  • the downlink frequency band is used for transmitting downlink data
  • the protection frequency band is set between the uplink frequency band and the downlink frequency band.
  • the uplink spectrum resources are excessive and the downlink spectrum resources are insufficient. Therefore, some uplink spectrum resources can be used to transmit downlink data.
  • part of the spectrum resources in the uplink frequency band are converted into downlink spectrum. Resources for downlink data transmission. Converting downlink spectrum resources to uplink spectrum resources is similar. This technology for flexible conversion of uplink and downlink spectrum resources is a flexible duplex technology.
  • FIG. 2 is a schematic diagram of a flexible duplex scenario, which is applied to a frequency division duplex (FDD) communication system.
  • FDD frequency division duplex
  • the four uplink subframes are used as downlink subframes, and the downlink transmission power is large, then the four converted downlink subframes may be uplink spectrum to the base station 01.
  • the corresponding four uplink subframes cause interference.
  • the solid line represents the useful signal
  • the broken line represents the interference
  • the uplink transmission of the terminal 03 is interfered by the downlink transmission (shown by the dotted line) of the base station 02. .
  • FIG. 3 is a schematic diagram of a scenario of an eIMTA according to an embodiment of the present invention, which is applied to a time division duplex (TDD) communication system.
  • TDD time division duplex
  • the adjacent base station 04 and the base station 05 both use the uplink and downlink subframe ratio 1, and refer to the uplink and downlink subframes of the TDD shown in Table 1.
  • Ratio D in Table 1 indicates a downlink subframe
  • U indicates an uplink subframe
  • S indicates a special subframe.
  • subframes 2, 3, 7, and 8 are uplinks. frame.
  • the subframe ratio of the base station 04 is fixed, and the base station 05 uses the eIMTA technology to flexibly switch the uplink and downlink subframe ratio.
  • the base station 05 switches the uplink-downlink subframe ratio from 1 to 2 according to service requirements, and the subframes 3 and 8 that were originally used for uplink transmission are used for downlink transmission, and downlink.
  • the transmission power is large, which may cause interference to the uplink transmission of the corresponding subframes 3 and 8 in the spectrum of the base station 04.
  • the solid line represents the useful signal
  • the broken line represents the interference
  • the uplink transmission (the solid line representation) of the terminal 06 is interfered by the downlink transmission (shown by the broken line) of the base station 05.
  • the prior art can also use an RF scanner to scan a spectrum that may have interference, but the RF scanner is costly and must be manually carried to the site operation, and can only be time-consuming and labor-intensive.
  • an embodiment of the present invention proposes a spectrum processing method, which is considered at a certain base station.
  • a certain spectrum is used flexibly, it is judged whether it interferes with the spectrum currently used by other base stations.
  • the base station 02 shown in FIG. 2 or FIG. 3 wants to use the spectrum flexibly, and all or part of the resources in the spectrum are flexibly used.
  • the degree of interference to the base station 01 is estimated in advance, and the flexible transmission function of the spectrum is restarted if the interference satisfies the preset requirement. In this way, it is possible to determine whether or not to flexibly use the spectrum between different operators according to actual conditions, thereby improving spectrum utilization and, in addition, reducing the cost of planning.
  • FIG. 4 is a schematic flowchart of a spectrum processing method according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • the first base station acquires a system message and a reference signal (referred to as RS) of the second base station.
  • RS reference signal
  • the first base station may set a radio frequency device to perform scanning to obtain a system message of the second base station.
  • the system message may be a system message sent by the second base station to the second base station, and the system message may be a system information block (SIB), such as SIB2, which is not limited herein.
  • SIB system information block
  • the first base station may obtain a reference signal of the terminal that is sent by the second base station to the second base station by using the radio frequency device, and the reference signaling may be, for example, a cell-specific reference signal (CRS), or Other reference signals, for example, channel state information-reference signal (CSI-RS).
  • CRS cell-specific reference signal
  • CSI-RS channel state information-reference signal
  • the first base station determines, according to the system message of the second base station and the RS, an interference value of the first spectrum of the first base station to the currently used spectrum of the second base station.
  • the interference value may refer to a part of the signal on the first spectrum leaking to the spectrum currently used by the second base station, and the size of the interference may be measured by the power of the leaked part of the signal. It should be noted that the interference here is not the actual interference, but the interference value estimated by the first base station.
  • the flexible transmission function refers to a function that some or all resources of the first spectrum are switched between uplink transmission and downlink transmission according to service requirements.
  • the first base station and the second base station may be base stations of different operators, or may be base stations of the same carrier. In some scenarios, the distance between the first base station and the second base station is unknown. If the first base station wants to flexibly use the first spectrum, it needs to first determine that some resources in the first spectrum will not interfere with the currently used spectrum of the second base station if it is switched from the uplink transmission to the downlink transmission.
  • the specific first base station may obtain the system message and the RS of the second base station, and determine, according to the system message and the CRS, whether the first spectrum of the first base station interferes with the currently used spectrum of the second base station, and if the interference is less than a certain preset threshold, the first The base station considers that the flexible transmission function of the first spectrum can be activated.
  • the first base station acquires the system message and the RS of the second base station, and determines the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station, when the first spectrum pair of the first base station is the second.
  • the interference value of the currently used spectrum of the base station is less than or equal to the preset threshold, the first base station activates the flexible transmission function of the first spectrum, which reduces the problem that the first spectrum may directly interfere with the current spectrum used by the second base station. And improve the utilization of the spectrum.
  • the system message may include: pilot power, minimum reception level at the time of cell reselection, minimum required level (Bmxlev min), and the like.
  • the pilot power that is, a reference signal power parameter, for example, may be CRS pilot power.
