WO2017222311A1 - Method for preparing metal composite structure in which metal nanowire and metal particles are welded - Google Patents

Method for preparing metal composite structure in which metal nanowire and metal particles are welded Download PDF

Info

Publication number
WO2017222311A1
WO2017222311A1 PCT/KR2017/006553 KR2017006553W WO2017222311A1 WO 2017222311 A1 WO2017222311 A1 WO 2017222311A1 KR 2017006553 W KR2017006553 W KR 2017006553W WO 2017222311 A1 WO2017222311 A1 WO 2017222311A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
particles
nanowires
composite structure
metal particles
Prior art date
Application number
PCT/KR2017/006553
Other languages
French (fr)
Korean (ko)
Inventor
박성주
이효주
홍상현
오세미
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2017222311A1 publication Critical patent/WO2017222311A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices

Definitions

  • the present invention relates to a method for manufacturing a metal nanowire, and more particularly, to a method for manufacturing a metal composite structure formed by welding metal particles and metal nanowires.
  • Transparent electrodes are applied to various optical devices such as solar light, displays, light emitting diodes, etc., and much research is being conducted.
  • ITO transparent electrode commercialized as a transparent electrode
  • a high temperature thin film process of 300 ° C. or higher is required to form a high conductivity thin film.
  • flexible polymer substrates PET, PEN, PAR, PES
  • Amorphous ITO thin films have high sheet resistance with higher defect density than crystalline ITO.
  • there is a limit to the application to the flexible element because the durability against bending is weak.
  • transparent electrodes based on metal nanowires have been actively studied as transparent electrode materials applicable to flexible devices.
  • the metal nanowire-based transparent electrode has a problem that the electrical properties are improved when the metal nanowire density is high, but the transmittance is decreased. Therefore, a transparent electrode having high permeability and high conductivity characteristics using only a small amount of metal nanowires has been studied.
  • nano-welding technology for welding junctions between metal nanowires has been studied as a method of improving conductivity characteristics in metal nanowire-based transparent electrodes.
  • nano welding technology various methods such as a method using heat, plasma welding using light, and chemical welding using salt and reducing agent have been studied.
  • the conventional nano welding technology has a disadvantage of deteriorating the crystallinity of the metal nanowires or using additional chemicals to increase the process cost and lower the stability.
  • the problem to be solved by the present invention is to provide a method for producing a metal composite structure welded metal nanowires and metal particles as a transparent electrode material.
  • the present invention for solving the above problems, forming a metal nanowire on a conductive substrate, forming a metal particle on the conductive substrate on which the metal nanowire is formed, and by applying water to weld the metal nanowires It can provide a method for producing a metal composite structure comprising the step of.
  • the metal particles may include a method of manufacturing a metal composite structure, wherein the metal particles have a lower work function and a standard electrode potential than the metal nanowires. have.
  • the metal particle formation method may be performed by applying a solution to particles or metal particles having a core shell structure in which metal oxide particles are surrounded by vacuum deposition or metal particle surfaces. It is possible to provide a method for producing a metal composite structure, characterized in that formed using a solution process.
  • the method of manufacturing a metal composite structure further comprises adding a salt containing a metal ion or adjusting the acidity to increase the reaction rate can do.
  • the metal particles have a lower work function than the metal nanowires, and electrons separated from the metal particles move to the junction portion of the metal nanowires through the conductive substrate. can do.
  • the welding of the metal nanowires and the metal particles by coating water may provide a method of manufacturing a metal composite structure, in which water is coated on the substrate and reacted for 1 to 5 minutes.
  • the step of applying water to apply water to weld the metal nanowires and the metal particles, after the water coating reaction is a method of manufacturing a metal composite structure, characterized in that to remove the water applied on the conductive substrate with nitrogen gas It may include.
  • a metal composite structure using metal particles and metal nanowires, water is applied to weld the metal particles to the metal nanowires to form a metal composite structure is not inhibited even in the crystallinity of the metal nanowires
  • the electrical conductivity and the light transmittance can be improved without.
  • the manufactured metal composite structure can be manufactured without chemicals added to an environmentally friendly process of applying water by welding, and thus can have high economical efficiency as a material of a transparent electrode.
  • FIG. 1 is a view for explaining a method of manufacturing a metal composite structure according to an embodiment of the present invention.
  • FIG. 2 is an SEM image for explaining a metal composite structure formed according to the presence or absence of a conductive substrate according to an embodiment and a comparative example of the present invention.
  • FIG 3 is a graph for comparing the sheet resistance according to an embodiment of the present invention and a comparative example.
  • FIG. 1 is a view for explaining a method of manufacturing a metal composite structure according to an embodiment of the present invention.
  • the metal nanowires 100 are formed on the conductive substrate 10.
  • the metal particles 200 are formed on the metal nanowires 100.
  • the metal particles 200 are welded to the metal nanowires 100 to form a metal composite structure 300.
  • the metal nanowires 100 are formed on the conductive substrate 10, and the metal particles 200 are formed on the metal nanowires 100.
  • the method of forming the metal particles 200 may be formed using a vacuum deposition or a solution process of applying a solution to the particles of the core shell structure or the metal particles 200 surrounded by metal oxide particles on the surface of the metal particles 200.
  • the metal nanowires 100 and the metal particles 200 formed on the conductive substrate 10 pass current through the ohmic junction with the conductive substrate 10. Depending on the type of semiconductor and the relative work function difference between the metal and the semiconductor, current characteristics may vary and may have an ohmic junction or a rectifying junction.
  • the metal particles 200 have a lower work function and lower standard electrode potential than the metal nanowires 100, and the crystallinity and structure of the metal particles 200 are not limited.
  • the work function is a measure of the attraction force of the electrons in the metal to bond, and the energy required to excite one electron from the metal surface. That is, when the work function is low, the bonding force of the electrons is relatively low, and the electrons of the metal particles 200 having the low work function are easily separated.
  • the metal particles 200 have a lower work function than the metal nanowires 100, and electrons separated from the metal particles 200 move to the junction portion of the metal nanowires 100 through the conductive substrate 10. do.
  • water may be applied and reacted for 1 to 5 minutes.
  • salts containing metal ions may be added or acidity may be adjusted to increase the reaction rate in water.
  • the cations of the metal particles 200 dissolved in the water are combined to move to the portion having a negative charge in order to meet the standard state. Therefore, the metal particles 200 are dissolved and the metal particles 200 are welded to the metal nanowire 100 junction to form the metal composite structure 300.
  • FIG. 2 is an SEM image for explaining a metal composite structure formed according to the presence or absence of a conductive substrate according to an embodiment and a comparative example of the present invention.
  • FIG. 2 an SEM image for explaining a metal composite structure 300 formed according to the presence or absence of a conductive substrate 10 according to an embodiment of the present invention is disclosed.
  • FIG. 2A a metal composite structure 300 manufactured by the manufacturing method disclosed in FIG. 1 is disclosed.
  • the metal nanowires 100 are formed on the conductive substrate 10.
  • the metal particles 200 are formed on the metal nanowires 100.
  • the formed metal particles 200 have a lower work function and a standard electrode potential than the metal nanowires 100, and the size of the metal particles 200 is not limited.
  • the application of water initiates the reaction.
  • Water is applied onto the conductive substrate 10 and reacted for 1 to 5 minutes.
  • the metal particles 200 are welded with a metal nanowire 100 having a large work function and a standard electrode potential to form a metal composite structure 300.
  • the metal nanowires 100 are formed on the glass.
  • the metal particles 200 are formed on the metal nanowires 100.
  • the formed metal particles 200 may have a work function and a standard electrode potential smaller than those of the metal nanowires 100.
  • FIG. 2 (b) is formed by the same manufacturing method as (a) of FIG. 2, but (a) of FIG. 2 shows that the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10. 2B is formed on the glass.
  • the metal particles 200 are not welded to the metal nanowires 100, and the metal particles 200 deposited on the glass are distributed on the front surface, and the metal nanoparticles are interposed between the metal particles 200.
  • the wire 100 is located.
  • the metal nanowires 100 intersect on parallel lines which are not equal to each other.
  • the conductive substrate 10, the metal particles 200, and the metal nanowires 100 are ohmic bonded to each other, and electrons of the metal particles 200 are transferred to the metal nanoparticles by the conductive substrate 10 due to the difference in work function and standard electrode potential.
  • the metal particles 200 are welded to the metal nanowires 100 by moving to the wire 100. However, in the case of glass, since no current flows, the movement of electrons does not occur, and thus the metal particles 200 and the metal nanowires 100 cannot be welded to each other.
  • FIG. 2C an SEM image of the metal composite structure 300 formed by welding the metal particles 200 on the SI substrate with the metal nanowires 100 is disclosed.
  • the preparation method will be described in detail in Comparative Example 2.
  • An SI substrate is used as the conductive substrate 10.
  • a metal nanowire 100 is formed on an SI substrate.
  • the metal particles 200 are formed on the metal nanowires 100.
  • the SI substrate is used as the conductive substrate 10 in (c) and water is applied to move the electrons of the metal particles 200 through the SI substrate, which is the conductive substrate 10. 100 to be welded to form a metal composite structure (300). Therefore, the kind of the conductive substrate 10 used in the manufacturing method of applying the water to the metal particles 200 by welding the metal nanowires 100 to form the metal composite structure 300 is not limited.
  • FIG 3 is a graph for comparing the sheet resistance according to an embodiment of the present invention and a comparative example.
  • 3A illustrates a sheet resistance graph according to an embodiment.
  • the first sample is a metal nanowire 100 formed on the conductive substrate 10.
  • the metal particles 200 are formed at 5 nm on the first sample.
  • the third sample was reacted for 10 minutes by applying water on the second sample and dried with nitrogen gas.
  • the fourth sample was reacted for 24 hours by applying water on the second sample and dried with nitrogen gas.
  • the first sample is a metal nanowire 100 formed on the glass.
  • the metal particles 200 are formed at 5 nm on the first sample.
  • the third sample was reacted for 10 minutes by applying water on the second sample and dried with nitrogen gas.
  • FIG. 3 shows that the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10 to have overall low sheet resistance compared to (b) formed on the glass.
  • (b) is the metal nanowires 100 and the metal particles 200 formed on the non-conductive glass, and generally have a high sheet resistance value.
  • the sheet resistance tends to decrease.
  • the sheet resistance has a relatively high sheet resistance due to the glass, and the sheet resistance due to the formation of the metal particles 200 is greatly reduced, but when the water is applied, the sheet resistance is increased.
  • the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10 to have a relatively low sheet resistance, and after the water is applied, the sheet resistance value is greatly reduced.
  • the fourth sample measured the sheet resistance after 24 hours of water application, the sheet resistance value similar to that of 1 to 5 minutes after the third sample water application reaction time is maintained. This is an irreversible reaction in which the metal particles 200 are dissolved and welded to the junctions of the metal nanowires 100, and thus no chemical reactions proceed.
  • the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10 and water is coated to weld to form the metal composite structure 300 (a) and the metal nanowires on the glass ( Compared with (b) in which 100) and the metal particles 200 are not welded, (a) generally has a low sheet resistance value.
  • the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10 to induce electron movement and the metal particles 200 are formed of the metal nanowires 100 according to the work function and the standard electrode potential difference. As a result of the welding, it can have a low sheet resistance.
  • the metal nanowires 100 and the metal particles 200 are formed on glass.
  • the metal particles 200 on the glass are not welded to the metal nanowires 100. Therefore, the remaining metal particles 200 prevent the light from being transmitted, thereby lowering the light transmittance.
  • the metal nanowires 100 and the metal particles 200 are formed on the conductive layer and the metal particles 200 are welded to the metal nanowires 100, the remaining metal particles 200 are formed.
  • the light transmittance is improved by decreasing.
  • the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10, and the metal particles 200 are dissolved in water, so that the work function and the standard electrode potential difference are different. It is formed by welding to the metal nanowires (100).
  • the formed metal composite structure 300 does not reduce the crystallinity of the metal nanowires 100 and is welded in water, so that no additional compound for welding may be required, thereby reducing process costs.
  • the formed metal composite structure 300 may reduce sheet resistance and improve light transmittance, and thus may be used as a material of a transparent electrode.

