WO2017222210A1 - Hydraulic impact device - Google Patents
Hydraulic impact device Download PDFInfo
- Publication number
- WO2017222210A1 WO2017222210A1 PCT/KR2017/005856 KR2017005856W WO2017222210A1 WO 2017222210 A1 WO2017222210 A1 WO 2017222210A1 KR 2017005856 W KR2017005856 W KR 2017005856W WO 2017222210 A1 WO2017222210 A1 WO 2017222210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control valve
- piston
- chamber
- flow path
- hydraulic
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/96—Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
- E02F3/966—Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D9/00—Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
- B25D9/04—Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously of the hammer piston type, i.e. in which the tool bit or anvil is hit by an impulse member
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D9/00—Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
- B25D9/14—Control devices for the reciprocating piston
- B25D9/16—Valve arrangements therefor
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/96—Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F5/00—Dredgers or soil-shifting machines for special purposes
- E02F5/30—Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F5/00—Dredgers or soil-shifting machines for special purposes
- E02F5/30—Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
- E02F5/305—Arrangements for breaking-up hard ground
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D2222/00—Materials of the tool or the workpiece
- B25D2222/72—Stone, rock or concrete
Definitions
- the present invention relates to a hydraulic striking device, and more particularly, to a hydraulic striking device mounted on construction equipment such as an excavator and hitting a rod by descending a piston, thereby breaking the rock on the ground.
- Hydraulic striking device is a device that is installed in construction equipment such as excavator, loader, etc. to crush rock or concrete, and when the cylinder is operated, the piston descends to strike the rod, which is the crushing tool, and the rod is the concrete and rock of the ground. The impact is applied to the shredding object, for example, to achieve shredding.
- the hydraulic striking device can adjust the striking force applied to the rod according to the position of the top dead center of the piston, and the striking force adjustment as described above can be made in two striking strokes.
- the stroke stroke of the hydraulic striking device has a relatively high top dead center, such as a long-stroke stroke that strikes the rod strongly, and a short-stroke that strikes the rod weakly by having a relatively low top dead center.
- Such a long stroke is effective when crushing the soil which is composed mainly of Gangam
- the short stroke is effective when crushing the soil which is mainly composed by soft rock.
- the breaker of Korea Patent Registration No. 10-1072069 selects and rotates one of the smashing display portion, the weakness display portion, and the anti-striking display portion of the breaker installed on the outside of the cylinder of the breaker and controlling the hitting force. Through the blow control valve, the blow rod of the breaker can not be struck by the piston, and can selectively perform the struck and weak action.
- the breaker of the Korean Patent No. 10-1072069 only has to rotate the direction changer, the force control valve is to block the anti-violation pipe or slugging conversion pipe can be performed in the struck or weakened mode. Therefore, when crushing the rock of the ground with a breaker, the user directly grasps the state of the rock and rotates the direction change unit, so that the struck or weak stroke may be performed, thus reducing the efficiency of the work and the inconvenience of use. have.
- the non-battery mode that prevents the breaker of the breaker, it can be performed only by rotating the direction changer, it is not possible to use the non-battery mode in parallel with the struck or weakened mode. Therefore, when a breaker executes the smashing or weakening mode to ground the rock, the piston is operated with the striking rod spaced from the ground, or if the ground is a soft ground, the breaking of the breaker may occur. There is a problem that the piston and the cylinder are damaged.
- the present invention has been made to solve the above-described problem, it is possible to automatically switch the stroke stroke according to the state of the rock of the ground, to prevent breakage of the piston and the load chamber by preventing the blow stroke when performing the stroke stroke. It is an object of the present invention to provide a hydraulic striking device that can be used.
- Hydraulic striking device the cylinder; A piston installed in the cylinder to move up and down; An upper chamber provided above and a lower chamber provided below between the piston and the cylinder; A piston control valve for controlling the lifting operation of the piston; A striking force regulating valve controlling an operation time of the piston control valve; A rock strength sensing valve controlling an operation time of the striking force control valve; And a return flow path for returning the piston control valve to a pre-operation position by communicating the connection flow path for operating the piston control valve with the low pressure line.
- the apparatus may further include a first connection flow path connecting the piston control valve and the striking force control valve, wherein the return flow path includes: an intermediate chamber formed between the piston and the cylinder; A fifth connection passage connecting the intermediate chamber and the striking force control valve; And a fourth flow passage connecting the outlet port through which the working oil flows out of the cylinder and the intermediate chamber, wherein the working oil of the first connection flow passage is at the bottom dead center of the piston through the striking force control valve and the return flow passage. It is characterized in that the communication with the low pressure line.
- the piston control valve the upper surface of the upper body is pressed by the operating oil;
- the lower surface is pressed by the working oil, the protrusion formed on the side of the upper body;
- a lower body pressurized by the operating oil and a lower body formed under the upper body, wherein the hydraulic area of the upper surface of the upper body is greater than the hydraulic area of the lower surface of the protrusion, It is characterized in that less than the sum of the hydraulic area of the lower surface of the lower body.
- the striking force control valve may include a rotary valve, and a striking force control valve flow path formed inside the striking force control valve.
- the striking force control valve flow path may include a high pressure line and a low pressure line according to the rotation of the striking force control valve. It is characterized by communicating.
- the stroke can be prevented when the stroke is performed, and thus, the piston can be prevented even when the piston is operated while the rod of the hydraulic striking device is separated from the ground, or when the soft ground is crushed. Breakage of the load chamber can be prevented.
- FIG. 1 is a longitudinal sectional view showing a hydraulic striking device according to a preferred embodiment of the present invention.
- FIG. 2 is a longitudinal sectional view showing that the piston control valve and the piston of the hydraulic striking device of FIG. 1 are in different operating positions.
- FIG. 3 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 2 is in another operating position;
- FIG. 4 is a longitudinal sectional view showing that the piston control valve and the piston of the hydraulic striking device of FIG. 3 are in different operating positions.
- FIG. 5 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 3 is in another operating position
- FIG. 6 is a longitudinal sectional view showing rock strength detection valves of the hydraulic striking device of FIG. 5 in different operating positions.
- FIG. 7 is a longitudinal sectional view showing the rock strength detection valve and the piston control valve of the hydraulic striking device of FIG. 6 in different operating positions.
- FIG. 8 is a longitudinal sectional view showing that the piston control valve and the striking force regulating valve of the hydraulic striking device of FIG. 7 are in different operating positions.
- FIG. 8 is a longitudinal sectional view showing that the piston control valve and the striking force regulating valve of the hydraulic striking device of FIG. 7 are in different operating positions.
- FIG. 9 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 8 is in another operating position
- FIG. 10 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 9 is in another operating position
- FIG. 11 is a longitudinal sectional view showing that the piston control valve and the striking force regulating valve of the hydraulic striking device of FIG. 10 are in different operating positions.
- FIG. 12 is a longitudinal sectional view showing an operating position when the hydraulic striking device according to the preferred embodiment of the present invention executes the anti-ballout mode.
- FIG. 1 is a longitudinal cross-sectional view showing a hydraulic striking device according to a preferred embodiment of the present invention
- Figure 2 is a longitudinal cross-sectional view showing that the piston control valve and the piston of the hydraulic striking device of Figure 1 in different operating positions
- 3 is a longitudinal cross-sectional view showing the piston of the hydraulic striking device of FIG. 2 in different operating positions
- FIG. 4 is a longitudinal cross-sectional view showing the piston control valve and the piston of the hydraulic striking device of FIG. 3 in different operating positions
- 5 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 3 is in a different operating position
- FIG. 6 is a longitudinal sectional view showing a rock strength detection valve of the hydraulic striking device of FIG. 5 in another operating position.
- FIG. 7 is a longitudinal sectional view showing that the rock strength detection valve and the piston control valve of the hydraulic striking device of FIG. 6 are in different operating positions
- FIG. Figure 10 is a longitudinal sectional view showing the piston control valve and the striking force control valve in different operating positions
- Figure 9 is a longitudinal sectional view showing that the piston of the hydraulic striking device of Figure 8 is in a different operating position
- Figure 10 is a
- FIG. 11 is a longitudinal sectional view showing that the piston of the hydraulic striking device is in different operating positions
- FIG. 11 is a longitudinal sectional view showing that the piston control valve and the striking force regulating valve of the hydraulic striking device of FIG. 10 are in different operating positions
- FIG. Is a longitudinal sectional view showing an operating position when the hydraulic striking device according to the preferred embodiment of the present invention executes the anti-ballout mode.
- Hydraulic striking device 10 according to a preferred embodiment of the present invention, as shown in Figures 1 to 4, the cylinder 100, the piston 200 is installed to be lowered in the cylinder 100, An upper chamber 114 provided at the upper part between the piston 200 and the cylinder 100, a lower chamber 112 provided at the lower part between the piston 200 and the cylinder, and an intermediate part between the piston 200 and the cylinder.
- the lower chamber 112 which is provided in the piston control valve 310 for controlling the lifting and lowering operation of the piston 200, the striking force control valve 330 for controlling the operation timing of the piston control valve 310, and the striking force
- a rock strength detection valve 350 for controlling the operation timing of the control valve 330 and a connection flow path for operating the piston control valve 310 communicate with the low pressure line to return the piston control valve 310 to the pre-operation position. It comprises a return flow path.
- the cylinder 100 has an inlet 410 through which hydraulic fluid flows in and an outlet 420 through which hydraulic fluid flows out.
- the inlet 410 is connected to a high pressure line through which hydraulic oil is supplied by a pump (not shown), and the outlet 420 is connected to a low pressure line through which hydraulic oil is sucked by a sump (not shown).
- the high pressure line and the low pressure line are connected to each other from the outside of the hydraulic striking device 100, thereby, the high pressure line and the low pressure line and the inside of the cylinder forms a hydraulic circuit.
- the working oil is introduced into the cylinder 100 through the high pressure line and the inlet 410, in which case the working oil is supplied at a high pressure.
- the hydraulic oil in a high pressure state is discharged to the outside of the cylinder 100 through the outlet 420 and the low pressure line through the flow paths and / or connecting flow paths to be described later, in this case, the hydraulic oil is sucked in a low pressure state.
- a third chamber in which the piston 200 is installed, a second chamber 120 in which the piston control valve 310 is installed, and a third force adjusting valve 330 are installed inside the cylinder 100.
- the chamber 130, the fourth chamber 140 in which the rock strength detection valve 350 is installed, and the accumulator 160 in which nitrogen gas is filled are formed.
- the first chamber 110 is an annular space in which the piston 200 is installed to move up and down, and includes a load chamber 111 in which a rod 700 is installed, and a lower chamber located above the load chamber 111. 112, the intermediate chamber 113 positioned above the lower chamber 112, the upper chamber 114 positioned above the intermediate chamber 113, and the buffer chamber 115 positioned above the upper chamber 114. It is configured to include.
- the load chamber 111 refers to a space forming a lowermost part of the first chamber 110, and a load 700 is installed in the load chamber 111 so as to be lowered and lowered under the load chamber 111.
- the lower chamber 112 is positioned above the load chamber 111 and refers to a space formed by the lower portion of the lower step 210 of the piston 200 and the interior of the cylinder 100, that is, the first chamber 110. do.
- the lower chamber 112 serves to elevate the piston 200 to the upper portion by the inflow of high pressure hydraulic fluid.
- Each of the six connection passages 660 is connected to the third chamber 130.
- the intermediate chamber 113 is positioned above the lower chamber 112, and is formed between the upper and lower step portions 210 of the piston 200 and inside the cylinder 100, that is, by the first chamber 110. Refers to space.
- the intermediate chamber 113 forms a return flow path together with the fifth connection flow path 650 and the fourth flow path 540 which will be described later, and a detailed description thereof will be described later.
- the upper chamber 114 is positioned above the intermediate chamber 113 and refers to a space formed by an upper portion of the upper step 220 of the piston 200 and an interior of the cylinder 100, that is, the first chamber 110. do.
- the upper chamber 114 serves to lower the piston 200 by the inflow of high pressure hydraulic fluid, and is connected to the upper space of the second chamber 120 to be described later by the second connection flow path 620.
- the buffer chamber 115 refers to a space that forms the top of the first chamber 110. Nitrogen gas is filled in the buffer chamber 115.
- Nitrogen gas filled in the buffer chamber 115 serves as a buffer to prevent the raised piston 200 from touching the upper portion of the buffer chamber 115, and at the same time, the piston 200 is moved downward by the gas pressure of the nitrogen gas. By pushing out serves to help the lowering of the piston (200).
- the piston control valve 310 is installed inside the second chamber 120, and the piston control valve 310 is moved up and down inside the second chamber 120 by the working oil, thereby connecting to the second chamber 120. Open and close them.
- the second chamber 120 includes an upper space and a lower space, and the diameter of the upper space of the second chamber 120 is greater than the diameter of the lower space of the second chamber 120.
- the diameter of the upper space of the second chamber 120 has the same size as the diameter of the protrusion 312 of the piston control valve 310 to be described later, the diameter of the lower space of the second chamber 120 will be described later. It has the same size as the diameter of the lower body 313 of the piston control valve 310.
- the upper body 311 of the piston control valve 310 to be described later is located in the upper space of the second chamber 120, the lower body 313 is located in the lower space of the second chamber 120.
- the height of the lower space of the second chamber 120 is formed smaller than the height of the lower body 313. Therefore, as shown in FIG. 1, when the piston control valve 310 is not operated, the lower surface of the lower body 313 comes into contact with the lower portion of the lower space of the second chamber 120. On the other hand, the lower surface of the protrusion 312 does not touch the lower portion of the upper space of the second chamber 120, and thus, the separation space is disposed between the lower surface of the protrusion 312 and the lower portion of the upper space of the second chamber 120. Will be formed.
- the upper space of the second chamber 120 (or the piston control valve 310 is connected to the inlet 410 by the second flow path 520 and the 2-1 flow path 521, the second flow path 520) And it is connected to the inlet 410 by the second channel 522, and is connected to the outlet 420 by the fifth channel 550 and the fifth channel 551.
- the second chamber ( The upper space of the 120 (or the piston control valve 310) is connected to the upper chamber 114 by the second connection flow path 620, the second connection flow path 620 and the second-first connection flow path 621. It is connected to the fourth chamber 140 by the).
- the lower space (or the piston control valve 310) of the second chamber 120 is connected to the third chamber 130 by the first connection passage 610 and the third connection passage 630, respectively, and the fourth It is connected to the fourth chamber 140 by the connection passage 640.
- a striking force control valve 330 is installed inside the third chamber 130, and the striking force control valve 330 is moved up and down in the third chamber 130 by the hydraulic fluid, thereby connecting to the third chamber 130. Open and close them.
- a spring 131 is installed between the upper portion of the third chamber 130 and the upper surface of the striking force control valve 330.
- the spring 131 serves to press the upper surface of the striking force control valve 330 by the elastic force, and due to the spring 131, if a separate pressing force is not applied to the lower surface of the striking force control valve 330, the striking force control valve 330 is positioned below the third chamber 130.
- the third chamber 130 (or the striking force control valve 330) is connected to the inlet 410 by the first flow passage 510 and the first flow passage 512, and the fourth flow passage 540 and the fourth flow passage 540. It is connected to the outlet 420 by the 4-1 flow path 541.
- the third chamber 130 (or the striking force control valve 330) is connected to the lower chamber 112 or the intermediate chamber 113 by each of the fifth connection channel 650 and the sixth connection channel 660. And a lower space of the second chamber 120 by each of the first connection channel 610 and the third connection channel 630.
- the rock strength detection valve 350 is installed inside the fourth chamber 140, and the rock strength detection valve 350 is moved up and down inside the fourth chamber 140 by the hydraulic fluid, thereby, the fourth chamber 140 and the fourth chamber 140. Open and close connected flow paths.
- the diameter of the upper space of the fourth chamber 140 is larger than the diameter of the lower space of the fourth chamber 140, the rock strength detection valve 350, the upper portion of the rock strength detection valve 350 The diameter is larger than the diameter of the lower portion of the rock strength detection valve 350.
- the fourth chamber 140 (or the rock strength detection valve 350) is connected to the inlet 410 by the second flow passage 520 and the second flow passage 523, and to the fifth flow passage 550. It is connected to the outlet 420 by.
- the fourth chamber 140 (or the rock strength detection valve 350) may be formed by the upper chamber 114 and the second chamber 120 by the second connection channel 620 and the second-first connection channel 621. It is connected to the upper space of the, and is connected to the lower space of the second chamber 120 by the fourth connection flow path (640).
- the accumulator 160 will be described below.
- the accumulator 160 is connected to the inlet 410 by the first passage 510 and the first-first passage 511, and is filled with nitrogen gas inside the accumulator 160. Therefore, the accumulator 160 serves to prevent the high pressure hydraulic oil flowing into the cylinder 100 through the inlet 410 using the nitrogen gas.
- the piston 200 is installed to be able to move up and down inside the first chamber 110 formed in the cylinder 100, the lower step 210 is formed at the lower portion of the piston 200, the upper portion of the piston 200 The upper step 220 is formed.
- the high pressure hydraulic oil pushes the lower step 210 upward, thereby raising the piston 200, and the high pressure hydraulic oil is applied to the upper chamber 114.
- the high pressure hydraulic oil pushes the upper step 220 downward, thereby lowering the piston 200.
- the lower step 210 and the upper step 220 of the piston 200 have the same diameter as the diameter of the first chamber 110.
- the hydraulic area of the upper step 220 is formed larger than the hydraulic area of the lower step 210.
- the height of the upper step 220 is formed to be greater than the height of the lower step 210.
- the piston control valve 310 is installed in the second chamber 120 formed in the cylinder 100 so as to be lifted and lowered, and an upper body 311 whose upper surface is pressurized by the hydraulic oil and the lower surface thereof by the hydraulic oil. Pressed, the protrusion 312 formed on the side of the upper body 311, the lower surface is pressed by the working oil, the lower body 313 and lower body formed on the lower portion of the upper body 311, the upper body 311 Piston control valve groove 314 formed in the side of the lower body, the first piston control valve flow path 316 formed in the lower body 313, the second piston control valve formed in the upper body 311 It is comprised including the flow path 317.
- the upper body 311 is positioned in the upper space of the second chamber 120, and the protrusion 312 and the piston control valve groove 314 are formed at the side of the upper body 311.
- the upper surface of the upper body 311 is pressurized by the high-pressure hydraulic oil flowing through the second-second passage 522.
- the protrusion 312 is formed to protrude in an annular shape on the side of the upper body 311 so as to be located below the piston control valve groove 314, so that the diameter of the protrusion 312 is larger than the diameter of the upper body 311 It is largely formed.
- the piston control valve groove 314 is formed in an annular shape on the side of the upper body 311 so as to be located above the protrusion 312, and serves to connect the 5-1 channel 551 and the fourth connecting channel 640. Do it.
- the lower body 313 is formed to extend from the lower portion of the upper body 311 so that the piston control valve 310 is located in the lower space of the second chamber 120 when installed in the second chamber 120, the upper It has a diameter smaller than the diameter of the body 311.
- the height of the lower body 313 is formed larger than the height of the lower space of the second chamber 120, whereby, when the piston control valve 310 does not rise, it is located below the second chamber 120, The lower surface of the lower body 313 touches the lower portion of the lower space of the second chamber 120, whereas the protrusion 312 does not touch the lower portion of the upper space of the second chamber 120. Therefore, in the above case, the separation space is formed between the protrusion 312 and the lower portion of the upper space of the second chamber 120.
- the lower surface of the lower body 313 is pressurized by the high-pressure hydraulic oil flowing through the first connection flow path 610.
- the first piston control valve flow path 316 is formed in the horizontal direction in the lower body 313, and when the piston control valve 310 descends, the third connection flow path 630 and the fourth connection flow path ( 640).
- the second piston control valve flow path 317 is formed inside the upper body 311 and connects the first piston control valve flow path 316 and the fifth-first flow path 551. Therefore, as described above, the first piston control valve flow path 316 connects the third connection flow path 630 and the fourth connection flow path 640 so that the hydraulic fluid flows into the first piston control valve flow path 316. At this time, the hydraulic fluid flows to the fifth passage 551 to serve to discharge the low pressure line connected to the outlet 420.
- Piston control valve 310 having the above configuration serves to control the high-pressure hydraulic fluid introduced into the cylinder 100 through the inlet 410 to enter the upper chamber 114, through which, the piston ( The lifting and lowering motion of the 200) is controlled.
- the hydraulic area of the upper surface of the upper body 311 of the piston control valve 310 described above is larger than the hydraulic area of the lower surface of the protrusion 312, but the hydraulic area of the lower surface of the protrusion 312 and the lower surface of the lower body 313.
- the above-described piston control valve 310 is the hydraulic area of the lower surface of the protrusion 312 ⁇ the hydraulic area of the upper surface of the upper body 311 ⁇ the hydraulic area of the lower surface of the protrusion 312 and the hydraulic pressure of the lower body 313 Sum of the area 'condition is satisfied, and thus, unlike the conventional hydraulic striking device, when the piston control valve 310 is not operated, it may be kept at the bottom of the second chamber 120, and the piston control valve In operation, 310 may be easily lifted and positioned above the second chamber 120. In other words, the raising and lowering of the piston control valve 310 can be made smoothly without malfunction.
- the piston control valve 310 when the piston control valve 310 is located below the second chamber 120 (the state of FIG. 1), the high pressure hydraulic oil introduced into the cylinder 100 through the inlet 410 is removed.
- the lower surface of the protrusion 312 is introduced into the separation space formed between the lower portion of the upper space of the second chamber 120 and the lower surface of the protrusion 312 through the two passages 520 and the second-one passage 521.
- the upper surface of the upper body 311 is pressed by flowing into the upper portion of the upper space of the second chamber 120 through the second channel 520 and the second channel-2-522.
- the piston control valve 310 is not operated and does not rise, and is positioned below the second chamber 120, that is, the state of closing the second-first flow path 521 and the fourth connection flow path 640. Can be maintained.
- the high pressure hydraulic fluid introduced into the cylinder 100 through the inlet 410 flows into the lower space of the second chamber 120 through the first connection flow path 610 (the state of FIG. 2)
- the high pressure The operating oil of the pressurizing the lower surface of the lower body (313).
- the upper surface of the upper body 311 and the lower surface of the protrusion 312 are high-pressure hydraulic oil introduced by the 2-1 channel 521 and the 2-2 channel 522, as described above. It is pressurized by each.
