WO2017222297A1 - Solar cell having junction on rear surface and receiving light through both surfaces and method for manufacturing same - Google Patents

Solar cell having junction on rear surface and receiving light through both surfaces and method for manufacturing same Download PDF

Info

Publication number
WO2017222297A1
WO2017222297A1 PCT/KR2017/006520 KR2017006520W WO2017222297A1 WO 2017222297 A1 WO2017222297 A1 WO 2017222297A1 KR 2017006520 W KR2017006520 W KR 2017006520W WO 2017222297 A1 WO2017222297 A1 WO 2017222297A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
finger
passivation layer
conductive
Prior art date
Application number
PCT/KR2017/006520
Other languages
French (fr)
Korean (ko)
Inventor
최윤석
조은철
오훈
이종철
황명익
경도현
김태준
이지은
Original Assignee
현대중공업그린에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업그린에너지 주식회사 filed Critical 현대중공업그린에너지 주식회사
Publication of WO2017222297A1 publication Critical patent/WO2017222297A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a back-bonded double-sided light-receiving solar cell and a method of manufacturing the same. More particularly, the back-bonded double-sided double-sided light-receiving solar cell is replaced with a plurality of metallic wires to increase the light receiving area and minimize electrical resistance. It relates to a light receiving solar cell and a method of manufacturing the same.
  • a solar cell is a device that receives sunlight and photoelectric conversion.
  • a general solar cell has a structure in which a front electrode and a rear electrode are provided at the front and the rear, respectively. However, as the front electrode is provided on the front surface of the light receiving surface, the light receiving area is reduced by the area of the front electrode.
  • the back electrode solar cell can maximize the light receiving area of the front surface of the solar cell by providing a (+) electrode and a (-) electrode on the back of the solar cell.
  • the conventional solar cell including the back-electrode solar cell has a fundamental limitation in the solar light reception, as the sunlight is received only on either side of the front and rear. Therefore, in recent years, research on a double-sided light-receiving solar cell capable of receiving light on both sides of a front side and a rear side is underway, and an example of a double-sided light-receiving solar cell is disclosed in Korean Patent Publication No. 1998-20311. Both sides of the double-sided light receiving solar cell are provided with finger electrodes and busbar electrodes.
  • Such a double-sided light-receiving solar cell is classified into a front junction type and a back junction type according to the position of the emitter layer.
  • the front junction type is made of p-n junction at the front side of the substrate
  • the back junction type is made of p-n junction at the rear side of the substrate.
  • the front junction type not only the front electrode but also the rear electrode has to be made of Ag, which causes a problem in that the manufacturing cost increases.
  • the back junction type has advantages in that Al can be applied to the rear electrode.
  • the amount of generated current is greater than that of the front junction n type double-sided light receiving solar cell and the p type front electrode solar cell. Due to this there is a problem that the energy loss due to the electrical resistance is increased. Therefore, it is necessary to increase the number of busbar electrodes, but when the number of busbar electrodes is increased, a problem arises that the light receiving area becomes smaller.
  • Patent Document 1 Korean Patent Publication No. 1998-20311
  • the present invention has been made to solve the above problems, in the implementation of the back-bonded double-sided light-receiving solar cell by replacing the bus bar electrode with a plurality of metallic wires can increase the light receiving area and minimize the electrical resistance.
  • An object of the present invention is to provide a back-bonded double-sided light receiving solar cell and a method of manufacturing the same.
  • Back junction double-sided light receiving type solar cell for achieving the above object is a substrate; An emitter layer provided on a lower side of the substrate; A front passivation layer provided on the front surface of the substrate; A back passivation layer provided on the back of the substrate; A front electrode provided on the front passivation layer; And a rear electrode provided on the rear passivation layer, wherein the front electrode and the rear electrode are spaced apart from each other in a direction orthogonal to the plurality of finger electrodes repeatedly arranged and spaced apart from each other. And a plurality of metallic wires, which are repeatedly arranged and disposed at an intersection point of the finger electrode and the metallic wire, and a conductive pad configured to mediate electrical connection between the finger electrode and the metallic wire.
  • the metallic wire is stacked on the conductive pad and electrically connected to the conductive pad.
  • the metallic wire and the conductive pad may be connected by soldering.
  • one end of the metallic wire is connected to an external capacitor.
  • the number of the metallic wires is 6 or less or less than the number of finger electrodes.
  • the finger electrode and the conductive pad of the front electrode are made of the same material, and the finger electrode and the conductive pad of the back electrode are made of different materials.
  • the finger electrode and the conductive pad of the front electrode may be made of Ag
  • the finger electrode of the back electrode may be made of Al
  • the conductive pad of the back electrode may be made of Ag.
  • Method of manufacturing a back-junction double-sided light receiving solar cell comprises the steps of preparing a substrate having a front passivation layer and a back passivation layer; Applying a first conductive paste for forming a finger electrode and a pad paste for forming a conductive pad on the front passivation layer; Applying a second conductive paste for forming a finger electrode and a pad paste for forming a conductive pad on the back passivation layer; Firing the substrate to form finger electrodes and conductive pads on the front passivation layer, and forming finger electrodes and conductive pads on the back passivation layer; Stacking a plurality of metal layer wires in a direction orthogonal to each of a finger electrode of a front electrode and a finger electrode of a back electrode, and placing the conductive pad at an intersection point of the finger electrode and the metal layer wire; And coupling the conductive pad and the metal layer wire to fix the metallic wire and electrically connecting the metallic wire and the finger electrode through the conductive pad.
  • the back-junction double-sided light-receiving solar cell and its manufacturing method according to the present invention have the following effects.
  • the light receiving area can be increased by replacing the busbar electrode with a metallic wire.
  • the number of metallic wires can be increased to minimize the reduction of the light receiving area, thereby reducing the electrical resistance.
  • FIG. 1 is a block diagram of a back-junction double-sided light receiving solar cell according to an embodiment of the present invention.
  • Figures 2a to 2f is a process reference diagram for explaining a method for manufacturing a back-junction double-sided light receiving solar cell according to an embodiment of the present invention.
  • the present invention provides a technique for configuring a front electrode and a back electrode by combining a finger electrode and a metallic wire in implementing a back junction double-sided light receiving solar cell.
  • a double-sided light receiving solar cell capable of receiving sunlight through both sides of a cell is classified into a front junction type and a rear junction type according to a pn junction position, and the front junction type is a front electrode.
  • Both the rear electrode and the rear electrode have to be composed of Ag, and the back junction type can be made of Al in the rear electrode, but the bus bar electrode needs to be increased to reduce energy loss due to the relatively large amount of current. The increase of is accompanied by the problem of decreasing the light receiving area.
  • the present invention takes the advantages of the back-junction double-sided light-receiving solar cell having a large amount of power generation current compared to the front electrode solar cell and the front-junction double-sided light-receiving solar cell, and the electrical resistance of the back-bonded double-sided light-receiving solar cell without reducing the receiving area Present techniques that can be effectively reduced.
  • the present invention proposes a technique for configuring the front electrode and the rear electrode of the back-junction double-sided light receiving solar cell as a combination of finger electrodes and metallic wires, respectively.
  • the metallic wire of the present invention replaces the busbar electrodes and interconnectors of the prior art.
  • a carrier collected by a finger electrode is transferred to an external capacitor through an interconnector via a bus bar electrode.
  • the metallic wire is electrically connected to the finger electrode to transfer the carrier collected by the finger electrode to an external capacitor or the like. That is, the metallic wire plays a role of the bus bar electrode and the interconnector.
  • the metallic wire applied to the present invention has a diameter (in one embodiment, a diameter of 360 ⁇ m) that is significantly smaller compared to the width of the busbar electrode, and thus the light receiving area is compared with the structure to which the busbar electrode is applied. It is possible to increase the number of metallic wires without shrinking and to solve the high electrical resistance problem of the back-bonded double-sided light receiving solar cell through the increased metallic wires without substantial reduction of the light receiving area.
  • Al can be applied as a back electrode of a back junction double-sided light-receiving solar cell, but Al has a low electrical conductivity compared to Ag, but the effect of reducing the light receiving area is significantly lower than that of the bus bar electrode.
  • a back-junction double-sided light receiving solar cell includes a front electrode and a rear electrode.
  • the front electrode is provided on the front passivation layer 150 provided on the front surface of the substrate 110, and the rear electrode is provided on the back passivation layer 130 provided on the rear surface of the substrate 110 to emitter layer ( 120 is electrically connected.
  • the substrate 110 is a silicon substrate 110 of a first conductivity type (e.g., n-type), and an emitter layer of a second conductivity type (e.g., p-type) on the lower side of the substrate 110. 120 is provided.
  • a rear passivation layer 130 is provided on the emitter layer 120, and a rear electrode electrically connected to the emitter layer 120 is provided on the rear passivation layer 130.