  • the Srxlev threshold (in dB) for intra-frequency measurements that is, s-Intra Search P, which can be understood as the Srxlev threshold characteristic measured in the frequency.
  • the Srxlev (Cell selection RX level value (dB)) can be understood as the reception level at the time of cell reselection.
  • the first base station determines a first spectrum pair of the first base station according to a system message of the second base station and an RS.
  • the interference value of the spectrum currently used by the second base station may include:
  • the first base station acquires, according to the system message and the RS of the second base station, a path loss value that is sent by the first base station to receive the second base station transmit signal.
  • the second base station antenna interface transmits a signal, and when it is actually received by the first base station, there is a loss, and the path loss value can be calculated, and then the path loss value of the second base station receiving the signal transmitted by the first base station is further estimated.
  • the first base station acquires, according to the path loss value of the second base station transmit signal, the first base station acquires a path loss value of the second base station receiving the signal sent by the first base station.
  • the first base station may, according to the frequency difference between the uplink frequency of the first base station and the downlink frequency of the second base station, combine the path loss value of the second base station to receive the signal transmitted by the second base station, and depress the second base station to receive The path loss value of the signal transmitted to the first base station.
  • the first base station determines, according to the path loss value of the first base station transmit signal and the system message, the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station.
  • FIG. 6 is a schematic flowchart of still another method for determining interference according to an embodiment of the present invention.
  • the first base station acquires the first base station according to the system message and the RS of the second base station.
  • the path loss value of the signal transmitted by the second base station may include:
  • the first base station determines, according to the foregoing RS, an actual power that the first base station receives the signal transmitted by the second base station.
  • the first base station may obtain, by using the demodulation RS, an actual power that the first base station receives the signal transmitted by the second base station.
  • the first base station determines, according to the actual power of the second base station transmit signal and the pilot power, that the first base station receives the path loss value of the second base station transmit signal.
  • the path loss value of the first base station receiving the second base station transmit signal is obtained. That is, the path loss value of the first base station receiving the second base station transmitting signal is equal to Y 1 -Y 2 .
  • the interference signal frequency of the first base station to the second base station is usually different from the downlink frequency of the second base station, and the path loss value of the second base station receiving the signal transmitted by the first base station may be estimated according to the frequency difference, for example, using the formula Y 1 -Y 2 +Delta_pathloss(f1_ul, f2_dl) calculates a path loss value of the first base station receiving the signal transmitted by the first base station, wherein Delta_pathloss(f1, f2) is a preset frequency correlation function, and Delta_pathloss(f1_ul, f2_dl) represents the first base station.
  • the first base station determines, according to the path loss value of the first base station transmit signal and the system message, that the second base station determines the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station, first The base station may acquire the leakage power of the first base station transmit power on the currently used spectrum of the second base station.
  • the first base station may calculate, according to the pre-configured related parameter of the first base station for the signal leakage suppression capability, the leakage power of the first base station transmit power on the currently used spectrum of the second base station. There are no restrictions here.
  • FIG. 7 is a schematic flowchart of still another method for determining interference according to an embodiment of the present invention.
  • a first base station receives a path loss value of a signal transmitted by the first base station according to a second base station, and the foregoing system.
  • the message, determining the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station may include:
  • the first base station determines, according to the path loss value of the first base station sending signal, and the leakage power of the first base station transmit power in the currently used spectrum of the second base station, to determine the actual power of the second base station to receive the leaked power. .
  • the “first base station transmit power is leaking power on the spectrum currently used by the second base station” minus “the second base station receives the path loss value of the first base station transmit signal”, so that the second base station receives the The actual power of the leaked power.
  • X max the maximum possible leakage power of the first base station (referred to as X max )
  • the first base station determines, according to the minimum receiving level of the cell reselection and the minimum receiving level of the cell camping, the minimum useful signal power (denoted as P UEmin ) of the terminal in the coverage of the second base station.
  • the first base station determines, according to the actual power of the leakage power received by the second base station, and the minimum useful signal power of the terminal in the coverage of the second base station, to determine interference of the first spectrum of the first base station with the currently used spectrum of the second base station. value.
  • P UEmin (terminal maximum transmit power - terminal transmit power and maximum power offset) - (min (s-Intra Search P, Qrxlev min) - Y 2 ) + Delta_pathloss (f2_ul, f2_dl).
  • the terminal maximum transmit power-terminal transmit power and maximum power offset may identify the actual transmit power of the terminal antenna port, and the terminal maximum transmit power and the terminal transmit power and the maximum power offset may be preset values, for example, the terminal maximum transmit.
  • the power can be taken as 23 decibels milliwatts (dBm), and the maximum power offset can be taken as 2, which is not limited here.
  • Min(s-Intra Search P,Qrxlev min)-Y 2 ) can identify the minimum value in “s-Intra Search P,Qrxlev min)-Y 2 ”; Delta_pathloss(f2_ul,f2_dl) identifies the uplink frequency and the second base station The correlation function between the downlink frequencies of the two base stations.
  • the first base station determines, according to the actual power of the leakage power received by the second base station, and the minimum useful signal power of the terminal in the coverage of the second base station, the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station,
  • the preset threshold may be -10 decibels (db), which is not limited herein.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 8 is a schematic structural diagram of a spectrum processing apparatus according to an embodiment of the present invention.
  • the apparatus is located at the first base station. Specifically, the apparatus includes: an obtaining module 801, a determining module 802, and a processing module 803, where:
  • the obtaining module 801 is configured to acquire a system message and a reference signal RS of the second base station.
  • the determining module 802 is configured to determine, according to the system message and the RS of the second base station, an interference value of the first spectrum of the first base station to a spectrum currently used by the second base station.
  • the processing module 803 is configured to start the flexible transmission function of the first spectrum when the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station is less than or equal to a preset threshold.
