WO2018000222A1 - 数据传输系统、数据传输方法、数据聚合方法及装置 - Google Patents

数据传输系统、数据传输方法、数据聚合方法及装置 Download PDF

Info

Publication number
WO2018000222A1
WO2018000222A1 PCT/CN2016/087582 CN2016087582W WO2018000222A1 WO 2018000222 A1 WO2018000222 A1 WO 2018000222A1 CN 2016087582 W CN2016087582 W CN 2016087582W WO 2018000222 A1 WO2018000222 A1 WO 2018000222A1
Authority
WO
WIPO (PCT)
Prior art keywords
wlan
data packet
target
enb
mac address
Prior art date
Application number
PCT/CN2016/087582
Other languages
English (en)
French (fr)
Inventor
洪伟
周珏嘉
张明
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60785031&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018000222(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020197002942A priority Critical patent/KR102223648B1/ko
Priority to RU2019102323A priority patent/RU2715389C1/ru
Priority to BR112018077329A priority patent/BR112018077329A2/pt
Priority to ES16906624T priority patent/ES2820851T3/es
Priority to CN202010495601.XA priority patent/CN111698783B/zh
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to SG11201811771TA priority patent/SG11201811771TA/en
Priority to PL16906624T priority patent/PL3481102T3/pl
Priority to CN201680000718.8A priority patent/CN108029056B/zh
Priority to JP2018568801A priority patent/JP6994475B2/ja
Priority to PCT/CN2016/087582 priority patent/WO2018000222A1/zh
Priority to EP16906624.8A priority patent/EP3481102B1/en
Publication of WO2018000222A1 publication Critical patent/WO2018000222A1/zh
Priority to US16/232,254 priority patent/US10979105B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a data transmission system, a data transmission method, a data aggregation method, and an apparatus.
  • LTE-WLAN Aggregations LTE-WLAN Aggregations, LWA
  • LTE-WLAN Aggregations LTE-WLAN Aggregations, LWA
  • LTE Long Term Evolution
  • WLAN Wireless Local Area Networks
  • the eNB When an evolutional Node B (eNB) performs downlink data transmission by using the LWA, the eNB transmits a part of the downlink data to the user equipment (User Equipment, UE) through the LTE network, and according to the medium access control of the UE (Medium Access Control, The MAC address is used to transmit the remaining downlink data to the UE through the WLAN network; the UE aggregates the received two pieces of data, thereby implementing downlink transmission of data.
  • UE User Equipment
  • the MAC address is used to transmit the remaining downlink data to the UE through the WLAN network; the UE aggregates the received two pieces of data, thereby implementing downlink transmission of data.
  • the present disclosure provides a data transmission system, a data transmission method, a data aggregation method, and an apparatus.
  • the technical solution is as follows:
  • a data transmission system includes: an eNB, a WLAN Termination (WT), a WLAN Access Point (WLAN Access Point, WLAN AP), and a UE, and the WT and the eNB have a one-to-one correspondence. Connected, and the WT is connected to at least one WLAN AP;
  • the UE is configured to send an LTE data packet to the target eNB through the LTE network, where the target eNB is an eNB that establishes a Radio Resourse Control (RRC) connection with the UE;
  • RRC Radio Resourse Control
  • the UE is configured to send a WLAN data packet to the WLAN AP, where the WLAN data packet includes a Medium Access Control (MAC) address of the target WT connected to the target eNB;
  • MAC Medium Access Control
  • the WLAN AP is configured to send the WLAN to the target WT according to the MAC address of the target WT. data pack;
  • a target WT configured to send a WLAN data packet to the target eNB
  • the target eNB is configured to aggregate LTE data packets and WLAN data packets.
  • the target eNB is further configured to send RRC signaling to the UE that establishes the RRC connection, where the RRC signaling includes the MAC address of the target WT;
  • the UE is also configured to add the MAC address of the target WT to the WLAN data packet.
  • the MAC header of the WLAN data packet adopts a frame header format of the 802.11 data frame, and the MAC packet header includes an Address3 address 3, and the address 3 is used to indicate a destination address of the WLAN data packet;
  • the UE is further configured to acquire a MAC address of the target WT included in the RRC signaling; and set the address 3 in the MAC header to the MAC address of the target WT.
  • a data transmission method comprising:
  • the UE sends an LTE data packet to the target eNB through the LTE network, where the target eNB is an eNB that establishes an LTE connection with the UE;
  • the UE sends a WLAN data packet to the WLAN AP, where the WLAN data packet includes the MAC address of the target WT connected to the target eNB; the WLAN AP is configured to send the WLAN data packet to the target WT according to the MAC address of the target WT, and the target WT is configured as The WLAN data packet is transmitted to the target eNB, and the target eNB is configured to aggregate the LTE data packet and the WLAN data packet.
  • the method further includes:
  • the UE receives the RRC signaling sent by the target eNB, where the RRC signaling includes the MAC address of the target WT;
  • the UE acquires the MAC address of the target WT included in the RRC signaling
  • the UE adds the MAC address of the target WT to the WLAN packet.
  • the MAC header of the WLAN data packet adopts a frame header format of the 802.11 data frame, and the MAC packet header includes an address 3, and the address 3 is used to indicate a destination address of the WLAN data packet;
  • Add the MAC address of the target WT to the WLAN packet including:
  • the UE sets the address 3 in the MAC header to the MAC address of the target WT.
  • a data aggregation method comprising:
  • the eNB receives the LTE data packet sent by the UE through the LTE network, and the UE establishes an RRC connection with the eNB;
  • the eNB receives the WLAN data packet sent by the connected WT, and the WLAN data packet includes the MAC address of the WT; the WLAN data packet is a WLAN AP connected to the WT according to the MAC address. Written by WT;
  • the eNB aggregates LTE data packets and WLAN data packets.
  • the method further includes:
  • the eNB sends RRC signaling to the UE, where the RRC signaling includes the MAC address of the WT, and the UE is configured to set the address 3 in the MAC header of the WLAN data packet to the MAC address of the WT, and the address 3 is used to indicate the purpose of the WLAN data packet.
  • Address, MAC header uses the frame header format of 802.11 data frames.
  • a data transmission apparatus comprising:
  • a first sending module configured to send an LTE data packet to the target eNB by using an LTE network, where the target eNB is an eNB that establishes an LTE connection with the UE;
  • the second sending module is configured to send a WLAN data packet to the WLAN AP, where the WLAN data packet includes a MAC address of the target WT connected to the target eNB, and the WLAN AP is configured to send the WLAN data to the target WT according to the MAC address of the target WT.
  • the packet, the target WT is configured to transmit WLAN data packets to the target eNB, and the target eNB is configured to aggregate LTE data packets and WLAN data packets.
  • the device further includes:
  • the signaling receiving module is configured to receive the RRC signaling sent by the target eNB, where the RRC signaling includes the MAC address of the target WT;
  • An obtaining module configured to acquire a MAC address of a target WT included in the RRC signaling
  • An add module is configured to add the MAC address of the target WT to the WLAN packet.
  • the MAC header of the WLAN data packet adopts a frame header format of the 802.11 data frame, and the MAC packet header includes an address 3, and the address 3 is used to indicate a destination address of the WLAN data packet;
  • the add module is configured to set the address 3 in the MAC header to the MAC address of the target WT.
  • a data aggregation apparatus comprising:
  • a first receiving module configured to receive an LTE data packet sent by the UE through the LTE network, where the UE establishes an RRC connection with the eNB;
  • the second receiving module is configured to receive the WLAN data packet sent by the connected WT, where the WLAN data packet includes the MAC address of the WT; the WLAN data packet is sent by the WLAN AP connected to the WT to the WT according to the MAC address;
  • An aggregation module configured to aggregate LTE data packets and WLAN data packets.
  • the device further includes:
  • the signaling sending module is configured to send RRC signaling to the UE, where the RRC signaling includes the MAC address of the WT, and the UE is configured to set the address 3 in the MAC header of the WLAN data packet to the MAC address of the WT, and the address 3 To indicate the destination address of the WLAN packet, the MAC header uses the frame header format of the 802.11 data frame.
  • a UE in a sixth aspect, includes:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the WLAN AP Sending a WLAN data packet to the WLAN AP, where the WLAN data packet includes a MAC address of the target WT connected to the target eNB; the WLAN AP is configured to send the WLAN data packet to the target WT according to the MAC address of the target WT, and the target WT is configured to
  • the target eNB transmits WLAN data packets, and the target eNB is configured to aggregate LTE data packets and WLAN data packets.
  • an eNB is provided, where the eNB includes:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the WLAN data packet includes a MAC address of the WT; the WLAN data packet is sent by the WLAN AP connected to the WT to the WT according to the MAC address;
  • the WLAN AP can forward the MAC data packet to the target WT according to the MAC address, and finally by the target WT.
  • the WLAN data packet is sent to the target eNB to implement the uplink transmission of the WLAN data packet.
  • the WLAN AP cannot accurately forward the WLAN data packet after receiving the WLAN data packet sent by the UE.
  • the problem that the WLAN data packet cannot be transmitted to the target eNB is finally achieved; when the WLAN AP is connected to multiple WTs, the WLAN AP can be based on the number of WLANs.
  • the WLAN data packet is forwarded to the target WT according to the MAC address of the target WT in the packet, thereby ensuring that the WLAN data packet is transmitted to the target eNB, and the uplink transmission accuracy of the WLAN data packet is improved.
  • FIG. 1 is a schematic structural diagram of a data transmission system according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an eNB 110 according to an exemplary embodiment
  • FIG. 3 is a schematic structural diagram of a UE 140 according to an exemplary embodiment
  • 4A is a flow chart showing a data transmission method provided by an exemplary embodiment
  • 4B is a flow chart showing a data transmission method provided by another exemplary embodiment
  • FIG. 5A shows a flowchart of a data transmission method provided by an exemplary embodiment
  • FIG. 5B shows a flowchart of a data transmission method provided by another exemplary embodiment
  • FIG. 6A shows a flowchart of a data aggregation method provided by an exemplary embodiment
  • 6B is a flow chart showing a data aggregation method provided by another exemplary embodiment
  • FIG. 7 is a block diagram showing the structure of a data transmission apparatus provided by an exemplary embodiment
  • FIG. 8 is a block diagram showing the structure of a data aggregating apparatus provided by an exemplary embodiment.
  • a “unit” as referred to herein refers to a program or instruction stored in a memory that is capable of implementing certain functions;
  • module as referred to herein refers to a functional structure that is logically divided, the “module” may be Pure hardware implementation, or a combination of hardware and software.
  • Multiple as referred to herein means two or more. "and / or”, describing the relationship of the associated object The association relationship indicates that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the symbol “/” generally indicates that the contextual object is an "or" relationship.
  • the eNB an evolved base station in LTE.
  • the eNB acts as a bridge between the UE and the core network.
  • the eNB When receiving the data sent by the core network, the eNB is responsible for transmitting part of the data to the UE through the LTE network and sending another part of the data to the WLAN network.
  • the UE Up to the UE, and the UE aggregates the received data to implement downlink transmission of the core network data; when receiving the data transmitted by the UE through the LTE network and the WLAN network, it is responsible for aggregating the received data and transmitting it to the core.
  • the network realizes the transmission of uplink data to the core network.
  • RRC connection a radio resource control connection, which refers to a connection established between an eNB and a UE.
  • the eNB can implement functions such as system information broadcast, paging, and signaling transmission to the connected UE.
  • the wireless LAN endpoint The wireless LAN endpoint.
  • the WT and the eNB are connected one-to-one and are usually fixed together.
  • a WT can be connected to multiple WLAN APs at the same time, and is responsible for monitoring and managing each WLAN AP connected to it.
  • the eNB transmits the WLAN data packet to the UE through the WLAN network, or receives the WLAN data packet transmitted by the UE through the WLAN network, and the WLAN data packet passes through the WT connected to the eNB.
  • FIG. 1 is a schematic structural diagram of a data transmission system according to an exemplary embodiment of the present disclosure.
  • the data transmission system includes: an eNB 110, a WT 120, a WLAN AP 130, and a UE 140.
  • the eNB 110 is an evolved base station in LTE, and has the function of transmitting downlink WLAN data, transmitting downlink LTE data, receiving uplink WLAN data, and receiving uplink LTE data.
  • the eNB 110 can encapsulate data from the core network into LTE data and WLAN data and downlink transmit to the UE; the eNB 110 can also aggregate the received uplink WLAN data and LTE data, and send the aggregated data to the core network.
  • the specific implementation form of the eNB 110 may be a macro base station, a micro base station, a pico base station, a repeater, and the like. The specific number and specific location of the eNB 110 are not limited in the embodiment of the present disclosure.
  • the eNB 110 is connected to the WT 120 in a one-to-one correspondence. Generally, the eNB 110 may be fixed to the WT 120 or connected through an optical fiber. As shown in FIG. 1, the eNB 111 is connected to the WT 121, and the eNB 112 is connected. Corresponding to WT122.
  • the WT 120 has a function of transmitting downlink WLAN data and receiving uplink WLAN data.
  • the WT 120 can be connected to multiple WLAN APs 130 at the same time, and receive uplink data transmitted by each WLAN AP 130 or downlink data to the connected WLAN AP 130.
  • the WT 121 is connected to the WLAN AP 131, the WLAN AP 132, and the WLAN AP 133;
  • the WT 122 is connected to the WLAN AP 132, the WLAN AP 133, and the WLAN AP 134.
  • the number of WLAN APs 130 connected to the WT 120 is not limited in the embodiment of the present disclosure.
  • the WLAN AP 130 has a function of receiving uplink WLAN data and transmitting downlink WLAN data.