- the hydraulic area of the upper surface of the upper body 311 is the protrusion 312. Is less than the sum of the hydraulic area of the lower surface of the lower body and the lower surface of the lower body 313, the force of the high-pressure hydraulic fluid to press the upper surface of the upper body 311 is lower and lower body 313 of the protrusion 312. ) Is smaller than the sum of the forces of the high pressure hydraulic oil pressurizing the lower surface. Accordingly, the piston control valve 310 is operated to rise and positioned above the second chamber 120, whereby the second-first flow passage 521 and the fourth connection flow passage 640 are opened and connected to each other.
- the difference in the hydraulic area of the upper body 311, the lower body 313 and the protrusion 312 plays a big role in smoothly raising and lowering the piston control valve 310 together with the return flow path to be described later.
- the difference in the hydraulic areas of the upper body 311, the lower body 313 and the protrusion 312 is organically combined with the return flow path, thereby having an effect of smoothing the operation of the piston control valve 310.
- the striking force control valve 330 is installed to be capable of lifting up and down inside the third chamber 130 formed in the cylinder 100, the striking force control valve groove 331 formed on the outside of the striking force control valve 330, and the striking force control It is configured to include a strike force control valve flow path 332 formed inside the valve 330.
- the striking force control valve 330 may be configured as a rotatable rotary valve.
- Strike force control valve groove 331 is formed in an annular shape on the side of the striking force control valve 330, when the striking force control valve 330 is located below the third chamber 130, the fifth connection flow path (650) And the first connection passage 610.
- the striking force control valve groove 331 is not connected to not only the fifth connecting passage 650 but also the sixth connecting passage 660 when the striking force regulating valve 330 is positioned above the third chamber 130. Therefore, when the striking force control valve 330 is raised and positioned above the third chamber 130, the inflow of the high pressure hydraulic oil into the first connection flow path 610 is blocked (see FIGS. 8 to 10). state).
- the striking force control valve groove 331 is connected to the striking force control valve flow path 332 when the hydraulic strike force control valve 330 rotates, thereby, the first-second flow path 512, the striking force control valve flow path ( 332, the hitting force control valve groove 331, and the fifth connection flow path 650 are connected (state of FIG. 12).
- the striking force control valve flow path 332 is formed in a 'c' shape inside the striking force control valve 330, and as described above, when the striking force control valve 330 is rotated, the first -2 Euro 512 and the fifth connecting passage 650 is connected.
- the striking force control valve flow path 332 immediately communicates the high pressure line and the low pressure line in accordance with the rotation of the striking force control valve 330, whereby the hydraulic striking device 10 can execute the anti-ballout mode.
- the spring 131 is installed between the upper surface of the striking force control valve 330 and the upper portion of the third chamber 130, and thus, if a separate pressing force is not applied to the lower surface of the striking force control valve 330, the striking force control valve 330 is maintained at the bottom of the third chamber (130).
- the striking force control valve 330 as described above moves up and down inside the third chamber 130, and serves to control the operation time, that is, the elevation time of the piston control valve 310.
- the high pressure hydraulic fluid flows into the lower chamber 112 and the piston 200 rises
- the high pressure hydraulic fluid is the fifth connection flow path 650, the impact force control valve groove 331, and the first connection flow path ( 610 flows in order to pressurize the lower surface of the lower body 313 of the piston control valve 310. Accordingly, the piston control valve 310 is operated to rise, and as a result, as described above, the high pressure hydraulic oil flows into the upper chamber 114.
- the lift of the striking force control valve 330 and the piston 200 as described above is the stroke stroke of the hydraulic striking device 10, that is, the long-stroke and short-stroke stroke of the hydraulic striking device 10 and Related to this, the long stroke and the short stroke is the result of the striking force control valve 330 delays the operation of the piston control valve 310.
- the striking force control valve 330 controls the operation timing of the piston control valve 310, thereby converting the striking stroke of the hydraulic striking device 10 into a long stroke and a single stroke, and thus, the hydraulic striking device ( 10) the impact force is controlled.
- the stroke stroke of the hydraulic striking device 10 will be described later.
- the striking force control valve 330 may be configured as a rotary valve that is rotatable, which prevents vacancy of the hydraulic striking device 10 together with the aforementioned striking force control valve flow path 332. It is related to the mode. Detailed description of the anti-hit mode will be described later.
- the rock strength detection valve 350 is installed to be capable of lifting up and down inside the fourth chamber 140 formed in the cylinder 100, and has an annular rock strength detection valve groove 351 formed on the side of the rock strength detection valve 350. It is configured to include).
- the upper diameter of the rock strength detection valve 350 is formed larger than the diameter of the lower portion of the rock strength detection valve 350, the hydraulic area of the upper surface of the rock strength detection valve 350 is the lower surface of the rock strength detection valve 350 Is larger than the hydraulic area.
- the high-pressure working oil pressurizes the upper surface of the rock strength detecting valve 350 through the 2-3 channel 523 and through the 2-1 connection flow path 621.
- the rock strength detection valve 350 may be maintained at a lower portion of the fourth chamber 140 without being raised, and thus, the hydraulic striking device 10 Can be prevented from switching to the long stroke (or long mode).
- the rock strength detection valve 350 as described above moves up and down inside the fourth chamber 140 to control the operation timing of the striking force control valve 330.
- the third passage 530 connected to the inlet 410 is closed so that it is not connected to the third connecting passage 630, the fourth connecting passage 640, and the first piston control valve passage 316. Therefore, as described above, the striking force control valve 330 is maintained without being raised in the lower portion of the third chamber (130).
- the rock strength detecting valve 350 is raised. Accordingly, the third passage 530 is connected to all of the third connecting passage 630, the fourth connecting passage 640, and the first piston control valve passage 316 by the rock strength detection valve groove 351. Therefore, the striking force control valve 330 can be easily raised.
- the operation time of the striking force control valve 330 is controlled according to whether the rock strength detection valve 350 is raised or lowered, which is accompanied by the lifting and lowering movement of the striking force control valve 330. It is related to the stroke stroke. As described above, a detailed description of the hitting stroke, that is, the long stroke and the short stroke will be described later.
- the return flow path includes an intermediate chamber 113 formed between the piston 200 and the cylinder 100, a fifth connection flow path 650 connecting the intermediate chamber 113 and the striking force control valve 330, and the hydraulic oil to the outside of the cylinder. And a fourth passage 540 connecting the outlet 420 to the outlet and the intermediate chamber 113.
- the fifth connection flow path 650, the intermediate chamber 113, and the fourth flow path is made by the connection.
- the return flow path as described above serves to return the piston control valve 310 to the pre-operation position by communicating the first connection flow path 610 that operated the piston control valve 310 with the low pressure line. Unlike the striking device, a smooth return of the piston control valve 310 can be achieved.
- high pressure hydraulic fluid is flowed into the first connection channel 610 to press the lower surface of the lower body 313 of the piston control valve 310, and then hydraulic oil is introduced into the first connection channel 610. It remains. If the hydraulic fluid continues to remain in the first connection flow path 610 as described above, the piston control valve 310 is lowered to prevent the return to the lower portion of the second chamber 120.
- the piston control valve 310 is the hydraulic area of the lower surface of the protrusion 312 ⁇ hydraulic area of the upper surface of the upper body 311 ⁇ hydraulic area of the lower surface of the protrusion 312 and the lower body ( Since the hydraulic area of the lower surface of the lower surface 313 'is satisfied, the pressure applied to the lower surface of the lower body 313 must be removed in order for the piston control valve 310 to be easily lowered. When the hydraulic oil is left in the above, since the pressure is not removed, the piston control valve 310 is difficult to descend.
- a return flow path is required, and as shown in FIG. 4, when the piston 200 is located at the bottom dead center, the return flow flow path is controlled by the hitting force control valve groove 332.
- the connection flow path 610 is connected.
- the piston control valve 310 is lowered by the high pressure hydraulic oil pressurizing the upper surface of the upper body 311 through the second-second flow passage 522, whereby the piston control valve 310 is lowered It is returned to be positioned below the second chamber 120.
- the return flow path is organically coupled with the difference in the hydraulic areas of the upper body 311, the lower body 313 and the protrusion 312 of the piston control valve 310, thereby operating the piston control valve 310 You can make it smooth.
- Hydraulic striking device 10 according to a preferred embodiment of the present invention is automatically hit by the hydraulic fluid flowing through the valves and the flow path of the hydraulic striking device 10 according to the rock strength of the ground hitting / breaking the rod 700 Can switch administration. Therefore, unlike the conventional hydraulic striking device, it is not necessary for the user to grasp the state of the rock on the ground and change the striking stroke.
- FIG. 2 As shown in FIG. 1, the piston 200 is positioned until the top dead center of the relatively low piston 200 (in this case, the lower step 210 of the piston 200 is positioned above the fifth connection flow path 650). To perform a single stroke (or referred to as 'single mode').
- the rock strength detection valve 350 is operated, and thus, shown in FIG. As shown, the piston 200 is raised until the top dead center of the relatively high piston 200 (in this case, the lower step 210 of the piston 200 is located above the sixth connection flow path 660). Will perform a long stroke (or 'hit mode').
- the single stroke of the hydraulic striking device 10 according to the preferred embodiment of the present invention is made in the order of FIGS. 1, 2, 3, and 4.
- the rod 700 of the hydraulic striking device 10 is placed in contact with the ground to crush the soft rock of the ground, as shown in Figure 1, the rod 700 is raised to the upper surface of the rod 700 It is located at a position higher than the upper portion of the chamber 111, and is ready to be hit by the piston 200.
- the 2-1 channel 521 and the 2-2 channel 522 by the piston control valve 310, the 1-2 channel 512 by the striking force control valve 330, the second The -3 flow path 523 and the 3rd flow path 530 are closed by the rock strength detection valve 350, respectively, and the high pressure hydraulic fluid cannot flow to the other chambers through the flow paths.
- the piston control valve 310 As described above, as the lower surface of the lower body 313 is pressurized by the high pressure hydraulic fluid, the piston control valve 310 is raised, the high pressure hydraulic oil supplied from the high pressure line is the inlet 410, the second flow path 520 And into the upper space of the second chamber 120 through the second-first flow path 521.
- the high pressure hydraulic fluid second connection flow path 620 introduced into the upper space of the second chamber 120 and flows into the upper chamber 114.
- the high-pressure hydraulic fluid also flows into the 2-1 flow path 521 connected to the high pressure line, but the hydraulic area of the lower portion of the rock strength detection valve 350 is upper than the rock strength detection valve 350. Since it is smaller than the hydraulic area of the rock strength detection valve 350 does not rise.
- the piston 200 when the piston 200 is located at the bottom dead center to hit the rod 700, the piston 200 is returned to the position of FIG. 1 again, by repeating the above-described procedure, the single stroke of the piston 200 The stroke can be repeated. That is, the hydraulic striking device 10 according to the preferred embodiment of the present invention repeats the state of FIGS. 1 to 4 to execute the short stroke mode of the hydraulic striking device 10.
- the long stroke of the hydraulic striking device 10 according to the preferred embodiment of the present invention is in the order of FIGS. 1, 2, 3, 5, 6, 7, 8, 9, 10, and 11. Is done.
- the long stroke of the hydraulic striking device 10 starts at the short stroke (state of Figs. 1 to 3) and is performed after striking the steel rock (state of Figs. 5 to 11). Therefore, the up and down strokes of the piston 200 illustrated in FIGS. 1 to 3 are the same as the above-described single stroke stroke, and a description thereof will be omitted.
- the pressure of the working oil inside the second connection passage 620 and the second connection passage 621 connected to the upper chamber 114 is sufficient to raise the rock strength detection valve 350, and thus As shown in FIG. 6, the hydraulic fluid flowing into the second-first connection passage 621 presses the lower surface of the rock strength detection valve 350, thereby raising the rock strength detection valve 350 to increase the fourth chamber ( 140 is located on the top.
- the return flow path described above is connected to the striking force control valve groove 331 and the first connection flow path 610, and thus, the first connection flow path 610.
- the hydraulic oil remaining in the) is sucked into the low pressure line and recovered. Accordingly, the piston control valve 310 is lowered and returned to the lower portion of the second chamber 120. In FIG. 6, the piston control valve 310 is lowered, that is, is being returned.
- the rock strength detection valve 350 As shown in FIG. 6, as the rock strength detection valve 350 is raised, the third flow path 530 and the fourth connection flow path 640 are connected by the rock strength detection valve groove 351. Thus, the high pressure hydraulic fluid flows to the fourth connection flow path 640 through the inlet 410, the third flow path 530, and the rock strength detection valve groove 351.
- the rock strength detection valve 350 is lowered as shown in FIG. 7 to be positioned below the fourth chamber 140.
- the descending piston control valve 310 has a predetermined position, that is, the first piston control valve flow path 316 has a third connection flow path 630 and a fourth connection flow path 640.
- the fourth connection flow path 640 When placed in the position connecting the hydraulic fluid flows to the fourth connection flow path 640 flows through the third connection flow path 630 to press the lower surface of the force control valve 330.
- the descending piston control valve 310 is finished falling, thereby returning to the lower portion of the second chamber 120.
- the first piston control valve flow passage 316 no longer connects the third and fourth connection flow passages 630 and 640, and the first piston control valve flow passage 316 is no longer connected to the first piston control valve flow passage 316.
- the remaining hydraulic oil is recovered to the low pressure line through the second piston control valve flow path 317, the 5-1st flow path 551, the fifth flow path 550, and the outlet 420.
- the striking force control valve 330 As described above, in the state in which the striking force control valve 330 is raised, the high pressure hydraulic fluid is introduced into the lower chamber 112 through the inlet 410 and the first flow passage 510 connected to the high pressure line, thereby, FIG. As shown in FIG. 9, the piston 200 is raised.
- the striking force control valve 330 since the striking force control valve 330 is raised, the high-pressure hydraulic fluid of the lower chamber 112 in which the fifth connection flow path 650 and the piston 200 are raised is blocked by the striking force control valve 330 to adjust the striking force. It may not flow into the valve groove 331 and the first connection flow path 610. That is, due to the rising of the striking force control valve 330, the connection from the fifth connection passage to the first connection passage 610 is closed.
- the piston 200 is raised until the lower step 210 is positioned to the upper portion of the sixth connection channel 660.
- the top dead center of the piston 200 reaches a position higher than the above-described single stroke, that is, the top dead center of the piston 200 of FIG. 2, whereby the piston 200 rising in the long stroke is achieved. do.
- the pressure of the hydraulic oil pressurizing the lower surface of the striking force control valve 330 that is, the hydraulic oil inside the third connection flow path 630 is lowered, and, as a result, in FIG. As shown, the striking force control valve 330 is lowered by the elastic force of the spring 131, it is returned to the lower portion of the fourth chamber 140.
- connection flow path 650 and the first connection flow path 610 are connected to each other by the impact force control valve groove 331 of the returned stroke force control valve 330, thereby flowing into the lower chamber 112.
- the high pressure hydraulic oil is pressurized on the lower surface of the lower body 313 of the piston control valve 310.
- the piston control valve 310 As the lower surface of the lower body 313 is pressurized, the piston control valve 310 is raised, whereby high-pressure hydraulic fluid flows into the inlet 410, the second flow path 520, and the second flow path 521.
- the second lower chamber 112 flows in the order of the second connection flow path 620 and flows into the upper chamber 114.
- the piston 200 descends to the bottom dead center and the lower surface of the piston 200 hits the upper surface of the rod 700, the piston 200 is subjected to the repulsive force again, and by repeating the above-described procedure, the piston The long stroke of 200 may be repeated.
- the hydraulic striking device 10 performs the states of FIGS. 1 to 3 and 5 to 11 in order, and then repeats the states of FIGS. 5 to 11 in order.
- the long hit mode of the hydraulic striking device 10 is executed.
- the stroke stroke of the hydraulic striking device 10 can be automatically switched to the stroke stroke according to the state of the rock constituting the base of the ground striking the rod 700.
- the piston 200 is raised only to the extent that the lower step 210 of the piston 200 is located above the fifth connection flow path 650, thereby, the hydraulic striking device 10 Can perform a single stroke.
- the long stroke of the hydraulic striking device 10 may have a top dead center lower than the top dead center of the piston 200 of FIG.
- the impact force control valve 330 is raised only for a short time by the relatively small amount of hydraulic fluid.
- the striking force control valve 300 descends, the hydraulic fluid introduced into the lower chamber 112 passes through the fifth connecting passage 650, the striking force control valve groove 331, and the first connecting passage 610.
- the lower body 313 of the control valve 310 is pressurized, which causes the inlet 410, the second flow path 520, the 2-1 flow path 521, the second lower chamber 112, and the second.
- Flow in the connection flow path 620 flows into the upper chamber 114. Therefore, the piston 200 descends by the high pressure hydraulic oil introduced into the upper chamber 114 to strike the rod 700.
- the top dead center of the piston 200 is higher than the height of the top dead center of the piston 200 in the state of FIG. 2 according to the time when the striking force control valve 300 rises, but the piston in the state of FIG. 10. It is located lower than the height of the top dead center of (200).
- the top dead center of the piston 200 of the above-mentioned single stroke according to the magnitude of the repulsive force can be located within the range of (the state of FIG. 2) and the top dead center (state of FIG. 10) of the piston 200 of the above-mentioned long stroke.
- the position of the top dead center of the piston 200 can be located within the range of the state of FIG. 2 and the state of FIG. 10, whereby the stroke stroke of the hydraulic striking device 10 has a continuous behavior according to the rock state, That is, stepless behavior may be achieved rather than stepwise behavior.
- the hydraulic striking device 10 may perform an anti-batting mode for preventing the hitting of the piston as well as the above-described stroke force stroke.
- the upper surface of the rod 700 is maintained in an elevated state so as to be positioned higher than the lower portion of the load chamber 111. Therefore, when the piston 200 is lowered and positioned at the bottom dead center, the piston 200 hits the upper surface of the rod 700, and the rod 700 is transmitted by the impact force transmitted from the piston 200 to the rod 700. As the) descends, the rock or the like of the ground can be broken.
- the rod 700 when the rod 700 is spaced apart from the ground and does not touch the ground or touches a soft ground such as mud, as shown in FIG. 12, the rod 700 descends and the top surface of the rod 700 is lowered. It is located lower than the lower portion of the load chamber 111. Therefore, even if the piston 200 is lowered, it is impossible to hit the upper surface of the rod 700.
- the piston 200 is not hitting the rod 700 is called hitting, when the hit is executed, as described above, the piston 200 hits the lower portion of the load chamber 111 piston 200 And breakage of the load chamber 111 occurs.
- the hydraulic striking device 10 rotates the striking force control valve 330 composed of a rotary valve to prevent damage to the piston 200 and the load chamber 111 due to such a strike. By doing so, it is possible to perform the anti-ballout mode to prevent the ball of the piston 200.
- the anti-ballout mode of the hydraulic striking device 10 is executed by rotating the striking force control valve 330 before the rod 700 of the hydraulic striking device 10 touches the ground.
- the rod 700 of the hydraulic striking device 10 touches the ground, that is, when the hydraulic striking device 10 is positioned on the ground, the rod 700 of the hydraulic striking device 10 is subjected to gravity. 12, the upper surface of the rod 700 is positioned at a lower position than the lower portion of the load chamber 111, as shown in FIG. 12. In addition, the lower surface of the piston 200 is brought into contact with the lower portion of the load chamber 111 by gravity.
- the striking force control valve flow path 332 is the first-second flow path 512.
- the fifth connection passage 650 are connected.
- the striking force control valve flow path 332 is connected to the return flow path by the striking force control valve groove 331.
- the high pressure hydraulic oil when the high pressure hydraulic oil is supplied to the inlet 410 by the pump of the high pressure line, the high pressure hydraulic oil is provided in the first flow passage 510, the 1-2 flow passage 512, the blow force control valve flow path 332, and the blow force control. After flowing in the valve groove 331 order, it flows to a return flow path.
- the hydraulic oil is supplied to the fifth connection flow path 650, the intermediate chamber 113, the fourth flow path 540, and the outlet 420 by the suction force of the sump of the low pressure line. Flows to the low pressure line and is recovered.
- the hydraulic oil supplied to the high pressure line is directly recovered to the low pressure line via the striking force control valve flow path 332 and the intermediate chamber 113, and thus, Lifting operation of the piston 200 is not made. Therefore, the pitting of the hydraulic striking device 10 does not occur, whereby it is possible to prevent the piston 200 from being damaged.
- the rod 700 is raised to raise the piston 200 to the position of FIG. 1 (the lower chamber 112 is connected to the first passage 510).
- the single stroke and the long stroke of the hydraulic striking device 10 can be executed.
- the rod 700 in the state in which the striking force control valve 330 is rotated so that the striking force control valve groove 331 executes the anti-ballout mode in which the first-second flow path 512 and the fifth connection flow path 650 are connected.
- the high-pressure hydraulic oil can be introduced into the lower chamber 112 through the first flow path 510, the above-described stroke stroke and the stroke stroke can be achieved.
- the hydraulic striking device 10 unlike the conventional hydraulic striking device when performing a single stroke or a long stroke, can be used in parallel with the anti-ballet mode, and thus, soft ground In the case of crushing or when the piston 200 is operated while the rod 700 is spaced apart from the ground, striking is prevented and damage to the piston 200 and the rod chamber 111 can be prevented.
- piston control valve groove 316 first piston control valve flow path
- rock strength detection valve 351 rock strength detection valve groove
- first connection flow path 620 second connection flow path
- connection channel 640 fourth connection channel 650: fifth connection channel
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Percussive Tools And Related Accessories (AREA)
Abstract
The present invention relates to a hydraulic impact device and, more particularly, to a hydraulic impact device capable of automatically switching an impact stroke in accordance with a state of bed rock in the ground and, when the impact stroke is performed, preventing a no-load impact to prevent breakage of a piston and a load chamber.
Description
본 발명은 유압 타격 장치에 관한 것으로, 특히, 굴삭기 등의 건설장비에 장착되어 피스톤이 하강하여 로드를 타격함으로써, 상기 로드가 지반의 암반 등을 파쇄하는 유압 타격 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic striking device, and more particularly, to a hydraulic striking device mounted on construction equipment such as an excavator and hitting a rod by descending a piston, thereby breaking the rock on the ground.