  • the flexible transmission function refers to a function in which part or all of the resources of the first spectrum are switched between uplink transmission and downlink transmission according to service requirements.
  • the device acquires the system message and the RS of the second base station, and determines the interference value of the first spectrum of the first base station to the currently used spectrum of the second base station, when the first spectrum of the first base station is paired with the second base station.
  • the interference value of the currently used spectrum is less than or equal to the preset threshold, the first base station starts the flexible transmission function of the first spectrum, which reduces the problem that the first spectrum may directly interfere with the current spectrum used by the second base station, and Increased spectrum utilization.
  • FIG. 9 is a schematic structural diagram of another spectrum processing apparatus according to an embodiment of the present invention.
  • the determining module 802 includes: an obtaining unit 901 and a determining unit 902, where:
  • the obtaining unit 901 is configured to acquire, according to the system message and the RS of the second base station, a path loss value that is sent by the first base station to receive the second base station, and receive, by the first base station, the second base station to send And a path loss value of the signal, and acquiring a path loss value of the second base station receiving the signal transmitted by the first base station.
  • a determining unit 902 configured to determine, according to the path loss value of the first base station transmitting signal and the system message, that the first spectrum of the first base station is used by the second base station Interference value.
  • the acquiring unit 901 is configured to determine, according to the RS, an actual power that the first base station receives the second base station transmitting signal, and according to the actual power that the first base station receives the second base station transmitting signal, and The pilot power determines a path loss value that the first base station receives the second base station transmit signal.
  • the obtaining module 801 is further configured to acquire the leakage power of the first base station transmit power on the currently used spectrum of the second base station.
  • the determining module 802 is specifically configured to: receive, according to the second base station, a path loss value of the first base station transmitting signal, and a leakage power of the first base station transmit power in a current used spectrum of the second base station.
  • Determining, by the second base station, the actual power of the leakage power determining, according to a minimum reception level at the cell reselection and a minimum reception level of the cell camping, determining a minimum terminal in the coverage of the second base station a useful signal power; determining, according to the actual power of the second base station to receive the leakage power, and the minimum useful signal power of the terminal in the coverage of the second base station, determining the first spectrum of the first base station to the second The interference value of the spectrum currently used by the base station.
  • the foregoing device may be used to perform the method provided in the foregoing method embodiment, and the specific implementation manner and the technical effect are similar, and details are not described herein again.
