WO2017221939A1 - Electric brake apparatus - Google Patents

Electric brake apparatus Download PDF

Info

Publication number
WO2017221939A1
WO2017221939A1 PCT/JP2017/022729 JP2017022729W WO2017221939A1 WO 2017221939 A1 WO2017221939 A1 WO 2017221939A1 JP 2017022729 W JP2017022729 W JP 2017022729W WO 2017221939 A1 WO2017221939 A1 WO 2017221939A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
pressing
brake device
disk
rotation
Prior art date
Application number
PCT/JP2017/022729
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 達也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016122820A external-priority patent/JP6807666B2/en
Priority claimed from JP2016138476A external-priority patent/JP6862115B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017221939A1 publication Critical patent/WO2017221939A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes

Definitions

  • the present invention relates to an electric brake device that generates a braking force by a rotational driving force of an electric motor.
  • the electric brake device transmits the rotational driving force of the electric motor to the rotating shaft through a gear, converts the rotation of the rotating shaft into the axial movement of the linear motion member by the motion conversion mechanism, and the shaft along with the linear motion member.
  • the braking force is exerted by pressing the friction pad moving in the direction against the brake disc.
  • the electric motor used in this electric brake device is driven by receiving electric power supplied from a battery mounted on the vehicle, so when troubles such as abnormal decrease in the charge amount of the battery, sensor failure, disconnection of electric wiring, etc. occur, There is a problem that the brake function cannot be exhibited.
  • an electric brake device having a fail-safe mechanism when the above trouble occurs may be employed (see FIG. 4 of Patent Document 1).
  • an outer ring member disposed so as to surround the rotation shaft is employed as the linear motion member.
  • the motion conversion mechanism a plurality of planetary rollers circumscribing the rotating shaft and inscribed in the outer ring member, a carrier for supporting these planetary rollers so as to rotate and revolve, and an inner periphery of the outer ring member are provided.
  • a planetary roller mechanism having a spiral ridge and a circumferential groove provided on the outer periphery of the planetary roller so as to engage with the spiral ridge can be employed.
  • On the outer periphery of the rotating shaft a collar portion is formed that supports the carrier from the rear in the axial direction.
  • a pressing force sensor can be incorporated in this electric brake device as shown in FIG.
  • This pressing force sensor is a magnetic load sensor, a flange member that receives a load from the front in the axial direction and generates deflection, a support member that supports the flange member from the rear in the axial direction, a magnetic target that generates magnetic flux, And a magnetic sensor for detecting the magnetic flux generated by the magnetic target.
  • the flange member is an annular plate member.
  • the support member is fitted on the outer peripheral edge of the flange member.
  • the outer peripheral edge of the support member is supported on the inner surface of the caliper housing so as not to move.
  • a cylindrical portion is continuously provided on the inner peripheral side of the support member so as to face the inner diameter side of the flange member.
  • a plurality of bearings are mounted on the inner periphery of the cylindrical portion at intervals in the axial direction, and the rotary shaft and the magnetic load sensor are relatively rotatable around the axis.
  • the magnetic target is fixed to the inner periphery of the flange member.
  • the magnetic sensor is fixed to the outer periphery of the cylindrical portion of the support member so as to face the magnetic target in the radial direction (see FIG. 3 in Patent Document 2).
  • the rotational driving force of the electric motor is transmitted to the rotating shaft through the reduction mechanism, and the rotating shaft rotates around the shaft.
  • the planetary roller circumscribing the rotating shaft revolves around the rotating shaft while rotating around the roller shaft by rolling contact with the rotating shaft. Since the spiral ridge provided on the outer ring member and the circumferential groove provided on the planetary roller are engaged, the outer ring member and the planetary roller relatively move in the axial direction as the planetary roller rotates.
  • the movement of the carrier supporting the planetary roller in the axial direction is restricted, and as a result of the rotation of the planetary roller, the outer ring member moves to the front side in the axial direction and is integrated with the outer ring member.
  • the brake disc is pressed down by a friction pad provided so as to be movable in the axial direction.
  • the axial load directed rearward in the axial direction is input to the flange member of the magnetic load sensor through the carrier plate and the thrust bearing as a reaction force backward in the axial direction.
  • the flange member is deflected rearward in the axial direction by the axial load, and the magnetic target and the magnetic sensor are relatively displaced in the axial direction along with the deflection. Then, the output signal of the magnetic sensor changes corresponding to this relative displacement.
  • the magnitude of the axial load applied to the flange member can be determined based on the output signal of the magnetic sensor. Can be detected.
  • this fail-safe mechanism can be used not only in an emergency but also as a normal parking brake.
  • the carrier is pressed forward in the axial direction while suppressing the rotation of the rotation shaft by bringing the collar portion provided on the rotation shaft into contact with the carrier.
  • the angle between the lead angle of the provided spiral ridge and the circumferential groove provided on the planetary roller is large, there is a possibility that slippage may occur at the engaging portion between them.
  • the carrier rotates around the shaft together with the rotating shaft, and the pressing force that presses the outer ring member forward in the axial direction is lost, and the braking force may be insufficient.
  • the pressing force sensor according to Patent Document 2 is incorporated in the electric brake device according to Patent Document 1 as shown in FIG. 7 of Patent Document 2, it is provided on the rotating shaft during the operation of the fail-safe mechanism. Since the flange portion (see FIG. 4 in Patent Document 1) presses the outer ring member forward in the axial direction via the carrier, a pressing force sensor disposed in the axially rearward direction relative to the carrier (see FIG. 2). 7) and the carrier are separated from each other. For this reason, when the fail safe mechanism is operated, the reaction force in the rearward direction in the axial direction due to the friction pad being pressed against the brake disk is not transmitted to the pressing force sensor, and the pressing force cannot be detected. For this reason, even when the operating force by the driver is insufficient, the driver cannot recognize that fact, and the effectiveness of the fail-safe mechanism may remain insufficient.
  • the first object of the present invention is to reliably function the fail-safe mechanism of the electric brake device, and secondly to enable detection of the braking force when the fail-safe mechanism of the electric brake device is activated. Let it be an issue.
  • an electric motor a rotating shaft that rotates around the axis by the rotational driving force of the electric motor, and an axial direction of the rotating shaft are provided.
  • a linear motion member a motion conversion mechanism that converts rotation of the rotary shaft into axial movement of the linear motion member, and provided on one axial side of the linear motion member, in the axial direction of the linear motion member
  • a friction pad that moves in the axial direction along with the movement of the motor, and a rotation force around the axis of the rotating shaft is blocked by the driver's operating force, while pressing the rotating shaft toward the one side in the axial direction, and the rotating shaft
  • a pressing mechanism that integrally moves the linearly moving member to the one side in the axial direction.
  • the pressing mechanism moves in the axial direction while being in surface contact with the rotating shaft and preventing the rotation of the rotating shaft around the axis by frictional force, thereby moving the rotating shaft to the one side in the axial direction.
  • It can be set as the structure which has the press member stopped around the axis
  • the pressing mechanism is moved in the axial direction in accordance with the rotation of the cam member and the cam member that is rotated by the operating force of the driver, and the pressing member is moved in the axial direction. And a link member to be moved.
  • the pressing mechanism is formed on the linear motion disk that functions as the pressing member in which an inclined groove whose depth changes along the circumferential direction is formed on one surface in the axial direction, and the linear motion disk.
  • An inclined groove is formed between the linear motion disk and the axially moving disk so as to face the inclined groove, and an inclined groove whose depth varies along the circumferential direction is formed on a surface facing the linearly moving disk.
  • the rotating disk that is rotated by the operating force of the driver, the inclined groove that is formed on the linearly moving disk, and the inclined groove that is formed on the rotating disk are held in a rollable manner.
  • a rolling element, and the relative rolling between the linear disk and the rotating disk causes the rolling element to roll in the both inclined grooves, thereby widening the interval, thereby causing the linear motion. Configuration to move the disk in the axial direction It is also possible to.
  • the rotation based on the driver's operating force can be smoothly converted into the axial movement of the pressing member, and the braking force can be exhibited quickly.
  • the said press mechanism can be set as the structure which further has the urging
  • the rotating shaft is extended outward in the radial direction, and has an extending member that can rotate about the shaft integrally with the rotating shaft, and the pressing member has the extending portion. It can be set as the structure which contact
  • the detent action by the pressing member can be further improved by bringing the pressing member into contact with the extending member having a diameter larger than the outer diameter of the rotating shaft.
  • the electric brake device according to each of the above-described configurations is provided between the pressing mechanism and the motion conversion mechanism, and the pressing force by the pressing mechanism is applied.
  • the motor further includes a load sensor that detects a load applied to the brake disk by receiving a reaction force in the axial direction rearward when the friction pad is pressed against the brake disk while transmitting to the motion conversion mechanism side.
  • a brake device was constructed.
  • the pressing force of the pressing mechanism can be smoothly transferred via the load sensor via the load sensor. While being able to transmit to a linear motion member, the braking force can be detected from the reaction force. For this reason, the driver can quickly recognize that the braking force is insufficient, and it is possible to prevent the fail-safe mechanism from remaining insufficient.
  • the load sensor is connected to the flange member that receives the reaction force and bendable with respect to the flange member, and receives a pressing force forward in the axial direction by the pressing mechanism.
  • the load can be detected with high sensitivity by the load sensor. That is, the magnetic target provided on one side of the flange member or the support member and the magnetic sensor provided on the other side of the flange member or support member on the side on which the magnetic target is provided are relatively moved in the opposite axial direction. For this reason, the relative movement amount becomes larger than when only one of them moves in the axial direction. For this reason, the detection sensitivity by this load sensor can be improved significantly.
  • the pressing portion may be positioned radially inward from the reaction force portion.
  • the supporting member can be greatly deflected forward in the axial direction by the pressing force from the pressing mechanism, and the detection sensitivity of the load sensor can be further improved.
  • the pressing mechanism includes a pressing member that is prevented from rotating about an axis, and the frictional force generated by surface contact between the rotating shaft and the pressing member causes the rotation shaft to rotate. It can be set as the structure which prevented rotation around an axis
  • the pressing mechanism instead of bringing the rotating shaft and the pressing member into surface contact, the pressing mechanism has a pressing member that is prevented from rotating around the axis, and rotates about the axis integrally with the rotating shaft. Further, it is possible to prevent the rotation of the rotary shaft around the axis by a frictional force caused by surface contact between the extending member extending radially outward and the pressing member.
  • Each configuration having the load sensor further includes a warning device that warns the driver that the load is insufficient when the load detected by the load sensor is smaller than a predetermined load threshold. Can do.
  • the warning device it is possible to easily recognize that the driver is in a state of insufficient load, and it is possible to quickly take appropriate measures such as increasing the operating force.
  • the pressing mechanism that integrally moves the rotating shaft and the linear motion member to one side in the axial direction has a function of preventing the rotating shaft from rotating around the axis.
  • this pressing mechanism it is possible to reliably prevent the rotating shaft from rotating and releasing the pressing force. For this reason, the fail safe mechanism of an electric brake device can be functioned reliably.
  • the load sensor for detecting the load applied to the brake disc is provided between the pressing mechanism and the motion conversion mechanism, when the fail safe mechanism is activated.
  • the load sensor for detecting the load applied to the brake disc.
  • the pressing force of the pressing mechanism can be smoothly transmitted to the motion conversion mechanism and the linear motion member, and the braking force is detected from the reaction force when the friction pad is pressed against the brake disc. can do. For this reason, it is possible to prevent the fail-safe mechanism from remaining in an insufficient state, and to ensure safety.
  • Sectional view which shows 1st embodiment of the electric brake device which concerns on this invention Sectional view along the line II-II in FIG. 1 is a longitudinal sectional view showing a main part of the electric brake device shown in FIG. Sectional view along line IV-IV in FIG. Partial sectional view taken along line VV in FIG. Sectional view along line VI-VI in FIG. It is a figure which shows the effect
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10 when the driver's operating force is not applied.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10 when the driver's operating force is acting.
  • FIG. 9 is a longitudinal sectional view showing another example of the pressing mechanism shown in FIG.
  • the longitudinal cross-sectional view which shows the principal part of 3rd embodiment of the electric brake device which concerns on this invention Longitudinal sectional view showing a fourth embodiment of the electric brake device according to the present invention
  • the longitudinal cross-sectional view which shows the principal part of the electric brake device shown in FIG. FIG. 15 is a longitudinal sectional view showing a further main part of the electric brake device shown in FIG. In the pressing mechanism shown in FIG. 14, a longitudinal sectional view showing a state in which the driver's operating force is acting.
  • the longitudinal cross-sectional view which shows the principal part of 5th embodiment of the electric brake device which concerns on this invention FIG.
  • FIG. 5 is a longitudinal sectional view showing a positional relationship between a fulcrum part in which a flange member and a support member of a load sensor are continuously provided, a pressing part on which a pressing force acts, and a reaction force part on which a reaction force acts, and the fulcrum part and the pressing part Are spaced apart in the radial direction FIG.
  • FIG. 5 is a longitudinal sectional view showing a positional relationship between a fulcrum part in which a flange member and a support member of a load sensor are continuously provided, a pressing part on which a pressing force acts, and a reaction force part on which a reaction force acts, and the fulcrum part and the pressing part Configuration in which is approaching in the radial direction
  • size of the load which acts on a friction pad, and the output of a load sensor The longitudinal cross-sectional view which shows the principal part of 6th embodiment of the electric brake device which concerns on this invention
  • the electric brake device includes an electric motor 10, a rotating shaft 23 that rotates around the axis by the rotational driving force of the electric motor 10, a linear motion member 24 that is movable in the axial direction of the rotating shaft 23, and the rotating shaft 23.
  • a motion conversion mechanism 25 that converts rotation into axial movement of the linear motion member 24, friction provided on one side of the linear motion member 24 in the axial direction and moving in the axial direction as the linear motion member 24 moves in the axial direction
  • the rotating shaft 23 is pressed forward in the axial direction while preventing rotation around the axis of the rotating shaft 23 by the operation force of the pad 13 and the driver, and the rotating shaft 23 and the linear motion member 24 are axially integrated.
  • the pressing mechanism 15 that moves to the one side is a main component. In the following, one side in the axial direction is referred to as the front, and the other side opposite to the one direction is referred to as the rear.
  • This electric brake device normally exerts a braking force by driving the electric motor 10 in accordance with a driver's brake operation.
  • a fail-safe mechanism is provided that obtains braking force by the driver's operating force.
  • the electric brake device includes a brake disk 11 that rotates integrally with a wheel (not shown), and a pair of friction pads 12 that are opposed to each other in the axial direction with the brake disk 11 in between. 13 and the electric motor 10 for moving the friction pads 12 and 13, and the braking force is generated by pressing the friction pads 12 and 13 against the brake disk 11 with the power transmitted from the electric motor 10. .
  • this electric brake device can generate a braking force even in a state where the braking force by the electric motor 10 cannot be exerted due to some trouble, so that the wire cable 14 provided so as to be pulled by the operating force of the driver, And a pressing mechanism 15 connected to one end of the wire cable 14.
  • This electric brake device has a caliper body 19 having a shape in which a pair of facing portions 16 and 17 facing each other in the axial direction with the brake disc 11 in between are connected by a bridge 18 positioned on the outer diameter side of the brake disc 11.
  • the friction pad 12 is disposed between one facing portion 16 of the caliper body 19 and the brake disk 11, and the friction pad 13 is disposed between the other facing portion 17 and the brake disk 11.
  • the friction pads 12 and 13 are guided by pad pins (not shown) attached to the caliper body 19 and slide parts (not shown) provided on the caliper bracket 21 so as to be movable in the axial direction of the brake disc 11. Has been.
  • the caliper body 19 includes a pair of slide pins 22 attached to a caliper bracket 21 fixed to a knuckle (not shown) that supports a wheel by bolts 20 (see FIG. 2). It is supported so as to be movable in the axial direction. Accordingly, when the friction pad 13 shown in FIG. 2 or the like moves forward in the axial direction and is pressed against the brake disc 11, the caliper body 19 moves rearward in the axial direction due to the reaction force received from the brake disc 11. As the caliper body 19 moves, the friction pad 12 on the opposite side is also pressed against the brake disk 11.
  • one opposing portion 17 of the caliper body 19 includes a cylindrical caliper housing 17 ⁇ / b> A that is open at both front and rear ends in the axial direction, and an axially rearward end portion of the caliper housing 17 ⁇ / b> A that is perpendicular to the axial direction.
  • the caliper flange 17B extends in a direction (a direction parallel to the brake disc 11).
  • the caliper housing 17A has a rotation shaft 23, an outer ring member functioning as a linear motion member 24 disposed so as to surround the rotation shaft 23 (hereinafter, the same reference numeral as the linear motion member 24), and the rotation shaft 23. Is incorporated with a planetary roller mechanism that functions as a motion conversion mechanism 25 that converts the rotation of the outer ring member 24 into an axial movement of the outer ring member 24 (hereinafter, the same reference numeral as the motion conversion mechanism 25 is attached).
  • the friction pad 13 is disposed in front of the outer ring member 24 in the axial direction.
  • the electric motor 10 is attached to the caliper flange 17B.
  • a reduction mechanism 26 is provided between the electric motor 10 and the rotary shaft 23 to reduce and transmit the rotation of the electric motor 10 to the rotary shaft 23.
  • the speed reduction mechanism 26 is accommodated in a cover 27 provided so as to cover the end opening of the caliper housing 17A in the axial direction and the side surface of the caliper flange 17B (see FIG. 4).
  • the speed reduction mechanism 26 includes a first gear 26A that rotates around the shaft integrally with the rotor shaft 10A of the electric motor 10, a second gear 26B that meshes with the first gear 26A, and a second gear 26B.
  • a third gear 26C that rotates about the axis integrally with the gear 26B and has a smaller number of teeth than the second gear 26B; a fourth gear 26D that meshes with the third gear 26C and rotates about the axis integrally with the rotary shaft 23;
  • Have The rotation of the electric motor 10 is transmitted through the plurality of gears 26 ⁇ / b> A, 26 ⁇ / b> B, 26 ⁇ / b> C, 26 ⁇ / b> D after being sequentially decelerated and input to the rotary shaft 23.
  • the planetary roller mechanism 25 includes a plurality of planetary rollers 25A circumscribing the rotating shaft 23 and inscribed in the outer ring member 24, and a carrier 25B that supports the planetary rollers 25A so that they can rotate and revolve.
  • the spiral protrusion 25C provided on the inner periphery of the outer ring member 24 and the circumferential groove 25D provided on the outer periphery of the planetary roller 25A so as to engage with the spiral protrusion 25C.
  • the plurality of planetary rollers 25A are arranged at equal intervals in the circumferential direction.
  • Each planetary roller 25 ⁇ / b> A is in rolling contact with the outer periphery of the rotating shaft 23 and the inner periphery of the outer ring member 24.
  • the contact portion of the rotating shaft 23 with respect to the planetary roller 25A is a cylindrical surface.
  • the planetary roller 25 ⁇ / b> A rotates by the rotational force received from the outer periphery of the rotating shaft 23, and accordingly, the planetary roller 25 ⁇ / b> A rolls around the inner periphery of the outer ring member 24 and revolves.
  • the spiral ridge 25C on the inner periphery of the outer ring member 24 is a spiral ridge extending obliquely with respect to the circumferential direction.
  • the circumferential groove 25D on the outer periphery of the planetary roller 25A is a groove extending in parallel to the circumferential direction.
  • the circumferential groove 25D having a lead angle of 0 degree is provided on the outer periphery of the planetary roller 25A.
  • a spiral groove having a lead angle different from that of the spiral protrusion 25C may be provided. Good.
  • the outer ring member 24 is supported by the inner surface of the caliper housing 17A so as to be movable in the axial direction.
  • a contact portion of the inner surface of the caliper housing 17A with respect to the outer ring member 24 is a cylindrical surface.
  • the outer ring member 24 has a concave portion 29 that engages with a convex portion 28 formed on the back surface of the friction pad 13, and is prevented from rotating with respect to the caliper housing 17 ⁇ / b> A by the engagement of the convex portion 28 and the concave portion 29. .
  • the carrier 25B extends in the axial direction between a pair of carrier plates 25B 1 and 25B 2 facing in the axial direction with the planetary roller 25A in between and the planetary rollers 25A adjacent in the circumferential direction, and the carrier plates 25B 1 and 25B 2. having a connecting portion 25B 3 for connecting to each other, and a roller shaft 25B 4 which rotatably supports the respective planetary rollers 25A.
  • Each of the carrier plates 25B 1 and 25B 2 is formed in an annular shape that penetrates the rotating shaft 23, and a sliding bearing 30 that is in sliding contact with the outer periphery of the rotating shaft 23 is mounted on the inner periphery thereof.
  • Both end portions of the roller shaft 25B 4 is movably supported in the radial direction of the outer ring member 24 in the long hole 31 formed on a pair of carrier plate 25B 1, 25B 2. Further, at both ends of the roller shaft 25B 4, the elastic ring 32 so as to circumscribe the roller shaft 25B 4 of all of the planetary rollers 25A in the circumferential direction spaced is stretched. The elastic ring 32 prevents slipping between the planetary roller 25 ⁇ / b> A and the rotary shaft 23 by pressing each planetary roller 25 ⁇ / b> A against the outer periphery of the rotary shaft 23.
  • a magnetic load sensor 33 is provided behind the outer ring member 24 in the axial direction.
  • the magnetic load sensor 33 includes a flange member 33A that generates deflection when a load is input from the front in the axial direction, a support member 33B that supports the flange member 33A from the rear in the axial direction, a magnetic target 33C that generates magnetic flux, The magnetic sensor 33D detects the magnetic flux generated by the target 33C.
  • the flange member 33A is an annular plate member formed of a metal such as iron.
  • the support member 33B is formed of a metal such as iron and is fitted on the outer peripheral edge of the flange member 33A.
  • the outer peripheral edge of the support member 33B is supported by the inner surface of the caliper housing 17A so as not to move.
  • a cylindrical portion 33E is continuously provided on the inner peripheral side of the support member 33B so as to face the inner diameter side of the flange member 33A.
  • a plurality of bearings 34 are mounted on the inner periphery of the cylindrical portion 33E at intervals in the axial direction, and the rotary shaft 23 and the magnetic load sensor 33 are capable of relative rotation around the axis.
  • the magnetic target 33C is fixed to the inner periphery of the flange member 33A.
  • the magnetic sensor 33D is fixed to the outer periphery of the cylindrical portion 33E of the support member 33B so as to face the magnetic target 33C in the radial direction.
  • each planetary roller 25A and the carrier plate 25B 2 of the axially rearward thrust bearing 35 which rotatably supports the planetary rollers 25A is incorporated. Further, revolving between the planetary roller 25A in the axial direction behind the carrier plate 25B 2 and the magnetic load sensor 33 (the flange member 33A), a thrust plate 36 which revolves together with the carrier plate 25B 2, the thrust plate 36 A thrust bearing 37 is incorporated which can be supported.
  • the axial load applied to the flange member 33A can be determined based on the output signal of the magnetic sensor 33D. The size can be detected.
  • the carrier plate 25B 1 of the axial forward movement of the axially forward is restricted by the stop ring 38 attached to the axial forward end of the rotary shaft 23. Therefore, the carrier 25B is restricted from moving in the axial direction forward and axially backward, and the planetary roller 25A held by the carrier 25B is also restricted from moving in the axial direction.
  • a flange 39 that supports the carrier 25B from the rear in the axial direction is formed.
  • the flange portion 39 is disposed so as to face the axially rearward of the axially rearward of the carrier plate 25B 2, when the rotary shaft 23 is moved axially forward, axially forward collar portion 39 is a carrier plate 25B 2 To move it.
  • the flange 39 may be formed so as to have a seamless integrated structure with the rotary shaft 23, or may be formed by fixing another member on the outer periphery of the rotary shaft 23. It may also incorporate a thrust bearing between the flange portion 39 and the carrier plate 25B 2.
  • the flange portion 39 may support the carrier 25B from the rear in the axial direction through the thrust plate 36, and support the carrier 25B from the rear in the axial direction through the magnetic load sensor 33, the thrust bearing 37, or the like. It is also possible to configure as described above.
  • a seal cover 40 that closes the opening at the front end of the outer ring member 24 in the axial direction is attached to the end of the outer ring member 24 in the axial direction.