Abstract

Provided is a method for preparing a metal composite structure formed by using a work function and a standard electrode potential difference of a metal nanowire and metal particles. A metal nanowire and metal particles are formed on a conductive substrate, and water is introduced such that the metal particles are welded to the metal nanowire by a work function and a standard electrode potential difference, and thus a metal composite structure is formed. The formed metal composite nanostructure does not deteriorate crystallinity of the metal nanowire, and can be used as a transparent electrode material by using an environmentally-friendly nano welding technique.

Description

금속 나노와이어와 금속입자가 용접된 금속복합구조체의 제조방법Method for manufacturing metal composite structure welded with metal nanowires and metal particles
본 발명은 금속 나노와이어의 제조방법에 관한 것으로, 더욱 상세하게는 금속입자와 금속 나노와이어를 용접시켜 형성된 금속복합구조체의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a metal nanowire, and more particularly, to a method for manufacturing a metal composite structure formed by welding metal particles and metal nanowires.
투명전극은 태양광, 디스플레이, 발광다이오드 등과 같은 다양한 광소자에 적용되어 매우 많은 연구가 진행되고 있다. 투명전극으로 상용화되어 있는 ITO 투명전극의 경우 고전도 박막을 형성하기 위해서 300℃ 이상의 고온 박막 과정이 요구된다. 그러나 플렉시블한 고분자 기판(PET, PEN, PAR, PES)의 경우 200도 이상의 온도에서 공정이 어렵기 때문에 상온에서 증착된 비정질 구조의 ITO 박막을 플렉시블 투명전극으로 사용하게 된다. 비정질 ITO 박막의 경우 결정질 ITO에 비해 높은 결함 밀도로 높은 면저항을 갖는다. 또한, 휘어짐에 대한 내구성이 취약하여 유연소자에의 적용에 한계가 있다. Transparent electrodes are applied to various optical devices such as solar light, displays, light emitting diodes, etc., and much research is being conducted. In the case of the ITO transparent electrode commercialized as a transparent electrode, a high temperature thin film process of 300 ° C. or higher is required to form a high conductivity thin film. However, in the case of flexible polymer substrates (PET, PEN, PAR, PES), it is difficult to process at a temperature of 200 degrees or more, so that an amorphous ITO thin film deposited at room temperature is used as a flexible transparent electrode. Amorphous ITO thin films have high sheet resistance with higher defect density than crystalline ITO. In addition, there is a limit to the application to the flexible element because the durability against bending is weak.
따라서, 유연한 소자에 적용 가능한 투명전극 물질로서 금속 나노와이어 기반의 투명전극이 활발히 연구되고 있다. 금속 나노와이어 기반의 투명전극은 금속 나노와이어의 밀도가 높으면 전기적 특성이 향상되지만 투과도가 감소하는 문제가 있어서 소량의 금속 나노와이어만 사용하여 고투과도 고전도도특성을 가지는 투명전극이 연구되고 있다. 특히, 금속 나노와이어 기반 투명전극에서 전도도 특성을 개선하는 방법으로 금속 나노와이어 간의 접합부분을 용접하는 나노 용접기술이 연구 되고 있다. Therefore, transparent electrodes based on metal nanowires have been actively studied as transparent electrode materials applicable to flexible devices. The metal nanowire-based transparent electrode has a problem that the electrical properties are improved when the metal nanowire density is high, but the transmittance is decreased. Therefore, a transparent electrode having high permeability and high conductivity characteristics using only a small amount of metal nanowires has been studied. In particular, nano-welding technology for welding junctions between metal nanowires has been studied as a method of improving conductivity characteristics in metal nanowire-based transparent electrodes.
나노 용접기술로는 열을 이용한 방법, 빛을 이용한 플라즈마 용접기술, 염과 환원제를 이용한 화학적 용접기술 등의 다양한 방법들이 연구되고 있다. 하지만 기존의 나노 용접기술은 금속 나노와이어의 결정성을 악화 시키거나 화학물질을 추가로 사용하여 공정비용을 증가시키고 안정성이 떨어지는 단점이 있다.As nano welding technology, various methods such as a method using heat, plasma welding using light, and chemical welding using salt and reducing agent have been studied. However, the conventional nano welding technology has a disadvantage of deteriorating the crystallinity of the metal nanowires or using additional chemicals to increase the process cost and lower the stability.
따라서, 기존의 나노 용접기술을 적용한 금속 나노와이어의 결정성 감소 및 추가로 사용되는 화학물질 등으로 인한 공정 단가 향상 및 안정성이 저해되는 점도 해결해야 할 문제점이다.Therefore, it is also a problem to be solved that process cost improvement and stability are inhibited due to the reduction in crystallinity of the metal nanowires to which the conventional nano welding technology is applied and additionally used chemicals.
본 발명이 해결하고자 하는 과제는 투명전극소재로 금속 나노와이어와 금속입자가 용접된 금속복합구조체의 제조방법을 제공하는데 있다.The problem to be solved by the present invention is to provide a method for producing a metal composite structure welded metal nanowires and metal particles as a transparent electrode material.
상기 과제를 해결하기 위한 본 발명은, 전도성 기판 상에 금속 나노와이어를 형성하는 단계, 상기 금속 나노와이어가 형성된 전도성 기판 상에 금속입자를 형성하는 단계, 및 물을 도포하여 상기 금속 나노와이어를 용접하는 단계를 포함하는 금속복합구조체의 제조방법을 제공할 수 있다.The present invention for solving the above problems, forming a metal nanowire on a conductive substrate, forming a metal particle on the conductive substrate on which the metal nanowire is formed, and by applying water to weld the metal nanowires It can provide a method for producing a metal composite structure comprising the step of.
상기 금속 나노와이어가 형성된 전도성 기판 상에 금속입자를 형성하는 단계에서, 상기 금속입자는 상기 금속 나노와이어보다 낮은 일함수와 표준전극전위를 갖는 것을 특징으로 하는 금속복합구조체의 제조방법을 포함할 수 있다. In the forming of the metal particles on the conductive substrate on which the metal nanowires are formed, the metal particles may include a method of manufacturing a metal composite structure, wherein the metal particles have a lower work function and a standard electrode potential than the metal nanowires. have.