유압 타격 장치는 굴삭기, 로더 등의 건설장비에 장착되어 암반이나 콘크리트 등을 파쇄하는 장비로, 실린더 작동시 피스톤이 하강하여 파쇄공구인 로드(rod)를 타격하고, 상기 로드가 지반의 콘크리트 및 암반 등, 파쇄목적물에 충격력을 가해 파쇄를 달성한다.Hydraulic striking device is a device that is installed in construction equipment such as excavator, loader, etc. to crush rock or concrete, and when the cylinder is operated, the piston descends to strike the rod, which is the crushing tool, and the rod is the concrete and rock of the ground. The impact is applied to the shredding object, for example, to achieve shredding.
유압 타격 장치는 피스톤의 상사점의 위치에 따라 로드에 가해지는 타격력을 조절할 수 있으며, 위와 같은 타격력 조절은 크게 두 개의 타격 행정으로 이루어질 수 있다. 다시 말해, 유압 타격 장치의 타격 행정은 상대적으로 높은 상사점을 갖음으로써, 로드를 강하게 타격하는 장타(long-stroke) 행정과, 상대적으로 낮은 상사점을 갖음으로써 로드를 약하게 타격하는 단타(short-stroke) 행정으로 나뉠 수 있다. 이와 같은 장타 행정은 강암(强巖)이 주를 이루는 지반을 파쇄할 때 효과적이며, 단타 행정은 연암(軟巖)이 주를 이루는 지반을 파쇄할 때 효과적이다.The hydraulic striking device can adjust the striking force applied to the rod according to the position of the top dead center of the piston, and the striking force adjustment as described above can be made in two striking strokes. In other words, the stroke stroke of the hydraulic striking device has a relatively high top dead center, such as a long-stroke stroke that strikes the rod strongly, and a short-stroke that strikes the rod weakly by having a relatively low top dead center. ) Can be divided into administrations. Such a long stroke is effective when crushing the soil which is composed mainly of Gangam, and the short stroke is effective when crushing the soil which is mainly composed by soft rock.
따라서, 지반의 암반의 상태에 따라, 전술한 타격 행정, 즉, 장타 행정 또는 단타 행정으로 변환할 수 있는 유압 타격 장치가 개발되었으며, 이러한 유압 타격 장치로는 한국등록특허 제10-1072069호에 기재된 것이 공개되어 있다.Therefore, according to the condition of the rock of the ground, a hydraulic striking device that can be converted to the above-described striking stroke, that is, a long stroke or a single stroke stroke, has been developed, and as such a hydraulic striking device described in Korean Patent No. 10-1072069 Is open to the public.
한국등록특허 제10-1072069호의 브레이커는 브레이커의 실린더 외측에 설치되는 브레이커의 타격력 조절 및 공타방지용 방향 전환부의 강타 표시부, 약타 표시부 및 공타방지 표시부 중 어느 하나를 선택하여 회전시켜 주는 동작에 의해 이와 연설된 타격 조절밸브를 통해 브레이커의 타격로드를 피스톤에 의해 공타불가 및 강타, 약타 동작을 선택적으로 수행할 수 있다.The breaker of Korea Patent Registration No. 10-1072069 selects and rotates one of the smashing display portion, the weakness display portion, and the anti-striking display portion of the breaker installed on the outside of the cylinder of the breaker and controlling the hitting force. Through the blow control valve, the blow rod of the breaker can not be struck by the piston, and can selectively perform the struck and weak action.
그러나, 한국등록특허 제10-1072069호의 브레이커는 방향 전환부를 회전시켜줘야만, 타격력 조절밸브가 공타 방지관로 또는 강타 전환관로를 차단시키게 되어 강타 또는 약타 모드를 수행할 수가 있다. 따라서, 브레이커로 지반의 암반을 파쇄하는 작업을 할 때에 사용자가 직접 암반의 상태를 파악하여 방향 전환부를 회전시켜줘야 강타 또는 약타 행정이 수행될 수 있으므로, 작업의 효율이 떨어지고, 사용이 불편하다는 문제점이 있다.However, the breaker of the Korean Patent No. 10-1072069 only has to rotate the direction changer, the force control valve is to block the anti-violation pipe or slugging conversion pipe can be performed in the struck or weakened mode. Therefore, when crushing the rock of the ground with a breaker, the user directly grasps the state of the rock and rotates the direction change unit, so that the struck or weak stroke may be performed, thus reducing the efficiency of the work and the inconvenience of use. have.
또한, 브레이커의 공타를 방지하는 공타불가 모드의 경우에도, 방향 전환부를 회전시켜 줘야만 수행할 수 있으므로, 상기 공타불가 모드를 상기 강타 또는 약타 모드와 병행하여 사용할 수가 없다. 따라서, 브레이커가 상기 강타 또는 약타 모드를 실행하여 지반이 암반을 파쇄할 때, 타격로드가 지반에서 이격된 채로 피스톤이 작동하거나, 지반이 연약지반일 경우, 브레이커의 공타가 발생할 수 있으며, 이로 인해, 피스톤 및 실런더가 파손되는 문제점이 있다.In addition, even in the case of the non-battery mode that prevents the breaker of the breaker, it can be performed only by rotating the direction changer, it is not possible to use the non-battery mode in parallel with the struck or weakened mode. Therefore, when a breaker executes the smashing or weakening mode to ground the rock, the piston is operated with the striking rod spaced from the ground, or if the ground is a soft ground, the breaking of the breaker may occur. There is a problem that the piston and the cylinder are damaged.
본 발명은 전술한 문제를 해결하기 위해 안출된 것으로서, 지반의 암반의 상태에 따라 자동적으로 타격 행정을 전환할 수 있으며, 상기 타격 행정을 수행시 공타를 방지하여 피스톤 및 로드 챔버의 파손을 방지할 수 있는 유압 타격 장치를 제공하는 것을 목적으로 한다.The present invention has been made to solve the above-described problem, it is possible to automatically switch the stroke stroke according to the state of the rock of the ground, to prevent breakage of the piston and the load chamber by preventing the blow stroke when performing the stroke stroke It is an object of the present invention to provide a hydraulic striking device that can be used.
본 발명의 일 특징에 따른 유압 타격 장치는 실린더; 상기 실린더 내에서 승하강 가능하게 설치되는 피스톤; 상기 피스톤과 상기 실린더 사이에서 상부에 구비되는 상부 챔버와 하부에 구비되는 형성된 하부 챔버; 상기 피스톤의 승하강 작동을 제어하는 피스톤 제어밸브; 상기 피스톤 제어밸브의 작동시점을 제어하는 타격력 조절밸브; 상기 타격력 제어 밸브의 작동시점을 제어하는 암반 강도 감지 밸브; 및 상기 피스톤 제어밸브를 작동시킨 연결 유로를 저압 라인과 연통시켜 상기 피스톤 제어밸브를 작동 전 위치로 복귀시키는 복귀 유로;를 포함하는 것을 특징으로 한다.Hydraulic striking device according to one aspect of the invention the cylinder; A piston installed in the cylinder to move up and down; An upper chamber provided above and a lower chamber provided below between the piston and the cylinder; A piston control valve for controlling the lifting operation of the piston; A striking force regulating valve controlling an operation time of the piston control valve; A rock strength sensing valve controlling an operation time of the striking force control valve; And a return flow path for returning the piston control valve to a pre-operation position by communicating the connection flow path for operating the piston control valve with the low pressure line.
또한, 상기 피스톤 제어밸브와 상기 타격력 조절밸브를 연결하는 제1연결 유로;를 더 포함하되, 상기 복귀 유로는, 상기 피스톤과 상기 실린더 사이에 형성된 중간 챔버; 상기 중간 챔버와 상기 타격력 조절밸브를 연결하는 제5연결 유로; 및 작동유를 상기 실린더 외부로 유출시키는 유출구와 상기 중간 챔버를 연결하는 제4유로;를 포함하고, 상기 피스톤의 하사점에서 상기 제1연결유로의 작동유는 상기 타격력 조절밸브와 상기 복귀 유로를 통해 상기 저압라인과 연통되는 것을 특징으로 한다.The apparatus may further include a first connection flow path connecting the piston control valve and the striking force control valve, wherein the return flow path includes: an intermediate chamber formed between the piston and the cylinder; A fifth connection passage connecting the intermediate chamber and the striking force control valve; And a fourth flow passage connecting the outlet port through which the working oil flows out of the cylinder and the intermediate chamber, wherein the working oil of the first connection flow passage is at the bottom dead center of the piston through the striking force control valve and the return flow passage. It is characterized in that the communication with the low pressure line.
또한, 상기 피스톤 제어밸브는, 그 상면이 작동유에 의해 가압되는 상부 몸체; 그 하면이 작동유에 의해 가압되며, 상기 상부 몸체의 측면에 형성되는 돌출부; 및 그 하면이 작동유에 의해 가압되며, 상기 상부 몸체의 하부에 형성되는 하부 몸체;를 포함하고, 상기 상부 몸체의 상면의 유압면적은 상기 돌출부의 하면의 유압면적보다 크되, 상기 돌출부의 하면과 상기 하부 몸체의 하면의 유압면적의 합보다는 작은 것을 특징으로 한다.In addition, the piston control valve, the upper surface of the upper body is pressed by the operating oil; The lower surface is pressed by the working oil, the protrusion formed on the side of the upper body; And a lower body pressurized by the operating oil and a lower body formed under the upper body, wherein the hydraulic area of the upper surface of the upper body is greater than the hydraulic area of the lower surface of the protrusion, It is characterized in that less than the sum of the hydraulic area of the lower surface of the lower body.
또한, 상기 타격력 조절밸브는 회전식 밸브로 구성되며, 상기 타격력 조절밸브의 내부에 형성된 타격력 조절밸브 유로;를 포함하고, 상기 타격력 조절밸브 유로는 상기 타격력 조절밸브의 회전에 따라 고압 라인과 저압 라인을 연통시키는 것을 특징으로 한다.The striking force control valve may include a rotary valve, and a striking force control valve flow path formed inside the striking force control valve. The striking force control valve flow path may include a high pressure line and a low pressure line according to the rotation of the striking force control valve. It is characterized by communicating.
이상에서 설명한 바와 같은 본 발명의 유압 타격 장치에 따르면, 다음과 같은 효과가 있다.According to the hydraulic striking device of the present invention as described above, there are the following effects.
지반의 암반의 상태에 따라 자동적으로 타격 행정의 전환을 달성할 수 있다.According to the condition of the rock of the ground can automatically achieve the conversion of the stroke stroke.
타격 행정을 수행시 공타를 방지할 수 있으며, 이로 인해, 유압 타격 장치의 로드가 지반과 이격된 채 피스톤이 작동하거나, 연약지반을 파쇄할 경우에도 유압 타격 장치의 공타가 방지될 수 있어 피스톤 및 로드 챔버의 파손을 방지할 수 있다.The stroke can be prevented when the stroke is performed, and thus, the piston can be prevented even when the piston is operated while the rod of the hydraulic striking device is separated from the ground, or when the soft ground is crushed. Breakage of the load chamber can be prevented.
도 1은 본 발명의 바람직한 실시 예에 따른 유압 타격 장치를 도시한 종단면도.1 is a longitudinal sectional view showing a hydraulic striking device according to a preferred embodiment of the present invention.
도 2는 도 1의 유압 타격 장치의 피스톤 제어 밸브와 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도.2 is a longitudinal sectional view showing that the piston control valve and the piston of the hydraulic striking device of FIG. 1 are in different operating positions.
도 3은 도 2의 유압 타격 장치의 피스톤이 다른 작동 위치에 있는 것을 도시한 종단면도.3 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 2 is in another operating position;
도 4는 도 3의 유압 타격 장치의 피스톤 제어 밸브 및 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도.4 is a longitudinal sectional view showing that the piston control valve and the piston of the hydraulic striking device of FIG. 3 are in different operating positions.
도 5는 도 3의 유압 타격 장치의 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도.5 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 3 is in another operating position;
도 6는 도 5의 유압 타격 장치의 암반강도 감지밸브가 다른 작동위치에 있는 것을 도시한 종단면도.FIG. 6 is a longitudinal sectional view showing rock strength detection valves of the hydraulic striking device of FIG. 5 in different operating positions. FIG.
도 7은 도 6의 유압 타격 장치의 암반강도 감지밸브 및 피스톤 제어밸브가 다른 작동위치에 있는 것을 도시한 종단면도.7 is a longitudinal sectional view showing the rock strength detection valve and the piston control valve of the hydraulic striking device of FIG. 6 in different operating positions.
도 8은 도 7의 유압 타격 장치의 피스톤 제어밸브 및 타격력 조절밸브가 다른 작동위치에 있는 것을 도시한 종단면도.FIG. 8 is a longitudinal sectional view showing that the piston control valve and the striking force regulating valve of the hydraulic striking device of FIG. 7 are in different operating positions. FIG.
도 9는 도 8의 유압 타격 장치의 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도.9 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 8 is in another operating position;
도 10은 도 9의 유압 타격 장치의 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도.10 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 9 is in another operating position;
도 11은 도 10의 유압 타격 장치의 피스톤 제어 밸브 및 타격력 조절밸브가 다른 작동위치에 있는 것을 도시한 종단면도.FIG. 11 is a longitudinal sectional view showing that the piston control valve and the striking force regulating valve of the hydraulic striking device of FIG. 10 are in different operating positions.
도 12는 본 발명의 바람직한 실시 예에 따른 유압 타격 장치가 공타방지 모드를 실행할 때의 작동위치를 도시한 종단면도.12 is a longitudinal sectional view showing an operating position when the hydraulic striking device according to the preferred embodiment of the present invention executes the anti-ballout mode.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 바람직한 실시 예에 따른 유압 타격 장치를 도시한 종단면도이고, 도 2는 도 1의 유압 타격 장치의 피스톤 제어 밸브와 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도이고, 도 3은 도 2의 유압 타격 장치의 피스톤이 다른 작동 위치에 있는 것을 도시한 종단면도이고, 도 4는 도 3의 유압 타격 장치의 피스톤 제어 밸브 및 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도이고, 도 5는 도 3의 유압 타격 장치의 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도이고, 도 6는 도 5의 유압 타격 장치의 암반강도 감지밸브가 다른 작동위치에 있는 것을 도시한 종단면도이고, 도 7은 도 6의 유압 타격 장치의 암반강도 감지밸브 및 피스톤 제어밸브가 다른 작동위치에 있는 것을 도시한 종단면도이고, 도 8은 도 7의 유압 타격 장치의 피스톤 제어밸브 및 타격력 조절밸브가 다른 작동위치에 있는 것을 도시한 종단면도이고, 도 9는 도 8의 유압 타격 장치의 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도이고, 도 10은 도 9의 유압 타격 장치의 피스톤이 다른 작동위치에 있는 것을 도시한 종단면도이고, 도 11은 도 10의 유압 타격 장치의 피스톤 제어 밸브 및 타격력 조절밸브가 다른 작동위치에 있는 것을 도시한 종단면도이고, 도 12는 본 발명의 바람직한 실시 예에 따른 유압 타격 장치가 공타방지 모드를 실행할 때의 작동위치를 도시한 종단면도이다.1 is a longitudinal cross-sectional view showing a hydraulic striking device according to a preferred embodiment of the present invention, Figure 2 is a longitudinal cross-sectional view showing that the piston control valve and the piston of the hydraulic striking device of Figure 1 in different operating positions, 3 is a longitudinal cross-sectional view showing the piston of the hydraulic striking device of FIG. 2 in different operating positions, and FIG. 4 is a longitudinal cross-sectional view showing the piston control valve and the piston of the hydraulic striking device of FIG. 3 in different operating positions. 5 is a longitudinal sectional view showing that the piston of the hydraulic striking device of FIG. 3 is in a different operating position, and FIG. 6 is a longitudinal sectional view showing a rock strength detection valve of the hydraulic striking device of FIG. 5 in another operating position. 7 is a longitudinal sectional view showing that the rock strength detection valve and the piston control valve of the hydraulic striking device of FIG. 6 are in different operating positions, and FIG. Figure 10 is a longitudinal sectional view showing the piston control valve and the striking force control valve in different operating positions, Figure 9 is a longitudinal sectional view showing that the piston of the hydraulic striking device of Figure 8 is in a different operating position, Figure 10 is a FIG. 11 is a longitudinal sectional view showing that the piston of the hydraulic striking device is in different operating positions, FIG. 11 is a longitudinal sectional view showing that the piston control valve and the striking force regulating valve of the hydraulic striking device of FIG. 10 are in different operating positions, and FIG. Is a longitudinal sectional view showing an operating position when the hydraulic striking device according to the preferred embodiment of the present invention executes the anti-ballout mode.
본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)는 도 1 내지 도 4에 도시된 바와 같이, 실린더(100)와, 실린더(100) 내에서 승하강 가능하게 설치되는 피스톤(200)과, 피스톤(200)과 실린더(100) 사이에서 상부에 구비되는 상부 챔버(114)와, 피스톤(200)과 실린더 사이에서 하부에 구비되는 하부 챔버(112)와, 피스톤(200)과 실린더 사이에서 중간에 구비되는 하부 챔버(112)와, 피스톤(200)의 승하강 작동을 제어하는 피스톤 제어밸브(310)와, 피스톤 제어밸브(310)의 작동 시점을 제어하는 타격력 조절밸브(330)와, 타격력 조절밸브(330)의 작동 시점을 제어하는 암반강도 감지밸브(350)와, 피스톤 제어밸브(310)를 작동시킨 연결 유로를 저압 라인과 연통시켜 피스톤 제어밸브(310)를 작동 전 위치로 복귀시키는 복귀 유로를 포함하여 구성된다.Hydraulic striking device 10 according to a preferred embodiment of the present invention, as shown in Figures 1 to 4, the cylinder 100, the piston 200 is installed to be lowered in the cylinder 100, An upper chamber 114 provided at the upper part between the piston 200 and the cylinder 100, a lower chamber 112 provided at the lower part between the piston 200 and the cylinder, and an intermediate part between the piston 200 and the cylinder. The lower chamber 112, which is provided in the piston control valve 310 for controlling the lifting and lowering operation of the piston 200, the striking force control valve 330 for controlling the operation timing of the piston control valve 310, and the striking force A rock strength detection valve 350 for controlling the operation timing of the control valve 330 and a connection flow path for operating the piston control valve 310 communicate with the low pressure line to return the piston control valve 310 to the pre-operation position. It comprises a return flow path.
이하, 실린더(100)에 대해 설명한다.Hereinafter, the cylinder 100 is demonstrated.
실린더(100)에는 작동유가 유입되는 유입구(410)와, 작동유가 유출되는 유출구(420)가 형성되어 있다.The cylinder 100 has an inlet 410 through which hydraulic fluid flows in and an outlet 420 through which hydraulic fluid flows out.
유입구(410)는 펌프(미도시)에 의해 작동유가 공급되는 고압 라인과 연결되어 있으며, 유출구(420)는 섬프(미도시)에 의해 작동유가 흡입되는 저압 라인과 연결되어 있다. 또한, 고압 라인과 저압 라인은 유압 타격 장치(100)의 외부에서 서로 연결되어 있으며, 이로 인해, 고압 라인과 저압 라인 및 실린더 내부는 유압 회로를 이루게 된다.The inlet 410 is connected to a high pressure line through which hydraulic oil is supplied by a pump (not shown), and the outlet 420 is connected to a low pressure line through which hydraulic oil is sucked by a sump (not shown). In addition, the high pressure line and the low pressure line are connected to each other from the outside of the hydraulic striking device 100, thereby, the high pressure line and the low pressure line and the inside of the cylinder forms a hydraulic circuit.
따라서, 펌프가 가동되면 작동유가 고압 라인 및 유입구(410)를 통해 실린더(100) 내부로 유입되며, 이 경우, 작동유는 고압 상태로 공급되게 된다. 또한, 고압 상태의 작동유는 후술할 유로들 및/또는 연결 유로들을 거쳐 유출구(420) 및 저압 라인을 통해 실린더(100)의 외부로 유출되며, 이 경우, 작동유는 저압 상태로 흡입되게 된다.Therefore, when the pump is operated, the working oil is introduced into the cylinder 100 through the high pressure line and the inlet 410, in which case the working oil is supplied at a high pressure. In addition, the hydraulic oil in a high pressure state is discharged to the outside of the cylinder 100 through the outlet 420 and the low pressure line through the flow paths and / or connecting flow paths to be described later, in this case, the hydraulic oil is sucked in a low pressure state.
실린더(100)의 내부에는 피스톤(200)이 설치되는 제1챔버(110)와, 피스톤 제어밸브(310)가 설치되는 제2챔버(120)와, 타격력 조절밸브(330)가 설치되는 제3챔버(130)와, 암반강도 감지밸브(350)가 설치되는 제4챔버(140)와, 질소 가스가 충전되는 어큐뮬레이터(160)가 형성되어 있다.Inside the cylinder 100, a third chamber in which the piston 200 is installed, a second chamber 120 in which the piston control valve 310 is installed, and a third force adjusting valve 330 are installed. The chamber 130, the fourth chamber 140 in which the rock strength detection valve 350 is installed, and the accumulator 160 in which nitrogen gas is filled are formed.
이하, 제1챔버(110)에 대해 설명한다.Hereinafter, the first chamber 110 will be described.
제1챔버(110)는 내부에 피스톤(200)이 설치되어 승하강하는 환형의 공간으로서, 로드(700)가 설치되는 로드 챔버(111)와, 로드 챔버(111) 상부에 위치하는 하부 챔버(112)와, 하부 챔버(112) 상부에 위치하는 중간 챔버(113)와, 중간 챔버(113) 상부에 위치하는 상부 챔버(114)와, 상부 챔버(114) 상부에 위치하는 완충 챔버(115)를 포함하여 구성된다.The first chamber 110 is an annular space in which the piston 200 is installed to move up and down, and includes a load chamber 111 in which a rod 700 is installed, and a lower chamber located above the load chamber 111. 112, the intermediate chamber 113 positioned above the lower chamber 112, the upper chamber 114 positioned above the intermediate chamber 113, and the buffer chamber 115 positioned above the upper chamber 114. It is configured to include.
로드 챔버(111)는 제1챔버(110)의 최하부를 이루는 공간을 지칭하며, 로드 챔버(111)의 하부에는 로드(700)가 로드 챔버(111) 내에 승하강 가능하게 설치된다.The load chamber 111 refers to a space forming a lowermost part of the first chamber 110, and a load 700 is installed in the load chamber 111 so as to be lowered and lowered under the load chamber 111.
하부 챔버(112)는 로드 챔버(111) 상부에 위치하며, 피스톤(200)의 하부 단턱(210) 하부와 실린더(100)의 내부, 즉, 제1챔버(110)에 의해 형성되는 공간을 지칭한다.The lower chamber 112 is positioned above the load chamber 111 and refers to a space formed by the lower portion of the lower step 210 of the piston 200 and the interior of the cylinder 100, that is, the first chamber 110. do.