  • the seal cover 40 prevents foreign matter from entering the outer ring member 24.
  • one end of a cylindrical bellows 41 formed to be extendable in the axial direction is fixed to an axially forward end of the outer ring member 24, and the other end of the bellows 41 is an opening in the axially forward direction of the caliper housing 17A. It is fixed to the edge.
  • the bellows 41 prevents foreign matter from entering between the sliding surfaces of the outer ring member 24 and the caliper housing 17A.
  • the pressing mechanism 15 is orthogonal to the axial direction of the rotary shaft 23 and the pressing member 15 ⁇ / b> B provided to be movable in the axial direction facing the rear end of the rotary shaft 23 in the axial direction.
  • a wire to which a cam member 15A rotatably supported around the axis, a link member 15C incorporated between the pressing member 15B and the cam member 15A, and a wire end fitting provided at one end of the wire cable 14 are connected.
  • a lever 15D (see FIG. 7A). One end of the wire lever 15D is connected to the cam member 15A, and when the wire cable 14 connected to the other end of the wire lever 15D is pulled, the wire lever 15D and the cam member 15A rotate together. (See FIG. 7B).
  • the pressing member 15 ⁇ / b> B is slidably supported by the inner surface of a guide hole 42 provided in the cover 27 that extends in the axial direction.
  • a protrusion extending in the axial direction is formed on the pressing member, and a guide groove for guiding the protrusion in the axial direction is formed on the inner surface of the guide hole 42, whereby the pressing member 15 ⁇ / b> B is prevented from rotating with respect to the cover 27. Is done.
  • the end faces of the axially rearward of the pressing member 15B, the recess 15B 1 that supports receiving one end of the link member 15C is formed.
  • the outer periphery of the cam member 15A, the cam surface 15A 1 is formed.
  • Cam surface 15A when the cam member 15A is rotated by pulling operation of the wire cable 14, in accordance with the rotation angle, with a shape that presses the pressing member 15B axially forward through the link member 15C It is formed as follows.
  • the axially forward end surface of the pressing member 15B and the axially rearward end surface of the rotating shaft 23 are both processed into a flat surface.
  • the wire lever 15D is attached with a return spring 15E that biases the wire lever 15D in a direction opposite to the turning direction of the wire lever 15D due to the pulling operation of the wire cable 14 (see FIG. 3).
  • the pressing mechanism 15 rotates the cam member 15A by the pulling force, and the cam mechanism 15A rotates according to the rotation angle of the cam member 15A.
  • surface 15A 1 moves down the pressing member 15B axially forward via the link member 15C.
  • the axially forward end face of the pressing member 15B presses the rotating shaft 23 forward in the axial direction.
  • the axially rear end surface of the rotating shaft 23 having a flat surface shape and the axially forward end surface of the pressing member 15B are in surface contact.
  • a release spring that functions as a biasing member 15F that biases the pressing member 15B in the axial direction rearward (direction away from the rotating shaft 23) (hereinafter, the same reference numeral as the biasing member 15F). It is also possible to adopt a configuration in which the cover 27 is provided in the cover 27. In this way, by providing the release spring 15F, when the driver's operating force is not acting, the rotation shaft 23 and the pressing member 15B are reliably separated (see FIG. 8A), and the rotation loss of the rotation shaft 23 is reduced.
  • the pressing member 15B is urged forward in the axial direction against the urging force of the release spring 15F, so that the rotating shaft 23 and the pressing member 15B are urged.
  • the two end surfaces are brought into contact with each other (see FIG. 8B), and a frictional force can be applied between the both end surfaces.
  • a brake pedal 43 operated by a driver's foot is attached with a wire connector portion 44 to which a wire end fitting provided at an end portion of the wire cable 14 is connected, and a clutch mechanism 45. It has been.
  • the brake pedal 43 is supported so as to be swingable about a fulcrum shaft 46.
  • the brake pedal 43 is provided with a stroke sensor (not shown) that detects the depression amount of the brake pedal 43.
  • the wire connector portion 44 is swingably supported so as to have a swing center at the same position as the fulcrum shaft 46 of the brake pedal 43.
  • the wire connector portion 44 can swing independently of the brake pedal 43 so that the brake pedal 43 can swing independently of the wire connector portion 44.
  • a reverse operation type electromagnetic clutch configured to be disconnected when energized and to be connected when energization is stopped can be employed.
  • the clutch mechanism 45 is in the connected state when the energization to the clutch mechanism 45 is stopped, so even when the electric brake device loses power, A braking force can be secured.
  • the clutch mechanism 45 performs brake control based on detection results of sensors such as a stroke sensor, a magnetic load sensor 33, and a battery sensor (not shown) that detects a charge amount of a battery that supplies electric power to the electric motor 10. Controlled by a unit (not shown).
  • the electric brake device pushes the rotating shaft 23 forward in the axial direction by pulling the wire cable 14 with the driver's operating force, and the rotating shaft 23 and the outer ring.
  • the friction pad 13 can be pressed against the brake disc 11 by moving the member 24 integrally in the axial direction. Therefore, the braking force can be generated even when an electrical failure occurs.
  • the end surface on the rear side in the axial direction of the rotating shaft 23 and the end surface on the front side in the axial direction of the carrier 25B are both flat surfaces, but as long as sufficient frictional force is exerted between the both end surfaces.
  • the end surface shape is not limited, and for example, one end surface may be a concave curved surface, and the other end surface may be a convex curved surface having the same curvature as the concave curved surface.
  • This electric brake device can generate a braking force when the driver operates the brake pedal 43 when an electrical failure occurs, as in the case where no electrical failure occurs. Therefore, it is excellent in operability when an electrical failure occurs.
  • the pressing mechanism 15 includes a linear motion disk 15 ⁇ / b> G corresponding to the pressing member 15 ⁇ / b> B in the first embodiment and an axial rearward direction of the linear motion disk 15 ⁇ / b> G. And a ball that is a rolling element 15I provided between the linear movement disk 15G and the rotation disk 15H (hereinafter, the same reference numeral as that of the rolling element 15I). And a wire lever 15D to which one end of the wire cable 14 is connected.
  • the linear motion disk 15G is supported so as to be movable in the axial direction while being prevented from rotating about the axis, like the pressing member 15B in the first embodiment.
  • the rotating disk 15H is rotatably supported in a state where the axial rearward movement is restricted by the thrust bearing 47.
  • circumferentially spaced plurality of inclined grooves 15H 1 are formed on the facing surface relative to the linear motion disk 15G of the rotation disk 15H.
  • circumferentially spaced plurality of inclined grooves 15G 1 is formed on the facing surface relative to the linear motion disk 15G.
  • the inclined groove 15G 1 includes, from the deepest portion 15G 2 in one circumferential direction is formed so as gradually become shallower, inclined groove 15H 1 are circumferentially from the deepest 15H 2 other It is formed to become gradually shallower in the direction.
  • the ball 15I is incorporated between both the inclined grooves 15G 1 and 15H 1 .
  • one end of the wire lever 15D is connected to the rotating disk 15H, and when the wire cable 14 connected to the other end of the wire lever 15D is pulled, the wire lever 15D and the rotating disk are connected. 15H rotates together.
  • a return spring 15E that urges the wire lever 15D in a direction opposite to the rotation direction of the wire lever 15D by the pulling operation of the wire cable 14 is attached to the wire lever 15D.
  • the rotary shaft 23 is directly pressed by the linear motion disk 15G.
  • the extending member 48 has a larger diameter than the outer diameter of the rotating shaft 23
  • the rotating shaft 23 and the pressing member 15B are brought into contact with each other by bringing the extending member 48 into contact with the pressing member 15B (linear motion disk 15G).
  • the rotation preventing action of the rotary shaft 23 can be further improved.
  • This configuration can also be applied to the electric brake device according to the first embodiment.
  • FIG. 13 shows a third embodiment (main part) of the electric brake device according to the present invention. Unlike the first and second embodiments, this electric brake device converts the rotation of the rotary shaft 23 to which the rotation of the electric motor 10 is input into the axial movement of the linear member 24 that presses the friction pad 13.
  • a feed screw mechanism hereinafter, the same reference numeral as that of the motion converting mechanism 25 is given.
  • the feed screw mechanism 25 is formed on the outer periphery of a screw shaft 25E formed integrally with the rotary shaft 23, a nut 25F functioning as a linear motion member 24 provided so as to surround the screw shaft 25E, and the screw shaft 25E.
  • a plurality of balls 25I incorporated between the screw groove 25G and the screw groove 25H formed on the inner periphery of the nut 25F, and a return tube (not shown) for returning the ball from the end point of the screw groove 25H of the nut 25F to the start point And have.
  • the nut 25F is provided in the caliper housing 17A so as to be movable in the axial direction while being prevented from rotating with respect to the caliper housing 17A.
  • the axially rearward end of the screw shaft 25E, the flange 25E 1 is formed radially outwardly.
  • the axially rearward of the flange 25E 1, the thrust bearing 49 is provided.
  • the thrust bearing 49 is supported by a bearing support member 50 fixed in the caliper housing 17 ⁇ / b> A, and can be relatively rotated around the shaft by the bearing 34.
  • Flange 25E 1 formed in the screw shaft 25E is, by contacting the thrust bearing 49 which is supported by the bearing support member 50 from moving in the axial rearward side of the screw shaft 25E is restricted.
  • the electric brake device includes an electric motor 10, a rotary shaft 23 that rotates around the axis by the rotational driving force of the electric motor 10, a linear motion member 24 that is movable in the axial direction of the rotary shaft 23, and the rotation of the rotary shaft 23. Is converted to an axial movement of the linear motion member 24, a friction pad 13 provided in front of the linear motion member 24 in the axial direction and moved in the axial direction along with the axial movement of the linear motion member 24, While the rotation of the rotating shaft 23 is prevented by the driver's operating force, the rotating shaft 23 is pressed forward in the axial direction, and the rotating shaft 23 and the linear motion member 24 are integrally pressed forward in the axial direction.
  • the pressing mechanism 15 to be moved, and provided between the pressing mechanism 15 and the motion conversion mechanism 25, transmit the pressing force by the pressing mechanism 15 to the motion conversion mechanism 25 side, while the friction pad 13 is connected to the brake disk 11.
  • Press Receives a reaction force in the axially rearward when attached, it has a load sensor 33 for detecting the load applied to the brake disk 11 as main components.
  • This electric brake device normally exerts a braking force by driving the electric motor 10 in accordance with a driver's brake operation.
  • a fail-safe mechanism is provided that obtains braking force by the driver's operating force.
  • this electric brake device includes a brake disk 11 that rotates integrally with a wheel (not shown), and a pair of frictions that face each other in the axial direction with the brake disk 11 in between.
  • the pad 12 and 13 and the electric motor 10 for moving the friction pad 12 and 13 are provided.
  • the braking force is increased. generate.
  • this electric brake device can generate a braking force even in a state where the braking force by the electric motor 10 cannot be exerted due to some trouble, so that the wire cable 14 provided so as to be pulled by the operating force of the driver, And a pressing mechanism 15 connected to one end of the wire cable 14.
  • This electric brake device has a caliper body 19 having a shape in which a pair of facing portions 16 and 17 facing each other in the axial direction with the brake disc 11 in between are connected by a bridge 18 positioned on the outer diameter side of the brake disc 11.
  • the friction pad 12 is disposed between one facing portion 16 of the caliper body 19 and the brake disk 11, and the friction pad 13 is disposed between the other facing portion 17 and the brake disk 11.
  • Each of the friction pads 12 and 13 is supported by a caliper bracket 21 so as to be movable in the axial direction of the brake disk 11.
  • the caliper body 19 is composed of a pair of slide pins 22 attached to a caliper bracket 21 fixed to a knuckle (not shown) for supporting wheels by bolts 20, and a brake disc. 11 is supported so as to be movable in the axial direction. Accordingly, when the friction pad 13 shown in FIG. 14 or the like moves forward in the axial direction and is pressed against the brake disc 11, the caliper body 19 moves rearward in the axial direction by the reaction force received from the brake disc 11, and the caliper The friction pad 12 on the opposite side is also pressed against the brake disk 11 by the movement of the body 19.
  • the other facing portion 17 of the caliper body 19 includes a cylindrical caliper housing 17A that is open at both front and rear ends in the axial direction, and a right angle with respect to the axial direction from the axially rear end of the caliper housing 17A.
  • the caliper flange 17B extends in a direction (a direction parallel to the brake disc 11).
  • the caliper housing 17A has a rotation shaft 23, an outer ring member functioning as a linear motion member 24 disposed so as to surround the rotation shaft 23 (hereinafter, the same reference numeral as the linear motion member 24), and the rotation shaft 23.
  • a planetary roller screw mechanism that functions as a motion conversion mechanism 25 that converts the rotation of the outer ring member 24 into an axial movement of the outer ring member 24 (hereinafter, the same reference numeral as that of the motion conversion mechanism 25 is attached).
  • the friction pad 13 is disposed in front of the outer ring member 24 in the axial direction.
  • the electric motor 10 is attached to the caliper flange 17B.
  • a reduction mechanism 26 is provided between the electric motor 10 and the rotary shaft 23 to reduce and transmit the rotation of the electric motor 10 to the rotary shaft 23.
  • the speed reduction mechanism 26 is accommodated in a cover 27 provided so as to cover the end opening at the rear in the axial direction of the caliper housing 17A and the side surface of the caliper flange 17B (see FIG. 16).
  • the speed reduction mechanism 26 includes a first gear 26A that rotates integrally with the rotor shaft 10A of the electric motor 10 and a second gear 26B that meshes with the first gear 26A.
  • the fourth gear that rotates about the axis integrally with the second gear 26B, the third gear 26C that has fewer teeth than the second gear 26B, and the third gear 26C that meshes with the rotary shaft 23 to rotate about the axis.
  • a gear 26D is a gear 26D.
  • the rotation of the electric motor 10 is transmitted through the plurality of gears 26 ⁇ / b> A, 26 ⁇ / b> B, 26 ⁇ / b> C, 26 ⁇ / b> D after being sequentially decelerated and input to the rotary shaft 23.
  • the fourth gear 26 ⁇ / b> D is supported by the caliper flange 17 ⁇ / b> B and the cover 27, and is restricted from moving in the axial direction and is relatively movable in the axial direction with respect to the rotating shaft 23. ing.
  • the planetary roller screw mechanism 25 includes a plurality of planetary rollers 25A circumscribing the rotary shaft 23 and inscribed in the outer ring member 24, and a carrier 25B that supports the planetary rollers 25A so that they can rotate and revolve. And a spiral protrusion 25C provided on the inner periphery of the outer ring member 24, and a circumferential groove 25D provided on the outer periphery of the planetary roller 25A so as to engage with the spiral protrusion 25C.
  • the plurality of planetary rollers 25A are arranged at equal intervals in the circumferential direction.
  • Each planetary roller 25 ⁇ / b> A is in rolling contact with the outer periphery of the rotating shaft 23 and the inner periphery of the outer ring member 24.
  • the contact portion of the rotating shaft 23 with respect to the planetary roller 25A is a cylindrical surface.
  • the planetary roller 25A revolves around the rotating shaft 23 while rotating around the roller shaft.
  • the planetary roller 25 ⁇ / b> A rotates by the rotational force received from the outer periphery of the rotating shaft 23, and accordingly, the planetary roller 25 ⁇ / b> A rolls around the inner periphery of the outer ring member 24 and revolves.
  • the spiral ridge 25C on the inner periphery of the outer ring member 24 is a spiral ridge extending obliquely with respect to the circumferential direction.
  • the circumferential groove 25D on the outer periphery of the planetary roller 25A is a groove extending in parallel to the circumferential direction.
  • the circumferential groove 25D having a lead angle of 0 degree is provided on the outer periphery of the planetary roller 25A.
  • a spiral groove having a lead angle different from that of the spiral protrusion 25C may be provided. Good.
  • the outer ring member 24 is supported on the inner surface of the caliper housing 17A so as to be movable in the axial direction.
  • a contact portion of the inner surface of the caliper housing 17A with respect to the outer ring member 24 is a cylindrical surface.
  • the outer ring member 24 has a concave portion 29 that engages with a convex portion 28 formed on the back surface of the friction pad 13, and is prevented from rotating with respect to the caliper housing 17 ⁇ / b> A by the engagement of the convex portion 28 and the concave portion 29. .
  • the carrier 25B extends in the axial direction between a pair of carrier plates 25B 1 and 25B 2 facing in the axial direction with the planetary roller 25A in between and the planetary rollers 25A adjacent in the circumferential direction, and the carrier plates 25B 1 and 25B 2. having a connecting portion 25B 3 for connecting to each other, and a roller shaft 25B 4 which rotatably supports the respective planetary rollers 25A.
  • Each of the carrier plates 25B 1 and 25B 2 is formed in an annular shape that penetrates the rotating shaft 23, and a sliding bearing 30 that is in sliding contact with the outer periphery of the rotating shaft 23 is mounted on the inner periphery thereof.
  • Both end portions of the roller shaft 25B 4 is movably supported in the radial direction of the outer ring member 24 in the long hole 31 formed on a pair of carrier plate 25B 1, 25B 2. Further, at both ends of the roller shaft 25B 4, the elastic ring 32 so as to circumscribe the roller shaft 25B 4 of all of the planetary rollers 25A in the circumferential direction spaced is stretched. The elastic ring 32 prevents slippage between the planetary roller 25 ⁇ / b> A and the rotary shaft 23 by pressing each planetary roller 25 ⁇ / b> A against the outer periphery of the rotary shaft 23.
  • a load sensor 33 is provided behind the outer ring member 24 in the axial direction so as to be interposed between the pressing mechanism 15 and the planetary roller screw mechanism 25.
  • This load sensor 33 is a magnetic load sensor (hereinafter, the same reference numeral as that of the load sensor 33), and includes a flange member 33A and a flange member 33A that cause deflection when a load is input from the front in the axial direction.
  • the support member 33B is supported from the rear in the axial direction, includes a magnetic target 33C that generates magnetic flux, and a magnetic sensor 33D that detects the magnetic flux generated by the magnetic target 33C.
  • the flange member 33A is an annular plate member formed of a metal such as iron.
  • the support member 33B is formed of a metal such as iron, like the flange member 33A, and is fitted into the outer peripheral edge of the flange member 33A.
  • the fitting portion between the flange member 33A and the support member 33B acts as a fulcrum portion A (see FIGS. 19A and 19B) for bending the flange member 33A with respect to the support member 33B.
  • the outer peripheral edge of the support member 33B is supported by the inner surface of the caliper housing 17A so as to be movable in the axial direction.
  • a cylindrical portion 33E is continuously provided on the inner peripheral side of the support member 33B so as to face the inner diameter side of the flange member 33A.
  • a plurality of bearings 34 are mounted on the inner periphery of the cylindrical portion 33E at intervals in the axial direction, and the rotary shaft 23 and the magnetic load sensor 33 are capable of relative rotation around the axis.
  • the magnetic target 33C is fixed to the inner periphery of the flange member 33A.
  • the magnetic sensor 33D is fixed to the outer periphery of the cylindrical portion 33E of the support member 33B so as to face the magnetic target 33C in the radial direction.
  • each planetary roller 25A and the carrier plate 25B 2 of the axially rearward thrust bearing 35 which rotatably supports the planetary rollers 25A is incorporated.
  • a thrust plate 36 which revolves together with the carrier plate 25B 2 are provided.
  • a thrust bearing 37 is incorporated between the thrust plate 36 and the flange member 33A of the magnetic load sensor 33.
  • the flange member 33A and the thrust bearing 37 are in contact with each other at the reaction force portion R (see FIGS. 19A and 19B) of the flange member 33A.
  • the thrust plate 36 can be rotated relative to the magnetic load sensor 33 around the axis by the thrust bearing 37.
  • the carrier plate 25B 1 of the axial forward movement of the axially forward is restricted by the first stopper ring 38a mounted on the axial forward end of the rotary shaft 23. Therefore, relative movement of the carrier 25B and the planetary roller 25A held by the carrier 25B is restricted relative to the rotating shaft 23 in the axial front and the axial rear.
  • a second retaining ring 38b is mounted on the outer periphery of the rotary shaft 23 near the rear in the axial direction.
  • the second retaining ring 38b is in contact with a pusher 51 provided coaxially with the rotary shaft 23 from the rear in the axial direction.
  • the pusher wheel 51 is in contact with the pressing portion P (see FIG. 19A) on the inner diameter side of the support member 33B from the rear in the axial direction (hereinafter, the push wheel 51 that contacts the inner diameter side of the support member 33B is referred to as a small diameter pusher wheel 51a. .)
  • the pressing portion P is located radially inward of the reaction force portion R, and is largely separated in the radial direction from the fulcrum portion A that bends the flange member 33A with respect to the support member 33B.
  • a seal cover 40 that closes the opening at the front end of the outer ring member 24 in the axial direction is attached to the end of the outer ring member 24 in the axial direction.
  • the seal cover 40 prevents foreign matter from entering the outer ring member 24.
  • one end of a cylindrical bellows 41 formed to be extendable in the axial direction is fixed to an axially forward end of the outer ring member 24, and the other end of the bellows 41 is an opening in the axially forward direction of the caliper housing 17A. It is fixed to the edge.
  • the bellows 41 prevents foreign matter from entering between the sliding surfaces of the outer ring member 24 and the caliper housing 17A.
  • the reaction force is magnetically transmitted through the outer ring member 24, the planetary roller screw mechanism 25, the thrust plate 36, and the thrust bearing 37. It is transmitted to the flange member 33A of the type load sensor 33.
  • the reaction force is transmitted to the flange member 33A, the flange member 33A bends in the axial direction with the fulcrum A as a fulcrum, and the magnetic target 33C fixed to the flange member 33A and the magnetic target fixed to the support member 33B.
  • the sensor 33D is relatively displaced in the axial direction. Then, the output signal of the magnetic sensor 33D changes corresponding to this relative displacement.
  • the axial load applied to the flange member 33A can be determined based on the output signal of the magnetic sensor 33D. The size can be detected.
  • the pressing mechanism 15 includes a pressing member 15 ⁇ / b> B provided so as to be movable in the axial direction so as to face the rear end in the axial direction of the rotating shaft 23, and around an axis perpendicular to the axial direction of the rotating shaft 23.
  • a cam member 15A rotatably supported, a link member 15C incorporated between the pressing member 15B and the cam member 15A, and a wire lever 15D to which a wire end fitting provided at one end of the wire cable 14 is connected.
  • One end of the wire lever 15D is connected to the cam member 15A, and when the wire cable 14 connected to the other end of the wire lever 15D is pulled, the wire lever 15D and the cam member 15A rotate together. (See FIG. 17).
  • the pressing member 15 ⁇ / b> B is slidably supported by the inner surface of a guide hole 42 provided in the cover 27 that extends in the axial direction.
  • the end faces of the axially rearward of the pressing member 15B, the recess 15B 1 that supports receiving one end of the link member 15C is formed.
  • the outer periphery of the cam member 15A, the cam surface 15A 1 is formed.
  • Cam surface 15A 1 when the cam member 15A is rotated by pulling operation of the wire cable 14, in accordance with the rotation angle, with a shape that presses the pressing member 15B axially forward through the link member 15C It is formed as follows.
  • a spherical body 52 is provided between the pressing member 15 ⁇ / b> B and the rotating shaft 23, and a pressing force is transmitted to the rotating shaft 23 through the spherical body 52.
  • a return spring 15E that urges the wire lever 15D in a direction opposite to the rotating direction of the wire lever 15D by the pulling operation of the wire cable 14 is attached to the wire lever 15D (see FIG. 15).
  • the pressing mechanism 15 rotates the cam member 15A by the pulling force, and according to the rotation angle of the cam member 15A, cam surfaces 15A 1 moves down the pressing member 15B axially forward via the link member 15C. Then, the pressing member 15 ⁇ / b> B presses the rotating shaft 23 forward in the axial direction via the sphere 52.
  • the small diameter pusher wheel 40a is pressed forward in the axial direction by the second retaining ring 38b, and further, the support member 33B is pressed forward in the axial direction by the small diameter pusher wheel 40a.
  • the support member 33B is pressed forward in the axial direction
  • the flange member 33A fitted to the support member 33B is also pressed forward in the axial direction while the support member 33B is bent forward in the axial direction.