상기 금속 나노와이어가 형성된 전도성 기판 상에 금속입자를 형성하는 단계에서, 상기 금속입자 형성방법은 진공 증착 또는 금속입자 표면에 산화금속입자가 둘러진 코어쉘 구조의 입자 또는 금속입자에 용액을 도포하는 용액공정을 이용하여 형성되는 것을 특징으로 하는 금속복합구조체의 제조방법을 제공할 수 있다.In the forming of the metal particles on the conductive substrate on which the metal nanowires are formed, the metal particle formation method may be performed by applying a solution to particles or metal particles having a core shell structure in which metal oxide particles are surrounded by vacuum deposition or metal particle surfaces. It is possible to provide a method for producing a metal composite structure, characterized in that formed using a solution process.
물을 도포하여 상기 금속 나노와이어로 용접하는 단계에서, 반응속도를 증가 시키기 위해 금속이온이 포함된 염을 첨가하거나 또는 산도를 조절하는 것을 더 포함하는 것을 특징으로 하는 금속복합구조체의 제조방법을 포함할 수 있다.In the step of applying water to the metal nanowires by applying water, the method of manufacturing a metal composite structure further comprises adding a salt containing a metal ion or adjusting the acidity to increase the reaction rate can do.
물을 도포하여 상기 금속 나노와이어로 용접하는 단계에서, 낮은 일함수와 표준전위전극을 가지는 금속입자의 전자는 이탈되는 것을 특징으로 하는 금속복합구조체의 제조방법을 제공할 수 있다.In the step of applying water to the metal nanowires by welding, electrons of the metal particles having a low work function and a standard potential electrode may be released, thereby providing a method of manufacturing a metal composite structure.
상기 금속입자는 상기 금속 나노와이어보다 낮은 일함수를 가지고, 상기 금속입자로부터 이탈한 전자는 상기 전도성 기판을 통해 상기 금속 나노와이어들의 접합 부분으로 이동하는 것을 특징으로 하는 금속복합구조체의 제조방법을 포함할 수 있다.The metal particles have a lower work function than the metal nanowires, and electrons separated from the metal particles move to the junction portion of the metal nanowires through the conductive substrate. can do.
물을 도포하여 상기 금속 나노와이어와 금속입자를 용접하는 단계는, 상기 기판 상에 물을 도포하여 1분 내지 5분을 반응시키는 것을 특징으로 하는 금속복합구조체의 제조방법을 제공할 수 있다. The welding of the metal nanowires and the metal particles by coating water may provide a method of manufacturing a metal composite structure, in which water is coated on the substrate and reacted for 1 to 5 minutes.
물을 도포하여 물을 도포하여 상기 금속 나노와이어와 금속입자를 용접하는 단계는, 물 도포 반응 후에는 질소가스로 전도성 기판 상에 도포된 물을 제거해주는 것을 특징으로 하는 금속복합구조체의 제조방법을 포함할 수 있다.The step of applying water to apply water to weld the metal nanowires and the metal particles, after the water coating reaction is a method of manufacturing a metal composite structure, characterized in that to remove the water applied on the conductive substrate with nitrogen gas It may include.
본 발명에 따른 금속복합구조체의 제조방법에 따라 금속입자와 금속 나노와이어를 이용하고, 물을 도포하여 금속입자를 금속 나노와이어에 용접시켜 금속복합구조체를 형성하여 금속 나노와이어의 결정성에도 저해되지 않고 전기전도도 및 광투과율을 향상시킬 수 있다.According to the method for manufacturing a metal composite structure according to the present invention, using metal particles and metal nanowires, water is applied to weld the metal particles to the metal nanowires to form a metal composite structure is not inhibited even in the crystallinity of the metal nanowires The electrical conductivity and the light transmittance can be improved without.
또한, 제조된 금속복합구조체는 물을 도포하여 용접시키는 친환경적인 공정으로 추가되는 화학물질 없이 제조 가능하여 투명전극의 소재로써, 높은 경제성을 지닐 수 있다. In addition, the manufactured metal composite structure can be manufactured without chemicals added to an environmentally friendly process of applying water by welding, and thus can have high economical efficiency as a material of a transparent electrode.
다만, 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the effects of the invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 일 실시예에 따른 금속복합구조체의 제조방법을 설명하기 위한 도면이다. 1 is a view for explaining a method of manufacturing a metal composite structure according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예와 비교예에 따른 전도성 기판 유무에 따라 형성되는 금속복합구조체에 대해 설명하기 위한 SEM 이미지이다.2 is an SEM image for explaining a metal composite structure formed according to the presence or absence of a conductive substrate according to an embodiment and a comparative example of the present invention.
도 3은 본 발명의 일 실시예와 비교예에 따른 면저항을 비교하기 위한 그래프이다. 3 is a graph for comparing the sheet resistance according to an embodiment of the present invention and a comparative example.
도 4는 본 발명의 일 실시예에 따른 광투과도 그래프이다.4 is a light transmittance graph according to an embodiment of the present invention.
이하 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당 기술 분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등을 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다. Embodiment of the present invention can be modified in various other forms, the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Therefore, the shape and size of the elements in the drawings may be exaggerated for more clear description, and the elements denoted by the same reference numerals in the drawings are the same elements.
실시예Example
도 1은 본 발명의 일 실시예에 따른 금속복합구조체의 제조방법을 설명하기 위한 도면이다. 1 is a view for explaining a method of manufacturing a metal composite structure according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 금속복합구조체의 제조방법이 개시된다. Referring to Figure 1, a method of manufacturing a metal composite structure of the present invention is disclosed.
먼저, 전도성 기판(10) 상에 금속 나노와이어(100)가 형성된다. First, the metal nanowires 100 are formed on the conductive substrate 10.
이어서, 상기 금속 나노와이어(100) 상에 금속입자(200)가 형성된다.Subsequently, the metal particles 200 are formed on the metal nanowires 100.
마지막으로, 물을 도포하여 상기 금속입자(200)가 금속 나노와이어(100)에 용접되어 금속복합구조체(300)가 형성된다.Finally, by applying water, the metal particles 200 are welded to the metal nanowires 100 to form a metal composite structure 300.