하부 챔버(112)는 고압의 작동유가 유입되어 피스톤(200)을 상부로 상승시키는 역할을 하며, 제1유로(510)에 의해 유입구(410)와 연결되고, 제5연결 유로(650)와 제6연결 유로(660) 각각에 의해 제3챔버(130)와 연결된다.The lower chamber 112 serves to elevate the piston 200 to the upper portion by the inflow of high pressure hydraulic fluid. Each of the six connection passages 660 is connected to the third chamber 130.
중간 챔버(113)는 하부 챔버(112) 상부에 위치하며, 피스톤(200)의 상, 하부 단턱(210) 사이와 실린더(100)의 내부 내부, 즉, 제1챔버(110)에 의해 형성되는 공간을 지칭한다.The intermediate chamber 113 is positioned above the lower chamber 112, and is formed between the upper and lower step portions 210 of the piston 200 and inside the cylinder 100, that is, by the first chamber 110. Refers to space.
중간 챔버(113)는 후술할 제5연결 유로(650) 및 제4유로(540)와 함께 복귀 유로를 이루게 되며, 이에 대한 자세한 설명은 후술한다.The intermediate chamber 113 forms a return flow path together with the fifth connection flow path 650 and the fourth flow path 540 which will be described later, and a detailed description thereof will be described later.
상부 챔버(114)는 중간 챔버(113) 상부에 위치하며, 피스톤(200)의 상부 단턱(220) 상부와 실린더(100)의 내부, 즉, 제1챔버(110)에 의해 형성되는 공간을 지칭한다.The upper chamber 114 is positioned above the intermediate chamber 113 and refers to a space formed by an upper portion of the upper step 220 of the piston 200 and an interior of the cylinder 100, that is, the first chamber 110. do.
상부 챔버(114)는 고압의 작동유가 유입되여 피스톤(200)을 하부로 하강시키는 역할을 하며, 제2연결 유로(620)에 의해 후술할 제2챔버(120)의 상부 공간과 연결된다.The upper chamber 114 serves to lower the piston 200 by the inflow of high pressure hydraulic fluid, and is connected to the upper space of the second chamber 120 to be described later by the second connection flow path 620.
완충 챔버(115)는 제1챔버(110)의 최상부를 이루는 공간을 지칭한다. 완충 챔버(115)의 내부에는 질소 가스가 충전되어 있다. The buffer chamber 115 refers to a space that forms the top of the first chamber 110. Nitrogen gas is filled in the buffer chamber 115.
완충 챔버(115) 내부에 충전된 질소 가스는 상승된 피스톤(200)이 완충 챔버(115)의 상부에 닿지 않게 하는 완충 역할을 함과 동시에, 상기 질소 가스의 가스압으로 피스톤(200)을 하부로 밀어내어 피스톤(200)의 하강을 도와주는 역할을 한다.Nitrogen gas filled in the buffer chamber 115 serves as a buffer to prevent the raised piston 200 from touching the upper portion of the buffer chamber 115, and at the same time, the piston 200 is moved downward by the gas pressure of the nitrogen gas. By pushing out serves to help the lowering of the piston (200).
이하, 제2챔버(120)에 대해 설명한다.Hereinafter, the second chamber 120 will be described.
제2챔버(120)의 내부에는 피스톤 제어밸브(310)가 설치되며, 피스톤 제어밸브(310)는 작동유에 의해 제2챔버(120) 내부에서 승하강 함으로써, 제2챔버(120)와 연결된 유로들을 개폐시킨다. The piston control valve 310 is installed inside the second chamber 120, and the piston control valve 310 is moved up and down inside the second chamber 120 by the working oil, thereby connecting to the second chamber 120. Open and close them.
제2챔버(120)는 상부 공간과 하부 공간으로 이루어지며, 제2챔버(120)의 상부 공간의 직경은 제2챔버(120)의 하부 공간의 직경보다 크게 형성된다.The second chamber 120 includes an upper space and a lower space, and the diameter of the upper space of the second chamber 120 is greater than the diameter of the lower space of the second chamber 120.
이 경우, 제2챔버(120)의 상부 공간의 직경은 후술할 피스톤 제어밸브(310)의 돌출부(312)의 직경과 같은 크기를 가지며, 제2챔버(120)의 하부 공간의 직경은 후술할 피스톤 제어밸브(310)의 하부 몸체(313)의 직경과 같은 크기를 가진다.In this case, the diameter of the upper space of the second chamber 120 has the same size as the diameter of the protrusion 312 of the piston control valve 310 to be described later, the diameter of the lower space of the second chamber 120 will be described later. It has the same size as the diameter of the lower body 313 of the piston control valve 310.
따라서, 제2챔버(120)의 상부 공간에는 후술할 피스톤 제어밸브(310)의 상부 몸체(311)가 위치하며, 제2챔버(120)의 하부 공간에는 하부 몸체(313)가 위치한다.Therefore, the upper body 311 of the piston control valve 310 to be described later is located in the upper space of the second chamber 120, the lower body 313 is located in the lower space of the second chamber 120.
또한, 제2챔버(120)의 하부 공간의 높이는 하부 몸체(313)의 높이보다 작게 형성된다. 따라서, 도 1에 도시된 바와 같이, 피스톤 제어밸브(310)가 작동되지 않을 때, 제2챔버(120)의 하부 공간의 하부에 하부 몸체(313)의 하면이 닿게 된다. 반면, 제2챔버(120)의 상부 공간의 하부에는 돌출부(312)의 하면이 닿지 않으며, 이로 인해, 돌출부(312)의 하면과 제2챔버(120)의 상부 공간의 하부 사이에는 이격 공간이 형성되게 된다.In addition, the height of the lower space of the second chamber 120 is formed smaller than the height of the lower body 313. Therefore, as shown in FIG. 1, when the piston control valve 310 is not operated, the lower surface of the lower body 313 comes into contact with the lower portion of the lower space of the second chamber 120. On the other hand, the lower surface of the protrusion 312 does not touch the lower portion of the upper space of the second chamber 120, and thus, the separation space is disposed between the lower surface of the protrusion 312 and the lower portion of the upper space of the second chamber 120. Will be formed.
제2챔버(120)의 상부 공간(또는, 피스톤 제어밸브(310)은 제2유로(520) 및 제2-1유로(521)에 의해 유입구(410)와 연결되고, 제2유로(520) 및 제2-2유로(522)에 의해 유입구(410)와 연결되며, 제5유로(550) 및 제5-1유로(551)에 의해 유출구(420)와 연결된다. 또한, 제2챔버(120)의 상부 공간(또는, 피스톤 제어밸브(310))은 제2연결 유로(620)에 의해 상부 챔버(114)와 연결되고, 제2연결 유로(620) 및 제2-1연결 유로(621)에 의해 제4챔버(140)와 연결된다.The upper space of the second chamber 120 (or the piston control valve 310 is connected to the inlet 410 by the second flow path 520 and the 2-1 flow path 521, the second flow path 520) And it is connected to the inlet 410 by the second channel 522, and is connected to the outlet 420 by the fifth channel 550 and the fifth channel 551. In addition, the second chamber ( The upper space of the 120 (or the piston control valve 310) is connected to the upper chamber 114 by the second connection flow path 620, the second connection flow path 620 and the second-first connection flow path 621. It is connected to the fourth chamber 140 by the).
제2챔버(120)의 하부 공간(또는, 피스톤 제어밸브(310))은 제1연결 유로(610)와 제3연결 유로(630) 각각에 의해 제3챔버(130)와 연결되고, 제4연결 유로(640)에 의해 제4챔버(140)와 연결된다.The lower space (or the piston control valve 310) of the second chamber 120 is connected to the third chamber 130 by the first connection passage 610 and the third connection passage 630, respectively, and the fourth It is connected to the fourth chamber 140 by the connection passage 640.
이하, 제3챔버(130)에 대해 설명한다,Hereinafter, the third chamber 130 will be described.
제3챔버(130)의 내부에는 타격력 조절밸브(330)가 설치되며, 타격력 조절밸브(330)는 작동유에 의해 제3챔버(130) 내부에서 승하강 함으로써, 제3챔버(130)와 연결된 유로들을 개폐시킨다. A striking force control valve 330 is installed inside the third chamber 130, and the striking force control valve 330 is moved up and down in the third chamber 130 by the hydraulic fluid, thereby connecting to the third chamber 130. Open and close them.
이 경우, 제3챔버(130)의 상부와 타격력 조절밸브(330)의 상면 사이에 스프링(131)이 설치된다. 스프링(131)은 탄성력으로 타격력 조절밸브(330)의 상면을 가압하는 기능을 하며, 이러한 스프링(131)으로 인해, 타격력 조절밸브(330)의 하면에 별도의 가압력이 가해지지 않으면, 타격력 조절밸브(330)는 제3챔버(130)의 하부에 위치하게 된다.In this case, a spring 131 is installed between the upper portion of the third chamber 130 and the upper surface of the striking force control valve 330. The spring 131 serves to press the upper surface of the striking force control valve 330 by the elastic force, and due to the spring 131, if a separate pressing force is not applied to the lower surface of the striking force control valve 330, the striking force control valve 330 is positioned below the third chamber 130.
제3챔버(130)(또는, 타격력 조절밸브(330))는 제1유로(510) 및 제1-2유로(512)에 의해 유입구(410)와 연결되고, 제4유로(540) 및 제4-1유로(541)에 의해 유출구(420)와 연결된다. 또한, 제3챔버(130)(또는, 타격력 조절밸브(330))는 제5연결 유로(650)와 제6연결 유로(660) 각각에 의해 하부 챔버(112) 또는 중간 챔버(113)와 연결되고, 제1연결 유로(610)와 제3연결 유로(630) 각각에 의해 제2챔버(120)의 하부 공간과 연결된다.The third chamber 130 (or the striking force control valve 330) is connected to the inlet 410 by the first flow passage 510 and the first flow passage 512, and the fourth flow passage 540 and the fourth flow passage 540. It is connected to the outlet 420 by the 4-1 flow path 541. In addition, the third chamber 130 (or the striking force control valve 330) is connected to the lower chamber 112 or the intermediate chamber 113 by each of the fifth connection channel 650 and the sixth connection channel 660. And a lower space of the second chamber 120 by each of the first connection channel 610 and the third connection channel 630.
이하, 제4챔버(140)에 대해 설명한다.Hereinafter, the fourth chamber 140 will be described.
제4챔버(140)의 내부에는 암반강도 감지밸브(350)가 설치되며, 암반강도 감지밸브(350)는 작동유에 의해 제4챔버(140) 내부에서 승하강 함으로써, 제4챔버(140)와 연결된 유로들을 개폐시킨다.The rock strength detection valve 350 is installed inside the fourth chamber 140, and the rock strength detection valve 350 is moved up and down inside the fourth chamber 140 by the hydraulic fluid, thereby, the fourth chamber 140 and the fourth chamber 140. Open and close connected flow paths.
이 경우, 제4챔버(140)의 상부 공간의 직경은 제4챔버(140)의 하부 공간의 직경보다 크게 형성되며, 암반강도 감지밸브(350) 또한, 암반강도 감지밸브(350)의 상부의 직경이 암반강도 감지밸브(350)의 하부의 직경보다 크게 형성된다..In this case, the diameter of the upper space of the fourth chamber 140 is larger than the diameter of the lower space of the fourth chamber 140, the rock strength detection valve 350, the upper portion of the rock strength detection valve 350 The diameter is larger than the diameter of the lower portion of the rock strength detection valve 350.
제4챔버(140)(또는, 암반강도 감지밸브(350))는 제2유로(520) 및 제2-3유로(523)에 의해 유입구(410)와 연결되고, 제5유로(550)에 의해 유출구(420)와 연결된다. 또한, 제4챔버(140)(또는, 암반강도 감지밸브(350))는 제2연결 유로(620)와 제2-1연결 유로(621)에 의해 상부 챔버(114) 및 제2챔버(120)의 상부 공간과 연결되고, 제4연결 유로(640)에 의해 제2챔버(120)의 하부 공간과 연결된다.The fourth chamber 140 (or the rock strength detection valve 350) is connected to the inlet 410 by the second flow passage 520 and the second flow passage 523, and to the fifth flow passage 550. It is connected to the outlet 420 by. In addition, the fourth chamber 140 (or the rock strength detection valve 350) may be formed by the upper chamber 114 and the second chamber 120 by the second connection channel 620 and the second-first connection channel 621. It is connected to the upper space of the, and is connected to the lower space of the second chamber 120 by the fourth connection flow path (640).
이하, 어큐뮬레이터(160)에 대해 설명한다.The accumulator 160 will be described below.
어큐뮬레이터(160)는 제1유로(510) 및 제1-1유로(511)에 의해 유입구(410)와 연결되어 있으며, 어큐뮬레이터(160) 내부에는 질소 가스가 충전되어 있다. 따라서, 어큐뮬레이터(160)는 상기 질소 가스를 이용하여 유입구(410)를 통해 실린더(100) 내부로 유입되는 고압의 작동유가 억류하는 것을 방지하는 역할을 한다.The accumulator 160 is connected to the inlet 410 by the first passage 510 and the first-first passage 511, and is filled with nitrogen gas inside the accumulator 160. Therefore, the accumulator 160 serves to prevent the high pressure hydraulic oil flowing into the cylinder 100 through the inlet 410 using the nitrogen gas.
이하, 피스톤(200)에 대해 설명한다.Hereinafter, the piston 200 will be described.
피스톤(200)은 실린더(100) 내부에 형성된 제1챔버(110) 내부에 승하강 가능하게 설치되며, 피스톤(200)의 하부에는 하부 단턱(210)이 형성되고, 피스톤(200)의 상부에는 상부 단턱(220)이 형성되어 있다. The piston 200 is installed to be able to move up and down inside the first chamber 110 formed in the cylinder 100, the lower step 210 is formed at the lower portion of the piston 200, the upper portion of the piston 200 The upper step 220 is formed.
따라서, 하부 챔버(112)에 고압의 작동유가 공급되면, 상기 고압의 작동유가 하부 단턱(210)을 상부로 밀어냄으로써, 피스톤(200)이 상승하게 되며, 상부 챔버(114)에 고압의 작동유가 공급되면, 상기 고압의 작동유가 상부 단턱(220)을 하부로 밀어냄으로써, 피스톤(200)이 하강하게 된다. Therefore, when the high pressure hydraulic oil is supplied to the lower chamber 112, the high pressure hydraulic oil pushes the lower step 210 upward, thereby raising the piston 200, and the high pressure hydraulic oil is applied to the upper chamber 114. When supplied, the high pressure hydraulic oil pushes the upper step 220 downward, thereby lowering the piston 200.
전술한 바와 같이, 상부 챔버(114)에 작동유가 공급되어 피스톤(200)이 하강하게 되면 피스톤(200)은 피스톤(200)의 하부에 위치하는 로드(700)를 타격하게 되고, 이처럼 피스톤(200)에 의해 타격된 로드(700)가 지반을 타격함으로써, 지반의 파쇄 등을 달성할 수 있다.As described above, when the hydraulic fluid is supplied to the upper chamber 114 so that the piston 200 descends, the piston 200 hits the rod 700 positioned below the piston 200, and thus the piston 200 When the rod 700 hit by) strikes the ground, it is possible to achieve fracture of the ground.
피스톤(200)의 하부 단턱(210) 및 상부 단턱(220)은 제1챔버(110)의 직경과 동일한 직경을 가진다. The lower step 210 and the upper step 220 of the piston 200 have the same diameter as the diameter of the first chamber 110.
또한, 상부 단턱(220)의 유압면적은 하부 단턱(210)의 유압면적 보다 크게 형성된다. 다시 말해, 상부 단턱(220)의 높이는 하부 단턱(210)의 높이보다 크게 형성되며, 이로 인해, 상부 챔버(114)와 하부 챔버(112)에 작동유가 유입된 경우, 상기 작동유에 의한 유압면적은 상부 단턱(220)이 하부 단턱(210)보다 크게 된다. In addition, the hydraulic area of the upper step 220 is formed larger than the hydraulic area of the lower step 210. In other words, the height of the upper step 220 is formed to be greater than the height of the lower step 210. As a result, when the hydraulic oil flows into the upper chamber 114 and the lower chamber 112, the hydraulic area by the hydraulic oil is The upper step 220 is larger than the lower step 210.
따라서, 상부 챔버(114)와 하부 챔버(112)에 고압의 작동유가 동시에 유입될 경우 상부 단턱(220)을 하부로 밀어내는 가압력이 더 크게 작용하므로, 피스톤(200)이 용이하게 하강할 수 있다.Therefore, when high-pressure hydraulic fluid flows into the upper chamber 114 and the lower chamber 112 at the same time, since the pressing force for pushing the upper step 220 downward acts more, the piston 200 can be easily lowered. .
이하, 피스톤 제어밸브(310)에 대해 설명한다.Hereinafter, the piston control valve 310 will be described.
피스톤 제어밸브(310)는 실린더(100) 내부에 형성된 제2챔버(120) 내부에 승하강 가능하게 설치되며, 그 상면이 작동유에 의해 가압되는 상부 몸체(311)와, 그 하면이 작동유에 의해 가압되며, 상부 몸체(311)의 측면에 형성되는 돌출부(312)와, 그 하면이 작동유에 의해 가압되며, 상부 몸체(311)의 하부에 형성되는 하부 몸체(313)와, 상부 몸체(311)의 측며에 형성되는 피스톤 제어밸브 홈(314)과, 하부 몸체(313)의 내부에 형성되는 제1피스톤 제어밸브 유로(316)와, 상부 몸체(311)의 내부에 형성되는 제2피스톤 제어밸브 유로(317)를 포함하여 구성된다.The piston control valve 310 is installed in the second chamber 120 formed in the cylinder 100 so as to be lifted and lowered, and an upper body 311 whose upper surface is pressurized by the hydraulic oil and the lower surface thereof by the hydraulic oil. Pressed, the protrusion 312 formed on the side of the upper body 311, the lower surface is pressed by the working oil, the lower body 313 and lower body formed on the lower portion of the upper body 311, the upper body 311 Piston control valve groove 314 formed in the side of the lower body, the first piston control valve flow path 316 formed in the lower body 313, the second piston control valve formed in the upper body 311 It is comprised including the flow path 317.
상부 몸체(311)는 제2챔버(120)의 상부 공간에 위치하고, 상부 몸체(311)의 측면에는 돌출부(312)와 피스톤 제어밸브 홈(314)이 형성되어 있다. 또한, 상부 몸체(311)의 상면은 제2-2유로(522)를 통해 유입되는 고압의 작동유에 의해 가압된다.The upper body 311 is positioned in the upper space of the second chamber 120, and the protrusion 312 and the piston control valve groove 314 are formed at the side of the upper body 311. In addition, the upper surface of the upper body 311 is pressurized by the high-pressure hydraulic oil flowing through the second-second passage 522.
돌출부(312)는 피스톤 제어밸브 홈(314)의 하부에 위치하도록 상부 몸체(311)의 측면에 환형으로 돌출되게 형성되며, 이로 인해, 돌출부(312)의 직경은 상부 몸체(311)의 직경보다 크게 형성된다.The protrusion 312 is formed to protrude in an annular shape on the side of the upper body 311 so as to be located below the piston control valve groove 314, so that the diameter of the protrusion 312 is larger than the diameter of the upper body 311 It is largely formed.
또한, 피스톤 제어밸브(310)가 제2챔버(120)의 하부에 위치할 때, 돌출부(312)의 하면과 제2챔버(120)의 상부 공간의 하부 사이에는 이격 공간이 형성되며, 이로 인해, 돌출부(312)의 하면은 제2-1유로(521)를 통해 유입되는 고압의 작동유에 의해 가압된다.In addition, when the piston control valve 310 is positioned below the second chamber 120, a space is formed between the lower surface of the protrusion 312 and the lower portion of the upper space of the second chamber 120, thereby The lower surface of the protrusion 312 is pressurized by the high pressure hydraulic oil flowing through the second-first flow path 521.
피스톤 제어밸브 홈(314)은 돌출부(312)의 상부에 위치하도록 상부 몸체(311)의 측면에 환형으로 형성되며, 제5-1유로(551)와 제4연결 유로(640)를 연결하는 역할을 한다. The piston control valve groove 314 is formed in an annular shape on the side of the upper body 311 so as to be located above the protrusion 312, and serves to connect the 5-1 channel 551 and the fourth connecting channel 640. Do it.
하부 몸체(313)는 피스톤 제어밸브(310)가 제2챔버(120)에 설치 시, 제2챔버(120)의 하부 공간에 위치하도록, 상부 몸체(311)의 하부에서 연장되게 형성되며, 상부 몸체(311)의 직경보다 작은 직경을 가진다. The lower body 313 is formed to extend from the lower portion of the upper body 311 so that the piston control valve 310 is located in the lower space of the second chamber 120 when installed in the second chamber 120, the upper It has a diameter smaller than the diameter of the body 311.
하부 몸체(313)의 높이는 제2챔버(120)의 하부 공간의 높이보다 크게 형성되며, 이로 인해, 피스톤 제어밸브(310)가 상승하지 않고, 제2챔버(120)의 하부에 위치할 때, 하부 몸체(313)의 하면은 제2챔버(120)의 하부 공간의 하부에 닿는 반면, 돌출부(312)는 제2챔버(120)의 상부 공간의 하부와 닿지 않게 된다. 따라서, 위와 같은 경우, 돌출부(312)와 제2챔버(120)의 상부 공간의 하부 사이에는 이격 공간이 형성되게 된다.The height of the lower body 313 is formed larger than the height of the lower space of the second chamber 120, whereby, when the piston control valve 310 does not rise, it is located below the second chamber 120, The lower surface of the lower body 313 touches the lower portion of the lower space of the second chamber 120, whereas the protrusion 312 does not touch the lower portion of the upper space of the second chamber 120. Therefore, in the above case, the separation space is formed between the protrusion 312 and the lower portion of the upper space of the second chamber 120.
또한, 하부 몸체(313)의 하면은 제1연결 유로(610)를 통해 유입되는 고압의 작동유에 의해 가압된다.In addition, the lower surface of the lower body 313 is pressurized by the high-pressure hydraulic oil flowing through the first connection flow path 610.