  • the WLAN AP 130 may be an electronic device such as a wireless router or a wireless gateway.
  • the WLAN AP 130 can be connected to multiple WTs 120 at the same time.
  • the WLAN AP 132 is simultaneously connected to the WT 121 and the WT 122
  • the WLAN AP 133 is simultaneously connected to the WT 121 and the WT 122.
  • the UE 140 has a function of transmitting uplink data and receiving downlink data.
  • the UE 140 also has an LWA function, that is, when the received downlink data includes WLAN data and LTE data, the UE 140 can aggregate the WLAN data and the LTE data.
  • the specific implementation form of the terminal device 140 may be a mobile phone, a tablet computer, a smart home appliance, a smart device, an Internet of Things device, a car network device, or the like.
  • the specific number and specific location of the UE 140 are not limited in the embodiment of the present disclosure.
  • FIG. 2 shows a schematic structural diagram of an eNB 110 according to an exemplary embodiment.
  • the eNB 110 includes a processor 21, a memory 22, a transmitter 23, and a receiver 24.
  • the processor 21 is connected to the memory 22.
  • the processor 21 includes one or more processing cores, and the processor 21 executes various functional applications and information processing by running software programs and units.
  • Memory 22 can be used to store software programs as well as units.
  • the memory 22 can store the operating system 24, the application unit 25 required for at least one function.
  • the application unit 25 may include a first receiving unit, a second receiving unit, and an aggregation unit.
  • the first receiving unit is configured to receive the LTE data packet sent by the UE through the LTE network, and the UE establishes an RRC connection with the eNB;
  • the second receiving unit is configured to receive the WLAN data packet sent by the connected WT, where the WLAN data packet is included
  • the WLAN packet is sent by the WLAN AP connected to the WT to the WT according to the MAC address;
  • the aggregation unit is configured to aggregate the LTE data packet and the WLAN data packet.
  • memory 22 can be any type of volatile or non-volatile storage device or Combined implementations such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable programmable read only memory (EPROM), programmable read only memory (PROM), read only Memory (ROM), magnetic memory, flash memory, disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable programmable read only memory
  • PROM programmable read only memory
  • ROM read only Memory
  • the transmitter 23 includes a modem unit and a multiple input multiple output (MIMO) antenna, and the MIMO antenna is an antenna that supports multi-antenna port transceiving.
  • the MIMO antenna comprises at least two transmit antennas.
  • the transmitter 23 is used to implement data and signaling transmission.
  • Receiver 26 includes the same or similar structure as transmitter 23.
  • the receiver 26 includes a modem unit and a MIMO antenna, and the MIMO antenna includes at least two receive antennas.
  • the structure of the eNB 110 illustrated in FIG. 2 does not constitute a limitation to the eNB 110, and may include more or fewer components or combinations of certain components, or different component arrangements.
  • FIG. 3 shows a schematic structural diagram of a UE 140 according to an exemplary embodiment.
  • the UE 140 includes a processor 31, a memory 32, a receiver 33, and a transmitter 34.
  • the processor 31 is connected to the memory 32.
  • the processor 31 includes one or more processing cores, and the processor 31 executes various functional applications and information processing by running software programs and units.
  • Memory 32 can be used to store software programs as well as units.
  • the memory 32 may also store an operating system 35, an application unit 36 required for at least one function.
  • Application unit 36 may include a first transmitting unit and a second transmitting unit.
  • a first sending unit configured to send an LTE data packet to the target eNB by using the LTE network
  • the target eNB is an eNB that establishes an LTE connection with the UE
  • the second sending unit is configured to send the WLAN data packet to the WLAN AP, the WLAN data packet Included in the MAC address of the target WT connected to the target eNB
  • the WLAN AP is configured to send a WLAN data packet to the target WT according to the MAC address of the target WT
  • the target WT is configured to send the WLAN data packet to the target eNB
  • the target eNB is configured To aggregate LTE data packets and WLAN data packets.
  • memory 32 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable In addition to Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk
  • Optical Disk Optical Disk
  • the receiver 33 includes a modem unit and a MIMO antenna, and the MIMO antenna is an antenna that supports multi-antenna port transceiving.
  • the MIMO antenna comprises at least two receive antennas.
  • the receiver 33 is configured to implement modulation and demodulation and reception of the reference signal.
  • Transmitter 36 includes the same or similar structure as receiver 33.
  • the transmitter 36 comprises a modem unit and a MIMO antenna, optionally the MIMO antenna comprises at least two transmit antennas.
  • UE 140 does not constitute a definition of UE 140, and may include more or fewer components or combinations of components, or different component arrangements.
  • the eNB 110 when the UE 140 camps on a cell provided by a certain eNB 110, the eNB 110 establishes an RRC connection with the UE 140 and performs communication and data transmission with the UE 140.
  • the eNB 110 receives the data from the core network and needs to downlink the data to the UE 140, the eNB 110 transmits a part of data to the UE through the LTE network according to the pre-configuration and current network conditions of the LTE network and the WLAN network, and another part of the data is Transmission to the UE over the WLAN network.
  • the UE 140 when the UE 140 needs to upload data to the eNB 110, the UE 140 uploads a part of data to the eNB 140 through the LTE network, uploads another part of data to the eNB 110 through the WLAN network, and the eNB 110 aggregates the received data and sends the data. To the core network.
  • the UE 141 when the UE 141 establishes an RRC connection with the eNB 111 and transmits data to the eNB 111, part of the data is transmitted to the eNB 111 through the LTE network, and another part of the data is transmitted to the WLAN AP 132. Since the WLAN AP 132 is simultaneously connected to the WT 121 and the WT 122, the WLAN AP 132 cannot determine which WT to send the received data to. If the WLAN AP 132 sends the data to the WT 121, the WT 121 sends the data to the connected eNB 112, so that the eNB 111 can only receive the data sent by the UE 141 through the LTE network, but cannot receive the data sent by the UE 141 through the WLAN network. The eNB 111 is affected to perform data aggregation.
  • the embodiment of the present disclosure provides a data transmission and data aggregation method, by which the WLAN AP can accurately transmit the data to the target WT after receiving the data.
  • the following description is made using the illustrative embodiments.
  • FIG. 4A shows a flow chart of a data transmission method provided by an exemplary embodiment.
  • the embodiment of the present disclosure is exemplified by the data transmission and transmission method applied to the data transmission system shown in FIG. 1.
  • the data transmission method includes:
  • the UE sends an LTE data packet to the target eNB through the LTE network
  • the target eNB is an eNB that establishes an RRC connection with the UE.
  • the UE When the UE enters the cell covered by the eNB in the power-on state, the UE establishes an RRC connection with the eNB. When the UE leaves the cell covered by the current eNB and enters the cell covered by another eNB, the UE needs to disconnect the RRC connection with the previous eNB and establish an RRC connection with the current eNB.
  • the data transmission method provided by the various embodiments of the present disclosure is described by taking the cell that the UE resides in the eNB as an example, and does not involve handover between the eNBs.
  • the UE may encapsulate the data into an LTE data packet and a WLAN data packet according to the load condition of the current network, and send the LTE data packet to the target eNB through the LTE network.
  • Embodiments of the present disclosure do not limit the manner in which LTE data packets and WLAN data packets are encapsulated.
  • step 402 the UE sends a WLAN data packet to the WLAN AP, where the WLAN data packet includes the MAC address of the target WT connected to the target eNB.
  • the UE transmits the WLAN data packet through the WLAN network while transmitting the LTE data packet through the LTE network.
  • the UE adds the MAC address of the target WT to the WLAN data packet.
  • the MAC address of the target WT may be sent by the target eNB to the UE through RRC signaling.
  • the WLAN AP sends a WLAN data packet to the target WT according to the MAC address of the target WT.
  • the WLAN AP After receiving the WLAN data packet, the WLAN AP parses the WLAN data packet to obtain the MAC address of the target WT included in the data packet, and sends the WLAN data packet to the target WT.
  • step 404 the target WT sends a WLAN data packet to the target eNB.
  • the target WT After receiving the WLAN data packet, the target WT sends it to the directly connected target eNB.
  • the target eNB aggregates LTE data packets and WLAN data packets.
  • the eNB aggregates the received LTE data packet and the WLAN data packet, and aggregates the aggregated data. Send to the core network to achieve uplink data transmission.
  • the LTE data packet and the WLAN data packet sent by the UE are accurately sent to the same eNB, and the aggregation of the eNB is ensured.
  • the data uploaded by the UE is transmitted through the offload, thereby avoiding the network caused by only transmitting data through the LTE network. Congestion improves the quality of uplink data transmission and improves transmission efficiency.
  • the data sending method provided in this embodiment can add the MAC address of the target WT connected to the target eNB to the WLAN data packet, so that the WLAN AP can receive the WLAN data packet sent by the UE according to the MAC address. Forwarding the MAC data packet to the target WT, and finally transmitting the WLAN data packet to the target eNB by the target WT, thereby implementing uplink transmission of the WLAN data packet; and solving the problem that the WLAN AP receives the UE when the WLAN AP is connected to multiple WTs.
  • the WLAN packet After the WLAN packet is transmitted, the WLAN packet cannot be accurately forwarded to the target WT, and finally the WLAN packet cannot be transmitted to the target eNB; when the WLAN AP is connected to multiple WTs, the WLAN AP can be based on the WLAN.
  • the MAC address of the target WT in the data packet forwards the WLAN data packet to the target WT, thereby ensuring that the WLAN data packet is transmitted to the target eNB, improving the accuracy of uplink transmission of the WLAN data packet.
  • the foregoing step 401 further includes the following steps.
  • the target eNB sends RRC signaling to the UE that establishes the RRC connection, where the RRC signaling includes the MAC address of the target WT.
  • the target eNB After establishing the RRC connection with the UE, the target eNB informs the UE of the MAC address of the target WT in the form of RRC signaling, and facilitates the UE to add the MAC address of the target WT to the WLAN data packet when the UE subsequently transmits the WLAN data packet.
  • step 402 the following steps are further included.
  • step 407 the UE adds the MAC address of the target WT to the WLAN data packet.
  • the MAC header of the WLAN data packet adopts a frame header format of the 802.11 data frame
  • the MAC packet header includes an address 3
  • the address 3 is used to indicate a destination address of the WLAN data packet
  • the UE acquires the target WT included in the RRC signaling.
  • MAC address set address 3 in the MAC header to the MAC address of the target WT.
  • FIG. 5A shows a flow chart of a data transmission method provided by an exemplary embodiment.
  • the embodiment of the present disclosure exemplifies the application of the data transmission and transmission method to the UE 140 shown in FIG. 1.
  • the data transmission method includes:
  • step 501 an LTE data packet is sent to the target eNB through the LTE network, and the target eNB is an eNB that establishes an LTE connection with the UE.
  • the UE When the UE camps on the cell covered by the eNB and needs to send data to the eNB, in order to avoid the LTE network congestion caused by the data transmission using only the LTE network, the UE encapsulates the data into an LTE data packet and a WLAN data packet, and passes the LTE network. Send separately from the WLAN network.
  • the eNB acquires the current LTE network and the network status of the WLAN network in real time, and determines which data is transmitted through the LTE network and what data is transmitted through the WLAN network in combination with the pre-configured policy.
  • the network status includes network delay, network load, network transmission quality, and the like.
  • the pre-configuration policy includes a transmission policy for high-temporal data, a transmission policy for low-tempency data, a transmission policy for audio and video data, and the like.
  • the eNB may send a path indication to each UE in the cell by using a broadcast system message, where the path indication is used to indicate the manner in which the UE uploads data. It should be noted that the eNB may also send different path indications for different UEs according to services opened by the UEs, which is not limited in this embodiment.
  • the UE determines, according to the path indication, a manner of transmitting data to the eNB, and encapsulates the data to be uploaded into an LTE data packet and a WLAN data packet, and performs transmission by using a corresponding transmission manner.
  • the UE encapsulates data with high timeliness requirements into LTE data packets according to the received path indication, and transmits the data through the LTE network.
  • the WLAN data packet is sent to the WLAN AP, where the WLAN data packet includes the MAC address of the target WT connected to the target eNB, and the WLAN AP is configured to send the WLAN data packet to the target WT according to the MAC address of the target WT.
  • the WT is configured to transmit WLAN data packets to the target eNB, and the target eNB is configured to aggregate LTE data packets and WLAN data packets.
  • the UE transmits the WLAN data packet to the eNB through the WLAN network while transmitting the LTE data packet to the eNB through the LTE network.
  • the path of the WLAN data packet transmitted by the UE through the WLAN network is UE ⁇ WLAN AP ⁇ WT ⁇ eNB.
  • the WLAN data packet sent by the UE to the WLAN AP includes the MAC address of the target WT, which is connected to the target eNB corresponding to the UE. WT.