이하, 상기 도 1에 개시된 제조방법은 더욱 상세히 설명된다. Hereinafter, the manufacturing method disclosed in FIG. 1 will be described in more detail.
전도성 기판(10) 상에 금속 나노와이어(100)가 형성되고 상기 금속 나노와이어(100)에 금속입자(200)가 형성된다. 상기 금속입자(200) 형성방법은 진공 증착 또는 금속입자(200) 표면에 산화금속입자가 둘러진 코어쉘 구조의 입자 또는 금속입자(200)에 용액을 도포하는 용액공정을 이용하여 형성될 수 있다. 또한, 전도성 기판(10) 상에 형성되는 금속 나노와이어(100)와 금속입자(200)는 상기 전도성 기판(10)과 서로 오믹 접합을 통해서 전류가 통한다. 반도체의 종류와 금속과 반도체의 상대적인 일함수 차이에 따라 전류 특성이 달라지고 오믹 접합 또는 정류성 접합을 가질 수 있다.The metal nanowires 100 are formed on the conductive substrate 10, and the metal particles 200 are formed on the metal nanowires 100. The method of forming the metal particles 200 may be formed using a vacuum deposition or a solution process of applying a solution to the particles of the core shell structure or the metal particles 200 surrounded by metal oxide particles on the surface of the metal particles 200. . In addition, the metal nanowires 100 and the metal particles 200 formed on the conductive substrate 10 pass current through the ohmic junction with the conductive substrate 10. Depending on the type of semiconductor and the relative work function difference between the metal and the semiconductor, current characteristics may vary and may have an ohmic junction or a rectifying junction.
다만, 금속입자(200)는 금속 나노와이어(100)보다 낮은 일함수와 낮은 표준전극전위를 갖고 있는 것이며, 금속입자(200)의 결정성 및 구조는 은 한정되지 않는다. 일함수는 금속 내 전자들이 결합하고 있는 인력의 척도이며, 금속 표면부터 전자 1개를 여기하는데 필요한 에너지이다. 즉, 일함수가 낮으면, 전자의 결합력은 상대적으로 낮아지고, 낮은 일함수를 가지는 금속입자(200)의 전자는 이탈이 용이하다. However, the metal particles 200 have a lower work function and lower standard electrode potential than the metal nanowires 100, and the crystallinity and structure of the metal particles 200 are not limited. The work function is a measure of the attraction force of the electrons in the metal to bond, and the energy required to excite one electron from the metal surface. That is, when the work function is low, the bonding force of the electrons is relatively low, and the electrons of the metal particles 200 having the low work function are easily separated.
이로써, 금속입자(200)는 금속 나노와이어(100)보다 낮은 일함수를 가지고, 금속입자(200)로부터 이탈한 전자는 전도성 기판(10)을 통해 상기 금속 나노와이어(100)들의 접합 부분으로 이동한다. 또한, 물은 1분 내지 5분동안 도포하여 반응시킬 수 있다. 물이 도포되고 금속 나노와이어(100)로 용접하는 단계에서 물속에서 반응속도를 증가시키기 위해 금속이온이 포함된 염을 첨가하거나, 산도를 조절할 수 있다.As a result, the metal particles 200 have a lower work function than the metal nanowires 100, and electrons separated from the metal particles 200 move to the junction portion of the metal nanowires 100 through the conductive substrate 10. do. In addition, water may be applied and reacted for 1 to 5 minutes. In the step of applying water and welding the metal nanowires 100, salts containing metal ions may be added or acidity may be adjusted to increase the reaction rate in water.
이로써, 표준전극전위가 큰 금속 나노와이어(100)로 금속입자(200)의 전자들이 전도층을 따라 공급되고 금속 나노와이어(100) 접합부분에 많은 전자들이 존재하게 되어 상대적으로 강한 음의 전하를 띄게 된다.As a result, electrons of the metal particles 200 are supplied along the conductive layer to the metal nanowires 100 having a large standard electrode potential, and many electrons are present at the junctions of the metal nanowires 100 to generate relatively strong negative charges. Will be visible.
따라서, 물속에 녹아 있는 금속입자(200)의 양이온들은 표준상태를 맞추기 위하여 음의 전하를 띄는 부분으로 이동하여 결합하게 된다. 따라서, 금속입자(200)는 용해되고 금속 나노와이어(100) 접합 부분으로 금속입자(200)가 용접되어 금속복합구조체(300)가 형성된다.Therefore, the cations of the metal particles 200 dissolved in the water are combined to move to the portion having a negative charge in order to meet the standard state. Therefore, the metal particles 200 are dissolved and the metal particles 200 are welded to the metal nanowire 100 junction to form the metal composite structure 300.
도 2는 본 발명의 일 실시예와 비교예에 따른 전도성 기판 유무에 따라 형성되는 금속복합구조체에 대해 설명하기 위한 SEM 이미지이다. 2 is an SEM image for explaining a metal composite structure formed according to the presence or absence of a conductive substrate according to an embodiment and a comparative example of the present invention.
도 2를 참조하면, 본 발명의 실시예와 비교에에 따른 전도성 기판(10) 유무에 따라 형성되는 금속복합구조체(300)에 대해 설명하기 위한 SEM 이미지가 개시된다.Referring to FIG. 2, an SEM image for explaining a metal composite structure 300 formed according to the presence or absence of a conductive substrate 10 according to an embodiment of the present invention is disclosed.
도 2에 (a)에서, 일 실시예로 도 1에서 개시된 제조방법으로 제조된 금속복합구조체(300)가 개시된다.  In FIG. 2A, a metal composite structure 300 manufactured by the manufacturing method disclosed in FIG. 1 is disclosed.
먼저, 전도성 기판(10) 상에 금속 나노와이어(100)가 형성된다. First, the metal nanowires 100 are formed on the conductive substrate 10.
이어서, 상기 금속 나노와이어(100) 상에 금속입자(200)가 형성된다. Subsequently, the metal particles 200 are formed on the metal nanowires 100.
상기 형성된 금속입자(200)는 상기 금속 나노와이어(100)보다 낮은 일함수와 표준전극전위를 갖는 것이며, 금속입자(200)의 크기는 한정하지 않는다. The formed metal particles 200 have a lower work function and a standard electrode potential than the metal nanowires 100, and the size of the metal particles 200 is not limited.
이어서, 물을 도포하면 반응이 시작된다. 전도성 기판(10) 상에 물을 도포하고 1분 내지 5분 반응시킨다. 또한, 상기 금속입자(200)는 일함수 및 표준전극전위가 큰 금속 나노와이어(100)로 용접되어 금속복합구조체(300)가 형성된다. Subsequently, the application of water initiates the reaction. Water is applied onto the conductive substrate 10 and reacted for 1 to 5 minutes. In addition, the metal particles 200 are welded with a metal nanowire 100 having a large work function and a standard electrode potential to form a metal composite structure 300.
