WO2017222343A1 - 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법 - Google Patents

재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법 Download PDF

Info

Publication number
WO2017222343A1
WO2017222343A1 PCT/KR2017/006668 KR2017006668W WO2017222343A1 WO 2017222343 A1 WO2017222343 A1 WO 2017222343A1 KR 2017006668 W KR2017006668 W KR 2017006668W WO 2017222343 A1 WO2017222343 A1 WO 2017222343A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
hot rolled
precipitation
material uniformity
Prior art date
Application number
PCT/KR2017/006668
Other languages
English (en)
French (fr)
Inventor
나현택
성환구
서석종
김성일
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP17815756.6A priority Critical patent/EP3476969A4/en
Priority to US16/305,603 priority patent/US20200325563A1/en
Priority to CN201780037469.4A priority patent/CN109415791A/zh
Publication of WO2017222343A1 publication Critical patent/WO2017222343A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a precipitation-reinforced hot rolled steel sheet having excellent material uniformity and hole expansion property and a method of manufacturing the same.
  • microcracks In order to improve the hole expandability, it is necessary to suppress the formation of microcracks during processing, and the generation of such microcracks is that when the hardness difference between the hard phase and the soft phase is large, the concentration of deformation occurs at the grain boundaries of the two phases to generate microcracks. Known.
  • Patent Document 1 discloses a transformation hardening type steel sheet having a large number of bainite to prevent fine cracks and to secure hole expandability.
  • Patent Literature 2 relates to a conventional general milling process based manufacturing method of cooling a slab to room temperature and then reheating and rolling the slab, and the strength, There is a problem that material deviation exists in elongation, hole expandability, and the like.
  • solid-solution-reinforced hot-rolled steel sheet a large amount of solid-solution-reinforced elements such as Si, Mn, Cr, etc. should be added when manufacturing high-strength steel having a tensile strength of 590 MPa or more.
  • precipitation-reinforced steels have the advantage of low manufacturing cost and excellent burring properties.However, when manufacturing precipitation-reinforced steels by applying CEM processes of high-speed casting and continuous rolling, Problems such as edge crack generation due to precipitation elements such as Ti, Nb, and N, and relatively low finishing rolling temperature, and Nb, etc., may cause problems such as reduced mail flow due to changes in deformation resistance behavior of materials.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 194-200351
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-321739
  • Patent Document 3 Korean Unexamined Patent Publication No. 2012-0049993
  • Patent Document 4 Korean Unexamined Patent Publication No. 2012-0052022
  • One aspect of the present invention is to provide a precipitation-reinforced hot rolled steel sheet excellent in material uniformity and hole expansion properties and a method of manufacturing the same.
  • One aspect of the present invention is by weight, C: 0.02 ⁇ 0.05%, Si: 0.01 ⁇ 0.3%, Mn: 1.0 ⁇ 1.6%, Ti: 0.04 ⁇ 0.1%, Nb: 0.01 ⁇ 0.05%, N: 0.008% or less , Including the remaining Fe and other unavoidable impurities, satisfying the following formula (1),
  • the microstructure comprises at least 95 area% of ferrite and (Ti, Nb) C composite precipitates, and the number of (Ti, Nb) C composite precipitates having a diameter of 10 nm or less is 5 of the number of (Ti, Nb) C composite precipitates having a diameter of more than 10 nm.
  • the present invention relates to a precipitation-reinforced hot rolled steel sheet having excellent material uniformity and hole expansion property.
  • Equation (1) 0.35 ⁇ (Ti + Nb + V + Mo) / (C + N) ⁇ 0.70
  • each element symbol means at.% Of each element, and elements not included in steel are counted as 0.
  • another aspect of the present invention is a continuous casting step of manufacturing a thin slab by continuously casting molten steel satisfying the above-described alloy composition
  • It relates to a method of manufacturing a precipitation-enhanced hot-rolled steel sheet having excellent material uniformity and hole expansion properties, including; winding step of winding the cooled hot-rolled steel sheet at 450 ⁇ 600 °C.
  • the present invention it is possible to provide a precipitation-reinforced hot rolled steel sheet excellent in material uniformity and hole expansion property having a tensile strength of 590 MPa or more and a width / length direction material deviation within ⁇ 5% of an average value, and a method of manufacturing the same. There is.
  • Example 1 is a photograph taken with a scanning electron microscope of the microstructure of Inventive Example 1.
  • the inventors of the present invention when manufacturing the precipitation-reinforced steel by applying the CEM process of the high-speed casting and continuous rolling method, the edge crack generation according to the casting element, Ti, Nb, N precipitate element and relatively low finishing rolling temperature, In order to solve this problem, it was recognized that there is a problem such as decrease of the flowability due to the change of the deformation resistance behavior of the material under the influence of Nb.
  • Precipitation-reinforced hot-rolled steel sheet having excellent material uniformity and hole expansion property according to an aspect of the present invention in weight%, C: 0.02 to 0.05%, Si: 0.01 to 0.3%, Mn: 1.0 to 1.6%, Ti: 0.04 0.1%, Nb: 0.01% to 0.05%, N: 0.008% or less, containing the remaining Fe and other unavoidable impurities, satisfying the following formula (1),
  • the microstructure comprises at least 95 area% of ferrite and (Ti, Nb) C composite precipitates, and the number of (Ti, Nb) C composite precipitates having a diameter of 10 nm or less is 5 of the number of (Ti, Nb) C composite precipitates having a diameter of more than 10 nm. It is formed more than twice.
  • Equation (1) 0.35 ⁇ (Ti + Nb + V + Mo) / (C + N) ⁇ 0.70
  • each element symbol means at.% Of each element, and elements not included in steel are counted as 0.
  • the alloy composition of the precipitation-reinforced hot rolled steel sheet having excellent material uniformity and hole expansion property will be described in detail.
  • the unit of each element content is weight%.
  • the C is the most economical and effective element to strengthen the steel, when the content is present in the Hypo-Peritectic Composition, it causes a volume shrinkage during the liquid + ferrite ⁇ austenite transformation process during the solidification process during high-speed casting Promotes development
  • C content is more than 0.05%, surface cracks may occur during high speed performance. On the other hand, when the C content is less than 0.02%, strength and weldability may be significantly reduced.
  • Si is a ferrite stabilizing element that removes oxygen in molten steel and has the effect of promoting ferrite transformation during cooling after hot rolling, so that a uniform ferrite structure can be formed and it is an element that helps to secure a high-strength material by solid solution strengthening effect.
  • the Si content is less than 0.01%, the above effects are insufficient.
  • the Si content is more than 0.3%, the solid solution strengthening effect may be greater than the precipitation strengthening effect, and the red color scale due to Si may be formed on the steel sheet surface during hot rolling, thereby degrading the steel sheet surface quality.
  • the upper limit is more preferably 0.2%, and even more preferably 0.1%.
  • Mn like Si, is an effective element to solidify steel.
  • the Mn content is less than 1.0%, it may be difficult to secure sufficient weld strength with the low C content described above.
  • the Mn content exceeds 1.6%, excessive ferrite transformation may be delayed, and sufficient precipitation effect may not be realized, and since the carbide or pearlite is formed in the tissue to decrease the burring property, the content is 1.0 in the present invention. It is desirable to limit it to -1.6%.
  • Ti is an element that can maximize the strength increase due to the micro-precipitation effect of interphase interface (Ti, Nb) C during transformation from austenite to ferrite.
  • the Ti content is less than 0.04%, it is not easy to secure sufficient microprecipitation effect by N, which is inevitably included in the steelmaking process.
  • the Ti content is more than 0.1%, the microprecipitation effect is saturated, and excess Ti is present after the microprecipitation is formed, which is not economically desirable.
  • Nb, together with Ti, is an important element for the formation of (Ti, Nb) C microprecipitation and is also useful for finely forming ferrite grain size.
  • the Nb content is less than 0.01%, it is difficult to implement the above-described effects.
  • the Nb content is more than 0.05%, the unrecrystallized zone temperature of the material is increased, which may cause a load problem during rolling.
  • N even in the presence of extremely small amounts, has a great influence on the mechanical properties of the steel, increasing its tensile strength and yield strength. However, it is the main factor of the strain aging, which lowers the elongation, causes the clear heat brittleness, reduces the impact property of the material, and in particular causes wrinkles on the surface during sheet metal working. In addition, since nitrogen combines with other alloying elements to form nitrides, it is possible to reduce the (Ti, Nb) C microprecipitation effect, which is important in the present invention.
  • N corresponds to an impurity, and it is preferable to strictly control the content to 0.008% or less.
  • the remaining component of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification. For example, P, S, Cu, V, Ni, Al, Cr and the like may be inevitably mixed.
  • Equation (1) 0.35 ⁇ (Ti + Nb + V + Mo) / (C + N) ⁇ 0.70
  • each element symbol means at.% Of each element, and elements not included in steel are counted as 0.
  • the metallurgical meaning of the formula (1) is to consider the optimal atomic weight ratio in consideration of the loss of Ti, Nb, V, Mo by the initial coarse precipitation by C, N in order to maximize the microprecipitation behavior. Considering such an equivalence ratio prior to minimizing the content of solid solutions such as Si, Cr, it is possible to produce steel with low burring properties while having low ferroalloy costs.