  • the UE 141 transmits the WLAN data packet to the eNB 111 as an example, and the WLAN data packet transmitted by the UE 141 to the eNB 111 includes the MAC address of the WT 121 connected to the eNB 111. Due to MAC The uniqueness of the address, when the WLAN AP 132 receives the WLAN data packet, can determine that the WLAN data packet needs to be sent to the WT 121 instead of the WT 122. After receiving the WLAN data packet sent by the WLAN AP 132, the WT 121 further sends it to the eNB 111, thereby completing uplink transmission of the WLAN data. It should be noted that the data has different expressions in different transmission stages.
  • the data when data is transmitted at the physical layer, the data is expressed in the form of a bit stream.
  • the data When the data is transmitted at the data link layer, the data is represented as a frame.
  • the data When data is transmitted at the network layer, the data is represented in the form of a packet.
  • the "data packet" in this embodiment is only used as a general term for data in different transmission stages, and is not specific to a specific transmission phase.
  • the data sending method provided in this embodiment can add the MAC address of the target WT connected to the target eNB to the WLAN data packet, so that the WLAN AP can receive the WLAN data packet sent by the UE according to the MAC address. Forwarding the MAC data packet to the target WT, and finally transmitting the WLAN data packet to the target eNB by the target WT, thereby implementing uplink transmission of the WLAN data packet; and solving the problem that the WLAN AP receives the UE when the WLAN AP is connected to multiple WTs.
  • the WLAN packet After the WLAN packet is transmitted, the WLAN packet cannot be accurately forwarded to the target WT, and finally the WLAN packet cannot be transmitted to the target eNB; when the WLAN AP is connected to multiple WTs, the WLAN AP can be based on the WLAN.
  • the MAC address of the target WT in the data packet forwards the WLAN data packet to the target WT, thereby ensuring that the WLAN data packet is transmitted to the target eNB, improving the accuracy of uplink transmission of the WLAN data packet.
  • the eNB may notify the MAC address of the target WT of each UE in the cell by sending RRC signaling after establishing an RRC connection with the UE.
  • the above method further includes the following steps.
  • step 503 the RRC signaling sent by the target eNB is received, and the RRC signaling includes the MAC address of the target WT.
  • the RRC signaling may be sent to each UE in a broadcast or unicast manner, where the RRC signaling includes the MAC address of the target WT connected to the target eNB.
  • step 504 the MAC address of the target WT included in the RRC signaling is obtained.
  • the UE acquires the MAC address of the target WT from the RRC signaling.
  • step 505 the MAC address of the target WT is added to the WLAN packet.
  • the UE adds the acquired MAC address of the target WT to the WLAN data packet to facilitate the WLAN.
  • the AP obtains the MAC address of the target WT from it and performs further transmission.
  • the UE may store the MAC address in the MAC header of the WLAN data packet, and after the WLAN data packet reaches the WLAN AP, the WLAN AP may extract the MAC address from the MAC packet header and further transmit the MAC address. .
  • the MAC header of the WLAN packet can adopt the frame header format of the 802.11 data frame (that is, the MAC frame), and the format of the 802.11 data frame is as shown in Table 1.
  • the frame control is to the address header (MAC Header) of the 802.11 data frame, and the rest is the MAC body of the 802.11 data frame.
  • Address 1 is used to indicate the recipient of the data frame
  • address 2 is used to indicate the sender of the data frame
  • address 3 is used to indicate the destination address of the data frame
  • address 4 is used to indicate the source address of the data frame.
  • the address 3 in the MAC header can be set as the MAC address of the target WT.
  • the WLAN AP when the WLAN AP receives the WLAN data packet, the WLAN AP can obtain the MAC address from the address 3 of the MAC packet header.
  • the target eNB informs the UE of the MAC of the target WT by sending RRC signaling, and the UE adds the MAC address to the address 3 of the WLAN packet MAC header, without modifying the existing WLAN AP.
  • the correct transmission of WLAN data packets is realized, thereby reducing the system transformation cost.
  • FIG. 6A shows a flow chart of a data aggregation method provided by an exemplary embodiment.
  • the embodiment of the present disclosure is exemplified by applying the data aggregation method to the eNB 110 shown in FIG. 1.
  • the data aggregation method includes:
  • step 601 the LTE data packet sent by the UE through the LTE network is received, and the UE establishes an RRC connection with the eNB.
  • the eNB acquires the current network status of the current LTE network and the WLAN network in real time, and pre-configures policies to determine what data is transmitted through the LTE network and what data is transmitted through the WLAN network.
  • the path indication may be sent to each UE in the cell by using a broadcast system message, where the path indication is used to indicate the manner in which the UE uploads data.
  • the data is transmitted according to the path indication.
  • the eNB When the UE uploads an LTE data packet through the LTE network according to the path indication, the eNB receives the LTE data packet through the LTE network.
  • step 602 the WLAN data packet sent by the connected WT is received, and the WLAN data packet includes the MAC address of the WT; the WLAN data packet is sent by the WLAN AP connected to the WT to the WT according to the MAC address.
  • the eNB While receiving the LTE data packet through the LTE network, the eNB also receives the WLAN data packet sent by the UE through the WLAN network.
  • the path of the WLAN data packet transmitted by the UE through the WLAN network is UE ⁇ WLAN AP ⁇ WT ⁇ eNB.
  • the WLAN data packet sent by the UE to the WLAN AP includes the MAC address of the target WT connected to the target eNB (establishing an RRC connection with the UE).
  • the WLAN AP sends the received WLAN data packet to the target WT according to the MAC address, and finally the WT data packet is sent by the target WT to the target eNB.
  • step 603 the LTE data packet and the WLAN data packet are aggregated.
  • the LTE data packet sent by the same UE through the LTE network and the WLAN data packet sent through the WLAN network finally reach the same target eNB, and the target eNB aggregates the two to recover the data uploaded by the UE. Since the data uploaded by the UE is sent by offloading, the amount of data transmitted through the LTE network is reduced, which avoids congestion of the LTE network and improves data transmission efficiency and quality.
  • the data aggregation method provided in this embodiment can add the MAC address of the target WT connected to the target eNB to the WLAN data packet, so that the WLAN AP can receive the WLAN data packet sent by the UE according to the MAC address. Forwarding the MAC data packet to the target WT, and finally transmitting the WLAN data packet to the target eNB by the target WT, thereby implementing uplink transmission of the WLAN data packet; and solving the problem that the WLAN AP receives the UE when the WLAN AP is connected to multiple WTs.
  • the WLAN packet After the WLAN packet is transmitted, the WLAN packet cannot be accurately forwarded to the target WT, and finally the WLAN packet cannot be transmitted to the target eNB; when the WLAN AP is connected to multiple WTs, the WLAN AP can be based on the WLAN.
  • the MAC address of the target WT in the data packet forwards the WLAN data packet to the target WT, thereby ensuring that the WLAN data packet is transmitted to the target eNB, improving the accuracy of uplink transmission of the WLAN data packet.
  • the eNB may notify the MAC address of the target WT of each UE in the cell by sending RRC signaling.
  • the following steps are further included.
  • the RRC signaling is sent to the UE, where the RRC signaling includes the MAC address of the WT, and the UE is configured to set the address 3 in the MAC header of the WLAN data packet to the MAC address of the WT, and the address 3 is used to indicate the WLAN.
  • the destination address of the packet, the MAC header uses the frame header format of the 802.11 data frame.
  • the RRC signaling may be sent to each UE in a broadcast or unicast manner, where the RRC signaling includes the MAC address of the target WT connected to the target eNB.
  • the UE receives and acquires the MAC address of the target WT included in the RRC signaling, and adds the MAC address to the WLAN data packet when transmitting the WLAN data packet through the WLAN network.
  • the UE may store the MAC address in the MAC header of the WLAN data packet, and after the WLAN data packet reaches the WLAN AP, the WLAN AP may extract the MAC address from the MAC packet header and further transmit the MAC address.
  • the MAC header of the WLAN packet may adopt a frame header format of the 802.11 data frame (ie, a MAC frame), and the UE adds the MAC address of the target WT to the address 3 of the MAC header, where the address 3 is used to indicate the WLAN packet. Destination address.
  • the target eNB informs the UE of the MAC of the target WT by sending RRC signaling, and the UE adds the MAC address to the address 3 of the WLAN packet MAC header, without modifying the existing WLAN AP.
  • the correct transmission of WLAN data packets is realized, thereby reducing the system transformation cost.
  • FIG. 7 is a block diagram showing the structure of a data transmission apparatus provided by an exemplary embodiment.
  • the data transmission device can be implemented as a whole or a part of the UE 140 in FIG. 1 by a dedicated hardware circuit, or a combination of hardware and software.
  • the data transmission device includes:
  • the first sending module 710 is configured to send an LTE data packet to the target eNB through the LTE network, where the target eNB is an eNB that establishes an LTE connection with the UE;
  • the second sending module 720 is configured to send a WLAN data packet to the WLAN AP, where the WLAN data packet includes a MAC address of the target WT connected to the target eNB, and the WLAN AP is configured to send the WLAN to the target WT according to the MAC address of the target WT.
  • the data packet, the target WT is configured to transmit a WLAN data packet to the target eNB, and the target eNB is configured to aggregate the LTE data packet and the WLAN data packet.
  • the device further includes:
  • the signaling receiving module 730 is configured to receive the RRC signaling sent by the target eNB, where the RRC signaling includes the MAC address of the target WT;
  • the obtaining module 740 is configured to acquire a MAC address of the target WT included in the RRC signaling
  • the add module 750 is configured to add the MAC address of the target WT to the WLAN data packet.
  • the MAC header of the WLAN data packet adopts a frame header format of the 802.11 data frame, and the MAC packet header includes an address 3, and the address 3 is used to indicate a destination address of the WLAN data packet;
  • the add module 750 is configured to set the address 3 in the MAC header to the MAC address of the target WT.
  • the data transmission apparatus can add the MAC address of the target WT connected to the target eNB to the WLAN data packet, so that the WLAN AP can receive the WLAN data packet sent by the UE according to the MAC address. Forwarding the MAC data packet to the target WT, and finally transmitting the WLAN data packet to the target eNB by the target WT, thereby implementing uplink transmission of the WLAN data packet; and solving the problem that the WLAN AP receives the UE when the WLAN AP is connected to multiple WTs.
  • the WLAN packet After the WLAN packet is transmitted, the WLAN packet cannot be accurately forwarded to the target WT, and finally the WLAN packet cannot be transmitted to the target eNB; when the WLAN AP is connected to multiple WTs, the WLAN AP can be based on the WLAN.
  • the MAC address of the target WT in the data packet forwards the WLAN data packet to the target WT, thereby ensuring that the WLAN data packet is transmitted to the target eNB, improving the accuracy of uplink transmission of the WLAN data packet.
  • the target eNB informs the UE of the MAC of the target WT by sending RRC signaling, and the UE adds the MAC address to the address 3 of the WLAN packet MAC header, without modifying the existing WLAN AP.
  • the correct transmission of WLAN data packets is realized, thereby reducing the system transformation cost.
  • FIG. 8 is a block diagram showing the structure of a data aggregating apparatus provided by an exemplary embodiment.
  • the data aggregation device can be implemented as a dedicated hardware circuit, or a combination of hardware and software. All or part of the eNB 110.
  • the data aggregation device includes:
  • the first receiving module 810 is configured to receive an LTE data packet sent by the UE through the LTE network, where the UE establishes an RRC connection with the eNB;
  • the second receiving module 820 is configured to receive the WLAN data packet sent by the connected WT, where the WLAN data packet includes the MAC address of the WT, and the WLAN data packet is sent by the WLAN AP connected to the WT to the WT according to the MAC address;
  • the aggregation module 830 is configured to aggregate LTE data packets and WLAN data packets.
  • the device further includes:
  • the signaling sending module 840 is configured to send RRC signaling to the UE, where the RRC signaling includes the MAC address of the WT, and the UE is configured to set the address 3 in the MAC header of the WLAN data packet to the MAC address of the WT, and the address 3 Used to indicate the destination address of the WLAN packet.
  • the MAC header uses the frame header format of the 802.11 data frame.
  • the data aggregation apparatus can add the MAC address of the target WT connected to the target eNB to the WLAN data packet, so that the WLAN AP can receive the WLAN data packet sent by the UE according to the MAC address. Forwarding the MAC data packet to the target WT, and finally transmitting the WLAN data packet to the target eNB by the target WT, thereby implementing uplink transmission of the WLAN data packet; and solving the problem that the WLAN AP receives the UE when the WLAN AP is connected to multiple WTs.
  • the WLAN packet After the WLAN packet is transmitted, the WLAN packet cannot be accurately forwarded to the target WT, and finally the WLAN packet cannot be transmitted to the target eNB; when the WLAN AP is connected to multiple WTs, the WLAN AP can be based on the WLAN.
  • the MAC address of the target WT in the data packet forwards the WLAN data packet to the target WT, thereby ensuring that the WLAN data packet is transmitted to the target eNB, improving the accuracy of uplink transmission of the WLAN data packet.
  • the target eNB informs the UE of the MAC of the target WT by sending RRC signaling, and the UE adds the MAC address to the address 3 of the WLAN packet MAC header, without modifying the existing WLAN AP.
  • the correct transmission of WLAN data packets is realized, thereby reducing the system transformation cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输系统、数据传输方法、数据聚合方法及装置,涉及通信领域,所述系统包括:eNB、WT、WLAN AP以及UE,WT与eNB一一对应相连,且WT与至少一个WLAN AP相连;UE,被配置为通过LTE网络向目标eNB发送LTE数据包,目标eNB是与UE建立RRC连接的eNB;UE,被配置为向WLAN AP发送WLAN数据包,WLAN数据包中包括与目标eNB相连的目标WT的MAC地址;WLAN AP,被配置为根据目标WT的MAC地址,向目标WT发送WLAN数据包;目标WT,被配置为向目标eNB发送WLAN数据包;目标eNB,被配置为将LTE数据包和WLAN数据包聚合。