제1피스톤 제어밸브 유로(316)는 하부 몸체(313)의 내부에서 수평 방향으로 형성되며, 피스톤 제어밸브(310)가 하강할 때, 순간적으로 제3연결 유로(630)와 제4연결 유로(640)를 연결한다.The first piston control valve flow path 316 is formed in the horizontal direction in the lower body 313, and when the piston control valve 310 descends, the third connection flow path 630 and the fourth connection flow path ( 640).
제2피스톤 제어밸브 유로(317)는 상부 몸체(311)의 내부에 형성되며, 제1피스톤 제어밸브 유로(316)와 제5-1유로(551)를 연결한다. 따라서, 전술한 바와 같이, 제1피스톤 제어밸브 유로(316)가 제3연결 유로(630)와 제4연결 유로(640)를 연결하여 제1피스톤 제어밸브 유로(316) 내부로 작동유가 유입될 때, 상기 작동유를 제5-1유로(551)로 유동시킴으로써, 유출구(420)와 연결된 저압 라인으로 내보내는 역할을 한다.The second piston control valve flow path 317 is formed inside the upper body 311 and connects the first piston control valve flow path 316 and the fifth-first flow path 551. Therefore, as described above, the first piston control valve flow path 316 connects the third connection flow path 630 and the fourth connection flow path 640 so that the hydraulic fluid flows into the first piston control valve flow path 316. At this time, the hydraulic fluid flows to the fifth passage 551 to serve to discharge the low pressure line connected to the outlet 420.
위와 같은 구성을 갖는 피스톤 제어밸브(310)는 유입구(410)를 통해 실린더(100) 내부로 유입된 고압의 작동유가 상부 챔버(114)로 유입되는 것을 제어하는 역할을 하며, 이를 통해, 피스톤(200)의 승하강 운동을 제어하게 된다. Piston control valve 310 having the above configuration serves to control the high-pressure hydraulic fluid introduced into the cylinder 100 through the inlet 410 to enter the upper chamber 114, through which, the piston ( The lifting and lowering motion of the 200) is controlled.
상세하게 설명하면, 피스톤 제어밸브(310)가 제2챔버(120)의 하부에 위치하게 되면(도 1의 상태), 제2-1유로(521)와 제2연결 유로(620)의 연결을 폐쇄하게 되며, 이로 인해, 유입구(410)를 통해 실린더(100) 내부로 유입된 고압의 작동유가 상부 챔버(114)로 유입되는 것을 차단하게 된다. 따라서, 상부 챔버(114)에 고압의 작동유가 유입되지 않으므로, 피스톤(200)은 하강할 수 없게 된다.In detail, when the piston control valve 310 is positioned below the second chamber 120 (state of FIG. 1), the connection between the second-first flow path 521 and the second connection flow path 620 is performed. As a result, the high-pressure hydraulic fluid introduced into the cylinder 100 through the inlet 410 is blocked from entering the upper chamber 114. Therefore, since the high pressure hydraulic fluid does not flow into the upper chamber 114, the piston 200 cannot be lowered.
반면에, 피스톤 제어밸브(310)가 상승하여 제2챔버(120)의 상부에 위치하게 되면(도 2의 상태), 피스톤 제어밸브 홈(314)이 제2-1유로(521)와 제2연결 유로(620)를 연결하게 됨으로써, 제2-1유로(521)와 제2연결 유로(620)의 연결이 개방된다. 따라서, 유입구(410)를 통해 실린더(100) 내부로 유입된 고압의 작동유가 상부 챔버(114)로 유입되며, 이로 인해, 피스톤(200)은 하강 할 수 있다.On the other hand, when the piston control valve 310 is raised and positioned above the second chamber 120 (state of FIG. 2), the piston control valve groove 314 is the second-one flow path 521 and the second. By connecting the connection flow path 620, the connection between the second-first flow path 521 and the second connection flow path 620 is opened. Therefore, the high pressure hydraulic fluid introduced into the cylinder 100 through the inlet 410 is introduced into the upper chamber 114, whereby the piston 200 may descend.
전술한 피스톤 제어밸브(310)의 상부 몸체(311)의 상면의 유압면적은 돌출부(312)의 하면의 유압면적보다 크되, 돌출부(312)의 하면과 하부 몸체(313)의 하면의 유압면적의 합보다는 작다. 즉, 전술한 피스톤 제어밸브(310)는 '돌출부(312)의 하면의 유압면적 < 상부 몸체(311)의 상면의 유압면적 < 돌출부(312)의 하면의 유압면적과 하부 몸체(313)의 유압면적의 합' 조건을 만족하며, 이로 인해, 종래의 유압 타격 장치와 달리 피스톤 제어밸브(310)가 미작동시, 제2챔버(120)의 하부에 위치된 채로 유지될 수 있으며, 피스톤 제어밸브(310)가 작동시, 용이하게 상승하여 제2챔버(120) 상부에 위치할 수 있다. 다시 말해, 피스톤 제어밸브(310)의 승하강이 오작동 없이 원할하게 이루어질 수 있다.The hydraulic area of the upper surface of the upper body 311 of the piston control valve 310 described above is larger than the hydraulic area of the lower surface of the protrusion 312, but the hydraulic area of the lower surface of the protrusion 312 and the lower surface of the lower body 313. Smaller than sum That is, the above-described piston control valve 310 is the hydraulic area of the lower surface of the protrusion 312 <the hydraulic area of the upper surface of the upper body 311 <the hydraulic area of the lower surface of the protrusion 312 and the hydraulic pressure of the lower body 313 Sum of the area 'condition is satisfied, and thus, unlike the conventional hydraulic striking device, when the piston control valve 310 is not operated, it may be kept at the bottom of the second chamber 120, and the piston control valve In operation, 310 may be easily lifted and positioned above the second chamber 120. In other words, the raising and lowering of the piston control valve 310 can be made smoothly without malfunction.
상세하게 설명하면, 피스톤 제어밸브(310)가 제2챔버(120)의 하부에 위치하는 경우(도 1의 상태), 유입구(410)를 통해 실린더(100) 내부로 유입된 고압의 작동유는 제2유로(520) 및 제2-1유로(521)를 통해 제2챔버(120)의 상부 공간의 하부와 돌출부(312)의 하면 사이에 형성된 이격 공간으로 유입됨으로써, 돌출부(312)의 하면을 가압함과 동시에, 제2유로(520) 및 제2-2유로(522)를 통해 제2챔버(120)의 상부 공간의 상부로 유입됨으로써, 상부 몸체(311)의 상면을 가압하게 된다.In detail, when the piston control valve 310 is located below the second chamber 120 (the state of FIG. 1), the high pressure hydraulic oil introduced into the cylinder 100 through the inlet 410 is removed. The lower surface of the protrusion 312 is introduced into the separation space formed between the lower portion of the upper space of the second chamber 120 and the lower surface of the protrusion 312 through the two passages 520 and the second-one passage 521. Simultaneously with the pressurization, the upper surface of the upper body 311 is pressed by flowing into the upper portion of the upper space of the second chamber 120 through the second channel 520 and the second channel-2-522.
이 경우, 상부 몸체(311)의 유압면적이 돌출부(312)의 유압면적보다 크므로, 상부 몸체(311)의 상면을 가압하는 고압의 작동유의 힘이 돌출부(312)의 하면을 가압하는 고압의 작동유의 힘보다 더 크다. 따라서, 피스톤 제어밸브(310)는 미작동 되어 상승하지 않고, 제2챔버(120)의 하부에 위치한 상태, 즉, 제2-1유로(521)와 제4연결 유로(640)를 폐쇄한 상태로 유지될 수 있다.In this case, since the hydraulic area of the upper body 311 is greater than the hydraulic area of the protrusion 312, the force of the high pressure hydraulic oil that presses the upper surface of the upper body 311 is increased by the high pressure that presses the lower surface of the protrusion 312. Greater than the power of hydraulic fluid. Accordingly, the piston control valve 310 is not operated and does not rise, and is positioned below the second chamber 120, that is, the state of closing the second-first flow path 521 and the fourth connection flow path 640. Can be maintained.
또한, 유입구(410)를 통해 실린더(100) 내부로 유입된 고압의 작동유가 제1연결 유로(610)를 통해 제2챔버(120)의 하부 공간으로 유입되면(도 2의 상태), 상기 고압의 작동유는 하부 몸체(313)의 하면을 가압하게 된다. 물론, 이 경우에도, 상부 몸체(311)의 상면과 돌출부(312)의 하면은 전술한 바와 같이, 제2-1유로(521) 및 제2-2유로(522)에 의해 유입된 고압의 작동유에 의해 각각 가압되고 있다.In addition, when the high pressure hydraulic fluid introduced into the cylinder 100 through the inlet 410 flows into the lower space of the second chamber 120 through the first connection flow path 610 (the state of FIG. 2), the high pressure The operating oil of the pressurizing the lower surface of the lower body (313). Of course, even in this case, the upper surface of the upper body 311 and the lower surface of the protrusion 312 are high-pressure hydraulic oil introduced by the 2-1 channel 521 and the 2-2 channel 522, as described above. It is pressurized by each.
위와 같이, 고압의 작동유가 상부 몸체(311)의 상면, 돌출부(312)의 하면, 하부 몸체(313)의 하면을 각각 가압하는 경우, 상부 몸체(311)의 상면의 유압면적이 돌출부(312)의 하면의 유압면적과, 하부 몸체(313)의 하면의 유압면적의 합보다 작으므로, 상부 몸체(311)의 상면을 가압하는 고압의 작동유의 힘이 돌출부(312)의 하면 및 하부 몸체(313)의 하면을 가압하는 고압의 작동유의 힘의 합보다 더 작게 된다. 따라서, 피스톤 제어밸브(310)는 작동되어 상승하여 제2챔버(120)의 상부에 위치하며, 이로 인해, 제2-1유로(521)와 제4연결 유로(640)가 개방되어 연결된다.As described above, when the high-pressure hydraulic oil presses the upper surface of the upper body 311, the lower surface of the protrusion 312, and the lower surface of the lower body 313, the hydraulic area of the upper surface of the upper body 311 is the protrusion 312. Is less than the sum of the hydraulic area of the lower surface of the lower body and the lower surface of the lower body 313, the force of the high-pressure hydraulic fluid to press the upper surface of the upper body 311 is lower and lower body 313 of the protrusion 312. ) Is smaller than the sum of the forces of the high pressure hydraulic oil pressurizing the lower surface. Accordingly, the piston control valve 310 is operated to rise and positioned above the second chamber 120, whereby the second-first flow passage 521 and the fourth connection flow passage 640 are opened and connected to each other.
전술한 바와 같이, 상부 몸체(311), 하부 몸체(313) 및 돌출부(312)의 유압면적의 차이는 후술할 복귀 유로와 더불어 피스톤 제어밸브(310)의 승하강이 원할하게 이루어지는데 큰 역할을 하게 된다. 즉, 상부 몸체(311), 하부 몸체(313) 및 돌출부(312)의 유압면적의 차이는 복귀 유로와 유기적으로 결합함으로써, 피스톤 제어밸브(310)의 작동을 원할하게 하는 효과가 있다.As described above, the difference in the hydraulic area of the upper body 311, the lower body 313 and the protrusion 312 plays a big role in smoothly raising and lowering the piston control valve 310 together with the return flow path to be described later. Done. That is, the difference in the hydraulic areas of the upper body 311, the lower body 313 and the protrusion 312 is organically combined with the return flow path, thereby having an effect of smoothing the operation of the piston control valve 310.
이하, 타격력 조절밸브(330)에 대해 설명한다.Hereinafter, the striking force control valve 330 will be described.
타격력 조절밸브(330)는 실린더(100) 내부에 형성된 제3챔버(130) 내부에 승하강 가능하게 설치되며, 타격력 조절밸브(330)의 외부에 형성된 타격력 조절밸브 홈(331)과, 타격력 조절밸브(330)의 내부에 형성된 타격력 조절밸브 유로(332)를 포함하여 구성된다.The striking force control valve 330 is installed to be capable of lifting up and down inside the third chamber 130 formed in the cylinder 100, the striking force control valve groove 331 formed on the outside of the striking force control valve 330, and the striking force control It is configured to include a strike force control valve flow path 332 formed inside the valve 330.
또한, 타격력 조절밸브(330)는 회전 가능한 회전식 밸브로 구성될 수 있다.In addition, the striking force control valve 330 may be configured as a rotatable rotary valve.
*타격력 조절밸브 홈(331)은 타격력 조절밸브(330)의 측면에 환형으로 형성되며, 타격력 조절밸브(330)가 제3챔버(130)의 하부에 위치할 때, 제5연결 유로(650)와 제1연결 유로(610)를 연결하는 역할을 한다. 반면, 타격력 조절밸브 홈(331)은 타격력 조절밸브(330)가 상승하여 제3챔버(130)의 상부에 위치할 때에는 제5연결 유로(650) 뿐만 아니라 제6연결 유로(660)와도 연결되지 않으며, 이로 인해, 타격력 조절밸브(330)가 상승하여 제3챔버(130)의 상부에 위치할 경우, 제1연결 유로(610)로의 고압의 작동유의 유입이 차단된다(도 8 내지 도 10의 상태).* Strike force control valve groove 331 is formed in an annular shape on the side of the striking force control valve 330, when the striking force control valve 330 is located below the third chamber 130, the fifth connection flow path (650) And the first connection passage 610. On the other hand, the striking force control valve groove 331 is not connected to not only the fifth connecting passage 650 but also the sixth connecting passage 660 when the striking force regulating valve 330 is positioned above the third chamber 130. Therefore, when the striking force control valve 330 is raised and positioned above the third chamber 130, the inflow of the high pressure hydraulic oil into the first connection flow path 610 is blocked (see FIGS. 8 to 10). state).
또한, 타격력 조절밸브 홈(331)은 유압타격력 조절밸브(330)가 회전할 때, 타격력 조절밸브 유로(332)와 연결되며, 이로 인해, 제1-2유로(512), 타격력 조절밸브 유로(332), 타격력 조절밸브 홈(331), 제5연결 유로(650)가 연결되게 된다(도 12의 상태).In addition, the striking force control valve groove 331 is connected to the striking force control valve flow path 332 when the hydraulic strike force control valve 330 rotates, thereby, the first-second flow path 512, the striking force control valve flow path ( 332, the hitting force control valve groove 331, and the fifth connection flow path 650 are connected (state of FIG. 12).
타격력 조절밸브 유로(332)는 도 12에 도시된 바와 같이, 타격력 조절밸브(330)의 내부에서 'ㄷ'자 형상으로 형성되며, 전술한 바와 같이, 타격력 조절밸브(330)가 회전시 제1-2유로(512)와 제5연결 유로(650)를 연결한다.12, the striking force control valve flow path 332 is formed in a 'c' shape inside the striking force control valve 330, and as described above, when the striking force control valve 330 is rotated, the first -2 Euro 512 and the fifth connecting passage 650 is connected.
다시 말해, 타격력 조절밸브 유로(332)는 타격력 조절밸브(330)의 회전에 따라 고압 라인과 저압 라인을 곧바로 연통시키게 되며, 이로 인해, 유압 타격 장치(10)는 공타 방지 모드를 실행할 수 있게 된다.In other words, the striking force control valve flow path 332 immediately communicates the high pressure line and the low pressure line in accordance with the rotation of the striking force control valve 330, whereby the hydraulic striking device 10 can execute the anti-ballout mode. .
타격력 조절밸브(330)의 상면과 제3챔버(130)의 상부 사이에 스프링(131)이 설치되며, 이로 인해, 타격력 조절밸브(330)의 하면에 별도의 가압력이 가해지지 않으면, 타격력 조절밸브(330)는 제3챔버(130)의 하부에 위치한 채로 유지된다.The spring 131 is installed between the upper surface of the striking force control valve 330 and the upper portion of the third chamber 130, and thus, if a separate pressing force is not applied to the lower surface of the striking force control valve 330, the striking force control valve 330 is maintained at the bottom of the third chamber (130).
위와 같은 타격력 조절밸브(330)는 제3챔버(130) 내부에서 승하강함으로써, 피스톤 제어밸브(310)의 작동 시점, 즉, 승하강 시점을 제어하는 역할을 한다.The striking force control valve 330 as described above moves up and down inside the third chamber 130, and serves to control the operation time, that is, the elevation time of the piston control valve 310.
상세하게 설명하면, 도 1 내지 도 4에 도시된 바와 같이, 타격력 조절밸브(330)의 하면에 별도의 가압력이 가해지지 않으면 전술한 바와 같이, 타격력 조절밸브(330)는 스프링(131)에 의해 제2챔버(120)의 하부에 위치한 채로 유지된다. In detail, as shown in FIGS. 1 to 4, when a separate pressing force is not applied to the lower surface of the striking force control valve 330, as described above, the striking force control valve 330 is driven by the spring 131. It is maintained below the second chamber 120.
이 경우, 하부 챔버(112)에 고압의 작동유가 유입되어 피스톤(200)이 상승하게 되면, 상기 고압의 작동유는 제5연결 유로(650), 타격력 조절밸브 홈(331), 제1연결 유로(610) 순으로 유동되어, 피스톤 제어밸브(310)의 하부 몸체(313)의 하면을 가압하게 된다. 따라서, 피스톤 제어밸브(310)는 작동하여 상승하게 되며, 이로 인해, 전술한 바와 같이, 상부 챔버(114)에 고압의 작동유가 유입된다.In this case, when the high pressure hydraulic fluid flows into the lower chamber 112 and the piston 200 rises, the high pressure hydraulic fluid is the fifth connection flow path 650, the impact force control valve groove 331, and the first connection flow path ( 610 flows in order to pressurize the lower surface of the lower body 313 of the piston control valve 310. Accordingly, the piston control valve 310 is operated to rise, and as a result, as described above, the high pressure hydraulic oil flows into the upper chamber 114.
반면에, 도 7 내지 도 9에 도시된 바와 같이, 제3연결 유로(630)를 통해 유동된 고압의 작동유가 타격력 조절밸브(330)의 하면을 가압하게 되면 타격력 조절밸브(330)가 작동되어 상승하며, 이로 인해, 제6연결 유로(660)와 타격력 조절밸브 홈(331)이 연결되게 된다. 따라서, 제1연결 유로(610)를 통해 유동되는 고압의 작동유, 즉, 피스톤 제어밸브(310)를 상승시키는 고압의 작동유의 유동이 늦춰지게 되며, 이로 인해, 피스톤(200)은 피스톤(200)의 하부 단턱(210)이 제5연결 유로(650)의 상부에 위치할 때까지 상승하게 된다(도 11의 상태). On the other hand, as shown in Figure 7 to 9, when the high-pressure hydraulic fluid flowing through the third connection flow path 630 presses the lower surface of the force control valve 330, the force control valve 330 is operated As a result, the sixth connection flow path 660 and the hitting force control valve groove 331 are connected. Therefore, the flow of the high pressure hydraulic fluid flowing through the first connection flow path 610, that is, the high pressure hydraulic fluid that raises the piston control valve 310, is slowed down, and thus, the piston 200 is connected to the piston 200. The lower step 210 is raised until it is positioned above the fifth connection flow path 650 (state of FIG. 11).
위와 같은 타격력 조절밸브(330)와 피스톤(200)의 상승은 유압 타격 장치(10)의 타격 행정, 즉, 유압 타격 장치(10)의 장타(Long-stroke) 행정 및 단타(Short-stroke) 행정과 관련된 것이며, 이러한, 장타 행정 및 단타 행정은 타격력 조절밸브(330)가 피스톤 제어밸브(310)의 작동 시점을 늦춤으로써 나타나는 결과이다. The lift of the striking force control valve 330 and the piston 200 as described above is the stroke stroke of the hydraulic striking device 10, that is, the long-stroke and short-stroke stroke of the hydraulic striking device 10 and Related to this, the long stroke and the short stroke is the result of the striking force control valve 330 delays the operation of the piston control valve 310.
다시 말해, 타격력 조절밸브(330)는 피스톤 제어밸브(310)의 작동 시점을 제어함으로써, 유압 타격 장치(10)의 타격 행정을 장타 행정과 단타 행정으로 변환할 수 있으며, 이로 인해, 유압 타격 장치(10)의 타격력이 조절된다. 이러한 유압 타격 장치(10)의 타격 행정에 대한 자세한 설명은 후술한다.In other words, the striking force control valve 330 controls the operation timing of the piston control valve 310, thereby converting the striking stroke of the hydraulic striking device 10 into a long stroke and a single stroke, and thus, the hydraulic striking device ( 10) the impact force is controlled. Detailed description of the stroke stroke of the hydraulic striking device 10 will be described later.
또한, 전술한 바와 같이, 타격력 조절밸브(330)는 회전이 가능한 로터리 밸브로 구성될 수 있으며, 이는 전술한 타격력 조절밸브 유로(332)와 함께 유압 타격 장치(10)의 공타(空打)방지 모드와 관련된 것이다. 이러한 공타방지 모드에 대한 자세한 설명은 후술한다.In addition, as described above, the striking force control valve 330 may be configured as a rotary valve that is rotatable, which prevents vacancy of the hydraulic striking device 10 together with the aforementioned striking force control valve flow path 332. It is related to the mode. Detailed description of the anti-hit mode will be described later.
이하, 암반강도 감지밸브(350)에 대해 설명한다.Hereinafter, the rock strength detection valve 350 will be described.
암반강도 감지밸브(350)는 실린더(100) 내부에 형성된 제4챔버(140) 내부에 승하강 가능하게 설치되며, 암반강도 감지밸브(350)의 측면에 형성된 환형의 암반강도 감지밸브 홈(351)을 포함하여 구성된다.The rock strength detection valve 350 is installed to be capable of lifting up and down inside the fourth chamber 140 formed in the cylinder 100, and has an annular rock strength detection valve groove 351 formed on the side of the rock strength detection valve 350. It is configured to include).
암반강도 감지밸브(350)의 상부의 직경은 암반강도 감지밸브(350)의 하부의 직경보다 크게 형성되며, 암반강도 감지밸브(350)의 상면의 유압면적은 암반강도 감지밸브(350)의 하면의 유압면적 보다 크다.The upper diameter of the rock strength detection valve 350 is formed larger than the diameter of the lower portion of the rock strength detection valve 350, the hydraulic area of the upper surface of the rock strength detection valve 350 is the lower surface of the rock strength detection valve 350 Is larger than the hydraulic area.