  • each module of the above base station is only a division of a logical function. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. And these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the processing module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above processing module.
  • the implementation of other modules is similar. Also this All or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 10 is a schematic structural diagram of another spectrum processing apparatus according to an embodiment of the present invention.
  • the apparatus is located at the first base station, and specifically includes: an antenna 11, a radio frequency apparatus 12, and a baseband apparatus 13.
  • the antenna 11 is connected to the radio frequency device 12.
  • the radio frequency device 12 receives information through the antenna 11, and transmits the received information to the baseband device 13 for processing.
  • the baseband device 13 processes the information to be transmitted and transmits it to the radio frequency device 12.
  • the radio frequency device 12 processes the received information and transmits it via the antenna 11.
  • the method provided by the above embodiments can be implemented in a baseband device 13, which includes a processing element 131 and a storage element 132.
  • the baseband device 13 may, for example, comprise at least one baseband board having a plurality of chips disposed thereon, as shown in FIG. 10, one of which is, for example, a processing component 131, coupled to the storage component 132 to invoke a program in the storage component 132
  • the operations shown in the above method embodiments are performed.
  • the baseband device 13 may further include an interface 133 for interacting with the radio frequency device 12, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processing element herein may be a processor or a collective name of a plurality of processing elements.
  • the processing element may be a CPU, an ASIC, or one or more integrated circuits configured to implement the above method.
  • the processing element may be a CPU, an ASIC, or one or more integrated circuits configured to implement the above method.
  • the storage element can be a memory or a collective name for a plurality of storage elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种频谱处理方法及装置,该方法包括:第一基站获取第二基站的系统消息和参考信号(RS);第一基站根据第二基站的系统消息以及RS,确定第一基站的第一频谱对第二基站当前使用频谱的干扰值;当第一基站的第一频谱对第二基站当前使用频谱的干扰值小于或等于预设阈值时,第一基站启动第一频谱的灵活传输功能。减少了直接开启第一频谱后可能对第二基站当前使用频谱造成干扰的问题,且提高了频谱的利用率。

Description

频谱处理方法及装置 技术领域
本发明涉及无线通信技术,尤其涉及一种频谱处理方法及装置。
背景技术
在无线通信技术中,由于频谱资源是有限的,因此频谱资源的利用率一直受到广泛关注。为了提高频谱资源的利用率,希望频谱资源可以灵活使用,即上下行频谱资源可以根据需要进行调整,例如,当在下行业务量多于上行业务量时,希望能将上行频谱转换为下行频谱,以更好的满足业务要求,提高频谱利用率。
频谱资源的灵活使用可能会引入相邻频谱之间的干扰,目前需要大量的规划成本来灵活使用频谱资源,或者直接不开启该功能,提高了频谱资源灵活使用的成本或降低了频谱资源灵活使用的可能性,不利于频谱资源的利用率的提高。
发明内容
本发明实施例提供一种频谱处理方法及装置,以期提高频谱资源的利用率。
第一方面,本发明实施例提供一种频谱处理方法,包括:
第一基站获取第二基站的系统消息和参考信号RS;
所述第一基站根据所述第二基站的系统消息以及RS,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值;
当所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值小于或等于预设阈值时,所述第一基站启动所述第一频谱的灵活传输功能,所述灵活传输功能是指所述第一频谱的部分或全部资源根据业务需求在上行传输和下行传输之间切换的功能。
可选地,所述系统消息包括:导频功率、小区重选时最小接收电平、小区驻留的最小接收电平。
可选地,所述第一基站根据所述第二基站的系统消息以及RS,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值,包括:
所述第一基站根据所述第二基站的系统消息以及RS,获取所述第一基站接收所述第二基站发射信号的路损值;
所述第一基站根据所述第一基站接收所述第二基站发射信号的路损值,获取所述第二基站接收到所述第一基站发射信号的路损值;
所述第一基站根据所述第二基站接收到所述第一基站发射信号的路损值以及所述系统消息,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值。
可选地,所述第一基站根据所述第二基站的系统消息以及RS,获取所述第一基站接收所述第二基站发射信号的路损值,包括:
所述第一基站根据所述RS,确定第一基站接收所述第二基站发射信号的实际功率;
所述第一基站根据所述第一基站接收所述第二基站发射信号的实际功率以及所述导频功率,确定所述第一基站接收所述第二基站发射信号的路损值。
可选地,所述第一基站根据所述第二基站接收到所述第一基站发射信号的路损值以及所述系统消息,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值之前,还包括:
所述第一基站获取所述第一基站发射功率在所述第二基站当前使用频谱上的泄露功率;
所述第一基站根据所述第二基站接收到所述第一基站发射信号的路损值以及所述系统消息,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值,包括:
所述第一基站根据所述第二基站接收到所述第一基站发射信号的路损值、以及所述第一基站发射功率在所述第二基站当前使用频谱上的泄露功率,确定所述第二基站接收所述泄露功率的实际功率;
所述第一基站根据所述小区重选时最小接收电平和所述小区驻留的最小接收电平,确定所述第二基站覆盖范围内终端的最小有用信号功率;
所述第一基站根据所述第二基站接收所述泄露功率的实际功率、以及所述第二基站覆盖范围内终端的最小有用信号功率,确定所述第一基站的第 一频谱对所述第二基站当前使用频谱的干扰值。
第二方面,本发明实施例提供一种频谱处理装置,所述装置位于第一基站,所述装置包括用于执行上述第一方面以及第一方面的各种实现方式所提供的方法的模块或手段(means)。
第三方面,本发明实施例提供一种频谱处理装置,所述装置位于第一基站,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面种提供的方法。
第四方面,本申请提供一种频谱处理装置,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第五方面,本申请提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
第六方面,提供一种程序产品,例如计算机可读存储介质,包括第五方面的程序。
在以上各个方面中,第一基站获取第二基站的系统消息和RS,以确定出第一基站的第一频谱对第二基站当前使用频谱的干扰值,当第一基站的第一频谱对第二基站当前使用频谱的干扰值小于或等于预设阈值时,该第一基站启动上述第一频谱的灵活传输功能,减少了直接开启第一频谱后可能对第二基站当前使用频谱造成干扰的问题,且提高了频谱的利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种灵活双工的示意图;
图2为本发明实施例提供的一种灵活双工的场景示意图;
图3为本发明实施例提供的一种eIMTA的场景示意图;
图4为本发明实施例提供的一种频谱处理方法的流程示意图;
图5为本发明实施例提供的一种干扰确定方法的流程示意图;
图6为本发明实施例提供的又一种干扰确定方法的流程示意图;
图7为本发明实施例提供的再一种干扰确定方法的流程示意图;
图8为本发明实施例提供的一种频谱处理装置的结构示意图;
图9为本发明实施例提供的另一种频谱处理装置的结构示意图;
图10为本发明实施例提供的另一种频谱处理装置的结构示意图。
具体实施方式
以下,对本发明实施例中的部分用语进行解释说明,以便于本领域技术人员理解:
基站:用于将终端接入无线网络,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
终端:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User  Agent)、用户设备(User Device or User Equipment),在此不作限定。
本发明实施例中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
对于频点相邻的两个基站,某个基站的频谱调整,例如将上行频谱转换为下行频谱进行下行数据传输,很有可能会对另一个基站造成干扰,从而产生相邻频谱之间的干扰。例如,灵活双工(flexible duplex)、增强干扰管理和业务适配(enhanced interference management and traffic adaptation,eIMTA)等技术都可能会引入相邻频谱之间的干扰。
请参考图1,其为本发明实施例提供的一种灵活双工的示意图。如图1所示,通常上行频带用于传输上行数据,下行频带用于传输下行数据,上行频带和下行频带之间可以设置保护频带。当下行业务量明显高于上行业务量时,上行频谱资源过剩,下行频谱资源不足,因此可以将部分上行频谱资源用来传输下行数据,此时,上行频带中的部分频谱资源就转换为下行频谱资源,进行下行数据传输。将下行频谱资源转换为上行频谱资源与之类似。这种将上下行频谱资源灵活转换的技术既是灵活双工技术。
请参考图2,其为本发明实施例提供的一种灵活双工的场景示意图,其应用于频分双工(frequency division duplex,FDD)通信系统中。如图2所示,相邻的基站01和基站02,基站01采用固定的上行频谱和下行频谱,基站02采用灵活双工,即频谱可以根据实际需要在上行频谱和下行频谱之间灵活转换,例如某些情况下,下行频谱不够用,上行频谱有空闲,就可以把部分上行子帧转换为下行子帧。如图1所示,基站02的上行频谱中,有4个上行子帧用作了下行子帧,下行传输的功率较大,那么这4个转换后的下行子帧就可能对基站01上行频谱中对应的4个上行子帧造成干扰,如图中所示,实线代表有用信号,虚线代表干扰,终端03的上行传输(实线表示)会受到基站02的下行传输(虚线表示)的干扰。
图3为本发明实施例提供的一种eIMTA的场景示意图,其应用于时分双工(time division duplex,TDD)通信系统中。如图3所示,相邻的基站04和基站05都采用上下行子帧配比1,参照表1所示的TDD的上下行子帧配 比(表1中D表示下行子帧,U表示上行子帧,S表示特殊子帧),此时,序号为0-9的子帧中,2、3、7和8号子帧为上行子帧。基站04的子帧配比是固定的,基站05采用eIMTA技术,可以灵活切换上下行子帧配比。如图3所示,基站05根据业务需求,将上下行子帧配比从1切换到2,则原来用于进行上行传输的3号子帧和8号子帧此时用于下行传输,下行传输的功率较大,可能会对基站04频谱中对应的3号子帧和8号子帧的上行传输造成干扰。如图3中所示,实线代表有用信号,虚线代表干扰,终端06的上行传输(实线表示)会受到基站05的下行传输(虚线表示)的干扰。
表1
Figure PCTCN2016087720-appb-000001
可见,当频谱资源灵活使用时,可能会引入相邻频谱之间的干扰,为了减少这种干扰,目前采用在物理上拉开基站间天馈的距离方式来实现,也就是说在前期布局基站时,就物理上将基站之间的天馈分开一定距离。但是对于不同运营商之间的基站,可能并不知道对方的基站的具体位置,因此很难实现,此外,对于室内小站的场景,基站之间的距离较近,也难以采用这个手段来减少干扰,使得频谱资源灵活使用无法应用,不利于频谱资源的高效利用。
此外,现有技术还可以采用射频扫描仪扫描可能存在干扰的频谱,但射频扫描仪成本高,必须人工携带到站点操作,只能逐个串行进行费时费力。
本发明实施例考虑到上述问题,提出一种频谱处理方法,在某个基站想 要灵活使用某个频谱时,判断是否会对其他基站当前使用的频谱造成干扰,例如图2或图3所示的基站02,想要灵活使用频谱,将频谱中的全部或部分资源灵活用于上下行传输,那么在启动这个频谱的灵活传输功能前,预先估计对基站01的干扰程度,在干扰满足预设要求的情况下,再启动该频谱的灵活传输功能。如此,可以在不同运营商之间根据实际情况确定是否灵活使用频谱,提高了频谱利用率,此外,降低了规划的成本。
图4为本发明实施例提供的一种频谱处理方法的流程示意图,如图4所示,该方法包括:
S101、第一基站获取第二基站的系统消息和参考信号(reference signal,简称RS)。
其中,第一基站可以设置射频装置进行扫描,以获取第二基站的系统消息。
该系统消息可以是第二基站向第二基站下终端发送的系统消息,该系统消息可以是系统消息块(system information block,简称SIB),例如SIB2,在此不作限制。
此外,第一基站可以通过射频装置扫描获得第二基站发送给第二基站的终端的参考信号,该参考信令例如可以为小区特定参考信号(cell-specific reference signal,简称CRS),也可以为其它参考信号,例如,信道状态信息参考信号(channel state information-reference signal,CSI-RS)。
S102、第一基站根据第二基站的系统消息以及RS,确定第一基站的第一频谱对第二基站当前使用频谱的干扰值。
其中,该干扰值可以指第一频谱上的信号泄露到第二基站当前使用频谱上的部分,可以通过泄露的这部分信号的功率来衡量干扰的大小。需要说明的是,这里的干扰并不是真实产生的干扰,而是第一基站预估的干扰值。