  • Equation (1) If the value of Equation (1) is less than 0.35, it is difficult to secure sufficient (Ti, Nb) C composite precipitates in ferrite, which may result in insufficient strength material. On the other hand, when the value of Equation (1) is greater than 0.70, the effect of surplus Ti, Nb, V, Mo, etc. remaining alone after formation of a composite precipitate through chemical bonding with C based on the equivalence ratio alone is relatively high. It is small and has a negative effect on economic feasibility.
  • Equation (2) 0.04 ⁇ (Ti + Nb + V + Mo) / (C + Mn + Si + Cr)
  • Equation (2) takes into account the atomic ratio of the precipitation elements (Ti, Nb, Mo, V) and the solid solution elements (C, Si, Mn, Cr), in order to secure the target tensile strength by strengthening precipitation. .
  • Equation (2) When the value of Equation (2) is less than 0.04, the effect of solid solution strengthening is greater than the effect of precipitation strengthening, and in order to satisfy the tensile strength of 590 MPa or more, a large amount of solid solution strengthening elements such as Si, Mn, and Cr must be added. Therefore, there is a problem that the manufacturing cost rises.
  • the microstructure of the precipitation-reinforced hot-rolled steel sheet having excellent material uniformity and hole expansion property includes ferrite and (Ti, Nb) C composite precipitates of more than 95 area%, and having a diameter of 10 nm or less (Ti,
  • the number of Nb) C composite precipitates is more than five times the number of (Ti, Nb) C composite precipitates having a diameter of more than 10 nm.
  • the (Ti, Nb) C composite precipitate is a concept including TiC, NbC and (Ti, Nb) C composite carbide, and the diameter refers to a circular equivalent diameter.
  • the ferrite is less than 95 area%, there is a problem that it is difficult to secure burring property because a large amount of hardness difference between phases is present in comparison with ferrite such as pearlite and low temperature transformation phase.
  • the precipitation strengthening effect may be insufficient and the tensile strength may be inferior.
  • the fact that the number of (Ti, Nb) C composite precipitates having a diameter of 10 nm or less is formed at least five times the number of the (Ti, Nb) C composite precipitates having a diameter of 10 nm or more means that the value of the following formula (3) is 5 or more. .
  • PN is the number of (Ti, Nb) C composite precipitate in the hot rolled steel sheet structure
  • d is the diameter of the composite precipitate observed by transmission microscope (TEM) and the unit is nm.
  • the distance between the (Ti, Nb) C composite precipitate may be 30 nm or less.
  • Line-Spacing (LS) of interphase precipitation which is arranged in the form of Curve or Straight, is observed during tissue observation by TEM analysis based on [001] or [110] Zone Axis. It means that it is 30 nm or less.
  • the lower limit is not particularly limited but may be 5 nm or more.
  • the (Ti, Nb) C composite precipitate may be 15000 / ⁇ m 2 or more.
  • the hot rolled steel sheet according to the present invention has a tensile strength of 590MPa or more, the width / length direction material deviation may be within ⁇ 5% of the average value. Not only material deviations such as strength and elongation, but also material deviations of hole expandability can be secured.
  • the precipitation-enhanced hot-rolled steel sheet having excellent material uniformity and hole expansion property includes: a continuous casting step of manufacturing a thin slab by continuously casting molten steel that satisfies the alloy composition described above; A rough rolling step of roughly rolling the thin slab to obtain a bar; A heating step of heating or keeping the bar; A finish rolling step of finishing rolling the heated bar to obtain a hot rolled steel sheet; A cooling step of cooling the hot rolled steel sheet at a cooling rate of 30 ° C./s or more to a temperature of 600 ° C. to 700 ° C. in a runout table and then air-cooling; And a winding-up step of winding the cooled hot rolled steel sheet at 450 to 600 ° C.
  • a thin slab is manufactured by continuously casting molten steel that satisfies the above-described alloy composition.
  • the thickness of the thin slab may be 30 ⁇ 150mm.
  • Thin slabs are contrasted with slabs of 200 mm or more produced by conventional mill casting machines. Since a slab of 200 mm or more is completely cooled in a yard, etc., it is necessary to sufficiently reheat it to a surface temperature of 1100 ° C. or more in a reheating furnace before hot rolling. On the other hand, the thin slabs are transferred directly to the roughing furnace without going through the reheating furnace, so that the heat of play can be used as it is, thereby saving energy and greatly improving productivity.
  • the thin slab is roughly rolled to obtain a bar.
  • the rough rolling may be performed at 850 ⁇ 1150 °C. If the rough rolling temperature is less than 850 °C cracks are likely to occur at the edge portion, if it is above 1150 °C cracks are likely to occur on the surface of the thin slab during rolling.
  • the bar is heated or heated. At this time, it may be heated or maintained in the temperature range of 850 ⁇ 1150 °C. If the temperature is less than 850 ° C, the rolling load is greatly generated during finishing rolling, and if it exceeds 1150 ° C, not only the energy cost for the temperature rises but also the tendency of surface scale defects increases, so the heating temperature is increased to 850 ⁇ 1150 ° C. It is desirable to limit.
  • the heating step before the finishing rolling step may further comprise the step of winding the heated bar (Bar).
  • the heated bar is finish rolled to obtain a hot rolled steel sheet.
  • the finish rolling may be performed in a temperature range of 770 ⁇ 1000 °C. If the finish rolling temperature is less than 770 °C the ideal reverse rolling effect is stronger because it is difficult to secure the desired material due to the anisotropy of the extreme structure.
  • high temperature heating at 1150 °C or more is required in the heating step, which causes a surface scale defect and can be economically expensive.
  • the hot rolled steel sheet is cooled at a cooling rate of 30 ° C./s or more to a temperature of 600 to 700 ° C. in a runout table, and then air cooled. If the cooling end temperature is out of the temperature range of 600 ⁇ 700 °C, it is not possible to fully implement the microprecipitation behavior that occurs when the ferrite transformation in austenite. In addition, even if the cooling end temperature is satisfied, if the cooling rate is less than 30 °C / s before the air-cooled section a considerable portion of the ferrite transformation is already made, the fraction of the ferrite to secure a fine precipitate is significantly reduced to secure the target strength material.
  • the run-out speed of the hot rolled steel sheet in the runout table is 100 ⁇ 200mpm, the speed difference may be less than 10%.
  • the cooled hot rolled steel sheet is wound at 450 to 600 ° C. If it is wound below 450 °C, it is very difficult to control the uniform temperature because it enters the boiling zone. This may cause the mixing of hard phases such as martensite and bainite to significantly reduce the burring properties. On the other hand, when wound above 600 ° C., another hard phase such as cementite is formed, which reduces the burring property.
  • the molten steel having the component composition shown in Table 1 below was prepared.
  • Equation (3) The number of precipitates for each size of the prepared hot rolled steel sheet, Equation (3), material uniformity, hole expandability, tensile strength (TS), fracture elongation (El) and ferrite fractions were measured or evaluated and are shown in Table 3 below. .
  • the tensile test was carried out with test pieces collected according to JIS-5 standard based on the 90 ° direction with respect to the rolling direction of the rolled sheet material. Ferrite phase fraction was obtained by etching the rolled plate specimens with Nital etchant and LePera etchant respectively at 500 magnification using an optical microscope and analyzing and comparing them with an image analyzer.
  • the material deviation of the hole / expansion in the width / length direction was measured, and the material deviation of the hole / expansion in the width / length direction was measured. If it is within ⁇ 5% of the mean value was marked as good, if it is greater than ⁇ 5% it was marked as bad.
  • the precipitate in the tissue of the hot-rolled steel sheet was observed in the area of about 1,400,000 nm 2 using TEM based on the Zone Axis [100].
  • PN is the number of (Ti, Nb) C composite precipitate in the hot rolled steel sheet structure
  • d is the diameter of the composite precipitate observed by transmission microscope (TEM) and the unit is nm.
  • Equation (1) 0.35 ⁇ (Ti + Nb + V + Mo) / (C + N) ⁇ 0.70
  • Equation (2) 0.04 ⁇ (Ti + Nb + V + Mo) / (C + Mn + Si + Cr)
  • each element symbol means at.% Of each element, and elements not included in the steel are counted as 0.
  • Comparative Examples 1 and 2 each element content is in the effective range suggested by the present invention, but did not satisfy the value of formula (1), Comparative Examples 3 and 4 did not satisfy the Nb content and formula (1) value In this case, it is excellent in hole expansion but can not realize sufficient precipitation strengthening effect, so it can be confirmed that the tensile strength is low.
  • Comparative Examples 5, 8 and Example 5 are the same alloy composition but different manufacturing conditions, Comparative Example 5 is inferior to the uniformity of the material by applying a general milling process, Comparative Example 8 has a low tensile strength due to the low cooling rate Inferior one, but Inventive Example 5 can be confirmed that both excellent material uniformity and tensile strength.
  • FIGS. 1 and 3 are photographs of the microstructures of Inventive Example 1, Comparative Example 1, and Comparative Example 7, respectively, with a scanning electron microscope. Compared with FIGS. 2 and 3, in the case of Inventive Example 1, it can be seen from FIG. 1 that a fine and uniform (Ti, Nb) C composite precipitate was formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명의 일 측면은 중량%로, C: 0.02~0.05%, Si: 0.01~0.3%, Mn: 1.0~1.6%, Ti: 0.04~0.1%, Nb: 0.01~0.05%, N: 0.008% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 식(1)을 만족하고, 미세조직은 95면적% 이상의 페라이트 및 (Ti, Nb)C 복합석출물을 포함하고, 직경 10nm 이하의 (Ti, Nb)C 복합석출물 개수가 직경 10nm 초과의 (Ti, Nb)C 복합석출물 개수의 5배 이상으로 형성되어 있는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판에 관한 것이다. 식(1): 0.35 ≤ (Ti+Nb+V+Mo)/(C+N) ≤ 0.70 (단, 상기 식(1)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)