따라서, 도 1에 도시된 바와 같이, 고압의 작동유가 제2-3유로(523)를 통해 암반강도 감지밸브(350)의 상면을 가압함과 동시에, 제2-1연결 유로(621)를 통해 암반강도 감지밸브(350)의 하면을 가압하는 경우, 암반강도 감지밸브(350)는 상승하지 않고, 제4챔버(140)의 하부에 위치한 채 유지될 수 있으며, 이로 인해, 유압 타격 장치(10)의 장타 행정(또는 장타 모드)으로의 임의적인 전환이 방지될 수 있다. Therefore, as shown in FIG. 1, the high-pressure working oil pressurizes the upper surface of the rock strength detecting valve 350 through the 2-3 channel 523 and through the 2-1 connection flow path 621. When the lower surface of the rock strength detection valve 350 is pressurized, the rock strength detection valve 350 may be maintained at a lower portion of the fourth chamber 140 without being raised, and thus, the hydraulic striking device 10 Can be prevented from switching to the long stroke (or long mode).
위와 같은 암반강도 감지밸브(350)는 제4챔버(140) 내부에서 승하강함으로써, 타격력 조절밸브(330)의 작동 시점을 제어하는 역할을 한다.The rock strength detection valve 350 as described above moves up and down inside the fourth chamber 140 to control the operation timing of the striking force control valve 330.
상세하게 설명하면, 도 2에 도시된 바와 같이, 고압의 작동유가 암반강도 감지밸브(350)의 상면 및 하면을 동시에 가압하는 경우, 암반강도 감지밸브(350)의 상, 하a면의 유압면적의 차이에 의해, 암반강도 감지밸브(350)는 제4챔버(140)의 하부에 위치한채 유지되게 된다. In detail, as shown in FIG. 2, when the high-pressure hydraulic oil simultaneously presses the upper and lower surfaces of the rock strength detection valve 350, the hydraulic areas of the upper and lower surfaces of the rock strength detection valve 350. Due to the difference, the rock strength detection valve 350 is maintained at the bottom of the fourth chamber 140.
이 경우, 유입구(410)와 연결된 제3유로(530)는 폐쇄되어 제3연결 유로(630), 제4연결 유로(640) 및 제1피스톤 제어밸브 유로(316)와 연결되지 않게 되며, 이로 인해, 전술한 바와 같이, 타격력 조절밸브(330)는 상승하지 않고 제3챔버(130)의 하부에 위치한 채 유지되게 된다.In this case, the third passage 530 connected to the inlet 410 is closed so that it is not connected to the third connecting passage 630, the fourth connecting passage 640, and the first piston control valve passage 316. Therefore, as described above, the striking force control valve 330 is maintained without being raised in the lower portion of the third chamber (130).
반면에, 도 6에 도시된 바와 같이, 로드(700)가 지반의 강암을 타격하게 되면, 로드(700)를 타격하는 피스톤(200)에 전달되는 반발력에 의해 상부 챔버(114)의 내부의 작동유의 압력이 순각적으로 상승하게 되면, 상기 작동유가 높은 압력으로 암반강도 감지밸브(350)의 하면을 가압하게 된다. On the other hand, as shown in Figure 6, when the rod 700 hits the hard rock of the ground, the operating oil in the interior of the upper chamber 114 by the repulsive force transmitted to the piston 200 hitting the rod 700 When the pressure increases rapidly, the hydraulic oil pressurizes the lower surface of the rock strength detecting valve 350 at a high pressure.
이 경우, 상기 작동유의 압력은 순간적으로 매우 높으므로 암반강도 감지밸브(350)의 상면 및 하면의 유압면적 차이에도 불구하고, 암반강도 감지밸브(350)는 상승하게 된다. 따라서, 제3유로(530)는 암반강도 감지밸브 홈(351)에 의해 제3연결 유로(630), 제4연결 유로(640) 및 제1피스톤 제어밸브 유로(316)와 모두 연결되며, 이로 인해, 타격력 조절밸브(330)가 용이하게 상승할 수 있게 된다.In this case, since the pressure of the hydraulic fluid is very high instantaneously, despite the difference in the hydraulic area between the upper and lower surfaces of the rock strength detecting valve 350, the rock strength detecting valve 350 is raised. Accordingly, the third passage 530 is connected to all of the third connecting passage 630, the fourth connecting passage 640, and the first piston control valve passage 316 by the rock strength detection valve groove 351. Therefore, the striking force control valve 330 can be easily raised.
위와 같이, 암반강도 감지밸브(350)의 승하강 여부에 따라 타격력 조절밸브(330)의 작동 시점이 제어되게 되며, 이는 타격력 조절밸브(330)의 승하강 운동과 함께 유압 타격 장치(10)의 타격 행정과 관련된 것이다. 전술한 바와 같이, 이러한 타격 행정, 즉, 장타 행정 및 단타 행정에 대한 자세한 설명은 후술한다.As described above, the operation time of the striking force control valve 330 is controlled according to whether the rock strength detection valve 350 is raised or lowered, which is accompanied by the lifting and lowering movement of the striking force control valve 330. It is related to the stroke stroke. As described above, a detailed description of the hitting stroke, that is, the long stroke and the short stroke will be described later.
이하, 복귀 유로에 대해 설명한다.Hereinafter, the return flow path will be described.
복귀 유로는 피스톤(200)과 실린더(100) 사이에 형성된 중간 챔버(113)와, 중간 챔버(113)와 타격력 조절밸브(330)를 연결하는 제5연결 유로(650)와, 작동유를 실린더 외부로 유출시키는 유출구(420)와 중간 챔버(113)를 연결하는 제4유로(540)를 포함하여 구성된다.The return flow path includes an intermediate chamber 113 formed between the piston 200 and the cylinder 100, a fifth connection flow path 650 connecting the intermediate chamber 113 and the striking force control valve 330, and the hydraulic oil to the outside of the cylinder. And a fourth passage 540 connecting the outlet 420 to the outlet and the intermediate chamber 113.
또한, 복귀 유로는 도 4에 도시된 바와 같이, 피스톤(200)이 하강하여 로드(700)를 타격하는 하사점에 위치할 때, 제5연결 유로(650), 중간 챔버(113) 및 제4유로(540)가 연결됨으로써 이루어지게 된다.In addition, when the return flow path is located at the bottom dead center where the piston 200 descends and hits the rod 700, as shown in FIG. 4, the fifth connection flow path 650, the intermediate chamber 113, and the fourth flow path. The flow path 540 is made by the connection.
위와 같은 복귀 유로는 피스톤 제어밸브(310)를 작동시킨 제1연결 유로(610)를 저압 라인과 연통시켜 피스톤 제어밸브(310)를 작동 전 위치로 복귀시키는 역할을 하며, 이로 인해, 종래의 유압 타격 장치와 달리, 피스톤 제어밸브(310)의 원활한 복귀를 달성할 수 있다.The return flow path as described above serves to return the piston control valve 310 to the pre-operation position by communicating the first connection flow path 610 that operated the piston control valve 310 with the low pressure line. Unlike the striking device, a smooth return of the piston control valve 310 can be achieved.
상세하게 설명하면, 제1연결 유로(610)로 고압의 작동유가 유동되어 피스톤 제어밸브(310)의 하부 몸체(313)의 하면을 가압한 후, 제1연결 유로(610)의 내부에 작동유가 잔존하게 된다. 이처럼 작동유가 계속 제1연결 유로(610) 내부에 계속 잔존하게 되면, 피스톤 제어밸브(310)가 하강하여 제2챔버(120)의 하부로 복귀하는데 방해가 된다.In detail, high pressure hydraulic fluid is flowed into the first connection channel 610 to press the lower surface of the lower body 313 of the piston control valve 310, and then hydraulic oil is introduced into the first connection channel 610. It remains. If the hydraulic fluid continues to remain in the first connection flow path 610 as described above, the piston control valve 310 is lowered to prevent the return to the lower portion of the second chamber 120.
다시 말해, 전술한 바와 같이, 피스톤 제어밸브(310)는 '돌출부(312)의 하면의 유압면적 < 상부 몸체(311)의 상면의 유압면적 < 돌출부(312)의 하면의 유압면적과 하부 몸체(313)의 하면의 유압면적' 조건을 만족하므로, 피스톤 제어밸브(310)가 용이하게 하강하기 위해서는 하부 몸체(313)의 하면에 가해지는 압력이 제거되어야 하며, 제1연결 유로(610)의 내부에 작동유가 잔존하게 되는 경우, 상기 압력이 제거되지 않으므로, 피스톤 제어밸브(310)가 하강하기 어렵게 되는 것이다.In other words, as described above, the piston control valve 310 is the hydraulic area of the lower surface of the protrusion 312 <hydraulic area of the upper surface of the upper body 311 <hydraulic area of the lower surface of the protrusion 312 and the lower body ( Since the hydraulic area of the lower surface of the lower surface 313 'is satisfied, the pressure applied to the lower surface of the lower body 313 must be removed in order for the piston control valve 310 to be easily lowered. When the hydraulic oil is left in the above, since the pressure is not removed, the piston control valve 310 is difficult to descend.
따라서, 상기 압력을 제거하기 위해, 복귀 유로가 필요하게 되며, 복귀 유로는 도 4에 도시된 바와 같이, 피스톤(200)이 하사점에 위치할 때, 타격력 조절밸브 홈(332)에 의해 제1연결 유로(610)와 연결되게 된다.Therefore, in order to remove the pressure, a return flow path is required, and as shown in FIG. 4, when the piston 200 is located at the bottom dead center, the return flow flow path is controlled by the hitting force control valve groove 332. The connection flow path 610 is connected.
이 경우, 제4유로(540)는 저압 라인 및 유출구(420)와 연결되어 있으므로, 섬프에 의해 흡입력이 발생하게 되며, 이러한 흡입력에 의해 제1연결 유로(610)에 잔존한 작동유는 타격력 조절밸브 홈(332), 제5연결 유로(650), 중간 챔버(113), 제4유로(540) 및 유출구(420)를 통해 저압 라인으로 흡입되게 되며, 이로 인해, 하부 몸체(313)의 하부에 가해지는 상기 압력이 제거되게 된다.In this case, since the fourth flow path 540 is connected to the low pressure line and the outlet 420, suction force is generated by the sump, and the hydraulic oil remaining in the first connection flow path 610 by the suction force is a blow force control valve. It is sucked into the low pressure line through the groove 332, the fifth connection flow path 650, the intermediate chamber 113, the fourth flow path 540 and the outlet 420, thereby, the lower portion of the lower body 313 The pressure applied is removed.
따라서, 피스톤 제어밸브(310)는 제2-2유로(522)를 통해 상부 몸체(311)의 상면을 가압하는 고압의 작동유에 의해 하강하게 되며, 이로 인해, 피스톤 제어밸브(310)가 하강하여 제2챔버(120)의 하부에 위치하도록 복귀된다.Accordingly, the piston control valve 310 is lowered by the high pressure hydraulic oil pressurizing the upper surface of the upper body 311 through the second-second flow passage 522, whereby the piston control valve 310 is lowered It is returned to be positioned below the second chamber 120.
전술한 바와 같이, 복귀 유로는 피스톤 제어밸브(310)의 상부 몸체(311), 하부 몸체(313) 및 돌출부(312)의 유압면적의 차이와 유기적으로 결합함으로써, 피스톤 제어밸브(310)의 작동을 원할하게 할 수 있다.As described above, the return flow path is organically coupled with the difference in the hydraulic areas of the upper body 311, the lower body 313 and the protrusion 312 of the piston control valve 310, thereby operating the piston control valve 310 You can make it smooth.
이하, 전술한 구성을 갖는 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)의 타격 행정에 대해 설명한다.Hereinafter, the stroke stroke of the hydraulic striking device 10 according to the preferred embodiment of the present invention having the above-described configuration will be described.
본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)는 로드(700)로 타격/파쇄하는 지반의 암반 강도에 따라 유압 타격 장치(10)의 밸브들 및 유로들을 유동하는 작동유에 의해 자동적으로 타격 행정을 전환할 수 있다. 따라서, 종래의 유압 타격 장치와 달리, 사용자가 지반의 암반의 상태를 파악하여 일일히 타격 행정을 전환할 필요가 없다. Hydraulic striking device 10 according to a preferred embodiment of the present invention is automatically hit by the hydraulic fluid flowing through the valves and the flow path of the hydraulic striking device 10 according to the rock strength of the ground hitting / breaking the rod 700 Can switch administration. Therefore, unlike the conventional hydraulic striking device, it is not necessary for the user to grasp the state of the rock on the ground and change the striking stroke.
상세하게 설명하면, 유압 타격 장치(10)가 암반의 강도가 약한 연암(軟巖)이 주를 이루는 지반을 타격할 경우, 암반강도 감지밸브(350)가 작동되지 않게 되며, 이로 인해, 도 2에 도시된 바와 같이, 상대적으로 낮은 피스톤(200)의 상사점(이 경우, 피스톤(200)의 하부 단턱(210)이 제5연결 유로(650)의 상부에 위치할 때까지 피스톤(200)이 상승한다)을 갖는 단타 행정(또는 '단타 모드' 라 한다)을 수행하게 된다. In detail, when the hydraulic striking device 10 strikes the ground which is mainly composed of soft rock having weak rock strength, the rock strength detecting valve 350 is not operated. Thus, FIG. 2 As shown in FIG. 1, the piston 200 is positioned until the top dead center of the relatively low piston 200 (in this case, the lower step 210 of the piston 200 is positioned above the fifth connection flow path 650). To perform a single stroke (or referred to as 'single mode').
반면에, 유압 타격 장치(10)가 암반의 강도가 강한 강암(强巖)이 주를 이루는 지반을 타격할 경우의 경우, 암반강도 감지밸브(350)가 작동되며, 이로 인해, 도 10에 도시된 바와 같이, 상대적으로 높은 피스톤(200)의 상사점(이 경우, 피스톤(200)의 하부 단턱(210)이 제6연결 유로(660)의 상부에 위치할 때까지 피스톤(200)이 상승한다)을 갖는 장타 행정(또는 '장타 모드' 라 한다)을 수행하게 된다.On the other hand, in the case where the hydraulic striking device 10 strikes the ground, which is mainly made of strong rock, the rock strength detection valve 350 is operated, and thus, shown in FIG. As shown, the piston 200 is raised until the top dead center of the relatively high piston 200 (in this case, the lower step 210 of the piston 200 is located above the sixth connection flow path 660). Will perform a long stroke (or 'hit mode').
이하, 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)가 연암이 주를 이루는 지반을 타격시 수행되는 단타 행정에 대해 상세하게 설명한다.Hereinafter, the hydraulic stroke device 10 according to a preferred embodiment of the present invention will be described in detail with respect to the single stroke stroke is performed when hitting the ground constituting the soft rock.
본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)의 단타 행정은 도 1, 도 2, 도 3, 도 4의 순으로 이루어진다.The single stroke of the hydraulic striking device 10 according to the preferred embodiment of the present invention is made in the order of FIGS. 1, 2, 3, and 4.
먼저, 지반의 연암을 파쇄하기 위해 유압 타격 장치(10)의 로드(700)를 지반에 닿게 위치시키면, 도 1에 도시된 바와 같이, 로드(700)가 상승하여 로드(700)의 상면이 로드 챔버(111)의 상부 보다 높은 위치에 위치하며, 피스톤(200)에 의해 타격될 준비가 되있는 상태가 된다.First, when the rod 700 of the hydraulic striking device 10 is placed in contact with the ground to crush the soft rock of the ground, as shown in Figure 1, the rod 700 is raised to the upper surface of the rod 700 It is located at a position higher than the upper portion of the chamber 111, and is ready to be hit by the piston 200.
도 1에 도시된 바와 같이, 고압의 작동유 고압 라인으로부터 공급되어 유입구(410)를 통해 실린더 내부로 유입되게 되면, 고압의 작동유는 제1 내지 제3유로(530)로 유동하게 된다.As shown in FIG. 1, when the high pressure hydraulic oil is supplied from the high pressure line to be introduced into the cylinder through the inlet 410, the high pressure hydraulic fluid flows to the first to third flow paths 530.
이 경우, 제2-1유로(521) 및 제2-2유로(522)는 피스톤 제어밸브(310)에 의해, 제1-2유로(512)는 타격력 조절밸브(330)에 의해, 제2-3유로(523) 및 제3유로(530)는 암반강도 감지밸브(350)에 의해 각각 폐쇄되어 상기 유로들을 통해 고압의 작동유가 다른 챔버들로 유동되지 못한다.In this case, the 2-1 channel 521 and the 2-2 channel 522 by the piston control valve 310, the 1-2 channel 512 by the striking force control valve 330, the second The -3 flow path 523 and the 3rd flow path 530 are closed by the rock strength detection valve 350, respectively, and the high pressure hydraulic fluid cannot flow to the other chambers through the flow paths.
반면에, 제1유로(510)와 하부 챔버(112)의 연결은 개방되어 있으므로, 고압의 작동유는 제1유로(510)를 통해 하부 챔버(112)로 유동하게 되며, 이로 인해, 하부 챔버(112)에 상기 고압의 작동유가 유입된다.On the other hand, since the connection of the first passage 510 and the lower chamber 112 is open, the high-pressure hydraulic fluid flows into the lower chamber 112 through the first passage 510, and thus, the lower chamber ( 112, the high pressure hydraulic oil flows in.
도 2에 도시된 바와 같이, 하부 챔버(112)로 고압의 작동유가 유입되면, 피스톤(200)은 상부로 상승하게 되고, 이로 인해, 하부 챔버(112)와 제5연결 유로(650)의 연결은 개방되게 된다. 따라서, 상기 고압의 작동유는 제5연결 유로(650), 타격력 조절밸브 홈(331), 제1연결 유로(610)순으로 차례대로 유동되고, 피스톤 제어밸브(310)의 하부 몸체(313)의 하면을 가압하게 된다. As shown in FIG. 2, when a high pressure hydraulic oil flows into the lower chamber 112, the piston 200 rises upward, and thus, the connection between the lower chamber 112 and the fifth connection flow path 650 is performed. Becomes open. Accordingly, the high pressure hydraulic fluid flows in the order of the fifth connection flow path 650, the striking force control valve groove 331, and the first connection flow path 610, and then the lower body 313 of the piston control valve 310. The lower surface will be pressurized.
위와 같이, 하부 몸체(313)의 하면이 고압의 작동유에 의해 가압됨에 따라, 피스톤 제어밸브(310)가 상승하게 되며, 고압 라인에서 공급된 고압의 작동유는 유입구(410), 제2유로(520) 및 제2-1유로(521)를 통해 제2챔버(120)의 상부 공간으로 유입된다.As described above, as the lower surface of the lower body 313 is pressurized by the high pressure hydraulic fluid, the piston control valve 310 is raised, the high pressure hydraulic oil supplied from the high pressure line is the inlet 410, the second flow path 520 And into the upper space of the second chamber 120 through the second-first flow path 521.
따라서, 제2챔버(120)의 상부 공간으로 유입된 고압의 작동유 제2연결 유로(620)를 통해 유동되어 상부 챔버(114)로 유입된다. 이 경우, 전술한 바와 같이, 고압 라인과 연결된 제2-1유로(521)로도 고압의 작동유가 유동되나, 암반강도 감지밸브(350)의 하부의 유압면적이 암반강도 감지밸브(350)의 상부의 유압면적보다 작으므로, 암반강도 감지밸브(350)는 상승하지 않게 된다.Therefore, it flows through the high pressure hydraulic fluid second connection flow path 620 introduced into the upper space of the second chamber 120 and flows into the upper chamber 114. In this case, as described above, the high-pressure hydraulic fluid also flows into the 2-1 flow path 521 connected to the high pressure line, but the hydraulic area of the lower portion of the rock strength detection valve 350 is upper than the rock strength detection valve 350. Since it is smaller than the hydraulic area of the rock strength detection valve 350 does not rise.
위와 같이, 상부 챔버(114)로 고압의 작동유가 유입되면, 도 3에 도시된 바와 같이, 피스톤(200)이 하강하게 된다.As above, when the high-pressure hydraulic oil flows into the upper chamber 114, as shown in Figure 3, the piston 200 is lowered.
도 4에 도시된 바와 같이, 피스톤(200)이 완전히 하강하여 하사점에 위치하게 되면 피스톤(200)의 하면은 로드(700)의 상면을 타격하게 되고, 타격된 로드(700)는 하강하여 지반의 연암을 타격함으로써, 연암의 파쇄가 달성된다.As shown in FIG. 4, when the piston 200 is completely lowered and positioned at the bottom dead center, the lower surface of the piston 200 hits the upper surface of the rod 700, and the hit rod 700 descends to the ground. By striking the soft rock of, fracture of soft rock is achieved.
로드(700)가 연암을 파쇄하게 되면, 피스톤(200)에는 반발력이 전달된다. 이 경우, 연암은 약한 강도를 가지므로, 피스톤(200)에 전달된 반발력은 상대적으로 미비하며, 이로 인해, 상부 챔버(114) 내부의 작동유 압력은 미비하게 상승한다.When the rod 700 crushes soft rock, the repulsive force is transmitted to the piston 200. In this case, since the soft rock has a weak strength, the repulsive force transmitted to the piston 200 is relatively inferior, whereby the hydraulic oil pressure inside the upper chamber 114 rises inadequately.
따라서, 상부 챔버(114)와 연결되는 제2연결 유로(620) 및 제2-1연결 유로(621)의 내부의 작동유의 압력은 암반강도 감지밸브(350)를 상승시키기엔 부족하며, 이로 인해, 암반강도 감지밸브(350)는 상승하지 않고 계속 제4챔버(140)의 하부에 위치한 채로 유지된다.Therefore, the pressure of the working oil inside the second connection passage 620 and the second connection passage 621 connected to the upper chamber 114 is insufficient to raise the rock strength detection valve 350, and thus The rock strength detection valve 350 does not rise and continues to be positioned below the fourth chamber 140.
또한, 피스톤(200)이 완전히 하강하여 하사점에 위치하면, 전술한 복귀 유로가 타격력 조절밸브 홈(331) 및 제1연결 유로(610)와 연결되게 되며, 이로 인해, 제1연결 유로(610)에 잔존하는 작동유가 저압 라인으로 흡입되어 회수된다. 따라서, 피스톤 제어밸브(310)는 하강하여, 도 1의 상태와 같이 제2챔버(120)의 하부로 복귀하게 된다.In addition, when the piston 200 is completely lowered and positioned at the bottom dead center, the return flow path described above is connected to the striking force control valve groove 331 and the first connection flow path 610, and thus, the first connection flow path 610. The hydraulic oil remaining in the) is sucked into the low pressure line and recovered. Accordingly, the piston control valve 310 is lowered and returned to the lower portion of the second chamber 120 as shown in FIG. 1.