  • the relative displacement amount of the magnetic target 33C and the magnetic sensor 33D at the same braking force is increased.
  • the output of the load sensor with respect to the load change of the friction pad 13 can be emphasized as compared with the normal braking by the driving force of the electric motor 10.
  • the resolution for detecting the braking force when the operation is performed can be improved.
  • This electric brake device may be provided with a warning device that warns the driver of insufficient load when the load detected by the magnetic load sensor 33 (operating force by the driver) is smaller than a predetermined load threshold. It can. As described above, by providing the warning device, it is possible to easily recognize that the driver is in a state of insufficient load, and it is possible to quickly take appropriate measures such as increasing the operating force.
  • the brake pedal 43 operated by the driver's foot includes a wire connector portion 44 to which a wire end fitting provided at an end portion of the wire cable 14 is connected, and a clutch mechanism 45. It is attached.
  • the brake pedal 43 is supported so as to be swingable about a fulcrum shaft 46.
  • the brake pedal 43 is provided with a stroke sensor (not shown) that detects the depression amount of the brake pedal 43.
  • the wire connector portion 44 is swingably supported so as to have a swing center at the same position as the fulcrum shaft 46 of the brake pedal 43.
  • the wire connector portion 44 can swing independently of the brake pedal 43 so that the brake pedal 43 can swing independently of the wire connector portion 44.
  • a reverse operation type electromagnetic clutch configured to be disconnected when energized and to be connected when energization is stopped can be employed.
  • the clutch mechanism 45 is in the connected state when the energization to the clutch mechanism 45 is stopped, so even when the electric brake device loses power, A braking force can be secured.
  • the clutch mechanism 45 performs brake control based on detection results of sensors such as a stroke sensor, a magnetic load sensor 33, and a battery sensor (not shown) that detects a charge amount of a battery that supplies electric power to the electric motor 10. Controlled by a unit (not shown).
  • the electric brake device pushes the rotating shaft 23 forward in the axial direction by pulling the wire cable 14 with the driver's operating force, and the rotating shaft 23 and the outer ring.
  • the friction pad 13 can be pressed against the brake disc 11 by moving the member 24 integrally in the axial direction. Therefore, even when trouble such as electrical failure occurs, a braking force can be generated, and high safety can be ensured.
  • FIG. 18 shows a fifth embodiment (main part) of the electric brake device according to the present invention.
  • This electric brake device has the same basic configuration as the electric brake device according to the fourth embodiment (see FIG. 15), but the shape of the push wheel 51 that transmits the pressing force of the pressing mechanism 15 to the magnetic load sensor 33 is different.
  • the pusher 51 according to the fifth embodiment has an outer diameter larger than that of the pusher 51 (small-diameter pusher 51a) according to the fourth embodiment, and the pusher 51 according to the fifth embodiment has a shaft on the outer diameter side pressing portion P (see FIG. 19B). Abutting from the rear in the direction (hereinafter, the pusher wheel 51 abutting on the outer diameter side of the support member 33B is referred to as a large-diameter pusher wheel 51b).
  • the pressing portion P of the large-diameter pusher wheel 51b is close to the fulcrum portion A that bends the flange member 33A with respect to the support member 33B in the radial direction.
  • the flange member 33A acts as a reaction force in the axial rearward direction. Since the pressing portion P and the fulcrum portion A of the support member 33B are close to each other in the radial direction, the support member 33B is almost axially forward due to the pressing force from the pressing mechanism 15. Not sure (see arrow in FIG. 19B).
  • the electric brake device (configuration employing the small diameter pusher 51a)
  • the electric brake device (configuration employing the large diameter pusher 51b) according to the fifth embodiment is shown in FIG.
  • the same load sensor output can be obtained during normal braking using the driving force of the electric motor 10 and when braking is performed using the driver's operating force.
  • FIG. 21 shows a sixth embodiment (main part) of the electric brake device according to the present invention.
  • This electric brake device has the same basic configuration as the electric brake devices according to the fourth and fifth embodiments (see FIGS. 15 and 18), and the braking force is applied when the brake operation is performed by the driver's operation force.
  • the configuration of the pressing mechanism 15 is different. That is, as shown in the figure, the pressing mechanism 15 includes a linearly moving disk 15G corresponding to the pressing member 15B according to the fourth embodiment, disposed behind the rotating shaft 23 in the axial direction, and the shaft of the linearly moving disk 15G.
  • the linear motion disk 15G is slidably supported on the inner surface of a guide hole 42 provided in the cover 27 extending in the axial direction.
  • the linearly moving disk 15G has a protrusion extending in the axial direction, and a guide groove for guiding the protrusion in the axial direction is formed on the inner surface of the guide hole 42. It is movable in the axial direction while being prevented from rotating around the axis.
  • the rotating disk 15H is rotatably supported by the guide hole 42 in a state where the axial rearward movement is restricted by the thrust bearing 47.
  • a plurality of inclined grooves 15H 1 at intervals in the circumferential direction are formed on the facing surface relative to the linear motion disk 15G of the rotation disk 15H. Further, as shown in FIG. 11A, FIG. 11B, in the opposite plane to the rotation disk 15H of the linear motion disk 15G, circumferentially spaced plurality of inclined grooves 15G 1 is formed.
  • the inclined groove 15G 1 includes, from the deepest portion 15G 2 in one circumferential direction is formed so as gradually become shallower, inclined groove 15H 1 is toward the deepest portion 15H 2 in the other circumferential direction It is formed so as to become shallower.
  • the ball 15I is incorporated between both the inclined grooves 15G 1 and 15H 1 .
  • one end of the wire lever 15D is connected to the rotating disk 15H, and when the wire cable 14 connected to the other end of the wire lever 15D is pulled, the wire lever 15D and the rotating disk are connected. 15H rotates together.
  • a return spring 15E that urges the wire lever 15D in a direction opposite to the rotation direction of the wire lever 15D by the pulling operation of the wire cable 14 is attached to the wire lever 15D.
  • the pressing mechanism 15 rotates the rotating disk 15H by a tensile force acting on the wire cable 14 as shown in FIG. 11B.
  • the ball 15I has the inclined grooves 15G 1 , since rolls 15H 1 in a direction becomes shallower from the deepest 15G 2, 15H 2, axial spacing of the rotating disk 15H and the linear motion disk 15G is enlarged in accordance with the rotation angle of the rotation disk 15H.
  • the rotation disc 15H is restricted from moving rearward in the axial direction, the linear motion disc 15G moves forward in the axial direction, and the rotary shaft 23 is pushed forward in the axial direction by the linear motion disc 15G. Move.
  • FIG. 22 shows a seventh embodiment (main part) of the electric brake device according to the present invention.
  • the caliper flange 17B and the cover 27 support the fourth gear 26D from both sides in the axial direction, and this fourth gear.
  • the second retaining ring 38b is provided on the axially rear side of the fourth gear 26D of the rotating shaft 23,
  • the fourth gear 26D is configured to allow movement in the axial direction while preventing the fourth gear 26D from coming off the rotating shaft 23.
  • FIG. 23 shows an eighth embodiment (main part) of the electric brake device according to the present invention.
  • This electric brake device has the same basic configuration as the electric brake device according to the fourth embodiment (see FIG. 15), and can detect the braking force when the brake operation is performed by the driver's operation force.
  • the transmission mechanism of the pressing force between the pressing mechanism 15 and the rotating shaft 23 is different. That is, in the electric brake device according to the fourth embodiment, the sphere 52 is provided between the pressing member 15 ⁇ / b> B of the pressing mechanism 15 and the rotating shaft 23, and the pressing force is transmitted through the sphere 52.
  • the axially forward end surface of the pressing member 15 ⁇ / b> B that is prevented from rotating with respect to the cover 27 and the axially rearward end surface of the rotary shaft 23.
  • the pressure is transmitted by bringing the surface into direct surface contact.
  • the end surface on the rear side in the axial direction of the rotating shaft 23 and the end surface on the front side in the axial direction of the carrier 25B are both flat surfaces, but as long as sufficient frictional force is exerted between the both end surfaces.
  • the end surface shape is not limited, and for example, one end surface may be a concave curved surface, and the other end surface may be a convex curved surface having the same curvature as the concave curved surface.
  • FIG. 24 shows a ninth embodiment (main part) of the electric brake device according to the present invention.
  • This electric brake device has the same basic configuration as the electric brake device according to the eighth embodiment (see FIG. 23), and can detect the braking force when the brake operation is performed by the driver's operating force.
  • the configuration of the pressing mechanism 15 is different. That is, in the electric brake device according to the eighth embodiment, the cam-type pressing mechanism 15 is adopted, but in the electric brake device according to the ninth embodiment, the ball ramp-type pressing mechanism 15 is adopted.
  • the axially forward end surface of the linear motion disk 15G of the pressing mechanism 15 that is prevented from rotating with respect to the cover 27 and the axially rearward end surface of the rotary shaft 23 are both flat surfaces.
  • the pressing force is transmitted by bringing both end surfaces into contact with each other, and the sliding of the both engaging portions to prevent the rotating shaft 23 from rotating inadvertently and the fail-safe mechanism functions reliably.
  • the pressing force is transmitted by bringing both end surfaces into contact with each other, and the
  • FIG. 25 shows a tenth embodiment (main part) of the electric brake device according to the present invention.
  • This electric brake device is the same as the electric brake device according to the ninth embodiment (see FIG. 24) in that a ball ramp type pressing mechanism 15 is provided.
  • the moving disk 15G is different in that the moving disk 15G is brought into surface contact with the fourth gear 26D which is an extending member extending radially outward of the rotating shaft 23 instead of the rotating shaft 23. Since the fourth gear 26D has a larger diameter than the outer diameter of the rotary shaft 23, the fourth gear 26D and the linear motion disk 15G are brought into surface contact to bring the rotary shaft 23 and the linear motion disc 15G into contact with each other. In comparison, the anti-rotation action of the rotating shaft 23 can be further improved.
  • FIG. 26 shows an eleventh embodiment (main part) of the electric brake device according to the present invention.
  • This electric brake device has the same basic configuration as the electric brake device according to each of the above embodiments, and is the same in that the braking force can be detected when the brake operation is performed by the driver's operation force.
  • the motion conversion that converts the rotation of the rotating shaft 23 to which the rotation of the electric motor 10 is input into the axial movement of the linear motion member 24 that presses the friction pad 13.
  • a feed screw mechanism hereinafter, the same reference numeral as that of the motion converting mechanism 25 is given
  • the feed screw mechanism 25 is formed on the outer periphery of a screw shaft 25E formed integrally with the rotary shaft 23, a nut 25F functioning as a linear motion member 24 provided so as to surround the screw shaft 25E, and the screw shaft 25E.
  • a plurality of balls 25I incorporated between the screw groove 25G and the screw groove 25H formed on the inner periphery of the nut 25F, and a return tube (not shown) for returning the ball from the end point of the screw groove 25H of the nut 25F to the start point And have.
  • the nut 25F is provided in the caliper housing 17A so as to be movable in the axial direction while being prevented from rotating with respect to the caliper housing 17A.
  • the axially rearward end of the screw shaft 25E, the flange 25E 1 is formed radially outwardly.
  • the axially rearward of the flange 25E 1, the thrust bearing 49 is provided.
  • the thrust bearing 49 is in contact with the flange member 33A of the magnetic load sensor 33, and the reaction force received by the friction pad 13 from the brake disk 11 is transmitted to the flange member 33A via the thrust bearing 49.
  • the electric brake device is merely an example, and the first problem of the present invention that the fail-safe mechanism of the electric brake device functions reliably or the operation of the fail-safe mechanism of the electric brake device As long as the second problem of the present invention that the braking force can be detected sometimes can be solved, the configuration of the motion conversion mechanism 25 and the pressing mechanism 15 and the shape, arrangement, material, and the like of each component are appropriately changed. You can also For example, in each of the embodiments described above, the magnetic load sensor 33 is employed, but a strain detection type load sensor may be employed instead.

Abstract

This electric brake apparatus is configured to have: an electric motor (10); a rotary shaft (23) that rotates about the axis thereof by means of the rotary driving force of the electric motor (10); a linear motion member (24) that is provided so as to be movable in the axial direction of the rotary shaft (23); a motion conversion mechanism (25) that converts the rotation of the rotary shaft (23) into the movement of the linear motion member (24) in the axial direction; a friction pad (13) that is provided to one side of the linear motion member (24) in the axial direction and that moves in the axial direction along with the movement of the linear motion member (24) in the axial direction; and a pressing mechanism (15) that presses, by means of operation force applied by a driver, the rotary shaft (23) to one side in the axial direction while preventing the rotary shaft (23) from rotating about the axis, and moves the rotary shaft (23) and the linear motion member (24) integrally to one side in the axial direction.

Description

電動ブレーキ装置Electric brake device
 この発明は、電動モータの回転駆動力によって制動力を生じさせる電動ブレーキ装置に関する。 The present invention relates to an electric brake device that generates a braking force by a rotational driving force of an electric motor.
 電動ブレーキ装置は、電動モータの回転駆動力をギアを介して回転軸に伝達し、この回転軸の回転を運動変換機構によって直動部材の軸方向の移動に変換し、この直動部材とともに軸方向に移動する摩擦パッドをブレーキディスクに押さえ付けることによって制動力を発揮する。この電動ブレーキ装置に用いられる電動モータは、車両に搭載されたバッテリから電力の供給を受けて駆動するため、バッテリの充電量の異常低下、センサ故障、電気配線の断線等のトラブルが生じると、ブレーキ機能を発揮できないという問題がある。 The electric brake device transmits the rotational driving force of the electric motor to the rotating shaft through a gear, converts the rotation of the rotating shaft into the axial movement of the linear motion member by the motion conversion mechanism, and the shaft along with the linear motion member. The braking force is exerted by pressing the friction pad moving in the direction against the brake disc. The electric motor used in this electric brake device is driven by receiving electric power supplied from a battery mounted on the vehicle, so when troubles such as abnormal decrease in the charge amount of the battery, sensor failure, disconnection of electric wiring, etc. occur, There is a problem that the brake function cannot be exhibited.
 そこで、例えば、下記特許文献1に示すように、上記のトラブルが生じたときのフェールセーフ機構を備えた電動ブレーキ装置が採用されることがある(特許文献1の図4等参照)。この電動ブレーキ装置においては、前記直動部材として、回転軸を囲むように配置された外輪部材が採用されている。また、前記運動変換機構として、回転軸に外接するとともに外輪部材に内接する複数の遊星ローラと、これらの遊星ローラを自転可能かつ公転可能に支持するキャリアと、外輪部材の内周に設けられた螺旋凸条と、この螺旋凸条と係合するように遊星ローラの外周に設けられた円周溝とを有する遊星ローラ機構を採用することができる。この回転軸の外周には、キャリアを軸方向の後方から支持する鍔部が形成されている。 Therefore, for example, as shown in Patent Document 1 below, an electric brake device having a fail-safe mechanism when the above trouble occurs may be employed (see FIG. 4 of Patent Document 1). In this electric brake device, an outer ring member disposed so as to surround the rotation shaft is employed as the linear motion member. Further, as the motion conversion mechanism, a plurality of planetary rollers circumscribing the rotating shaft and inscribed in the outer ring member, a carrier for supporting these planetary rollers so as to rotate and revolve, and an inner periphery of the outer ring member are provided. A planetary roller mechanism having a spiral ridge and a circumferential groove provided on the outer periphery of the planetary roller so as to engage with the spiral ridge can be employed. On the outer periphery of the rotating shaft, a collar portion is formed that supports the carrier from the rear in the axial direction.
 さらに、この電動ブレーキ装置には、例えば、下記特許文献2の図7等に示すように、押圧力センサを組み込むことができる。この押圧力センサは、磁気式荷重センサであって、軸方向前方から荷重が入力されてたわみを生じるフランジ部材と、フランジ部材を軸方向後方から支持する支持部材と、磁束を発生する磁気ターゲットと、磁気ターゲットが発生する磁束を検出する磁気センサとからなる。 Furthermore, a pressing force sensor can be incorporated in this electric brake device as shown in FIG. This pressing force sensor is a magnetic load sensor, a flange member that receives a load from the front in the axial direction and generates deflection, a support member that supports the flange member from the rear in the axial direction, a magnetic target that generates magnetic flux, And a magnetic sensor for detecting the magnetic flux generated by the magnetic target.
 フランジ部材は、円環板状の部材である。支持部材は、フランジ部材の外周縁に嵌め込まれている。この支持部材の外周縁は、キャリパハウジングの内面で移動不能に支持されている。この支持部材の内周側には、フランジ部材の内径側に対向するように円筒部が連設されている。円筒部の内周には、複数の軸受が軸方向に間隔をおいて装着されており、回転軸と磁気式荷重センサは、軸周りに相対回転可能となっている。磁気ターゲットは、フランジ部材の内周に固定されている。磁気センサは、磁気ターゲットと径方向に対向するように支持部材の円筒部の外周に固定されている(特許文献2の図3等参照)。 The flange member is an annular plate member. The support member is fitted on the outer peripheral edge of the flange member. The outer peripheral edge of the support member is supported on the inner surface of the caliper housing so as not to move. A cylindrical portion is continuously provided on the inner peripheral side of the support member so as to face the inner diameter side of the flange member. A plurality of bearings are mounted on the inner periphery of the cylindrical portion at intervals in the axial direction, and the rotary shaft and the magnetic load sensor are relatively rotatable around the axis. The magnetic target is fixed to the inner periphery of the flange member. The magnetic sensor is fixed to the outer periphery of the cylindrical portion of the support member so as to face the magnetic target in the radial direction (see FIG. 3 in Patent Document 2).
 バッテリから供給された電力によって、電動モータが正常に駆動しているときは、この電動モータの回転駆動力が減速機構を介して回転軸に伝達され、この回転軸が軸周りに回転する。回転軸が軸周りに回転すると、この回転軸に外接する遊星ローラが、回転軸との転がり接触によってローラ軸を中心に自転しつつ、回転軸を中心に公転する。外輪部材に設けられた螺旋凸条と遊星ローラに設けられた円周溝は係合しているため、遊星ローラの回転に伴って、外輪部材と遊星ローラは軸方向に相対移動する。ここで、遊星ローラを支持するキャリアは軸方向への移動が規制されており、これにより、遊星ローラの回転に伴って、外輪部材は軸方向の前方側に移動し、この外輪部材と一体に軸方向に移動可能に設けられた摩擦パッドによって、ブレーキディスクが押さえ付けられる。 When the electric motor is normally driven by the electric power supplied from the battery, the rotational driving force of the electric motor is transmitted to the rotating shaft through the reduction mechanism, and the rotating shaft rotates around the shaft. When the rotating shaft rotates around the axis, the planetary roller circumscribing the rotating shaft revolves around the rotating shaft while rotating around the roller shaft by rolling contact with the rotating shaft. Since the spiral ridge provided on the outer ring member and the circumferential groove provided on the planetary roller are engaged, the outer ring member and the planetary roller relatively move in the axial direction as the planetary roller rotates. Here, the movement of the carrier supporting the planetary roller in the axial direction is restricted, and as a result of the rotation of the planetary roller, the outer ring member moves to the front side in the axial direction and is integrated with the outer ring member. The brake disc is pressed down by a friction pad provided so as to be movable in the axial direction.
 このように、摩擦パッドがブレーキディスクに押し付けられると、軸方向後方への反力として、キャリアプレート、スラスト軸受を介して、磁気式荷重センサのフランジ部材に軸方向後方に向かう軸方向荷重が入力される(特許文献2の図7等参照)。そして、この軸方向荷重によって、フランジ部材が軸方向後方にたわみ、このたわみに伴って、磁気ターゲットと磁気センサが軸方向に相対変位する。すると、この相対変位に対応して磁気センサの出力信号が変化する。この出力信号の大きさと、フランジ部材に入力される軸方向荷重の大きさとの関係を予め把握しておくことにより、磁気センサの出力信号に基づいて、フランジ部材にかかる軸方向荷重の大きさを検出することができる。 As described above, when the friction pad is pressed against the brake disc, the axial load directed rearward in the axial direction is input to the flange member of the magnetic load sensor through the carrier plate and the thrust bearing as a reaction force backward in the axial direction. (See FIG. 7 in Patent Document 2). The flange member is deflected rearward in the axial direction by the axial load, and the magnetic target and the magnetic sensor are relatively displaced in the axial direction along with the deflection. Then, the output signal of the magnetic sensor changes corresponding to this relative displacement. By grasping in advance the relationship between the magnitude of this output signal and the magnitude of the axial load input to the flange member, the magnitude of the axial load applied to the flange member can be determined based on the output signal of the magnetic sensor. Can be detected.
 その一方で、バッテリの充電量の異常低下等のトラブルによって、電動モータが正常に駆動しないときは、運転者の操作力(ブレーキペダルの踏み込み力)によって、ワイヤケーブルが引っ張られ、これによってカム部材が回動する。このカム部材が回動すると、その回動角度に対応して、カム面がリンク部材を介してスライド部材を軸方向前方に移動する。そして、このスライド部材が、球体を介して回転軸を軸方向前方に押圧する。 On the other hand, when the electric motor does not drive normally due to troubles such as an abnormal decrease in the charge amount of the battery, the wire cable is pulled by the driver's operating force (braking force on the brake pedal), thereby the cam member Rotate. When this cam member rotates, the cam surface moves the slide member forward in the axial direction via the link member corresponding to the rotation angle. And this slide member presses a rotating shaft to the axial direction front via a spherical body.
 回転軸がスライド部材に押圧されて軸方向前方に移動すると、この回転軸の外周に設けられた鍔部がキャリアに当接し、このキャリアによって支持された遊星ローラとともに軸方向前方に移動する。遊星ローラが軸方向前方に移動すると、この螺旋凸条及び円周溝を介して係合する外輪部材も軸方向前方に移動する。そして、この外輪部材の移動に伴って、摩擦パッドも軸方向前方に移動してブレーキディスクが押さえ付けられる。 When the rotary shaft is pressed by the slide member and moves forward in the axial direction, the flange provided on the outer periphery of the rotary shaft comes into contact with the carrier and moves forward in the axial direction together with the planetary roller supported by the carrier. When the planetary roller is moved forward in the axial direction, the outer ring member engaged through the spiral protrusion and the circumferential groove is also moved forward in the axial direction. As the outer ring member moves, the friction pad also moves forward in the axial direction, and the brake disc is pressed down.
 このように、フェールセーフ機構を設けることにより、電動モータが正常に駆動しない等のトラブルが生じた場合でも、運転者の操作力によって制動力を発揮させることができ、常に安全性が確保される。また、このフェールセーフ機構は、非常時に限らず、通常のパーキングブレーキとしても利用することができる。 Thus, by providing the fail-safe mechanism, even when trouble such as the electric motor not being driven normally occurs, the braking force can be exhibited by the driver's operation force, and safety is always ensured. . Moreover, this fail-safe mechanism can be used not only in an emergency but also as a normal parking brake.
特開2015-137667号公報JP2015-137667A 特開2014-16307号公報JP 2014-16307 A
 特許文献1に係る電動ブレーキ装置は、回転軸に設けた鍔部とキャリアを接触させることによって、回転軸の回転を抑制しつつ、このキャリアを軸方向前方に押圧しているが、外輪部材に設けられた螺旋凸条のリード角と、遊星ローラに設けられた円周溝との間の角度が大きい場合、両者の係合部で滑りが発生する虞がある。滑りが発生すると、キャリアが回転軸とともに軸周りに回転して、外輪部材を軸方向前方に押圧する押圧力が抜けて、制動力が不足する可能性がある。 In the electric brake device according to Patent Document 1, the carrier is pressed forward in the axial direction while suppressing the rotation of the rotation shaft by bringing the collar portion provided on the rotation shaft into contact with the carrier. When the angle between the lead angle of the provided spiral ridge and the circumferential groove provided on the planetary roller is large, there is a possibility that slippage may occur at the engaging portion between them. When slipping occurs, the carrier rotates around the shaft together with the rotating shaft, and the pressing force that presses the outer ring member forward in the axial direction is lost, and the braking force may be insufficient.
