WO2017014343A1 - Meta interface structure having improved elasticity and method for manufacturing same - Google Patents

Meta interface structure having improved elasticity and method for manufacturing same Download PDF

Info

Publication number
WO2017014343A1
WO2017014343A1 PCT/KR2015/007762 KR2015007762W WO2017014343A1 WO 2017014343 A1 WO2017014343 A1 WO 2017014343A1 KR 2015007762 W KR2015007762 W KR 2015007762W WO 2017014343 A1 WO2017014343 A1 WO 2017014343A1
Authority
WO
WIPO (PCT)
Prior art keywords
meta
foil
layer
interface
support film
Prior art date
Application number
PCT/KR2015/007762
Other languages
French (fr)
Korean (ko)
Inventor
원세정
김재현
이학주
장봉균
Original Assignee
한국기계연구원
재단법인 파동에너지 극한제어 연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 재단법인 파동에너지 극한제어 연구단 filed Critical 한국기계연구원
Publication of WO2017014343A1 publication Critical patent/WO2017014343A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a meta-interface structure with improved elasticity and a method of manufacturing the same.
  • ITO indium tin oxide
  • the first is the technology of manufacturing devices and electrodes using flexible materials.
  • Flexible materials include conductive polymers, organic semiconductors, and polymer insulators.
  • ITO Indium Tin Oxide
  • oxide semiconductors such as Indium Zinc Gallium Oxide
  • insulators such as silicon oxide / nitride.
  • the second method is to add an energy absorbing layer between the device and the substrate, such as adding a polymer layer or a metal thin film.
  • This technique increases the overall thickness of the machinery and lowers its permeability, making it unsuitable for machinery requiring high permeability and miniaturization.
  • Korean Patent Laid-Open Publication No. 2014-0027811 discloses a semiconductor device having flexibility and a method of manufacturing the same. It is. That is, a semiconductor device manufactured by using the first or third method has a disadvantage in that the electrical and electronic performance and yield are inferior.
  • the present invention is a meta-interface formed by stacking two or more layers of two-dimensional material of the monoatomic layer between the substrate and the device (electrode) formed in a laminated structure As it slides, it is intended to provide a meta-interface structure and a method for manufacturing the same, which can improve the elasticity of the entire structure by transferring a deformation amount smaller than the deformation amount applied to the substrate to the device (electrode).
  • the meta-interface structure according to an embodiment of the present invention, the meta-interface is provided between the substrate, the device layer provided on the substrate, and the substrate and the device layer, the two-dimensional material of the monoatomic layer is formed by laminating two or more layers Layer.
  • the device layer and the meta-interface layer may be formed in a plurality of layers on the substrate.
  • the meta interface layer includes at least one of graphene, graphene oxide, reduced graphene oxide (RGO), and hexagonal boron nitride (h-BN). can do.
  • the meta-interface layer is characterized in that the thickness of 10 nm or less or the number of layers of the laminated monoatomic layer two-dimensional material is less than 20 layers.
  • the method of manufacturing a meta-interface structure the first foil coating step of coating the support film on the first foil synthesized with the first two-dimensional material, removing the first foil through an etching process
  • a first foil removing step a first transfer step of transferring the first two-dimensional material coated with the support film onto a second foil on which the second two-dimensional material is synthesized, and a second foil to remove the second foil through an etching process.
  • the device layer stacking step of stacking the device layer on the interface layer.
  • a method for manufacturing a meta-interface structure includes attaching a support film onto a first foil having a first two-dimensional material synthesized, and attaching another support film to a second foil having a second two-dimensional material synthesized.
  • Foil attachment step of attaching on the foil Foil removal step of removing the first and second foil through the etching process, First attachment step of attaching the first two-dimensional material coated with the support film on the substrate, The support film Removing the first support film to remove the second support film coated with the second two-dimensional material on the first two-dimensional material, and removing the second support film to remove the second support film.
  • a device layer stacking step of stacking a device layer on the meta-interface layers which are the first and second two-dimensional materials.
  • the first foil removing step, the second foil removing step, or the foil removing step may remove residues or etching solutions of the first and second foils remaining in the first and second two-dimensional materials coated with the support film. It may further comprise a step.
  • the support film may be at least one of polymethylmethacrylate (PMMA), a thermal release tape, a UV-release tape, or a film having a silicone adhesion to a polymer film. It features.
  • PMMA polymethylmethacrylate
  • thermal release tape a thermal release tape
  • UV-release tape a film having a silicone adhesion to a polymer film. It features.
  • first and second two-dimensional materials are graphene (Graphene), graphene oxide (Graphene Oxide), reduced graphene oxide (Reduced Graphene Oxide, RGO), hexagonal boron nitride (Hexagonal Boron Nitride, h-BN) It may include at least one.
  • first foil or the second foil may be at least one of copper, a copper alloy, and a nickel material.
  • first foil removing step, the second foil removing step, or the foil removing step may remove the first foil or the second foil using an ammonium persulfate (APS) solution.
  • APS ammonium persulfate
  • the substrate is characterized in that the polymer material.
  • the step of stacking the device layer on the meta-interface layer of the multi-layered two-dimensional material is an initial vacuum step of lowering the pressure in the chamber after mounting the substrate on which the material of the device layer and the meta-interface layer is stacked, After injecting an inert gas into the additive, a stabilizing step of heating the substrate to maintain a predetermined temperature, and generating a plasma between the material of the device layer and the substrate to deposit the device layer on the meta-interface layer. It may comprise a device layer deposition step.
  • the step of depositing a device layer on the meta-interface layer of the multi-layered two-dimensional material the sacrificial layer deposition step of depositing a sacrificial layer on the wafer, the device layer deposition step of depositing a device layer on the sacrificial layer, roll Using a transfer device, a carrier film attaching step of attaching a carrier film on the device layer, a sacrificial layer removing step of removing the sacrificial layer and the wafer through an etching process, the device layer attached to the carrier film A device layer attaching step of attaching on the meta-interface layer made of a two-dimensional material, and a carrier film removing step of removing and removing the carrier film.
  • the meta-interface structure according to the embodiment of the present invention is applied to the substrate as the meta-interface formed by stacking two or more layers of monoatomic layer two-dimensional materials between the substrate and the element (electrode) formed in the laminated structure is slid.
  • the deformation amount smaller than the deformation amount can be transferred to the device (electrode).
  • the meta-interface structure with improved elasticity has an effect of preventing cracking and electrical / optical performance degradation due to deformation of the entire structure.
  • FIG. 1 is a conceptual diagram illustrating a meta-interface structure according to an embodiment of the present invention.
  • FIG. 2A is a diagram schematically illustrating a meta-interface structure according to an embodiment of the present invention.
  • 2B is a view schematically showing a meta interface structure according to another embodiment of the present invention.
  • FIG 3 is a graph showing a change in total resistance according to the tension of the meta-interface structure according to the embodiments of the present invention.
  • Figure 4 is a graph showing the crack density according to the tension of the meta-interface structure in accordance with embodiments of the present invention.
  • FIG. 5 is a graph showing the resistance change of the device layer according to the tension of the meta-interface structure according to the embodiments of the present invention.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a meta-interface structure according to an embodiment of the present invention.
  • FIG. 7 is a process chart showing the manufacturing process of the meta-interface structure according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method of manufacturing a meta-interface structure according to another embodiment of the present invention.
  • FIG. 9 is a process chart showing a method of manufacturing a meta-interface structure according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of depositing an element layer of a meta-interface structure on a meta-interface layer using a magnetron sputtering apparatus according to an embodiment of the present invention.
  • FIG. 11 is a conceptual diagram of depositing a device layer of a meta-interface structure on a meta-interface layer using a magnetron sputtering apparatus according to an embodiment of the present invention.
  • FIG. 12 is a flowchart in which the device layer of the meta-interface structure according to the embodiment of the present invention is attached onto the meta-interface layer using a roll transfer device.
  • FIG. 13 is a process diagram for attaching an element layer of a meta interface structure according to an embodiment of the present invention onto a meta interface layer using a roll transfer apparatus.
  • FIG. 1 is a conceptual diagram illustrating a meta-interface structure according to an embodiment of the present invention.
  • the meta interface structure according to the present embodiment includes a substrate 100, an element layer 200, and a meta interface layer 300.
  • the device layer 200 is formed on the substrate 100.
  • a meta interface layer 300 is formed between the substrate 100 and the device layer 200.
  • the meta interface layer 300 is formed by stacking a plurality of two-dimensional materials.
  • Two-dimensional material is a crystalline material consisting of a single layer of valence.
  • the meta-interface layer 300 is formed by stacking a plurality of two-dimensional materials formed of a single layer of atoms.
  • the meta-interface layer 300 may reduce the stress transmitted to the device layer 200 while sliding the two-dimensional material formed of a plurality of layers.
  • the device layer 200 may use not only devices but also transparent electrodes or films.
  • the meta interface layer 300 is at least one of graphene (Graphene), graphene oxide (Graphene Oxide), reduced graphene oxide (Reduced Graphene Oxide, RGO), hexagonal boron nitride (h-BN) You can use one.
  • the meta interface layer 300 may be used as long as it is a two-dimensional material in addition to the above materials.
  • the meta-interface layer 300 may have a thickness of 10 nm or less, or the number of laminated two-dimensional materials within 20 layers.
  • the laminated monoatomic layer interacts by van der Waals forces, but when the number of laminated two-dimensional materials is greater than 20 layers, the thickness becomes larger than the range of van der Waals forces, so the interface It is difficult to consider and is considered a separate structure.
  • the elasticity of a mechanism refers to the maximum strain at which the mechanism can operate and is mainly determined by the breaking strain of brittle elements.
  • a force is transmitted to the device layer 200 to deform.
  • the meta interface layer 300 is applied between the device layer 200 and the substrate 100, when the substrate 100 is deformed, sliding occurs in the meta interface layer 300 to be transferred to the device layer 200. Force is reduced.
  • the mechanical device has less strain on the element layer 200 when there is a meta interface layer 300 than when there is no meta interface layer 300.
  • the meta interface layer 300 when the meta interface layer 300 is present, a larger strain must be applied to the mechanical device than without the meta interface layer 300 in order for the strain to be applied by the breaking strain of the device layer 200.
  • the result is greater flexibility than conventional machinery.
  • FIG. 2A is a view schematically showing a meta interface structure according to an embodiment of the present invention
  • FIG. 2B is a view schematically showing a meta interface structure according to another embodiment of the present invention.
  • the substrate 100 and the device layer 200 are formed in a single layer structure, and the meta-interface layer 300 is formed between the substrate 100 and the device layer 200.
  • the device layer 200 is formed in a multi-layer structure on the substrate 100, between the substrate 100 and the device layer 200, and the device layer 200 having a multi-layer structure.
  • the meta interface layer 300 is formed between each.
  • the device layer 200 is stretched as the substrate 100 is stretched.
  • the meta interface layer 300 between the substrate 100 and the device layer 200 is slid to reduce the stress transmitted to the device layer 200.
  • the device layer 200 is deformed lower than the strain of the substrate 100.
  • the device layers 200 have a low strain rate toward the height direction.
  • the electrical resistance was measured while performing a tensile test on the meta-interface structure according to the embodiments of the present invention and is shown in the graphs of FIGS. 3, 4 and 5.
  • FIG 3 is a graph showing the change in the overall resistance of the structure according to the strain of the meta-interface structure in accordance with embodiments of the present invention.
  • 4 is a graph showing the crack density according to the strain of the meta-interface structure according to the embodiments of the present invention
  • Figure 5 is a device layer (ITO thin film) according to the strain of the meta-interface structure according to the embodiments of the present invention This graph shows the resistance change.
  • ITO defines a structure consisting of the substrate 100 and the device layer 200 only, and "ITO / 2LG” refers to the substrate 100 and the device layer.
  • a structure including a meta interface layer 300 having two two-dimensional materials stacked between 200 is defined.
  • ITO / 3LG defines a structure including a meta-interface layer 300 having three two-dimensional materials stacked between the substrate 100 and the device layer 200.
  • ITO / 4LG defines a structure including a meta-interface layer 300 in which four two-dimensional materials are stacked between the substrate 100 and the device layer 200.
  • ITO / 5LG defines a structure including a meta-interface layer 300 in which five two-dimensional materials are stacked between the substrate 100 and the device layer 200.
  • the crack density is relatively lower than that of the device layer 200 only.
  • the crack density is lower as the number of layers of the two-dimensional material used as the meta-interface layer 300 increases.
  • the reason why the crack density is reduced in the structure to which the meta interface layer 300 is applied is that the stress applied to the device layer 200 is relatively reduced compared to the substrate 100 due to the sliding occurring in the meta interface layer 300. to be.
  • such sliding is characterized by increasing as the number of layers of the two-dimensional material increases.
  • FIG. 5 shows the resistance change and the electro-mechanical model of the device layer 200 according to the strain.
  • the meta-interface layer 300 When the meta-interface layer 300 is present, it can be seen that the resistance change of the device layer 200 according to the strain is low, and the rate of decrease becomes larger as the number of layers of the two-dimensional material increases. Therefore, assuming that the strain at the time of having a specific resistance change value is elasticity, elasticity can be improved by applying a meta interface.
  • the meta-interface structure according to the embodiment of the present invention has a thickness of the meta-interface layer 300 is only a few tens of nanometers and excellent optical transmittance, the thickness of the entire structure and the meta-interface layer 300 depending on the presence or absence of the There is little difference in the optical properties.
  • the crack density and the electrical resistance of the structure to which the meta-interface is applied are significantly reduced compared to those of the structure that is not. This is because the shear stress transmitted from the substrate 100 to the device layer 200 is significantly lowered due to the low shear modulus of the meta interface.
  • electro-mechanical elasticity is further improved. This allows the electro-mechanical elasticity of the entire structure to be adjusted as desired, which can be useful in designing flexible electronics.
  • the manufacturing method of the meta-interface structure for manufacturing the meta-interface structure according to the embodiment of the present invention is divided into a method of manufacturing the meta-interface structure through a wet process and a method of manufacturing the meta-interface structure through a dry process.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a meta interface structure according to an embodiment of the present invention
  • FIG. 7 is a flowchart schematically illustrating a manufacturing process of the meta interface structure according to an embodiment of the present invention.
  • the method for manufacturing the meta-interface structure through a wet process may include a first foil coating step S100, a first foil removing step S200, a first transfer step S300, and a first manufacturing method.
  • the support film is coated on the first foil synthesized with the first two-dimensional material.
  • the support film uses polymethyl methacrylate (polymethylmethacrylate, PMMA).
  • the first two-dimensional material is at least one of graphene (Graphene), graphene oxide (Graphene Oxide), reduced graphene oxide (Reduced Graphene Oxide, RGO), Hexagonal Boron Nitride (h-BN) Can be used.
  • the first foil may be made of one of copper, copper alloy, and nickel.
  • the first foil is removed through an etching process.
  • the supporting film is coated with the first two-dimensional material and the first foil in a container, and an etching process is performed using an ammonium persulfate (APS) solution.
  • APS ammonium persulfate
  • an appropriate metal etching solution may be used instead of the APS solution according to the material of the foil, and various solutions, such as sulfuric acid and nitric acid, which do not etch graphene while etching the metal, may be used in addition to the APS solution.
  • Korean Patent Application No. 10-2014-0157313 (“Etching Solution and Graphene Transfer Method Using the Same", filed by Nov. 12, 2014, filed by the present inventors with respect to the foil removing step using the ammonium persulfate solution) See content.
  • the first two-dimensional material coated with the support film is floated in distilled water to remove the APS solution, which is the residue or etching solution of the foil remaining in the first two-dimensional material.
  • the first two-dimensional material coated with the support film is floated with a second foil synthesized with a second two-dimensional material, the second Transfer the first two-dimensional material onto two foils.
  • the second foil may be made of one of copper, copper alloy, and nickel.
  • the first two-dimensional material coated with the support film is covered on the second foil on which the second two-dimensional material is synthesized.
  • the second foil removing step S400 the second foil is removed through an etching process in the same manner as in the first foil removing step S200.
  • the second foil is removed through an etching process using an APS solution.
  • the first and second two-dimensional materials coated with the support film are floated in distilled water to remove the APS solution, which is a residue or an etching solution of the foil remaining in the first and second two-dimensional materials.
  • the APS solution which is a residue or an etching solution of the foil remaining in the first and second two-dimensional materials.
  • the first and second two-dimensional materials coated with the support film are floated onto a substrate, and the first and second two-dimensional materials are removed. Is transferred onto the substrate.
  • the substrate is a polymer material.
  • the device layer is laminated on the meta-interface layer 300 which is the multi-dimensional two-dimensional material.
  • the device layer is laminated using an off-axis RF magnetron sputtering method or a roll transfer device. A detailed description of the device layer stacking step S700 will be described later with reference to FIGS. 10 to 13.
  • the dry transfer method is a method of transferring graphene to a substrate by mechanical force such as adhesive force, which enables large area and mass production using roll transfer or the like.
  • FIG. 8 is a flowchart illustrating a method of manufacturing a meta interface structure according to another embodiment of the present invention
  • FIG. 9 is a flowchart illustrating a method of manufacturing a meta interface structure according to another embodiment of the present invention.
  • the method of manufacturing the meta-interface structure through a dry process includes a foil attaching step (S110), a foil removing step (S210), a first attaching step (S310), and a first supporting film removal.
  • Step S410, the second attaching step S510, the second supporting film removing step S610, and the device layer stacking step S700 are performed.
  • the supporting film is attached onto the first foil on which the first two-dimensional material is synthesized, and another supporting film is attached to the second two-dimensional material. Attach on the synthesized second foil.
  • the support film is placed on the roll equipment on the first foil on which the first two-dimensional material is synthesized, and then passed through the roll to attach the support film on the first foil on which the first two-dimensional material is synthesized.
  • the supporting film serves to support the first and second two-dimensional materials so as not to be damaged, and the silicone adhesive layer is provided on the thermal release tape, the UV-release tape, or the polymer film. Films and the like can be used.
  • first and second two-dimensional materials are graphene (Graphene), graphene oxide (Graphene Oxide), reduced graphene oxide (Reduced Graphene Oxide, RGO), hexagonal boron nitride (Hexagonal Boron Nitride, h-BN) At least one can be used.
  • the first foil and the second foil may use one of copper, a copper alloy, and a nickel material.
  • the first and second foils are removed through an etching process.
  • the first two-dimensional material and the first foil coated with the support film are placed in a container and floated in an APS solution to remove the first foil through an etching process.
  • the support film-coated first two-dimensional material is floated in distilled water for 30 minutes to remove the residue of the foil remaining in the first two-dimensional material or the APS solution which is an etching solution.
  • the second foil obtained by synthesizing the second two-dimensional material coated with another support film is also removed through the etching process as described above.
  • the first two-dimensional material coated with the support film is attached onto the substrate.
  • the substrate is a polymer material.
  • the support film / first two-dimensional material is attached to the substrate through a roll while the support film / first two-dimensional material is placed on the substrate.
  • the support film is removed, so that only the first two-dimensional material remains on the substrate.
  • the temperature of the thermal peeling tape / two-dimensional material / substrate is raised to about 110 to 130 ° C. so that the thermal peeling tape is separated from the two-dimensional material.
  • the support film is removed without any other treatment.
  • the support film is dropped by applying ultraviolet light.
  • the second two-dimensional material coated with the another supporting film is attached onto the first two-dimensional material.
  • the second attaching step S510 is also performed in the same manner as the first attaching step S310.
  • the second support film removing step (S610) also removes the another support film in the same manner as the first support film removing step (S410).
  • the device layer is laminated on the meta-interface layer 300 which is the multi-dimensional two-dimensional material.
  • FIG. 10 is a flowchart of depositing an element layer of a meta surface structure according to an embodiment of the present invention on a meta interface layer using a magnetron sputtering apparatus
  • FIG. 11 is a view of a meta surface structure according to an embodiment of the present invention. It is a conceptual diagram which deposits an element layer on a meta interface layer using a magnetron sputtering apparatus.
  • the method of using off-axis RF magnetron sputtering in the device layer stacking step S700 may include an initial vacuum step S710, a stabilization step S711, and a device layer deposition step S712. Include.
  • the pressure in the chamber is lowered.
  • the off-axis RF magnetron sputtering device is provided with a material of the element layer at each gun end in the chamber, and each end is formed to face each other at a predetermined distance.
  • the gun provided at the end of the substrate is formed spaced apart a predetermined distance in the vertical direction to the gun provided with the device layer material. At this time, the distance of each end of the gun is maintained about 10cm.
  • Such a sputtering device is equipped with a permanent magnet on the cathode, it is possible to deposit various thin films, such as insulators, metals, oxides.
  • the material of the device layer has a diameter of 2 inches (In: 90 wt%, Sn: 10 wt%).
  • the initial vacuum of a chamber is made into 8x10 ⁇ -6> torr or less.
  • the substrate is heated to maintain a constant temperature. That is, the substrate is heated to reach 120 ° C., followed by preliminary sputtering for 5 minutes to remove impurities from the target surface and to stabilize the sputter discharge.
  • the device layer deposition step (S712) a plasma is generated between the material of the device layer and the substrate to deposit the device layer on the meta-interface layer. At this time, the device layer is deposited with an RF power of 125 W at a deposition pressure of 1 mtorr.
  • This method can produce thin films of higher quality than conventional RF sputtering and can prevent the substrate from being damaged or bent as the plasma does not directly affect the substrate.
  • FIG. 12 is a flowchart of attaching an element layer of a meta surface structure according to an embodiment of the present invention on a meta interface layer using a roll transfer device
  • FIG. 13 is a view of a meta surface structure according to an embodiment of the present invention. It is a conceptual diagram which makes an element layer adhere on a meta interface layer using a roll transfer apparatus.
  • the device layer stacking step (S700) of stacking device layers using a roll transfer device includes a sacrificial layer deposition step (S720), a device layer deposition step (S721), and a carrier film attachment step. S722, a sacrificial layer removing step S723, an element layer attaching step S724, and a carrier film removing step S725.
  • the sacrificial layer 220 is deposited on the wafer 210.
  • the wafer 210 uses a silicon (Si) wafer, and the sacrificial layer 220 uses a silver (Ag) thin film.
  • the device layer 200 is deposited on the sacrificial layer 220.
  • the carrier film 230 is attached onto the element layer 200 using a roll transfer device.
  • the sacrificial layer 220 and the wafer 210 are removed through an etching process. That is, in the sacrificial layer removing step S723, the sacrificial layer 220, which is a silver thin film, is separated from the wafer 210.
  • the device layer 200 attached to the carrier film 230 is attached onto the meta-interface layer 300 made of a multi-layered two-dimensional material. .
  • the carrier film removing step (S725) the carrier film 230 is removed and removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)