Description

数据传输系统、数据传输方法、数据聚合方法及装置 技术领域
本公开涉及通信领域,特别涉及一种数据传输系统、数据传输方法、数据聚合方法及装置。
背景技术
长期演进-无线局域网聚合(LTE-WLAN Aggregations,LWA)是一种同时利用长期演进(Long Term Evolution,LTE)网络和无线局域网(Wireless Local Area Networks,WLAN)网络进行数据传输的技术。
演进型基站(evolutional Node B,eNB)利用LWA进行下行数据传输时,eNB通过LTE网络将一部分下行数据传输至用户设备(User Equipment,UE)的同时,根据UE的介质访问控制(Medium Access Control,MAC)地址,通过WLAN网络将剩余部分下行数据传输至UE;UE对接收到的两部分数据进行聚合,从而实现数据的下行传输。
发明内容
本公开提供了一种数据传输系统、数据传输方法、数据聚合方法及装置。所述技术方案如下:
第一方面,提供了一种数据传输系统,该系统包括:eNB、无线局域网终结点(WLAN Termination,WT)、无线局域网接入点(WLAN AccessPoint,WLAN AP)以及UE,WT与eNB一一对应相连,且WT与至少一个WLAN AP相连;
UE,被配置为通过LTE网络向目标eNB发送LTE数据包,目标eNB是与UE建立无线资源控制(Radio Resourse Control,RRC)连接的eNB;
UE,被配置为向WLAN AP发送WLAN数据包,WLAN数据包中包括与目标eNB相连的目标WT的介质访问控制(Medium Access Control,MAC)地址;
WLAN AP,被配置为根据目标WT的MAC地址,向目标WT发送WLAN 数据包;
目标WT,被配置为向目标eNB发送WLAN数据包;
目标eNB,被配置为将LTE数据包和WLAN数据包聚合。
可选的,目标eNB,还被配置为向建立RRC连接的UE发送RRC信令,RRC信令中包含目标WT的MAC地址;
UE,还被配置为将目标WT的MAC地址添加到WLAN数据包中。
可选的,WLAN数据包的MAC包头采用802.11数据帧的帧头格式,MAC包头中包括Address3地址3,地址3用于指示WLAN数据包的目的地址;
UE,还被配置为获取RRC信令中包含的目标WT的MAC地址;将MAC包头中的地址3设置为目标WT的MAC地址。
第二方面,提供了一种数据传输方法,该方法包括:
UE通过LTE网络向目标eNB发送LTE数据包,目标eNB是与UE建立LTE连接的eNB;
UE向WLAN AP发送WLAN数据包,WLAN数据包中包括与目标eNB相连的目标WT的MAC地址;WLAN AP被配置为根据目标WT的MAC地址,向目标WT发送WLAN数据包,目标WT被配置为向目标eNB发送WLAN数据包,目标eNB被配置为将LTE数据包和WLAN数据包聚合。
可选的,该方法,还包括:
UE接收目标eNB发送的RRC信令,RRC信令中包含目标WT的MAC地址;
UE获取RRC信令中包含的目标WT的MAC地址;
UE将目标WT的MAC地址添加到WLAN数据包中。
可选的,WLAN数据包的MAC包头采用802.11数据帧的帧头格式,MAC包头中包括地址3,地址3用于指示WLAN数据包的目的地址;
将目标WT的MAC地址添加到WLAN数据包中,包括:
UE将MAC包头中的地址3设置为目标WT的MAC地址。
第三方面,提供了一种数据聚合方法,该方法包括:
eNB接收UE通过LTE网络发送的LTE数据包,UE与eNB建立有RRC连接;
eNB接收相连的WT发送的WLAN数据包,WLAN数据包中包括WT的MAC地址;WLAN数据包是与WT相连的WLAN AP根据所述MAC地址向 WT发送的;
eNB将LTE数据包和WLAN数据包聚合。
可选的,该方法,还包括:
eNB向UE发送RRC信令,RRC信令中包含WT的MAC地址,UE被配置为将WLAN数据包的MAC包头中的地址3设置为WT的MAC地址,地址3用于指示WLAN数据包的目的地址,MAC包头采用802.11数据帧的帧头格式。
第四方面,提供了一种数据传输装置,该装置包括:
第一发送模块,被配置为通过LTE网络向目标eNB发送LTE数据包,目标eNB是与UE建立LTE连接的eNB;
第二发送模块,被配置为向WLAN AP发送WLAN数据包,WLAN数据包中包括与目标eNB相连的目标WT的MAC地址;WLAN AP被配置为根据目标WT的MAC地址,向目标WT发送WLAN数据包,目标WT被配置为向目标eNB发送WLAN数据包,目标eNB被配置为将LTE数据包和WLAN数据包聚合。
可选的,该装置,还包括:
信令接收模块,被配置为接收目标eNB发送的RRC信令,RRC信令中包含目标WT的MAC地址;
获取模块,被配置为获取RRC信令中包含的目标WT的MAC地址;
添加模块,被配置为将目标WT的MAC地址添加到WLAN数据包中。
可选的,WLAN数据包的MAC包头采用802.11数据帧的帧头格式,MAC包头中包括地址3,地址3用于指示WLAN数据包的目的地址;
添加模块,被配置为将MAC包头中的地址3设置为目标WT的MAC地址。
第五方面,提供了一种数据聚合装置,该装置包括:
第一接收模块,被配置为接收UE通过LTE网络发送的LTE数据包,UE与所述eNB建立有RRC连接;
第二接收模块,被配置为接收相连的WT发送的WLAN数据包,WLAN数据包中包括WT的MAC地址;WLAN数据包是与WT相连的WLAN AP根据MAC地址向WT发送的;
聚合模块,被配置为将LTE数据包和WLAN数据包聚合。
可选的,该装置,还包括:
信令发送模块,被配置为向UE发送RRC信令,RRC信令中包含WT的MAC地址,UE被配置为将WLAN数据包的MAC包头中的地址3设置为WT的MAC地址,地址3用于指示WLAN数据包的目的地址,MAC包头采用802.11数据帧的帧头格式。
第六方面,提供了一种UE,该UE包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
通过LTE网络向目标eNB发送LTE数据包,目标eNB是与UE建立LTE连接的eNB;
向WLAN AP发送WLAN数据包,WLAN数据包中包括与目标eNB相连的目标WT的MAC地址;WLAN AP被配置为根据目标WT的MAC地址,向目标WT发送WLAN数据包,目标WT被配置为向目标eNB发送WLAN数据包,目标eNB被配置为将LTE数据包和WLAN数据包聚合。
第七方面,提供了一种eNB,该eNB包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
接收UE通过LTE网络发送的LTE数据包,UE与eNB建立有RRC连接;
接收相连的WT发送的WLAN数据包,WLAN数据包中包括WT的MAC地址;WLAN数据包是与WT相连的WLAN AP根据MAC地址向WT发送的;
将LTE数据包和WLAN数据包聚合。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过在WLAN数据包中添加与目标eNB相连的目标WT的MAC地址,使得WLAN AP接收到UE发送的WLAN数据包后,能够根据该MAC地址将MAC数据包转发至目标WT,并最终由目标WT将WLAN数据包发送至目标eNB,从而实现WLAN数据包的上行传输;解决了WLAN AP与多个WT相连时,WLAN AP接收到UE发送的WLAN数据包后,无法准确地将该WLAN数据包转发至目标WT,最终导致WLAN数据包无法传输至目标eNB的问题;达到了在WLAN AP与多个WT相连的情况下,WLAN AP能够根据WLAN数 据包中目标WT的MAC地址将WLAN数据包转发至目标WT,从而确保WLAN数据包被传输至目标eNB,提高了WLAN数据包上行传输的准确性。
应当理解的是,以上的一般描述和后文的细节描述仅是示意性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1示出了本公开一示意性实施例所提供的数据传输系统的结构示意图;
图2示出了一示例性实施例所提供的eNB110的结构示意图;
图3示出了一示例性实施例所提供的UE140的结构示意图;
图4A示出了一示例性实施例所提供的数据传输方法的流程图;
图4B示出了另一示例性实施例所提供的数据传输方法的流程图;
图5A示出了一示例性实施例所提供的数据传输方法的流程图;
图5B示出了另一示例性实施例所提供的数据传输方法的流程图;
图6A示出了一示例性实施例所提供的数据聚合方法的流程图;
图6B示出了另一示例性实施例所提供的数据聚合方法的流程图;
图7示出了一示例性实施例所提供的数据传输装置的结构方框图;
图8示出了一示例性实施例所提供的数据聚合装置的结构方框图。
具体实施方式
这里将详细地对示意性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示意性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本文提及的“单元”是指存储在存储器中的能够实现某些功能的程序或指令;在本文中提及的“模块”是指按照逻辑划分的功能性结构,该“模块”可以由纯硬件实现,或者,软硬件的结合实现。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关 联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。符号“/”一般表示前后关联对象是一种“或”的关系。
为了方便理解,下面对本公开实施例所涉及的名词进行解释。
eNB:即LTE中的演进型基站。在LWA系统中,eNB作为UE与核心网(Core Network)之间的桥梁,在接收到核心网发送的数据时,负责将一部分数据通过LTE网络发送至UE,将另一部分数据通过WLAN网路发送至UE,并由UE对接收到的数据进行聚合,实现核心网数据的下行传输;在接收到UE通过LTE网络以及WLAN网络传输的数据时,负责对接收到的数据进行聚合,并发送至核心网,实现向核心网上传上行数据。
RRC连接:即无线资源控制连接,指eNB与UE之间建立的连接。通过RRC连接,eNB能够实现向相连的UE进行系统信息广播、寻呼以及信令传输等功能。
WT:即无线局域网终结点。在LWA系统中,WT与eNB一一对应相连,且通常固设在一起。一个WT可以同时与多个WLAN AP相连,并负责监控、管理与其相连的各个WLAN AP。LWA系统中,eNB通过WLAN网络向UE下行传输WLAN数据包,或,通过WLAN网络接收UE上行传输的WLAN数据包时,WLAN数据包均通过与eNB相连的WT。
图1示出了本公开一示意性实施例所提供的数据传输系统的结构示意图,该数据传输系统中包括:eNB110、WT120、WLAN AP130以及UE140。
eNB110是LTE中的演进型基站,该eNB110具有发送下行WLAN数据、发送下行LTE数据、接收上行WLAN数据以及接收上行LTE数据的功能。此外,eNB110能够将来自核心网的数据封装成LTE数据以及WLAN数据并下行传输给UE;eNB110还能够将接收到的上行WLAN数据和LTE数据进行聚合,并将聚合后的数据发送至核心网。在实际组网中,eNB110的具体实现形式可以是宏基站、微基站、微微基站、直放站等。本公开实施例对eNB110的具体数量和具体位置不做限定。
eNB110与WT120一一对应相连,通常情况下eNB110可以与WT120固设在一起,或通过光纤相连。如图1所示,eNB111与WT121对应相连,eNB112 与WT122对应相连。
WT120具有发送下行WLAN数据和接收上行WLAN数据的功能。WT120可以同时与多个WLAN AP130相连,接收各个WLAN AP130上行传输的数据或向相连的WLAN AP130传输下行数据。图1中,WT121与WLAN AP131、WLAN AP132和WLAN AP133相连;WT122与WLAN AP132、WLAN AP133和WLAN AP134相连。本公开实施例对WT120连接的WLAN AP130的数量不做限定。
WLAN AP130具有接收上行WLAN数据和发送下行WLAN数据的功能。在实际组网中,WLAN AP130可以是无线路由器、无线网关一类的电子设备。WLAN AP130可以同时与多个WT120相连。图1中,WLAN AP132同时与WT121以及WT122相连,WLAN AP133同时与WT121以及WT122相连。