 また、特許文献1に係る電動ブレーキ装置に、特許文献2に係る押圧力センサを特許文献2の図7等に示すように組み込んだ構成においては、フェールセーフ機構の作動時に、回転軸に設けられた鍔部(特許文献1の図4等参照)が、キャリアを介して外輪部材を軸方向前方に押圧するため、このキャリアよりも軸方向後方に配置された押圧力センサ(特許文献2の図7等参照)とキャリアとの間が離間する。このため、フェールセーフ機構の作動時には、摩擦パッドがブレーキディスクに押し付けられたことに伴う軸方向後方への反力が押圧力センサに伝達されず、その押圧力を検知することができない。このため、運転者による操作力が不十分なときでも、そのことを運転者がそのことを認知することができず、フェールセーフ機構の効きが不十分のままとなることがある。 Further, in the configuration in which the pressing force sensor according to Patent Document 2 is incorporated in the electric brake device according to Patent Document 1 as shown in FIG. 7 of Patent Document 2, it is provided on the rotating shaft during the operation of the fail-safe mechanism. Since the flange portion (see FIG. 4 in Patent Document 1) presses the outer ring member forward in the axial direction via the carrier, a pressing force sensor disposed in the axially rearward direction relative to the carrier (see FIG. 2). 7) and the carrier are separated from each other. For this reason, when the fail safe mechanism is operated, the reaction force in the rearward direction in the axial direction due to the friction pad being pressed against the brake disk is not transmitted to the pressing force sensor, and the pressing force cannot be detected. For this reason, even when the operating force by the driver is insufficient, the driver cannot recognize that fact, and the effectiveness of the fail-safe mechanism may remain insufficient.
 そこで、この発明は、電動ブレーキ装置のフェールセーフ機構を確実に機能させることを第一の課題とし、電動ブレーキ装置のフェールセーフ機構の作動時に、その制動力を検知可能とすることを第二の課題とする。 Accordingly, the first object of the present invention is to reliably function the fail-safe mechanism of the electric brake device, and secondly to enable detection of the braking force when the fail-safe mechanism of the electric brake device is activated. Let it be an issue.
 この第一の課題を解決するために、この発明においては、電動モータと、前記電動モータの回転駆動力によって軸周りに回転する回転軸と、前記回転軸の軸方向に移動可能に設けられた直動部材と、前記回転軸の回転を前記直動部材の軸方向の移動に変換する運動変換機構と、前記直動部材の軸方向の一方側に設けられ、前記直動部材の軸方向への移動とともに軸方向に移動する摩擦パッドと、運転者の操作力によって、前記回転軸の軸周りの回転を阻止しつつ、前記回転軸を軸方向の前記一方側に押圧して、前記回転軸と前記直動部材を一体に軸方向の前記一方側に移動させる押圧機構と、を有する電動ブレーキ装置を構成した。 In order to solve this first problem, in the present invention, an electric motor, a rotating shaft that rotates around the axis by the rotational driving force of the electric motor, and an axial direction of the rotating shaft are provided. A linear motion member, a motion conversion mechanism that converts rotation of the rotary shaft into axial movement of the linear motion member, and provided on one axial side of the linear motion member, in the axial direction of the linear motion member A friction pad that moves in the axial direction along with the movement of the motor, and a rotation force around the axis of the rotating shaft is blocked by the driver's operating force, while pressing the rotating shaft toward the one side in the axial direction, and the rotating shaft And a pressing mechanism that integrally moves the linearly moving member to the one side in the axial direction.
 このように、回転軸の回転を阻止すると、押圧機構によって直動部材を押圧する際に回転軸が不用意に回転して押圧力が抜けるのを確実に防止することができる。このため、電動ブレーキ装置のフェールセーフ機構を確実に機能させることができる。 As described above, when the rotation of the rotating shaft is prevented, it is possible to reliably prevent the pressing force from being released due to the rotating shaft rotating carelessly when the linear motion member is pressed by the pressing mechanism. For this reason, the fail safe mechanism of an electric brake device can be functioned reliably.
 前記構成においては、前記押圧機構が、前記回転軸と面接触してこの回転軸の軸周りの回転を摩擦力によって阻止しつつ、軸方向に移動して前記回転軸を軸方向の前記一方側に押圧する、軸周りに回り止めされた押圧部材を有する構成とすることができる。 In the above-described configuration, the pressing mechanism moves in the axial direction while being in surface contact with the rotating shaft and preventing the rotation of the rotating shaft around the axis by frictional force, thereby moving the rotating shaft to the one side in the axial direction. It can be set as the structure which has the press member stopped around the axis | shaft which presses to the periphery.
 このようにすると、簡便な構成で回り止め作用を確実に発揮させることができる。 In this way, the anti-rotation effect can be reliably exhibited with a simple configuration.
 前記押圧部材を有する構成においては、前記押圧機構が、運転者の操作力によって回動するカム部材と、前記カム部材の回動に応じて軸方向に移動して、前記押圧部材を軸方向に移動させるリンク部材と、をさらに有する構成とすることができる。 In the configuration having the pressing member, the pressing mechanism is moved in the axial direction in accordance with the rotation of the cam member and the cam member that is rotated by the operating force of the driver, and the pressing member is moved in the axial direction. And a link member to be moved.
 あるいは、前記押圧機構が、軸方向の一方の面に、周方向に沿って深さが変化する傾斜溝が形成された前記押圧部材として機能する直動ディスクと、前記直動ディスクに形成された前記傾斜溝に対向するように、前記直動ディスクとの間に軸方向に間隔をもって配置され、前記直動ディスクと対向する面に、周方向に沿って深さが変化する傾斜溝が形成された、運転者の操作力によって回動する回動ディスクと、前記直動ディスクに形成された前記傾斜溝と、前記回動ディスクに形成された前記傾斜溝と、によって転動可能に保持された転動体と、をさらに有し、前記直動ディスクと前記回動ディスクとの間の相対回転により、前記転動体が前記両傾斜溝内を転動し、前記間隔が広がることで、前記直動ディスクを軸方向に移動させる構成とすることもできる。 Alternatively, the pressing mechanism is formed on the linear motion disk that functions as the pressing member in which an inclined groove whose depth changes along the circumferential direction is formed on one surface in the axial direction, and the linear motion disk. An inclined groove is formed between the linear motion disk and the axially moving disk so as to face the inclined groove, and an inclined groove whose depth varies along the circumferential direction is formed on a surface facing the linearly moving disk. Further, the rotating disk that is rotated by the operating force of the driver, the inclined groove that is formed on the linearly moving disk, and the inclined groove that is formed on the rotating disk are held in a rollable manner. A rolling element, and the relative rolling between the linear disk and the rotating disk causes the rolling element to roll in the both inclined grooves, thereby widening the interval, thereby causing the linear motion. Configuration to move the disk in the axial direction It is also possible to.
 このように、押圧機構を構成することにより、運転者の操作力に基づく回動を、押圧部材の軸方向の移動にスムーズに変換することができ、速やかに制動力を発揮させることができる。 Thus, by configuring the pressing mechanism, the rotation based on the driver's operating force can be smoothly converted into the axial movement of the pressing member, and the braking force can be exhibited quickly.
 また、前記押圧部材を有する各構成においては、前記押圧機構が、前記押圧部材を軸方向の前記一方側とは逆向きの他方側へ付勢する付勢部材をさらに有する構成とすることができる。 Moreover, in each structure which has the said press member, the said press mechanism can be set as the structure which further has the urging | biasing member which urges | biases the said press member to the other side opposite to the said one side of an axial direction. .
 このように、付勢部材で押圧部材を他方側に付勢することによって、運転者の操作力が作用していないときには、回転軸と押圧部材を確実に離間させて、回転軸の回転損失が生じないようにすることができる。 Thus, by urging the pressing member to the other side with the urging member, when the driver's operating force is not acting, the rotating shaft and the pressing member are reliably separated, and the rotation loss of the rotating shaft is reduced. It can be prevented from occurring.
 前記押圧部材を有する各構成においては、前記回転軸にその径方向外向きに延設され、この回転軸と一体に軸周りに回転可能な延設部材を有し、前記押圧部材が、前記延設部材に当接可能とした構成とすることができる。 In each configuration having the pressing member, the rotating shaft is extended outward in the radial direction, and has an extending member that can rotate about the shaft integrally with the rotating shaft, and the pressing member has the extending portion. It can be set as the structure which contact | abutted to the installation member.
 このようにすると、回転軸の外径よりも大径の延設部材に押圧部材を当接させることにより、この押圧部材による回り止め作用を一層向上することができる。 In this case, the detent action by the pressing member can be further improved by bringing the pressing member into contact with the extending member having a diameter larger than the outer diameter of the rotating shaft.
 また、この発明の第二の課題を解決するために、上記の各構成に係る電動ブレーキ装置に、前記押圧機構と前記運動変換機構の間に介在して設けられ、前記押圧機構による押圧力を前記運動変換機構側に伝達する一方で、前記摩擦パッドをブレーキディスクに押し付けたときの軸方向後方への反力を受けて、前記ブレーキディスクに負荷された荷重を検知する荷重センサをさらに有する電動ブレーキ装置を構成した。 In order to solve the second problem of the present invention, the electric brake device according to each of the above-described configurations is provided between the pressing mechanism and the motion conversion mechanism, and the pressing force by the pressing mechanism is applied. The motor further includes a load sensor that detects a load applied to the brake disk by receiving a reaction force in the axial direction rearward when the friction pad is pressed against the brake disk while transmitting to the motion conversion mechanism side. A brake device was constructed.
 このように、押圧機構と運動変換装置の間に荷重センサを介在して設けることにより、フェールセーフ機構が作動したときに、この荷重センサを介して、押圧機構の押圧力をスムーズに回転軸及び直動部材に伝達することができるとともに、その反力からその制動力を検知することができる。このため、運転者が制動力不足を速やかに認知することができ、フェールセーフ機構の効きが不十分な状態のままとなるのを防止することが可能となる。 In this way, by providing a load sensor between the pressing mechanism and the motion conversion device, when the fail safe mechanism is operated, the pressing force of the pressing mechanism can be smoothly transferred via the load sensor via the load sensor. While being able to transmit to a linear motion member, the braking force can be detected from the reaction force. For this reason, the driver can quickly recognize that the braking force is insufficient, and it is possible to prevent the fail-safe mechanism from remaining insufficient.
 前記荷重センサを有する構成においては、前記荷重センサが、前記反力を受けるフランジ部材と、前記フランジ部材に対して屈曲可能に連設されて、前記押圧機構による軸方向前方への押圧力を受ける支持部材と、前記フランジ部材又は前記支持部材の一方側に設けられる磁気ターゲットと、前記フランジ部材又は前記支持部材のうち前記磁気ターゲットを設けた側の他方側に、前記磁気ターゲットと対向するように設けられる磁気センサと、を有する磁気式荷重センサであって、前記フランジ部材と前記支持部材を連設した支点部が、前記フランジ部材が前記反力を受ける反力部、及び、前記支持部材が前記押圧力を受ける押圧部よりも径方向外側に位置する構成とすることができる。 In the configuration having the load sensor, the load sensor is connected to the flange member that receives the reaction force and bendable with respect to the flange member, and receives a pressing force forward in the axial direction by the pressing mechanism. A support member, a magnetic target provided on one side of the flange member or the support member, and the other side of the flange member or the support member on the side where the magnetic target is provided so as to face the magnetic target. A magnetic load sensor having a magnetic sensor, a fulcrum portion where the flange member and the support member are connected, a reaction force portion where the flange member receives the reaction force, and the support member It can be set as the structure located in the radial direction outer side from the press part which receives the said pressing force.
 このようにすると、荷重センサによる荷重の検知を高感度に行うことができる。すなわち、フランジ部材又は支持部材の一方側に設けられた磁気ターゲットと、フランジ部材又は支持部材のうち磁気ターゲットを設けた側の他方側に設けられた磁気センサが、軸方向の逆向きに相対移動するため、その一方のみが軸方向に移動した場合と比較して相対移動量が大きくなる。このため、この荷重センサによる検出感度を大幅に向上することができる。 In this way, the load can be detected with high sensitivity by the load sensor. That is, the magnetic target provided on one side of the flange member or the support member and the magnetic sensor provided on the other side of the flange member or support member on the side on which the magnetic target is provided are relatively moved in the opposite axial direction. For this reason, the relative movement amount becomes larger than when only one of them moves in the axial direction. For this reason, the detection sensitivity by this load sensor can be improved significantly.
 磁気式荷重センサを採用した構成においては、前記押圧部が、前記反力部よりも径方向内側に位置する構成とすることができる。 In the configuration employing the magnetic load sensor, the pressing portion may be positioned radially inward from the reaction force portion.
 このようにすれば、押圧機構からの押圧力によって、支持部材を軸方向前方に大きくたわませることができ、荷重センサによる検出感度を一層向上することができる。 In this way, the supporting member can be greatly deflected forward in the axial direction by the pressing force from the pressing mechanism, and the detection sensitivity of the load sensor can be further improved.
 前記荷重センサを有する各構成においては、前記押圧機構が、軸周りに回り止めされた押圧部材を有し、前記回転軸と前記押圧部材との間の面接触による摩擦力によって、前記回転軸の軸周りの回転を阻止するようにした構成とすることができる。 In each configuration having the load sensor, the pressing mechanism includes a pressing member that is prevented from rotating about an axis, and the frictional force generated by surface contact between the rotating shaft and the pressing member causes the rotation shaft to rotate. It can be set as the structure which prevented rotation around an axis | shaft.
 このように、回転軸の回転を阻止すると、押圧機構によって直動機構を押圧する際に、回転軸が不用意に回転して押圧力が抜けるのを確実に防止することができる。このため、電動ブレーキ装置のフェールセーフ機構を確実に機能させることができる。 Thus, if the rotation of the rotating shaft is prevented, it is possible to reliably prevent the rotating shaft from inadvertently rotating and releasing the pressing force when the linear motion mechanism is pressed by the pressing mechanism. For this reason, the fail safe mechanism of an electric brake device can be functioned reliably.
 上記のように、回転軸と押圧部材を面接触させる代わりに、前記押圧機構が、軸周りに回り止めされた押圧部材を有し、前記回転軸と一体に軸周りに回転する、前記回転軸にその径方向外向きに延設された延設部材と前記押圧部材との間の面接触による摩擦力によって、前記回転軸の軸周りの回転を阻止するようにした構成とすることもできる。 As described above, instead of bringing the rotating shaft and the pressing member into surface contact, the pressing mechanism has a pressing member that is prevented from rotating around the axis, and rotates about the axis integrally with the rotating shaft. Further, it is possible to prevent the rotation of the rotary shaft around the axis by a frictional force caused by surface contact between the extending member extending radially outward and the pressing member.
 このように、回転軸の外径よりも大径の延設部材に押圧部材を当接させることにより、この押圧部材による回り止め作用を一層向上することができる。 As described above, by making the pressing member abut on the extending member having a diameter larger than the outer diameter of the rotating shaft, it is possible to further improve the anti-rotation effect by the pressing member.
 前記荷重センサを有する各構成においては、前記荷重センサで検知した荷重が予め定めた荷重閾値よりも小さいときに、運転者に対し荷重不足であることを警告する警告装置をさらに有する構成とすることができる。 Each configuration having the load sensor further includes a warning device that warns the driver that the load is insufficient when the load detected by the load sensor is smaller than a predetermined load threshold. Can do.
 このように、警告装置を設けることにより、運転者が荷重不足の状態であることを容易に認識することができ、操作力を強める等の適切な対応を速やかにとることができる。 Thus, by providing the warning device, it is possible to easily recognize that the driver is in a state of insufficient load, and it is possible to quickly take appropriate measures such as increasing the operating force.
 この発明に係る電動ブレーキ装置は、回転軸と直動部材を一体に軸方向の一方側に移動させる押圧機構に、この回転軸が軸周りに回転するのを阻止する機能を持たせたので、この押圧機構によって直動部材を押圧する際に回転軸が回転して押圧力が抜けるのを確実に防止することができる。このため、電動ブレーキ装置のフェールセーフ機構を確実に機能させることができる。 In the electric brake device according to the present invention, the pressing mechanism that integrally moves the rotating shaft and the linear motion member to one side in the axial direction has a function of preventing the rotating shaft from rotating around the axis. When the linear motion member is pressed by this pressing mechanism, it is possible to reliably prevent the rotating shaft from rotating and releasing the pressing force. For this reason, the fail safe mechanism of an electric brake device can be functioned reliably.
 さらに、この発明に係る電動ブレーキ装置においては、ブレーキディスクに負荷された荷重を検知する荷重センサを、押圧機構と運動変換機構の間に介在して設けたので、フェールセーフ機構が作動したときに、この荷重センサを介して、押圧機構の押圧力をスムーズに運動変換機構及び直動部材に伝達することができるとともに、摩擦パッドをブレーキディスクに押し付けたときの反力から、その制動力を検知することができる。このため、フェールセーフ機構の効きが不十分な状態のままとなるのを防止し、安全性を確保することができる。 Furthermore, in the electric brake device according to the present invention, since the load sensor for detecting the load applied to the brake disc is provided between the pressing mechanism and the motion conversion mechanism, when the fail safe mechanism is activated. Through this load sensor, the pressing force of the pressing mechanism can be smoothly transmitted to the motion conversion mechanism and the linear motion member, and the braking force is detected from the reaction force when the friction pad is pressed against the brake disc. can do. For this reason, it is possible to prevent the fail-safe mechanism from remaining in an insufficient state, and to ensure safety.
この発明に係る電動ブレーキ装置の第一実施形態を示す縦断面図The longitudinal cross-sectional view which shows 1st embodiment of the electric brake device which concerns on this invention 図1中のII-II線に沿う断面図Sectional view along the line II-II in FIG. 図1に示した電動ブレーキ装置の要部を示す縦断面図1 is a longitudinal sectional view showing a main part of the electric brake device shown in FIG. 図2中のIV-IV線に沿う断面図Sectional view along line IV-IV in FIG. 図4中のV-V線に沿う部分断面図Partial sectional view taken along line VV in FIG. 図3中のVI-VI線に沿う断面図Sectional view along line VI-VI in FIG. 図2に示す押圧機構の作用を示す図であって、運転者の操作力が作用していないときIt is a figure which shows the effect | action of the press mechanism shown in FIG. 2, Comprising: When the driver's operating force is not acting 図2に示す押圧機構の作用を示す図であって、運転者の操作力が作用しているときIt is a figure which shows the effect | action of the press mechanism shown in FIG. 2, Comprising: When the operating force of a driver | operator is acting 図2に示す押圧機構の他例の作用を示す図であって、運転者の操作力が作用していないときIt is a figure which shows the effect | action of the other examples of the press mechanism shown in FIG. 2, Comprising: When the driver | operator's operating force is not acting 図2に示す押圧機構の他例の作用を示す図であって、運転者の操作力が作用しているときIt is a figure which shows the effect | action of the other example of the press mechanism shown in FIG. 2, Comprising: When the operating force of a driver | operator is acting この発明に係る電動ブレーキ装置の第二実施形態の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of 2nd embodiment of the electric brake device which concerns on this invention 図9中のX-X線に沿う断面図Sectional view along the line XX in FIG. 図10中のXI-XI線に沿う断面図であって、運転者の操作力が作用していないときFIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10 when the driver's operating force is not applied. 図10中のXI-XI線に沿う断面図であって、運転者の操作力が作用しているときFIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10 when the driver's operating force is acting. 図9に示す押圧機構の他例を示す縦断面図FIG. 9 is a longitudinal sectional view showing another example of the pressing mechanism shown in FIG. この発明に係る電動ブレーキ装置の第三実施形態の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of 3rd embodiment of the electric brake device which concerns on this invention この発明に係る電動ブレーキ装置の第四実施形態を示す縦断面図Longitudinal sectional view showing a fourth embodiment of the electric brake device according to the present invention 図14に示した電動ブレーキ装置の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of the electric brake device shown in FIG. 図15に示した電動ブレーキ装置のさらに要部を示す縦断面図FIG. 15 is a longitudinal sectional view showing a further main part of the electric brake device shown in FIG. 図14に示す押圧機構において、運転者の操作力が作用している状態を示す縦断面図In the pressing mechanism shown in FIG. 14, a longitudinal sectional view showing a state in which the driver's operating force is acting. この発明に係る電動ブレーキ装置の第五実施形態の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of 5th embodiment of the electric brake device which concerns on this invention 荷重センサのフランジ部材と支持部材を連設した支点部、押圧力が作用する押圧部、及び、反力が作用する反力部の位置関係を示す縦断面図であって、支点部と押圧部が径方向に離間している構成FIG. 5 is a longitudinal sectional view showing a positional relationship between a fulcrum part in which a flange member and a support member of a load sensor are continuously provided, a pressing part on which a pressing force acts, and a reaction force part on which a reaction force acts, and the fulcrum part and the pressing part Are spaced apart in the radial direction 荷重センサのフランジ部材と支持部材を連設した支点部、押圧力が作用する押圧部、及び、反力が作用する反力部の位置関係を示す縦断面図であって、支点部と押圧部が径方向に接近している構成FIG. 5 is a longitudinal sectional view showing a positional relationship between a fulcrum part in which a flange member and a support member of a load sensor are continuously provided, a pressing part on which a pressing force acts, and a reaction force part on which a reaction force acts, and the fulcrum part and the pressing part Configuration in which is approaching in the radial direction 摩擦パッドに作用する荷重の大きさと荷重センサの出力との関係を示す図The figure which shows the relationship between the magnitude | size of the load which acts on a friction pad, and the output of a load sensor この発明に係る電動ブレーキ装置の第六実施形態の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of 6th embodiment of the electric brake device which concerns on this invention この発明に係る電動ブレーキ装置の第七実施形態の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of 7th embodiment of the electric brake device which concerns on this invention この発明に係る電動ブレーキ装置の第八実施形態の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of 8th embodiment of the electric brake device which concerns on this invention この発明に係る電動ブレーキ装置の第九実施形態の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of 9th embodiment of the electric brake device which concerns on this invention この発明に係る電動ブレーキ装置の第十実施形態の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of 10th Embodiment of the electric brake device which concerns on this invention この発明に係る電動ブレーキ装置の第十一実施形態の要部を示す縦断面図The longitudinal cross-sectional view which shows the principal part of 11th Embodiment of the electric brake device which concerns on this invention
 この発明に係る電動ブレーキ装置の第一実施形態を図1から図8A、図8Bに示す。この電動ブレーキ装置は、電動モータ10と、電動モータ10の回転駆動力によって軸周りに回転する回転軸23、回転軸23の軸方向に移動可能に設けられた直動部材24、回転軸23の回転を直動部材24の軸方向の移動に変換する運動変換機構25、直動部材24の軸方向の一方側に設けられ、直動部材24の軸方向への移動とともに軸方向に移動する摩擦パッド13、及び、運転者の操作力によって、回転軸23の軸周りの回転を阻止しつつ、回転軸23を軸方向前方に押圧して、回転軸23と直動部材24を一体に軸方向の一方側に移動させる押圧機構15を主要な構成要素としている。以下においては、軸方向の一方側のことを前方と、この一方向とは逆向きの他方側のことを後方と称する。 1 to 8A and 8B show a first embodiment of an electric brake device according to the present invention. The electric brake device includes an electric motor 10, a rotating shaft 23 that rotates around the axis by the rotational driving force of the electric motor 10, a linear motion member 24 that is movable in the axial direction of the rotating shaft 23, and the rotating shaft 23. A motion conversion mechanism 25 that converts rotation into axial movement of the linear motion member 24, friction provided on one side of the linear motion member 24 in the axial direction and moving in the axial direction as the linear motion member 24 moves in the axial direction The rotating shaft 23 is pressed forward in the axial direction while preventing rotation around the axis of the rotating shaft 23 by the operation force of the pad 13 and the driver, and the rotating shaft 23 and the linear motion member 24 are axially integrated. The pressing mechanism 15 that moves to the one side is a main component. In the following, one side in the axial direction is referred to as the front, and the other side opposite to the one direction is referred to as the rear.
 この電動ブレーキ装置は、通常時は、運転者のブレーキ操作に伴って電動モータ10を駆動することにより制動力を発揮する。その一方で、電動モータ10が正常に駆動しない等のトラブルが生じたときには、運転者の操作力によって制動力を得るフェールセーフ機構を備えている。以下において、この電動ブレーキ装置について詳しく説明する。 This electric brake device normally exerts a braking force by driving the electric motor 10 in accordance with a driver's brake operation. On the other hand, when troubles such as the electric motor 10 not being driven normally occur, a fail-safe mechanism is provided that obtains braking force by the driver's operating force. Hereinafter, the electric brake device will be described in detail.