위와 같이, 피스톤(200)이 하사점에 위치하여 로드(700)를 타격하게 되면, 피스톤(200)은 다시 도 1의 위치로 되돌아가게 되고, 전술한 순서를 반복함으로써, 피스톤(200)의 단타 행정이 반복될 수 있다. 즉, 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)는 도 1 내지 도 4의 상태를 반복함으로써, 유압 타격 장치(10)의 단타 모드를 실행하게 된다.As described above, when the piston 200 is located at the bottom dead center to hit the rod 700, the piston 200 is returned to the position of FIG. 1 again, by repeating the above-described procedure, the single stroke of the piston 200 The stroke can be repeated. That is, the hydraulic striking device 10 according to the preferred embodiment of the present invention repeats the state of FIGS. 1 to 4 to execute the short stroke mode of the hydraulic striking device 10.
이하, 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)가 강암이 주를 이루는 지반을 타격시 수행되는 장타 행정에 대해 상세하게 설명한다.Hereinafter, the hydraulic stroke device 10 according to a preferred embodiment of the present invention will be described in detail with respect to the stroke stroke is performed when hitting the ground of the main rock.
본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)의 장타 행정은 도 1, 도 2, 도 3, 도 5, 도 6, 도 7, 도 8, 도 9, 도 10, 도 11의 순으로 이루어진다.The long stroke of the hydraulic striking device 10 according to the preferred embodiment of the present invention is in the order of FIGS. 1, 2, 3, 5, 6, 7, 8, 9, 10, and 11. Is done.
유압 타격 장치(10)의 장타 행정은 단타 행정(도 1 내지 도 3의 상태)에서 시작되어, 강암을 타격한 후 수행되게 된다(도 5 내지 도 11의 상태). 따라서, 도 1 내지 도 3에 도시된 피스톤(200)의 상승, 하강 행정은 전술한 단타 행정과 동일하며, 이에 대한 설명은 생략한다.The long stroke of the hydraulic striking device 10 starts at the short stroke (state of Figs. 1 to 3) and is performed after striking the steel rock (state of Figs. 5 to 11). Therefore, the up and down strokes of the piston 200 illustrated in FIGS. 1 to 3 are the same as the above-described single stroke stroke, and a description thereof will be omitted.
유압 타격 장치(10)는 전술한 단타 행정에서 설명한 도 3의 상태를 거친 후, 도 5에 도시된 바와 같이, 피스톤(200)이 완전히 하강하여 하사점에 위치하게 되면 피스톤(200)의 하면은 로드(700)의 상면을 타격하게 되고, 타격된 로드(700)는 하강하여 지반의 강암을 타격함으로써, 강암의 파쇄가 달성된다.After the hydraulic striking device 10 passes through the state of FIG. 3 described in the above-mentioned single stroke, as shown in FIG. 5, when the piston 200 is completely lowered and positioned at the bottom dead center, the lower surface of the piston 200 is The upper surface of the rod 700 is hit, and the hit rod 700 descends and strikes the rock in the ground, thereby breaking up the rock.
로드(700)가 강암을 파쇄하면 피스톤(200)에 반발력이 전달된다. 이 경우, 강암은 강한 강도를 가지므로, 피스톤(200)에 전달된 반발력은 매우 크며, 이로 인해, 상부 챔버(114) 내부의 작동유의 압력은 순간적으로 고압으로 상승하게 된다. When the rod 700 crushes the hard rock, the repulsive force is transmitted to the piston 200. In this case, since the hard rock has a strong strength, the repulsive force transmitted to the piston 200 is very large, whereby the pressure of the hydraulic oil inside the upper chamber 114 rises instantaneously to a high pressure.
따라서, 상부 챔버(114)와 연결되는 제2연결 유로(620) 및 제2-1연결 유로(621)의 내부의 작동유의 압력은 암반강도 감지밸브(350)를 상승시키기에 충분하며, 이로 인해, 도 6에 도시된 바와 같이, 제2-1연결 유로(621)로 유동된 작동유가 암반강도 감지밸브(350)의 하면을 가압함으로써, 암반강도 감지밸브(350)가 상승하여 제4챔버(140)의 상부에 위치하게 된다.Therefore, the pressure of the working oil inside the second connection passage 620 and the second connection passage 621 connected to the upper chamber 114 is sufficient to raise the rock strength detection valve 350, and thus As shown in FIG. 6, the hydraulic fluid flowing into the second-first connection passage 621 presses the lower surface of the rock strength detection valve 350, thereby raising the rock strength detection valve 350 to increase the fourth chamber ( 140 is located on the top.
또한, 피스톤(200)이 완전히 하강하여 하사점에 위치하면, 전술한 복귀 유로가 타격력 조절밸브 홈(331) 및 제1연결 유로(610)와 연결되게 되며, 이로 인해, 제1연결 유로(610)에 잔존하는 작동유가 저압 라인으로 흡입되어 회수된다. 따라서, 피스톤 제어밸브(310)는 하강하여, 제2챔버(120)의 하부로 복귀하게 되며, 도 6에서는 피스톤 제어밸브(310)가 하강하는 중, 즉, 복귀 중인 상태이다.In addition, when the piston 200 is completely lowered and positioned at the bottom dead center, the return flow path described above is connected to the striking force control valve groove 331 and the first connection flow path 610, and thus, the first connection flow path 610. The hydraulic oil remaining in the) is sucked into the low pressure line and recovered. Accordingly, the piston control valve 310 is lowered and returned to the lower portion of the second chamber 120. In FIG. 6, the piston control valve 310 is lowered, that is, is being returned.
도 6에 도시된 바와 같이, 암반강도 감지밸브(350)가 상승하게 됨에 따라, 제3유로(530)와 제4연결 유로(640)는 암반강도 감지밸브 홈(351)에 의해 연결되게 되며, 이로 인해, 고압의 작동유가 유입구(410), 제3유로(530) 및 암반강도 감지밸브 홈(351)을 통해 제4연결 유로(640)로 유동하게 된다. As shown in FIG. 6, as the rock strength detection valve 350 is raised, the third flow path 530 and the fourth connection flow path 640 are connected by the rock strength detection valve groove 351. Thus, the high pressure hydraulic fluid flows to the fourth connection flow path 640 through the inlet 410, the third flow path 530, and the rock strength detection valve groove 351.
상부 챔버(114)의 내부의 작동유의 순간적인 압력 상승이 종료된 후에, 암반강도 감지밸브(350)는 도 7에 도시된 바와 같이 하강하여 제4챔버(140)의 하부에 위치하게 된다. After the instantaneous pressure rise of the working oil in the upper chamber 114 is finished, the rock strength detection valve 350 is lowered as shown in FIG. 7 to be positioned below the fourth chamber 140.
또한, 도 7에 도시된 바와 같이, 하강 중인 피스톤 제어밸브(310)가 소정의 위치, 즉, 제1피스톤 제어밸브 유로(316)가 제3연결 유로(630)와 제4연결 유로(640)를 연결하는 위치에 놓일 경우, 제4연결 유로(640)로 유동된 작동유는 제3연결 유로(630)를 통해 유동되어 타격력 조절밸브(330)의 하면을 가압하게 된다.In addition, as illustrated in FIG. 7, the descending piston control valve 310 has a predetermined position, that is, the first piston control valve flow path 316 has a third connection flow path 630 and a fourth connection flow path 640. When placed in the position connecting the hydraulic fluid flows to the fourth connection flow path 640 flows through the third connection flow path 630 to press the lower surface of the force control valve 330.
이처럼 하면이 가압된 타격력 조절밸브(330)는 도 8에 도시된 바와 같이, 제3챔버(130)의 상부로 상승하게 된다. As such, the lowering force of the striking force control valve 330 is raised to the upper portion of the third chamber 130, as shown in FIG.
이 경우, 하강 중인 피스톤 제어밸브(310)는 하강을 마치게 되며, 이로 인해, 제2챔버(120)의 하부로 복귀하게 된다. 또한, 피스톤 제어밸브(310)가 하강함에 따라 제1피스톤 제어밸브 유로(316)가 제3, 4연결 유로(630, 640)를 더이상 연결하지 않게 되고, 제1피스톤 제어밸브 유로(316)에 잔존한 작동유는 제2피스톤 제어밸브 유로(317), 제5-1유로(551), 제5유로(550) 및 유출구(420)를 거쳐 저압 라인으로 회수되게 된다.In this case, the descending piston control valve 310 is finished falling, thereby returning to the lower portion of the second chamber 120. In addition, as the piston control valve 310 descends, the first piston control valve flow passage 316 no longer connects the third and fourth connection flow passages 630 and 640, and the first piston control valve flow passage 316 is no longer connected to the first piston control valve flow passage 316. The remaining hydraulic oil is recovered to the low pressure line through the second piston control valve flow path 317, the 5-1st flow path 551, the fifth flow path 550, and the outlet 420.
위와 같이, 타격력 조절밸브(330)가 상승한 상태에서, 하부 챔버(112)의 내부에는 고압 라인에 연결된 유입구(410) 및 제1유로(510)를 통해 고압의 작동유가 유입되며, 이로 인해, 도 9에 도시된 바와 같이, 피스톤(200)이 상승하게 된다.As described above, in the state in which the striking force control valve 330 is raised, the high pressure hydraulic fluid is introduced into the lower chamber 112 through the inlet 410 and the first flow passage 510 connected to the high pressure line, thereby, FIG. As shown in FIG. 9, the piston 200 is raised.
이 경우, 타격력 조절밸브(330)가 상승하였기 때문에, 제5연결 유로(650)와 피스톤(200)을 상승시킨 하부 챔버(112)의 고압의 작동유는 타격력 조절밸브(330)에 의해 막혀 타격력 조절밸브 홈(331) 및 제1연결 유로(610)로 유동되지 못한다. 즉, 타격력 조절밸브(330)의 상승으로 인해, 제5연결 유로에서 제1연결 유로(610)로의 연결이 폐쇄된다.In this case, since the striking force control valve 330 is raised, the high-pressure hydraulic fluid of the lower chamber 112 in which the fifth connection flow path 650 and the piston 200 are raised is blocked by the striking force control valve 330 to adjust the striking force. It may not flow into the valve groove 331 and the first connection flow path 610. That is, due to the rising of the striking force control valve 330, the connection from the fifth connection passage to the first connection passage 610 is closed.
따라서, 도 10에 도시된 바와 같이, 피스톤(200)은 하부 단턱(210)이 제6연결 유로(660) 상부까지 위치할 때까지 상승하게 된다. 이 경우, 피스톤(200)의 상사점은 전술한 단타 행정, 즉, 도 2의 피스톤(200)의 상사점보다 더 높은 위치에 도달하게 되며, 이로 인해, 장타 행정의 피스톤(200) 상승이 달성된다.Accordingly, as shown in FIG. 10, the piston 200 is raised until the lower step 210 is positioned to the upper portion of the sixth connection channel 660. In this case, the top dead center of the piston 200 reaches a position higher than the above-described single stroke, that is, the top dead center of the piston 200 of FIG. 2, whereby the piston 200 rising in the long stroke is achieved. do.
위와 같이, 피스톤(200)이 상승한 후, 타격력 조절밸브(330)의 하면을 가압하던 작동유, 즉, 제3연결 유로(630)의 내부의 작동유의 압력은 강하되게 되며, 이로 인해, 도 11에 도시된 바와 같이, 타격력 조절밸브(330)는 스프링(131)의 탄성력에 의해 하부로 하강하여, 제4챔버(140)의 하부로 복귀하게 된다.As described above, after the piston 200 is raised, the pressure of the hydraulic oil pressurizing the lower surface of the striking force control valve 330, that is, the hydraulic oil inside the third connection flow path 630 is lowered, and, as a result, in FIG. As shown, the striking force control valve 330 is lowered by the elastic force of the spring 131, it is returned to the lower portion of the fourth chamber 140.
따라서, 복귀된 타격력 조절밸브(330)의 타격력 조절밸브 홈(331)에 의해 제5연결 유로(650)와 제1연결 유로(610)는 연결되게 되며, 이로 인해, 하부 챔버(112)에 유입된 고압의 작동유는 피스톤 제어밸브(310)의 하부 몸체(313)의 하면을 가압하게 된다.Therefore, the fifth connection flow path 650 and the first connection flow path 610 are connected to each other by the impact force control valve groove 331 of the returned stroke force control valve 330, thereby flowing into the lower chamber 112. The high pressure hydraulic oil is pressurized on the lower surface of the lower body 313 of the piston control valve 310.
하부 몸체(313)의 하면이 가압됨에 따라 피스톤 제어밸브(310)는 상승하게 되며, 이로 인해, 고압의 작동유가 유입구(410), 제2유로(520), 제2-1유로(521), 제2하부 챔버(112), 제2연결 유로(620)순으로 유동되어 상부 챔버(114)로 유입된다. As the lower surface of the lower body 313 is pressurized, the piston control valve 310 is raised, whereby high-pressure hydraulic fluid flows into the inlet 410, the second flow path 520, and the second flow path 521. The second lower chamber 112 flows in the order of the second connection flow path 620 and flows into the upper chamber 114.
이처럼, 고압의 작동유가 상부 챔버(114)로 유입되면 다시 피스톤(200)이 하강하여 로드(700)를 타격하게 된다. As such, when the high pressure hydraulic fluid flows into the upper chamber 114, the piston 200 descends to strike the rod 700.
위와 같이, 피스톤(200)이 하사점까지 하강하여 피스톤(200)의 하면이 로드(700)의 상면을 타격하게 되면, 피스톤(200)은 다시 반발력을 받게 되고, 전술한 순서를 반복함으로써, 피스톤(200)의 장타 행정이 반복될 수 있다. As described above, when the piston 200 descends to the bottom dead center and the lower surface of the piston 200 hits the upper surface of the rod 700, the piston 200 is subjected to the repulsive force again, and by repeating the above-described procedure, the piston The long stroke of 200 may be repeated.
즉, 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)는 도 1 내지 도 3, 도 5 내지 도 11의 상태를 순서대로 수행하고 난 후, 도 5 내지 도 11의 상태를 순서대로 반복함으로써, 유압 타격 장치(10)의 장타 모드를 실행하게 된다.That is, the hydraulic striking device 10 according to the preferred embodiment of the present invention performs the states of FIGS. 1 to 3 and 5 to 11 in order, and then repeats the states of FIGS. 5 to 11 in order. The long hit mode of the hydraulic striking device 10 is executed.
또한, 전술한 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)의 타격 행정은 로드(700)로 타격하는 지반의 주를 이루는 암반의 상태에 따라 자동으로 타격 행정이 전환될 수 있다.In addition, the stroke stroke of the hydraulic striking device 10 according to the preferred embodiment of the present invention can be automatically switched to the stroke stroke according to the state of the rock constituting the base of the ground striking the rod 700.
예컨데, 암반의 파쇄가 진행됨에 따라 파쇄할 암반의 상태가 강암에서 연암으로 바뀔 경우, 피스톤(200)이 로드(700)를 타격할 때, 반발력이 크게 발생하지 않으며, 이로 인해, 암반강도 감지밸브(350)가 작동하지 않는다. For example, when the rock to be fractured is changed from hard rock to soft rock as the rock fracture progresses, when the piston 200 hits the rod 700, the repulsive force does not occur significantly, and thus, the rock strength detection valve 350 does not work.
따라서, 전술한 바와 같이, 피스톤(200)은 피스톤(200)의 하부 단턱(210)이 제5연결 유로(650)의 상부에 위치할 정도까지만 상승하게 되며, 이로 인해, 유압 타격 장치(10)는 단타 행정을 수행할 수 있게 된다.Therefore, as described above, the piston 200 is raised only to the extent that the lower step 210 of the piston 200 is located above the fifth connection flow path 650, thereby, the hydraulic striking device 10 Can perform a single stroke.
또한, 암반의 파쇄가 진행됨에 따라 파쇄할 암반의 상태가 연암에서 강암으로 바뀔 경우, 피스톤(200)이 로드(700)를 타격할 때, 큰 반발력이 발생하며, 이로 인해, 암반강도 감지밸브(350)가 작동하여, 제4챔버(140)의 상부로 상승하게 된다. 따라서, 전술한 바와 같이, 피스톤(200)은 피스톤(200)의 하부 단턱(210)이 제6연결 유로(660)의 상부에 위치할 때까지 상승하게 되며, 이로 인해, 유압 타격 장치(10)는 장타 행정을 수행할 수 있게 된다.In addition, when the rock to be fractured is changed from soft rock to hard rock as the rock fracture proceeds, when the piston 200 hits the rod 700, a large repulsion force occurs, and thus, the rock strength detection valve ( 350 is operated to ascend above the fourth chamber 140. Therefore, as described above, the piston 200 is raised until the lower step 210 of the piston 200 is located above the sixth connection flow path 660, thereby, the hydraulic striking device 10 Can perform a long stroke.
또한, 전술한 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)의 장타 행정은 도 10의 피스톤(200)의 상사점보다 낮은 상사점을 가질 수 있다.In addition, the long stroke of the hydraulic striking device 10 according to the preferred embodiment of the present invention may have a top dead center lower than the top dead center of the piston 200 of FIG.
예컨데, 피스톤(200)에 전달되는 반발력이 암반강도 감지밸브(350)를 작동시키기에는 충분하나 암반강도 감지밸브(350)를 제4챔버(140)의 중간 지점까지만 상승시킬 정도의 힘인 경우, 제3연결 유로(630)를 통해 유동하는 작동유의 양이 위의 경우 보다 상대적으로 적게 유동하게 된다. 따라서, 상기 상대적으로 적은 양의 작동유에 의해 타격력 조절밸브(330)는 짧은 시간 동안만 상승하게 된다.For example, when the repulsive force transmitted to the piston 200 is sufficient to operate the rock strength detecting valve 350, but is enough to raise the rock strength detecting valve 350 to an intermediate point of the fourth chamber 140. The amount of the working oil flowing through the three connection flow path 630 will flow relatively less than the above case. Therefore, the impact force control valve 330 is raised only for a short time by the relatively small amount of hydraulic fluid.
따라서, 고압 라인에 연결된 유입구(410) 및 제1유로(510)를 통해 고압의 작동유가 하부 챔버(112) 내부로 유입되어 피스톤(200)이 상승하게 될 때, 도 10의 피스톤(200)의 상사점의 높이까지 올라가기 전에 타격력 조절밸브(300)가 하강하게 된다. Therefore, when the high pressure hydraulic fluid flows into the lower chamber 112 through the inlet 410 and the first flow path 510 connected to the high pressure line, the piston 200 rises. Strike force control valve 300 is lowered before going up to the height of the top dead center.
위와 같이, 타격력 조절밸브(300)가 하강함에 따라, 하부 챔버(112)에 유입된 작동유는 제5연결 유로(650), 타격력 조절밸브 홈(331) 및 제1연결 유로(610)를 통해 피스톤 제어밸브(310)의 하부 몸체(313)를 가압하게 되며, 이로 인해, 유입구(410), 제2유로(520), 제2-1유로(521), 제2하부 챔버(112), 제2연결 유로(620)순으로 유동되어 상부 챔버(114)로 유입된다. 따라서, 피스톤(200)은 상부 챔버(114)에 유입된 고압의 작동유에 의해 하강하여 로드(700)를 타격하게 된다.As described above, as the striking force control valve 300 descends, the hydraulic fluid introduced into the lower chamber 112 passes through the fifth connecting passage 650, the striking force control valve groove 331, and the first connecting passage 610. The lower body 313 of the control valve 310 is pressurized, which causes the inlet 410, the second flow path 520, the 2-1 flow path 521, the second lower chamber 112, and the second. Flow in the connection flow path 620 flows into the upper chamber 114. Therefore, the piston 200 descends by the high pressure hydraulic oil introduced into the upper chamber 114 to strike the rod 700.
전술한 바와 같이, 타격력 조절밸브(300)가 상승하는 시간에 따라 피스톤(200)의 상사점은 도 2의 상태에서의 피스톤(200)의 상사점의 높이보다 높으나, 도 10의 상태에서의 피스톤(200)의 상사점의 높이보다 낮게 위치하게 된다.As described above, the top dead center of the piston 200 is higher than the height of the top dead center of the piston 200 in the state of FIG. 2 according to the time when the striking force control valve 300 rises, but the piston in the state of FIG. 10. It is located lower than the height of the top dead center of (200).
즉, 암반 상태에 따라 피스톤(200)에 전달되는 반발력이 암반강도 감지밸브(350)를 상승시킬 정도의 힘만을 가지게 되면, 상기 반발력의 크기에 따라 전술한 단타 행정의 피스톤(200)의 상사점(도 2의 상태)과, 전술한 장타 행정의 피스톤(200)의 상사점(도 10의 상태)의 범위 내에서 피스톤(200)의 상사점이 위치할 수 있는 것이다. 따라서, 피스톤(200)의 상사점의 위치가 도 2의 상태와 도 10의 상태 범위 내에 위치할 수 있게 되며, 이로 인해, 유압 타격 장치(10)의 타격 행정은 암반 상태에 따른 연속적인 거동, 즉, 단계적 거동이 아닌 무단의 거동이 이루어질 수 있다.That is, when the repulsive force transmitted to the piston 200 according to the rock state has only a force enough to raise the rock strength detecting valve 350, the top dead center of the piston 200 of the above-mentioned single stroke according to the magnitude of the repulsive force The top dead center of the piston 200 can be located within the range of (the state of FIG. 2) and the top dead center (state of FIG. 10) of the piston 200 of the above-mentioned long stroke. Thus, the position of the top dead center of the piston 200 can be located within the range of the state of FIG. 2 and the state of FIG. 10, whereby the stroke stroke of the hydraulic striking device 10 has a continuous behavior according to the rock state, That is, stepless behavior may be achieved rather than stepwise behavior.
*전술한 무단의 거동을 통해 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)는 지반을 파쇄할 때, 파쇄하는 암반의 상태가 계속 변하게 되더라도 이에 맞게 자동적으로 피스톤(200)의 상사점의 위치가 바뀔 수 있다. 따라서, 타격 행정이 변환되어 즉각적으로 대응할 수 있으며, 이로 인해, 유압 타격 장치(10)의 파쇄 효율이 상승한다는 효과가 있다.* When the hydraulic striking device 10 according to a preferred embodiment of the present invention through the stepless behavior described above, when the ground is crushed, even if the state of the crushed rock continues to change accordingly the top dead center of the piston 200 accordingly The location may change. Therefore, the striking stroke can be converted and responded immediately, thereby increasing the breaking efficiency of the hydraulic striking device 10.