Abstract

The present invention relates to a meta interface structure having improved elasticity and, more specifically, to a meta interface structure, wherein a meta interface formed by laminating two or more layers of a two-dimensional material having a monoatomic layer between an element and a substrate formed in a laminated structure slides to transfer deformation, the amount of which is smaller than the amount of deformation applied to the substrate, to the element, thereby improving the elasticity of an entire structure.

Description

신축성이 향상된 메타 계면 구조물 및 그 제조방법Meta interface structure with improved elasticity and manufacturing method
본 발명은 신축성이 향상된 메타 계면 구조물과 그 제조방법에 관한 것이다.The present invention relates to a meta-interface structure with improved elasticity and a method of manufacturing the same.
전자기기의 소형화, 경량화를 추구하는 흐름에 따라 이를 구성하는 소자 및 전극의 두께가 점점 얇아지면서 최근에는 수십 나노미터급의 박막으로 이루어진 구조물도 제작되었다. 이러한 구조물들이 실제 전자기기에 사용될 경우 사용 환경에 따라 다양한 형태의 하중에 놓이게 되며, 특히 유연한 전자기기에 활용되기 위해서는 뛰어난 전기-기계적 신축성이 요구된다. 그 예로 Indium tin oxide (ITO)는 투명하고 전기적 특성이 우수함에도 불구하고 전기-기계적 신축성이 좋지 않아 유연한 전자기기에 활용이 불투명한 단점이 있다. As the trend toward miniaturization and light weight of electronic devices has been pursued, the thickness of devices and electrodes constituting them has become thinner. In recent years, structures made of thin films of several tens of nanometers have also been manufactured. When these structures are used in actual electronic devices, they are placed in various types of loads according to the use environment, and particularly, in order to be utilized in flexible electronic devices, excellent electro-mechanical elasticity is required. For example, although indium tin oxide (ITO) is transparent and has excellent electrical properties, it has a disadvantage of being opaque because of its poor electro-mechanical elasticity.
이러한 소재를 유연한 기계장치에 구현하기 위해서는 크게 세 가지 방법이 있다.There are three main ways to implement such materials into flexible machinery.
첫 번째는 유연한 소재를 이용하여 소자 및 전극을 제작하는 기술이다. 유연한 소재로 전도성 폴리머, 유기물 반도체, 폴리머 절연체 등이 있다. 하지만 이들은 실리콘(silicon) 반도체나 Indium Tin Oxide(ITO)과 같은 산화물 전도체, Indium Zinc Gallium Oxide 같은 산화물 반도체, 실리콘 산화물/질화물과 같은 절연체 등의 무기물 소재들을 이용하여 제작된 소자 및 전극들에 비해 전기전자적 성능 및 수율이 떨어지는 단점이 있다. The first is the technology of manufacturing devices and electrodes using flexible materials. Flexible materials include conductive polymers, organic semiconductors, and polymer insulators. However, they are more expensive than devices and electrodes fabricated using inorganic materials such as silicon semiconductors, oxide conductors such as Indium Tin Oxide (ITO), oxide semiconductors such as Indium Zinc Gallium Oxide, and insulators such as silicon oxide / nitride. There is a drawback of poor electronic performance and yield.
두 번째는 소자와 기판 사이에 에너지 흡수층을 추가하는 기술로 폴리머 층이나 금속 박막을 추가하는 방법 등이 있다. 이 기술은 기계장치의 전체적인 두께를 증가시키고 투과도를 낮추어 높은 투과도 및 소형화가 요구되는 기계장치에는 적합하지 않다. The second method is to add an energy absorbing layer between the device and the substrate, such as adding a polymer layer or a metal thin film. This technique increases the overall thickness of the machinery and lowers its permeability, making it unsuitable for machinery requiring high permeability and miniaturization.
세 번째는 소자 및 전극이 신축성을 가지도록 설계하는 기술이다. 소자가 기판에 일부만 고정되어 있는 형태나 말굽 모양으로 전극을 만드는 것 등이 있다. 하지만 이 방법 역시 기계장치의 두께를 증가시키고, 소자 및 전극의 우수한 전기전자적 성능을 구현하는데 비효율적이다.Third, the technology to design the device and the electrode to have elasticity. There is a form in which an element is fixed to a substrate only partially, or an electrode is made in a horseshoe shape. However, this method is also inefficient in increasing the thickness of the machinery and in achieving excellent electro-electronic performance of devices and electrodes.
이와 관련하여, 한국공개특허 제2014-0027811호 ("플렉서블 반도체소자 및 그 제조방법", 공개일 2014.03.07., 이하 '선행기술')는 유연성을 갖는 반도체소자 및 이를 제조하는 방법에 대해 개시되어 있다. 즉, 상기 첫 번째 또는 세 번째 방법을 이용하여 제작되는 반도체소자로 전기전자적 성능 및 수율이 떨어지는 단점을 가지고 있다.In this regard, Korean Patent Laid-Open Publication No. 2014-0027811 ("Flexible semiconductor device and its manufacturing method", publication date 2014.03.07., Hereinafter 'prior art') discloses a semiconductor device having flexibility and a method of manufacturing the same. It is. That is, a semiconductor device manufactured by using the first or third method has a disadvantage in that the electrical and electronic performance and yield are inferior.
따라서, 전기적 특성이 우수한 재료의 장점을 최대한 유지하면서, 전기-기계적 신축성을 크게 향상시켜 변형에 따른 균열을 방지할 수 있는 소자에 대해 요구되는 실정이다. Accordingly, there is a need for a device capable of preventing cracks due to deformation by greatly improving electromechanical elasticity while maintaining the advantages of materials having excellent electrical characteristics.
본 발명의 일 측면은 상기한 바와 같은 기술적 배경을 바탕으로 안출된 것으로, 본 발명은 적층 구조로 형성된 기판 및 소자(전극) 사이에 단원자층의 2차원 재료가 2층 이상 적층되어 이루어진 메타 계면이 슬라이딩 됨에 따라, 기판에 가해진 변형량보다 작은 변형량을 소자(전극)에 전달함으로써 전체 구조물의 신축성을 향상시켜 변형에 따른 균열을 방지할 수 있는 메타 계면 구조물 및 그 제조방법을 제공하고자 한다.One aspect of the present invention is devised on the basis of the technical background as described above, the present invention is a meta-interface formed by stacking two or more layers of two-dimensional material of the monoatomic layer between the substrate and the device (electrode) formed in a laminated structure As it slides, it is intended to provide a meta-interface structure and a method for manufacturing the same, which can improve the elasticity of the entire structure by transferring a deformation amount smaller than the deformation amount applied to the substrate to the device (electrode).
본 발명의 일 실시예에 따른 메타 계면 구조물은, 기판, 상기 기판 상에 구비되는 소자층, 및 상기 기판 및 소자층 사이에 구비되며, 단원자층의 이차원 재료가 2층 이상 적층되어 형성되는 메타 계면층을 포함한다.  The meta-interface structure according to an embodiment of the present invention, the meta-interface is provided between the substrate, the device layer provided on the substrate, and the substrate and the device layer, the two-dimensional material of the monoatomic layer is formed by laminating two or more layers Layer.
또한, 상기 소자층 및 메타 계면층이 상기 기판 상에 복수층 형태로 형성될 수 있다. In addition, the device layer and the meta-interface layer may be formed in a plurality of layers on the substrate.
또한, 상기 메타 계면층은 그래핀(Graphene), 그래핀 옥사이드(Graphene Oxide), 환원 그래핀 옥사이드(Reduced Graphene Oxide, RGO), 육각 질화붕소(Hexagonal Boron Nitride, h-BN) 중 적어도 하나를 포함할 수 있다. In addition, the meta interface layer includes at least one of graphene, graphene oxide, reduced graphene oxide (RGO), and hexagonal boron nitride (h-BN). can do.
또한, 상기 메타 계면층은 두께가 10 nm 이하 또는 적층된 단원자층 2차원재료의 층수가 20층 이내 인 것을 특징으로 한다. In addition, the meta-interface layer is characterized in that the thickness of 10 nm or less or the number of layers of the laminated monoatomic layer two-dimensional material is less than 20 layers.
한편, 본 발명의 일 실시예에 따른 메타 계면 구조물 제조방법은, 지지필름을 제1 이차원재료가 합성된 제1 포일에 코팅하는 제1 포일 코팅 단계, 에칭 공정을 통해 상기 제1 포일을 제거하는 제1 포일 제거 단계, 상기 지지필름이 코팅된 제1 이차원재료를 제2 이차원재료가 합성된 제2 포일 상에 전사하는 제1 전사 단계, 에칭 공정을 통해 상기 제2 포일을 제거하는 제2 포일 제거 단계, 상기 지지필름이 코팅된 상기 제1 및 제2 이차원재료를 기판 상에 전사하는 제2 전사 단계, 상기 지지필름을 제거하는 지지필름 제거 단계, 및 상기 제1 및 제2 이차원재료인 메타 계면층 상에 소자층을 적층하는 소자층 적층 단계를 포함한다. On the other hand, the method of manufacturing a meta-interface structure according to an embodiment of the present invention, the first foil coating step of coating the support film on the first foil synthesized with the first two-dimensional material, removing the first foil through an etching process A first foil removing step, a first transfer step of transferring the first two-dimensional material coated with the support film onto a second foil on which the second two-dimensional material is synthesized, and a second foil to remove the second foil through an etching process. A removal step, a second transfer step of transferring the first and second two-dimensional materials coated with the support film onto a substrate, a support film removal step of removing the support film, and the first and second two-dimensional materials The device layer stacking step of stacking the device layer on the interface layer.
또한, 본 발명의 다른 실시예에 따른 메타 계면 구조물 제조방법은, 지지필름을 제1 이차원재료가 합성된 제1 포일 상에 부착하고, 또 다른 지지필름을 제2 이차원재료가 합성된 제2 포일 상에 부착하는 포일 부착단계, 에칭 공정을 통해 상기 제1 및 제2 포일을 제거하는 포일 제거 단계, 상기 지지필름이 코팅된 제1 이차원재료를 기판 상에 부착하는 제1 부착 단계, 상기 지지필름을 제거하는 제1 지지필름 제거 단계, 상기 또 다른 지지필름이 코팅된 제2 이차원재료를 상기 제1 이차원재료 상에 부착하는 제2 부착 단계, 상기 또 다른 지지필름을 제거하는 제2 지지필름 제거 단계, 및 상기 제1 및 제2 이차원재료인 메타 계면층 상에 소자층을 적층하는 소자층 적층 단계를 포함한다. In addition, according to another embodiment of the present invention, a method for manufacturing a meta-interface structure includes attaching a support film onto a first foil having a first two-dimensional material synthesized, and attaching another support film to a second foil having a second two-dimensional material synthesized. Foil attachment step of attaching on the foil, Foil removal step of removing the first and second foil through the etching process, First attachment step of attaching the first two-dimensional material coated with the support film on the substrate, The support film Removing the first support film to remove the second support film coated with the second two-dimensional material on the first two-dimensional material, and removing the second support film to remove the second support film. And a device layer stacking step of stacking a device layer on the meta-interface layers which are the first and second two-dimensional materials.
또한, 상기 제1 포일 제거 단계, 제2 포일 제거 단계 또는 포일 제거 단계는 상기 지지필름이 코팅된 제1 및 제2 이차원재료에 남아있는 제1 및 제2 포일의 잔여물 또는 에칭 용액을 제거하는 단계를 더 포함할 수 있다. The first foil removing step, the second foil removing step, or the foil removing step may remove residues or etching solutions of the first and second foils remaining in the first and second two-dimensional materials coated with the support film. It may further comprise a step.
또한, 상기 지지필름은 폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA), 열박리 테잎(thermal release tape), 자외선 박리 테잎(UV-release tape) 또는 폴리머 필름에 실리콘 점착증이 있는 필름 중 적어도 하나인 것을 특징으로 한다. The support film may be at least one of polymethylmethacrylate (PMMA), a thermal release tape, a UV-release tape, or a film having a silicone adhesion to a polymer film. It features.
또한, 상기 제1 및 제2 이차원 재료는 그래핀(Graphene), 그래핀 옥사이드(Graphene Oxide), 환원 그래핀 옥사이드(Reduced Graphene Oxide, RGO), 육각 질화붕소(Hexagonal Boron Nitride, h-BN) 중 적어도 하나를 포함할 수 있다.In addition, the first and second two-dimensional materials are graphene (Graphene), graphene oxide (Graphene Oxide), reduced graphene oxide (Reduced Graphene Oxide, RGO), hexagonal boron nitride (Hexagonal Boron Nitride, h-BN) It may include at least one.