 この電動ブレーキ装置は、図1~図3に示すように、車輪(図示せず)と一体に回転するブレーキディスク11と、ブレーキディスク11を間にして軸方向に対向する一対の摩擦パッド12、13と、摩擦パッド12、13を移動させるための電動モータ10とを有し、この電動モータ10から伝達する動力で摩擦パッド12、13をブレーキディスク11に押さえ付けることにより、制動力を発生させる。また、この電動ブレーキ装置は、何らかのトラブルによって電動モータ10による制動力が発揮できない状態においても制動力の発生を可能とするため、運転者の操作力で引っ張られるように設けられたワイヤケーブル14と、そのワイヤケーブル14の一端に接続された押圧機構15とを有する。 As shown in FIGS. 1 to 3, the electric brake device includes a brake disk 11 that rotates integrally with a wheel (not shown), and a pair of friction pads 12 that are opposed to each other in the axial direction with the brake disk 11 in between. 13 and the electric motor 10 for moving the friction pads 12 and 13, and the braking force is generated by pressing the friction pads 12 and 13 against the brake disk 11 with the power transmitted from the electric motor 10. . In addition, this electric brake device can generate a braking force even in a state where the braking force by the electric motor 10 cannot be exerted due to some trouble, so that the wire cable 14 provided so as to be pulled by the operating force of the driver, And a pressing mechanism 15 connected to one end of the wire cable 14.
 この電動ブレーキ装置は、ブレーキディスク11を間にして軸方向に対向する一対の対向部16、17をブレーキディスク11の外径側に位置するブリッジ18で連結した形状のキャリパボディ19を有する。キャリパボディ19の一方の対向部16とブレーキディスク11の間に摩擦パッド12が配置され、他方の対向部17とブレーキディスク11の間に摩擦パッド13が配置されている。各摩擦パッド12、13は、キャリパボディ19に取り付けられたパッドピン(図示せず)やキャリパブラケット21に設けたスライド部(図示せず)に案内され、ブレーキディスク11の軸方向に移動可能に支持されている。 This electric brake device has a caliper body 19 having a shape in which a pair of facing portions 16 and 17 facing each other in the axial direction with the brake disc 11 in between are connected by a bridge 18 positioned on the outer diameter side of the brake disc 11. The friction pad 12 is disposed between one facing portion 16 of the caliper body 19 and the brake disk 11, and the friction pad 13 is disposed between the other facing portion 17 and the brake disk 11. The friction pads 12 and 13 are guided by pad pins (not shown) attached to the caliper body 19 and slide parts (not shown) provided on the caliper bracket 21 so as to be movable in the axial direction of the brake disc 11. Has been.
 図4に示すように、キャリパボディ19は、車輪を支持するナックル(図示せず)にボルト20(図2参照)で固定されたキャリパブラケット21に取り付けた一対のスライドピン22で、ブレーキディスク11の軸方向に移動可能に支持されている。これにより、図2等に示す摩擦パッド13が軸方向前方に移動してブレーキディスク11に押さえ付けられたときに、ブレーキディスク11から受ける反力によってキャリパボディ19が軸方向後方に移動し、このキャリパボディ19の移動によって、反対側の摩擦パッド12もブレーキディスク11に押さえ付けられるようになっている。 As shown in FIG. 4, the caliper body 19 includes a pair of slide pins 22 attached to a caliper bracket 21 fixed to a knuckle (not shown) that supports a wheel by bolts 20 (see FIG. 2). It is supported so as to be movable in the axial direction. Accordingly, when the friction pad 13 shown in FIG. 2 or the like moves forward in the axial direction and is pressed against the brake disc 11, the caliper body 19 moves rearward in the axial direction due to the reaction force received from the brake disc 11. As the caliper body 19 moves, the friction pad 12 on the opposite side is also pressed against the brake disk 11.
 図2に示すように、キャリパボディ19の一方の対向部17は、軸方向の前後両端が開口した円筒状のキャリパハウジング17Aと、キャリパハウジング17Aの軸方向後方の端部から軸方向と直角な方向(ブレーキディスク11と平行な方向)に延びるキャリパフランジ17Bとからなる。 As shown in FIG. 2, one opposing portion 17 of the caliper body 19 includes a cylindrical caliper housing 17 </ b> A that is open at both front and rear ends in the axial direction, and an axially rearward end portion of the caliper housing 17 </ b> A that is perpendicular to the axial direction. The caliper flange 17B extends in a direction (a direction parallel to the brake disc 11).
 キャリパハウジング17Aには、回転軸23と、回転軸23を囲むように配置された直動部材24として機能する外輪部材(以下において直動部材24と同じ符号を付する。)と、回転軸23の回転を外輪部材24の軸方向移動に変換する運動変換機構25として機能する遊星ローラ機構(以下において、運動変換機構25と同じ符号を付する。)とが組み込まれている。外輪部材24の軸方向前方に、摩擦パッド13が配置されている。 The caliper housing 17A has a rotation shaft 23, an outer ring member functioning as a linear motion member 24 disposed so as to surround the rotation shaft 23 (hereinafter, the same reference numeral as the linear motion member 24), and the rotation shaft 23. Is incorporated with a planetary roller mechanism that functions as a motion conversion mechanism 25 that converts the rotation of the outer ring member 24 into an axial movement of the outer ring member 24 (hereinafter, the same reference numeral as the motion conversion mechanism 25 is attached). The friction pad 13 is disposed in front of the outer ring member 24 in the axial direction.
 キャリパフランジ17Bには、電動モータ10が取り付けられている。電動モータ10と回転軸23の間には、電動モータ10の回転を回転軸23に減速して伝達する減速機構26が設けられている。減速機構26は、キャリパハウジング17Aの軸方向後方の端部開口とキャリパフランジ17Bの側面とを覆うように設けられたカバー27内に収容されている(図4参照)。 The electric motor 10 is attached to the caliper flange 17B. A reduction mechanism 26 is provided between the electric motor 10 and the rotary shaft 23 to reduce and transmit the rotation of the electric motor 10 to the rotary shaft 23. The speed reduction mechanism 26 is accommodated in a cover 27 provided so as to cover the end opening of the caliper housing 17A in the axial direction and the side surface of the caliper flange 17B (see FIG. 4).
 図4、図5に示すように、減速機構26は、電動モータ10のロータ軸10Aと一体に軸周りに回転する第一ギア26Aと、第一ギア26Aと噛み合う第二ギア26Bと、第二ギア26Bと一体に軸周りに回転する、この第二ギア26Bよりも歯数が少ない第三ギア26Cと、第三ギア26Cと噛み合い回転軸23と一体に軸周りに回転する第四ギア26Dとを有する。電動モータ10の回転は、これらの複数のギア26A、26B、26C、26Dを介して順次減速して伝達され、回転軸23に入力される。 As shown in FIGS. 4 and 5, the speed reduction mechanism 26 includes a first gear 26A that rotates around the shaft integrally with the rotor shaft 10A of the electric motor 10, a second gear 26B that meshes with the first gear 26A, and a second gear 26B. A third gear 26C that rotates about the axis integrally with the gear 26B and has a smaller number of teeth than the second gear 26B; a fourth gear 26D that meshes with the third gear 26C and rotates about the axis integrally with the rotary shaft 23; Have The rotation of the electric motor 10 is transmitted through the plurality of gears 26 </ b> A, 26 </ b> B, 26 </ b> C, 26 </ b> D after being sequentially decelerated and input to the rotary shaft 23.
 図3に示すように、遊星ローラ機構25は、回転軸23に外接すると同時に外輪部材24に内接する複数の遊星ローラ25Aと、これらの遊星ローラ25Aを自転可能かつ公転可能に支持するキャリア25Bと、外輪部材24の内周に設けられた螺旋凸条25Cと、螺旋凸条25Cと係合するように遊星ローラ25Aの外周に設けられた円周溝25Dとを有する。 As shown in FIG. 3, the planetary roller mechanism 25 includes a plurality of planetary rollers 25A circumscribing the rotating shaft 23 and inscribed in the outer ring member 24, and a carrier 25B that supports the planetary rollers 25A so that they can rotate and revolve. The spiral protrusion 25C provided on the inner periphery of the outer ring member 24 and the circumferential groove 25D provided on the outer periphery of the planetary roller 25A so as to engage with the spiral protrusion 25C.
 図6に示すように、複数の遊星ローラ25Aは、周方向に等間隔となるように配置されている。各遊星ローラ25Aは、回転軸23の外周および外輪部材24の内周にそれぞれ転がり接触している。回転軸23の遊星ローラ25Aに対する接触部分は円筒面である。そして、回転軸23が回転したとき、遊星ローラ25Aは、ローラ軸25Bを中心に自転しながら、回転軸23を中心に公転する。すなわち、遊星ローラ25Aは、回転軸23の外周から受ける回転力によって自転し、これに伴い、遊星ローラ25Aは外輪部材24の内周を転がって公転する。 As shown in FIG. 6, the plurality of planetary rollers 25A are arranged at equal intervals in the circumferential direction. Each planetary roller 25 </ b> A is in rolling contact with the outer periphery of the rotating shaft 23 and the inner periphery of the outer ring member 24. The contact portion of the rotating shaft 23 with respect to the planetary roller 25A is a cylindrical surface. When the rotary shaft 23 is rotated, the planetary rollers 25A, while rotating about the roller shaft 25B 4, revolves around the rotation axis 23. That is, the planetary roller 25 </ b> A rotates by the rotational force received from the outer periphery of the rotating shaft 23, and accordingly, the planetary roller 25 </ b> A rolls around the inner periphery of the outer ring member 24 and revolves.
 外輪部材24の内周の螺旋凸条25Cは、円周方向に対して斜めに延びる螺旋状の凸条である。一方、遊星ローラ25Aの外周の円周溝25Dは、円周方向に対して平行に延びる溝である。この実施形態では遊星ローラ25Aの外周にリード角が0度の円周溝25Dを設けているが、円周溝25Dのかわりに、螺旋凸条25Cと異なるリード角をもつ螺旋溝を設けてもよい。 The spiral ridge 25C on the inner periphery of the outer ring member 24 is a spiral ridge extending obliquely with respect to the circumferential direction. On the other hand, the circumferential groove 25D on the outer periphery of the planetary roller 25A is a groove extending in parallel to the circumferential direction. In this embodiment, the circumferential groove 25D having a lead angle of 0 degree is provided on the outer periphery of the planetary roller 25A. However, instead of the circumferential groove 25D, a spiral groove having a lead angle different from that of the spiral protrusion 25C may be provided. Good.
 図3に示すように、外輪部材24は、キャリパハウジング17Aの内面で軸方向に移動可能に支持されている。キャリパハウジング17Aの内面の外輪部材24に対する接触部分は円筒面である。外輪部材24は、摩擦パッド13の背面に形成された凸部28と係合する凹部29を有し、この凸部28と凹部29の係合によって、キャリパハウジング17Aに対して回り止めされている。 As shown in FIG. 3, the outer ring member 24 is supported by the inner surface of the caliper housing 17A so as to be movable in the axial direction. A contact portion of the inner surface of the caliper housing 17A with respect to the outer ring member 24 is a cylindrical surface. The outer ring member 24 has a concave portion 29 that engages with a convex portion 28 formed on the back surface of the friction pad 13, and is prevented from rotating with respect to the caliper housing 17 </ b> A by the engagement of the convex portion 28 and the concave portion 29. .
 キャリア25Bは、遊星ローラ25Aを間にして軸方向に対向する一対のキャリアプレート25B、25Bと、周方向に隣り合う遊星ローラ25Aの間を軸方向に延びてキャリアプレート25B、25B同士を連結する連結部25Bと、各遊星ローラ25Aを自転可能に支持するローラ軸25Bとを有する。各キャリアプレート25B、25Bは回転軸23を貫通させる環状に形成され、その内周には回転軸23の外周に摺接する滑り軸受30がそれぞれ装着されている。 The carrier 25B extends in the axial direction between a pair of carrier plates 25B 1 and 25B 2 facing in the axial direction with the planetary roller 25A in between and the planetary rollers 25A adjacent in the circumferential direction, and the carrier plates 25B 1 and 25B 2. having a connecting portion 25B 3 for connecting to each other, and a roller shaft 25B 4 which rotatably supports the respective planetary rollers 25A. Each of the carrier plates 25B 1 and 25B 2 is formed in an annular shape that penetrates the rotating shaft 23, and a sliding bearing 30 that is in sliding contact with the outer periphery of the rotating shaft 23 is mounted on the inner periphery thereof.
 各ローラ軸25Bの両端部は、一対のキャリアプレート25B、25Bにそれぞれ形成された長孔31で外輪部材24の半径方向に移動可能に支持されている。さらに、各ローラ軸25Bの両端部には、周方向に間隔をおいて配置されたすべての遊星ローラ25Aのローラ軸25Bに外接するように弾性リング32が掛け渡されている。この弾性リング32は、各遊星ローラ25Aを回転軸23の外周に押さえ付けることにより、遊星ローラ25Aと回転軸23の間の滑りを防止している。 Both end portions of the roller shaft 25B 4 is movably supported in the radial direction of the outer ring member 24 in the long hole 31 formed on a pair of carrier plate 25B 1, 25B 2. Further, at both ends of the roller shaft 25B 4, the elastic ring 32 so as to circumscribe the roller shaft 25B 4 of all of the planetary rollers 25A in the circumferential direction spaced is stretched. The elastic ring 32 prevents slipping between the planetary roller 25 </ b> A and the rotary shaft 23 by pressing each planetary roller 25 </ b> A against the outer periphery of the rotary shaft 23.
 外輪部材24の軸方向後方には、磁気式荷重センサ33が設けられている。この磁気式荷重センサ33は、軸方向前方から荷重が入力されてたわみを生じるフランジ部材33Aと、フランジ部材33Aを軸方向後方から支持する支持部材33Bと、磁束を発生する磁気ターゲット33Cと、磁気ターゲット33Cが発生する磁束を検出する磁気センサ33Dとからなる。 A magnetic load sensor 33 is provided behind the outer ring member 24 in the axial direction. The magnetic load sensor 33 includes a flange member 33A that generates deflection when a load is input from the front in the axial direction, a support member 33B that supports the flange member 33A from the rear in the axial direction, a magnetic target 33C that generates magnetic flux, The magnetic sensor 33D detects the magnetic flux generated by the target 33C.
 フランジ部材33Aは、鉄などの金属で形成された円環板状の部材である。支持部材33Bは、鉄などの金属で形成され、フランジ部材33Aの外周縁に嵌め込まれている。この支持部材33Bの外周縁は、キャリパハウジング17Aの内面で移動不能に支持されている。この支持部材33Bの内周側には、フランジ部材33Aの内径側に対向するように円筒部33Eが連設されている。円筒部33Eの内周には、複数の軸受34が軸方向に間隔をおいて装着されており、回転軸23と磁気式荷重センサ33は、軸周りに相対回転可能となっている。磁気ターゲット33Cは、フランジ部材33Aの内周に固定されている。磁気センサ33Dは、磁気ターゲット33Cと径方向に対向するように支持部材33Bの円筒部33Eの外周に固定されている。 The flange member 33A is an annular plate member formed of a metal such as iron. The support member 33B is formed of a metal such as iron and is fitted on the outer peripheral edge of the flange member 33A. The outer peripheral edge of the support member 33B is supported by the inner surface of the caliper housing 17A so as not to move. A cylindrical portion 33E is continuously provided on the inner peripheral side of the support member 33B so as to face the inner diameter side of the flange member 33A. A plurality of bearings 34 are mounted on the inner periphery of the cylindrical portion 33E at intervals in the axial direction, and the rotary shaft 23 and the magnetic load sensor 33 are capable of relative rotation around the axis. The magnetic target 33C is fixed to the inner periphery of the flange member 33A. The magnetic sensor 33D is fixed to the outer periphery of the cylindrical portion 33E of the support member 33B so as to face the magnetic target 33C in the radial direction.
 各遊星ローラ25Aとその軸方向後方のキャリアプレート25Bとの間には、遊星ローラ25Aを自転可能に支持するスラスト軸受35が組み込まれている。また、遊星ローラ25Aの軸方向後方のキャリアプレート25Bと磁気式荷重センサ33(フランジ部材33A)との間には、キャリアプレート25Bと一体に公転するスラスト板36と、スラスト板36を公転可能に支持するスラスト軸受37とが組み込まれている。 Between each planetary roller 25A and the carrier plate 25B 2 of the axially rearward thrust bearing 35 which rotatably supports the planetary rollers 25A is incorporated. Further, revolving between the planetary roller 25A in the axial direction behind the carrier plate 25B 2 and the magnetic load sensor 33 (the flange member 33A), a thrust plate 36 which revolves together with the carrier plate 25B 2, the thrust plate 36 A thrust bearing 37 is incorporated which can be supported.
 外輪部材24が軸方向前方に移動して、ブレーキディスク11が摩擦パッド12、13によって押し付けられると、軸方向後方への反力として、キャリアプレート25B、スラスト軸受37を介して、磁気式荷重センサ33のフランジ部材33Aに軸方向後方に向かう軸方向荷重が入力される。そして、この軸方向荷重によって、フランジ部材33Aが軸方向後方にたわみ、このたわみに伴って、磁気ターゲット33Cと磁気センサ33Dが軸方向に相対変位する。すると、この相対変位に対応して磁気センサ33Dの出力信号が変化する。この出力信号の大きさと、フランジ部材33Aに入力される軸方向荷重の大きさとの関係を予め把握しておくことにより、磁気センサ33Dの出力信号に基づいて、フランジ部材33Aにかかる軸方向荷重の大きさを検出することができる。 When the outer ring member 24 moves forward in the axial direction and the brake disk 11 is pressed by the friction pads 12, 13, a magnetic load is applied as a reaction force in the rearward direction in the axial direction via the carrier plate 25 B 2 and the thrust bearing 37. An axial load directed rearward in the axial direction is input to the flange member 33A of the sensor 33. The axial load causes the flange member 33A to bend backward in the axial direction, and the magnetic target 33C and the magnetic sensor 33D are relatively displaced in the axial direction along with the deflection. Then, the output signal of the magnetic sensor 33D changes corresponding to this relative displacement. By grasping in advance the relationship between the magnitude of this output signal and the magnitude of the axial load input to the flange member 33A, the axial load applied to the flange member 33A can be determined based on the output signal of the magnetic sensor 33D. The size can be detected.
 磁気式荷重センサ33は、スラスト板36、スラスト軸受37を介して、キャリアプレート25Bを軸方向に支持することで、キャリア25Bの軸方向後方への移動を規制している。また、軸方向前方のキャリアプレート25Bは、回転軸23の軸方向前端に装着した止め輪38で軸方向前方への移動が規制されている。したがって、キャリア25Bは、軸方向前方と軸方向後方の移動がいずれも規制され、キャリア25Bに保持された遊星ローラ25Aも軸方向移動が規制された状態となっている。 Magnetic load sensor 33, the thrust plate 36, via the thrust bearing 37, by supporting the carrier plate 25B 2 in the axial direction, and restrict the movement of the axially rearward of the carrier 25B. The carrier plate 25B 1 of the axial forward movement of the axially forward is restricted by the stop ring 38 attached to the axial forward end of the rotary shaft 23. Therefore, the carrier 25B is restricted from moving in the axial direction forward and axially backward, and the planetary roller 25A held by the carrier 25B is also restricted from moving in the axial direction.
 回転軸23の外周には、キャリア25Bを軸方向後方から支持する鍔部39が形成されている。鍔部39は、軸方向後方のキャリアプレート25Bの軸方向後方に対向するように配置され、回転軸23が軸方向前方に移動したときに、鍔部39がキャリアプレート25Bを軸方向前方に押し動かすようになっている。鍔部39は、回転軸23と継ぎ目のない一体構造となるように形成してもよく、回転軸23の外周に別部材を固定して形成してもよい。また、鍔部39とキャリアプレート25Bの間にスラスト軸受を組み込んでもよい。また、鍔部39は、スラスト板36を介してキャリア25Bを軸方向後方から支持するようにしてもよく、磁気式荷重センサ33やスラスト軸受37等を介してキャリア25Bを軸方向後方から支持するように構成することも可能である。 On the outer periphery of the rotary shaft 23, a flange 39 that supports the carrier 25B from the rear in the axial direction is formed. The flange portion 39 is disposed so as to face the axially rearward of the axially rearward of the carrier plate 25B 2, when the rotary shaft 23 is moved axially forward, axially forward collar portion 39 is a carrier plate 25B 2 To move it. The flange 39 may be formed so as to have a seamless integrated structure with the rotary shaft 23, or may be formed by fixing another member on the outer periphery of the rotary shaft 23. It may also incorporate a thrust bearing between the flange portion 39 and the carrier plate 25B 2. Further, the flange portion 39 may support the carrier 25B from the rear in the axial direction through the thrust plate 36, and support the carrier 25B from the rear in the axial direction through the magnetic load sensor 33, the thrust bearing 37, or the like. It is also possible to configure as described above.
 外輪部材24の軸方向前方の端部には、外輪部材24の軸方向前端の開口を閉塞するシールカバー40が取り付けられている。このシールカバー40は、外輪部材24の内部に異物が侵入するのを防止している。また、軸方向に伸縮可能に形成された筒状のベローズ41の一端が、外輪部材24の軸方向前方の端部に固定され、ベローズ41の他端が、キャリパハウジング17Aの軸方向前方の開口縁部に固定されている。ベローズ41は、外輪部材24とキャリパハウジング17Aの摺動面間に異物が侵入するのを防止している。 A seal cover 40 that closes the opening at the front end of the outer ring member 24 in the axial direction is attached to the end of the outer ring member 24 in the axial direction. The seal cover 40 prevents foreign matter from entering the outer ring member 24. In addition, one end of a cylindrical bellows 41 formed to be extendable in the axial direction is fixed to an axially forward end of the outer ring member 24, and the other end of the bellows 41 is an opening in the axially forward direction of the caliper housing 17A. It is fixed to the edge. The bellows 41 prevents foreign matter from entering between the sliding surfaces of the outer ring member 24 and the caliper housing 17A.
 この遊星ローラ機構25は、電動モータ10を回転させると、電動モータ10の回転が減速機構26を介して回転軸23に入力され、遊星ローラ25Aが自転しながら公転する(図3参照)。このとき、螺旋凸条25Cと円周溝25Dのリード角の差によって外輪部材24と遊星ローラ25Aが軸方向に相対移動するが、遊星ローラ25Aはキャリア25Bとともに軸方向の移動が規制されているので、遊星ローラ25Aは軸方向に移動せず、外輪部材24が軸方向に移動する。ここで、外輪部材24が軸方向前方に移動する方向の回転が電動モータ10から回転軸23に入力されたときは、外輪部材24が摩擦パッド13を押圧することにより、図1に示す摩擦パッド12、13がブレーキディスク11に押さえ付けられて、ブレーキディスク11と一体に回転する車輪に制動力が負荷される。また、外輪部材24が軸方向後方に移動する方向の回転が電動モータ10から回転軸23に入力されたときは、図1に示す摩擦パッド12、13がブレーキディスク11から離反して、車輪に対する制動力が解除される。 When the planetary roller mechanism 25 rotates the electric motor 10, the rotation of the electric motor 10 is input to the rotary shaft 23 via the speed reduction mechanism 26, and the planetary roller 25A revolves while rotating (see FIG. 3). At this time, the outer ring member 24 and the planetary roller 25A move relative to each other in the axial direction due to the difference in the lead angle between the spiral protrusion 25C and the circumferential groove 25D, but the planetary roller 25A is restricted from moving in the axial direction together with the carrier 25B. Therefore, the planetary roller 25A does not move in the axial direction, and the outer ring member 24 moves in the axial direction. Here, when the rotation in the direction in which the outer ring member 24 moves forward in the axial direction is input from the electric motor 10 to the rotation shaft 23, the outer ring member 24 presses the friction pad 13, thereby causing the friction pad shown in FIG. 12 and 13 are pressed against the brake disc 11 and a braking force is applied to the wheels that rotate integrally with the brake disc 11. Further, when rotation in the direction in which the outer ring member 24 moves rearward in the axial direction is input from the electric motor 10 to the rotary shaft 23, the friction pads 12 and 13 shown in FIG. The braking force is released.