Description

재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법
본 발명은 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법에 관한 것이다.
구멍확장성을 좋게 하기 위해서는 가공 시 미세크랙의 생성을 억제하는 것이 필요하며 이러한 미세크랙의 생성은 경질상과 연질상 간에 경도차이가 크면 변형의 집중이 두 상의 결정립계에서 일어나 미세크랙을 발생시키는 것으로 알려져 있다.
이에 특허문헌 1에서는 베이나이트를 많이 형성시킴으로써 미세크랙을 방지하여 구멍확장성을 확보한 변태강화형 강종에 대하여 개시하고 있다.
나아가 구멍확장성을 극대함과 동시에 고강도를 확보하기 위하여, 페라이트 주상에 Ti, Nb, Mo, V, C 등을 이용한 석출강화 효과로 고강도 확보가 가능한 석출강화형 강재 개발에 대한 연구가 이루어졌다.
특허문헌 2에는 페라이트 기반 연질의 주상 기지조직을 구현하여 연/경질상 간의 경도차이에 의한 미세크랙 발생을 미연에 방지하고 사상압연 후 Ar3 Nose와 석출 Nose가 일치하는 조건에서 오스테나이트에서 페라이트로의 변태 중 입내에 미세한 석출현상을 유도하여 강도를 확보하는 기술에 대하여 개시하고 있다.
특허문헌 2의 석출강화형 강재의 경우, 변태강화형 강재와 비교화여 동급의 강도재질을 확보하면서 버링성이 더욱 상향된 것을 확인할 수 있다. 그러나 특허문헌 2는 슬라브를 상온까지 냉각 후 다시 재가열하고 압연하는 기존의 일반밀 공정 기반의 제조방법에 관한 것으로서, 가열로 조건 및 압연 후 폭방향 길이방향 온도편차에 의한 석출거동의 불균일성으로 강도, 연신율, 구멍확장성 등에서 재질편차가 존재하는 문제점이 있다.
한편, 최근 주목을 받고 있는 새로운 철강 공정인 소위 고속연주 및 연연속압연 방식으로 강판을 제조하는 CEM(Continuous Endless Mill) 공정은 공정 특성상 스트립의 폭방향 길이방향으로 온도편차가 작기 때문에 재질편차를 양호한 강재를 얻을 수 있는 공정으로 알려져 있다.
하지만 특허문헌 3 및 4와 같이 대부분의 연구 및 개발이 DP강 및 TRIP강과 같은 변태강화형 열연강판에 집중되고 있다. 그러나 상기 변태강화형 열연강판은 조직 내 연/경질상의 조합이 불가피한 관계로 우수한 버링성 확보에 문제점이 있다.
또한, 고용강화형 열연강판의 경우에는 인장강도 590MPa 이상의 고강도강 제조 시 Si, Mn, Cr 등의 고용강화 원소를 다량 첨가하여야 하므로 제조원가 상승 등의 문제점이 있다.
반면에 석출강화형 강재의 경우 제조원가가 낮고, 우수한 버링성을 확보할 수 있다는 장점이 있으나, 고속연주 및 연연속압연 방식의 CEM 공정을 적용하여 석출강화형 강재를 제조하는 경우에는 주조크랙 발생, Ti, Nb, N 등 석출원소와 상대적으로 낮은 사상압연 온도에 따른 엣지크랙 발생, Nb 등의 영향으로 소재의 변형저항 거동 변화에 따른 통판성 하락 등의 문제점들이 발생할 수 있다.
따라서, 상술한 문제점들을 해결하여 CEM 공정에 적용 가능하고 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법에 대한 개발이 요구되고 있는 실정이다.
(선행기술문헌)
특허문헌 1: 일본 공개특허공보 제1994-200351호
특허문헌 2: 일본 공개특허공보 제2003-321739호
특허문헌 3: 한국 공개특허공보 제2012-0049993호
특허문헌 4: 한국 공개특허공보 제2012-0052022호
발명의 일 측면은 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법을 제공하기 위함이다.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은 중량%로, C: 0.02~0.05%, Si: 0.01~0.3%, Mn: 1.0~1.6%, Ti: 0.04~0.1%, Nb: 0.01~0.05%, N: 0.008% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 식(1)을 만족하고,
미세조직은 95면적% 이상의 페라이트 및 (Ti, Nb)C 복합석출물을 포함하고, 직경 10nm 이하의 (Ti, Nb)C 복합석출물 개수가 직경 10nm 초과의 (Ti, Nb)C 복합석출물 개수의 5배 이상으로 형성되어 있는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 에 관한 것이다.
식(1): 0.35 ≤ (Ti+Nb+V+Mo)/(C+N) ≤ 0.70
(단, 상기 식(1)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)
또한, 본 발명의 다른 일 측면은 상술한 합금조성을 만족하는 용강을 연속주조하여 박 슬라브를 제조하는 연속주조 단계;
상기 박 슬라브를 조압연하여 바(Bar)를 얻는 조압연 단계;
상기 바(Bar)를 가열 또는 보열하는 가열 단계;
상기 가열된 바(Bar)를 마무리압연하여 열연강판을 얻는 마무리압연 단계;
상기 열연강판을 런아웃 테이블에서 600~700℃의 온도까지 30℃/s 이상의 냉각속도로 냉각한 후 공냉하는 냉각 단계; 및
상기 냉각된 열연강판을 450~600℃에서 권취하는 권취 단계;를 포함하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법에 관한 것이다.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다.
본 발명에 의하면, 인장강도가 590MPa 이상이고, 폭/길이방향 재질편차가 평균값 대비 ±5% 이내인 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법을 제공할 수 있는 효과가 있다.
도 1은 발명예 1의 미세조직을 주사전자현미경으로 촬영한 사진이다.
도 2는 비교예 1의 미세조직을 주사전자현미경으로 촬영한 사진이다.
도 3은 비교예 7의 미세조직을 주사전자현미경으로 촬영한 사진이다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은 고속연주 및 연연속압연 방식의 CEM 공정을 적용하여 석출강화형 강재를 제조하는 경우에는 주조크랙 발생, Ti, Nb, N 등 석출원소와 상대적으로 낮은 사상압연 온도에 따른 엣지크랙 발생, Nb 등의 영향으로 소재의 변형저항 거동 변화에 따른 통판성 하락 등의 문제가 있음을 인지하고, 이를 해결하기 위하여 깊이 연구하였다.
그 결과, 합금조성 및 제조방법을 정밀하게 제어함으로써 고속연주 및 연연속압연 방식의 CEM 공정을 적용하여 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판을 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이하, 본 발명의 일 측면에 따른 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판은 중량%로, C: 0.02~0.05%, Si: 0.01~0.3%, Mn: 1.0~1.6%, Ti: 0.04~0.1%, Nb: 0.01~0.05%, N: 0.008% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 식(1)을 만족하고,