UE140具有发送上行数据和接收下行数据的功能。此外,UE140还具有LWA功能,即接收到的下行数据中包括WLAN数据和LTE数据时,UE140能够对WLAN数据和LTE数据进行聚合。在实际组网中,终端设备140的具体实现形式可以是手机、平板电脑、智能家电、智能仪器、物联网设备、车联网设备等等。本公开实施例对UE140的具体数量和具体位置不做限定。
图2示出了一示例性实施例所提供的eNB110的结构示意图。该eNB110包括:处理器21、存储器22、发射器23和接收器24。
处理器21与存储器22相连。
处理器21包括一个或者一个以上处理核心,处理器21通过运行软件程序以及单元,从而执行各种功能应用以及信息处理。
存储器22可用于存储软件程序以及单元。存储器22可存储操作系统24、至少一个功能所需的应用程序单元25。
应用程序单元25可以包括第一接收单元、第二接收单元和聚合单元。第一接收单元,被配置为接收UE通过LTE网络发送的LTE数据包,UE与eNB建立有RRC连接;第二接收单元,被配置为接收相连的WT发送的WLAN数据包,WLAN数据包中包括WT的MAC地址;WLAN数据包是与WT相连的WLAN AP根据MAC地址向WT发送的;聚合单元,被配置为将LTE数据包和WLAN数据包聚合。
此外,存储器22可以由任何类型的易失性或非易失性存储设备或者它们 的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
发射器23包括:调制解调单元和多输入多输出(Multiple Input Multiple Output,MIMO)天线,MIMO天线是支持多天线端口收发的天线。可选地,MIMO天线包括至少两个发射天线。可选地,发射器23用于实现对数据以及信令传输。
接收器26包括与发射器23相同或类似的结构。可选地,接收器26包括调制解调单元和MIMO天线,MIMO天线包括至少两个接收天线。
本领域技术人员可以理解,图2中所示出的eNB110的结构并不构成对eNB110的限定,可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
图3示出了一示例性实施例所提供的UE140的结构示意图。该UE140包括:处理器31、存储器32、接收器33和发射器34。
处理器31与存储器32相连。
处理器31包括一个或者一个以上处理核心,处理器31通过运行软件程序以及单元,从而执行各种功能应用以及信息处理。
存储器32可用于存储软件程序以及单元。存储器32还可存储操作系统35、至少一个功能所需的应用程序单元36。
应用程序单元36可以包括第一发送单元和第二发送单元。第一发送单元,被配置为通过进LTE网络向目标eNB发送LTE数据包,目标eNB是与UE建立LTE连接的eNB;第二发送单元,被配置为向WLAN AP发送WLAN数据包,WLAN数据包中包括与目标eNB相连的目标WT的MAC地址;WLAN AP被配置为根据目标WT的MAC地址,向目标WT发送WLAN数据包,目标WT被配置为向目标eNB发送WLAN数据包,目标eNB被配置为将LTE数据包和WLAN数据包聚合。
此外,存储器32可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
接收器33包括:调制解调单元和MIMO天线,MIMO天线是支持多天线端口收发的天线。可选地,MIMO天线包括至少两个接收天线。可选地,接收器33用于实现对参考信号的调制解调和接收。
发射器36包括与接收器33相同或类似的结构。可选地,发射器36包括调制解调单元和MIMO天线,可选地,MIMO天线包括至少两个发射天线。
本领域技术人员可以理解,图3中所示出的UE140的结构并不构成发对UE140的限定,可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
通常情况下,UE140驻留在某一eNB110提供的小区时,该eNB110会与该UE140建立RRC连接,并与UE140进行通信和数据传输。当eNB110接收到来自核心网的数据,并需要将该数据下行传输至UE140时,eNB110根据预先配置以及LTE网络和WLAN网络当前的网络情况,将一部分数据通过LTE网络传输至UE,另一部分数据则通过WLAN网络传输至UE。
与下行传输数据相反的,当UE140需要向eNB110上传数据时,UE140通过LTE网络将一部分数据上传到eNB140,通过WLAN网络将另一部分数据上传至eNB110,由eNB110对接收到的数据进行聚合,并发送至核心网。
发明人在技术改进过程中发现,由于一个WLAN AP130能够同时与多个WT120相连,当UE140将数据发送至WLAN AP130时,WLAN AP130无法确定将数据发往哪一个WT140。
比如,当UE141与eNB111建立了RRC连接,并向eNB111发送数据时,一部分数据通过LTE网络发送至eNB111,另一部分数据则发送至WLAN AP132。由于WLAN AP132同时与WT121和WT122相连,导致WLAN AP132无法确定将接收到的数据发送至哪一个WT。若WLAN AP132将数据发送至WT121,则WT121接收到该数据后,将其发送至相连的eNB112,导致eNB111仅能够接收到UE141通过LTE网络发送的数据,而无法接收到UE141通过WLAN网络发送的数据,影响eNB111进行数据聚合。
为了解决上行数据传输时产生的问题,本公开实施例提供了一种数据传输以及数据聚合方法,通过该方法,WLAN AP接收到数据后,能够将该数据准确发送目标WT。下面采用示意性的实施例进行说明。
图4A示出了一示例性实施例所提供的数据传输方法的流程图。本公开实施例以该数据传输发送方法应用于图1所示的数据传输系统中来举例说明。该数据传输方法包括:
在步骤401中,UE通过LTE网络向目标eNB发送LTE数据包,目标eNB是与UE建立RRC连接的eNB。
UE在开机状态下进入eNB覆盖的小区时,即与eNB建立RRC连接。当UE离开当前eNB覆盖的小区并进入另一eNB覆盖的小区时,UE需要断开与之前eNB之间的RRC连接,并与当前eNB建立RRC连接。本公开各个实施例提供的数据传输方法仅以UE驻留在eNB所覆盖的小区为例进行说明,并不涉及eNB间的切换。
当UE需要向目标eNB发送数据时,UE可以根据当前网络的负载情况,将数据封装成LTE数据包和WLAN数据包,并通过LTE网络将LTE数据包发送至目标eNB。本公开实施例并不对封装LTE数据包和WLAN数据包的方式进行限定。
在步骤402中,UE向WLAN AP发送WLAN数据包,WLAN数据包中包括与目标eNB相连的目标WT的MAC地址。
UE通过LTE网络发送LTE数据包的同时,通过WLAN网络发送WLAN数据包。为了使WLAN AP能够将接收到WLAN数据包发送至目标WT,UE将目标WT的MAC地址添加到该WLAN数据包中。
为了使UE知悉目标WT的MAC地址,可选的,该目标WT的MAC地址可以是目标eNB通过RRC信令发送给UE的。
在步骤403中,WLAN AP根据目标WT的MAC地址,向目标WT发送WLAN数据包。
WLAN AP接收到WLAN数据包后,对WLAN数据包进行解析,从而获取该数据包中包含的目标WT的MAC地址,并将该WLAN数据包发送至目标WT。
在步骤404中,目标WT向目标eNB发送WLAN数据包。
由于WT与eNB一一对应相连,因此,当接收到WLAN数据包后,目标WT将其发送至直连的目标eNB。
在步骤405中,目标eNB将LTE数据包和WLAN数据包聚合。
eNB对接收到LTE数据包和WLAN数据包进行聚合,并将聚合后的数据 发送至核心网,从而实现上行数据传输。
本实施例中,UE发送的LTE数据包和WLAN数据包被准确发送至同一eNB,保证了eNB的聚合;同时,UE上传的数据经过分流传输,避免了仅通过LTE网络传输数据时造成的网络拥堵,提高了上行数据传输质量,并提高了传输效率。
综上所述,本实施例提供的数据发送方法,通过在WLAN数据包中添加与目标eNB相连的目标WT的MAC地址,使得WLAN AP接收到UE发送的WLAN数据包后,能够根据该MAC地址将MAC数据包转发至目标WT,并最终由目标WT将WLAN数据包发送至目标eNB,从而实现WLAN数据包的上行传输;解决了WLAN AP与多个WT相连时,WLAN AP接收到UE发送的WLAN数据包后,无法准确地将该WLAN数据包转发至目标WT,最终导致WLAN数据包无法传输至目标eNB的问题;达到了在WLAN AP与多个WT相连的情况下,WLAN AP能够根据WLAN数据包中目标WT的MAC地址将WLAN数据包转发至目标WT,从而确保WLAN数据包被传输至目标eNB,提高了WLAN数据包上行传输的准确性。
可选的,如图4A所示,上述步骤401之前还包括如下步骤。
在步骤406中,目标eNB向建立RRC连接的UE发送RRC信令,RRC信令中包含目标WT的MAC地址。
目标eNB与UE建立RRC连接后,通过RRC信令的形式,告知UE目标WT的MAC地址,方便UE后续传输WLAN数据包时,将目标WT的MAC地址发送添加到WLAN数据包中。
相应的,上述步骤402之前,还包括如下步骤。
在步骤407中,UE将目标WT的MAC地址添加到WLAN数据包中。
可选的,WLAN数据包的MAC包头采用802.11数据帧的帧头格式,MAC包头中包括地址3,地址3用于指示WLAN数据包的目的地址,UE获取所述RRC信令中包含的目标WT的MAC地址,将MAC包头中的地址3设置为目标WT的MAC地址。
图5A示出了一示例性实施例所提供的数据传输方法的流程图。本公开实施例以该数据传输发送方法应用于图1所示的UE140来举例说明。该数据传输方法包括:
在步骤501中,通过LTE网络向目标eNB发送LTE数据包,目标eNB是与UE建立LTE连接的eNB。
UE驻留在eNB所覆盖的小区,并需要向eNB发送数据时,为了避免仅使用LTE网络进行数据传输造成的LTE网络拥堵,UE将数据封装为LTE数据包以及WLAN数据包,并通过LTE网络和WLAN网络分别进行发送。
在一种可能的实施方式中,eNB实时获取当前LTE网络以及WLAN网络的网络状态,并结合预先配置策略确定何种数据通过LTE网络传输,何种数据通过WLAN网络传输。其中,网络状态包括网络延迟、网络负载、网络传输质量等等,预先配置策略包括针对高时效性数据的传输策略、针对低时效性数据的传输策略、针对音视频数据的传输策略等等。
eNB确定采用数据采用何种数据传输方式后,可以通过广播系统消息的方式,向小区中的各个UE下发路径指示,该路径指示用于指示UE采用何种方式上传数据。需要说明的是,eNB还可以根据各个UE开通的服务,针对不同的UE下发不同的路径指示,本实施例并不对此进行限定。
相应的,UE根据该路径指示确定向eNB传输数据的方式,将待上传数据封装为LTE数据包和WLAN数据包,通过相应的传输方式进行传输。
比如,UE根据接收到的路径指示,将对时效性要求较高的数据封装为LTE数据包,并通过LTE网络进行传输。
在步骤502中,向WLAN AP发送WLAN数据包,WLAN数据包中包括与目标eNB相连的目标WT的MAC地址;WLAN AP被配置为根据目标WT的MAC地址,向目标WT发送WLAN数据包,目标WT被配置为向目标eNB发送WLAN数据包,目标eNB被配置为将LTE数据包和WLAN数据包聚合。
UE通过LTE网络向eNB发送LTE数据包的同时,通过WLAN网络向eNB发送WLAN数据包。
在图1所示的数据传输系统中,UE通过WLAN网络传输的WLAN数据包的路径为UE→WLAN AP→WT→eNB。为了使WLAN AP能够知悉将接收到的WLAN数据包发往何处(WT),UE向WLAN AP发送的WLAN数据包中包括目标WT的MAC地址,该目标WT是与UE对应的目标eNB相连的WT。