  • a front field layer (n +) 140 is provided on an upper side of the inside of the substrate 110, a front passivation layer 150 is provided on the front field layer (n +) 140, and the front passivation layer 150 is provided.
  • On the front surface is provided with a front electrode electrically connected to the front field layer (n +) 140.
  • the structure of the front electrode and the back electrode is as follows.
  • the front electrode includes a finger electrode 161, a conductive pad 162, and a metallic wire 180.
  • the finger electrode 161 collects a carrier generated by photoelectric conversion, and is repeatedly disposed spaced apart along one direction of the substrate 110. That is, the plurality of finger electrodes 161 are formed to be spaced apart and arranged in parallel on the front passivation layer 150.
  • the metallic wire 180 transfers the carrier collected by the finger electrode 161 to an external capacitor (not shown) or the like, and is repeatedly spaced apart from the finger electrode 161 in a direction perpendicular to the finger electrode 161.
  • the plurality of finger electrodes 161 are spaced apart from each other in a first direction (eg, in a horizontal direction), and the plurality of metallic wires 180 are arranged in a second direction (eg, in a vertical direction) perpendicular to the first direction. ), So that they are spaced apart and arranged along
  • the number of the metallic wires 180 is not limited, but it is preferable that the number of the metallic wires 180 is 6 or less and less than the number of the finger electrodes 161.
  • the plurality of finger electrodes 161 and the plurality of metallic wires 180 are disposed to be orthogonal to each other, an intersection point of the finger electrodes 161 and the metallic wires 180 exists, and the conductive pads 162 are disposed at the crossing points. Is provided.
  • the conductive pad 162 is provided between the finger electrode 161 and the metallic wire 180 to lower the electrical resistance of the finger electrode 161 and the metallic wire 180.
  • the conductive pad 162 may be provided at all intersection points of the finger electrode 161 and the metallic wire 180 or may be selectively provided at some intersection points of all the intersection points.
  • the finger electrode 161 and the conductive pad 162 may be composed of Ag as a main component
  • the metallic wire 180 may be made of a metal compound based on iron (Fe) and tin (Sn).
  • the back electrode includes a finger electrode 171, a conductive pad 172, and a metallic wire 180.
  • the plurality of finger electrodes 171, the conductive pads 172, and the plurality of metallic wires 180 constituting the rear electrode have the same shape as the front electrode. That is, the plurality of finger electrodes 171 are spaced apart and disposed along the first direction (eg, the horizontal direction), and the plurality of metallic wires 180 are orthogonal to the first direction (eg, the second direction). It is spaced apart and disposed along the vertical direction, and a conductive pad 172 is provided between the finger electrode 171 and the metallic wire 180 at the intersection of the finger electrode 171 and the metallic wire 180.
  • the front electrode and the rear electrode are different in the material of the finger electrode 171.
  • the finger electrode 171 of the front electrode has Ag as the main component
  • the finger electrode 171 of the back electrode has the metal of the second conductivity type (p type), for example, Al.
  • the reason why the finger electrode 171 of the back electrode is composed mainly of Al is for forming a back surface field (BSF) layer on the back surface of the substrate 110.
  • BSF back surface field
  • the metallic wires 180 of the rear electrode are not limited to the number of metallic wires 180 of the front electrode, but are preferably six or more and constitute the number of finger electrodes 171 or less.
  • the conductive pad 172 of the back electrode may be provided at all intersections of the finger electrode 171 and the metallic wire 180 or may be selectively provided at some intersections of all intersections.
  • the substrate 110 having the front passivation layer 150 and the back passivation layer 130 is prepared.
  • the substrate 110 is a silicon substrate 110 of a first conductivity type (eg, n-type).
  • the front side electric field layer (n +) 140 is provided on the upper side of the inside of the substrate 110, and the front passivation layer 150 is provided on the upper side of the front electric field layer (n +) 140, that is, the entire surface of the substrate 110. do.
  • an emitter layer 120 of a second conductivity type eg, p-type
  • the back passivation layer 130 is provided on the emitter layer 120, that is, on the back of the substrate 110.
  • the front electrode and the back electrode forming process are performed.
  • the process of forming the front electrode and the process of forming the back electrode proceeds sequentially, regardless of the order.
  • the front electrode forming process first the first conductive paste 10 for forming a finger electrode is applied on the front passivation layer 150 (see Fig. 2b).
  • the first conductive paste 10 is applied in a repeating manner spaced apart along the first direction (eg, the horizontal direction). That is, the plurality of first conductive pastes 10 are applied on the front passivation layer 150 in the form of being spaced apart and arranged in parallel in the first direction.
  • a pad paste 20 for forming a conductive pad is coated on the front passivation layer 150 corresponding to the intersection of the finger electrode and the metallic wire 180.
  • the pad paste 20 may be applied to all intersection points of the finger electrode and the metallic wire 180 or may be selectively applied only to some intersection points.
  • the first conductive paste 10 and the pad paste have Ag as a main component, and the first conductive paste 10 and the pad paste 20 may be applied by screen printing. In addition, the first conductive paste 10 and the pad paste 20 may be applied simultaneously through a single process.
  • the application process of the second conductive paste 40 and the pad paste 30 for forming the back electrode is performed.
  • the pad paste 30 for forming the conductive pad is coated on the back passivation layer 130 (see FIG. 2C).
  • the region where the pad paste 30 is applied corresponds to a portion where the finger electrode and the metallic wire 180 cross each other.
  • the finger electrode and the metallic wire 180 may be applied to all intersections or may be selectively applied to only some intersections.
  • a second conductive paste 40 is formed to form a finger electrode (see FIG. 2D).
  • the second conductive paste 40 is applied in a repeated manner spaced apart along the first direction (eg, in the horizontal direction).
  • the pad paste 30 has Ag as a main component
  • the second conductive paste 40 is a metal of a second conductivity type (for example, p-type) in one embodiment, and has Al as a main component.
  • the reason why the second conductive paste 40 is composed of Al as a main component is to form a BSF layer through diffusion of Al into the substrate 110 during the subsequent firing process.
  • the pad paste and the second conductive paste 40 may be applied by screen printing.
  • the substrate 110 is formed. Is fired at a constant temperature.
  • the first conductive paste 10 on the front side of the substrate 110 is converted into a finger electrode, and the pad paste 20 is converted into a conductive pad.
  • the second conductive paste 40 on the back side of the substrate 110 is converted into a finger electrode, and the pad paste 30 is converted into a conductive pad.
  • an Al component of the second conductive paste 40 is diffused into the back of the substrate 110 to form a BSF layer.
  • the metallic wire 180 lamination process means an electrical connection process between the metallic wire 180 and the conductive pad, and a soldering process may be used as an embodiment of the electrical connection process between the metallic wire 180 and the conductive pad.
  • the plurality of metallic wires 180 are repeatedly arranged to be spaced apart from each other in a direction perpendicular to the plurality of finger electrodes.
  • the conductive pad is provided at the intersection of the metallic wire 180 and the finger electrode.
  • the metallic wires 180 and the conductive pads are coupled to fix the metallic wires 180 and electrically connect the metallic wires 180 and the finger electrodes through the conductive pads.
  • the electrical connection process of the metallic wire 180 and the conductive pad is performed on both the front side and the rear side of the substrate 110. As described above, a soldering process may be used as an example of an electrical connection process between the metallic wire 180 and the conductive pad.
  • the light receiving area can be increased by replacing the busbar electrode with a metallic wire.
  • the number of metallic wires can be increased to minimize the reduction of the light receiving area, thereby reducing the electrical resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a solar cell having a junction on the rear surface thereof and receiving light through both surfaces thereof and a method for manufacturing the same, wherein, in connection with implementing a solar cell having a junction on the rear surface thereof and receiving light through both surfaces thereof, the busbar electrode is replaced with a plurality of metallic wires such that, besides increasing the light-receiving area, the electric resistance can be minimized. A solar cell having a junction on the rear surface thereof and receiving light through both surfaces thereof according to the present invention comprises: a substrate; an emitter layer provided on the lower side of the interior of the substrate; a front passivation layer provided on the front surface of the substrate; a rear passivation layer provided on the rear surface of the substrate; a front electrode provided on the front passivation layer; and a rear electrode provided on the rear passivation layer, wherein each of the front electrode and the rear electrode comprises a plurality of finger electrodes repeatedly arranged while being spaced from one another, a plurality of metallic wires repeatedly arranged while being spaced from one another in a direction perpendicular to the plurality of finger electrodes, and conductive pads provided in positions corresponding to points of intersection between the finger electrodes and the metallic wire so as to mediate electric connection between the finger electrodes and the metallic wires.