S103、当第一基站的第一频谱对第二基站当前使用频谱的干扰值小于或等于预设阈值时,该第一基站启动上述第一频谱的灵活传输功能。其中,该灵活传输功能是指第一频谱的部分或全部资源根据业务需求在上行传输和下行传输之间切换的功能。
需要说明的是,第一基站和第二基站可以是不同运营商的基站,也可以是同一运营商的基站,在某些场景下,第一基站和第二基站之间的距离未知, 第一基站想要灵活使用第一频谱,需要先确定第一频谱中的部分资源如果从上行传输切换为下行传输会不会对第二基站当前使用频谱造成干扰。具体第一基站可以获取第二基站的系统消息和RS,根据系统消息和CRS确定第一基站的第一频谱是否会对第二基站当前使用频谱造成干扰,如果干扰小于一定预设阈值,第一基站就认为可以启动上述第一频谱的灵活传输功能。
本实施例中,第一基站获取第二基站的系统消息和RS,以确定出第一基站的第一频谱对第二基站当前使用频谱的干扰值,当第一基站的第一频谱对第二基站当前使用频谱的干扰值小于或等于预设阈值时,该第一基站启动上述第一频谱的灵活传输功能,减少了直接开启第一频谱后可能对第二基站当前使用频谱造成干扰的问题,且提高了频谱的利用率。
上述系统消息可以包括:导频功率、小区重选时最小接收电平、小区驻留时最小接收电平(Minimum required RX level in the cell(dBm),即Qrxlev min)等。
其中,导频功率即一种参考信号功率参数,例如,可以是CRS导频功率。
小区重选时最小接收电平(This specifies the Srxlev threshold(in dB)for intra-frequency measurements,即s-Intra Search P),可以理解为频率内测量的Srxlev阈值特性。其中,Srxlev(Cell selection RX level value(dB))可以理解为小区重选时的接收电平。
本申请实施例可以利用以上参数,并利用以下方法确定干扰值:
请参考图5,为本发明实施例提供的一种干扰确定方法的流程示意图,如图5所示,上述第一基站根据第二基站的系统消息以及RS,确定第一基站的第一频谱对第二基站当前使用频谱的干扰值,可以包括:
S201、第一基站根据上述第二基站的系统消息以及RS,获取上述第一基站接收上述第二基站发射信号的路损值。
第二基站天线接口发射信号,实际被第一基站接收时会有损失,可以计算出路损值,进而再推算第二基站接收到上述第一基站发射信号的路损值。
S202、第一基站根据上述第一基站接收第二基站发射信号的路损值,获取第二基站接收到上述第一基站发射信号的路损值。
可选地,第一基站可以根据第一基站上行频率和第二基站下行频率的频率差,结合第一基站接收第二基站发射信号的路损值,反推出第二基站接收 到上述第一基站发射信号的路损值。
S203、第一基站根据第二基站接收到上述第一基站发射信号的路损值以及上述系统消息,确定第一基站的第一频谱对第二基站当前使用频谱的干扰值。
请参考图6,为本发明实施例提供的又一种干扰确定方法的流程示意图,如图6所示,第一基站根据上述第二基站的系统消息以及RS,获取上述第一基站接收上述第二基站发射信号的路损值,可以包括:
S301、第一基站根据上述RS,确定第一基站接收第二基站发射信号的实际功率。
具体地,第一基站可以通过解调RS获取第一基站接收所述第二基站发射信号的实际功率。
S302、第一基站根据该第一基站接收上述第二基站发射信号的实际功率和上述导频功率,确定上述第一基站接收第二基站发射信号的路损值。
其中,上述导频功率(记为Y1)减去第一基站接收第二基站发射信号的实际功率(记为Y2),就可以得到第一基站接收第二基站发射信号的路损值,即第一基站接收上述第二基站发射信号的路损值等于Y1-Y2
第一基站的对第二基站的干扰信号频率通常和第二基站下行频率不同,可以根据频率差估算第二基站接收到上述第一基站发射信号的路损值,例如采用公式Y1-Y2+Delta_pathloss(f1_ul,f2_dl)计算第二基站接收到上述第一基站发射信号的路损值,其中,Delta_pathloss(f1,f2)是一个预设频率相关函数,Delta_pathloss(f1_ul,f2_dl)表示第一基站上行频率和第二基站下行频率的相关函数。
当然,计算方法并不以上述公式为限。
可选地,第一基站根据第二基站接收到上述第一基站发射信号的路损值以及上述系统消息,确定第一基站的第一频谱对第二基站当前使用频谱的干扰值之前,第一基站可以获取第一基站发射功率在第二基站当前使用频谱上的泄露功率。
其中,第一基站可以根据预先配置的第一基站对信号泄露抑制能力的相关参数,计算获取第一基站发射功率在第二基站当前使用频谱上的泄露功率。在此不作限制。
请参考图7,为本发明实施例提供的再一种干扰确定方法的流程示意图,如图7所示,第一基站根据第二基站接收到上述第一基站发射信号的路损值以及上述系统消息,确定第一基站的第一频谱对第二基站当前使用频谱的干扰值可以包括:
S401、第一基站根据第二基站接收到第一基站发送信号的路损值、以及第一基站发射功率在第二基站当前使用频谱上的泄露功率,确定第二基站接收该泄露功率的实际功率。
可选地,“第一基站发射功率在第二基站当前使用频谱上的泄露功率”减去“第二基站接收到上述第一基站发射信号的路损值”,就可以得到第二基站接收该泄露功率的实际功率。
假设第一基站发射功率在第二基站当前使用频谱上的泄露功率记为X,第二基站接收该泄露功率的实际功率等于:X-(Y1-Y2+Delta_pathloss(f1_ul,f2_dl))。
可选地,为了更好地保证第一基站不对第二基站造成干扰,采用第一基站的最大可能的泄露功率(记为Xmax)计算第二基站接收该泄露功率的实际功率,即第二基站接收该泄露功率的实际功率等于:Xmax-(Y1-Y2+Delta_pathloss(f1_ul,f2_dl))。记为:Pnoise=Xmax-(Y1-Y2+Delta_pathloss(f1_ul,f2_dl))。
S402、第一基站根据上述小区重选时最小接收电平和小区驻留的最小接收电平,确定上述第二基站覆盖范围内终端的最小有用信号功率(记为PUEmin)。
S403、第一基站根据上述第二基站接收该泄露功率的实际功率、以及第二基站覆盖范围内终端的最小有用信号功率,确定第一基站的第一频谱对上述第二基站当前使用频谱的干扰值。
可选地,PUEmin=(终端最大发射功率-终端发射功率与最大功率偏置)-(min(s-Intra Search P,Qrxlev min)-Y2)+Delta_pathloss(f2_ul,f2_dl)。其中,“终端最大发射功率-终端发射功率与最大功率偏置”可以标识终端天线口的实际发射功率,终端最大发射功率和终端发射功率与最大功率偏置可以是预设值,例如终端最大发射功率可以取23分贝毫瓦(dBm),最大功率偏置可以取2,在此不作限制。min(s-Intra Search P,Qrxlev min)-Y2)可以标识“s-Intra Search P,Qrxlev min)-Y2”中的最小值;Delta_pathloss(f2_ul,f2_dl) 标识第二基站上行频率和第二基站下行频率之间的相关函数。
第一基站根据上述第二基站接收该泄露功率的实际功率、以及第二基站覆盖范围内终端的最小有用信号功率,确定第一基站的第一频谱对上述第二基站当前使用频谱的干扰值,可以是:第一基站的第一频谱对上述第二基站当前使用频谱的干扰值=PUEmin-Pnoise,当PUEmin-Pnoise小于或等于预设阈值时,第一基站确定启动上述第一频谱。
可选地,上述预设阈值可以取-10分贝(db),在此不作限制。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
请参考图8,为本发明实施例提供的一种频谱处理装置的结构示意图,该装置位于上述第一基站,具体地,该装置包括:获取模块801、确定模块802以及处理模块803,其中:
获取模块801,用于获取第二基站的系统消息和参考信号RS。
确定模块802,用于根据所述第二基站的系统消息以及RS,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值。
处理模块803,用于在所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值小于或等于预设阈值时,启动所述第一频谱的灵活传输功能。其中,灵活传输功能是指所述第一频谱的部分或全部资源根据业务需求在上行传输和下行传输之间切换的功能。