미세조직은 95면적% 이상의 페라이트 및 (Ti, Nb)C 복합석출물을 포함하고, 직경10nm 이하의 (Ti, Nb)C 복합석출물 개수가 직경 10nm 초과의 (Ti, Nb)C 복합석출물 개수의 5배 이상으로 형성되어 있다.
식(1): 0.35 ≤ (Ti+Nb+V+Mo)/(C+N) ≤ 0.70
(단, 상기 식(1)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)
먼저, 본 발명의 일 측면에 따른 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 합금조성에 대하여 상세히 설명한다. 이하, 각 원소 함량의 단위는 중량%이다.
C: 0.02~0.05%
상기 C는 강을 강화시키는데 가장 경제적이며 효과적인 원소이나 함량이 아포정역(Hypo-Peritectic Composition)에 존재할 경우, 고속주조 중 응고과정에서 액체+페라이트 → 오스테나이트 변태 과정 중 부피수축 현상을 야기하여 표면크랙의 발생을 촉진한다.
C 함량이 0.05% 초과인 경우에는 고속연주 중 표면크랙 발생할 수 있다. 반면에 C 함량이 0.02% 미만인 경우에는 강도 및 용접성이 현저히 저하될 수 있다.
Si: 0.01~0.3%
Si는 용강 내 산소를 제거하며 페라이트 안정화 원소로서 열연 후 냉각 중 페라이트 변태를 촉진하는 효과가 있어 균일한 페라이트 조직이 형성 가능하며 고용강화 효과로 고강도 재질을 확보하는데 도움을 주는 원소이다.
Si 함량이 0.01% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Si 함량이 0.3% 초과인 경우에는 고용강화 효과가 석출강화 효과보다 커질 수 있으며, 열간압연 시 강판표면에 Si에 의한 붉은색 스케일이 형성되어 강판표면 품질이 저하될 수 있다. 보다 바람직한 상한은 0.2%이며, 보다 더 바람직한 상한은 0.1%이다.
Mn: 1.0~1.6%
Mn은 Si과 마찬가지로 강을 고용 강화시키는데 효과적인 원소이다.
Mn 함량이 1.0% 미만인 경우에는 상술한 낮은 함량의 C 첨가 설계로는 충분한 용접부 강도 확보가 어려울 수 있다. 반면에 Mn 함량이 1.6%를 초과하는 경우에는 과도하게 페라이트 변태를 지연하여 충분한 석출효과를 구현하지 못할 수 있으며, 조직 내 탄화물 또는 펄라이트를 형성하여 버링성을 저하시키기 때문에, 본 발명에서 함량을 1.0~1.6%로 제한하는 것이 바람직하다.
Ti: 0.04~0.1%
Ti는 오스테나이트에서 페라이트로 변태 시 상간계면 (Ti, Nb)C 미세석출 효과로 강도상승을 극대화 시킬 수 있는 원소이다.
Ti 함량이 0.04% 미만인 경우에는 제강 공정 중 불가피하게 포함되는 N에 의해 충분한 미세석출 효과를 확보하기가 용이하지 않다. 반면에 Ti 함량이 0.1% 초과인 경우에는 미세석출 효과가 포화되고, 미세석출물 형성 후 잉여의 Ti가 존재하게 되어 경제적으로 바람직하지 않다.
Nb: 0.01~0.05%
Nb는 Ti와 함께 (Ti, Nb)C 미세석출 형성에 중요한 원소이며 또한 페라이트 입도를 미세하게 형성시키는데 유용한 원소이다.
Nb 함량이 0.01% 미만인 경우에는 상술한 효과를 구현하기가 어렵다. 반면에 Nb 함량이 0.05% 초과인 경우에는 소재의 미재결정역 온도가 상승하게 되어 압연 시 부하 문제를 야기할 수 있다.
N: 0.008% 이하
N은 극히 미량 존재로도 강의 기계적 성질에 큰 영향을 미치는데 인장강도 및 항복강도를 증가시킨다. 그러나 연신율을 저하시키며, 청열취성을 일으켜 소재의 충격특성을 저하시키고, 특히 박판 가공 시에 표면에 주름이 발생시키는 변형시효의 주요 인자이다. 또한 질소는 다른 합금원소와 결합하여 질화물을 형성하기 때문에 본 발명에서 중요한 (Ti, Nb)C 미세석출 효과를 저감할 수 있다.
따라서 본 발명에서 N은 불순물에 해당하는 것이며, 그 함량을 0.008% 이하로 엄격히 제어하는 것이 바람직하다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다. 예를 들어, P, S, Cu, V, Ni, Al, Cr 등이 불가피하게 혼입될 수 있다.
본 발명에서는 상술한 각 원소 함량을 만족할 뿐만 아니라, 하기 식(1)을 만족하여야 한다.
식(1): 0.35 ≤ (Ti+Nb+V+Mo)/(C+N) ≤ 0.70
(단, 상기 식(1)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)
상기 식(1)의 야금학적 의미는 미세석출 거동을 극대화하기 위하여 C, N에 의한 초기 조대 석출에 의한 Ti, Nb, V, Mo 유실을 고려하여 최적의 원자량 비율을 고려한 것이다. 이러한 당량비 고려가 선행되어야 Si, Cr 등의 고용원소 함량을 최소화하여 합금철 원가가 싸면서도 버링성도 우수한 강을 제조할 수 있다.
상기 식(1) 값이 0.35 미만인 경우에는 페라이트 내 충분한 (Ti, Nb)C 복합석출물 확보가 어려워 강도재질이 미달할 수 있는 문제점이 있다. 반면에, 상기 식(1) 값이 0.70 초과인 경우에는 당량비에 의거 C와 화학적 결합을 통한 복합석출물 형성 후 잔존하는 잉여 Ti, Nb, V, Mo 등이 단독으로 강도에 기여하는 효과는 상대적으로 작으며 경제성 확보에 대해서도 부정적 영향을 미친다.
또한, 상기 각 원소함량 및 식(1) 값을 만족할 뿐만 아니라, 하기 식(2) 값을 만족할 수 있다.
식(2): 0.04 ≤ (Ti+Nb+V+Mo)/(C+Mn+Si+Cr)
(단, 상기 식(2)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)
상기 식(2)은 석출원소인 (Ti, Nb, Mo, V)와 고용원소인 (C, Si, Mn, Cr)의 원자비를 고려한 것으로, 석출강화에 의해 목표 인장강도를 확보하기 위함이다.
상기 식(2) 값이 0.04 미만인 경우에는 석출강화에 의한 효과보다 고용강화에 의한 효과가 크게 되며, 이에 인장강도 590 MPa 이상을 만족하기 위해서는 Si, Mn, Cr 등의 고용강화 원소를 다량 첨가해야 하므로 제조원가가 상승하는 문제점이 있다.
본 발명의 일 측면에 따른 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 미세조직은 95면적% 이상의 페라이트 및 (Ti, Nb)C 복합석출물을 포함하고, 직경 10nm 이하의 (Ti, Nb)C 복합석출물 개수가 직경 10nm 초과의 (Ti, Nb)C 복합석출물 개수의 5배 이상으로 형성되어 있다. 본 발명에서 (Ti, Nb)C 복합석출물이란, TiC, NbC 및 (Ti, Nb)C 복합탄화물을 포함하는 개념이며, 상기 직경은 원상당 직경을 의미한다.
페라이트가 95면적% 미만인 경우에는 펄라이트 및 저온변태상 등 페라이트와 비교하여 상간 경도차가 큰 조직이 다량 존재하게 되어 버링성 확보가 어려운 문제점이 있다.
직경 10nm 이하의 (Ti, Nb)C 복합석출물 개수가 직경 10nm 초과의 (Ti, Nb)C 복합석출물 개수의 5배 미만인 경우에는 석출강화 효과가 부족하여 인장강도가 열위해질 수 있다.
직경 10nm 이하의 (Ti, Nb)C 복합석출물 개수가 직경 10nm 초과의 (Ti, Nb)C 복합석출물 개수의 5배 이상으로 형성되어 있다는 것은 하기 식(3)의 값이 5 이상이라는 것을 의미한다.
식(3):
Figure PCTKR2017006668-appb-I000001