 図7A、図7Bに示すように、押圧機構15は、回転軸23の軸方向後端に対向して軸方向に移動可能に設けられた押圧部材15Bと、回転軸23の軸方向に直交する軸線まわりに回動可能に支持されたカム部材15Aと、押圧部材15Bとカム部材15Aの間に組み込まれたリンク部材15Cと、ワイヤケーブル14の一端に設けられたワイヤエンド金具が接続されるワイヤレバー15Dとを有する(図7A参照)。ワイヤレバー15Dの一端はカム部材15Aに連結されており、ワイヤレバー15Dの他端に接続されたワイヤケーブル14が引っ張られたときに、ワイヤレバー15Dとカム部材15Aとが一体に回動するようになっている(図7B参照)。 As shown in FIGS. 7A and 7B, the pressing mechanism 15 is orthogonal to the axial direction of the rotary shaft 23 and the pressing member 15 </ b> B provided to be movable in the axial direction facing the rear end of the rotary shaft 23 in the axial direction. A wire to which a cam member 15A rotatably supported around the axis, a link member 15C incorporated between the pressing member 15B and the cam member 15A, and a wire end fitting provided at one end of the wire cable 14 are connected. And a lever 15D (see FIG. 7A). One end of the wire lever 15D is connected to the cam member 15A, and when the wire cable 14 connected to the other end of the wire lever 15D is pulled, the wire lever 15D and the cam member 15A rotate together. (See FIG. 7B).
 押圧部材15Bは、カバー27に設けられた軸方向に延びるガイド孔42の内面で摺動可能に支持されている。押圧部材には軸方向に延びる突条が、ガイド孔42の内面には突条を軸方向にガイドするガイド溝がそれぞれ形成されており、これにより、押圧部材15Bは、カバー27に対し回り止めされる。押圧部材15Bの軸方向後方の端面には、リンク部材15Cの一端を受け支える凹部15Bが形成されている。カム部材15Aの外周には、カム面15Aが形成されている。カム面15Aは、ワイヤケーブル14の引っ張り操作によりカム部材15Aが回動したときに、その回動角度に応じて、リンク部材15Cを介して押圧部材15Bを軸方向前方に押圧する形状をもつように形成されている。押圧部材15Bの軸方向前方の端面、及び、回転軸23の軸方向後方の端面は、いずれも平坦面状に加工されている。また、ワイヤレバー15Dには、ワイヤケーブル14の引っ張り操作によるワイヤレバー15Dの回動方向とは反対の方向にワイヤレバー15Dを付勢するリターンスプリング15Eが取り付けられている(図3参照)。 The pressing member 15 </ b> B is slidably supported by the inner surface of a guide hole 42 provided in the cover 27 that extends in the axial direction. A protrusion extending in the axial direction is formed on the pressing member, and a guide groove for guiding the protrusion in the axial direction is formed on the inner surface of the guide hole 42, whereby the pressing member 15 </ b> B is prevented from rotating with respect to the cover 27. Is done. The end faces of the axially rearward of the pressing member 15B, the recess 15B 1 that supports receiving one end of the link member 15C is formed. The outer periphery of the cam member 15A, the cam surface 15A 1 is formed. Cam surface 15A 1, when the cam member 15A is rotated by pulling operation of the wire cable 14, in accordance with the rotation angle, with a shape that presses the pressing member 15B axially forward through the link member 15C It is formed as follows. The axially forward end surface of the pressing member 15B and the axially rearward end surface of the rotating shaft 23 are both processed into a flat surface. The wire lever 15D is attached with a return spring 15E that biases the wire lever 15D in a direction opposite to the turning direction of the wire lever 15D due to the pulling operation of the wire cable 14 (see FIG. 3).
 この押圧機構15は、運転者の操作力によって図7Aなどに示すワイヤケーブル14が引っ張られると、その引張力によってカム部材15Aが回動し、このカム部材15Aの回動角度に応じて、カム面15Aがリンク部材15Cを介して押圧部材15Bを軸方向前方に押し動かす。その結果、押圧部材15Bの軸方向前方の端面が、回転軸23を軸方向前方に押圧する。このとき、平坦面状とした回転軸23の軸方向後方の端面と、押圧部材15Bの軸方向前方の端面が面接触する。 When the wire cable 14 shown in FIG. 7A or the like is pulled by the driver's operating force, the pressing mechanism 15 rotates the cam member 15A by the pulling force, and the cam mechanism 15A rotates according to the rotation angle of the cam member 15A. surface 15A 1 moves down the pressing member 15B axially forward via the link member 15C. As a result, the axially forward end face of the pressing member 15B presses the rotating shaft 23 forward in the axial direction. At this time, the axially rear end surface of the rotating shaft 23 having a flat surface shape and the axially forward end surface of the pressing member 15B are in surface contact.
 このように、両端面を面接触させると、カバー27に対し回り止めされた押圧部材15Bとの間の摩擦力によって、回転軸23の軸周りの回転が阻止される。このように、回転軸23の回転を阻止することにより、電動モータ10の失陥等のトラブルによって、フェールセーフ機構が作用した場合において、外輪部材24に設けられた螺旋凸条25Cのリード角と、遊星ローラ25Aに設けられた円周溝25Dとの間の角度が大きい場合であっても、両者の係合部で滑りが発生するのを防止することができ、フェールセーフ機構を確実に機能させることができる。 Thus, when both end surfaces are brought into surface contact with each other, rotation around the axis of the rotary shaft 23 is prevented by the frictional force with the pressing member 15B that is prevented from rotating with respect to the cover 27. In this way, by preventing the rotation of the rotating shaft 23, the lead angle of the spiral ridge 25 </ b> C provided on the outer ring member 24 when the fail-safe mechanism is activated due to trouble such as the failure of the electric motor 10. Even when the angle between the circumferential groove 25D provided on the planetary roller 25A is large, it is possible to prevent slippage at the engaging portion between them, and the fail-safe mechanism functions reliably. Can be made.
 また、図8Aなどに示すように、押圧部材15Bを軸方向後方(回転軸23から離れる方向)に付勢する付勢部材15Fとして機能する解除スプリング(以下において、付勢部材15Fと同じ符号を付する。)をカバー27内に設けた構成とすることもできる。このように、解除スプリング15Fを設けることにより、運転者の操作力が作用していないときには、回転軸23と押圧部材15Bを確実に離間させて(図8A参照)、回転軸23の回転損失が生じないようにする一方で、運転者の操作力が作用しているときには、押圧部材15Bを解除スプリング15Fの付勢力に抗して軸方向前方に付勢して、回転軸23と押圧部材15Bの端面同士を接触させた状態とし(図8B参照)、両端面間に摩擦力を作用させることができる。 Also, as shown in FIG. 8A and the like, a release spring that functions as a biasing member 15F that biases the pressing member 15B in the axial direction rearward (direction away from the rotating shaft 23) (hereinafter, the same reference numeral as the biasing member 15F). It is also possible to adopt a configuration in which the cover 27 is provided in the cover 27. In this way, by providing the release spring 15F, when the driver's operating force is not acting, the rotation shaft 23 and the pressing member 15B are reliably separated (see FIG. 8A), and the rotation loss of the rotation shaft 23 is reduced. On the other hand, when the driver's operating force is applied, the pressing member 15B is urged forward in the axial direction against the urging force of the release spring 15F, so that the rotating shaft 23 and the pressing member 15B are urged. The two end surfaces are brought into contact with each other (see FIG. 8B), and a frictional force can be applied between the both end surfaces.
 図1に示すように、運転者の足で操作されるブレーキペダル43には、ワイヤケーブル14の端部に設けられたワイヤエンド金具が接続されるワイヤコネクタ部44と、クラッチ機構45とが取り付けられている。ブレーキペダル43は、支点軸46を中心に揺動可能に支持されている。ブレーキペダル43には、ブレーキペダル43の踏み込み量を検出するストロークセンサ(図示せず)が取り付けられている。ワイヤコネクタ部44は、ブレーキペダル43の支点軸46と同じ位置に揺動中心をもつように揺動可能に支持されている。ここで、ワイヤコネクタ部44は、ブレーキペダル43がワイヤコネクタ部44とは切り離して揺動可能となるように、ブレーキペダル43とは独立して揺動可能とされている。 As shown in FIG. 1, a brake pedal 43 operated by a driver's foot is attached with a wire connector portion 44 to which a wire end fitting provided at an end portion of the wire cable 14 is connected, and a clutch mechanism 45. It has been. The brake pedal 43 is supported so as to be swingable about a fulcrum shaft 46. The brake pedal 43 is provided with a stroke sensor (not shown) that detects the depression amount of the brake pedal 43. The wire connector portion 44 is swingably supported so as to have a swing center at the same position as the fulcrum shaft 46 of the brake pedal 43. Here, the wire connector portion 44 can swing independently of the brake pedal 43 so that the brake pedal 43 can swing independently of the wire connector portion 44.
 このクラッチ機構45として、通電時に切り離し状態となり、通電停止時に連結状態となるように構成された逆作動型の電磁クラッチを採用することができる。このように、逆作動型の電磁クラッチを採用することにより、クラッチ機構45への通電が停止したときに、クラッチ機構45が連結状態になるので、電動ブレーキ装置が電源を喪失したときにも、制動力を確保することができる。このクラッチ機構45は、ストロークセンサ、磁気式荷重センサ33、電動モータ10に電力を供給するバッテリの充電量を検知するバッテリセンサ(図示せず)等の各センサの検知結果に基づいて、ブレーキ制御部(図示せず)によって制御される。 As the clutch mechanism 45, a reverse operation type electromagnetic clutch configured to be disconnected when energized and to be connected when energization is stopped can be employed. In this way, by adopting the reverse operation type electromagnetic clutch, the clutch mechanism 45 is in the connected state when the energization to the clutch mechanism 45 is stopped, so even when the electric brake device loses power, A braking force can be secured. The clutch mechanism 45 performs brake control based on detection results of sensors such as a stroke sensor, a magnetic load sensor 33, and a battery sensor (not shown) that detects a charge amount of a battery that supplies electric power to the electric motor 10. Controlled by a unit (not shown).
 上述したように、この電動ブレーキ装置は、電動モータ10が動作しない状態においても、運転者の操作力でワイヤケーブル14を引っ張ることにより回転軸23を軸方向前方に押圧し、回転軸23と外輪部材24とを一体に軸方向前方に移動させることで、摩擦パッド13をブレーキディスク11に押さえ付けることが可能である。そのため、電気的失陥が生じたときにも、制動力を発生させることができる。 As described above, even when the electric motor 10 does not operate, the electric brake device pushes the rotating shaft 23 forward in the axial direction by pulling the wire cable 14 with the driver's operating force, and the rotating shaft 23 and the outer ring. The friction pad 13 can be pressed against the brake disc 11 by moving the member 24 integrally in the axial direction. Therefore, the braking force can be generated even when an electrical failure occurs.
 しかも、回転軸23の軸方向後方の端面と、押圧部材15Bの軸方向前方の端面を面接触させたので、カバー27に対し回り止めされたキャリア25Bとの摩擦力によって、回転軸23の軸周りの回転が阻止される。このため、外輪部材24に設けられた螺旋凸条25Cのリード角と、遊星ローラ25Aに設けられた円周溝25Dとの間の角度が大きい場合であっても、両者の係合部で滑りが発生するのを防止することができ、フェールセーフ機構を確実に機能させることができる。 In addition, since the axially rear end surface of the rotating shaft 23 and the axially front end surface of the pressing member 15B are brought into surface contact, the frictional force between the carrier 25B and the rotation of the rotating shaft 23 is prevented. Around rotation is prevented. For this reason, even if the angle between the lead angle of the spiral ridge 25C provided on the outer ring member 24 and the circumferential groove 25D provided on the planetary roller 25A is large, the slippage is caused by the engagement portion between them. Can be prevented, and the fail-safe mechanism can function reliably.
 この実施形態においては、回転軸23の軸方向後方の端面と、キャリア25Bの軸方向前方の端面をいずれも平坦面状としたが、両端面の間で十分な摩擦力が発揮される限りにおいてこの端面形状は限定されず、例えば、一方の端面を凹曲面とし、他方の端面をこの凹曲面と同じ曲率を有する凸曲面とすることもできる。 In this embodiment, the end surface on the rear side in the axial direction of the rotating shaft 23 and the end surface on the front side in the axial direction of the carrier 25B are both flat surfaces, but as long as sufficient frictional force is exerted between the both end surfaces. The end surface shape is not limited, and for example, one end surface may be a concave curved surface, and the other end surface may be a convex curved surface having the same curvature as the concave curved surface.
 この電動ブレーキ装置は、電気的失陥が生じたときに、電気的失陥が生じていないときと同様、運転者がブレーキペダル43を操作することで制動力を発生することが可能である。そのため、電気的失陥の発生時の操作性に優れる。 This electric brake device can generate a braking force when the driver operates the brake pedal 43 when an electrical failure occurs, as in the case where no electrical failure occurs. Therefore, it is excellent in operability when an electrical failure occurs.
 この発明に係る電動ブレーキ装置の第二実施形態(要部)を図9から図12に示す。この電動ブレーキ装置は、第一実施形態に係る電動ブレーキ装置と基本構成は同じであるが、押圧機構15の構成が異なっている。この押圧機構15は、図9に示すように、回転軸23の軸方向後方に配置された、第一実施形態における押圧部材15Bに対応する直動ディスク15Gと、直動ディスク15Gの軸方向後方に対向して配置された回動ディスク15Hと、直動ディスク15Gと回動ディスク15Hの間に設けられた転動体15Iであるボール(以下において、転動体15Iと同じ符号を付する。)と、ワイヤケーブル14の一端が接続されたワイヤレバー15Dとを有する。直動ディスク15Gは、第一実施形態における押圧部材15Bと同様に軸周りに回り止めされた状態で軸方向に移動可能に支持されている。回動ディスク15Hは、スラスト軸受47で軸方向後方への移動が規制された状態で回動可能に支持されている。 9 to 12 show a second embodiment (main part) of the electric brake device according to the present invention. This electric brake device has the same basic configuration as the electric brake device according to the first embodiment, but the configuration of the pressing mechanism 15 is different. As shown in FIG. 9, the pressing mechanism 15 includes a linear motion disk 15 </ b> G corresponding to the pressing member 15 </ b> B in the first embodiment and an axial rearward direction of the linear motion disk 15 </ b> G. And a ball that is a rolling element 15I provided between the linear movement disk 15G and the rotation disk 15H (hereinafter, the same reference numeral as that of the rolling element 15I). And a wire lever 15D to which one end of the wire cable 14 is connected. The linear motion disk 15G is supported so as to be movable in the axial direction while being prevented from rotating about the axis, like the pressing member 15B in the first embodiment. The rotating disk 15H is rotatably supported in a state where the axial rearward movement is restricted by the thrust bearing 47.
 図10に示すように、回動ディスク15Hの直動ディスク15Gに対する対向面には、周方向に間隔をおいて複数の傾斜溝15Hが形成されている。同様に、直動ディスク15Gの回動ディスク15Hに対する対向面にも、周方向に間隔をおいて複数の傾斜溝15Gが形成されている(図9参照)。 As shown in FIG. 10, on the facing surface relative to the linear motion disk 15G of the rotation disk 15H, circumferentially spaced plurality of inclined grooves 15H 1 are formed. Similarly, the opposing surface against rotation disk 15H of the linear motion disk 15G, circumferentially spaced plurality of inclined grooves 15G 1 is formed (see FIG. 9).
 図11A、図11Bに示すように、傾斜溝15Gは、最深部15Gから一方の周方向に向かって次第に浅くなるように形成され、傾斜溝15Hは、最深部15Hから他方の周方向に向かって次第に浅くなるように形成されている。ボール15Iは、この両傾斜溝15G、15Hの間に組み込まれている。 As shown in FIG. 11A, FIG. 11B, the inclined groove 15G 1 includes, from the deepest portion 15G 2 in one circumferential direction is formed so as gradually become shallower, inclined groove 15H 1 are circumferentially from the deepest 15H 2 other It is formed to become gradually shallower in the direction. The ball 15I is incorporated between both the inclined grooves 15G 1 and 15H 1 .
 図9に示すように、ワイヤレバー15Dの一端は回動ディスク15Hに連結されており、ワイヤレバー15Dの他端に接続されたワイヤケーブル14が引っ張られたときに、ワイヤレバー15Dと回動ディスク15Hが一体に回動するようになっている。ワイヤレバー15Dには、ワイヤケーブル14の引っ張り操作によるワイヤレバー15Dの回動方向とは反対の方向にワイヤレバー15Dを付勢するリターンスプリング15Eが取り付けられている。 As shown in FIG. 9, one end of the wire lever 15D is connected to the rotating disk 15H, and when the wire cable 14 connected to the other end of the wire lever 15D is pulled, the wire lever 15D and the rotating disk are connected. 15H rotates together. A return spring 15E that urges the wire lever 15D in a direction opposite to the rotation direction of the wire lever 15D by the pulling operation of the wire cable 14 is attached to the wire lever 15D.
 この押圧機構15は、ワイヤケーブル14を引っ張ると、図11Bに示すように、ワイヤケーブル14に作用する引張力によって回動ディスク15Hが回動し、これに伴いボール15Iが傾斜溝15G、15H内を最深部15G、15Hから浅くなる方向に転がるので、回動ディスク15Hの回動角度に応じて回動ディスク15Hと直動ディスク15Gの軸方向の間隔が拡大する。ここで、回動ディスク15Hは、軸方向後方への移動が規制されているので、直動ディスク15Gが軸方向前方に移動し、この直動ディスク15Gによって回転軸23が軸方向前方に押されて移動する。 When the wire mechanism 14 is pulled, the pressing mechanism 15 rotates the rotating disk 15H by a tensile force acting on the wire cable 14 as shown in FIG. 11B. As a result, the ball 15I is inclined to the inclined grooves 15G 1 , 15H. since rolls 1 in a direction becomes shallower from the deepest 15G 2, 15H 2, axial spacing of the rotating disk 15H and the linear motion disk 15G is enlarged in accordance with the rotation angle of the rotation disk 15H. Here, since the rotation disc 15H is restricted from moving rearward in the axial direction, the linear motion disc 15G moves forward in the axial direction, and the rotary shaft 23 is pushed forward in the axial direction by the linear motion disc 15G. Move.
 図9に示す押圧機構15では、回転軸23が直動ディスク15Gで直接押圧されるようにしたが、図12に示すように、回転軸23にその径方向外向きに延設され、この回転軸23と一体に軸周りに回転する延設部材48であるギア(第四ギア26D)に、その軸方向から直動ディスク15Gを押圧するようにしてもよい。この延設部材48は回転軸23の外径よりも大径なので、この延設部材48と押圧部材15B(直動ディスク15G)を当接させることにより、回転軸23と押圧部材15B(直動ディスク15G)を当接させた場合と比較して、回転軸23の回り止め作用を一層向上することができる。この構成は、第一実施形態に係る電動ブレーキ装置に適用することもできる。 In the pressing mechanism 15 shown in FIG. 9, the rotary shaft 23 is directly pressed by the linear motion disk 15G. However, as shown in FIG. You may make it press the linearly-moving disk 15G from the axial direction to the gear (4th gear 26D) which is the extending member 48 which rotates around a shaft integrally with the shaft 23. Since the extending member 48 has a larger diameter than the outer diameter of the rotating shaft 23, the rotating shaft 23 and the pressing member 15B (linear motion) are brought into contact with each other by bringing the extending member 48 into contact with the pressing member 15B (linear motion disk 15G). Compared with the case where the disk 15G is brought into contact, the rotation preventing action of the rotary shaft 23 can be further improved. This configuration can also be applied to the electric brake device according to the first embodiment.
 この発明に係る電動ブレーキ装置の第三実施形態(要部)を図13に示す。この電動ブレーキ装置は、第一及び第二実施形態と異なり、電動モータ10の回転が入力される回転軸23の回転を摩擦パッド13を押圧する直動部材24の軸方向移動に変換する運動変換機構25として、送りねじ機構(以下において、運動変換機構25と同じ符号を付する。)を採用している。 FIG. 13 shows a third embodiment (main part) of the electric brake device according to the present invention. Unlike the first and second embodiments, this electric brake device converts the rotation of the rotary shaft 23 to which the rotation of the electric motor 10 is input into the axial movement of the linear member 24 that presses the friction pad 13. As the mechanism 25, a feed screw mechanism (hereinafter, the same reference numeral as that of the motion converting mechanism 25 is given) is adopted.
 この送りねじ機構25は、回転軸23と一体に形成されたねじ軸25Eと、ねじ軸25Eを囲むように設けられた直動部材24として機能するナット25Fと、ねじ軸25Eの外周に形成されたねじ溝25Gとナット25Fの内周に形成されたねじ溝25Hの間に組み込まれた複数のボール25Iと、ナット25Fのねじ溝25Hの終点から始点にボールを戻すリターンチューブ(図示せず)とを有する。 The feed screw mechanism 25 is formed on the outer periphery of a screw shaft 25E formed integrally with the rotary shaft 23, a nut 25F functioning as a linear motion member 24 provided so as to surround the screw shaft 25E, and the screw shaft 25E. A plurality of balls 25I incorporated between the screw groove 25G and the screw groove 25H formed on the inner periphery of the nut 25F, and a return tube (not shown) for returning the ball from the end point of the screw groove 25H of the nut 25F to the start point And have.
 ナット25Fは、キャリパハウジング17A内に、このキャリパハウジング17Aに対して回り止めされた状態で軸方向に移動可能に設けられている。ねじ軸25Eの軸方向後方端部には、径方向外向きにフランジ25Eが形成されている。このフランジ25Eの軸方向後方には、スラスト軸受49が設けられている。このスラスト軸受49は、キャリパハウジング17A内に固定された軸受支持部材50によって支持されるとともに、軸受34によって、回転軸23との間で軸周りに相対回転可能となっている。ねじ軸25Eに形成されたフランジ25Eが、軸受支持部材50で支持されるスラスト軸受49に当接することにより、ねじ軸25Eの軸方向後方側への移動が制限される。 The nut 25F is provided in the caliper housing 17A so as to be movable in the axial direction while being prevented from rotating with respect to the caliper housing 17A. The axially rearward end of the screw shaft 25E, the flange 25E 1 is formed radially outwardly. The axially rearward of the flange 25E 1, the thrust bearing 49 is provided. The thrust bearing 49 is supported by a bearing support member 50 fixed in the caliper housing 17 </ b> A, and can be relatively rotated around the shaft by the bearing 34. Flange 25E 1 formed in the screw shaft 25E is, by contacting the thrust bearing 49 which is supported by the bearing support member 50 from moving in the axial rearward side of the screw shaft 25E is restricted.
 電動モータ10を回転させると、電動モータ10の回転が減速機構26を介して回転軸23に入力され、回転軸23の回転に伴ってナット25Fが軸方向前方に移動し、このナット25Fの軸方向前方に設けられた摩擦パッド13がブレーキディスク11に押し付けられる。その一方で、電動モータ10の失陥等のトラブルが生じ、運転者の操作力によってワイヤケーブル14が引っ張られると、その引張力によってカム部材15Aが回動し、このカム部材15Aの回動角度に応じて、カム面15Aがリンク部材15Cを介して押圧部材15Bを軸方向前方に押し動かす。その結果、押圧部材15Bの軸方向前方の端面が、回転軸23を軸方向前方に押圧する。このとき、平坦面状とした回転軸23の軸方向後方の端面と、押圧部材15Bの軸方向前方の端面が面接触する。 When the electric motor 10 is rotated, the rotation of the electric motor 10 is input to the rotary shaft 23 via the speed reduction mechanism 26, and the nut 25F moves forward in the axial direction along with the rotation of the rotary shaft 23. A friction pad 13 provided forward in the direction is pressed against the brake disc 11. On the other hand, when trouble such as failure of the electric motor 10 occurs and the wire cable 14 is pulled by the driver's operating force, the cam member 15A is rotated by the tensile force, and the rotation angle of the cam member 15A is depending on, it pushes the pressing member 15B in the axial direction front cam surface 15A 1 via the link member 15C. As a result, the axially forward end face of the pressing member 15B presses the rotating shaft 23 forward in the axial direction. At this time, the axially rear end surface of the rotating shaft 23 having a flat surface shape and the axially forward end surface of the pressing member 15B are in surface contact.