Description

후면접합 양면수광형 태양전지 및 그 제조방법Back junction double-sided light receiving solar cell and manufacturing method thereof
본 발명은 후면접합 양면수광형 태양전지 및 그 제조방법에 관한 것으로서, 보다 상세하게는 버스바전극을 복수의 금속성와이어로 대체함으로써 수광면적을 증대시킴과 함께 전기저항을 최소화할 수 있는 후면접합 양면수광형 태양전지 및 그 제조방법에 관한 것이다.The present invention relates to a back-bonded double-sided light-receiving solar cell and a method of manufacturing the same. More particularly, the back-bonded double-sided double-sided light-receiving solar cell is replaced with a plurality of metallic wires to increase the light receiving area and minimize electrical resistance. It relates to a light receiving solar cell and a method of manufacturing the same.
[국가지원 연구개발에 대한 설명][Description of National Support R & D]
본 연구는 현대중공업 주식회사의 주관 하에 산업통상자원부 한국에너지기술평가원(에너지기술개발사업, n-type 110um급 박형 고효율(22%) 태양전지 기술개발 과제고유번호 : 20133010011780)의 지원에 의하여 이루어진 것이다.This research was made with the support of the Ministry of Trade, Industry and Energy Korea Energy Evaluation Institute (Energy Technology Development Project, n-type 110um thin high efficiency (22%) solar cell technology development task number: 20133010011780) under the supervision of Hyundai Heavy Industries Co., Ltd.
태양전지는 태양광을 수광하여 광전변환시키는 소자이다. 일반적인 태양전지는 전면과 후면에 각각 전면전극과 후면전극이 구비되는 구조를 갖는다. 그러나, 수광면인 전면에 전면전극이 구비됨에 따라, 전면전극의 면적만큼 수광면적이 줄어들게 된다.A solar cell is a device that receives sunlight and photoelectric conversion. A general solar cell has a structure in which a front electrode and a rear electrode are provided at the front and the rear, respectively. However, as the front electrode is provided on the front surface of the light receiving surface, the light receiving area is reduced by the area of the front electrode.
수광면적이 축소되는 문제를 해결하기 위해 후면전극형 태양전지가 제안되었다. 후면전극형 태양전지는 태양전지의 후면 상에 (+)전극과 (-)전극을 구비시켜 태양전지 전면의 수광면적을 극대화할 수 있다.In order to solve the problem that the light receiving area is reduced, a back electrode solar cell has been proposed. The back electrode solar cell can maximize the light receiving area of the front surface of the solar cell by providing a (+) electrode and a (-) electrode on the back of the solar cell.
그러나, 후면전극형 태양전지를 포함한 종래의 태양전지는 전면과 후면 중 어느 한 면으로만 태양광이 수광됨에 따라, 태양광 수광에 있어 근본적인 한계가 있다. 이에, 최근에는 전면과 후면의 양면으로 수광이 가능한 양면수광형 태양전지에 대한 연구가 진행되고 있으며, 한국공개특허공보 제1998-20311호에 양면수광형 태양전지의 일 예가 개시되어 있다. 양면수광형 태양전지의 양면 각각에는 핑거전극과 버스바전극이 구비된다.However, the conventional solar cell including the back-electrode solar cell has a fundamental limitation in the solar light reception, as the sunlight is received only on either side of the front and rear. Therefore, in recent years, research on a double-sided light-receiving solar cell capable of receiving light on both sides of a front side and a rear side is underway, and an example of a double-sided light-receiving solar cell is disclosed in Korean Patent Publication No. 1998-20311. Both sides of the double-sided light receiving solar cell are provided with finger electrodes and busbar electrodes.
이와 같은 양면수광형 태양전지는 에미터층의 구비위치에 따라 전면접합형과 후면접합형으로 구분된다. 전면접합형은 기판 전면부에서 p-n 접합이 이루어지고, 후면접합형은 기판 후면부에서 p-n 접합이 이루어진다. 전면접합형의 경우, 전면전극 뿐만 아니라 후면전극 또한 Ag로 구성할 수 밖에 없어 제조비용이 상승하는 문제점이 있다. 후면접합형의 경우, 전면접합형과는 달리 후면전극에 Al를 적용할 수 있다는 점에서 장점이 있으나, 전면접합 n형 양면수광형 태양전지 및 p형 전면전극형 태양전지에 비해 발전 전류량이 큰 특성으로 인해 전기저항에 의한 에너지 손실이 증가되는 문제점이 있다. 이에, 버스바전극의 수를 늘릴 필요가 있으나, 버스바전극의 수가 증가되면 수광면적이 작아지는 문제가 발생한다. Such a double-sided light-receiving solar cell is classified into a front junction type and a back junction type according to the position of the emitter layer. The front junction type is made of p-n junction at the front side of the substrate, and the back junction type is made of p-n junction at the rear side of the substrate. In the case of the front junction type, not only the front electrode but also the rear electrode has to be made of Ag, which causes a problem in that the manufacturing cost increases. Unlike the front junction type, the back junction type has advantages in that Al can be applied to the rear electrode. However, the amount of generated current is greater than that of the front junction n type double-sided light receiving solar cell and the p type front electrode solar cell. Due to this there is a problem that the energy loss due to the electrical resistance is increased. Therefore, it is necessary to increase the number of busbar electrodes, but when the number of busbar electrodes is increased, a problem arises that the light receiving area becomes smaller.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 한국공개특허공보 제1998-20311호(Patent Document 1) Korean Patent Publication No. 1998-20311
본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 후면접합 양면수광형 태양전지를 구현함에 있어서 버스바전극을 복수의 금속성와이어로 대체함으로써 수광면적을 증대시킴과 함께 전기저항을 최소화할 수 있는 후면접합 양면수광형 태양전지 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, in the implementation of the back-bonded double-sided light-receiving solar cell by replacing the bus bar electrode with a plurality of metallic wires can increase the light receiving area and minimize the electrical resistance. An object of the present invention is to provide a back-bonded double-sided light receiving solar cell and a method of manufacturing the same.
상기의 목적을 달성하기 위한 본 발명에 따른 후면접합 양면수광형 태양전지는 기판; 상기 기판 내부의 하부측에 구비된 에미터층; 상기 기판 전면 상에 구비된 전면 패시베이션층; 상기 기판 후면 상에 구비된 후면 패시베이션층; 상기 전면 패시베이션층 상에 구비된 전면전극; 및 상기 후면 패시베이션층 상에 구비된 후면전극;을 포함하여 이루어지며, 상기 전면전극 및 후면전극 각각은, 이격하여 반복, 배치된 복수의 핑거전극과, 상기 복수의 핑거전극에 직교하는 방향으로 이격하여 반복, 배치된 복수의 금속성와이어와, 상기 핑거전극과 금속성와이어의 교차점 부위에 구비되어, 핑거전극과 금속성와이어의 전기적 연결을 매개하는 도전성패드를 포함하여 구성되는 것을 특징으로 한다.Back junction double-sided light receiving type solar cell according to the present invention for achieving the above object is a substrate; An emitter layer provided on a lower side of the substrate; A front passivation layer provided on the front surface of the substrate; A back passivation layer provided on the back of the substrate; A front electrode provided on the front passivation layer; And a rear electrode provided on the rear passivation layer, wherein the front electrode and the rear electrode are spaced apart from each other in a direction orthogonal to the plurality of finger electrodes repeatedly arranged and spaced apart from each other. And a plurality of metallic wires, which are repeatedly arranged and disposed at an intersection point of the finger electrode and the metallic wire, and a conductive pad configured to mediate electrical connection between the finger electrode and the metallic wire.
상기 금속성와이어는 도전성패드 상에 적층되어, 도전성패드와 전기적으로 연결된다. 상기 금속성와이어와 도전성패드는 납땜으로 연결될 수 있다. 또한, 상기 금속성와이어의 일단은 외부의 캐패시터와 연결된다. 이와 함께, 상기 금속성와이어의 개수는 6개 이상 핑거전극의 개수 이하이다.The metallic wire is stacked on the conductive pad and electrically connected to the conductive pad. The metallic wire and the conductive pad may be connected by soldering. In addition, one end of the metallic wire is connected to an external capacitor. In addition, the number of the metallic wires is 6 or less or less than the number of finger electrodes.
상기 전면전극의 핑거전극과 도전성패드는 동일 재질로 이루어지며, 상기 후면전극의 핑거전극과 도전성패드는 서로 다른 재질로 이루어진다. 상기 전면전극의 핑거전극과 도전성패드는 Ag로 이루어지며, 상기 후면전극의 핑거전극은 Al로 이루어지고, 상기 후면전극의 도전성패드는 Ag로 이루어질 수 있다.The finger electrode and the conductive pad of the front electrode are made of the same material, and the finger electrode and the conductive pad of the back electrode are made of different materials. The finger electrode and the conductive pad of the front electrode may be made of Ag, the finger electrode of the back electrode may be made of Al, and the conductive pad of the back electrode may be made of Ag.