本实施例中,上述装置获取第二基站的系统消息和RS,以确定出第一基站的第一频谱对第二基站当前使用频谱的干扰值,当第一基站的第一频谱对第二基站当前使用频谱的干扰值小于或等于预设阈值时,该第一基站启动上述第一频谱的灵活传输功能,减少了直接开启第一频谱后可能对第二基站当前使用频谱造成干扰的问题,且提高了频谱的利用率。
请参考图9,为本发明实施例提供的另一种频谱处理装置的结构示意图,可选地,上述确定模块802包括:获取单元901和确定单元902,其中:
获取单元901,用于根据所述第二基站的系统消息以及RS,获取所述第一基站接收所述第二基站发射信号的路损值;根据所述第一基站接收所述第二基站发射信号的路损值,获取所述第二基站接收到所述第一基站发射信号的路损值。
确定单元902,用于根据所述第二基站接收到所述第一基站发射信号的路损值以及所述系统消息,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值。
可选地,获取单元901,具体用于根据所述RS,确定第一基站接收所述第二基站发射信号的实际功率;根据所述第一基站接收所述第二基站发射信号的实际功率以及所述导频功率,确定所述第一基站接收所述第二基站发射信号的路损值。
进一步地,上述获取模块801,还用于获取所述第一基站发射功率在所述第二基站当前使用频谱上的泄露功率。
相应地,确定模块802具体用于根据所述第二基站接收到所述第一基站发射信号的路损值、以及所述第一基站发射功率在所述第二基站当前使用频谱上的泄露功率,确定所述第二基站接收所述泄露功率的实际功率;根据所述小区重选时最小接收电平和所述小区驻留的最小接收电平,确定所述第二基站覆盖范围内终端的最小有用信号功率;根据所述第二基站接收所述泄露功率的实际功率、以及所述第二基站覆盖范围内终端的最小有用信号功率,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值。
上述装置可用于执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
需要说明的是,应理解以上基站的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上处理模块的功能。其它模块的实现与之类似。此外这 些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
请参考图10,为本发明实施例提供的另一种频谱处理装置的结构示意图,该装置位于上述第一基站,具体地,该装置包括:天线11、射频装置12、基带装置13。天线11与射频装置12连接。在上行方向上,射频装置12通过天线11接收信息,将接收的信息发送给基带装置13进行处理。在下行方向上,基带装置13对要发送的信息进行处理,并发送给射频装置12,射频装置12对收到的信息进行处理后经过天线11发送出去。
以上实施例提供的方法可以在基带装置13中实现,该基带装置13包括处理元件131和存储元件132。基带装置13例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理元件131,与存储元件132连接,以调用存储元件132中的程序,执行以上方法实施例中所示的操作。
该基带装置13还可以包括接口133,用于与射频装置12交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理元件可以是一个处理器,也可以是多个处理元件的统称,例如,该处理元件可以是CPU,也可以是ASIC,或者是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种频谱处理方法,其特征在于,包括:
    第一基站获取第二基站的系统消息和参考信号RS;
    所述第一基站根据所述第二基站的系统消息以及RS,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值;
    当所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值小于或等于预设阈值时,所述第一基站启动所述第一频谱的灵活传输功能,所述灵活传输功能是指所述第一频谱的部分或全部资源根据业务需求在上行传输和下行传输之间切换的功能。
  2. 根据权利要求1所述的方法,其特征在于,所述系统消息包括:导频功率、小区重选时最小接收电平、小区驻留的最小接收电平。
  3. 根据权利要求2所述的方法,其特征在于,所述第一基站根据所述第二基站的系统消息以及RS,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值,包括:
    所述第一基站根据所述第二基站的系统消息以及RS,获取所述第一基站接收所述第二基站发射信号的路损值;
    所述第一基站根据所述第一基站接收所述第二基站发射信号的路损值,获取所述第二基站接收到所述第一基站发射信号的路损值;
    所述第一基站根据所述第二基站接收到所述第一基站发射信号的路损值以及所述系统消息,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值。
  4. 根据权利要求3所述的方法,其特征在于,所述第一基站根据所述第二基站的系统消息以及RS,获取所述第一基站接收所述第二基站发射信号的路损值,包括:
    所述第一基站根据所述RS,确定第一基站接收所述第二基站发射信号的实际功率;
    所述第一基站根据所述第一基站接收所述第二基站发射信号的实际功率以及所述导频功率,确定所述第一基站接收所述第二基站发射信号的路损值。
  5. 根据权利要求4所述的方法,其特征在于,所述第一基站根据所述第二基站接收到所述第一基站发射信号的路损值以及所述系统消息,确定所述 第一基站的第一频谱对所述第二基站当前使用频谱的干扰值之前,还包括:
    所述第一基站获取所述第一基站发射功率在所述第二基站当前使用频谱上的泄露功率;
    所述第一基站根据所述第二基站接收到所述第一基站发射信号的路损值以及所述系统消息,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值,包括:
    所述第一基站根据所述第二基站接收到所述第一基站发射信号的路损值、以及所述第一基站发射功率在所述第二基站当前使用频谱上的泄露功率,确定所述第二基站接收所述泄露功率的实际功率;
    所述第一基站根据所述小区重选时最小接收电平和所述小区驻留的最小接收电平,确定所述第二基站覆盖范围内终端的最小有用信号功率;
    所述第一基站根据所述第二基站接收所述泄露功率的实际功率、以及所述第二基站覆盖范围内终端的最小有用信号功率,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值。
  6. 一种频谱处理装置,其特征在于,所述装置位于第一基站,所述装置包括:
    获取模块,用于获取第二基站的系统消息和参考信号RS;
    确定模块,用于根据所述第二基站的系统消息以及RS,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值;
    处理模块,用于在所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值小于或等于预设阈值时,启动所述第一频谱的灵活传输功能,所述灵活传输功能是指所述第一频谱的部分或全部资源根据业务需求在上行传输和下行传输之间切换的功能。
  7. 根据权利要求6所述的装置,其特征在于,所述系统消息包括:导频功率、小区重选时最小接收电平、小区驻留的最小接收电平。
  8. 根据权利要求7所述的装置,其特征在于,所述确定模块,包括:
    获取单元,用于根据所述第二基站的系统消息以及RS,获取所述第一基站接收所述第二基站发射信号的路损值;根据所述第一基站接收所述第二基站发射信号的路损值,获取所述第二基站接收到所述第一基站发射信号的路损值;
    确定单元,用于根据所述第二基站接收到所述第一基站发射信号的路损值以及所述系统消息,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值。
  9. 根据权利要求8所述的装置,其特征在于,所述获取单元,具体用于根据所述RS,确定第一基站接收所述第二基站发射信号的实际功率;根据所述第一基站接收所述第二基站发射信号的实际功率以及所述导频功率,确定所述第一基站接收所述第二基站发射信号的路损值。
  10. 根据权利要求9所述的装置,其特征在于,所述获取模块,还用于获取所述第一基站发射功率在所述第二基站当前使用频谱上的泄露功率;