比如,以UE141向eNB111发送WLAN数据包为例,UE141向eNB111发送的WLAN数据包中包括与eNB111相连的WT121的MAC地址。由于MAC 地址的唯一性,当WLAN AP132接收到该WLAN数据包时,能够确定该WLAN数据包需要发送至WT121,而非WT122。WT121接收到WLAN AP132发送的WLAN数据包后,进一步将其发送至eNB111,从而完成WLAN数据的上行传输。需要说明的是,数据在不同传输阶段的表现形式不同,比如,当数据在物理层传输时,数据的表现形式为比特流,当数据在数据链路层传输时,数据的表现形式为帧,当数据在网络层传输时,数据的表现形式为包。本实施例中的“数据包”仅作为数据在不同传输阶段的统称,并不针对特定的传输阶段。
综上所述,本实施例提供的数据发送方法,通过在WLAN数据包中添加与目标eNB相连的目标WT的MAC地址,使得WLAN AP接收到UE发送的WLAN数据包后,能够根据该MAC地址将MAC数据包转发至目标WT,并最终由目标WT将WLAN数据包发送至目标eNB,从而实现WLAN数据包的上行传输;解决了WLAN AP与多个WT相连时,WLAN AP接收到UE发送的WLAN数据包后,无法准确地将该WLAN数据包转发至目标WT,最终导致WLAN数据包无法传输至目标eNB的问题;达到了在WLAN AP与多个WT相连的情况下,WLAN AP能够根据WLAN数据包中目标WT的MAC地址将WLAN数据包转发至目标WT,从而确保WLAN数据包被传输至目标eNB,提高了WLAN数据包上行传输的准确性。
为了使UE知悉与目标eNB相连的目标WT的MAC地址,eNB与UE建立RRC连接后,可以通过发送RRC信令的方式告知小区中各个UE目标WT的MAC地址。在一种可能的实施方式中,在图5A的基础上,如图5B所示,上述方法还包括如下步骤。
在步骤503中,接收目标eNB发送的RRC信令,RRC信令中包含目标WT的MAC地址。
目标eNB与UE建立RRC连接后,可以通过广播或单播的方式,向各个UE发送RRC信令,该RRC信令中即包含于目标eNB相连的目标WT的MAC地址。
在步骤504中,获取RRC信令中包含的目标WT的MAC地址。
进一步的,UE从该RRC信令中获取该目标WT的MAC地址。
在步骤505中,将目标WT的MAC地址添加到WLAN数据包中。
UE将获取到的目标WT的MAC地址添加到WLAN数据包中,方便WLAN  AP从中获取目标WT的MAC地址,并进行进一步发送。
在一种可能的实施方式中,UE可以将该MAC地址存放在WLAN数据包的MAC包头中,WLAN数据包达到WLAN AP后,WLAN AP即可从MAC包头中提取该MAC地址,并进行进一步发送。
其中,WLAN数据包的MAC包头可以采用802.11数据帧(即MAC帧)的帧头格式,802.11数据帧的格式如表一所示。
表一
Figure PCTCN2016087582-appb-000001
其中,帧控制至地址4为802.11数据帧的帧头(MAC Header),其余部分为802.11数据帧的帧实体(MAC Body)。地址1用于指示数据帧的接收者,地址2用于指示数据帧的发送者,地址3用于指示数据帧的目的地址,地址4用于指示数据帧的源地址。
UE向WLAN数据包中添加目标WT的MAC地址时,即可将MAC包头中的地址3设置为目标WT的MAC地址。
相应的,WLAN AP接收到该WLAN数据包时,即可从MAC包头的地址3中获取该MAC地址。
本实施例中,目标eNB通过发送RRC信令的方式告知UE目标WT的MAC,并由UE将该MAC地址添加到WLAN数据包MAC包头的地址3中,在无需对现有WLAN AP进行改造的前提下,实现WLAN数据包的正确传输,从而降低了系统改造成本。
图6A示出了一示例性实施例所提供的数据聚合方法的流程图。本公开实施例以该数据聚合方法应用于图1所示的eNB110来举例说明。该数据聚合方法包括:
在步骤601中,接收UE通过LTE网络发送的LTE数据包,UE与eNB建立有RRC连接。
eNB实时获取当前LTE网络以及WLAN网络的网络状态,并预先配置策略确定何种数据通过LTE网络传输,何种数据通过WLAN网络传输。确定采用数据采用何种数据传输方式后,可以通过广播系统消息的方式,向小区中的各个UE下发路径指示,该路径指示用于指示UE采用何种方式上传数据。
eNB所覆盖小区中的UE需要上传数据时,即根据该路径指示,进行数据长传。
当UE根据路径指示通过LTE网络上传LTE数据包时,eNB即通过LTE网络接收该LTE数据包。
在步骤602中,接收相连的WT发送的WLAN数据包,WLAN数据包中包括WT的MAC地址;WLAN数据包是与WT相连的WLAN AP根据该MAC地址向WT发送的。
通过LTE网络接收LTE数据包的同时,eNB还通过WLAN网络接收UE发送的WLAN数据包。在图1所示的数据传输系统中,UE通过WLAN网络传输的WLAN数据包的路径为UE→WLAN AP→WT→eNB。
为了使WLAN AP能够将WLAN数据包转发至正确的WT,UE向WLAN AP发送的WLAN数据包中包括与目标eNB(与UE建立RRC连接)相连的目标WT的MAC地址。WLAN AP即根据该MAC地址,将接收到的WLAN数据包发送至目标WT,最终由目标WT将WLAN数据包发送至目标eNB。
在步骤603中,将LTE数据包和WLAN数据包聚合。
同一UE通过LTE网络发送的LTE数据包以及通过WLAN网络发送的WLAN数据包最终到达同一目标eNB,并由该目标eNB对两者进行聚合,从而恢复出UE上传的数据。由于UE上传的数据经过分流发送,经过LTE网络发送的数据量减小,避免了LTE网络的拥塞,同时提高了数据的传输效率和质量。
综上所述,本实施例提供的数据聚合方法,通过在WLAN数据包中添加与目标eNB相连的目标WT的MAC地址,使得WLAN AP接收到UE发送的WLAN数据包后,能够根据该MAC地址将MAC数据包转发至目标WT,并最终由目标WT将WLAN数据包发送至目标eNB,从而实现WLAN数据包的上行传输;解决了WLAN AP与多个WT相连时,WLAN AP接收到UE发送的WLAN数据包后,无法准确地将该WLAN数据包转发至目标WT,最终导致WLAN数据包无法传输至目标eNB的问题;达到了在WLAN AP与多个WT相连的情况下,WLAN AP能够根据WLAN数据包中目标WT的MAC地址将WLAN数据包转发至目标WT,从而确保WLAN数据包被传输至目标eNB,提高了WLAN数据包上行传输的准确性。
eNB与UE建立RRC连接后,可以通过发送RRC信令的方式告知小区中各个UE目标WT的MAC地址。在一种可能的实施方式中,如图6B所示,上述步骤601之前,还包括如下步骤。
在步骤604中,向UE发送RRC信令,RRC信令中包含WT的MAC地址,UE被配置为将WLAN数据包的MAC包头中的地址3设置为WT的MAC地址,地址3用于指示WLAN数据包的目的地址,MAC包头采用802.11数据帧的帧头格式。
目标eNB与UE建立RRC连接后,可以通过广播或单播的方式,向各个UE发送RRC信令,该RRC信令中即包含于目标eNB相连的目标WT的MAC地址。
相应的,UE接收并获取该RRC信令中包含的目标WT的MAC地址,并在通过WLAN网络发送WLAN数据包时,将该MAC地址添加到WLAN数据包中。
在一种可能的实施方式中,UE可以将该MAC地址存放在WLAN数据包的MAC包头中,WLAN数据包达到WLAN AP后,WLAN AP即可从MAC包头中提取该MAC地址,并进行进一步发送。具体的,WLAN数据包的MAC包头可以采用802.11数据帧(即MAC帧)的帧头格式,UE即将目标WT的MAC地址添加到MAC包头的地址3中,该地址3用于指示WLAN数据包的目的地址。
本实施例中,目标eNB通过发送RRC信令的方式告知UE目标WT的MAC,并由UE将该MAC地址添加到WLAN数据包MAC包头的地址3中,在无需对现有WLAN AP进行改造的前提下,实现WLAN数据包的正确传输,从而降低了系统改造成本。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图7示出了一示例性实施例所提供的数据传输装置的结构方框图。该数据传输装置可以通过专用硬件电路,或,硬件与软件的组合实现成为图1中UE140的全部或一部分。该数据传输装置包括:
第一发送模块710,被配置为通过LTE网络向目标eNB发送LTE数据包,目标eNB是与UE建立LTE连接的eNB;
第二发送模块720,被配置为向WLAN AP发送WLAN数据包,WLAN数据包中包括与目标eNB相连的目标WT的MAC地址;WLAN AP被配置为根据目标WT的MAC地址,向目标WT发送WLAN数据包,目标WT被配置为向目标eNB发送WLAN数据包,目标eNB被配置为将LTE数据包和WLAN数据包聚合。
可选的,该装置,还包括:
信令接收模块730,被配置为接收目标eNB发送的RRC信令,RRC信令中包含目标WT的MAC地址;
获取模块740,被配置为获取RRC信令中包含的目标WT的MAC地址;
添加模块750,被配置为将目标WT的MAC地址添加到WLAN数据包中。
可选的,WLAN数据包的MAC包头采用802.11数据帧的帧头格式,MAC包头中包括地址3,地址3用于指示WLAN数据包的目的地址;
添加模块750,被配置为将MAC包头中的地址3设置为目标WT的MAC地址。
综上所述,本实施例提供的数据传输装置,通过在WLAN数据包中添加与目标eNB相连的目标WT的MAC地址,使得WLAN AP接收到UE发送的WLAN数据包后,能够根据该MAC地址将MAC数据包转发至目标WT,并最终由目标WT将WLAN数据包发送至目标eNB,从而实现WLAN数据包的上行传输;解决了WLAN AP与多个WT相连时,WLAN AP接收到UE发送的WLAN数据包后,无法准确地将该WLAN数据包转发至目标WT,最终导致WLAN数据包无法传输至目标eNB的问题;达到了在WLAN AP与多个WT相连的情况下,WLAN AP能够根据WLAN数据包中目标WT的MAC地址将WLAN数据包转发至目标WT,从而确保WLAN数据包被传输至目标eNB,提高了WLAN数据包上行传输的准确性。
本实施例中,目标eNB通过发送RRC信令的方式告知UE目标WT的MAC,并由UE将该MAC地址添加到WLAN数据包MAC包头的地址3中,在无需对现有WLAN AP进行改造的前提下,实现WLAN数据包的正确传输,从而降低了系统改造成本。
图8示出了一示例性实施例所提供的数据聚合装置的结构方框图。该数据聚合装置可以通过专用硬件电路,或,硬件与软件的组合实现成为图1中 eNB110的全部或一部分。该数据聚合装置包括:
第一接收模块810,被配置为接收UE通过LTE网络发送的LTE数据包,UE与所述eNB建立有RRC连接;
第二接收模块820,被配置为接收相连的WT发送的WLAN数据包,WLAN数据包中包括WT的MAC地址;WLAN数据包是与WT相连的WLAN AP根据MAC地址向WT发送的;
聚合模块830,被配置为将LTE数据包和WLAN数据包聚合。
可选的,该装置,还包括:
信令发送模块840,被配置为向UE发送RRC信令,RRC信令中包含WT的MAC地址,UE被配置为将WLAN数据包的MAC包头中的地址3设置为WT的MAC地址,地址3用于指示WLAN数据包的目的地址,MAC包头采用802.11数据帧的帧头格式。
综上所述,本实施例提供的数据聚合装置,通过在WLAN数据包中添加与目标eNB相连的目标WT的MAC地址,使得WLAN AP接收到UE发送的WLAN数据包后,能够根据该MAC地址将MAC数据包转发至目标WT,并最终由目标WT将WLAN数据包发送至目标eNB,从而实现WLAN数据包的上行传输;解决了WLAN AP与多个WT相连时,WLAN AP接收到UE发送的WLAN数据包后,无法准确地将该WLAN数据包转发至目标WT,最终导致WLAN数据包无法传输至目标eNB的问题;达到了在WLAN AP与多个WT相连的情况下,WLAN AP能够根据WLAN数据包中目标WT的MAC地址将WLAN数据包转发至目标WT,从而确保WLAN数据包被传输至目标eNB,提高了WLAN数据包上行传输的准确性。
本实施例中,目标eNB通过发送RRC信令的方式告知UE目标WT的MAC,并由UE将该MAC地址添加到WLAN数据包MAC包头的地址3中,在无需对现有WLAN AP进行改造的前提下,实现WLAN数据包的正确传输,从而降低了系统改造成本。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化, 这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示意性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种数据传输系统,其特征在于,所述系统包括:演进型基站eNB、无线局域网终结点WT、无线局域网接入点WLAN AP以及用户设备UE,所述WT与所述eNB一一对应相连,且所述WLAN AP与至少一个WT相连;