본 발명에 따른 후면접합 양면수광형 태양전지의 제조방법은 전면 패시베이션층 및 후면 패시베이션층이 구비된 기판을 준비하는 단계; 상기 전면 패시베이션층 상에 핑거전극 형성을 위한 제 1 도전성 페이스트 및 도전성패드 형성을 위한 패드 페이스트를 도포하는 단계; 상기 후면 패시베이션층 상에 핑거전극 형성을 위한 제 2 도전성 페이스트 및 도전성패드 형성을 위한 패드 페이스트를 도포하는 단계; 기판을 소성하여, 전면 패시베이션층 상에 핑거전극 및 도전성패드를 형성함과 함께 후면 패시베이션층 상에 핑거전극 및 도전성패드를 형성하는 단계; 전면전극의 핑거전극, 후면전극의 핑거전극 각각에 직교하는 방향으로 복수의 금속층와이어를 적층하며, 핑거전극과 금속층와이어의 교차점에 상기 도전성패드가 위치하는 단계; 및 상기 도전성패드와 금속층와이어를 결합하여, 금속성와이어를 고정시킴과 함께 도전성패드를 매개로 금속성와이어와 핑거전극을 전기적으로 연결시키는 단계;를 포함하여 이루어지는 것을 특징으로 한다.Method of manufacturing a back-junction double-sided light receiving solar cell according to the present invention comprises the steps of preparing a substrate having a front passivation layer and a back passivation layer; Applying a first conductive paste for forming a finger electrode and a pad paste for forming a conductive pad on the front passivation layer; Applying a second conductive paste for forming a finger electrode and a pad paste for forming a conductive pad on the back passivation layer; Firing the substrate to form finger electrodes and conductive pads on the front passivation layer, and forming finger electrodes and conductive pads on the back passivation layer; Stacking a plurality of metal layer wires in a direction orthogonal to each of a finger electrode of a front electrode and a finger electrode of a back electrode, and placing the conductive pad at an intersection point of the finger electrode and the metal layer wire; And coupling the conductive pad and the metal layer wire to fix the metallic wire and electrically connecting the metallic wire and the finger electrode through the conductive pad.
본 발명에 따른 후면접합 양면수광형 태양전지 및 그 제조방법은 다음과 같은 효과가 있다.The back-junction double-sided light-receiving solar cell and its manufacturing method according to the present invention have the following effects.
버스바전극을 금속성와이어로 대체함에 따라 수광면적을 증대시킬 수 있다. 또한, 수광면적의 감소를 최소화하는 수준에서 금속성와이어의 개수를 늘릴 수 있으며, 이를 통해 전기저항을 감소시킬 수 있다.The light receiving area can be increased by replacing the busbar electrode with a metallic wire. In addition, the number of metallic wires can be increased to minimize the reduction of the light receiving area, thereby reducing the electrical resistance.
도 1은 본 발명의 일 실시예에 따른 후면접합 양면수광형 태양전지의 구성도.1 is a block diagram of a back-junction double-sided light receiving solar cell according to an embodiment of the present invention.
도 2a 내지 도 2f는 본 발명의 일 실시예에 따른 후면접합 양면수광형 태양전지의 제조방법을 설명하기 위한 공정 참고도.Figures 2a to 2f is a process reference diagram for explaining a method for manufacturing a back-junction double-sided light receiving solar cell according to an embodiment of the present invention.
본 발명은 후면접합 양면수광형 태양전지를 구현함에 있어서, 전면전극 및 후면전극을 각각 핑거전극과 금속성와이어의 조합으로 구성하는 기술을 제시한다. The present invention provides a technique for configuring a front electrode and a back electrode by combining a finger electrode and a metallic wire in implementing a back junction double-sided light receiving solar cell.
'배경기술'에서 기술한 바와 같이, 셀의 양면을 통해 태양광의 수광이 가능한 양면수광형 태양전지는 p-n접합의 구비위치에 따라 전면접합형과 후면접합형으로 구분되고, 전면접합형은 전면전극과 후면전극을 모두 Ag로 구성해야 하는 단점이 있고, 후면접합형은 후면전극을 Al로 구성할 수는 있으나 상대적으로 큰 전류량으로 인한 에너지 손실을 줄이기 위해 버스바전극의 증가가 요구되나 버스바전극의 증가는 수광면적 감소의 문제점이 뒤따른다. As described in the Background Art, a double-sided light receiving solar cell capable of receiving sunlight through both sides of a cell is classified into a front junction type and a rear junction type according to a pn junction position, and the front junction type is a front electrode. Both the rear electrode and the rear electrode have to be composed of Ag, and the back junction type can be made of Al in the rear electrode, but the bus bar electrode needs to be increased to reduce energy loss due to the relatively large amount of current. The increase of is accompanied by the problem of decreasing the light receiving area.
본 발명은 전면전극형 태양전지 및 전면접합 양면수광형 태양전지에 비해 발전 전류량이 큰 후면접합 양면수광형 태양전지의 장점을 취함과 함께 수광면적의 감소 없이 후면접합 양면수광형 태양전지의 전기저항을 효과적으로 줄일 수 있는 기술을 제시한다. The present invention takes the advantages of the back-junction double-sided light-receiving solar cell having a large amount of power generation current compared to the front electrode solar cell and the front-junction double-sided light-receiving solar cell, and the electrical resistance of the back-bonded double-sided light-receiving solar cell without reducing the receiving area Present techniques that can be effectively reduced.
이를 구현하기 위해, 본 발명은 상술한 바와 같이 후면접합 양면수광형 태양전지의 전면전극 및 후면전극을 각각 핑거전극과 금속성와이어의 조합으로 구성하는 기술을 제시한다. In order to implement this, the present invention proposes a technique for configuring the front electrode and the rear electrode of the back-junction double-sided light receiving solar cell as a combination of finger electrodes and metallic wires, respectively.
본 발명의 금속성와이어는 종래 기술의 버스바전극 및 인터커넥터(interconnector)를 대체한다. 종래의 경우, 핑거전극에 의해 수집된 캐리어(carrier)는 버스바전극을 거쳐 인터커넥터를 통해 외부의 캐패시터 등으로 전달된다. 본 발명의 경우, 금속성와이어가 핑거전극과 전기적으로 연결되어 핑거전극에 의해 수집된 캐리어를 외부의 캐패시터 등으로 전달하는 역할을 한다. 즉, 금속성와이어가 버스바전극 및 인터커넥터의 역할을 담당한다. The metallic wire of the present invention replaces the busbar electrodes and interconnectors of the prior art. In the conventional case, a carrier collected by a finger electrode is transferred to an external capacitor through an interconnector via a bus bar electrode. In the present invention, the metallic wire is electrically connected to the finger electrode to transfer the carrier collected by the finger electrode to an external capacitor or the like. That is, the metallic wire plays a role of the bus bar electrode and the interconnector.
또한, 본 발명에 적용되는 금속성와이어는 그 지름(일 실시예로, 지름 360㎛)이 버스바전극의 폭에 대비하여 현저히 작으며, 이에 따라 버스바전극이 적용되는 구조에 대비하여 수광면적의 축소 없이 금속성와이어의 개수를 늘릴 수 있으며, 수광면적의 실질적인 축소 없이 증가된 금속성와이어를 통해 후면접합 양면수광형 태양전지의 높은 전기저항 문제를 해소할 수 있다. In addition, the metallic wire applied to the present invention has a diameter (in one embodiment, a diameter of 360 μm) that is significantly smaller compared to the width of the busbar electrode, and thus the light receiving area is compared with the structure to which the busbar electrode is applied. It is possible to increase the number of metallic wires without shrinking and to solve the high electrical resistance problem of the back-bonded double-sided light receiving solar cell through the increased metallic wires without substantial reduction of the light receiving area.
이와 함께, 전술한 바와 같이 후면접합 양면수광형 태양전지의 후면전극으로 Al의 적용이 가능한데, Al은 Ag에 비해 전기전도도가 낮은 문제점이 있으나, 수광면적 축소에 미치는 영향이 버스바전극보다 현저히 낮은 금속성와이어를 적절히 증가 배치시킴으로써 Al 사용에 따른 전기저항 증가 문제를 해결할 수 있다. In addition, as described above, Al can be applied as a back electrode of a back junction double-sided light-receiving solar cell, but Al has a low electrical conductivity compared to Ag, but the effect of reducing the light receiving area is significantly lower than that of the bus bar electrode. By properly increasing the placement of metallic wires, the problem of increasing electrical resistance due to the use of Al can be solved.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 후면접합 양면수광형 태양전지 및 그 제조방법을 상세히 설명하기로 한다.Hereinafter, a back-sided double-sided light-receiving type solar cell and a manufacturing method thereof according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1을 참조하면, 본 발명의 일 실시예에 따른 후면접합 양면수광형 태양전지는 전면전극과 후면전극을 구비한다.Referring to FIG. 1, a back-junction double-sided light receiving solar cell according to an embodiment of the present invention includes a front electrode and a rear electrode.