 このように、両端面を面接触させると、回転軸23とカバー27に対し回り止めされた押圧部材15Bとの間の摩擦力によって、回転軸23の軸周りの回転が阻止される。このように、回転軸23の回転を阻止することにより、電動モータ10の失陥等のトラブルによって、フェールセーフ機構が作用した場合において、ねじ軸25Eに形成されたねじ溝25Gと、ナット25Fに形成されたねじ溝25Hとの間でボール25Iを介した滑りが発生するのを防止することができ、フェールセーフ機構を確実に機能させることができる。 Thus, when both end surfaces are brought into surface contact, rotation around the axis of the rotating shaft 23 is prevented by the frictional force between the rotating shaft 23 and the pressing member 15B that is prevented from rotating about the cover 27. In this way, by preventing the rotation of the rotating shaft 23, when the fail-safe mechanism is activated due to a failure such as the failure of the electric motor 10, the screw groove 25G formed in the screw shaft 25E and the nut 25F are It is possible to prevent the slipping via the ball 25I from occurring between the formed screw groove 25H, and the fail-safe mechanism can function reliably.
 この発明に係る電動ブレーキ装置の第四実施形態を図14から図17に示す。この電動ブレーキ装置は、電動モータ10、電動モータ10の回転駆動力によって軸周りに回転する回転軸23、回転軸23の軸方向に移動可能に設けられた直動部材24、回転軸23の回転を直動部材24の軸方向の移動に変換する運動変換機構25、直動部材24の軸方向前方に設けられ、直動部材24の軸方向への移動とともに軸方向に移動する摩擦パッド13、運転者の操作力によって、回転軸23の軸周りの回転を阻止しつつ、回転軸23を軸方向前方に押圧して、回転軸23と直動部材24を一体に軸方向前方に押圧して移動させる押圧機構15、及び、押圧機構15と運動変換機構25の間に介在して設けられ、押圧機構15による押圧力を運動変換機構25側に伝達する一方で、摩擦パッド13をブレーキディスク11に押し付けたときの軸方向後方への反力を受けて、ブレーキディスク11に負荷された荷重を検知する荷重センサ33を主要な構成要素としている。 14 to 17 show a fourth embodiment of the electric brake device according to the present invention. The electric brake device includes an electric motor 10, a rotary shaft 23 that rotates around the axis by the rotational driving force of the electric motor 10, a linear motion member 24 that is movable in the axial direction of the rotary shaft 23, and the rotation of the rotary shaft 23. Is converted to an axial movement of the linear motion member 24, a friction pad 13 provided in front of the linear motion member 24 in the axial direction and moved in the axial direction along with the axial movement of the linear motion member 24, While the rotation of the rotating shaft 23 is prevented by the driver's operating force, the rotating shaft 23 is pressed forward in the axial direction, and the rotating shaft 23 and the linear motion member 24 are integrally pressed forward in the axial direction. The pressing mechanism 15 to be moved, and provided between the pressing mechanism 15 and the motion conversion mechanism 25, transmit the pressing force by the pressing mechanism 15 to the motion conversion mechanism 25 side, while the friction pad 13 is connected to the brake disk 11. Press Receives a reaction force in the axially rearward when attached, it has a load sensor 33 for detecting the load applied to the brake disk 11 as main components.
 この電動ブレーキ装置は、通常時は、運転者のブレーキ操作に伴って電動モータ10を駆動することにより制動力を発揮する。その一方で、電動モータ10が正常に駆動しない等のトラブルが生じたときには、運転者の操作力によって制動力を得るフェールセーフ機構を備えている。以下において、この電動ブレーキ装置について詳しく説明する。 This electric brake device normally exerts a braking force by driving the electric motor 10 in accordance with a driver's brake operation. On the other hand, when troubles such as the electric motor 10 not being driven normally occur, a fail-safe mechanism is provided that obtains braking force by the driver's operating force. Hereinafter, the electric brake device will be described in detail.
 この電動ブレーキ装置は、図14(図1も参照)に示すように、車輪(図示せず)と一体に回転するブレーキディスク11と、ブレーキディスク11を間にして軸方向に対向する一対の摩擦パッド12、13と、摩擦パッド12、13を移動させるための電動モータ10とを有し、この電動モータ10から伝達する動力で摩擦パッド12、13をブレーキディスク11に押し付けることにより、制動力を発生させる。また、この電動ブレーキ装置は、何らかのトラブルによって電動モータ10による制動力が発揮できない状態においても制動力の発生を可能とするため、運転者の操作力で引っ張られるように設けられたワイヤケーブル14と、そのワイヤケーブル14の一端に接続された押圧機構15とを有する。 As shown in FIG. 14 (see also FIG. 1), this electric brake device includes a brake disk 11 that rotates integrally with a wheel (not shown), and a pair of frictions that face each other in the axial direction with the brake disk 11 in between. The pad 12 and 13 and the electric motor 10 for moving the friction pad 12 and 13 are provided. By pressing the friction pad 12 and 13 against the brake disc 11 with the power transmitted from the electric motor 10, the braking force is increased. generate. In addition, this electric brake device can generate a braking force even in a state where the braking force by the electric motor 10 cannot be exerted due to some trouble, so that the wire cable 14 provided so as to be pulled by the operating force of the driver, And a pressing mechanism 15 connected to one end of the wire cable 14.
 この電動ブレーキ装置は、ブレーキディスク11を間にして軸方向に対向する一対の対向部16、17をブレーキディスク11の外径側に位置するブリッジ18で連結した形状のキャリパボディ19を有する。キャリパボディ19の一方の対向部16とブレーキディスク11の間に摩擦パッド12が配置され、他方の対向部17とブレーキディスク11の間に摩擦パッド13が配置されている。各摩擦パッド12、13は、キャリパブラケット21に支持されブレーキディスク11の軸方向に移動可能に支持されている。 This electric brake device has a caliper body 19 having a shape in which a pair of facing portions 16 and 17 facing each other in the axial direction with the brake disc 11 in between are connected by a bridge 18 positioned on the outer diameter side of the brake disc 11. The friction pad 12 is disposed between one facing portion 16 of the caliper body 19 and the brake disk 11, and the friction pad 13 is disposed between the other facing portion 17 and the brake disk 11. Each of the friction pads 12 and 13 is supported by a caliper bracket 21 so as to be movable in the axial direction of the brake disk 11.
 図14(図4も参照)に示すように、キャリパボディ19は、車輪を支持するナックル(図示せず)にボルト20で固定されたキャリパブラケット21に取り付けた一対のスライドピン22で、ブレーキディスク11の軸方向に移動可能に支持されている。これにより、図14等に示す摩擦パッド13が軸方向前方に移動してブレーキディスク11に押し付けられたときに、ブレーキディスク11から受ける反力によってキャリパボディ19が軸方向後方に移動し、このキャリパボディ19の移動によって、反対側の摩擦パッド12もブレーキディスク11に押し付けられるようになっている。 As shown in FIG. 14 (see also FIG. 4), the caliper body 19 is composed of a pair of slide pins 22 attached to a caliper bracket 21 fixed to a knuckle (not shown) for supporting wheels by bolts 20, and a brake disc. 11 is supported so as to be movable in the axial direction. Accordingly, when the friction pad 13 shown in FIG. 14 or the like moves forward in the axial direction and is pressed against the brake disc 11, the caliper body 19 moves rearward in the axial direction by the reaction force received from the brake disc 11, and the caliper The friction pad 12 on the opposite side is also pressed against the brake disk 11 by the movement of the body 19.
 図14に示すように、キャリパボディ19の他方の対向部17は、軸方向の前後両端が開口した円筒状のキャリパハウジング17Aと、キャリパハウジング17Aの軸方向後方の端部から軸方向と直角な方向(ブレーキディスク11と平行な方向)に延びるキャリパフランジ17Bとからなる。 As shown in FIG. 14, the other facing portion 17 of the caliper body 19 includes a cylindrical caliper housing 17A that is open at both front and rear ends in the axial direction, and a right angle with respect to the axial direction from the axially rear end of the caliper housing 17A. The caliper flange 17B extends in a direction (a direction parallel to the brake disc 11).
 キャリパハウジング17Aには、回転軸23と、回転軸23を囲むように配置された直動部材24として機能する外輪部材(以下において直動部材24と同じ符号を付する。)と、回転軸23の回転を外輪部材24の軸方向移動に変換する運動変換機構25として機能する遊星ローラねじ機構(以下において、運動変換機構25と同じ符号を付する。)とが組み込まれている。外輪部材24の軸方向前方に、摩擦パッド13が配置されている。 The caliper housing 17A has a rotation shaft 23, an outer ring member functioning as a linear motion member 24 disposed so as to surround the rotation shaft 23 (hereinafter, the same reference numeral as the linear motion member 24), and the rotation shaft 23. A planetary roller screw mechanism that functions as a motion conversion mechanism 25 that converts the rotation of the outer ring member 24 into an axial movement of the outer ring member 24 (hereinafter, the same reference numeral as that of the motion conversion mechanism 25 is attached). The friction pad 13 is disposed in front of the outer ring member 24 in the axial direction.
 キャリパフランジ17Bには、電動モータ10が取り付けられている。電動モータ10と回転軸23の間には、電動モータ10の回転を回転軸23に減速して伝達する減速機構26が設けられている。減速機構26は、キャリパハウジング17Aの軸方向後方の端部開口とキャリパフランジ17Bの側面とを覆うように設けられたカバー27内に収容されている(図16参照)。 The electric motor 10 is attached to the caliper flange 17B. A reduction mechanism 26 is provided between the electric motor 10 and the rotary shaft 23 to reduce and transmit the rotation of the electric motor 10 to the rotary shaft 23. The speed reduction mechanism 26 is accommodated in a cover 27 provided so as to cover the end opening at the rear in the axial direction of the caliper housing 17A and the side surface of the caliper flange 17B (see FIG. 16).
 図16(図4も参照)に示すように、減速機構26は、電動モータ10のロータ軸10Aと一体に軸周りに回転する第一ギア26Aと、第一ギア26Aと噛み合う第二ギア26Bと、第二ギア26Bと一体に軸周りに回転する、この第二ギア26Bよりも歯数が少ない第三ギア26Cと、第三ギア26Cと噛み合い回転軸23と一体に軸周りに回転する第四ギア26Dとを有する。電動モータ10の回転は、これらの複数のギア26A、26B、26C、26Dを介して順次減速して伝達され、回転軸23に入力される。 As shown in FIG. 16 (see also FIG. 4), the speed reduction mechanism 26 includes a first gear 26A that rotates integrally with the rotor shaft 10A of the electric motor 10 and a second gear 26B that meshes with the first gear 26A. The fourth gear that rotates about the axis integrally with the second gear 26B, the third gear 26C that has fewer teeth than the second gear 26B, and the third gear 26C that meshes with the rotary shaft 23 to rotate about the axis. And a gear 26D. The rotation of the electric motor 10 is transmitted through the plurality of gears 26 </ b> A, 26 </ b> B, 26 </ b> C, 26 </ b> D after being sequentially decelerated and input to the rotary shaft 23.
 図15等に示すように、第四ギア26Dは、キャリパフランジ17B及びカバー27によって支持されており軸方向の移動が制限されるとともに、回転軸23に対しては軸方向に相対移動可能となっている。 As shown in FIG. 15 and the like, the fourth gear 26 </ b> D is supported by the caliper flange 17 </ b> B and the cover 27, and is restricted from moving in the axial direction and is relatively movable in the axial direction with respect to the rotating shaft 23. ing.
 図15に示すように、遊星ローラねじ機構25は、回転軸23に外接すると同時に外輪部材24に内接する複数の遊星ローラ25Aと、これらの遊星ローラ25Aを自転可能かつ公転可能に支持するキャリア25Bと、外輪部材24の内周に設けられた螺旋凸条25Cと、螺旋凸条25Cと係合するように遊星ローラ25Aの外周に設けられた円周溝25Dとを有する。 As shown in FIG. 15, the planetary roller screw mechanism 25 includes a plurality of planetary rollers 25A circumscribing the rotary shaft 23 and inscribed in the outer ring member 24, and a carrier 25B that supports the planetary rollers 25A so that they can rotate and revolve. And a spiral protrusion 25C provided on the inner periphery of the outer ring member 24, and a circumferential groove 25D provided on the outer periphery of the planetary roller 25A so as to engage with the spiral protrusion 25C.
 図6に示したように、複数の遊星ローラ25Aは、周方向に等間隔となるように配置されている。各遊星ローラ25Aは、回転軸23の外周および外輪部材24の内周にそれぞれ転がり接触している。回転軸23の遊星ローラ25Aに対する接触部分は円筒面である。そして、回転軸23が回転したとき、遊星ローラ25Aは、ローラ軸を中心に自転しながら、回転軸23を中心に公転する。すなわち、遊星ローラ25Aは、回転軸23の外周から受ける回転力によって自転し、これに伴い、遊星ローラ25Aは外輪部材24の内周を転がって公転する。 As shown in FIG. 6, the plurality of planetary rollers 25A are arranged at equal intervals in the circumferential direction. Each planetary roller 25 </ b> A is in rolling contact with the outer periphery of the rotating shaft 23 and the inner periphery of the outer ring member 24. The contact portion of the rotating shaft 23 with respect to the planetary roller 25A is a cylindrical surface. When the rotating shaft 23 rotates, the planetary roller 25A revolves around the rotating shaft 23 while rotating around the roller shaft. That is, the planetary roller 25 </ b> A rotates by the rotational force received from the outer periphery of the rotating shaft 23, and accordingly, the planetary roller 25 </ b> A rolls around the inner periphery of the outer ring member 24 and revolves.
 外輪部材24の内周の螺旋凸条25Cは、円周方向に対して斜めに延びる螺旋状の凸条である。一方、遊星ローラ25Aの外周の円周溝25Dは、円周方向に対して平行に延びる溝である。この実施形態では遊星ローラ25Aの外周にリード角が0度の円周溝25Dを設けているが、円周溝25Dのかわりに、螺旋凸条25Cと異なるリード角をもつ螺旋溝を設けてもよい。 The spiral ridge 25C on the inner periphery of the outer ring member 24 is a spiral ridge extending obliquely with respect to the circumferential direction. On the other hand, the circumferential groove 25D on the outer periphery of the planetary roller 25A is a groove extending in parallel to the circumferential direction. In this embodiment, the circumferential groove 25D having a lead angle of 0 degree is provided on the outer periphery of the planetary roller 25A. However, instead of the circumferential groove 25D, a spiral groove having a lead angle different from that of the spiral protrusion 25C may be provided. Good.
 図15に示すように、外輪部材24は、キャリパハウジング17Aの内面で軸方向に移動可能に支持されている。キャリパハウジング17Aの内面の外輪部材24に対する接触部分は円筒面である。外輪部材24は、摩擦パッド13の背面に形成された凸部28と係合する凹部29を有し、この凸部28と凹部29の係合によって、キャリパハウジング17Aに対して回り止めされている。 As shown in FIG. 15, the outer ring member 24 is supported on the inner surface of the caliper housing 17A so as to be movable in the axial direction. A contact portion of the inner surface of the caliper housing 17A with respect to the outer ring member 24 is a cylindrical surface. The outer ring member 24 has a concave portion 29 that engages with a convex portion 28 formed on the back surface of the friction pad 13, and is prevented from rotating with respect to the caliper housing 17 </ b> A by the engagement of the convex portion 28 and the concave portion 29. .
 キャリア25Bは、遊星ローラ25Aを間にして軸方向に対向する一対のキャリアプレート25B、25Bと、周方向に隣り合う遊星ローラ25Aの間を軸方向に延びてキャリアプレート25B、25B同士を連結する連結部25Bと、各遊星ローラ25Aを自転可能に支持するローラ軸25Bとを有する。各キャリアプレート25B、25Bは回転軸23を貫通させる環状に形成され、その内周には回転軸23の外周に摺接する滑り軸受30がそれぞれ装着されている。 The carrier 25B extends in the axial direction between a pair of carrier plates 25B 1 and 25B 2 facing in the axial direction with the planetary roller 25A in between and the planetary rollers 25A adjacent in the circumferential direction, and the carrier plates 25B 1 and 25B 2. having a connecting portion 25B 3 for connecting to each other, and a roller shaft 25B 4 which rotatably supports the respective planetary rollers 25A. Each of the carrier plates 25B 1 and 25B 2 is formed in an annular shape that penetrates the rotating shaft 23, and a sliding bearing 30 that is in sliding contact with the outer periphery of the rotating shaft 23 is mounted on the inner periphery thereof.
 各ローラ軸25Bの両端部は、一対のキャリアプレート25B、25Bにそれぞれ形成された長孔31で外輪部材24の半径方向に移動可能に支持されている。さらに、各ローラ軸25Bの両端部には、周方向に間隔をおいて配置されたすべての遊星ローラ25Aのローラ軸25Bに外接するように弾性リング32が掛け渡されている。この弾性リング32は、各遊星ローラ25Aを回転軸23の外周に押し付けることにより、遊星ローラ25Aと回転軸23の間の滑りを防止している。 Both end portions of the roller shaft 25B 4 is movably supported in the radial direction of the outer ring member 24 in the long hole 31 formed on a pair of carrier plate 25B 1, 25B 2. Further, at both ends of the roller shaft 25B 4, the elastic ring 32 so as to circumscribe the roller shaft 25B 4 of all of the planetary rollers 25A in the circumferential direction spaced is stretched. The elastic ring 32 prevents slippage between the planetary roller 25 </ b> A and the rotary shaft 23 by pressing each planetary roller 25 </ b> A against the outer periphery of the rotary shaft 23.
 外輪部材24の軸方向後方には、押圧機構15と遊星ローラねじ機構25の間に介在するように荷重センサ33が設けられている。この荷重センサ33は、磁気式荷重センサ(以下において、荷重センサ33と同じ符号を付する。)であって、軸方向前方から荷重が入力されてたわみを生じるフランジ部材33Aと、フランジ部材33Aを軸方向後方から支持する支持部材33Bと、磁束を発生する磁気ターゲット33Cと、磁気ターゲット33Cが発生する磁束を検出する磁気センサ33Dとからなる。 A load sensor 33 is provided behind the outer ring member 24 in the axial direction so as to be interposed between the pressing mechanism 15 and the planetary roller screw mechanism 25. This load sensor 33 is a magnetic load sensor (hereinafter, the same reference numeral as that of the load sensor 33), and includes a flange member 33A and a flange member 33A that cause deflection when a load is input from the front in the axial direction. The support member 33B is supported from the rear in the axial direction, includes a magnetic target 33C that generates magnetic flux, and a magnetic sensor 33D that detects the magnetic flux generated by the magnetic target 33C.
 フランジ部材33Aは、鉄などの金属で形成された円環板状の部材である。支持部材33Bは、フランジ部材33Aと同様に鉄などの金属で形成され、フランジ部材33Aの外周縁に嵌め込まれている。フランジ部材33Aと支持部材33Bの嵌合部は、支持部材33Bに対してフランジ部材33Aを屈曲させる支点部A(図19A、図19B参照)として作用する。この支持部材33Bの外周縁は、キャリパハウジング17Aの内面で軸方向に移動可能に支持されている。この支持部材33Bの内周側には、フランジ部材33Aの内径側に対向するように円筒部33Eが連設されている。円筒部33Eの内周には、複数の軸受34が軸方向に間隔をおいて装着されており、回転軸23と磁気式荷重センサ33は、軸周りに相対回転可能となっている。磁気ターゲット33Cは、フランジ部材33Aの内周に固定されている。磁気センサ33Dは、磁気ターゲット33Cと径方向に対向するように支持部材33Bの円筒部33Eの外周に固定されている。 The flange member 33A is an annular plate member formed of a metal such as iron. The support member 33B is formed of a metal such as iron, like the flange member 33A, and is fitted into the outer peripheral edge of the flange member 33A. The fitting portion between the flange member 33A and the support member 33B acts as a fulcrum portion A (see FIGS. 19A and 19B) for bending the flange member 33A with respect to the support member 33B. The outer peripheral edge of the support member 33B is supported by the inner surface of the caliper housing 17A so as to be movable in the axial direction. A cylindrical portion 33E is continuously provided on the inner peripheral side of the support member 33B so as to face the inner diameter side of the flange member 33A. A plurality of bearings 34 are mounted on the inner periphery of the cylindrical portion 33E at intervals in the axial direction, and the rotary shaft 23 and the magnetic load sensor 33 are capable of relative rotation around the axis. The magnetic target 33C is fixed to the inner periphery of the flange member 33A. The magnetic sensor 33D is fixed to the outer periphery of the cylindrical portion 33E of the support member 33B so as to face the magnetic target 33C in the radial direction.
 各遊星ローラ25Aとその軸方向後方のキャリアプレート25Bとの間には、遊星ローラ25Aを自転可能に支持するスラスト軸受35が組み込まれている。また、遊星ローラ25Aの軸方向後方のキャリアプレート25Bと磁気式荷重センサ33(フランジ部材33A)との間には、キャリアプレート25Bと一体に公転するスラスト板36が設けられている。このスラスト板36と磁気式荷重センサ33のフランジ部材33Aとの間には、スラスト軸受37が組み込まれている。フランジ部材33Aとスラスト軸受37は、フランジ部材33Aの反力部R(図19A、図19B)参照)で当接している。スラスト板36は、このスラスト軸受37によって、磁気式荷重センサ33に対して軸周りに相対回転可能となっている。 Between each planetary roller 25A and the carrier plate 25B 2 of the axially rearward thrust bearing 35 which rotatably supports the planetary rollers 25A is incorporated. Between the axially aft of the carrier plate 25B 2 and the magnetic load sensor 33 of the planetary roller 25A (flange member 33A), a thrust plate 36 which revolves together with the carrier plate 25B 2 are provided. A thrust bearing 37 is incorporated between the thrust plate 36 and the flange member 33A of the magnetic load sensor 33. The flange member 33A and the thrust bearing 37 are in contact with each other at the reaction force portion R (see FIGS. 19A and 19B) of the flange member 33A. The thrust plate 36 can be rotated relative to the magnetic load sensor 33 around the axis by the thrust bearing 37.
 磁気式荷重センサ33は、スラスト板36、スラスト軸受37を介して、キャリアプレート25Bを軸方向に支持することで、キャリア25Bの軸方向後方への移動を規制している。また、軸方向前方のキャリアプレート25Bは、回転軸23の軸方向前端に装着した第一止め輪38aで軸方向前方への移動が規制されている。したがって、キャリア25Bとこのキャリア25Bによって保持された遊星ローラ25Aは、回転軸23に対する軸方向前方と軸方向後方の相対移動がいずれも規制されている。 Magnetic load sensor 33, the thrust plate 36, via the thrust bearing 37, by supporting the carrier plate 25B 2 in the axial direction, and restrict the movement of the axially rearward of the carrier 25B. The carrier plate 25B 1 of the axial forward movement of the axially forward is restricted by the first stopper ring 38a mounted on the axial forward end of the rotary shaft 23. Therefore, relative movement of the carrier 25B and the planetary roller 25A held by the carrier 25B is restricted relative to the rotating shaft 23 in the axial front and the axial rear.
 回転軸23の軸方向後方寄りの外周には、第二止め輪38bが装着されている。この第二止め輪38bは、回転軸23と同軸に設けられた押輪51に軸方向後方から当接している。この押輪51は、支持部材33Bの内径側の押圧部P(図19A参照)に軸方向後方から当接している(以下において、支持部材33Bの内径側に当接する押輪51を小径押輪51aと称する。)。この押圧部Pは、反力部Rよりも径方向内側に位置しており、支持部材33Bに対してフランジ部材33Aを屈曲させる支点部Aとは、径方向に大きく離間している。 A second retaining ring 38b is mounted on the outer periphery of the rotary shaft 23 near the rear in the axial direction. The second retaining ring 38b is in contact with a pusher 51 provided coaxially with the rotary shaft 23 from the rear in the axial direction. The pusher wheel 51 is in contact with the pressing portion P (see FIG. 19A) on the inner diameter side of the support member 33B from the rear in the axial direction (hereinafter, the push wheel 51 that contacts the inner diameter side of the support member 33B is referred to as a small diameter pusher wheel 51a. .) The pressing portion P is located radially inward of the reaction force portion R, and is largely separated in the radial direction from the fulcrum portion A that bends the flange member 33A with respect to the support member 33B.