    所述UE,被配置为通过无线演进LTE网络向目标eNB发送LTE数据包,所述目标eNB是与所述UE建立无线资源控制RRC连接的eNB;
    所述UE,被配置为向所述WLAN AP发送WLAN数据包,所述WLAN数据包中包括与所述目标eNB相连的目标WT的介质访问控制MAC地址;
    所述WLAN AP,被配置为根据所述目标WT的MAC地址,向所述目标WT发送所述WLAN数据包;
    所述目标WT,被配置为向所述目标eNB发送所述WLAN数据包;
    所述目标eNB,被配置为将所述LTE数据包和所述WLAN数据包聚合。
  2. 根据权利要求1所述的系统,其特征在于,
    所述目标eNB,还被配置为向建立RRC连接的所述UE发送RRC信令,所述RRC信令中包含所述目标WT的MAC地址;
    所述UE,还被配置为将所述目标WT的MAC地址添加到所述WLAN数据包中。
  3. 根据权利要求2所述的系统,其特征在于,所述WLAN数据包的MAC包头采用802.11数据帧的帧头格式,所述MAC包头中包括Address3地址3,所述地址3用于指示所述WLAN数据包的目的地址;
    所述UE,还被配置为获取所述RRC信令中包含的所述目标WT的MAC地址;将所述MAC包头中的所述地址3设置为所述目标WT的MAC地址。
  4. 一种数据传输方法,其特征在于,所述方法包括:
    用户设备UE通过无线演进LTE网络向目标演进型基站eNB发送LTE数据包,所述目标eNB是与所述UE建立LTE连接的eNB;
    所述UE向无线局域网接入点WLAN AP发送无线局域网WLAN数据包,所述WLAN数据包中包括与所述目标eNB相连的目标无线局域网终结点WT 的介质访问控制MAC地址;所述WLANAP被配置为根据所述目标WT的MAC地址,向所述目标WT发送所述WLAN数据包,所述目标WT被配置为向所述目标eNB发送所述WLAN数据包,所述目标eNB被配置为将所述LTE数据包和所述WLAN数据包聚合。
  5. 根据权利要求4所述的方法,其特征在于,所述方法,还包括:
    所述UE接收所述目标eNB发送的无线资源控制RRC信令,所述RRC信令中包含所述目标WT的MAC地址;
    所述UE获取所述RRC信令中包含的所述目标WT的MAC地址;
    所述UE将所述目标WT的MAC地址添加到所述WLAN数据包中。
  6. 根据权利要求5所述的方法,其特征在于,所述WLAN数据包的MAC包头采用802.11数据帧的帧头格式,所述MAC包头中包括Address3地址3,所述地址3用于指示所述WLAN数据包的目的地址;
    所述将所述目标WT的MAC地址添加到所述WLAN数据包中,包括:
    所述UE将所述MAC包头中的所述地址3设置为所述目标WT的MAC地址。
  7. 一种数据聚合方法,其特征在于,所述方法包括:
    演进型基站eNB接收用户设备UE通过无线演进LTE网络发送的LTE数据包,所述UE与所述eNB建立有无线资源控制RRC连接;
    所述eNB接收相连的无线局域网终结点WT发送的无线局域网WLAN数据包,所述WLAN数据包中包括所述WT的介质访问控制MAC地址;所述WLAN数据包是与所述WT相连的无线局域网接入点WLAN AP根据所述MAC地址向所述WT发送的;
    所述eNB将所述LTE数据包和所述WLAN数据包聚合。
  8. 根据权利要求7所述的方法,其特征在于,所述方法,还包括:
    所述eNB向所述UE发送RRC信令,所述RRC信令中包含所述WT的MAC地址,所述UE被配置为将所述WLAN数据包的MAC包头中的地址3设置为所述WT的MAC地址,所述地址3用于指示所述WLAN数据包的目的地址, 所述MAC包头采用802.11数据帧的帧头格式。
  9. 一种数据传输装置,其特征在于,所述装置包括:
    第一发送模块,被配置为通过无线演进LTE网络向目标演进型基站eNB发送LTE数据包,所述目标eNB是与所述UE建立LTE连接的eNB;
    第二发送模块,被配置为向无线局域网接入点WLAN AP发送无线局域网WLAN数据包,所述WLAN数据包中包括与所述目标eNB相连的目标无线局域网终结点WT的介质访问控制MAC地址;所述WLAN AP被配置为根据所述目标WT的MAC地址,向所述目标WT发送所述WLAN数据包,所述目标WT被配置为向所述目标eNB发送所述WLAN数据包,所述目标eNB被配置为将所述LTE数据包和所述WLAN数据包聚合。
  10. 根据权利要求9所述的装置,其特征在于,所述装置,还包括:
    信令接收模块,被配置为接收所述目标eNB发送的无线资源控制RRC信令,所述RRC信令中包含所述目标WT的MAC地址;
    获取模块,被配置为获取所述RRC信令中包含的所述目标WT的MAC地址;
    添加模块,被配置为将所述目标WT的MAC地址添加到所述WLAN数据包中。
  11. 根据权利要求10所述的装置,其特征在于,所述WLAN数据包的MAC包头采用802.11数据帧的帧头格式,所述MAC包头中包括Address3地址3,所述地址3用于指示所述WLAN数据包的目的地址;
    所述添加模块,被配置为将所述MAC包头中的所述地址3设置为所述目标WT的MAC地址。
  12. 一种数据聚合装置,其特征在于,所述装置包括:
    第一接收模块,被配置为接收用户设备UE通过无线演进LTE网络发送的LTE数据包,所述UE与所述eNB建立有无线资源控制RRC连接;
    第二接收模块,被配置为接收相连的无线局域网终结点WT发送的无线局域网WLAN数据包,所述WLAN数据包中包括所述WT的介质访问控制MAC 地址;所述WLAN数据包是与所述WT相连的无线局域网接入点WLAN AP根据所述MAC地址向所述WT发送的;
    聚合模块,被配置为将所述LTE数据包和所述WLAN数据包聚合。
  13. 根据权利要求12所述的装置,其特征在于,所述装置,还包括:
    信令发送模块,被配置为向所述UE发送RRC信令,所述RRC信令中包含所述WT的MAC地址,所述UE被配置为将所述WLAN数据包的MAC包头中的Address3地址3设置为所述WT的MAC地址,所述地址3用于指示所述WLAN数据包的目的地址,所述MAC包头采用802.11数据帧的帧头格式。
  14. 一种用户设备UE,其特征在于,所述UE包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    通过无线演进LTE网络向目标演进型基站eNB发送LTE数据包,所述目标eNB是与所述UE建立LTE连接的eNB;
    向无线局域网接入点WLAN AP发送无线局域网WLAN数据包,所述WLAN数据包中包括与所述目标eNB相连的目标无线局域网终结点WT的介质访问控制MAC地址;所述WLANAP被配置为根据所述目标WT的MAC地址,向所述目标WT发送所述WLAN数据包,所述目标WT被配置为向所述目标eNB发送所述WLAN数据包,所述目标eNB被配置为将所述LTE数据包和所述WLAN数据包聚合。
  15. 一种演进型基站eNB,其特征在于,所述eNB包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收用户设备UE通过无线演进LTE网络发送的LTE数据包,所述UE与所述eNB建立有无线资源控制RRC连接;
    接收相连的无线局域网终结点WT发送的无线局域网WLAN数据包,所述WLAN数据包中包括所述WT的介质访问控制MAC地址;所述WLAN数据包 是与所述WT相连的无线局域网接入点WLAN AP根据所述MAC地址向所述WT发送的;
    将所述LTE数据包和所述WLAN数据包聚合。
PCT/CN2016/087582 2016-06-29 2016-06-29 数据传输系统、数据传输方法、数据聚合方法及装置 WO2018000222A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP16906624.8A EP3481102B1 (en) 2016-06-29 2016-06-29 Data transmission system, data transmission method, data aggregation method and apparatus
PL16906624T PL3481102T3 (pl) 2016-06-29 2016-06-29 System do transmisji danych, sposób transmisji danych, sposób i urządzenie do agregacji danych
BR112018077329A BR112018077329A2 (pt) 2016-06-29 2016-06-29 Sistema de transmissão de dados, método de transmissão de dados, método de agregaçãode dados e dispositivo
ES16906624T ES2820851T3 (es) 2016-06-29 2016-06-29 Sistema de transmisión de datos, método de transmisión de datos, método de agregación de datos y aparato
CN202010495601.XA CN111698783B (zh) 2016-06-29 2016-06-29 数据传输系统、数据传输方法、数据聚合方法及装置
KR1020197002942A KR102223648B1 (ko) 2016-06-29 2016-06-29 데이타 송신 시스템, 데이타 송신 방법, 데이타 통합 방법 및 장치
SG11201811771TA SG11201811771TA (en) 2016-06-29 2016-06-29 Data transmission system, data transmission method, data aggregation method and apparatus
RU2019102323A RU2715389C1 (ru) 2016-06-29 2016-06-29 Система передачи данных, способ передачи данных, а также способ и устройство агрегирования данных
CN201680000718.8A CN108029056B (zh) 2016-06-29 2016-06-29 数据传输系统、数据传输方法、数据聚合方法及装置
JP2018568801A JP6994475B2 (ja) 2016-06-29 2016-06-29 データ伝送システム、データ伝送方法、データ集約方法および装置
PCT/CN2016/087582 WO2018000222A1 (zh) 2016-06-29 2016-06-29 数据传输系统、数据传输方法、数据聚合方法及装置
US16/232,254 US10979105B2 (en) 2016-06-29 2018-12-26 Data transmission method in WLAN and LTE aggregation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087582 WO2018000222A1 (zh) 2016-06-29 2016-06-29 数据传输系统、数据传输方法、数据聚合方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/232,254 Continuation US10979105B2 (en) 2016-06-29 2018-12-26 Data transmission method in WLAN and LTE aggregation system