상기 전면전극은 기판(110) 전면 상에 구비된 전면 패시베이션층(150) 상에 구비되며, 상기 후면전극은 기판(110) 후면 상에 구비된 후면 패시베이션층(130) 상에 구비되어 에미터층(120)과 전기적으로 연결된다.The front electrode is provided on the front passivation layer 150 provided on the front surface of the substrate 110, and the rear electrode is provided on the back passivation layer 130 provided on the rear surface of the substrate 110 to emitter layer ( 120 is electrically connected.
상기 전면전극과 후면전극의 상세 구성에 대한 설명에 앞서, 기판(110) 구조에 살펴보면 다음과 같다. 상기 기판(110)은 제 1 도전형(예를 들어, n형)의 실리콘 기판(110)이며, 상기 기판(110) 내부의 하부측에는 제 2 도전형(예를 들어, p형)의 에미터층(120)이 구비된다. 상기 에미터층(120) 상에는 후면 패시베이션층(130)이 구비되며, 상기 후면 패시베이션층(130) 상에는 에미터층(120)과 전기적으로 연결되는 후면전극이 구비된다. 또한, 상기 기판(110) 내부의 상부측에는 전면전계층(n+)(140)이 구비되고, 상기 전면전계층(n+)(140) 상에는 전면 패시베이션층(150)이 구비되며, 상기 전면 패시베이션층(150) 상에는 전면전계층(n+)(140)과 전기적으로 연결되는 전면전극이 구비된다.Prior to the detailed configuration of the front electrode and the back electrode, the structure of the substrate 110 will be described. The substrate 110 is a silicon substrate 110 of a first conductivity type (e.g., n-type), and an emitter layer of a second conductivity type (e.g., p-type) on the lower side of the substrate 110. 120 is provided. A rear passivation layer 130 is provided on the emitter layer 120, and a rear electrode electrically connected to the emitter layer 120 is provided on the rear passivation layer 130. In addition, a front field layer (n +) 140 is provided on an upper side of the inside of the substrate 110, a front passivation layer 150 is provided on the front field layer (n +) 140, and the front passivation layer 150 is provided. On the front surface is provided with a front electrode electrically connected to the front field layer (n +) 140.
이와 같은 구조 하에, 태양광이 수광되면 기판(110) 내부에서 광전변환이 발생되어 전자(-), 정공(+)가 생성되며, 전자(-)는 전면전계층(n+)(140)을 거쳐 전면전극으로 이동되고 정공(+)은 에미터층(120)을 거쳐 후면전극으로 이동된다.Under such a structure, when sunlight is received, photoelectric conversion is generated inside the substrate 110 to generate electrons (-) and holes (+), and the electrons (-) pass through the front field layer (n +) 140 to the front surface. It is moved to the electrode and the hole (+) is moved to the back electrode via the emitter layer 120.
상기 전면전극 및 후면전극의 구조는 다음과 같다.The structure of the front electrode and the back electrode is as follows.
먼저, 상기 전면전극은 핑거전극(161), 도전성패드(162) 및 금속성와이어(180)를 포함하여 이루어진다.First, the front electrode includes a finger electrode 161, a conductive pad 162, and a metallic wire 180.
상기 핑거전극(161)은 광전변환에 의해 생성된 캐리어(carrier)를 수집하며, 기판(110)의 일 방향을 따라 이격하여 반복 배치된다. 즉, 복수의 핑거전극(161)이 상기 전면 패시베이션층(150) 상에서 평행하여 이격, 배치되는 형태를 이룬다.The finger electrode 161 collects a carrier generated by photoelectric conversion, and is repeatedly disposed spaced apart along one direction of the substrate 110. That is, the plurality of finger electrodes 161 are formed to be spaced apart and arranged in parallel on the front passivation layer 150.
상기 금속성와이어(180)는 상기 핑거전극(161)에 의해 수집된 캐리어를 외부의 캐패시터(도시하지 않음) 등으로 전달하며, 상기 핑거전극(161)에 직교하는 방향으로 이격하여 반복 배치된다. 복수의 핑거전극(161)은 제 1 방향(예를 들어, 가로 방향)을 따라 이격, 배치되며, 복수의 금속성와이어(180)는 제 1 방향에 직교하는 제 2 방향(예를 들어, 세로 방향)을 따라 이격, 배치되는 형태를 이룬다. 상기 금속성와이어(180)의 수는 제한되지는 않으나, 6개 이상이고 핑거전극(161)의 개수 이하로 구성하는 것이 바람직하다.The metallic wire 180 transfers the carrier collected by the finger electrode 161 to an external capacitor (not shown) or the like, and is repeatedly spaced apart from the finger electrode 161 in a direction perpendicular to the finger electrode 161. The plurality of finger electrodes 161 are spaced apart from each other in a first direction (eg, in a horizontal direction), and the plurality of metallic wires 180 are arranged in a second direction (eg, in a vertical direction) perpendicular to the first direction. ), So that they are spaced apart and arranged along The number of the metallic wires 180 is not limited, but it is preferable that the number of the metallic wires 180 is 6 or less and less than the number of the finger electrodes 161.
복수의 핑거전극(161)과 복수의 금속성와이어(180)가 직교하는 형태로 배치됨에 따라, 핑거전극(161)과 금속성와이어(180)의 교차점이 존재하게 되는데, 상기 교차점에는 도전성패드(162)가 구비된다.As the plurality of finger electrodes 161 and the plurality of metallic wires 180 are disposed to be orthogonal to each other, an intersection point of the finger electrodes 161 and the metallic wires 180 exists, and the conductive pads 162 are disposed at the crossing points. Is provided.
상기 도전성패드(162)는 핑거전극(161)과 금속성와이어(180) 사이에 구비되어, 핑거전극(161)과 금속성와이어(180)의 전기저항을 낮추는 역할을 한다. 상기 도전성패드(162)는 핑거전극(161)과 금속성와이어(180)의 모든 교차점에 구비되거나, 전체 교차점 중 일부 교차점에 선택적으로 구비될 수 있다.The conductive pad 162 is provided between the finger electrode 161 and the metallic wire 180 to lower the electrical resistance of the finger electrode 161 and the metallic wire 180. The conductive pad 162 may be provided at all intersection points of the finger electrode 161 and the metallic wire 180 or may be selectively provided at some intersection points of all the intersection points.
한편, 상기 핑거전극(161) 및 도전성패드(162)는 Ag를 주성분으로 구성할 수 있으며, 상기 금속성와이어(180)는 철(Fe)과 주석(Sn) 기반의 금속화합물로 이루어질 수 있다.Meanwhile, the finger electrode 161 and the conductive pad 162 may be composed of Ag as a main component, and the metallic wire 180 may be made of a metal compound based on iron (Fe) and tin (Sn).
이상, 전면전극의 상세 구성에 대해 설명하였다. 후면전극의 구조는 다음과 같다. 상기 후면전극은 상기 전면전극과 마찬가지로 핑거전극(171), 도전성패드(172) 및 금속성와이어(180)를 포함하여 이루어진다.The detailed configuration of the front electrode has been described above. The structure of the back electrode is as follows. Like the front electrode, the back electrode includes a finger electrode 171, a conductive pad 172, and a metallic wire 180.
또한, 후면전극을 구성하는 복수의 핑거전극(171), 도전성패드(172) 및 복수의 금속성와이어(180)는 전면전극의 형태와 동일하다. 즉, 복수의 핑거전극(171)이 제 1 방향(예를 들어, 가로 방향)을 따라 이격, 배치되고, 복수의 금속성와이어(180)는 제 1 방향에 직교하는 제 2 방향(예를 들어, 세로 방향)을 따라 이격, 배치되며, 핑거전극(171)과 금속성와이어(180)의 교차점에는 핑거전극(171)과 금속성와이어(180) 사이에 도전성패드(172)가 구비된다.In addition, the plurality of finger electrodes 171, the conductive pads 172, and the plurality of metallic wires 180 constituting the rear electrode have the same shape as the front electrode. That is, the plurality of finger electrodes 171 are spaced apart and disposed along the first direction (eg, the horizontal direction), and the plurality of metallic wires 180 are orthogonal to the first direction (eg, the second direction). It is spaced apart and disposed along the vertical direction, and a conductive pad 172 is provided between the finger electrode 171 and the metallic wire 180 at the intersection of the finger electrode 171 and the metallic wire 180.