또한, 상기 제1 포일 또는 제2 포일은 구리, 구리 합금, 니켈 재질 중에서 적어도 하나일 수 있다. In addition, the first foil or the second foil may be at least one of copper, a copper alloy, and a nickel material.
또한, 상기 제1 포일 제거 단계, 제2 포일 제거 단계 또는 포일 제거 단계는 과황산 암모늄(Ammonioum persulfate, APS) 용액을 사용하여, 상기 제1 포일 또는 제2 포일을 제거할 수 있다. In addition, the first foil removing step, the second foil removing step, or the foil removing step may remove the first foil or the second foil using an ammonium persulfate (APS) solution.
또한, 상기 기판은 폴리머 재질인 것을 특징으로 한다. In addition, the substrate is characterized in that the polymer material.
또한, 상기 다층의 이차원재료인 메타계면층 상에 소자층을 적층하는 단계는 챔버 내부에 소자층의 재료 및 메타계면층이 적층된 기판을 장착한 후, 챔버 내부의 압력을 낮추는 초기 진공 단계, 상기 첨버 내부에 불활성 기체를 주입시킨 후, 기판을 미리 설정된 온도로 유지하도록 가열하는 안정화 단계, 및 상기 소자층의 재료 및 기판 사이에 플라즈마를 생성하여, 상기 메타계면층 상에 상기 소자층을 증착시키는 소자층 증착 단계를 포함할 수 있다.In addition, the step of stacking the device layer on the meta-interface layer of the multi-layered two-dimensional material is an initial vacuum step of lowering the pressure in the chamber after mounting the substrate on which the material of the device layer and the meta-interface layer is stacked, After injecting an inert gas into the additive, a stabilizing step of heating the substrate to maintain a predetermined temperature, and generating a plasma between the material of the device layer and the substrate to deposit the device layer on the meta-interface layer. It may comprise a device layer deposition step.
또한, 상기 다층의 이차원재료인 메타 계면층 상에 소자층을 적층하는 단계는, 웨이퍼 상에 희생층을 증착하는 희생층 증착 단계, 상기 희생층 상에 소자층을 증착하는 소자층 증착단계, 롤 전사 장치를 이용하여, 캐리어 필름을 상기 소자층 상에 부착시키는 캐리어 필름 부착 단계, 에칭공정을 통해, 상기 희생층 및 웨이퍼를 제거하는 희생층 제거 단계, 상기 캐리어 필름에 부착된 소자층을 다층의 이차원재료로 이루어진 메타 계면층 상에 부착시키는 소자층 부착 단계, 및 상기 캐리어 필름을 떼어내어 제거하는 캐리어 필름 제거 단계를 포함할 수 있다. In addition, the step of depositing a device layer on the meta-interface layer of the multi-layered two-dimensional material, the sacrificial layer deposition step of depositing a sacrificial layer on the wafer, the device layer deposition step of depositing a device layer on the sacrificial layer, roll Using a transfer device, a carrier film attaching step of attaching a carrier film on the device layer, a sacrificial layer removing step of removing the sacrificial layer and the wafer through an etching process, the device layer attached to the carrier film A device layer attaching step of attaching on the meta-interface layer made of a two-dimensional material, and a carrier film removing step of removing and removing the carrier film.
상술한 바와 같이, 본 발명의 실시예에 따른 메타 계면 구조물은, 적층 구조로 형성된 기판 및 소자(전극) 사이에 단원자층 이차원 재료가 2층 이상 적층되어 이루어진 메타 계면이 슬라이딩 됨에 따라, 기판에 가해진 변형량보다 작은 변형량을 소자(전극)에 전달함으로써 전체 구조물의 신축성을 향상시킬 수 있다.As described above, the meta-interface structure according to the embodiment of the present invention is applied to the substrate as the meta-interface formed by stacking two or more layers of monoatomic layer two-dimensional materials between the substrate and the element (electrode) formed in the laminated structure is slid. By transferring the deformation amount smaller than the deformation amount to the device (electrode), the elasticity of the entire structure can be improved.
또한 신축성이 향상된 메타 계면 구조물은 전체 구조물의 변형에 따른 균열 발생이나 전기적/광학적 성능 저하를 방지할 수 있는 효과가 있다. In addition, the meta-interface structure with improved elasticity has an effect of preventing cracking and electrical / optical performance degradation due to deformation of the entire structure.
도 1은 본 발명의 일 실시예에 따른 메타 계면 구조물을 나타내는 개념도이다.1 is a conceptual diagram illustrating a meta-interface structure according to an embodiment of the present invention.
도 2a는 본 발명의 일 실시예에 따른 메타 계면 구조물을 개략적으로 도시한 도면이다.FIG. 2A is a diagram schematically illustrating a meta-interface structure according to an embodiment of the present invention. FIG.
도 2b는 본 발명의 다른 실시예에 따른 메타 계면 구조물을 개략적으로 도시한 도면이다.2B is a view schematically showing a meta interface structure according to another embodiment of the present invention.
도 3은 본 발명의 실시예들에 따른 메타 계면 구조물의 인장에 따른 전체저항 변화를 나타내는 그래프이다.3 is a graph showing a change in total resistance according to the tension of the meta-interface structure according to the embodiments of the present invention.
도 4는 본 발명의 실시예들에 따른 메타 계면 구조물의 인장에 따른 균열밀도를 나타내는 그래프이다.Figure 4 is a graph showing the crack density according to the tension of the meta-interface structure in accordance with embodiments of the present invention.
도 5는 본 발명의 실시예들에 따른 메타 계면 구조물의 인장에 따른 소자층의 저항변화를 나타내는 그래프이다.5 is a graph showing the resistance change of the device layer according to the tension of the meta-interface structure according to the embodiments of the present invention.
도 6은 본 발명의 일 실시예에 따른 메타 계면 구조물을 제작하는 방법을 나타내는 순서도이다.6 is a flowchart illustrating a method of manufacturing a meta-interface structure according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 메타 계면 구조물의 제작 공정을 나타내는 공정도이다.7 is a process chart showing the manufacturing process of the meta-interface structure according to an embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 메타 계면 구조물을 제작하는 방법을 나타내는 순서도이다.8 is a flowchart illustrating a method of manufacturing a meta-interface structure according to another embodiment of the present invention.
도 9는 본 발명의 다른 실시예에 따른 메타 계면 구조물을 제작하는 방법을 나타내는 공정도이다.9 is a process chart showing a method of manufacturing a meta-interface structure according to another embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 메타 계면 구조물의 소자층을 마그네트론 스퍼터링 장치를 이용하여, 메타 계면층 상에 증착시키는 순서도이다.FIG. 10 is a flowchart of depositing an element layer of a meta-interface structure on a meta-interface layer using a magnetron sputtering apparatus according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 메타 계면 구조물의 소자층을 마그네트론 스퍼터링 장치를 이용하여, 메타 계면층 상에 증착시키는 개념도이다.FIG. 11 is a conceptual diagram of depositing a device layer of a meta-interface structure on a meta-interface layer using a magnetron sputtering apparatus according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 메타 계면 구조물의 소자층을 롤 전사 장비를 이용하여, 메타 계면층 상에 부착시키는 순서도이다.12 is a flowchart in which the device layer of the meta-interface structure according to the embodiment of the present invention is attached onto the meta-interface layer using a roll transfer device.
도 13은 본 발명의 일 실시예에 따른 메타 계면 구조물의 소자층을 롤 전사 장비를 이용하여, 메타 계면층 상에 부착시키는 공정도이다.FIG. 13 is a process diagram for attaching an element layer of a meta interface structure according to an embodiment of the present invention onto a meta interface layer using a roll transfer apparatus. FIG.
<부호의 설명><Description of the code>
100 : 기판 200 : 소자층100 substrate 200 device layer
300 : 메타계면층 S100 : 제1 포일 코팅 단계300: meta-interface layer S100: first foil coating step
S200 : 제1 포일 제거 단계 S300 : 제1 전사 단계S200: first foil removing step S300: first transferring step
S400 : 제2 포일 제거 단계 S500 : 제2 전사 단계S400: second foil removing step S500: second transferring step
S600 : 지지필름 제거 단계 S700 : 소자층 적층 단계S600: removing the supporting film S700: laminating the device layer
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다. 또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification. In addition, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to the illustrated.
본 발명에 있어서 "~상에"라 함은 대상부재의 위 또는 아래에 위치함을 의미하는 것이며, 반드시 중력방향을 기준으로 상부에 위치하는 것을 의미하는 것은 아니다. 또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In the present invention, "on" means to be located above or below the target member, and does not necessarily mean to be located above the gravity direction. In addition, throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, without excluding the other components unless otherwise stated.
이하, 도면들을 참조하여 본 발명의 실시예들에 따른 메타 계면 구조물과 그 제조방법을 상세히 설명한다.Hereinafter, a meta-interface structure and a method of manufacturing the same according to embodiments of the present invention with reference to the drawings in detail.
도 1은 본 발명의 일 실시예에 따른 메타 계면 구조물을 나타내는 개념도이다. 1 is a conceptual diagram illustrating a meta-interface structure according to an embodiment of the present invention.
본 실시예의 메타 계면 구조물은 기판(100), 소자층(200) 및 메타 계면층(300)을 포함한다. The meta interface structure according to the present embodiment includes a substrate 100, an element layer 200, and a meta interface layer 300.
상기 메타 계면 구조물은 기판(100) 상에 소자층(200)이 형성된다. 이러한 메타계면 구조물은 상기 기판(100) 및 소자층(200) 사이에 메타 계면층(300)이 형성된다. 상기 메타 계면층(300)은 이차원 재료가 복수 적층되어 형성된다. 이차원 재료는 원자가 단일 층으로 이루어진 결정성 물질이다. 즉, 원자가 단일 층으로 형성된 이차원 재료를 복수 적층한 것이 메타 계면층(300)이다. In the meta-interface structure, the device layer 200 is formed on the substrate 100. In this meta-interface structure, a meta interface layer 300 is formed between the substrate 100 and the device layer 200. The meta interface layer 300 is formed by stacking a plurality of two-dimensional materials. Two-dimensional material is a crystalline material consisting of a single layer of valence. In other words, the meta-interface layer 300 is formed by stacking a plurality of two-dimensional materials formed of a single layer of atoms.
도 1을 참조하여 메타 계면 구조물의 원리에 대해 설명한다. 상기 기판(100)의 양측이 인장되면, 상기 기판(100) 상의 소자층(200)도 인장된다. 이때, 메타 계면층(300)은 복수 층으로 형성된 이차원 재료가 슬라이딩되면서, 상기 소자층(200)으로 전달되는 응력을 감소시킬 수 있다. The principle of the meta-interface structure will be described with reference to FIG. 1. When both sides of the substrate 100 are stretched, the device layer 200 on the substrate 100 is also stretched. In this case, the meta-interface layer 300 may reduce the stress transmitted to the device layer 200 while sliding the two-dimensional material formed of a plurality of layers.
상기 소자층(200)은 소자뿐만 아니라, 투명 전극 또는 필름 등을 사용할 수 있다.The device layer 200 may use not only devices but also transparent electrodes or films.
또한, 상기 메타 계면층(300)은 그래핀(Graphene), 그래핀 옥사이드(Graphene Oxide), 환원 그래핀 옥사이드(Reduced Graphene Oxide, RGO), 육각 질화붕소(Hexagonal Boron Nitride, h-BN) 중 적어도 하나를 사용할 수 있다. 또한, 상기 메타 계면층(300)은 상기 재료들 외에도 이차원 재료라면 사용할 수 있다. In addition, the meta interface layer 300 is at least one of graphene (Graphene), graphene oxide (Graphene Oxide), reduced graphene oxide (Reduced Graphene Oxide, RGO), hexagonal boron nitride (h-BN) You can use one. In addition, the meta interface layer 300 may be used as long as it is a two-dimensional material in addition to the above materials.
또한, 상기 메타 계면층(300)은 두께가 10 nm 이하 또는 적층된 2차원 재료의 층수가 20층 이내 인 것이 적용될 수 있다. 적층된 단원자층은 반데르발스 힘(van der Waals force)에 의해 상호작용을 하는데, 적층된 2차원 재료의 층수가 20층보다 커지는 경우에는 반데르발스 힘이 미치는 범위보다 두께가 커지기 때문에, 계면으로 간주하기 어렵고, 별도의 구조체로 간주된다.In addition, the meta-interface layer 300 may have a thickness of 10 nm or less, or the number of laminated two-dimensional materials within 20 layers. The laminated monoatomic layer interacts by van der Waals forces, but when the number of laminated two-dimensional materials is greater than 20 layers, the thickness becomes larger than the range of van der Waals forces, so the interface It is difficult to consider and is considered a separate structure.