본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)는 전술한 타격력 행정 뿐만 아니라, 피스톤의 공타를 방지하는 공타방지 모드를 수행할 수 있다.The hydraulic striking device 10 according to the preferred embodiment of the present invention may perform an anti-batting mode for preventing the hitting of the piston as well as the above-described stroke force stroke.
이하, 유압 타격 장치(10)의 공타(空打)에 대해 설명한다.Hereinafter, the vacancy of the hydraulic striking device 10 will be described.
유압 타격 장치(10)의 로드(700)가 지반에 닿게 되면, 도 1에 도시된 바와 같이, 로드(700)의 상면이 로드 챔버(111)의 하부보다 높게 위치하도록 상승된 상태로 유지된다. 따라서, 피스톤(200)이 하강하여 하사점에 위치하게 되면, 피스톤(200)은 로드(700)의 상면을 타격하게 되며, 피스톤(200)으로부터 로드(700)에 전달된 타격력에 의해 로드(700)가 하강함으로써, 지반의 암반 등을 파쇄할 수 있게 된다.When the rod 700 of the hydraulic striking device 10 touches the ground, as shown in FIG. 1, the upper surface of the rod 700 is maintained in an elevated state so as to be positioned higher than the lower portion of the load chamber 111. Therefore, when the piston 200 is lowered and positioned at the bottom dead center, the piston 200 hits the upper surface of the rod 700, and the rod 700 is transmitted by the impact force transmitted from the piston 200 to the rod 700. As the) descends, the rock or the like of the ground can be broken.
반면에, 로드(700)가 지반과 이격되어 있어 지반에 닿지 않거나, 진흙 등과 같이 연약 지반에 닿을 경우, 도 12에 도시된 바와 같이, 로드(700)가 하강하여, 로드(700)의 상면이 로드 챔버(111)의 하부보다 낮게 위치하게 된다. 따라서, 피스톤(200)이 하강하더라도, 로드(700)의 상면을 타격하지 못하게 된다. On the other hand, when the rod 700 is spaced apart from the ground and does not touch the ground or touches a soft ground such as mud, as shown in FIG. 12, the rod 700 descends and the top surface of the rod 700 is lowered. It is located lower than the lower portion of the load chamber 111. Therefore, even if the piston 200 is lowered, it is impossible to hit the upper surface of the rod 700.
위와 같이, 피스톤(200)이 로드(700)를 타격하지 못하는 것을 공타라고 하며, 공타가 실행될 경우, 전술한 바와 같이, 피스톤(200)이 로드 챔버(111)의 하부를 타격하게 되어 피스톤(200) 및 로드 챔버(111)의 파손이 발생하게 된다.As described above, the piston 200 is not hitting the rod 700 is called hitting, when the hit is executed, as described above, the piston 200 hits the lower portion of the load chamber 111 piston 200 And breakage of the load chamber 111 occurs.
따라서, 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)는 이러한 공타로 인한 피스톤(200) 및 로드 챔버(111)의 파손을 방지하기 위해 회전식 밸브로 구성되는 타격력 조절밸브(330)를 회전시킴으로써, 피스톤(200)의 공타를 방지하는 공타방지 모드를 수행할 수 있다.Therefore, the hydraulic striking device 10 according to the preferred embodiment of the present invention rotates the striking force control valve 330 composed of a rotary valve to prevent damage to the piston 200 and the load chamber 111 due to such a strike. By doing so, it is possible to perform the anti-ballout mode to prevent the ball of the piston 200.
이하, 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)의 공타방지 모드에 대해 상세하게 설명한다.Hereinafter, the anti-ballout mode of the hydraulic striking device 10 according to a preferred embodiment of the present invention will be described in detail.
본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)의 공타방지 모드는 유압 타격 장치(10)의 로드(700)가 지면에 닿기 전에 타격력 조절밸브(330)를 회전시킴으로써 실행된다.The anti-ballout mode of the hydraulic striking device 10 according to the preferred embodiment of the present invention is executed by rotating the striking force control valve 330 before the rod 700 of the hydraulic striking device 10 touches the ground.
위와 같이, 유압 타격 장치(10)의 로드(700)가 지면에 닿기 전, 즉, 유압 타격 장치(10)가 지면 위에 위치하게 될 경우, 유압 타격 장치(10)의 로드(700)는 중력에 의해 하강되며, 도 12에 도시된 바와 같이, 로드(700)의 상면이 로드 챔버(111)의 하부보다 낮은 위치에 위치하게 된다. 또한, 피스톤(200)은 중력에 의해 그 하면이 로드 챔버(111)의 하부에 닿게 된다.As above, before the rod 700 of the hydraulic striking device 10 touches the ground, that is, when the hydraulic striking device 10 is positioned on the ground, the rod 700 of the hydraulic striking device 10 is subjected to gravity. 12, the upper surface of the rod 700 is positioned at a lower position than the lower portion of the load chamber 111, as shown in FIG. 12. In addition, the lower surface of the piston 200 is brought into contact with the lower portion of the load chamber 111 by gravity.
이처럼, 로드(700) 및 피스톤(200)이 하강된 상태에서 타격력 조절밸브(330)를 회전시키면, 도 12에 도시된 바와 같이, 타격력 조절밸브 유로(332)가 제1-2유로(512)와 제5연결 유로(650)를 연결하게 된다.As such, when the striking force control valve 330 is rotated in a state in which the rod 700 and the piston 200 are lowered, as shown in FIG. 12, the striking force control valve flow path 332 is the first-second flow path 512. And the fifth connection passage 650 are connected.
또한, 타격력 조절밸브 유로(332)는 타격력 조절밸브 홈(331)에 의해 복귀 유로와 연결되게 된다.In addition, the striking force control valve flow path 332 is connected to the return flow path by the striking force control valve groove 331.
따라서, 고압 라인의 펌프에 의해 고압의 작동유가 유입구(410)로 공급되면, 고압의 작동유는 제1유로(510), 제1-2유로(512), 타격력 조절밸브 유로(332), 타격력 조절밸브 홈(331)순으로 유동된 후, 복귀 유로로 유동된다. Therefore, when the high pressure hydraulic oil is supplied to the inlet 410 by the pump of the high pressure line, the high pressure hydraulic oil is provided in the first flow passage 510, the 1-2 flow passage 512, the blow force control valve flow path 332, and the blow force control. After flowing in the valve groove 331 order, it flows to a return flow path.
전술한 바와 같이, 복귀 유로는 저압 라인과 연결되어 있으므로, 저압 라인의 섬프의 흡입력 의해 작동유가 제5연결 유로(650), 중간 챔버(113), 제4유로(540), 유출구(420)순으로 유동되어 저압 라인으로 회수되게 된다.As described above, since the return flow path is connected to the low pressure line, the hydraulic oil is supplied to the fifth connection flow path 650, the intermediate chamber 113, the fourth flow path 540, and the outlet 420 by the suction force of the sump of the low pressure line. Flows to the low pressure line and is recovered.
위와 같이, 유압 타격 장치(10)의 공타방지 모드가 실행되면, 고압 라인으로 공급된 작동유는 타격력 조절밸브 유로(332) 및 중간 챔버(113)를 거쳐 바로 저압 라인으로 회수되게 되며, 이로 인해, 피스톤(200)의 승하강 작동이 이루어지지 않게 된다. 따라서, 유압 타격 장치(10)의 공타가 발생하지 않게 되며, 이로 인해, 피스톤(200)이 파손되는 것을 방지할 수 있다.As described above, when the anti-ballast mode of the hydraulic striking device 10 is executed, the hydraulic oil supplied to the high pressure line is directly recovered to the low pressure line via the striking force control valve flow path 332 and the intermediate chamber 113, and thus, Lifting operation of the piston 200 is not made. Therefore, the pitting of the hydraulic striking device 10 does not occur, whereby it is possible to prevent the piston 200 from being damaged.
전술한 본 발명의 바람직한 실시 예에 따른 공타방지 모드는 로드(700)가 상승하여 피스톤(200)을 도 1의 위치(하부 챔버(112)가 제1유로(510)와 연결되는 위치)까지 상부로 밀어내면, 유압 타격 장치(10)의 단타 행정 및 장타 행정을 실행할 수 있게 된다.In the anti-battery mode according to the preferred embodiment of the present invention described above, the rod 700 is raised to raise the piston 200 to the position of FIG. 1 (the lower chamber 112 is connected to the first passage 510). When it is pushed in, the single stroke and the long stroke of the hydraulic striking device 10 can be executed.
다시 말해, 타격력 조절밸브(330)를 회전시켜 타격력 조절밸브 홈(331)이 제1-2유로(512)와 제5연결 유로(650)를 연결시킨 공타방지 모드를 실행시킨 상태에서 로드(700)를 지면에 닿게 하면, 제1유로(510)를 통해 고압의 작동유가 하부 챔버(112)로 유입될 수 있으며, 전술한 단타 행정 및 장타 행정의 타격 행정이 달성될 수 있다.In other words, the rod 700 in the state in which the striking force control valve 330 is rotated so that the striking force control valve groove 331 executes the anti-ballout mode in which the first-second flow path 512 and the fifth connection flow path 650 are connected. ) Touches the ground, the high-pressure hydraulic oil can be introduced into the lower chamber 112 through the first flow path 510, the above-described stroke stroke and the stroke stroke can be achieved.
위와 같이, 본 발명의 바람직한 실시 예에 따른 유압 타격 장치(10)는 종래의 유압 타격 장치와 달리 단타 행정 또는 장타 행정을 수행할 때, 공타 방지 모드를 병행하여 사용할 수 있으며, 이로 인해, 연약 지반을 파쇄할 경우나, 로드(700)가 지반에 이격된 채로 피스톤(200)이 작동할 경우에도, 공타가 방지되어 피스톤(200) 및 로드 챔버(111)의 파손을 방지할 수 있다.As described above, the hydraulic striking device 10 according to a preferred embodiment of the present invention, unlike the conventional hydraulic striking device when performing a single stroke or a long stroke, can be used in parallel with the anti-ballet mode, and thus, soft ground In the case of crushing or when the piston 200 is operated while the rod 700 is spaced apart from the ground, striking is prevented and damage to the piston 200 and the rod chamber 111 can be prevented.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art various modifications of the present invention without departing from the spirit and scope of the invention described in the claims below. Or it may be modified.
(부호의 설명)(Explanation of the sign)
10: 유압 타격 장치 100: 실린더10: hydraulic strike device 100: cylinder
110: 제1챔버 111: 로드 챔버110: first chamber 111: load chamber
112: 하부 챔버 113: 중간 챔버112: lower chamber 113: intermediate chamber
114: 상부 챔버 115: 완충 챔버114: upper chamber 115: buffer chamber
120: 제2챔버 130: 제3챔버120: second chamber 130: third chamber
131: 스프링 140: 제4챔버131: spring 140: fourth chamber
160: 어큐뮬레이터 200: 피스톤160: accumulator 200: piston
210: 하부 단턱 220: 상부 단턱210: lower step 220: upper step
310: 피스톤 제어밸브 311: 상부 몸체310: piston control valve 311: upper body
312: 돌출부 313: 하부 몸체312: protrusion 313: lower body
314: 피스톤 제어밸브 홈 316: 제1피스톤 제어밸브 유로314: piston control valve groove 316: first piston control valve flow path
317: 제2피스톤 제어밸브 유로 330: 타격력 조절밸브317: second piston control valve flow path 330: striking force control valve
331: 타격력 조절밸브 홈 332: 타격력 조절밸브 유로331: Strike force control valve groove 332: Strike force control valve flow path
350: 암반강도 감지밸브 351: 암반강도 감지밸브 홈350: rock strength detection valve 351: rock strength detection valve groove
410: 유입구 420: 유출구410: inlet 420: outlet
510: 제1유로 511: 제1-1유로510: Euro 1 511: Euro 1-1
512: 제1-2유로 520: 제2유로512: 1-2 euro 520: 2nd euro
521: 제2-1유로 522: 제2-2유로521: Euro 2-1 522: Euro 2-2
523: 제2-3유로 530: 제3유로523 euro 2-3, 530 euro third
540: 제4유로 541: 제4-1유로540: Euro 4 541: Euro 4-1
550: 제5유로 551: 제5-1유로550: Euro 5 551: Euro 5-1
610: 제1연결 유로 620: 제2연결 유로610: first connection flow path 620: second connection flow path
621: 제2-1연결 유로 630: 제3연결 유로621: 2-1st connection flow path 630: 3rd connection flow path
640: 제4연결 유로 650: 제5연결 유로640: fourth connection channel 650: fifth connection channel
660: 제6연결 유로 700: 로드660: sixth connection euro 700: rod
Claims (4)
- 실린더;cylinder;상기 실린더 내에서 승하강 가능하게 설치되는 피스톤;A piston installed in the cylinder to move up and down;상기 피스톤과 상기 실린더 사이에서 상부에 구비되는 상부 챔버와 하부에 구비되는 형성된 하부 챔버;An upper chamber provided above and a lower chamber provided below between the piston and the cylinder;상기 피스톤의 승하강 작동을 제어하는 피스톤 제어밸브;A piston control valve for controlling the lifting operation of the piston;상기 피스톤 제어밸브의 작동시점을 제어하는 타격력 조절밸브;A striking force regulating valve controlling an operation time of the piston control valve;상기 타격력 제어 밸브의 작동시점을 제어하는 암반 강도 감지 밸브; 및A rock strength sensing valve controlling an operation time of the striking force control valve; And상기 피스톤 제어밸브를 작동시킨 연결 유로를 저압 라인과 연통시켜 상기 피스톤 제어밸브를 작동 전 위치로 복귀시키는 복귀 유로;를 포함하는 것을 특징으로 하는 유압 타격 장치.And a return flow path for communicating the connection flow path for operating the piston control valve with the low pressure line and returning the piston control valve to the pre-operation position.
- 제1항에 있어서,The method of claim 1,상기 피스톤 제어밸브와 상기 타격력 조절밸브를 연결하는 제1연결 유로;를 더 포함하되,Further comprising: a first connecting passage for connecting the piston control valve and the striking force control valve,상기 복귀 유로는,The return flow path,상기 피스톤과 상기 실린더 사이에 형성된 중간 챔버;An intermediate chamber formed between the piston and the cylinder;상기 중간 챔버와 상기 타격력 조절밸브를 연결하는 제5연결 유로; 및A fifth connection passage connecting the intermediate chamber and the striking force control valve; And작동유를 상기 실린더 외부로 유출시키는 유출구와 상기 중간 챔버를 연결하는 제4유로;를 포함하고,And a fourth flow path connecting the outlet port and the intermediate chamber to allow the hydraulic oil to flow out of the cylinder.상기 피스톤의 하사점에서 상기 제1연결유로의 작동유는 상기 타격력 조절밸브와 상기 복귀 유로를 통해 상기 저압라인과 연통되는 것을 특징으로 하는 유압 타격 장치.The operating oil of the first connection passage at the bottom dead center of the piston is a hydraulic striking device, characterized in that in communication with the low pressure line through the impact force control valve and the return flow path.
- 제1항에 있어서,The method of claim 1,상기 피스톤 제어밸브는,The piston control valve,그 상면이 작동유에 의해 가압되는 상부 몸체;An upper body whose upper surface is pressed by the working oil;그 하면이 작동유에 의해 가압되며, 상기 상부 몸체의 측면에 형성되는 돌출부; 및The lower surface is pressed by the working oil, the protrusion formed on the side of the upper body; And그 하면이 작동유에 의해 가압되며, 상기 상부 몸체의 하부에 형성되는 하부 몸체;를 포함하고,Its lower surface is pressurized by the operating oil, and the lower body formed on the lower portion of the upper body;상기 상부 몸체의 상면의 유압면적은 상기 돌출부의 하면의 유압면적보다 크되, 상기 돌출부의 하면과 상기 하부 몸체의 하면의 유압면적의 합보다는 작은 것을 특징으로 하는 유압 타격 장치.Hydraulic area of the upper surface of the upper body is greater than the hydraulic area of the lower surface of the protrusion, the hydraulic striking device, characterized in that less than the sum of the hydraulic area of the lower surface of the protrusion and the lower body.
- 제1항에 있어서,The method of claim 1,상기 타격력 조절밸브는 회전식 밸브로 구성되며, 상기 타격력 조절밸브의 내부에 형성된 타격력 조절밸브 유로;를 포함하고, The striking force control valve is composed of a rotary valve, the striking force control valve flow path formed inside the striking force control valve;상기 타격력 조절밸브 유로는 상기 타격력 조절밸브의 회전에 따라 고압 라인과 저압 라인을 연통시키는 것을 특징으로 하는 유압 타격 장치.The striking force control valve flow path is a hydraulic striking device, characterized in that for communicating the high pressure line and the low pressure line in accordance with the rotation of the force control valve.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160077491A KR101805038B1 (en) | 2016-06-21 | 2016-06-21 | Hydraulic percussion apparatus |
KR10-2016-0077491 | 2016-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017222210A1 true WO2017222210A1 (en) | 2017-12-28 |
Family
ID=60784832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/005856 WO2017222210A1 (en) | 2016-06-21 | 2017-06-05 | Hydraulic impact device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101805038B1 (en) |
WO (1) | WO2017222210A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11078929B2 (en) * | 2017-07-24 | 2021-08-03 | Soosan Heavy Industries Co., Ltd. | Hydraulic striking device |
CN114908833A (en) * | 2022-05-26 | 2022-08-16 | 赵德朝 | Air-beating type hydraulic breaking hammer based on Tesla valve |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102063918B1 (en) * | 2018-05-25 | 2020-01-08 | 디앤에이중공업 주식회사 | Idle blow preventing structure in hydraulic breaker |
KR102661101B1 (en) * | 2022-11-15 | 2024-04-26 | 동인중공업 주식회사 | Automatic strike converter of hydraulic hammer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100422093B1 (en) * | 2003-03-04 | 2004-03-10 | 김운수 | Hydraulic percussion hammer having device for chnaging piston-stroke |
KR20090041823A (en) * | 2007-10-25 | 2009-04-29 | 이정호 | Automatic control system for hydaulic braeaker |
KR20110006038A (en) * | 2009-07-13 | 2011-01-20 | 한국기계연구원 | Method for manufacturing magnesium alloy and magnesium alloy strip manufactured by the method |
KR101506603B1 (en) * | 2013-11-14 | 2015-03-27 | 지성중공업 주식회사 | control method of hydraulic brake with 3-stroke valve |
KR101550899B1 (en) * | 2015-07-23 | 2015-09-08 | 대모 엔지니어링 주식회사 | 2 step auto stroke hydraulic breaker |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4488694B2 (en) | 2003-06-25 | 2010-06-23 | 甲南電機株式会社 | Hydraulic striking device |
-
2016
- 2016-06-21 KR KR1020160077491A patent/KR101805038B1/en active IP Right Grant
-
2017
- 2017-06-05 WO PCT/KR2017/005856 patent/WO2017222210A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100422093B1 (en) * | 2003-03-04 | 2004-03-10 | 김운수 | Hydraulic percussion hammer having device for chnaging piston-stroke |
KR20090041823A (en) * | 2007-10-25 | 2009-04-29 | 이정호 | Automatic control system for hydaulic braeaker |
KR20110006038A (en) * | 2009-07-13 | 2011-01-20 | 한국기계연구원 | Method for manufacturing magnesium alloy and magnesium alloy strip manufactured by the method |
KR101506603B1 (en) * | 2013-11-14 | 2015-03-27 | 지성중공업 주식회사 | control method of hydraulic brake with 3-stroke valve |
KR101550899B1 (en) * | 2015-07-23 | 2015-09-08 | 대모 엔지니어링 주식회사 | 2 step auto stroke hydraulic breaker |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11078929B2 (en) * | 2017-07-24 | 2021-08-03 | Soosan Heavy Industries Co., Ltd. | Hydraulic striking device |
CN114908833A (en) * | 2022-05-26 | 2022-08-16 | 赵德朝 | Air-beating type hydraulic breaking hammer based on Tesla valve |
Also Published As
Publication number | Publication date |
---|---|
KR101805038B1 (en) | 2017-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017222210A1 (en) | Hydraulic impact device | |
WO2018021642A1 (en) | Hydraulic hammer and construction apparatus comprising same | |
WO2019022265A1 (en) | Hydraulic striking device | |
WO2020204648A1 (en) | Vacuum blender | |
WO2015018203A1 (en) | Plugging agent and preparation method thereof | |
WO2010143826A2 (en) | Method for absorbing a vehicle impact using kinetic friction force and rolling force produced by the dragging of a surface of rolled tube, and vehicle impact absorbing apparatus using same | |
WO2017088117A1 (en) | Lift-type construction system for use in constructing structure of upper portion of bridge and construction method thereof | |
WO2017191892A1 (en) | Display module for visually impaired persons, display system for visually impaired persons, and control method therefor | |
WO2022119278A1 (en) | Arrangement and method for discharging a dc link capacitor | |
WO2015174625A1 (en) | Purification apparatus for compressed air | |
WO2020046043A1 (en) | Multi-step height adjuster | |
WO2017034289A1 (en) | Panel driving device and panel driving method | |
WO2021015504A1 (en) | Mixer and dewatering method thereof | |
KR20100028900A (en) | Hydraulic breaker for preventing idle blow | |
WO2015083924A1 (en) | Movable lifting device | |
WO2011046351A2 (en) | Actuator using pneumatic pressure and hydraulic pressure | |
EP3688746A1 (en) | Curved display bonding apparatus | |
WO2019156353A1 (en) | Juice discharge cap, juice discharge assembly and juicer | |
WO2018147492A1 (en) | Hydraulic breaker, buffer fluid monitoring system and buffer fluid monitoring method | |
WO2020251130A1 (en) | Soft grip unit, grip device comprising same, and driving method of grip device | |
WO2014163331A1 (en) | Elevator operation system using camera and method therefor | |
WO2020171638A1 (en) | Content filling apparatus and content filling method using same | |
WO2020149519A1 (en) | Agricultural operation vehicle | |
WO2018070613A1 (en) | Reactive force support structure for supporting repulsive force generated by hydraulic breaker hammering, and small-sized hydraulic hammer-type breaking apparatus comprising same | |
WO2023234642A1 (en) | Boom energy recovery system comprising hydraulic valve assembly for falling prevention of boom cylinder for construction equipment, including energy regeneration function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17815623 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17815623 Country of ref document: EP Kind code of ref document: A1 |