상기 식(3)에서 PN은 열연강판 조직 내 (Ti, Nb)C 복합 석출물의 개수이며, d는 투과현미경(TEM)으로 관찰된 복합 석출물의 직경을 의미하며 단위는 nm이다.
Figure PCTKR2017006668-appb-I000002
은 각각 직경이 0초과~10nm, 10nm 초과~20nm, 20nm 초과~50nm, 50nm 초과~100nm인 석출물의 개수를 의미하며, 100nm를 초과하는 석출물은 거의 존재하지 않기 때문에 제외하였다.
이때, 상기 (Ti, Nb)C 복합석출물 간 거리가 30 nm 이하일 수 있다.
보다 구체적으로는 [001] 혹은 [110] Zone Axis 기준으로 TEM(투과전자현미경) 분석을 통한 조직관찰 시 Curve 혹은 Straight 형태로 열 지어 있는 상간계면 석출물(Interphase Precipitation)의 Line-Spacing(LS)이 30nm 이하인 것을 뜻한다.
(Ti, Nb)C 복합석출물 간 거리가 30nm 초과인 경우에는 미세석출이 강도에 기여하는 효과가 현저히 감소하는 문제점이 있다. 하한은 특별히 한정하지 않으나 5nm 이상일 수 있다.
또한, 상기 (Ti, Nb)C 복합석출물은 15000개/㎛2 이상일 수 있다.
상기 (Ti, Nb)C 복합석출물 간 거리가 30 nm 이하를 만족하더라도, (Ti, Nb)C 복합석출물이 15000개/㎛2 미만인 경우에는 입내 전면적에 균일하고 미세한 석출물의 분포가 구현되지 않아 강도 및 버링성 확보가 용이하지 않을 수 있기 때문이다.
한편, 본 발명에 따른 열연강판은 인장강도가 590MPa 이상이고, 폭/길이방향 재질편차가 평균값 대비 ±5% 이내일 수 있다. 강도, 연신율 등의 재질편차뿐만 아니라, 구멍확장성의 재질편차도 우수하게 확보할 수 있다.
이하, 본 발명의 다른 일 측면인 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법에 대하여 상세히 설명한다.
본 발명의 다른 일 측면인 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판은 상술한 합금조성을 만족하는 용강을 연속주조하여 박 슬라브를 제조하는 연속주조 단계; 상기 박 슬라브를 조압연하여 바(Bar)를 얻는 조압연 단계; 상기 바(Bar)를 가열 또는 보열하는 가열 단계; 상기 가열된 바(Bar)를 마무리압연하여 열연강판을 얻는 마무리압연 단계; 상기 열연강판을 런아웃 테이블에서 600~700℃의 온도까지 30℃/s 이상의 냉각속도로 냉각한 후 공냉하는 냉각 단계; 및 상기 냉각된 열연강판을 450~600℃에서 권취하는 권취 단계;를 포함한다.
연속주조 단계
상술한 합금조성을 만족하는 용강을 연속주조하여 박 슬라브를 제조한다.
이때, 상기 박 슬라브의 두께는 30~150mm일 수 있다. 박 슬라브(thin slab)는 기존 밀의 연속주조기에서 생산하는 200mm 이상의 슬라브와 대비된다. 종래 200mm 이상의 슬라브는 야적장 등에서 완전히 냉각되므로, 열간압연을 하기 전에 재가열로에서 표면온도 1100℃ 이상으로 충분히 재가열할 필요가 있다. 반면에, 박 슬라브는 재가열로를 거치지 아니하고 곧바로 조압연기로 이송되기 때문에, 연주열을 그대로 이용할 수 있어 에너지를 절감하고 생산성을 크게 향상시킬 수 있다.
조압연 단계
상기 박 슬라브를 조압연하여 바(Bar)를 얻는다. 이때, 상기 조압연은 850~1150℃에서 행할 수 있다. 조압연 온도가 850℃ 미만인 경우에는 엣지부에 크랙이 발생하기 쉽고, 1150℃ 초과인 경우에는 압연 시 박 슬라브 표면에 크랙이 발생하기 쉽기 때문이다.
가열 단계
상기 바(Bar)를 가열 또는 보열한다. 이때, 850~1150℃의 온도범위로 가열 또는 보열할 수 있다. 850℃ 미만인 경우에는 마무리 압연시 압연부하가 크게 발생하고, 1150℃를 초과하면 온도 상승을 위한 에너지 비용이 증가할 뿐만 아니라 표면스케일 결함이 발생하는 경향이 증가하므로, 가열온도를 850~1150℃로 제한하는 것이 바람직하다.
이때, 상기 가열 단계 후 하기 마무리압연 단계 전에 상기 가열된 바(Bar)를 권취하는 단계를 추가로 포함할 수 있다.
마무리압연 단계
상기 가열된 바(Bar)를 마무리압연하여 열연강판을 얻는다. 이때, 상기 마무리압연은 770~1000℃의 온도범위에서 행할 수 있다. 마무리압연 온도가 770℃ 미만인 경우에는 이상역압연 효과가 강해져 극심한 조직의 이방성으로 원하는 재질을 확보하기 어렵기 때문이다. 반면에 마무리 압연온도를 1000℃ 초과로 제어하기 위해서는 상기 가열단계에서 1150℃ 이상의 고온가열이 필요하며 이는 표면스케일 결함을 야기하고 경제적으로도 높은 비용이 소요될 수 있다.
냉각 단계
상기 열연강판을 런아웃 테이블에서 600~700℃의 온도까지 30℃/s 이상의 냉각속도로 냉각한 후 공냉한다. 냉각종료온도가 600~700℃의 온도 범위를 벗어나는 경우, 오스테나이트에서 페라이트 변태 시 발생하는 미세석출 거동을 충분히 구현할 수 없다. 또한 상기 냉각종료온도를 만족하더라도 냉각속도가 30℃/s 미만인 경우에는 공냉구간 전 이미 상당 분율의 페라이트 변태가 이루어져 미세석출물을 확보할 페라이트의 분율이 현저히 줄어들어 목표 강도재질을 확보할 수 없다.
이때, 상기 런아웃 테이블에서 열연강판의 통판속도는 100~200mpm이고, 속도차는 10% 이하일 수 있다.
권취 단계
상기 냉각된 열연강판을 450~600℃에서 권취한다. 450℃ 미만에서 권취 될 경우 비등천이역 구간으로 들어가서 균일한 온도제어가 매우 어렵다. 이에 마르텐사이트 및 베이나이트와 같은 경질상의 혼입이 야기되어 버링성을 현저히 저하시킬 수 있다. 반면에 600℃ 초과에서 권취될 경우 세멘타이트와 같은 또 다른 경질상이 형성되어 버링성을 하락시킨다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
하기 표 1에 나타낸 성분조성을 갖는 용강을 준비하였다.
비교예 5, 6 및 7을 제외하고는 CEM 공정을 적용하여 고속주조를 통하여 90mm 두께의 박 슬라브를 제조한 후, 상온으로 냉각하지 않고 1000℃에서 조압연을 실시하고, 하기 표 2에 기재된 마무리압연온도(FDT)로 마무리압연을 실시하였으며, 650℃까지 하기 표 2에 기재된 냉각속도 및 통판속도로 냉각한 후 공냉하였고, 하기 표 2에 기재된 권취온도(CT)에서 권취하여 열연강판을 제조하였다.
비교예 5, 6 및 7의 경우, 기존밀 방식을 적용하여 220mm 두께의 슬라브를 제조하여 상온까지 냉각한 후 재가열(1250℃) 및 조압연(1000℃)하여, 하기 표 2에 기재된 마무리압연온도(FDT)로 마무리압연을 실시하였으며, 650℃까지 하기 표 2에 기재된 냉각속도 및 통판속도로 냉각한 후 공냉하였고, 하기 표 2에 기재된 권취온도(CT)에서 권취하여 열연강판을 제조하였다.
상기 제조된 열연강판의 크기 별 석출물 개수, 식(3) 값, 재질 균일성, 구멍확장성, 인장강도(TS), 파괴 연신율(El) 및 페라이트 분율을 측정 또는 평가하여 하기 표 3에 기재하였다.
인장시험은 압연판재의 압연방향에 대하여 90° 방향을 기준으로 JIS-5호 규격에 의거하여 채취된 시험편으로 실시하였다. 페라이트 상분율은 해당 압연판재 시편을 Nital 에칭액과 LePera 에칭액으로 각각 에칭한 후 광학현미경을 이용하여 500 배율로 관찰하고 이를 Image 분석기로 분석, 비교하여 도출하였다.