기계장치의 신축성은 기계장치가 작동 가능한 최대 변형률을 의미하며 주로 취성을 가진 소자의 파괴 변형률에 의해 결정된다. 상기 기판(100) 및 소자층(200)으로 이루어진 기계장치를 고려할 때, 기판(100)이 변형될 경우 소자층(200)에도 힘이 전달되어 변형이 된다. 여기서 메타 계면층(300)을 소자층(200)과 기판(100) 사이에 적용하면 기판(100)이 변형될 때 메타 계면층(300) 내에서 슬라이딩이 발생하여 소자층(200)에 전달되는 힘이 감소된다. 또한, 기계장치는 메타 계면층(300)이 없는 경우보다 메타 계면층(300)이 있는 경우 소자층(200)에 더 적은 변형률이 걸리게 된다. 그러므로 메타 계면층(300)이 있는 경우, 소자층(200)의 파괴 변형률만큼 변형률이 가해지기 위해서는 메타 계면층(300)이 없는 경우보다 더 큰 변형률이 기계장치에 가해져야 한다. 따라서 기존 기계장치보다 더 큰 신축성을 갖게 된다. 이렇게 기계장치에 메타 계면층(300)을 적용함으로써 기존의 취성의 특성을 가진 소자 및 전극이 있는 기계장치의 신축성을 향상시킬 수 있다.The elasticity of a mechanism refers to the maximum strain at which the mechanism can operate and is mainly determined by the breaking strain of brittle elements. In consideration of the mechanical device including the substrate 100 and the device layer 200, when the substrate 100 is deformed, a force is transmitted to the device layer 200 to deform. When the meta interface layer 300 is applied between the device layer 200 and the substrate 100, when the substrate 100 is deformed, sliding occurs in the meta interface layer 300 to be transferred to the device layer 200. Force is reduced. In addition, the mechanical device has less strain on the element layer 200 when there is a meta interface layer 300 than when there is no meta interface layer 300. Therefore, when the meta interface layer 300 is present, a larger strain must be applied to the mechanical device than without the meta interface layer 300 in order for the strain to be applied by the breaking strain of the device layer 200. The result is greater flexibility than conventional machinery. By applying the meta-interface layer 300 to the mechanical device as described above, it is possible to improve the elasticity of the mechanical device having the electrodes and electrodes having the existing brittle characteristics.
도 2a는 본 발명에 일 실시예에 따른 메타 계면 구조물을 개략적으로 도시한 도면이며, 도 2b는 본 발명에 다른 실시예에 따른 메타 계면 구조물을 개략적으로 도시한 도면이다. 2A is a view schematically showing a meta interface structure according to an embodiment of the present invention, and FIG. 2B is a view schematically showing a meta interface structure according to another embodiment of the present invention.
도 2a에 나타낸 메타 계면 구조물에서는 기판(100)과 소자층(200)이 단일층 구조로 형성되며, 상기 기판(100) 및 소자층(200) 사이에 메타 계면층(300)이 형성된다. In the meta-interface structure shown in FIG. 2A, the substrate 100 and the device layer 200 are formed in a single layer structure, and the meta-interface layer 300 is formed between the substrate 100 and the device layer 200.
도 2b에 나타낸 메타 계면 구조물에서는 기판(100) 상에 소자층(200)이 복수층 구조로 형성되며, 상기 기판(100) 및 소자층(200) 사이와, 복수층 구조의 소자층(200) 각각의 사이에 메타 계면층(300)이 형성된다. In the meta-interface structure shown in FIG. 2B, the device layer 200 is formed in a multi-layer structure on the substrate 100, between the substrate 100 and the device layer 200, and the device layer 200 having a multi-layer structure. The meta interface layer 300 is formed between each.
도 2a 및 도 2b에서 보는 바와 같이, 메타 계면 구조물의 기판(100) 양측을 인장하게 되면, 상기 기판(100)이 인장됨에 따라 소자층(200)이 인장된다. 이때, 상기 기판(100) 및 소자층(200) 사이의 메타 계면층(300)이 슬라이딩되어, 상기 소자층(200)에 전달되는 응력을 감소시킨다. 이로 인해 상기 소자층(200)은 상기 기판(100)의 변형률보다 낮게 변형된다. As shown in FIGS. 2A and 2B, when both sides of the substrate 100 of the meta-interface structure are stretched, the device layer 200 is stretched as the substrate 100 is stretched. In this case, the meta interface layer 300 between the substrate 100 and the device layer 200 is slid to reduce the stress transmitted to the device layer 200. As a result, the device layer 200 is deformed lower than the strain of the substrate 100.
또한, 도 2b에 나타낸 메타 계면 구조물의 경우, 소자층(200) 사이의 메타 계면층(300)이 슬라이딩 되면서, 높이방향으로 갈수록 전달되는 응력이 줄어든다. 따라서, 상기 소자층(200)들은 높이방향으로 갈수록 변형률이 낮아지게 된다. In addition, in the meta-interface structure shown in FIG. 2B, while the meta-interface layer 300 between the device layers 200 slides, the stress transmitted toward the height direction decreases. Therefore, the device layers 200 have a low strain rate toward the height direction.
본 발명의 실시예들에 따른 메타 계면 구조물에 대해 인장 시험을 하면서 전기 저항을 측정하여 도 3, 4 및 도 5 의 그래프로 나타내었다.The electrical resistance was measured while performing a tensile test on the meta-interface structure according to the embodiments of the present invention and is shown in the graphs of FIGS. 3, 4 and 5.
도 3은 본 발명의 실시예들에 따른 메타 계면 구조물의 변형률에 따른 구조물의 전체 저항 변화를 나타내는 그래프이다. 도 4는 본 발명의 실시예들에 따른 메타 계면 구조물의 변형률에 따른 균열밀도를 나타내는 그래프이며, 도 5는 본 발명의 실시예들에 따른 메타 계면 구조물의 변형률에 따른 소자층(ITO 박막)의 저항변화를 나타내는 그래프이다. 3 is a graph showing the change in the overall resistance of the structure according to the strain of the meta-interface structure in accordance with embodiments of the present invention. 4 is a graph showing the crack density according to the strain of the meta-interface structure according to the embodiments of the present invention, Figure 5 is a device layer (ITO thin film) according to the strain of the meta-interface structure according to the embodiments of the present invention This graph shows the resistance change.
도 3, 4 및 5에 도시된 그래프를 참조할 때, "ITO"는 기판(100)과 소자층(200)으로만 이루어진 구조물을 정의하며, "ITO/2LG"는 기판(100)과 소자층(200) 사이에 이차원 재료가 2개 적층된 메타 계면층(300)을 포함하는 구조물을 정의한다. 또한, "ITO/3LG"는 기판(100)과 소자층(200) 사이에 이차원 재료가 3개 적층된 메타 계면층(300)을 포함하는 구조물을 정의한다. 또한, "ITO/4LG"는 기판(100)과 소자층(200) 사이에 이차원 재료가 4개 적층된 메타 계면층(300)을 포함하는 구조물을 정의한다. 또한, "ITO/5LG"는 기판(100)과 소자층(200) 사이에 이차원 재료가 5개 적층된 메타 계면층(300)을 포함하는 구조물을 정의한다.Referring to the graphs shown in FIGS. 3, 4 and 5, "ITO" defines a structure consisting of the substrate 100 and the device layer 200 only, and "ITO / 2LG" refers to the substrate 100 and the device layer. A structure including a meta interface layer 300 having two two-dimensional materials stacked between 200 is defined. In addition, "ITO / 3LG" defines a structure including a meta-interface layer 300 having three two-dimensional materials stacked between the substrate 100 and the device layer 200. In addition, "ITO / 4LG" defines a structure including a meta-interface layer 300 in which four two-dimensional materials are stacked between the substrate 100 and the device layer 200. In addition, "ITO / 5LG" defines a structure including a meta-interface layer 300 in which five two-dimensional materials are stacked between the substrate 100 and the device layer 200.
도 3에서 보는 바와 같이, 메타 계면층(300)이 있는 "ITO/2LG", "ITO/3LG", "ITO/4LG" 및 "ITO/5LG"는 기판(100)과 소자층(200)으로만 이루어진 "ITO"보다 구조물의 변형률에 따른 전체 저항 변화가 상대적으로 낮은 것을 확인 할 수 있다. 이것은 그래핀 메타 계면층(300)이 전도성이 있어 전류가 흐를 수 있는 통로 역할을 하고, 소자층(200)에 전달되는 변형률을 감소시키기 때문이다. As shown in FIG. 3, "ITO / 2LG", "ITO / 3LG", "ITO / 4LG", and "ITO / 5LG" with the meta-interface layer 300 serve as the substrate 100 and the device layer 200. It can be seen that the overall resistance change according to the strain of the structure is relatively lower than the "ITO" made only. This is because the graphene meta interface layer 300 serves as a path through which electric current can flow and reduces the strain transmitted to the device layer 200.
도 4에서 보는 바와 같이, 메타 계면층(300)이 있는 구조물인 경우, 소자층(200)만 있는 경우에 비해 상대적으로 균열밀도가 낮은 것을 확인할 수 있다. 또한, 메타 계면층(300)으로 사용되는 이차원 재료의 층수가 증가함에 따라 균열 밀도가 더 낮은 것을 알 수 있다. 이렇게 메타 계면층(300)이 적용된 구조물에서 균열 밀도가 감소한 원인은 메타 계면층(300)에서 발생하는 슬라이딩으로 인하여 기판(100)에 비해 소자층(200)에 가해지는 응력이 상대적으로 줄어들기 때문이다. 또한, 이러한 슬라이딩은 이차원 재료의 층수가 증가할수록 더욱 커지는 특징이 있다. As shown in FIG. 4, in the case of the structure having the meta-interface layer 300, it may be confirmed that the crack density is relatively lower than that of the device layer 200 only. In addition, it can be seen that the crack density is lower as the number of layers of the two-dimensional material used as the meta-interface layer 300 increases. The reason why the crack density is reduced in the structure to which the meta interface layer 300 is applied is that the stress applied to the device layer 200 is relatively reduced compared to the substrate 100 due to the sliding occurring in the meta interface layer 300. to be. In addition, such sliding is characterized by increasing as the number of layers of the two-dimensional material increases.
도 5의 그래프는 변형률에 따른 소자층(200)의 저항 변화와 전기-기계적 모델을 나타낸 것이다. 메타 계면층(300)이 있는 경우 변형률에 따른 소자층(200)의 저항 변화가 낮은 것을 확인할 수 있고, 이차원 재료의 층수가 증가함에 따라 낮아지는 비율이 커지는 것을 알 수 있다. 따라서, 특정 저항 변화 값을 가질 때의 변형률을 신축성이라 가정하면, 메타 계면을 적용함으로써 신축성을 향상시킬 수 있다.5 shows the resistance change and the electro-mechanical model of the device layer 200 according to the strain. When the meta-interface layer 300 is present, it can be seen that the resistance change of the device layer 200 according to the strain is low, and the rate of decrease becomes larger as the number of layers of the two-dimensional material increases. Therefore, assuming that the strain at the time of having a specific resistance change value is elasticity, elasticity can be improved by applying a meta interface.
따라서, 본 발명의 실시예에 따른 메타 계면 구조물은 메타 계면층(300)의 두께가 수십 나노미터에 불과하고 광학적 투과율이 우수하기 때문에, 메타 계면층(300)의 유무에 따라 전체 구조물의 두께 및 광학적 특성에는 거의 차이가 없다. 또한, 전기-기계적 실험과 실시간 광학적 표면 관찰을 통하여 기판(100)에 인장변형이 가해질 때, 메타 계면이 적용된 구조물이 그렇지 않은 구조물에 비해 균열 밀도와 전기 저항이 크게 줄어든다. 이는 메타 계면의 낮은 전단계수로 인해 기판(100)에서 소자층(200)으로 전달되는 전단응력이 현격히 낮아지기 때문이다. 또한, 메타 계면층(300)의 이차원 재료의 층수가 증가할수록 전기-기계적 신축성이 더욱 향상된다. 이를 이용하면 전체 구조물의 전기-기계적 신축성을 원하는 대로 조절할 수 있어, 유연한 전자기기 설계에 유용하게 활용될 수 있다. Therefore, since the meta-interface structure according to the embodiment of the present invention has a thickness of the meta-interface layer 300 is only a few tens of nanometers and excellent optical transmittance, the thickness of the entire structure and the meta-interface layer 300 depending on the presence or absence of the There is little difference in the optical properties. In addition, when tensile strain is applied to the substrate 100 through electro-mechanical experiments and real-time optical surface observation, the crack density and the electrical resistance of the structure to which the meta-interface is applied are significantly reduced compared to those of the structure that is not. This is because the shear stress transmitted from the substrate 100 to the device layer 200 is significantly lowered due to the low shear modulus of the meta interface. In addition, as the number of layers of the two-dimensional material of the meta-interface layer 300 increases, electro-mechanical elasticity is further improved. This allows the electro-mechanical elasticity of the entire structure to be adjusted as desired, which can be useful in designing flexible electronics.