마지막으로, 물 도포 반응 후에는 질소가스로 전도성 기판(10) 상의 도포된 물을 제거한다. Finally, after the water coating reaction, the applied water on the conductive substrate 10 is removed with nitrogen gas.
도 2에 (b) 내지 (c)는 비교예들이 개시된다. 2 (b) to (c) disclose comparative examples.
도 2에 (b)를 참조하면, 글라스 상에 금속 나노와이어(100)와 금속입자(200)의 합성한 것에 대한 SEM 이미지가 개시된다. 이하, 제조방법은 비교예 1에서 상세히 설명된다.Referring to (b) of FIG. 2, an SEM image of the synthesis of the metal nanowires 100 and the metal particles 200 on the glass is disclosed. Hereinafter, the preparation method will be described in detail in Comparative Example 1.
<비교예 1>Comparative Example 1
글라스 상에 금속 나노와이어와 금속입자의 합성Synthesis of Metal Nanowires and Metal Particles on Glass
먼저, 글라스 상에 금속 나노와이어(100)가 형성된다. 이어서, 상기 금속 나노와이어(100) 상에 금속입자(200)가 형성된다. 형성된 상기 금속입자(200)는 일함수 및 표준전극전위가 금속 나노와이어(100) 보다 작은 것이 사용된다. 마지막으로 10분간 물을 도포하고 질소가스로 물을 제거한다. First, the metal nanowires 100 are formed on the glass. Subsequently, the metal particles 200 are formed on the metal nanowires 100. The formed metal particles 200 may have a work function and a standard electrode potential smaller than those of the metal nanowires 100. Finally, apply water for 10 minutes and remove the water with nitrogen gas.
도 2의 (b)는 도 2의 (a)와 동일한 제조방법으로 형성되나, 도 2의 (a)는 금속 나노와이어(100)와 금속입자(200)가 전도성 기판(10) 상에 형성되고, 도 2의 (b)의 경우는 글라스 상에 형성된다. 2 (b) is formed by the same manufacturing method as (a) of FIG. 2, but (a) of FIG. 2 shows that the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10. 2B is formed on the glass.
도 2의 (b)에서, 금속입자(200)는 금속 나노와이어(100)로 용접되지 않고 글라스 상에 증착된 금속입자(200)들이 전면에 분포되어 있으며, 금속입자(200)들 사이로 금속 나노와이어(100)가 위치한다. 금속 나노와이어(100)는 서로 같지 않은 평행선 상에 교차되어 위치한다. 전도성 기판(10)과 금속입자(200) 및 금속 나노와이어(100)는 서로 오믹 접합을 하고 일함수 및 표준전극전위 차이에 의해 금속입자(200)의 전자가 전도성 기판(10)에 의해 금속 나노와이어(100)로 이동하여 금속입자(200)가 금속 나노와이어(100)로 용접된다. 하지만, 글라스의 경우, 전류가 흐르지 않기 때문에 전자의 이동이 일어나지 않아 금속입자(200)와 금속 나노와이어(100)는 서로 용접될 수 없다. In FIG. 2B, the metal particles 200 are not welded to the metal nanowires 100, and the metal particles 200 deposited on the glass are distributed on the front surface, and the metal nanoparticles are interposed between the metal particles 200. The wire 100 is located. The metal nanowires 100 intersect on parallel lines which are not equal to each other. The conductive substrate 10, the metal particles 200, and the metal nanowires 100 are ohmic bonded to each other, and electrons of the metal particles 200 are transferred to the metal nanoparticles by the conductive substrate 10 due to the difference in work function and standard electrode potential. The metal particles 200 are welded to the metal nanowires 100 by moving to the wire 100. However, in the case of glass, since no current flows, the movement of electrons does not occur, and thus the metal particles 200 and the metal nanowires 100 cannot be welded to each other.
도 2의 (c)를 참조하면, SI 기판 상에 금속입자(200)가 금속 나노와이어(100)로 용접되어 형성된 금속복합구조체(300)의 SEM 이미지가 개시된다. 이하, 제조방법은 비교예 2에서 상세히 설명된다.Referring to FIG. 2C, an SEM image of the metal composite structure 300 formed by welding the metal particles 200 on the SI substrate with the metal nanowires 100 is disclosed. Hereinafter, the preparation method will be described in detail in Comparative Example 2.
<비교예 2>Comparative Example 2
SI 기판 상에 형성된 금속복합구조체Metal composite structure formed on SI substrate
전도성 기판(10)으로 SI기판이 사용된다. 먼저, SI기판 상에 금속 나노와이어(100)가 형성된다. 이어서, 상기 금속 나노와이어(100) 상에 금속입자(200)가 형성된다. 마지막으로 10분간 물을 도포하고 질소가스로 물을 제거한다. An SI substrate is used as the conductive substrate 10. First, a metal nanowire 100 is formed on an SI substrate. Subsequently, the metal particles 200 are formed on the metal nanowires 100. Finally, apply water for 10 minutes and remove the water with nitrogen gas.
도 2의 (a) 내지 (c)는 동일한 제조방법으로 제조된다. 다만, (c)의 전도성 기판(10)으로 SI 기판이 사용되고 물을 도포하여 금속입자(200)가 전도성 기판(10)인 SI 기판을 통해서 금속입자(200)의 전자가 이동하여 금속 나노와이어(100)로 용접되어 금속복합구조체(300)를 형성한다. 따라서, 물을 도포하여 금속입자(200)가 금속 나노와이어(100)로 용접되어 금속복합구조체(300)를 형성하는 제조방법에 사용되는 전도성 기판(10)의 종류는 한정 하지 않는다. 2 (a) to 2 (c) are manufactured by the same manufacturing method. However, the SI substrate is used as the conductive substrate 10 in (c) and water is applied to move the electrons of the metal particles 200 through the SI substrate, which is the conductive substrate 10. 100 to be welded to form a metal composite structure (300). Therefore, the kind of the conductive substrate 10 used in the manufacturing method of applying the water to the metal particles 200 by welding the metal nanowires 100 to form the metal composite structure 300 is not limited.
도 3은 본 발명의 일 실시예와 비교예에 따른 면저항을 비교하기 위한 그래프이다. 3 is a graph for comparing the sheet resistance according to an embodiment of the present invention and a comparative example.
도 3을 참조하면, 실시예와 비교예에 따른 면저항 그래프가 개시된다. Referring to FIG. 3, sheet resistance graphs according to Examples and Comparative Examples are disclosed.
도 3의 (a)는 일 실시예에 따른 면저항 그래프가 개시된다. 3A illustrates a sheet resistance graph according to an embodiment.
첫번째 샘플은 전도성 기판(10) 상에 금속 나노와이어(100)를 형성한 것이다. The first sample is a metal nanowire 100 formed on the conductive substrate 10.
두번째 샘플은 상기 첫번째 샘플 상에 금속입자(200)를 5nm로 형성한 것이다.In the second sample, the metal particles 200 are formed at 5 nm on the first sample.
세번째 샘플은 상기 두번째 샘플 상에 물을 도포하여 10분 반응시키고 질소가스로 건조시킨 것이다. The third sample was reacted for 10 minutes by applying water on the second sample and dried with nitrogen gas.