구멍확장성 평가는 가로 세로 각 120mm 크기의 정사각형 시편을 준비하고 펀칭작업을 통하여 시편의 중앙에 직경 10mm의 구멍을 타발한 후에 버(burr)를 위로 하고 콘으로 밀어올려 원주 부분에 크랙이 발생하기 직전까지 확장된 구멍의 직격을 최초 구멍지경 (10mm) 대비 백분율로 계산한 값이다.
강도, 연신율 등의 재질편차뿐만 아니라, 구멍확장성의 재질편차도 우수하게 확보할 수 있는지 여부를 확인하기 위하여 폭/길이방향 구멍확장성의 재질편차를 측정하였으며, 폭/길이방향 구멍확장성의 재질편차가 평균값 대비 ±5% 이내인 경우 양호로 표시하였고, ±5% 초과인 경우 불량으로 표시하였다.
석출물 분석은 Zone Axis [100]을 기준으로 TEM을 이용 열연강판의 조직 내 석출물을 약 1,400,000nm2 면적에서 관찰하였으며 주로 (331) 면을 따라 Curve 혹은 Straight 형태의 상간계면 석출물(Interphase Precipitation)을 관찰할 수 있었다.
식(3):
Figure PCTKR2017006668-appb-I000003
상기 식(3)에서 PN은 열연강판 조직 내 (Ti, Nb)C 복합 석출물의 개수이며, d는 투과현미경(TEM)으로 관찰된 복합 석출물의 직경을 의미하며 단위는 nm이다.
Figure PCTKR2017006668-appb-I000004
은 각각 직경이 0초과~10nm, 10nm 초과~20nm, 20nm 초과~50nm, 50nm 초과~100nm인 석출물의 개수를 의미하며, 하기 표 3에는 각각 PN10, PN20, PN50, PN100으로 표시하였다.
구분 C Si Mn Nb Ti N 식(1) 식(2)
비교예1 0.038 0.060 1.435 0.014 0.045 0.008 0.292 0.039
비교예2 0.044 0.064 1.447 0.014 0.049 0.008 0.277 0.041
비교예3 0.050 0.059 1.403 0.003 0.067 0.008 0.302 0.052
비교예4 0.040 0.088 1.429 0.005 0.055 0.007 0.314 0.041
비교예5 0.030 0.050 1.400 0.010 0.070 0.004 0.564 0.058
비교예6 0.045 0.060 1.400 0.011 0.075 0.006 0.404 0.061
비교예7 0.050 0.065 1.500 0.010 0.100 0.006 0.455 0.071
비교예8 0.030 0.050 1.400 0.010 0.070 0.004 0.564 0.058
발명예1 0.049 0.069 1.427 0.014 0.076 0.007 0.360 0.061
발명예2 0.046 0.067 1.418 0.014 0.066 0.007 0.391 0.054
발명예3 0.049 0.077 1.416 0.011 0.077 0.007 0.377 0.061
발명예4 0.043 0.080 1.553 0.013 0.081 0.006 0.457 0.059
발명예5 0.030 0.050 1.400 0.010 0.070 0.004 0.564 0.058
발명예6 0.044 0.061 1.472 0.011 0.075 0.006 0.412 0.058
발명예7 0.030 0.050 1.400 0.010 0.085 0.006 0.644 0.069
상기 표 1에서 각 원소 함량의 단위는 중량%이고, 식(1) 및 식(2)는 하기와 같다.
식(1): 0.35 ≤ (Ti+Nb+V+Mo)/(C+N) ≤ 0.70
식(2): 0.04 ≤ (Ti+Nb+V+Mo)/(C+Mn+Si+Cr)
(단, 상기 식(1) 및 식(2)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)
구분 공정 FDT(℃) 냉각속도(℃/s) CT(℃) 통판속도(mpm)
비교예1 CEM 808 23 622 190
비교예2 CEM 778 22 596 190
비교예3 CEM 769 32 506 190
비교예4 CEM 764 24 566 190
비교예5 기존밀 880 28 601 410
비교예6 기존밀 859 26 599 410
비교예7 기존밀 877 27 610 410
비교예8 CEM 778 24 581 190
발명예1 CEM 770 35 481 190
발명예2 CEM 771 33 501 190
발명예3 CEM 774 36 477 190
발명예4 CEM 769 30 523 190
발명예5 CEM 771 33 499 190
발명예6 CEM 770 31 514 190
발명예7 CEM 779 32 514 190
구분 PN10 PN20 PN50 PN100 식(3) TS(MPa) El(%) 구멍확장성(%) 재질균일성(%) 페라이트(면적%)
비교예1 14520 5720 4230 30 1.45 543 28 130 4 97
비교예2 11250 2230 1940 0 2.70 511 31 140 3 98
비교예3 18010 4010 2110 0 2.94 551 27 121 5 98
비교예4 20940 4240 710 0 4.23 505 24 134 4 98
비교예5 11790 19470 670 0 0.59 699 21 93 20 98
비교예6 13920 16550 1140 0 0.79 674 21 89 16 97
비교예7 19540 14760 2120 0 1.16 601 23 91 21 97
비교예8 7643 3710 1430 0 1.48 537 25 119 6 96
발명예1 29830 1810 260 0 14.41 644 23 101 4 97
발명예2 41750 3320 220 0 11.79 598 24 99 3 97
발명예3 24510 330 70 0 61.28 609 22 97 2 96
발명예4 17270 2910 170 0 5.61 640 21 105 4 98
발명예5 35880 1180 220 0 25.63 599 24 92 3 97
발명예6 21190 1910 190 0 10.09 617 25 109 4 96
발명예7 33490 2140 240 0 14.07 607 25 120 2 96
본 발명의 제시한 조건을 모두 만족하는 발명예 1 내지 7의 경우, 재질 균일성 및 구멍확장성이 모두 우수하고 인장강도도 590MPa 이상을 확보하고 있음을 확인할 수 있다.
반면에 비교예 1 및 2는 각 원소 함량은 본 발명이 제시한 유효범위에 있으나 식(1)값을 만족하지 않았으며, 비교예 3 및 4는 Nb 함량과 식(1)값을 만족하지 않은 경우로서 구멍확장성은 우수하나 충분한 석출강화효과를 구현할 수 없어 인장강도가 낮은 것을 확인할 수 있다.
비교예 5, 6 및 7의 경우, 기존밀 방식을 적용한 경우로 인장강도는 우수하였으나, 재질 균일성이 열위한 것을 확인할 수 있다.
비교예 5, 8 및 발명예 5는 합금조성이 동일하나 제조조건이 상이한 경우로, 비교예 5는 일반밀 공정을 적용하여 재질 균일성이 열위하며, 비교예 8은 냉각속도가 낮아 인장강도가 열위하나, 발명예 5는 재질 균일성 및 인장강도가 모두 우수한 것을 확인할 수 있다.
도 1, 도 2, 도 3은 각각 발명예 1, 비교예 1, 비교예 7의 미세조직을 주사전자현미경으로 촬영한 사진이다. 도 2 및 도 3과 비교하였을 때, 발명예 1의 경우 미세하고 균일한 (Ti, Nb)C 복합석출물이 형성되었음을 도 1에서 확인할 수 있다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (13)