한편, 본 발명의 실시예에 따른 메타 계면 구조물을 제작하기 위한 메타 계면 구조물의 제조 방법은 습식공정을 통해 메타 계면 구조물을 제작하는 방법과 건식공정을 통해 메타 계면 구조물을 제작하는 방법으로 구분된다. On the other hand, the manufacturing method of the meta-interface structure for manufacturing the meta-interface structure according to the embodiment of the present invention is divided into a method of manufacturing the meta-interface structure through a wet process and a method of manufacturing the meta-interface structure through a dry process.
먼저, 습식공정을 통해 메타 계면 구조물을 제작하는 방법에 대해 설명한다.First, a method of manufacturing a meta-interface structure through a wet process will be described.
도 6은 본 발명의 일 실시예에 따른 메타 계면 구조물을 제작하는 방법을 나타내는 순서도이며, 도 7은 본 발명의 일 실시예에 따른 메타 계면 구조물의 제작 공정을 개략적으로 나타내는 공정도이다.6 is a flowchart illustrating a method of manufacturing a meta interface structure according to an embodiment of the present invention, and FIG. 7 is a flowchart schematically illustrating a manufacturing process of the meta interface structure according to an embodiment of the present invention.
도 6 및 도 7을 참조하여 설명하면, 습식공정을 통해 메타 계면 구조물을 제작하는 방법은 제1 포일 코팅 단계(S100), 제1 포일 제거 단계(S200), 제1 전사 단계(S300), 제2 포일 제거 단계(S400), 제2 전사 단계(S500), 지지필름 제거 단계(S600) 및 소자층 적층 단계(S700)로 이루어진다.Referring to FIGS. 6 and 7, the method for manufacturing the meta-interface structure through a wet process may include a first foil coating step S100, a first foil removing step S200, a first transfer step S300, and a first manufacturing method. 2 foil removal step (S400), the second transfer step (S500), the support film removal step (S600) and the device layer stacking step (S700).
우선, 도 7의 (a)에서 보는 바와 같이, 제1 포일 코팅 단계(S100)에서는, 지지필름을 제1 이차원재료가 합성된 제1 포일에 코팅한다. 이때, 상기 지지필름은 폴리메틸 메타크릴레이트(polymethylmethacrylate, PMMA)을 사용한다.First, as shown in Figure 7 (a), in the first foil coating step (S100), the support film is coated on the first foil synthesized with the first two-dimensional material. At this time, the support film uses polymethyl methacrylate (polymethylmethacrylate, PMMA).
또한, 상기 제1 이차원 재료는 그래핀(Graphene), 그래핀 옥사이드(Graphene Oxide), 환원 그래핀 옥사이드(Reduced Graphene Oxide, RGO), 유육각 질화붕소(Hexagonal Boron Nitride, h-BN) 중 적어도 하나를 사용할 수 있다. 상기 제1 포일은 구리, 구리 합금, 니켈 재질 중 하나의 재질을 사용할 수 있다. In addition, the first two-dimensional material is at least one of graphene (Graphene), graphene oxide (Graphene Oxide), reduced graphene oxide (Reduced Graphene Oxide, RGO), Hexagonal Boron Nitride (h-BN) Can be used. The first foil may be made of one of copper, copper alloy, and nickel.
다음으로, 도 7의 (b)에서 보는 바와 같이, 제1 포일 제거 단계(S200)에서는, 에칭 공정을 통해 상기 제1 포일을 제거한다. 더욱 상세하게 설명하면, 제1 포일 제거 단계(S200)에서는 상기 지지필름이 코팅된 제1 이차원재료 및 제1 포일을 용기에 넣고, 과황산 암모늄(Ammonioum persulfate, APS) 용액을 사용하여 에칭공정을 통해 상기 제1 포일을 제거한다. 이때, 상기 APS 용액을 대신하여 포일의 재질에 따라 적절한 금속 에칭 용액을 사용할 수 있으며, APS 용액 이외에도 금속을 식각하면서 그래핀은 식각하지 않는 황산, 질산 등의 다양한 용액들이 사용될 수 있다. 상기 과황산 암모늄 용액을 이용한 포일 제거 단계와 관련하여 본 발명자가 발명하여 출원한 한국특허출원 10-2014-0157313호 ("에칭액 및 이를 이용한 그래핀 전사방법", 2014. 11. 12. 출원)의 내용을 참조할 수 있다.Next, as shown in FIG. 7B, in the first foil removing step S200, the first foil is removed through an etching process. In more detail, in the first foil removing step (S200), the supporting film is coated with the first two-dimensional material and the first foil in a container, and an etching process is performed using an ammonium persulfate (APS) solution. Remove the first foil through. In this case, an appropriate metal etching solution may be used instead of the APS solution according to the material of the foil, and various solutions, such as sulfuric acid and nitric acid, which do not etch graphene while etching the metal, may be used in addition to the APS solution. Korean Patent Application No. 10-2014-0157313 ("Etching Solution and Graphene Transfer Method Using the Same", filed by Nov. 12, 2014, filed by the present inventors with respect to the foil removing step using the ammonium persulfate solution) See content.
또한, 상기 제1 포일 제거 단계(S200)에서는 상기 지지필름이 코팅된 제1 이차원재료를 증류수에 띄워, 상기 제1 이차원재료에 남아있는 포일의 잔여물 또는 에칭 용액인 APS 용액을 제거한다. In addition, in the first foil removing step (S200), the first two-dimensional material coated with the support film is floated in distilled water to remove the APS solution, which is the residue or etching solution of the foil remaining in the first two-dimensional material.
다음으로, 도 7의 (c)에서 보는 바와 같이, 제1 전사 단계(S300)에서는, 상기 지지필름이 코팅된 제1 이차원재료를 제2 이차원재료가 합성된 제2 포일로 떠내어, 상기 제2 포일 상에 제1 이차원재료를 전사한다. 이때, 상기 제2 포일은 구리, 구리 합금, 니켈 재질 중 하나의 재질을 사용할 수 있다. 예를 들어, 단원자층 합성을 위해서는 구리 재질을 사용하는 것이 바람직하나, 다층을 한 번에 합성하기 위해서는 니켈이나 구리 합금 등의 다양한 금속을 사용할 수 있다. Next, as shown in Figure 7 (c), in the first transfer step (S300), the first two-dimensional material coated with the support film is floated with a second foil synthesized with a second two-dimensional material, the second Transfer the first two-dimensional material onto two foils. In this case, the second foil may be made of one of copper, copper alloy, and nickel. For example, it is preferable to use a copper material for synthesizing the monoatomic layer, but various metals such as nickel or a copper alloy may be used to synthesize the multilayer at once.
즉, 상기 제1 전사 단계(S300)에서는 상기 지지필름이 코팅된 제1 이차원재료를 제2 이차원재료가 합성된 제2 포일 상에 덮도록 한다. That is, in the first transfer step S300, the first two-dimensional material coated with the support film is covered on the second foil on which the second two-dimensional material is synthesized.
다음으로, 도 7의 (d)에서 보는 바와 같이, 제2 포일 제거 단계(S400)에서는, 상기 제1 포일 제거 단계(S200)와 동일하게 에칭 공정을 통해 제2 포일을 제거한다. 더욱 상세하게 설명하면, APS 용액을 사용하여 에칭공정을 통해 상기 제2 포일을 제거한다. 또한, 상기 지지필름이 코팅된 제1 및 제2 이차원재료를 증류수에 띄워, 상기 제1 및 제2 이차원재료에 남아있는 포일의 잔여물 또는 에칭 용액인 APS 용액을 제거한다. 이러한 단계를 거치면, 지지필름이 코팅된 2층 구조의 이차원재료를 얻을 수 있다. 또한, 이러한 단계를 반복적으로 수행하면, 지지필름이 코팅된 다층 구조의 이차원재료를 제작할 수 있다. Next, as shown in (d) of FIG. 7, in the second foil removing step S400, the second foil is removed through an etching process in the same manner as in the first foil removing step S200. In more detail, the second foil is removed through an etching process using an APS solution. In addition, the first and second two-dimensional materials coated with the support film are floated in distilled water to remove the APS solution, which is a residue or an etching solution of the foil remaining in the first and second two-dimensional materials. Through this step, it is possible to obtain a two-dimensional material of a two-layer structure coated with a support film. In addition, by repeatedly performing these steps, it is possible to produce a two-dimensional material of a multi-layer structure coated with a support film.
다음으로, 도 7의 (e)에서 보는 바와 같이, 제2 전사 단계(S500)에서는, 상기 지지필름이 코팅된 제1 및 제2 이차원재료를 기판으로 떠내어, 상기 제1 및 제2 이차원재료를 기판 상에 전사한다. 이때, 상기 기판은 폴리머 재질을 사용한다. Next, as shown in (e) of FIG. 7, in the second transfer step S500, the first and second two-dimensional materials coated with the support film are floated onto a substrate, and the first and second two-dimensional materials are removed. Is transferred onto the substrate. In this case, the substrate is a polymer material.
다음으로, 도 7의 (f)에서 보는 바와 같이, 지지필름 제거 단계(S600)에서는, 에탄올을 사용하여 상기 지지필름인 PMMA를 제거한다. Next, as shown in Figure 7 (f), in the support film removal step (S600), ethanol is used to remove the support film PMMA.
마지막으로, 소자층 적층 단계(S700)에서는, 상기 다층의 이차원재료인 메타계면층(300) 상에 소자층을 적층한다. 이때, Off-axis RF 마그네트론 스퍼터링 방법 또는 롤 전사 장비를 이용하여 소자층을 적층 시킨다. 상기 소자층 적층 단계(S700)에 대한 상세한 설명은 도 10 내지 13을 참조하여 후술한다. Finally, in the device layer stacking step (S700), the device layer is laminated on the meta-interface layer 300 which is the multi-dimensional two-dimensional material. At this time, the device layer is laminated using an off-axis RF magnetron sputtering method or a roll transfer device. A detailed description of the device layer stacking step S700 will be described later with reference to FIGS. 10 to 13.
한편, 건식공정을 통해 메타 계면 구조물을 제작하는 방법에 대해 설명한다. 건식 전사 방법은 그래핀을 기판에 전사할 때 접착력 등의 기계적인 힘에 의해 전사하는 방법으로 롤 전사 등을 이용하여 대면적, 대량생산이 가능하다. On the other hand, a method for producing a meta-interface structure through a dry process will be described. The dry transfer method is a method of transferring graphene to a substrate by mechanical force such as adhesive force, which enables large area and mass production using roll transfer or the like.
도 8은 본 발명의 다른 실시예에 따른 메타 계면 구조물을 제작하는 방법을 나타내는 순서도이며, 도 9는 본 발명의 다른 실시예에 따른 메타 계면 구조물을 제작하는 방법을 나타내는 공정도이다. 8 is a flowchart illustrating a method of manufacturing a meta interface structure according to another embodiment of the present invention, and FIG. 9 is a flowchart illustrating a method of manufacturing a meta interface structure according to another embodiment of the present invention.
도 8 및 도 9를 참조하여 설명하면, 건식공정을 통해 메타 계면 구조물을 제작하는 방법은 포일 부착 단계(S110), 포일 제거 단계(S210), 제1 부착 단계(S310), 제1 지지필름 제거 단계(S410), 제2 부착 단계(S510), 제2 지지필름 제거 단계(S610) 및 소자층 적층 단계(S700)로 이루어진다.Referring to FIGS. 8 and 9, the method of manufacturing the meta-interface structure through a dry process includes a foil attaching step (S110), a foil removing step (S210), a first attaching step (S310), and a first supporting film removal. Step S410, the second attaching step S510, the second supporting film removing step S610, and the device layer stacking step S700 are performed.
먼저, 도 9의 (a 및 b)에서 보는 바와 같이, 포일 부착 단계(S110)에서는, 지지필름을 제1 이차원재료가 합성된 제1 포일 상에 부착하고, 또 다른 지지필름을 제2 이차원재료가 합성된 제2 포일 상에 부착한다. 예를 들어 설명하면, 먼저 롤 장비에 지지필름을 제1 이차원재료가 합성된 제1 포일 위에 오게 한 후 롤을 통과시켜 지지필름을 제1 이차원재료가 합성된 제1 포일 위에 붙인다.First, as shown in (a and b) of FIG. 9, in the foil attaching step (S110), the supporting film is attached onto the first foil on which the first two-dimensional material is synthesized, and another supporting film is attached to the second two-dimensional material. Attach on the synthesized second foil. For example, first, the support film is placed on the roll equipment on the first foil on which the first two-dimensional material is synthesized, and then passed through the roll to attach the support film on the first foil on which the first two-dimensional material is synthesized.
이때, 상기 지지필름은 제1 및 제2 이차원재료가 손상되지 않도록 지지하는 역할을 하며, 열박리 테잎(thermal release tape), 자외선 박리 테잎(UV-release tape) 또는 폴리머 필름에 실리콘 점착층이 있는 필름 등이 사용될 수 있다.  In this case, the supporting film serves to support the first and second two-dimensional materials so as not to be damaged, and the silicone adhesive layer is provided on the thermal release tape, the UV-release tape, or the polymer film. Films and the like can be used.