네번째 샘플은 두번째 샘플 상에 물을 도포하여 24시간 반응시키고 질소가스로 건조시킨 것이다. The fourth sample was reacted for 24 hours by applying water on the second sample and dried with nitrogen gas.
도 3의 (b)는 비교예에 따른 면저항 그래프가 개시된다. 3 (b) discloses a sheet resistance graph according to a comparative example.
첫번째 샘플은 글라스 상에 금속 나노와이어(100)를 형성한 것이다. The first sample is a metal nanowire 100 formed on the glass.
두번째 샘플은 상기 첫번째 샘플 상에 금속입자(200)를 5nm로 형성한 것이다.In the second sample, the metal particles 200 are formed at 5 nm on the first sample.
세번째 샘플은 상기 두번째 샘플 상에 물을 도포하여 10분 반응시키고 질소가스로 건조시킨 것이다. The third sample was reacted for 10 minutes by applying water on the second sample and dried with nitrogen gas.
도 3의 (a)는 전도성 기판(10)상에 금속 나노와이어(100)와 금속입자(200)가 형성되어 글라스 상에 형성된 (b)와 비교하여 전반적으로 낮은 면저항을 갖는다. (b)는 전도성이 없는 글라스 상에 형성된 금속 나노와이어(100)와 금속입자(200)이며, 전반적으로 높은 면저항 값을 갖는다. 또한, 금속 나노와이어(100) 상에 금속입자(200)가 형성되면 면저항이 감소하는 경향성을 나타낸다. (a)의 경우, 글라스의 영향으로 상대적으로 높은 면저항을 갖으며 금속입자(200) 형성으로 인한 면저항이 크게 감소하나 물을 도포하면 면저항이 높아진다. (b)의 경우, 전도성 기판(10) 상에 금속 나노와이어(100)와 금속입자(200)를 형성하여 비교적 낮은 면저항을 갖으며, 물을 도포한 후에는 면저항 값이 크게 감소한다. (a)는 물 도포 24시간 후의 면저항을 측정한 네번째 샘플의 경우에도 세번째 샘플 물 도포 반응시간 1분 내지 5분 후와 비슷한 면저항 값이 유지된다. 이는 금속입자(200)가 용해되어 금속 나노와이어(100)들의 접합부분으로 용접되는 과정이 끝나면 더 이상 화학 반응이 진행되지 않는 비가역적 반응이다.3 (a) shows that the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10 to have overall low sheet resistance compared to (b) formed on the glass. (b) is the metal nanowires 100 and the metal particles 200 formed on the non-conductive glass, and generally have a high sheet resistance value. In addition, when the metal particles 200 are formed on the metal nanowire 100, the sheet resistance tends to decrease. In the case of (a), the sheet resistance has a relatively high sheet resistance due to the glass, and the sheet resistance due to the formation of the metal particles 200 is greatly reduced, but when the water is applied, the sheet resistance is increased. In the case of (b), the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10 to have a relatively low sheet resistance, and after the water is applied, the sheet resistance value is greatly reduced. In the case of (a), the fourth sample measured the sheet resistance after 24 hours of water application, the sheet resistance value similar to that of 1 to 5 minutes after the third sample water application reaction time is maintained. This is an irreversible reaction in which the metal particles 200 are dissolved and welded to the junctions of the metal nanowires 100, and thus no chemical reactions proceed.
특히, 전도성 기판(10) 상에 금속 나노와이어(100)와 금속입자(200)를 형성하고 물을 도포하여 용접시켜 금속복합구조체(300)를 형성한 (a)와 글라스 상에 금속 나노와이어(100)와 금속입자(200)가 용접되지 않은 (b)와 비교하면 (a)는 전반적으로 낮은 면저항 값을 갖는다. In particular, the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10 and water is coated to weld to form the metal composite structure 300 (a) and the metal nanowires on the glass ( Compared with (b) in which 100) and the metal particles 200 are not welded, (a) generally has a low sheet resistance value.
따라서, 전도성 기판(10) 상에 금속 나노와이어(100)와 금속입자(200)를 형성하여 전자를 이동을 유도하고 일함수 및 표준전극전위 차에 따라 금속입자(200)가 금속 나노와이어(100)에 용접됨에 따라, 낮은 면저항을 갖을 수 있다. Therefore, the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10 to induce electron movement and the metal particles 200 are formed of the metal nanowires 100 according to the work function and the standard electrode potential difference. As a result of the welding, it can have a low sheet resistance.
도 4는 본 발명의 일 실시예에 따른 광투과도 그래프이다. 4 is a light transmittance graph according to an embodiment of the present invention.
비교예 1은 글라스 상에 금속 나노와이어(100)와 금속입자(200)를 형성한 것이다. 글라스 상에서 금속입자(200)는 금속 나노와이어(100)로 용접되지 않는다. 따라서, 잔존하는 금속입자(200)들은 빛이 투과되는 것을 방해하게 되어 광투과율이 낮아진다.In Comparative Example 1, the metal nanowires 100 and the metal particles 200 are formed on glass. The metal particles 200 on the glass are not welded to the metal nanowires 100. Therefore, the remaining metal particles 200 prevent the light from being transmitted, thereby lowering the light transmittance.
반면, 본 발명의 경우, 전도성 층 상에 금속 나노와이어(100)와 금속입자(200)가 형성되고 금속입자(200)가 금속 나노와이어(100)로 용접되기 때문에 잔존하는 금속입자(200)가 감소하여 광투과율이 향상된다.On the other hand, in the present invention, since the metal nanowires 100 and the metal particles 200 are formed on the conductive layer and the metal particles 200 are welded to the metal nanowires 100, the remaining metal particles 200 are formed. The light transmittance is improved by decreasing.
따라서, 금속복합구조체(300)는 금속 나노와이어(100)와 금속입자(200)가 전도성 기판(10) 상에 형성되고 물 내에서 금속입자(200)가 용해되어, 일함수 및 표준전극전위 차에 의하여 금속 나노와이어(100)로 용접되어 형성된다. 형성된 금속복합구조체(300)는 금속 나노와이어(100)의 결정성을 저하시키지 않으며, 물 내에서 용접되어 용접을 위한 추가적인 화합물질이 필요하지 않아 공정비용을 절감할 수 있다. 또한, 형성된 금속복합구조체(300)는 면저항을 감소시키고, 광투과율은 향상시켜 투명전극의 소재로 사용될 수 있다.Accordingly, in the metal composite structure 300, the metal nanowires 100 and the metal particles 200 are formed on the conductive substrate 10, and the metal particles 200 are dissolved in water, so that the work function and the standard electrode potential difference are different. It is formed by welding to the metal nanowires (100). The formed metal composite structure 300 does not reduce the crystallinity of the metal nanowires 100 and is welded in water, so that no additional compound for welding may be required, thereby reducing process costs. In addition, the formed metal composite structure 300 may reduce sheet resistance and improve light transmittance, and thus may be used as a material of a transparent electrode.