  1. 중량%로, C: 0.02~0.05%, Si: 0.01~0.3%, Mn: 1.0~1.6%, Ti: 0.04~0.1%, Nb: 0.01~0.05%, N: 0.008% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 식(1)을 만족하고,
    미세조직은 95면적% 이상의 페라이트 및 (Ti, Nb)C 복합석출물을 포함하고, 직경 10nm 이하의 (Ti, Nb)C 복합석출물 개수가 직경 10nm 초과의 (Ti, Nb)C 복합석출물 개수의 5배 이상으로 형성되어 있는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판.
    식(1): 0.35 ≤ (Ti+Nb+V+Mo)/(C+N) ≤ 0.70
    (단, 상기 식(1)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)
  2. 제1항에 있어서,
    상기 열연강판은 하기 식(2)를 만족하는 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판.
    식(2): 0.04 ≤ (Ti+Nb+V+Mo)/(C+Mn+Si+Cr)
    (단, 상기 식(2)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)
  3. 제1항에 있어서,
    상기 (Ti, Nb)C 복합석출물 간 거리가 30nm 이하인 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판.
  4. 제1항에 있어서,
    상기 (Ti, Nb)C 복합석출물은 15000개/㎛2 이상인 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판.
  5. 제1항에 있어서,
    상기 열연강판은 인장강도가 590MPa 이상이고, 폭/길이방향 재질편차가 평균값 대비 ±5% 이내인 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판.
  6. 중량%로, C: 0.02~0.05%, Si: 0.01~0.3%, Mn: 1.0~1.6%, Ti: 0.04~0.1%, Nb: 0.01~0.05%, N: 0.008% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 식(1)을 만족하는 용강을 연속주조하여 박 슬라브를 제조하는 연속주조 단계;
    상기 박 슬라브를 조압연하여 바(Bar)를 얻는 조압연 단계;
    상기 바(Bar)를 가열 또는 보열하는 가열 단계;
    상기 가열된 바(Bar)를 마무리압연하여 열연강판을 얻는 마무리압연 단계;
    상기 열연강판을 런아웃 테이블에서 600~700℃의 온도까지 30℃/s 이상의 냉각속도로 냉각한 후 공냉하는 냉각 단계; 및
    상기 냉각된 열연강판을 450~600℃에서 권취하는 권취 단계;
    를 포함하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법.
    식(1): 0.35 ≤ (Ti+Nb+V+Mo)/(C+N) ≤ 0.70
    (단, 상기 식(1)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)
  7. 제6항에 있어서,
    상기 용강은 하기 식(2)를 만족하는 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법.
    식(2): 0.04 ≤ (Ti+Nb+V+Mo)/(C+Mn+Si+Cr)
    (단, 상기 식(2)에서 각 원소기호는 각 원소의 at. %를 의미하며, 강 중에 포함되지 않은 원소는 0으로 계산한다.)
  8. 제6항에 있어서,
    상기 박 슬라브의 두께는 30~150mm인 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법.
  9. 제6항에 있어서,
    상기 런아웃 테이블에서 열연강판의 통판속도는 100~200mpm이고, 속도차는 10% 이하인 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법.
  10. 제6항에 있어서,
    상기 가열 단계 및 상기 마무리압연 단계 사이에 상기 가열된 바(Bar)를 권취하는 단계를 추가로 포함하는 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법.
  11. 제6항에 있어서,
    상기 조압연은 850~1150℃의 온도범위에서 행하는 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법.
  12. 제6항에 있어서,
    상기 가열 단계에서 상기 바(Bar)를 850~1150℃의 온도범위로 가열 또는 보열하는 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법.
  13. 제6항에 있어서,
    상기 마무리압연은 770~1000℃의 온도범위에서 행하는 것을 특징으로 하는 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판의 제조방법.
PCT/KR2017/006668 2016-06-23 2017-06-23 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법 WO2017222343A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17815756.6A EP3476969A4 (en) 2016-06-23 2017-06-23 HOT ROLLED STEEL SHEET WITH PRECIPITATION HARDENING HAVING EXCELLENT MATERIAL UNIFORMITY AND EXCELLENT HOLE EXTENSIBILITY, AND METHOD FOR MANUFACTURING THE SAME
US16/305,603 US20200325563A1 (en) 2016-06-23 2017-06-23 Precipitation-hardening hot rolled steel sheet having excellent material uniformity and hole expandability, and manufacturing method therefor
CN201780037469.4A CN109415791A (zh) 2016-06-23 2017-06-23 材质均匀性及扩孔性优异的析出强化型热轧钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0078573 2016-06-23
KR1020160078573A KR101767839B1 (ko) 2016-06-23 2016-06-23 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2017222343A1 true WO2017222343A1 (ko) 2017-12-28