다만, 전면전극과 후면전극은 핑거전극(171)을 구성하는 재료에서 차이가 있다. 전면전극의 핑거전극(171)이 Ag를 주성분으로 함에 반해, 후면전극의 핑거전극(171)은 제 2 도전형(p형)의 금속 예를 들어, Al을 주성분으로 한다. 후면전극의 핑거전극(171)이 Al을 주성분으로 하여 구성되는 이유는, 기판(110) 후면의 BSF(back surface field)층 형성을 위해서이다. Al을 주성분으로 하는 도전성 페이스트를 소성하면 핑거전극(171)이 형성됨과 함께 Al 성분이 기판(110) 후면의 내부로 확산되어 BSF층이 형성된다.However, the front electrode and the rear electrode are different in the material of the finger electrode 171. While the finger electrode 171 of the front electrode has Ag as the main component, the finger electrode 171 of the back electrode has the metal of the second conductivity type (p type), for example, Al. The reason why the finger electrode 171 of the back electrode is composed mainly of Al is for forming a back surface field (BSF) layer on the back surface of the substrate 110. When the conductive paste containing Al as a main component is fired, the finger electrode 171 is formed and the Al component is diffused into the back of the substrate 110 to form a BSF layer.
한편, 상기 후면전극의 금속성와이어(180)는 전면전극의 금속성와이어(180)와 마찬가지로 개수에 제한되지는 않으나, 6개 이상이고 핑거전극(171)의 개수 이하로 구성하는 것이 바람직하다. 또한, 후면전극의 도전성패드(172)는 핑거전극(171)과 금속성와이어(180)의 모든 교차점에 구비되거나, 전체 교차점 중 일부 교차점에 선택적으로 구비될 수 있다.Meanwhile, the metallic wires 180 of the rear electrode are not limited to the number of metallic wires 180 of the front electrode, but are preferably six or more and constitute the number of finger electrodes 171 or less. In addition, the conductive pad 172 of the back electrode may be provided at all intersections of the finger electrode 171 and the metallic wire 180 or may be selectively provided at some intersections of all intersections.
이상, 본 발명의 일 실시예에 따른 후면접합 양면수광형 태양전지에 대해 설명하였다. 다음으로, 본 발명의 일 실시예에 따른 후면접합 양면수광형 태양전지의 제조방법에 대해 설명하기로 한다.In the above, the back-junction double-sided light receiving solar cell according to an embodiment of the present invention has been described. Next, a method of manufacturing a back junction double-sided light receiving solar cell according to an embodiment of the present invention will be described.
먼저, 도 2a에 도시한 바와 같이 전면 패시베이션층(150) 및 후면 패시베이션층(130)이 구비된 기판(110)을 준비한다.First, as shown in FIG. 2A, the substrate 110 having the front passivation layer 150 and the back passivation layer 130 is prepared.
상기 기판(110)은 제 1 도전형(예를 들어, n형)의 실리콘 기판(110)이다. 상기 기판(110) 내부의 상부측에는 전면전계층(n+)(140)이 구비되고, 상기 전면전계층(n+)(140)의 상부 즉, 기판(110) 전면 상에 상기 전면 패시베이션층(150)이 구비된다. 또한, 상기 기판(110) 내부의 하부측에는 제 2 도전형(예를 들어, p형)의 에미터층(120)이 구비된다. 상기 에미터층(120)의 상부 즉, 기판(110) 후면 상에 상기 후면 패시베이션층(130)이 구비된다.The substrate 110 is a silicon substrate 110 of a first conductivity type (eg, n-type). The front side electric field layer (n +) 140 is provided on the upper side of the inside of the substrate 110, and the front passivation layer 150 is provided on the upper side of the front electric field layer (n +) 140, that is, the entire surface of the substrate 110. do. In addition, an emitter layer 120 of a second conductivity type (eg, p-type) is provided on a lower side of the inside of the substrate 110. The back passivation layer 130 is provided on the emitter layer 120, that is, on the back of the substrate 110.
상기 전면 패시베이션층(150) 및 후면 패시베이션층(130)이 구비된 기판(110)이 준비된 상태에서, 전면전극 및 후면전극 형성공정을 진행한다. 전면전극 형성공정과 후면전극 형성공정은 순차적으로 진행하며, 순서에 무관하다.In the state where the substrate 110 having the front passivation layer 150 and the back passivation layer 130 is prepared, the front electrode and the back electrode forming process are performed. The process of forming the front electrode and the process of forming the back electrode proceeds sequentially, regardless of the order.
전면전극 형성공정을 살펴보면, 먼저 핑거전극 형성을 위한 제 1 도전성 페이스트(10)를 상기 전면 패시베이션층(150) 상에 도포한다(도 2b 참조).Looking at the front electrode forming process, first the first conductive paste 10 for forming a finger electrode is applied on the front passivation layer 150 (see Fig. 2b).
상기 제 1 도전성 페이스트(10)는 제 1 방향(예를 들어, 가로 방향)을 따라 이격하여 반복되는 형태로 도포된다. 즉, 전면 패시베이션층(150) 상에 복수의 제 1 도전성 페이스트(10)가 제 1 방향을 따라 평행하게 이격, 배치된 형태로 도포된다.The first conductive paste 10 is applied in a repeating manner spaced apart along the first direction (eg, the horizontal direction). That is, the plurality of first conductive pastes 10 are applied on the front passivation layer 150 in the form of being spaced apart and arranged in parallel in the first direction.
이어, 핑거전극과 금속성와이어(180)의 교차점에 해당하는 전면 패시베이션층(150) 상에 도전성패드 형성을 위한 패드 페이스트(20)를 도포한다. 상기 패드 페이스트(20)는 핑거전극과 금속성와이어(180)의 모든 교차점 부위에 도포되거나 일부 교차점 부위에만 선택적으로 도포될 수 있다.Subsequently, a pad paste 20 for forming a conductive pad is coated on the front passivation layer 150 corresponding to the intersection of the finger electrode and the metallic wire 180. The pad paste 20 may be applied to all intersection points of the finger electrode and the metallic wire 180 or may be selectively applied only to some intersection points.
상기 제 1 도전성 페이스트(10)와 패드 페이스트는 Ag를 주성분으로 하며, 상기 제 1 도전성 페이스트(10)와 패드 페이스트(20)는 스크린 인쇄법을 통해 도포할 수 있다. 또한, 상기 제 1 도전성 페이스트(10)와 패드 페이스트(20)는 한 번의 공정을 통해 동시에 도포될 수도 있다.The first conductive paste 10 and the pad paste have Ag as a main component, and the first conductive paste 10 and the pad paste 20 may be applied by screen printing. In addition, the first conductive paste 10 and the pad paste 20 may be applied simultaneously through a single process.
전면전극 형성을 위한 제 1 도전성 페이스트(10)와 패드 페이스트(20)의 도포가 완료된 상태에서, 후면전극 형성을 위한 제 2 도전성 페이스트(40)와 패드 페이스트(30)의 도포 공정을 진행한다.In the state where the application of the first conductive paste 10 and the pad paste 20 for forming the front electrode is completed, the application process of the second conductive paste 40 and the pad paste 30 for forming the back electrode is performed.
구체적으로, 후면 패시베이션층(130) 상에 도전성패드 형성을 위한 패드 페이스트(30)를 도포한다(도 2c 참조). 상기 패드 페이스트(30)가 도포되는 영역은 핑거전극과 금속성와이어(180)가 교차되는 부위에 해당된다. 전면전극의 패드 페이스트(20)와 마찬가지로 핑거전극과 금속성와이어(180)의 모든 교차점 부위에 도포되거나 일부 교차점 부위에만 선택적으로 도포될 수 있다.Specifically, the pad paste 30 for forming the conductive pad is coated on the back passivation layer 130 (see FIG. 2C). The region where the pad paste 30 is applied corresponds to a portion where the finger electrode and the metallic wire 180 cross each other. Like the pad paste 20 of the front electrode, the finger electrode and the metallic wire 180 may be applied to all intersections or may be selectively applied to only some intersections.
이어, 핑거전극 형성을 위한 제 2 도전성 페이스트(40)를 도포한다(도 2d 참조). 상기 제 2 도전성 페이스트(40)는 제 1 도전성 페이스트(10)와 마찬가지로, 제 1 방향(예를 들어, 가로 방향)을 따라 이격하여 반복되는 형태로 도포된다.Subsequently, a second conductive paste 40 is formed to form a finger electrode (see FIG. 2D). Like the first conductive paste 10, the second conductive paste 40 is applied in a repeated manner spaced apart along the first direction (eg, in the horizontal direction).