    所述确定模块,具体用于根据所述第二基站接收到所述第一基站发射信号的路损值、以及所述第一基站发射功率在所述第二基站当前使用频谱上的泄露功率,确定所述第二基站接收所述泄露功率的实际功率;根据所述小区重选时最小接收电平和所述小区驻留的最小接收电平,确定所述第二基站覆盖范围内终端的最小有用信号功率;根据所述第二基站接收所述泄露功率的实际功率、以及所述第二基站覆盖范围内终端的最小有用信号功率,确定所述第一基站的第一频谱对所述第二基站当前使用频谱的干扰值。
PCT/CN2016/087720 2016-06-29 2016-06-29 频谱处理方法及装置 WO2018000253A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/087720 WO2018000253A1 (zh) 2016-06-29 2016-06-29 频谱处理方法及装置
CN201680086726.9A CN109314974A (zh) 2016-06-29 2016-06-29 频谱处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087720 WO2018000253A1 (zh) 2016-06-29 2016-06-29 频谱处理方法及装置

Publications (1)

Publication Number Publication Date
WO2018000253A1 true WO2018000253A1 (zh) 2018-01-04

Family

ID=60785810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087720 WO2018000253A1 (zh) 2016-06-29 2016-06-29 频谱处理方法及装置

Country Status (2)

Country Link
CN (1) CN109314974A (zh)
WO (1) WO2018000253A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036295A (zh) * 2010-12-02 2011-04-27 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
CN102036296A (zh) * 2010-12-02 2011-04-27 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
CN103068050A (zh) * 2012-12-25 2013-04-24 上海无线通信研究中心 一种时分双工系统中基于干扰感知的上下行时隙资源配置方法
CN103281789A (zh) * 2010-12-02 2013-09-04 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
US20140133412A1 (en) * 2012-11-09 2014-05-15 Centre Of Excellence In Wireless Technology Interference mitigation technique for Heterogeneous/Homogeneous Networks employing dynamic Downlink/Uplink configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036295A (zh) * 2010-12-02 2011-04-27 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
CN102036296A (zh) * 2010-12-02 2011-04-27 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
CN103281789A (zh) * 2010-12-02 2013-09-04 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
US20140133412A1 (en) * 2012-11-09 2014-05-15 Centre Of Excellence In Wireless Technology Interference mitigation technique for Heterogeneous/Homogeneous Networks employing dynamic Downlink/Uplink configuration
CN103068050A (zh) * 2012-12-25 2013-04-24 上海无线通信研究中心 一种时分双工系统中基于干扰感知的上下行时隙资源配置方法

Also Published As

Publication number Publication date
CN109314974A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
US11129191B2 (en) Signal transmission method and device
US10938546B2 (en) Communication method, base station, and terminal device
EP3826373A1 (en) Power control method and device
CN107820728B (zh) 随机接入的方法和装置
CN107820723B (zh) 频率选择方法、随机接入方法和装置
US10827374B2 (en) Resource management indication method and apparatus with flexible manner of measurement
US10411851B2 (en) Wireless communication method, device and system
US20230034200A1 (en) Frequency-band state processing method and frequency-band state processing device
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2020243972A1 (zh) 一种控制测量的方法及装置、终端、网络设备
CN115176492A (zh) 通信方法、装置及设备
US20230328670A1 (en) Information processing method and apparatus, terminal device, and network side device
WO2020082248A1 (zh) 一种控制终端移动性的方法及装置、终端
WO2019157756A1 (zh) 信号传输的方法和设备
WO2018191892A1 (zh) 传输信号的方法、网络设备和终端设备
CN111194072A (zh) 多波束场景下监听寻呼的方法及装置
WO2018000253A1 (zh) 频谱处理方法及装置
CN111050383B (zh) 信号传输方法及装置
EP3755072B1 (en) Method, apparatus and system for determining maximum transmit power, and storage medium
WO2020056777A1 (zh) 无线通信的方法、发送节点和接收节点
CN114554539B (zh) 业务处理方法、装置、网络设备及存储介质
WO2023030458A1 (zh) 小区重选方法和通信装置
WO2023039829A1 (zh) 无线通信方法、终端设备以及网络设备
WO2020042976A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
CN116321258A (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906654

Country of ref document: EP

Kind code of ref document: A1