Family

ID=60142108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006668 WO2017222343A1 (ko) 2016-06-23 2017-06-23 재질 균일성 및 구멍확장성이 우수한 석출강화형 열연강판 및 그 제조방법

Country Status (5)

Country Link
US (1) US20200325563A1 (ko)
EP (1) EP3476969A4 (ko)
KR (1) KR101767839B1 (ko)
CN (1) CN109415791A (ko)
WO (1) WO2017222343A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200351A (ja) 1992-12-28 1994-07-19 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板
JP2000087142A (ja) * 1998-09-10 2000-03-28 Nkk Corp フェライト+ベイナイト組織を有する高張力熱延鋼帯の製造方法
JP2003321739A (ja) 2002-04-30 2003-11-14 Jfe Steel Kk 加工性に優れた高張力熱延鋼板ならびにその製造方法および加工方法
KR100711481B1 (ko) * 2005-12-26 2007-04-24 주식회사 포스코 석출강화능이 우수한 자동차용 열연강판의 제조방법
KR20120049993A (ko) 2010-11-10 2012-05-18 주식회사 포스코 인장강도 590MPa급의 재질편차가 우수한 고강도 열연 TRIP강의 제조방법
KR20120052022A (ko) 2010-11-15 2012-05-23 주식회사 포스코 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 열연 DP강의 제조방법
KR20140081048A (ko) * 2012-12-21 2014-07-01 주식회사 포스코 구멍확장성 및 재질 편차가 우수한 고강도 열연강판 및 이의 제조방법
KR20140085188A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 열연강판 제조방법 및 이를 이용한 열연강판
KR20150025910A (ko) * 2013-08-30 2015-03-11 현대제철 주식회사 고강도 열연강판 및 그 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347210B2 (ja) * 1994-02-09 2002-11-20 日新製鋼株式会社 精密打ち抜き用高強度鋼板の製造方法
CA2681748C (en) * 2007-03-27 2013-01-08 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excellent in surface properties and burring properties, and method for manufacturing the same
CN101538680A (zh) * 2009-05-06 2009-09-23 湖南华菱涟源钢铁有限公司 一种生产屈服强度600MPa级高强钢的方法
CN103732776B (zh) * 2011-08-09 2016-06-08 新日铁住金株式会社 在低温下的冲击能吸收特性和耐haz软化特性优异的高屈服比热轧钢板及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200351A (ja) 1992-12-28 1994-07-19 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板
JP2000087142A (ja) * 1998-09-10 2000-03-28 Nkk Corp フェライト+ベイナイト組織を有する高張力熱延鋼帯の製造方法
JP2003321739A (ja) 2002-04-30 2003-11-14 Jfe Steel Kk 加工性に優れた高張力熱延鋼板ならびにその製造方法および加工方法
KR100711481B1 (ko) * 2005-12-26 2007-04-24 주식회사 포스코 석출강화능이 우수한 자동차용 열연강판의 제조방법
KR20120049993A (ko) 2010-11-10 2012-05-18 주식회사 포스코 인장강도 590MPa급의 재질편차가 우수한 고강도 열연 TRIP강의 제조방법
KR20120052022A (ko) 2010-11-15 2012-05-23 주식회사 포스코 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 열연 DP강의 제조방법
KR20140081048A (ko) * 2012-12-21 2014-07-01 주식회사 포스코 구멍확장성 및 재질 편차가 우수한 고강도 열연강판 및 이의 제조방법
KR20140085188A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 열연강판 제조방법 및 이를 이용한 열연강판
KR20150025910A (ko) * 2013-08-30 2015-03-11 현대제철 주식회사 고강도 열연강판 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476969A4 *

Also Published As

Publication number Publication date
US20200325563A1 (en) 2020-10-15
CN109415791A (zh) 2019-03-01
EP3476969A1 (en) 2019-05-01
EP3476969A4 (en) 2019-06-12
KR101767839B1 (ko) 2017-08-14

Similar Documents

Publication Publication Date Title
WO2016104975A1 (ko) Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
WO2018117552A1 (ko) 굽힘가공성이 우수한 초고강도 열연강판 및 그 제조방법
WO2018030790A1 (ko) 재질편차가 적고 표면품질이 우수한 고강도 열연강판 및 그 제조방법
WO2015099373A1 (ko) 용접열영향부 인성이 우수한 초고강도 용접구조용 강재 및 이의 제조방법
WO2019132426A1 (ko) 자기적 특성 및 형상이 우수한 박물 무방향성 전기강판 및 그 제조방법
WO2020111640A1 (ko) 낮은 철손 및 우수한 표면품질을 갖는 무방향성 전기강판 및 그 제조방법
WO2018004297A1 (ko) 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법
WO2018117497A1 (ko) 길이방향 균일 연신율이 우수한 용접강관용 강재, 이의 제조방법 및 이를 이용한 강관
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2018030737A1 (ko) 취성균열전파 저항성이 우수한 극후물 강재 및 그 제조방법
WO2019124776A1 (ko) 굽힘성 및 저온인성이 우수한 고강도 열연강판 및 이의 제조방법
WO2018117470A1 (ko) 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
WO2018117507A1 (ko) 저온인성이 우수한 저항복비 강판 및 그 제조방법
WO2019132317A1 (ko) 자기적 특성이 우수하고, 두께 편차가 작은 무방향성 전기강판 및 그 제조방법
WO2017111398A1 (ko) 저온인성 및 수소유기균열 저항성이 우수한 후판 강재 및 그 제조방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2019132420A1 (ko) 자기적 특성 및 형상이 우수한 박물 무방향성 전기강판 및 그 제조방법
WO2017111322A1 (ko) 연성이 우수한 초고강도 열연강판 및 그 제조방법
WO2019124765A1 (ko) 내충격특성이 우수한 고강도 강판 및 그 제조방법
WO2019124809A1 (ko) 취성균열 전파 저항성이 우수한 구조용 강재 및 그 제조방법
WO2020226301A1 (ko) 전단가공성이 우수한 초고강도 강판 및 그 제조방법
WO2020130436A2 (ko) 냉간 벤딩성이 우수한 고강도 구조용 강재 및 그 제조방법
WO2020111891A1 (ko) 저온파괴인성 및 연신율이 우수한 고강도 강판 및 그 제조방법
WO2017111443A1 (ko) 열간 저항성이 우수한 고강도 구조용 강판 및 그 제조방법
WO2020111639A1 (ko) 형상 품질 및 굽힘성이 우수한 초고강도 열연강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815756

Country of ref document: EP

Effective date: 20190123