상기 패드 페이스트(30)는 Ag를 주성분으로 하며, 상기 제 2 도전성 페이스트(40)는 제 2 도전형(예를 들어, p형)의 금속 일 실시예로, Al을 주성분으로 한다. 제 2 도전성 페이스트(40)를 Al을 주성분으로 구성하는 이유는, 후속의 소성공정시 Al의 기판(110) 내부로의 확산을 통해 BSF층을 형성하기 위함이다. 상기 패드 페이스트 및 제 2 도전성 페이스트(40)는 스크린 인쇄법을 통해 도포될 수 있다.The pad paste 30 has Ag as a main component, and the second conductive paste 40 is a metal of a second conductivity type (for example, p-type) in one embodiment, and has Al as a main component. The reason why the second conductive paste 40 is composed of Al as a main component is to form a BSF layer through diffusion of Al into the substrate 110 during the subsequent firing process. The pad paste and the second conductive paste 40 may be applied by screen printing.
전면전극 형성을 위한 제 1 도전성 페이스트(10)와 패드 페이스트(20)의 도포, 후면전극 형성을 위한 제 2 도전성 페이스트(40)와 패드 페이스트(30)의 도포가 완료된 상태에서, 기판(110)을 일정 온도에서 소성한다.In the state where the coating of the first conductive paste 10 and the pad paste 20 for forming the front electrode and the coating of the second conductive paste 40 and the pad paste 30 for forming the back electrode are completed, the substrate 110 is formed. Is fired at a constant temperature.
소성에 의해, 도 2e에 도시한 바와 같이 기판(110) 전면측의 제 1 도전성 페이스트(10)는 핑거전극으로, 패드 페이스트(20)는 도전성패드로 변환된다. 또한, 기판(110) 후면측의 제 2 도전성 페이스트(40)는 핑거전극으로, 패드 페이스트(30)는 도전성패드로 각각 변환된다. 제 2 도전성 페이스트(40)가 핑거전극으로 변환되는 과정에서 제 2 도전성 페이스트(40)의 Al 성분이 기판(110) 후면의 내부로 확산되어 BSF층이 형성된다.By firing, as shown in FIG. 2E, the first conductive paste 10 on the front side of the substrate 110 is converted into a finger electrode, and the pad paste 20 is converted into a conductive pad. In addition, the second conductive paste 40 on the back side of the substrate 110 is converted into a finger electrode, and the pad paste 30 is converted into a conductive pad. In the process of converting the second conductive paste 40 into a finger electrode, an Al component of the second conductive paste 40 is diffused into the back of the substrate 110 to form a BSF layer.
기판(110) 전면측과 후면측에 핑거전극 및 도전성패드가 형성된 상태에서, 금속성와이어(180) 적층공정을 진행한다. 금속성와이어(180) 적층공정은 금속성와이어(180)와 도전성패드의 전기적 연결공정을 의미하며, 금속성와이어(180)와 도전성패드의 전기적 연결공정의 일 실시예로 납땜공정을 이용할 수 있다.In the state where the finger electrode and the conductive pad are formed on the front side and the rear side of the substrate 110, the metal wire 180 is stacked. The metallic wire 180 lamination process means an electrical connection process between the metallic wire 180 and the conductive pad, and a soldering process may be used as an embodiment of the electrical connection process between the metallic wire 180 and the conductive pad.
구체적으로, 도 2f에 도시한 바와 같이 복수의 금속성와이어(180)를 복수의 핑거전극에 직교하는 방향으로 이격하여 반복 배치한다. 금속성와이어(180)와 핑거전극의 교차점에 도전성 패드가 구비됨을 전술한 바 있다. 이어, 금속성와이어(180)와 도전성패드를 결합하여 금속성와이어(180)를 고정시킴과 함께 도전성패드를 매개로 금속성와이어(180)와 핑거전극을 전기적으로 연결시킨다. 상기 금속성와이어(180)와 도전성패드의 전기적 연결공정은 기판(110) 전면측과 후면측 모두 실시한다. 상술한 바와 같이, 금속성와이어(180)와 도전성패드의 전기적 연결공정의 일 실시예로 납땜공정을 이용할 수 있다.Specifically, as shown in FIG. 2F, the plurality of metallic wires 180 are repeatedly arranged to be spaced apart from each other in a direction perpendicular to the plurality of finger electrodes. As described above, the conductive pad is provided at the intersection of the metallic wire 180 and the finger electrode. Subsequently, the metallic wires 180 and the conductive pads are coupled to fix the metallic wires 180 and electrically connect the metallic wires 180 and the finger electrodes through the conductive pads. The electrical connection process of the metallic wire 180 and the conductive pad is performed on both the front side and the rear side of the substrate 110. As described above, a soldering process may be used as an example of an electrical connection process between the metallic wire 180 and the conductive pad.
금속성와이어(180)와 도전성패드의 결합이 완성되면, 본 발명의 일 실시예에 따른 후면접합 양면수광형 태양전지의 제조방법은 완료된다.When the coupling of the metallic wire 180 and the conductive pad is completed, the method of manufacturing the back bonded double-sided light receiving solar cell according to the embodiment of the present invention is completed.
[부호의 설명][Description of the code]
10 : 제 1 도전성 페이스트 20, 30 : 패드 페이스트10: first conductive paste 20, 30: pad paste
40 : 제 2 도전성 페이스트 110 : 기판40: second conductive paste 110: substrate
120 : 에미터층 130 : 후면 패시베이션층120: emitter layer 130: rear passivation layer
140 : 전면전계층(n+) 150 : 전면 패시베이션층140: front field layer (n +) 150: front passivation layer
161, 171 : 핑거전극 162, 172 : 도전성패드161, 171: finger electrodes 162, 172: conductive pad
180 : 금속성와이어180: metallic wire
버스바전극을 금속성와이어로 대체함에 따라 수광면적을 증대시킬 수 있다. 또한, 수광면적의 감소를 최소화하는 수준에서 금속성와이어의 개수를 늘릴 수 있으며, 이를 통해 전기저항을 감소시킬 수 있다.The light receiving area can be increased by replacing the busbar electrode with a metallic wire. In addition, the number of metallic wires can be increased to minimize the reduction of the light receiving area, thereby reducing the electrical resistance.

Claims (14)

  1. 기판; Board;
    상기 기판 내부의 하부측에 구비된 에미터층; An emitter layer provided on a lower side of the substrate;
    상기 기판 전면 상에 구비된 전면 패시베이션층; A front passivation layer provided on the front surface of the substrate;
    상기 기판 후면 상에 구비된 후면 패시베이션층; A back passivation layer provided on the back of the substrate;
    상기 전면 패시베이션층 상에 구비된 전면전극; 및A front electrode provided on the front passivation layer; And
    상기 후면 패시베이션층 상에 구비된 후면전극;을 포함하여 이루어지며, And a rear electrode provided on the rear passivation layer.
    상기 전면전극 및 후면전극 각각은, Each of the front electrode and the back electrode,
    이격하여 반복, 배치된 복수의 핑거전극과, A plurality of finger electrodes spaced apart and repeated;
    상기 복수의 핑거전극에 직교하는 방향으로 이격하여 반복, 배치된 복수의 금속성와이어와, A plurality of metallic wires repeatedly spaced in a direction orthogonal to the plurality of finger electrodes;
    상기 핑거전극과 금속성와이어의 교차점 부위에 구비되어, 핑거전극과 금속성와이어의 전기적 연결을 매개하는 도전성패드를 포함하여 구성되는 것을 특징으로 하는 후면접합 양면수광형 태양전지. The back junction double-sided light-receiving solar cell, characterized in that it comprises a conductive pad provided at the intersection of the finger electrode and the metallic wire, the conductive pad for the electrical connection between the finger electrode and the metallic wire.
  2. 제 1 항에 있어서, 상기 금속성와이어는 도전성패드 상에 적층되어, 도전성패드와 전기적으로 연결되는 것을 특징으로 하는 후면접합 양면수광형 태양전지. The back junction double-sided light-receiving solar cell of claim 1, wherein the metallic wire is stacked on the conductive pad and electrically connected to the conductive pad.
  3. 제 1 항에 있어서, 상기 금속성와이어와 도전성패드는 납땜으로 연결된 것을 특징으로 하는 후면접합 양면수광형 태양전지. The back junction double-sided light receiving solar cell of claim 1, wherein the metallic wire and the conductive pad are connected by soldering.
  4. 제 1 항에 있어서, 상기 금속성와이어의 일단은 외부의 캐패시터와 연결되는 것을 특징으로 하는 후면접합 양면수광형 태양전지. The back-bonded double-sided light receiving solar cell of claim 1, wherein one end of the metallic wire is connected to an external capacitor.
  5. 제 1 항에 있어서, 상기 금속성와이어의 개수는 6개 이상 핑거전극의 개수 이하인 것을 특징으로 하는 후면접합 양면수광형 태양전지. The back junction double-sided light receiving type solar cell of claim 1, wherein the number of metallic wires is 6 or more and less than the number of finger electrodes.