Publications (1)

Publication Number Publication Date
WO2018000222A1 true WO2018000222A1 (zh) 2018-01-04

Family

ID=60785031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087582 WO2018000222A1 (zh) 2016-06-29 2016-06-29 数据传输系统、数据传输方法、数据聚合方法及装置

Country Status (11)

Country Link
US (1) US10979105B2 (zh)
EP (1) EP3481102B1 (zh)
JP (1) JP6994475B2 (zh)
KR (1) KR102223648B1 (zh)
CN (2) CN111698783B (zh)
BR (1) BR112018077329A2 (zh)
ES (1) ES2820851T3 (zh)
PL (1) PL3481102T3 (zh)
RU (1) RU2715389C1 (zh)
SG (1) SG11201811771TA (zh)
WO (1) WO2018000222A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140204903A1 (en) * 2013-01-18 2014-07-24 Lg Electronics Inc. Method and Terminal for Selecting AP
US20140293970A1 (en) * 2013-03-26 2014-10-02 Qualcomm Incorporated Wlan uplink scheduler for lte-wlan aggregation
US20150245409A1 (en) * 2014-02-21 2015-08-27 Broadcom Corporation Carrier aggregation over lte and wifi

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555226B2 (ja) * 2003-07-25 2010-09-29 パナソニック株式会社 無線通信システム
US20070224988A1 (en) * 2006-03-24 2007-09-27 Interdigital Technology Corporation Method and apparatus for performing a handover procedure between a 3gpp lte network and an alternative wireless network
CN100505631C (zh) * 2007-06-14 2009-06-24 中兴通讯股份有限公司 Gpon系统中的组播处理方法
US8422513B2 (en) * 2008-05-23 2013-04-16 Nokia Siemens Networks Oy Providing station context and mobility in a wireless local area network having a split MAC architecture
KR102092563B1 (ko) * 2012-03-19 2020-03-24 삼성전자 주식회사 무선 랜 액세스 포인트를 이용한 통신 방법 및 장치
US9585048B2 (en) 2013-10-30 2017-02-28 Qualcomm Incorporated Techniques for aggregating data from WWAN and WLAN
CN103701952A (zh) * 2013-12-27 2014-04-02 大唐移动通信设备有限公司 一种业务数据的下行传输方法及分组数据网关
US9940242B2 (en) * 2014-11-17 2018-04-10 International Business Machines Corporation Techniques for identifying instructions for decode-time instruction optimization grouping in view of cache boundaries
US9832808B2 (en) 2014-12-02 2017-11-28 Cisco Technology, Inc. Method to provide dual connectivity using LTE master eNodeB and Wi-Fi based secondary eNodeB
US10659370B2 (en) * 2014-12-04 2020-05-19 Telefonaktiebolaget Lm Ericsson (Publ) Wireless local area network (WLAN) node, a wireless device, and methods therein
US10736094B2 (en) 2015-03-25 2020-08-04 Lg Electronics Inc. Method and apparatus for performing WT release procedure in wireless communication system
CN104796227B (zh) * 2015-04-03 2018-11-02 电信科学技术研究院 一种数据传输方法及设备
US20160338074A1 (en) * 2015-05-15 2016-11-17 Mediatek Inc. Method and Apparatus of Latency Measurement for LTE-WLAN Aggregation
CN107637137B (zh) 2015-05-22 2021-11-09 三星电子株式会社 终端和基站及其通信方法
CN107683621A (zh) * 2015-05-26 2018-02-09 英特尔Ip公司 针对lte/wlan聚合的wlan移动
US10623951B2 (en) * 2016-03-09 2020-04-14 Qualcomm Incorporated WWAN-WLAN aggregation security
JP6487111B2 (ja) * 2016-04-01 2019-03-20 京セラ株式会社 通信方法、プロセッサ、基地局、及びネットワーク装置
TWI639354B (zh) * 2016-05-13 2018-10-21 聯發科技股份有限公司 用於增強lwa的上行鏈路路由方法和用戶設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140204903A1 (en) * 2013-01-18 2014-07-24 Lg Electronics Inc. Method and Terminal for Selecting AP
US20140293970A1 (en) * 2013-03-26 2014-10-02 Qualcomm Incorporated Wlan uplink scheduler for lte-wlan aggregation
US20150245409A1 (en) * 2014-02-21 2015-08-27 Broadcom Corporation Carrier aggregation over lte and wifi

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LTE-WLAN-RADIO-CORE: "LS on Authentication and Encryption between UE and WLAN for Aggregation", 3GPP TSG-RAN WG2 MEETING #90 R2-152915, 29 May 2015 (2015-05-29), XP050983981 *
NOKIA NETWORKS: "Support for LTE-WLAN Aggregation and Interworking Enhancement", 3GPP TSG-RAN WG3 MEETING #89 R3-151743, 28 August 2015 (2015-08-28), XP051025649 *
See also references of EP3481102A4 *

Also Published As

Publication number Publication date
US20190140708A1 (en) 2019-05-09
SG11201811771TA (en) 2019-01-30
ES2820851T3 (es) 2021-04-22
EP3481102A4 (en) 2019-05-08
US10979105B2 (en) 2021-04-13
JP2019520007A (ja) 2019-07-11
BR112018077329A2 (pt) 2019-04-02
CN111698783A (zh) 2020-09-22
CN108029056A (zh) 2018-05-11
CN111698783B (zh) 2023-07-14
KR20190022840A (ko) 2019-03-06
EP3481102B1 (en) 2020-08-05
PL3481102T3 (pl) 2020-11-30
JP6994475B2 (ja) 2022-01-14
KR102223648B1 (ko) 2021-03-05
CN108029056B (zh) 2020-06-02
RU2715389C1 (ru) 2020-02-27
EP3481102A1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
CN107006022B (zh) 用户装置、存储装置以及lwa pdu路由方法及装置
JP7058504B2 (ja) ProSe直接デバイスツーデバイス通信中でのユニキャストサポート
US11558778B2 (en) Techniques for file aware communications
WO2019047197A1 (en) METHOD AND SYSTEM FOR INTEGRATING FIXED ACCESS IN A CONVERGED 5G HEART
EP3791681A1 (en) Methods for suspending inactive when resuming and resuming inactive when suspending
US20220132307A1 (en) Procedures enabling v2x unicast communication over pc5 interface
US20210266254A1 (en) Device to device forwarding
WO2014121606A1 (zh) 业务处理方法和相关设备
EP3895470B1 (en) Policy node, user plane node, control plane node and methods therein for handling quality of service in a wireless communications network
WO2018000221A1 (zh) 信息下发方法、数据发送方法、装置及系统
WO2018000222A1 (zh) 数据传输系统、数据传输方法、数据聚合方法及装置
US11736905B2 (en) Methods and apparatus for Layer-2 forwarding of multicast packets
TW202123664A (zh) 新無線電中的乙太網路標頭壓縮技術
US9924456B2 (en) Uplink routing for enhanced LWA
US12022319B2 (en) Policy node, user plane node, control plane node and methods therein for handling quality of service in a wireless communications network
US20240214864A1 (en) Communication method, apparatus, and system
WO2023184542A1 (zh) 配置信息的方法、装置和通信系统
WO2023197105A1 (zh) 配置信息的方法、装置和通信系统
WO2019214089A1 (zh) 一种绑定数据流的方法及装置、计算机存储介质
WO2022076837A1 (en) Ieee 802.1cq mac address allocation via ieee 1722 maap and barc
WO2017008586A1 (zh) 一种数据传输方法、网络设备及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018077329

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197002942

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016906624

Country of ref document: EP

Effective date: 20190129

ENP Entry into the national phase

Ref document number: 112018077329

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181227