또한, 상기 제1 및 제2 이차원 재료는 그래핀(Graphene), 그래핀 옥사이드(Graphene Oxide), 환원 그래핀 옥사이드(Reduced Graphene Oxide, RGO), 육각 질화붕소(Hexagonal Boron Nitride, h-BN) 중 적어도 하나를 사용할 수 있다. 상기 제1 포일 및 제2 포일은 구리, 구리 합금, 니켈 재질 중 하나의 재질을 사용할 수 있다. In addition, the first and second two-dimensional materials are graphene (Graphene), graphene oxide (Graphene Oxide), reduced graphene oxide (Reduced Graphene Oxide, RGO), hexagonal boron nitride (Hexagonal Boron Nitride, h-BN) At least one can be used. The first foil and the second foil may use one of copper, a copper alloy, and a nickel material.
다음으로, 도 9의 (c)에서 보는 바와 같이, 포일 제거 단계(S210)에서는, 에칭 공정을 통해 상기 제1 및 제2 포일을 제거한다. 더욱 상세하게 설명하면, 상기 지지필름이 코팅된 제1 이차원재료 및 제1 포일을 용기에 넣고, APS 용액에 띄워 에칭공정을 통해 상기 제1 포일을 제거한다. 또한, 상기 지지필름이 코팅된 제1 이차원재료를 증류수에 30분 동안 띄워, 상기 제1 이차원재료에 남아있는 포일의 잔여물 또는 에칭 용액인 APS 용액을 제거한다. 또한, 또 다른 지지필름이 코팅된 제2 이차원재료가 합성된 제2 포일도 상기와 같이 에칭 공정을 통해, 제2 포일을 제거한다.Next, as shown in (c) of FIG. 9, in the foil removing step S210, the first and second foils are removed through an etching process. In more detail, the first two-dimensional material and the first foil coated with the support film are placed in a container and floated in an APS solution to remove the first foil through an etching process. In addition, the support film-coated first two-dimensional material is floated in distilled water for 30 minutes to remove the residue of the foil remaining in the first two-dimensional material or the APS solution which is an etching solution. In addition, the second foil obtained by synthesizing the second two-dimensional material coated with another support film is also removed through the etching process as described above.
다음으로, 도 9의 (d)에서 보는 바와 같이, 제1 부착 단계(S310)에서는, 상기 지지필름이 코팅된 제1 이차원재료를 기판 상에 부착한다. 이때, 상기 기판은 폴리머 재질을 사용한다. 예를 들어 설명하면, 지지필름/제1 이차원재료를 기판 위에 오게 하면서 롤을 통과시켜 기판에 지지필름/제1 이차원재료를 붙인다.Next, as shown in (d) of FIG. 9, in the first attaching step (S310), the first two-dimensional material coated with the support film is attached onto the substrate. In this case, the substrate is a polymer material. For example, the support film / first two-dimensional material is attached to the substrate through a roll while the support film / first two-dimensional material is placed on the substrate.
다음으로, 도 9의 (e)에서 보는 바와 같이, 제1 지지필름 제거 단계(S410)에서는, 상기 지지필름을 제거하여, 기판 위에 제1 이차원재료만 남아있도록 한다.Next, as shown in (e) of Figure 9, in the first support film removal step (S410), the support film is removed, so that only the first two-dimensional material remains on the substrate.
여기서, 지지필름을 제거하는 방법으로 열박리테잎을 지지필름으로 사용할 경우 열박리테잎/이차원재료/기판이 올려진 스테이지를 약 110 ~ 130 ℃ 로 온도를 올려서 열박리테잎이 이차원재료로부터 떨어지게 한다. Here, in the case of using the thermal peeling tape as a supporting film by removing the supporting film, the temperature of the thermal peeling tape / two-dimensional material / substrate is raised to about 110 to 130 ° C. so that the thermal peeling tape is separated from the two-dimensional material.
또한, 폴리머 필름에 점착층이 있는 필름을 지지필름으로 사용할 경우 다른 처리 없이 지지필름을 떼어낸다. In addition, when using a film having an adhesive layer on the polymer film as a support film, the support film is removed without any other treatment.
또한, 자외선 박리 테잎을 사용할 경우, 자외선을 가해서 지지필름이 떨어지게 한다.In addition, when using an ultraviolet peeling tape, the support film is dropped by applying ultraviolet light.
다음으로, 도 9의 (f)에서 보는 바와 같이, 제2 부착 단계(S510)에서는, 상기 또 다른 지지필름이 코팅된 제2 이차원재료를 상기 제1 이차원재료 상에 부착한다. 제2 부착 단계(S510)도 상기 제1 부착 단계(S310)와 동일한 방법으로 한다.Next, as shown in (f) of FIG. 9, in the second attaching step (S510), the second two-dimensional material coated with the another supporting film is attached onto the first two-dimensional material. The second attaching step S510 is also performed in the same manner as the first attaching step S310.
다음으로, 제2 지지필름 제거 단계(S610)에서는, 상기 또 다른 지지필름을 제거한다. 제2 지지필름 제거 단계(S610)도 상기 제1 지지필름 제거 단계(S410)와 동일한 방법으로 상기 또 다른 지지필름을 제거한다. Next, in the second support film removal step (S610), the another support film is removed. The second support film removing step (S610) also removes the another support film in the same manner as the first support film removing step (S410).
마지막으로, 소자층 적층 단계(S700)에서는, 상기 다층의 이차원재료인 메타계면층(300) 상에 소자층을 적층한다.Finally, in the device layer stacking step (S700), the device layer is laminated on the meta-interface layer 300 which is the multi-dimensional two-dimensional material.
Off-axis RF 마그네트론 스퍼터링을 이용하여 소자층 적층하는 방법을 설명하면 다음과 같다. A method of stacking device layers using off-axis RF magnetron sputtering will be described as follows.
도 10은 본 발명의 일 실시예에 따른 메타 표면 구조물의 소자층을 마그네트론 스퍼터링 장치를 이용하여, 메타 계면층 상에 증착시키는 순서도이며, 도 11은 본 발명의 일 실시예에 따른 메타 표면 구조물의 소자층을 마그네트론 스퍼터링 장치를 이용하여, 메타 계면층 상에 증착시키는 개념도이다. FIG. 10 is a flowchart of depositing an element layer of a meta surface structure according to an embodiment of the present invention on a meta interface layer using a magnetron sputtering apparatus, and FIG. 11 is a view of a meta surface structure according to an embodiment of the present invention. It is a conceptual diagram which deposits an element layer on a meta interface layer using a magnetron sputtering apparatus.
도 10 및 도 11을 참조하여 설명하면, 소자층 적층 단계(S700)에서 Off-axis RF 마그네트론 스퍼터링을 이용하는 방법은 초기 진공 단계(S710), 안정화 단계(S711) 및 소자층 증착 단계(S712)를 포함한다. Referring to FIGS. 10 and 11, the method of using off-axis RF magnetron sputtering in the device layer stacking step S700 may include an initial vacuum step S710, a stabilization step S711, and a device layer deposition step S712. Include.
초기 진공 단계(S710)에서는, 챔버 내부에 소자층의 재료 및 메타계면층이 적층된 기판을 장착한 후, 챔버 내부의 압력을 낮춘다. 더욱 상세하게 설명하면, Off-axis RF 마그네트론 스퍼터링 장치는 챔버 내부에 각각의 건(Gun) 끝단에 소자층의 재료가 구비되며, 각각의 끝단이 소정거리 이격되어 마주보도록 형성된다. 또한, 기판이 끝단에 구비된 건은 상기 소자층 재료가 구비된 건과 수직방향으로 소정거리 이격되어 형성된다. 이때, 각각의 건 끝단의 거리는 약 10cm 정도를 유지한다. In the initial vacuum step (S710), after mounting the substrate on which the material of the element layer and the meta-interface layer is stacked in the chamber, the pressure in the chamber is lowered. In more detail, the off-axis RF magnetron sputtering device is provided with a material of the element layer at each gun end in the chamber, and each end is formed to face each other at a predetermined distance. In addition, the gun provided at the end of the substrate is formed spaced apart a predetermined distance in the vertical direction to the gun provided with the device layer material. At this time, the distance of each end of the gun is maintained about 10cm.
이러한 스퍼터링 장치는 음극에 영구자석이 장착되며, 부도체, 금속, 산화물 등 다양한 박막을 증착할 수 있다. 또한, 상기 소자층의 재료는 지름이 2 인치(inch)이고, In: 90 wt%, Sn: 10 wt%를 사용한다.Such a sputtering device is equipped with a permanent magnet on the cathode, it is possible to deposit various thin films, such as insulators, metals, oxides. In addition, the material of the device layer has a diameter of 2 inches (In: 90 wt%, Sn: 10 wt%).
또한, 챔버의 초기 진공은 8 x 10-6 torr 이하로 한다.In addition, the initial vacuum of a chamber is made into 8x10 <-6> torr or less.
안정화 단계(S711)에서는, 상기 챔버 내부에 불활성 기체를 주입시킨 후, 기판을 일정온도 유지하도록 가열한다. 즉, 기판 온도가 120℃까지 도달하도록 가열한 후 타겟 표면의 불순물을 제거하고 스퍼터 방전이 안정되도록 5분간 예비 스퍼터링(pre-sputtering)을 한다.In the stabilization step (S711), after inert gas is injected into the chamber, the substrate is heated to maintain a constant temperature. That is, the substrate is heated to reach 120 ° C., followed by preliminary sputtering for 5 minutes to remove impurities from the target surface and to stabilize the sputter discharge.
소자층 증착 단계(S712)에서는, 상기 소자층의 재료 및 기판 사이에 플라즈마를 생성하여, 상기 메타계면층 상에 상기 소자층을 증착시킨다. 이때, 증착 압력 1 mtorr 에서 RF power를 125W로 하여 소자층을 증착한다.In the device layer deposition step (S712), a plasma is generated between the material of the device layer and the substrate to deposit the device layer on the meta-interface layer. At this time, the device layer is deposited with an RF power of 125 W at a deposition pressure of 1 mtorr.
이 방법은 일반적인 RF 스퍼터링 보다 고품질의 박막을 제조할 수 있고, 플라즈마가 기판에 직접 영향을 주지 않아 기판이 손상되거나 휘어지는 것을 막을 수 있다.This method can produce thin films of higher quality than conventional RF sputtering and can prevent the substrate from being damaged or bent as the plasma does not directly affect the substrate.
도 12는 본 발명의 일 실시예에 따른 메타 표면 구조물의 소자층을 롤 전사 장비를 이용하여, 메타 계면층 상에 부착시키는 순서도이며, 도 13은 본 발명의 일 실시예에 따른 메타 표면 구조물의 소자층을 롤 전사 장비를 이용하여, 메타 계면층 상에 부착시키는 개념도이다. 12 is a flowchart of attaching an element layer of a meta surface structure according to an embodiment of the present invention on a meta interface layer using a roll transfer device, and FIG. 13 is a view of a meta surface structure according to an embodiment of the present invention. It is a conceptual diagram which makes an element layer adhere on a meta interface layer using a roll transfer apparatus.
도 12 및 도 13을 참조하여 설명하면, 롤 전사 장비를 이용하여 소자층을 적층 시키는 소자층 적층 단계(S700)는 희생층 증착 단계(S720), 소자층 증착단계(S721), 캐리어필름 부착 단계(S722), 희생층 제거 단계(S723), 소자층 부착 단계(S724) 및 캐리어 필름 제거 단계(S725)를 포함한다. 12 and 13, the device layer stacking step (S700) of stacking device layers using a roll transfer device includes a sacrificial layer deposition step (S720), a device layer deposition step (S721), and a carrier film attachment step. S722, a sacrificial layer removing step S723, an element layer attaching step S724, and a carrier film removing step S725.
도 13의 (a)에서 보는 바와 같이, 희생층 증착 단계(S720)에서는 웨이퍼(210) 상에 희생층(220)을 증착한다. 상기 웨이퍼(210)는 실리콘(Si) 웨이퍼를 사용하며, 상기 희생층(220)은 은(Ag) 박막을 사용한다. As shown in FIG. 13A, in the sacrificial layer deposition step S720, the sacrificial layer 220 is deposited on the wafer 210. The wafer 210 uses a silicon (Si) wafer, and the sacrificial layer 220 uses a silver (Ag) thin film.
소자층 증착단계(S721)에서는, 상기 희생층(220) 상에 소자층(200)을 증착한다. In the device layer deposition step (S721), the device layer 200 is deposited on the sacrificial layer 220.
캐리어 필름 부착 단계(S722)에서는, 롤 전사 장치를 이용하여 캐리어 필름(230)을 상기 소자층(200) 상에 부착시킨다. In the carrier film attaching step (S722), the carrier film 230 is attached onto the element layer 200 using a roll transfer device.
도 13의 (b)에서 보는 바와 같이, 희생층 제거 단계(S723)에서는, 에칭공정을 통해 상기 희생층(220) 및 웨이퍼(210)를 제거한다. 즉, 상기 희생층 제거 단계(S723)에서는 은박막인 희생층(220)을 웨이퍼(210)로부터 분리시킨다. As shown in FIG. 13B, in the sacrificial layer removing step S723, the sacrificial layer 220 and the wafer 210 are removed through an etching process. That is, in the sacrificial layer removing step S723, the sacrificial layer 220, which is a silver thin film, is separated from the wafer 210.
도 13의 (c)에서 보는 바와 같이, 소자층 부착 단계(S724)에서는 상기 캐리어 필름(230)에 부착된 소자층(200)을 다층의 이차원재료로 이루어진 메타 계면층(300) 상에 부착시킨다.As shown in FIG. 13C, in the device layer attaching step S724, the device layer 200 attached to the carrier film 230 is attached onto the meta-interface layer 300 made of a multi-layered two-dimensional material. .
캐리어 필름 제거 단계(S725)에서는 상기 캐리어 필름(230)을 떼어내어 제거한다.In the carrier film removing step (S725), the carrier film 230 is removed and removed.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the range of.