Claims (8)

  1. 전도성 기판 상에 금속 나노와이어를 형성하는 단계;Forming metal nanowires on the conductive substrate;
    상기 금속 나노와이어가 형성된 전도성 기판 상에 금속입자를 형성하는 단계; 및 Forming metal particles on the conductive substrate on which the metal nanowires are formed; And
    물을 도포하여 상기 금속 나노와이어를 용접하는 단계를 포함하는 금속복합구조체의 제조방법.Method of manufacturing a metal composite structure comprising the step of welding the metal nanowires by applying water.
  2. 제1항에 있어서, 상기 금속 나노와이어가 형성된 전도성 기판 상에 금속입자를 형성하는 단계에서The method of claim 1, wherein the forming of the metal particles on the conductive substrate on which the metal nanowires are formed
    상기 금속입자는 상기 금속 나노와이어보다 낮은 일함수와 표준전극전위를 갖는 것을 특징으로 하는 금속복합구조체의 제조방법. The metal particle has a lower work function and a standard electrode potential than the metal nanowires manufacturing method of a metal composite structure.
  3. 제2항에 있어서, 상기 금속 나노와이어가 형성된 전도성 기판 상에 금속입자를 형성하는 단계에서The method of claim 2, wherein the forming of the metal particles on the conductive substrate on which the metal nanowires are formed
    상기 금속입자 형성방법은 진공 증착 또는 금속입자 표면에 산화금속입자가 둘러진 코어쉘 구조의 입자 또는 금속입자에 용액을 도포하는 용액공정을 이용하여 형성되는 것을 특징으로 하는 금속복합구조체의 제조방법.The metal particle formation method is a method of manufacturing a metal composite structure, characterized in that formed using a vacuum vapor deposition or a solution process of applying a solution to the particles or metal particles of the core shell structure surrounded by metal oxide particles on the metal particles surface.
  4. 제1항에 있어서, 물을 도포하여 상기 금속 나노와이어로 용접하는 단계에서The method of claim 1, wherein in the step of applying water to the metal nanowires,
    반응속도를 증가 시키기 위해 금속이온이 포함된 염을 첨가하거나 또는 산도를 조절하는 것을 더 포함하는 것을 특징으로 하는 금속복합구조체의 제조방법.Method for producing a metal composite structure further comprises the addition of a salt containing a metal ion or to adjust the acidity to increase the reaction rate.
  5. 제1항에 있어서, 물을 도포하여 상기 금속 나노와이어로 용접하는 단계에서The method of claim 1, wherein in the step of applying water to the metal nanowires,
    낮은 일함수와 표준전위전극을 가지는 금속입자의 전자는 이탈되는 것을 특징으로 하는 금속복합구조체의 제조방법.A method of manufacturing a metal composite structure, wherein electrons of a metal particle having a low work function and a standard potential electrode are separated.
  6. 제2항에 있어서, 상기 금속입자는 상기 금속 나노와이어보다 낮은 일함수를 가지고, 상기 금속입자로부터 이탈한 전자는 상기 전도성 기판을 통해 상기 금속 나노와이어들의 접합 부분으로 이동하는 것을 특징으로 하는 금속복합구조체의 제조방법.3. The metal complex of claim 2, wherein the metal particles have a lower work function than the metal nanowires, and electrons separated from the metal particles move to the junction portion of the metal nanowires through the conductive substrate. Method for producing a structure.
  7. 제1항에 있어서, 물을 도포하여 상기 금속 나노와이어와 금속입자를 용접하는 단계는 The method of claim 1, wherein the welding of the metal nanowires with the metal particles by applying water is performed.
    상기 기판 상에 물을 도포하여 1분 내지 5분을 반응시키는 것을 특징으로 하는 금속복합구조체의 제조방법.Method of producing a metal composite structure, characterized in that for 1 minute to 5 minutes by applying water on the substrate.
  8. 제7항에 있어서, 물을 도포하여 물을 도포하여 상기 금속 나노와이어와 금속입자를 용접하는 단계는The method of claim 7, wherein the step of applying water by applying water to weld the metal nanowires with the metal particles
    물 도포 반응 후에는 질소가스로 전도성 기판 상에 도포된 물을 제거해주는 것을 특징으로 하는 금속복합구조체의 제조방법.After the water coating reaction method for producing a metal composite structure characterized in that to remove the water applied on the conductive substrate with nitrogen gas.
PCT/KR2017/006553 2016-06-21 2017-06-21 Method for preparing metal composite structure in which metal nanowire and metal particles are welded WO2017222311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0077376 2016-06-21
KR1020160077376A KR101828578B1 (en) 2016-06-21 2016-06-21 Method of fabricating metal complex structure by welding of metal nanowires and metal particles