  6. 제 1 항에 있어서, 상기 전면전극의 핑거전극과 도전성패드는 동일 재질로 이루어지며, 상기 후면전극의 핑거전극과 도전성패드는 서로 다른 재질로 이루어지는 것을 특징으로 하는 후면접합 양면수광형 태양전지. The back junction double-sided light-receiving solar cell of claim 1, wherein the finger electrode and the conductive pad of the front electrode are made of the same material, and the finger electrode and the conductive pad of the back electrode are made of different materials.
  7. 제 1 항에 있어서, 상기 전면전극의 핑거전극과 도전성패드는 Ag로 이루어지며, 상기 후면전극의 핑거전극은 Al로 이루어지고, 상기 후면전극의 도전성패드는 Ag로 이루어지는 것을 특징으로 하는 후면접합 양면수광형 태양전지. 2. The back junction of claim 1, wherein the finger electrode and the conductive pad of the front electrode are made of Ag, the finger electrode of the back electrode is made of Al, and the conductive pad of the back electrode is made of Ag. Light receiving solar cell.
  8. 전면 패시베이션층 및 후면 패시베이션층이 구비된 기판을 준비하는 단계; Preparing a substrate having a front passivation layer and a back passivation layer;
    상기 전면 패시베이션층 상에 핑거전극 형성을 위한 제 1 도전성 페이스트 및 도전성패드 형성을 위한 패드 페이스트를 도포하는 단계; Applying a first conductive paste for forming a finger electrode and a pad paste for forming a conductive pad on the front passivation layer;
    상기 후면 패시베이션층 상에 핑거전극 형성을 위한 제 2 도전성 페이스트 및 도전성패드 형성을 위한 패드 페이스트를 도포하는 단계; Applying a second conductive paste for forming a finger electrode and a pad paste for forming a conductive pad on the back passivation layer;
    기판을 소성하여, 전면 패시베이션층 상에 핑거전극 및 도전성패드를 형성함과 함께 후면 패시베이션층 상에 핑거전극 및 도전성패드를 형성하는 단계; Firing the substrate to form finger electrodes and conductive pads on the front passivation layer, and forming finger electrodes and conductive pads on the back passivation layer;
    전면전극의 핑거전극, 후면전극의 핑거전극 각각에 직교하는 방향으로 복수의 금속층와이어를 적층하며, 핑거전극과 금속층와이어의 교차점에 상기 도전성패드가 위치하는 단계; 및 Stacking a plurality of metal layer wires in a direction orthogonal to each of a finger electrode of a front electrode and a finger electrode of a back electrode, and placing the conductive pad at an intersection point of the finger electrode and the metal layer wire; And
    상기 도전성패드와 금속층와이어를 결합하여, 금속성와이어를 고정시킴과 함께 도전성패드를 매개로 금속성와이어와 핑거전극을 전기적으로 연결시키는 단계;를 포함하여 이루어지는 것을 특징으로 하는 후면접합 양면수광형 태양전지의 제조방법. Combining the conductive pads with the metal layer wires to fix the metallic wires and electrically connecting the metallic wires and the finger electrodes through the conductive pads; and a back junction double-sided light-receiving solar cell comprising: Manufacturing method.
  9. 제 8 항에 있어서, 상기 도전성패드와 금속층와이어의 결합은 납땜을 이용하는 것을 특징으로 하는 후면접합 양면수광형 태양전지의 제조방법. The method of claim 8, wherein the conductive pad and the metal layer wire are bonded to each other by soldering.
  10. 제 8 항에 있어서, 제 1 도전성 페이스트 및 제 2 도전성 페이스트 각각은 이격하여 반복, 도포되는 것을 특징으로 하는 후면접합 양면수광형 태양전지의 제조방법. The method of claim 8, wherein each of the first conductive paste and the second conductive paste is spaced and repeatedly spaced apart and applied.
  11. 제 8 항에 있어서, 상기 패드 페이스트는 핑거전극과 금속층와이어의 교차점에 도포되는 것을 특징으로 하는 후면접합 양면수광형 태양전지의 제조방법. The method of claim 8, wherein the pad paste is applied at an intersection point of a finger electrode and a metal layer wire.
  12. 제 8 항에 있어서, 제 1 도전성 페이스트는 Ag를 주성분으로 하고, 제 2 도전성 페이스트는 Al을 주성분으로 하는 것을 특징으로 하는 후면접합 양면수광형 태양전지의 제조방법. The method of manufacturing a back-bonded double-sided light-receiving solar cell according to claim 8, wherein the first conductive paste has Ag as a main component and the second conductive paste has Al as a main component.
  13. 제 8 항에 있어서, 상기 금속성와이어의 일단은 외부의 캐패시터와 연결되는 것을 특징으로 하는 후면접합 양면수광형 태양전지의 제조방법. The method of claim 8, wherein one end of the metallic wire is connected to an external capacitor.
  14. 제 8 항에 있어서, 상기 금속성와이어의 개수는 6개 이상 핑거전극의 개수 이하인 것을 특징으로 하는 후면접합 양면수광형 태양전지의 제조방법. The method of claim 8, wherein the number of metallic wires is 6 or more and less than the number of finger electrodes.
PCT/KR2017/006520 2016-06-22 2017-06-21 Solar cell having junction on rear surface and receiving light through both surfaces and method for manufacturing same WO2017222297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160077754A KR20180000070A (en) 2016-06-22 2016-06-22 Back-junction bi-facial solar cell and method for fabricating the same
KR10-2016-0077754 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017222297A1 true WO2017222297A1 (en) 2017-12-28

Family

ID=60784394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006520 WO2017222297A1 (en) 2016-06-22 2017-06-21 Solar cell having junction on rear surface and receiving light through both surfaces and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20180000070A (en)
WO (1) WO2017222297A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003721A (en) * 2009-06-18 2011-01-06 Mitsubishi Electric Corp Solar cell and method for manufacturing the same
KR20130086960A (en) * 2010-05-28 2013-08-05 솔라월드 이노베이션즈 게엠베하 Method for contacting and connecting solar cells and solar cell combination produced by means of said method
JP2015159286A (en) * 2014-02-24 2015-09-03 エルジー エレクトロニクス インコーポレイティド Solar cell module and method for manufacturing the same
KR20160016305A (en) * 2014-08-04 2016-02-15 엘지전자 주식회사 Solar cell module
KR101614190B1 (en) * 2013-12-24 2016-04-20 엘지전자 주식회사 Solar cell and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003721A (en) * 2009-06-18 2011-01-06 Mitsubishi Electric Corp Solar cell and method for manufacturing the same
KR20130086960A (en) * 2010-05-28 2013-08-05 솔라월드 이노베이션즈 게엠베하 Method for contacting and connecting solar cells and solar cell combination produced by means of said method
KR101614190B1 (en) * 2013-12-24 2016-04-20 엘지전자 주식회사 Solar cell and manufacturing method thereof
JP2015159286A (en) * 2014-02-24 2015-09-03 エルジー エレクトロニクス インコーポレイティド Solar cell module and method for manufacturing the same
KR20160016305A (en) * 2014-08-04 2016-02-15 엘지전자 주식회사 Solar cell module

Also Published As

Publication number Publication date
KR20180000070A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2010101350A2 (en) Solar cell and method of manufacturing the same
WO2010140740A1 (en) Solar cell and method of manufacturing the same
WO2010137854A2 (en) Method for manufacturing the front electrode of a high efficiency solar cell
WO2011037373A2 (en) Solar cell module and method of manufacturing the same
WO2011078630A2 (en) Solar power generating apparatus
WO2010131816A1 (en) Solar cell
WO2013100498A1 (en) Connector and solar cell module comprising the same
WO2011021755A1 (en) Solar cell
WO2015056934A1 (en) Solar cell module
EP3258503A1 (en) Hybrid weave for electrically contacting photovoltaic cells
WO2015041437A1 (en) Solar battery module
WO2015083148A1 (en) Solar cell bus bars
WO2012096548A2 (en) Solar cell module
WO2018070724A1 (en) Solar cell module
WO2019088526A1 (en) Conductive paste for solar cell electrode, and solar cell manufactured using same
WO2012015108A1 (en) Solar cell panel
WO2011052875A2 (en) Solar cell, method of manufacturing the same, and solar cell module
WO2017222292A1 (en) Perl solar cell and method for preparing same
WO2013162302A1 (en) Photovoltaic apparatus
WO2013077674A1 (en) Solar cell module and method of fabricating the same
WO2013105750A1 (en) Silicon solar cell module using conductive paste as electrode and method for manufacturing same
WO2018004179A1 (en) Solar cell module
WO2013066031A1 (en) Solar cell module and method of fabricating the same
WO2012015150A1 (en) Device for generating photovoltaic power and method for manufacturing same
WO2017222297A1 (en) Solar cell having junction on rear surface and receiving light through both surfaces and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815710

Country of ref document: EP

Kind code of ref document: A1