Claims (16)

  1. 기판;Board;
    상기 기판 상에 구비되는 소자층; 및An element layer provided on the substrate; And
    상기 기판 및 소자층 사이에 구비되며, 단원자층의 2차원 재료가 2층 이상 적층되어 형성되는 메타 계면층;A meta-interface layer provided between the substrate and the device layer and formed by stacking two or more two-dimensional materials of the monoatomic layer;
    을 포함하는 메타 계면 구조물.Meta interfacial structure comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 소자층 및 메타 계면층이 상기 기판 상에 복수층으로 적층되어 형성되는 것을 특징으로 하는 메타 계면 구조물.The meta-interface structure, characterized in that the device layer and the meta-interface layer is formed by laminating a plurality of layers on the substrate.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 메타계면층은,The meta interface layer,
    그래핀(Graphene), 그래핀 옥사이드(Graphene Oxide), 환원 그래핀 옥사이드(Reduced Graphene Oxide, RGO), 육각 질화붕소(Hexagonal Boron Nitride, h-BN) 중 적어도 하나를 포함하는 것을 특징으로 하는 메타 계면 구조물.Meta interface comprising at least one of Graphene, Graphene Oxide, Reduced Graphene Oxide (RGO), Hexagonal Boron Nitride (h-BN) structure.
  4. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 메타계면층은,The meta interface layer,
    두께가 10 nm 이하 또는 적층된 2차원재료의 층수가 20층 이내 인 것을 특징으로 하는 메타 계면 구조물.Meta interface structure, characterized in that the thickness of less than 10 nm or the number of layers of the laminated two-dimensional material is within 20 layers.
  5. 지지필름을 제1 이차원재료가 합성된 제1 포일에 코팅하는 제1 포일 코팅 단계;A first foil coating step of coating the support film on the first foil having the first two-dimensional material synthesized;
    에칭 공정을 통해 상기 제1 포일을 제거하는 제1 포일 제거 단계;A first foil removing step of removing the first foil through an etching process;
    상기 지지필름이 코팅된 제1 이차원재료를 제2 이차원재료가 합성된 제2 포일 상에 전사하는 제1 전사 단계;A first transfer step of transferring the first two-dimensional material coated with the support film onto a second foil synthesized with the second two-dimensional material;
    에칭 공정을 통해 상기 제2 포일을 제거하는 제2 포일 제거 단계;A second foil removing step of removing the second foil through an etching process;
    상기 지지필름이 코팅된 상기 제1 및 제2 이차원재료를 기판 상에 전사하는 제2 전사 단계;A second transfer step of transferring the first and second two-dimensional materials coated with the support film onto a substrate;
    상기 지지필름을 제거하는 지지필름 제거 단계; 및A support film removing step of removing the support film; And
    상기 제1 및 제2 이차원재료인 메타 계면층 상에 소자층을 적층하는 소자층 적층 단계;A device layer stacking step of stacking a device layer on the meta-interface layers which are the first and second two-dimensional materials;
    를 포함하는 메타 계면 구조물 제조 방법.Meta interface structure manufacturing method comprising a.
  6. 지지필름을 제1 이차원재료가 합성된 제1 포일 상에 부착하고, 또 다른 지지필름을 제2 이차원재료가 합성된 제2 포일 상에 부착하는 포일 부착단계;A foil attaching step of attaching the support film onto the first foil on which the first two-dimensional material is synthesized, and attaching another support film on the second foil on which the second two-dimensional material is synthesized;
    에칭 공정을 통해 상기 제1 및 제2 포일을 제거하는 포일 제거 단계;A foil removal step of removing the first and second foils through an etching process;
    상기 지지필름이 코팅된 제1 이차원재료를 기판 상에 부착하는 제1 부착 단계;A first attaching step of attaching the first two-dimensional material coated with the support film onto a substrate;
    상기 지지필름을 제거하는 제1 지지필름 제거 단계; A first supporting film removing step of removing the supporting film;
    상기 또 다른 지지필름이 코팅된 제2 이차원재료를 상기 제1 이차원재료 상에 부착하는 제2 부착 단계;A second attaching step of attaching the second two-dimensional material coated with the another supporting film on the first two-dimensional material;
    상기 또 다른 지지필름을 제거하는 제2 지지필름 제거 단계; 및A second support film removing step of removing the another support film; And
    상기 제1 및 제2 이차원재료인 메타 계면층 상에 소자층을 적층하는 소자층 적층 단계;A device layer stacking step of stacking a device layer on the meta-interface layers which are the first and second two-dimensional materials;
    를 포함하는 메타 계면 구조물 제조 방법.Meta interface structure manufacturing method comprising a.
  7. 제 5 항에 있어서, The method of claim 5,
    상기 제1 포일 제거 단계 또는 제2 포일 제거 단계는,The first foil removing step or the second foil removing step,
    상기 지지필름이 코팅된 제1 및 제2 이차원재료에 남아있는 제1 및 제2 포일의 잔여물 또는 에칭 용액을 제거하는 단계를 더 포함하는 메타 계면 구조물 제조 방법.And removing residues or etching solutions of the first and second foils remaining in the first and second two-dimensional materials coated with the support film.
  8. 제 6 항에 있어서, The method of claim 6,
    상기 포일 제거 단계는,The foil removing step,
    상기 지지필름이 코팅된 제1 및 제2 이차원재료에 남아있는 제1 및 제2 포일의 잔여물 또는 에칭 용액을 제거하는 단계를 더 포함하는 메타 계면 구조물 제조 방법.And removing residues or etching solutions of the first and second foils remaining in the first and second two-dimensional materials coated with the support film.
  9. 제 5 항 또는 제 6 항에 있어서, The method according to claim 5 or 6,
    상기 지지필름은,The support film,
    폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA), 열박리 테잎(thermal release tape), 자외선 박리 테잎(UV-release tape) 또는 폴리머 필름에 실리콘 점착층이 있는 필름 중 적어도 하나인 것을 특징으로 하는 메타 계면 구조물 제조 방법.Meta-interface structure, characterized in that at least one of polymethylmethacrylate (PMMA), thermal release tape (UV) release tape (UV-release tape) or a film having a silicone adhesive layer on the polymer film Manufacturing method.
  10. 제 5 항 또는 제 6 항에 있어서, The method according to claim 5 or 6,
    상기 제1 및 제2 이차원 재료는,The first and second two-dimensional material,
    그래핀(Graphene), 그래핀 옥사이드(Graphene Oxide), 환원 그래핀 옥사이드(Reduced Graphene Oxide, RGO), 육각 질화붕소(Hexagonal Boron Nitride, h-BN) 중 적어도 하나를 포함하는 것을 특징으로 하는 메타 계면 구조물 제조 방법.Meta interface comprising at least one of Graphene, Graphene Oxide, Reduced Graphene Oxide (RGO), Hexagonal Boron Nitride (h-BN) Method of manufacturing the structure.
  11. 제 5 항 또는 제 6 항에 있어서, The method according to claim 5 or 6,
    상기 제1 포일 또는 제2 포일은,The first foil or the second foil,
    구리, 구리 합금, 니켈 재질 중 적어도 하나인 것을 특징으로 하는 메타 계면 구조물의 제작 방법.Method of producing a meta-interface structure, characterized in that at least one of copper, copper alloy, nickel material.
  12. 제 5 항에 있어서, The method of claim 5,
    상기 제1 포일 제거 단계 또는 제2 포일 제거 단계는,The first foil removing step or the second foil removing step,
    과황산 암모늄(Ammonioum persulfate, APS) 용액을 사용하여, 상기 제1 포일 또는 제2 포일을 제거하는 것을 특징으로 하는 메타 계면 구조물 제조 방법.Method for producing a meta-interface structure, characterized in that the first foil or the second foil is removed using an ammonioum persulfate (APS) solution.
  13. 제 6 항에 있어서, The method of claim 6,
    상기 포일 제거 단계는,The foil removing step,
    과황산 암모늄(Ammonioum persulfate, APS) 용액을 사용하여, 상기 제1 포일 또는 제2 포일을 제거하는 것을 특징으로 하는 메타 계면 구조물 제조 방법.Method for producing a meta-interface structure, characterized in that the first foil or the second foil is removed using an ammonioum persulfate (APS) solution.
  14. 제 5 항 또는 제 6 항에 있어서, The method according to claim 5 or 6,
    상기 기판은 폴리머 재질인 것을 특징으로 하는 메타 계면 구조물 제조 방법.The substrate is a method of manufacturing a meta-interface structure, characterized in that the polymer material.
  15. 제 5 항 또는 제 6 항에 있어서, The method according to claim 5 or 6,
    상기 소자층 적층 단계는,The device layer stacking step,
    챔버 내부에 소자층의 재료 및 메타 계면층이 적층된 기판을 장착한 후, 챔버 내부의 압력을 낮추는 초기 진공 단계;An initial vacuum step of lowering the pressure in the chamber after mounting the substrate on which the material of the element layer and the meta-interface layer are stacked in the chamber;
    상기 첨버 내부에 불활성 기체를 주입시킨 후, 기판을 미리 설정된 온도로 유지하도록 가열하는 안정화 단계; 및A stabilizing step of injecting an inert gas into the adder and heating the substrate to maintain a predetermined temperature; And
    상기 소자층의 재료 및 기판 사이에 플라즈마를 생성하여, 상기 메타 계면층 상에 상기 소자층을 증착시키는 소자층 증착 단계;A device layer deposition step of generating a plasma between the material of the device layer and the substrate to deposit the device layer on the meta interface layer;
    를 포함하는 메타 계면 구조물 제조방법.Meta interface structure manufacturing method comprising a.
  16. 제 5 항 또는 제 6 항에 있어서, The method according to claim 5 or 6,
    상기 소자층 적층 단계는,The device layer stacking step,
    웨이퍼 상에 희생층을 증착하는 희생층 증착 단계;A sacrificial layer deposition step of depositing a sacrificial layer on the wafer;
    상기 희생층 상에 소자층을 증착하는 소자층 증착단계;A device layer deposition step of depositing a device layer on the sacrificial layer;
    롤 전사 장치를 이용하여, 지지필름을 상기 소자층 상에 부착시키는 지지필름 부착 단계;A support film attaching step of attaching a support film onto the device layer using a roll transfer device;
    에칭공정을 통해, 상기 희생층 및 웨이퍼를 제거하는 희생층 제거 단계;A sacrificial layer removing step of removing the sacrificial layer and the wafer through an etching process;
    상기 캐리어 필름에 부착된 소자층을 다층의 이차원재료로 이루어진 메타계면층 상에 부착시키는 소자층 부착 단계; 및An element layer attaching step of attaching the element layer attached to the carrier film on a meta-interface layer made of a multi-layered two-dimensional material; And
    상기 캐리어 필름을 떼어내어 제거하는 캐리어 필름 제거 단계;A carrier film removing step of removing and removing the carrier film;
    를 포함하는 메타 계면 구조물 제조 방법.Meta interface structure manufacturing method comprising a.
PCT/KR2015/007762 2015-07-20 2015-07-24 Meta interface structure having improved elasticity and method for manufacturing same WO2017014343A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150102655A KR20170010680A (en) 2015-07-20 2015-07-20 Graphene meta-interface structures for improving flexibility and method thereof
KR10-2015-0102655 2015-07-20