Publications (1)

Publication Number Publication Date
WO2017222311A1 true WO2017222311A1 (en) 2017-12-28

Family

ID=60784172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006553 WO2017222311A1 (en) 2016-06-21 2017-06-21 Method for preparing metal composite structure in which metal nanowire and metal particles are welded

Country Status (2)

Country Link
KR (1) KR101828578B1 (en)
WO (1) WO2017222311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111768921A (en) * 2019-04-02 2020-10-13 天津大学 Manufacturing method of self-assembled silver nanowire flexible transparent electrode based on gold nanoparticles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465071B1 (en) * 2013-09-27 2014-11-27 성균관대학교산학협력단 A flexible transparent electrode using cesium and a flexible transparent electrode produced thereby
KR20150040865A (en) * 2012-06-22 2015-04-15 시쓰리나노 인크 Metal Nanostructured Networks and Transparent Conductive Material
US20160032127A1 (en) * 2014-07-31 2016-02-04 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
US20160038909A1 (en) * 2014-08-08 2016-02-11 The University Of Hong Kong Conductive Metal Networks Including Metal Nanowires and Metal Nanoparticles and Methods of Fabricating the Same
KR101606532B1 (en) * 2014-04-07 2016-03-25 한국전기연구원 Transparent conducting films with metal nanowires and work function-modulated nanocarbon materials and their fabrication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150040865A (en) * 2012-06-22 2015-04-15 시쓰리나노 인크 Metal Nanostructured Networks and Transparent Conductive Material
KR101465071B1 (en) * 2013-09-27 2014-11-27 성균관대학교산학협력단 A flexible transparent electrode using cesium and a flexible transparent electrode produced thereby
KR101606532B1 (en) * 2014-04-07 2016-03-25 한국전기연구원 Transparent conducting films with metal nanowires and work function-modulated nanocarbon materials and their fabrication method
US20160032127A1 (en) * 2014-07-31 2016-02-04 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
US20160038909A1 (en) * 2014-08-08 2016-02-11 The University Of Hong Kong Conductive Metal Networks Including Metal Nanowires and Metal Nanoparticles and Methods of Fabricating the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111768921A (en) * 2019-04-02 2020-10-13 天津大学 Manufacturing method of self-assembled silver nanowire flexible transparent electrode based on gold nanoparticles

Also Published As

Publication number Publication date
KR20170143307A (en) 2017-12-29
KR101828578B1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2016048026A1 (en) Triboelectric energy harvester including coating charged layer, and method of producing same
WO2013051758A1 (en) One-dimensional conductive nanomaterial-based conductive film having the conductivity thereof enhanced by a two-dimensional nanomaterial
WO2012015254A2 (en) Production method for a transparent conductive film and a transparent conductive film produced thereby
KR101404098B1 (en) Metal nanowire-organic composite, film including the same, and preparation method thereof
WO2013042819A1 (en) Production method for a graphene thin film
CN102656702A (en) Electronic device including graphene-based layer(s), and/or method of making the same
WO2014137111A1 (en) Transparent electrode and method for manufacturing same
WO2017065472A1 (en) Electrochromic element and method for manufacturing same
WO2012002723A2 (en) Transparent conductive film, method for manufacturing same, and transparent electrode and device using same
US10665737B2 (en) Method of making a structure comprising coating steps and corresponding structure and devices
CN112562888B (en) Preparation method of silver nanowire solution and preparation method of transparent conductive film
WO2017222311A1 (en) Method for preparing metal composite structure in which metal nanowire and metal particles are welded
WO2011043580A2 (en) Method for fabricating a plastic electrode film
Li et al. Pseudo-biological highly performance transparent electrodes based on capillary force-welded hybrid AgNW network
WO2016159609A1 (en) Composition for forming copper nanowire network by using light sintering, method for manufacturing copper nanowire network, and transparent electrode comprising same
WO2017014343A1 (en) Meta interface structure having improved elasticity and method for manufacturing same
WO2015102402A1 (en) Flexible electronic device having multi-functional barrier layer
US20130130020A1 (en) Electrode paste composition, electrode for electronic device using the same, and method of manufacturing the same
CN104616727B (en) A kind of nano-cable transparent conductive film with silver as inner core and preparation method thereof
WO2021193990A1 (en) Perovskite solar cell comprising buffer-integrated transparent electrode, and method for manufacturing same
WO2015124027A1 (en) Orderly distributed conductive thin film, and device and nanometer conductor structure thereof
WO2014010808A1 (en) Method for producing three-dimensional structures assembled with nanoparticles
Gill et al. Insights into the electrophoretic deposition of colloidal II-VI nanorods: Optimization for vertically and horizontally aligned assemblies
CN114121346A (en) Corrosion-resistant silver nanowire composite transparent electrode and preparation method thereof
WO2016117851A1 (en) Metal-bonded substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17815724

Country of ref document: EP

Kind code of ref document: A1