Publications (1)

Publication Number Publication Date
WO2017014343A1 true WO2017014343A1 (en) 2017-01-26

Family

ID=57834439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007762 WO2017014343A1 (en) 2015-07-20 2015-07-24 Meta interface structure having improved elasticity and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20170010680A (en)
WO (1) WO2017014343A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505871A (en) * 2020-11-25 2021-03-16 中国工程物理研究院激光聚变研究中心 High-altitude aircraft optical window protection device and use method
CN114096483A (en) * 2019-02-27 2022-02-25 加泰罗尼亚纳米科学和纳米技术研究所基金会(Icn2) Reduced graphene oxide membrane comprising a stack of reduced graphene oxide layers and uses thereof
US11834739B2 (en) 2018-06-13 2023-12-05 Hewlett-Packard Development Company, L.P. Graphene printing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976946B1 (en) * 2017-09-26 2019-05-10 한양대학교 산학협력단 Transition method and device for 2-dimensional material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046775A1 (en) * 2009-10-13 2011-04-21 Board Of Regents, The University Of Texas System Producing transparent conductive films from graphene
KR20130136854A (en) * 2012-06-05 2013-12-13 포항공과대학교 산학협력단 Transparent electrode including graphene and method for fabricating the same
JP2014034503A (en) * 2012-08-10 2014-02-24 Fuji Electric Co Ltd Method for producing graphene film and graphene film
US20140147675A1 (en) * 2012-11-27 2014-05-29 Hcgt Ltd. Structure and method for a graphene-based apparatus
KR20140085871A (en) * 2012-12-28 2014-07-08 전자부품연구원 Vo2 laminate with functionalized graphene for thermo-chromic smart window

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922118B1 (en) 2012-08-27 2018-11-26 삼성전자주식회사 Flexible semiconductor device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046775A1 (en) * 2009-10-13 2011-04-21 Board Of Regents, The University Of Texas System Producing transparent conductive films from graphene
KR20130136854A (en) * 2012-06-05 2013-12-13 포항공과대학교 산학협력단 Transparent electrode including graphene and method for fabricating the same
JP2014034503A (en) * 2012-08-10 2014-02-24 Fuji Electric Co Ltd Method for producing graphene film and graphene film
US20140147675A1 (en) * 2012-11-27 2014-05-29 Hcgt Ltd. Structure and method for a graphene-based apparatus
KR20140085871A (en) * 2012-12-28 2014-07-08 전자부품연구원 Vo2 laminate with functionalized graphene for thermo-chromic smart window

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834739B2 (en) 2018-06-13 2023-12-05 Hewlett-Packard Development Company, L.P. Graphene printing
CN114096483A (en) * 2019-02-27 2022-02-25 加泰罗尼亚纳米科学和纳米技术研究所基金会(Icn2) Reduced graphene oxide membrane comprising a stack of reduced graphene oxide layers and uses thereof
CN114096483B (en) * 2019-02-27 2023-10-10 加泰罗尼亚纳米科学和纳米技术研究所基金会(Icn2) Reduced graphene oxide membrane comprising a stack of reduced graphene oxide layers and uses thereof
CN112505871A (en) * 2020-11-25 2021-03-16 中国工程物理研究院激光聚变研究中心 High-altitude aircraft optical window protection device and use method

Also Published As

Publication number Publication date
KR20170010680A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2017014343A1 (en) Meta interface structure having improved elasticity and method for manufacturing same
WO2012043971A2 (en) Method for manufacturing a flexible electronic device using a roll-shaped motherboard, flexible electronic device, and flexible substrate
WO2015190807A1 (en) Graphene structure and method for producing same
WO2013062246A1 (en) Gas barrier film including graphene layer, flexible substrate including same, and manufacturing method thereof
WO2009145492A2 (en) Fabrication process for a thick film by magnetron sputtering
WO2012008789A2 (en) Method for producing graphene at a low temperature, method for direct transfer of graphene using same, and graphene sheet
WO2010147393A2 (en) Solar cell and method of fabricating the same
WO2013019021A2 (en) Graphene laminate including dopant and manufacturing method thereof
WO2014204206A1 (en) Conductive film and touch panel including the same
WO2018030712A1 (en) Metal mesh-type transparent conductive film manufacturing method using photoresist intaglio pattern and surface modification and transparent conductive film manufactured thereby
US20090161285A1 (en) Electrostatic chuck and method of forming
WO2019024141A1 (en) Method for preparing flexible display device, flexible display device, and display
WO2018018683A1 (en) Flexible organic light emitting diode display and preparation method therefor
WO2019127698A1 (en) Method for manufacturing flexible panel, and flexible display device
WO2019022402A2 (en) Method for manufacturing lithium electrode
WO2019052008A1 (en) Array substrate and manufacturing method therefor, and display apparatus
WO2019033578A1 (en) Flexible substrate of flexible oled display panel and manufacturing method thereof
WO2010147392A2 (en) Solar cell and method of fabricating the same
WO2017008315A1 (en) Display panel and manufacturing method therefor
WO2014137180A1 (en) Carbon based electronic device using partial reduction of graphene oxide and method for manufacturing same
WO2012063991A1 (en) Method for manufacturing aluminum electrode using wetting process and aluminum electrode manufactured thereby
WO2023191403A1 (en) Carbon-based thin film shadow mask and manufacturing method therefor
WO2009145462A2 (en) Substrate for metal printed circuit board and method for manufacturing the substrate
WO2009154381A2 (en) Sputtering apparatus and multi-chamber comprising the same
WO2016027925A1 (en) Tunneling diode using graphene-silicon quantum dot hybrid structure and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898991

Country of ref document: EP

Kind code of ref document: A1