 外輪部材24の軸方向前方の端部には、外輪部材24の軸方向前端の開口を閉塞するシールカバー40が取り付けられている。このシールカバー40は、外輪部材24の内部に異物が侵入するのを防止している。また、軸方向に伸縮可能に形成された筒状のベローズ41の一端が、外輪部材24の軸方向前方の端部に固定され、ベローズ41の他端が、キャリパハウジング17Aの軸方向前方の開口縁部に固定されている。ベローズ41は、外輪部材24とキャリパハウジング17Aの摺動面間に異物が侵入するのを防止している。 A seal cover 40 that closes the opening at the front end of the outer ring member 24 in the axial direction is attached to the end of the outer ring member 24 in the axial direction. The seal cover 40 prevents foreign matter from entering the outer ring member 24. In addition, one end of a cylindrical bellows 41 formed to be extendable in the axial direction is fixed to an axially forward end of the outer ring member 24, and the other end of the bellows 41 is an opening in the axially forward direction of the caliper housing 17A. It is fixed to the edge. The bellows 41 prevents foreign matter from entering between the sliding surfaces of the outer ring member 24 and the caliper housing 17A.
 この遊星ローラねじ機構25は、電動モータ10を回転させると、電動モータ10の回転が減速機構26を介して回転軸23に入力され、遊星ローラ25Aが自転しながら公転する(図15参照)。このとき、螺旋凸条25Cと円周溝25Dのリード角の差によって外輪部材24と遊星ローラ25Aが軸方向に相対移動するが、遊星ローラ25Aはキャリア25Bとともに、回転軸23に対する軸方向の相対移動が規制されているので、遊星ローラ25Aは軸方向に移動せず、外輪部材24のみが軸方向に移動する。ここで、外輪部材24が軸方向前方に移動する方向の回転が電動モータ10から回転軸23に入力されたときは、外輪部材24が摩擦パッド13を押圧することにより、図1に示す摩擦パッド12、13がブレーキディスク11に押し付けられて、ブレーキディスク11と一体に回転する車輪に制動力が負荷される。また、外輪部材24が軸方向後方に移動する方向の回転が電動モータ10から回転軸23に入力されたときは、図1に示す摩擦パッド12、13がブレーキディスク11から離反して、車輪に対する制動力が解除される。 When the planetary roller screw mechanism 25 rotates the electric motor 10, the rotation of the electric motor 10 is input to the rotating shaft 23 via the speed reduction mechanism 26, and the planetary roller 25A revolves while rotating (see FIG. 15). At this time, the outer ring member 24 and the planetary roller 25A move relative to each other in the axial direction due to the difference in the lead angle between the spiral protrusion 25C and the circumferential groove 25D, but the planetary roller 25A along with the carrier 25B is relative to the rotating shaft 23 in the axial direction. Since the movement is restricted, the planetary roller 25A does not move in the axial direction, and only the outer ring member 24 moves in the axial direction. Here, when the rotation in the direction in which the outer ring member 24 moves forward in the axial direction is input from the electric motor 10 to the rotation shaft 23, the outer ring member 24 presses the friction pad 13, thereby causing the friction pad shown in FIG. 12 and 13 are pressed against the brake disc 11, and a braking force is applied to the wheels that rotate integrally with the brake disc 11. Further, when rotation in the direction in which the outer ring member 24 moves rearward in the axial direction is input from the electric motor 10 to the rotary shaft 23, the friction pads 12 and 13 shown in FIG. The braking force is released.
 電動モータ10が作動して、摩擦パッド12、13がブレーキディスク11に押し付けられると、その反力が、外輪部材24、遊星ローラねじ機構25、スラスト板36、及び、スラスト軸受37を介して磁気式荷重センサ33のフランジ部材33Aに伝達される。フランジ部材33Aに反力が伝達されると、支点部Aを支点としてこのフランジ部材33Aが軸方向後方にたわみ、このフランジ部材33Aに固定された磁気ターゲット33Cと、支持部材33Bに固定された磁気センサ33Dが軸方向に相対変位する。すると、この相対変位に対応して磁気センサ33Dの出力信号が変化する。この出力信号の大きさと、フランジ部材33Aに入力される軸方向荷重の大きさとの関係を予め把握しておくことにより、磁気センサ33Dの出力信号に基づいて、フランジ部材33Aにかかる軸方向荷重の大きさを検出することができる。 When the electric motor 10 is operated and the friction pads 12 and 13 are pressed against the brake disk 11, the reaction force is magnetically transmitted through the outer ring member 24, the planetary roller screw mechanism 25, the thrust plate 36, and the thrust bearing 37. It is transmitted to the flange member 33A of the type load sensor 33. When the reaction force is transmitted to the flange member 33A, the flange member 33A bends in the axial direction with the fulcrum A as a fulcrum, and the magnetic target 33C fixed to the flange member 33A and the magnetic target fixed to the support member 33B. The sensor 33D is relatively displaced in the axial direction. Then, the output signal of the magnetic sensor 33D changes corresponding to this relative displacement. By grasping in advance the relationship between the magnitude of this output signal and the magnitude of the axial load input to the flange member 33A, the axial load applied to the flange member 33A can be determined based on the output signal of the magnetic sensor 33D. The size can be detected.
 図16に示すように、押圧機構15は、回転軸23の軸方向後端に対向して軸方向に移動可能に設けられた押圧部材15Bと、回転軸23の軸方向に直交する軸線まわりに回動可能に支持されたカム部材15Aと、押圧部材15Bとカム部材15Aの間に組み込まれたリンク部材15Cと、ワイヤケーブル14の一端に設けられたワイヤエンド金具が接続されるワイヤレバー15Dとを有する。ワイヤレバー15Dの一端はカム部材15Aに連結されており、ワイヤレバー15Dの他端に接続されたワイヤケーブル14が引っ張られたときに、ワイヤレバー15Dとカム部材15Aとが一体に回動するようになっている(図17参照)。 As shown in FIG. 16, the pressing mechanism 15 includes a pressing member 15 </ b> B provided so as to be movable in the axial direction so as to face the rear end in the axial direction of the rotating shaft 23, and around an axis perpendicular to the axial direction of the rotating shaft 23. A cam member 15A rotatably supported, a link member 15C incorporated between the pressing member 15B and the cam member 15A, and a wire lever 15D to which a wire end fitting provided at one end of the wire cable 14 is connected. Have One end of the wire lever 15D is connected to the cam member 15A, and when the wire cable 14 connected to the other end of the wire lever 15D is pulled, the wire lever 15D and the cam member 15A rotate together. (See FIG. 17).
 押圧部材15Bは、カバー27に設けられた軸方向に延びるガイド孔42の内面で摺動可能に支持されている。押圧部材15Bの軸方向後方の端面には、リンク部材15Cの一端を受け支える凹部15Bが形成されている。カム部材15Aの外周には、カム面15Aが形成されている。カム面15Aは、ワイヤケーブル14の引っ張り操作によりカム部材15Aが回動したときに、その回動角度に応じて、リンク部材15Cを介して押圧部材15Bを軸方向前方に押圧する形状をもつように形成されている。 The pressing member 15 </ b> B is slidably supported by the inner surface of a guide hole 42 provided in the cover 27 that extends in the axial direction. The end faces of the axially rearward of the pressing member 15B, the recess 15B 1 that supports receiving one end of the link member 15C is formed. The outer periphery of the cam member 15A, the cam surface 15A 1 is formed. Cam surface 15A 1, when the cam member 15A is rotated by pulling operation of the wire cable 14, in accordance with the rotation angle, with a shape that presses the pressing member 15B axially forward through the link member 15C It is formed as follows.
 押圧部材15Bと回転軸23との間には球体52が設けられており、この球体52を介して、回転軸23に押圧力が伝達される。ワイヤレバー15Dには、ワイヤケーブル14の引っ張り操作によるワイヤレバー15Dの回動方向とは反対の方向にワイヤレバー15Dを付勢するリターンスプリング15Eが取り付けられている(図15参照)。 A spherical body 52 is provided between the pressing member 15 </ b> B and the rotating shaft 23, and a pressing force is transmitted to the rotating shaft 23 through the spherical body 52. A return spring 15E that urges the wire lever 15D in a direction opposite to the rotating direction of the wire lever 15D by the pulling operation of the wire cable 14 is attached to the wire lever 15D (see FIG. 15).
 この押圧機構15は、運転者の操作力によって図17に示すようにワイヤケーブル14が引っ張られると、その引張力によってカム部材15Aが回動し、このカム部材15Aの回動角度に応じて、カム面15Aがリンク部材15Cを介して押圧部材15Bを軸方向前方に押し動かす。すると、押圧部材15Bが、球体52を介して回転軸23を軸方向前方に押圧する。回転軸23が軸方向前方に移動すると、第二止め輪38bによって小径押輪40aが軸方向前方に押圧され、さらに、この小径押輪40aによって、支持部材33Bが軸方向前方に押圧される。支持部材33Bが軸方向前方に押圧されると、この支持部材33Bが軸方向前方にたわみつつ、この支持部材33Bと嵌合するフランジ部材33Aも軸方向前方に押圧される。 When the wire cable 14 is pulled as shown in FIG. 17 by the operating force of the driver, the pressing mechanism 15 rotates the cam member 15A by the pulling force, and according to the rotation angle of the cam member 15A, cam surfaces 15A 1 moves down the pressing member 15B axially forward via the link member 15C. Then, the pressing member 15 </ b> B presses the rotating shaft 23 forward in the axial direction via the sphere 52. When the rotary shaft 23 moves forward in the axial direction, the small diameter pusher wheel 40a is pressed forward in the axial direction by the second retaining ring 38b, and further, the support member 33B is pressed forward in the axial direction by the small diameter pusher wheel 40a. When the support member 33B is pressed forward in the axial direction, the flange member 33A fitted to the support member 33B is also pressed forward in the axial direction while the support member 33B is bent forward in the axial direction.
 フランジ部材33Aが軸方向前方に押圧されると、その押圧力は、スラスト軸受37及びスラスト板36を介して遊星ローラねじ機構25に伝達される。すると、この遊星ローラねじ機構25の遊星ローラ25Aに設けられた螺旋凸条25Cと外輪部材24に設けられた円周溝25Dとの係合によって、外輪部材24が軸方向前方に移動する。この移動に伴って摩擦パッド13も軸方向前方に移動して、この摩擦パッド13がブレーキディスク11に押し付けられる。 When the flange member 33A is pressed forward in the axial direction, the pressing force is transmitted to the planetary roller screw mechanism 25 via the thrust bearing 37 and the thrust plate 36. Then, the outer ring member 24 moves forward in the axial direction by the engagement between the spiral protrusion 25C provided on the planetary roller 25A of the planetary roller screw mechanism 25 and the circumferential groove 25D provided on the outer ring member 24. With this movement, the friction pad 13 also moves forward in the axial direction, and the friction pad 13 is pressed against the brake disc 11.
 外輪部材24が軸方向前方に移動して、摩擦パッド12、13がブレーキディスク11に押し付けられると、軸方向後方への反力として、キャリアプレート25B、スラスト軸受37を介して、磁気式荷重センサ33のフランジ部材33Aの反力部Rに、軸方向後方に向かう軸方向荷重が入力される。そして、この軸方向荷重によって、フランジ部材33Aが支持部A(図19Aなど参照)を中心として軸方向後方にたわむ。このとき、フランジ部材33Aの軸方向後方へのたわみと、上述した支持部材33Bの軸方向前方へのたわみが重畳されることによって(図19A中の矢印参照)、電動モータ10の作動による通常のブレーキ時と比較して、同じ制動力における磁気ターゲット33Cと磁気センサ33Dの相対変位量が大きくなる。これにより、図20に示すように、電動モータ10の駆動力による通常ブレーキ時と比較して、摩擦パッド13の荷重変化に対する荷重センサの出力を強調することができ、運転者の操作力によってブレーキ操作を行ったときの制動力の検出分解能を向上することができる。 When the outer ring member 24 moves forward in the axial direction and the friction pads 12 and 13 are pressed against the brake disk 11, a magnetic load is applied via the carrier plate 25B 2 and the thrust bearing 37 as a reaction force in the rearward direction in the axial direction. An axial load directed rearward in the axial direction is input to the reaction force portion R of the flange member 33A of the sensor 33. Then, due to this axial load, the flange member 33A bends rearward in the axial direction around the support portion A (see FIG. 19A and the like). At this time, the deflection in the axially rearward direction of the flange member 33A and the deflection in the axially forward direction of the support member 33B described above are superimposed (see the arrow in FIG. 19A), thereby causing a normal operation due to the operation of the electric motor 10. Compared to braking, the relative displacement amount of the magnetic target 33C and the magnetic sensor 33D at the same braking force is increased. As a result, as shown in FIG. 20, the output of the load sensor with respect to the load change of the friction pad 13 can be emphasized as compared with the normal braking by the driving force of the electric motor 10. The resolution for detecting the braking force when the operation is performed can be improved.
 この電動ブレーキ装置には、磁気式荷重センサ33で検知した荷重(運転者による操作力)が予め定めた荷重閾値よりも小さいときに、運転者に対し荷重不足を警告する警告装置を設けることができる。このように、警告装置を設けることにより、運転者が荷重不足の状態であることを容易に認識することができ、操作力を高める等の適切な対応を速やかにとることができる。 This electric brake device may be provided with a warning device that warns the driver of insufficient load when the load detected by the magnetic load sensor 33 (operating force by the driver) is smaller than a predetermined load threshold. it can. As described above, by providing the warning device, it is possible to easily recognize that the driver is in a state of insufficient load, and it is possible to quickly take appropriate measures such as increasing the operating force.
 図1に示したように、運転者の足で操作されるブレーキペダル43には、ワイヤケーブル14の端部に設けられたワイヤエンド金具が接続されるワイヤコネクタ部44と、クラッチ機構45とが取り付けられている。ブレーキペダル43は、支点軸46を中心に揺動可能に支持されている。ブレーキペダル43には、ブレーキペダル43の踏み込み量を検出するストロークセンサ(図示せず)が取り付けられている。ワイヤコネクタ部44は、ブレーキペダル43の支点軸46と同じ位置に揺動中心をもつように揺動可能に支持されている。ここで、ワイヤコネクタ部44は、ブレーキペダル43がワイヤコネクタ部44とは切り離して揺動可能となるように、ブレーキペダル43とは独立して揺動可能とされている。 As shown in FIG. 1, the brake pedal 43 operated by the driver's foot includes a wire connector portion 44 to which a wire end fitting provided at an end portion of the wire cable 14 is connected, and a clutch mechanism 45. It is attached. The brake pedal 43 is supported so as to be swingable about a fulcrum shaft 46. The brake pedal 43 is provided with a stroke sensor (not shown) that detects the depression amount of the brake pedal 43. The wire connector portion 44 is swingably supported so as to have a swing center at the same position as the fulcrum shaft 46 of the brake pedal 43. Here, the wire connector portion 44 can swing independently of the brake pedal 43 so that the brake pedal 43 can swing independently of the wire connector portion 44.
 このクラッチ機構45として、通電時に切り離し状態となり、通電停止時に連結状態となるように構成された逆作動型の電磁クラッチを採用することができる。このように、逆作動型の電磁クラッチを採用することにより、クラッチ機構45への通電が停止したときに、クラッチ機構45が連結状態になるので、電動ブレーキ装置が電源を喪失したときにも、制動力を確保することができる。このクラッチ機構45は、ストロークセンサ、磁気式荷重センサ33、電動モータ10に電力を供給するバッテリの充電量を検知するバッテリセンサ(図示せず)等の各センサの検知結果に基づいて、ブレーキ制御部(図示せず)によって制御される。 As the clutch mechanism 45, a reverse operation type electromagnetic clutch configured to be disconnected when energized and to be connected when energization is stopped can be employed. In this way, by adopting the reverse operation type electromagnetic clutch, the clutch mechanism 45 is in the connected state when the energization to the clutch mechanism 45 is stopped, so even when the electric brake device loses power, A braking force can be secured. The clutch mechanism 45 performs brake control based on detection results of sensors such as a stroke sensor, a magnetic load sensor 33, and a battery sensor (not shown) that detects a charge amount of a battery that supplies electric power to the electric motor 10. Controlled by a unit (not shown).
 上述したように、この電動ブレーキ装置は、電動モータ10が動作しない状態においても、運転者の操作力でワイヤケーブル14を引っ張ることにより回転軸23を軸方向前方に押圧し、回転軸23と外輪部材24とを一体に軸方向前方に移動させることで、摩擦パッド13をブレーキディスク11に押し付けることが可能である。そのため、電気的失陥等のトラブルが生じたときにも、制動力を発生させることができ、高い安全性を確保することができる。 As described above, even when the electric motor 10 does not operate, the electric brake device pushes the rotating shaft 23 forward in the axial direction by pulling the wire cable 14 with the driver's operating force, and the rotating shaft 23 and the outer ring. The friction pad 13 can be pressed against the brake disc 11 by moving the member 24 integrally in the axial direction. Therefore, even when trouble such as electrical failure occurs, a braking force can be generated, and high safety can be ensured.
 この発明に係る電動ブレーキ装置の第五実施形態(要部)を図18に示す。この電動ブレーキ装置は、第四実施形態に係る電動ブレーキ装置(図15参照)と基本構成は共通するが、押圧機構15の押圧力を磁気式荷重センサ33に伝達する押輪51の形状が異なっている。すなわち、第五実施形態に係る押輪51は、第四実施形態に係る押輪51(小径押輪51a)よりも外径が大きく、支持部材33Bの外径側の押圧部P(図19B参照)に軸方向後方から当接している(以下において、支持部材33Bの外径側に当接する押輪51を大径押輪51bと称する。)。 FIG. 18 shows a fifth embodiment (main part) of the electric brake device according to the present invention. This electric brake device has the same basic configuration as the electric brake device according to the fourth embodiment (see FIG. 15), but the shape of the push wheel 51 that transmits the pressing force of the pressing mechanism 15 to the magnetic load sensor 33 is different. Yes. In other words, the pusher 51 according to the fifth embodiment has an outer diameter larger than that of the pusher 51 (small-diameter pusher 51a) according to the fourth embodiment, and the pusher 51 according to the fifth embodiment has a shaft on the outer diameter side pressing portion P (see FIG. 19B). Abutting from the rear in the direction (hereinafter, the pusher wheel 51 abutting on the outer diameter side of the support member 33B is referred to as a large-diameter pusher wheel 51b).
 この大径押輪51bの押圧部Pは、支持部材33Bに対してフランジ部材33Aを屈曲させる支点部Aと径方向に接近している。この場合、運転者の操作力によって、図17に示すようにワイヤケーブル14が引っ張られて、摩擦パッド12、13がブレーキディスク11に押し付けられると、軸方向後方への反力として、フランジ部材33Aが軸方向後方にたわむ一方で、支持部材33Bの押圧部Pと支点部Aが径方向に接近していることから、押圧機構15からの押圧力によって、支持部材33Bは軸方向前方にほとんどたわまない(図19B中の矢印参照)。このため、第四実施形態に係る電動ブレーキ装置(小径押輪51aを採用した構成)と異なり、第五実施形態に係る電動ブレーキ装置(大径押輪51bを採用した構成)においては、図20に示すように、電動モータ10の駆動力による通常ブレーキ時と運転者の操作力によってブレーキ操作を行ったときとで同様の荷重センサ出力を得ることができる。 The pressing portion P of the large-diameter pusher wheel 51b is close to the fulcrum portion A that bends the flange member 33A with respect to the support member 33B in the radial direction. In this case, when the wire cable 14 is pulled by the driver's operating force and the friction pads 12 and 13 are pressed against the brake disk 11 as shown in FIG. 17, the flange member 33A acts as a reaction force in the axial rearward direction. Since the pressing portion P and the fulcrum portion A of the support member 33B are close to each other in the radial direction, the support member 33B is almost axially forward due to the pressing force from the pressing mechanism 15. Not sure (see arrow in FIG. 19B). For this reason, unlike the electric brake device according to the fourth embodiment (configuration employing the small diameter pusher 51a), the electric brake device (configuration employing the large diameter pusher 51b) according to the fifth embodiment is shown in FIG. As described above, the same load sensor output can be obtained during normal braking using the driving force of the electric motor 10 and when braking is performed using the driver's operating force.
 この発明に係る電動ブレーキ装置の第六実施形態(要部)を図21に示す。この電動ブレーキ装置は、第四及び第五実施形態に係る電動ブレーキ装置(図15、図18参照)と基本構成は共通し、運転者の操作力によってブレーキ操作を行ったときにその制動力を検知することができる点で同じであるが、押圧機構15の構成が異なっている。すなわち、この押圧機構15は、本図に示すように、回転軸23の軸方向後方に配置された、第四実施形態における押圧部材15Bに対応する直動ディスク15Gと、直動ディスク15Gの軸方向後方に対向して配置された回動ディスク15Hと、直動ディスク15Gと回動ディスク15Hの間に設けられたボール15Iと、ワイヤケーブル14の一端が接続されたワイヤレバー15Dとを有する構成(ボールランプ形式)となっている。 FIG. 21 shows a sixth embodiment (main part) of the electric brake device according to the present invention. This electric brake device has the same basic configuration as the electric brake devices according to the fourth and fifth embodiments (see FIGS. 15 and 18), and the braking force is applied when the brake operation is performed by the driver's operation force. Although it is the same in that it can be detected, the configuration of the pressing mechanism 15 is different. That is, as shown in the figure, the pressing mechanism 15 includes a linearly moving disk 15G corresponding to the pressing member 15B according to the fourth embodiment, disposed behind the rotating shaft 23 in the axial direction, and the shaft of the linearly moving disk 15G. A structure having a rotating disk 15H disposed opposite to the rear in the direction, a ball 15I provided between the linearly moving disk 15G and the rotating disk 15H, and a wire lever 15D to which one end of the wire cable 14 is connected. (Ball lamp format).
 直動ディスク15Gは、カバー27に設けられた軸方向に延びるガイド孔42の内面で摺動可能に支持されている。直動ディスク15Gには、軸方向に延びる突条が、ガイド孔42の内面には、この突条を軸方向にガイドするガイド溝がそれぞれ形成されており、これにより、直動ディスク15Gは、軸周りに回り止めされた状態で軸方向に移動可能となっている。回動ディスク15Hは、スラスト軸受47で軸方向後方への移動が規制された状態で、ガイド孔42によって回動可能に支持されている。 The linear motion disk 15G is slidably supported on the inner surface of a guide hole 42 provided in the cover 27 extending in the axial direction. The linearly moving disk 15G has a protrusion extending in the axial direction, and a guide groove for guiding the protrusion in the axial direction is formed on the inner surface of the guide hole 42. It is movable in the axial direction while being prevented from rotating around the axis. The rotating disk 15H is rotatably supported by the guide hole 42 in a state where the axial rearward movement is restricted by the thrust bearing 47.
 図10に示したように、回動ディスク15Hの直動ディスク15Gに対する対向面には、周方向に間隔をおいて複数の傾斜溝15Hが形成されている。また、図11A,図11Bに示したように、直動ディスク15Gの回動ディスク15Hに対する対向面にも、周方向に間隔をおいて複数の傾斜溝15Gが形成されている。 As shown in FIG. 10, on the facing surface relative to the linear motion disk 15G of the rotation disk 15H, a plurality of inclined grooves 15H 1 at intervals in the circumferential direction are formed. Further, as shown in FIG. 11A, FIG. 11B, in the opposite plane to the rotation disk 15H of the linear motion disk 15G, circumferentially spaced plurality of inclined grooves 15G 1 is formed.
 図13に示すように、傾斜溝15Gは、最深部15Gから一方の周方向に向かって次第に浅くなるように形成され、傾斜溝15Hは、最深部15Hから他方の周方向に向かって次第に浅くなるように形成されている。ボール15Iは、この両傾斜溝15G、15Hの間に組み込まれている。 As shown in FIG. 13, the inclined groove 15G 1 includes, from the deepest portion 15G 2 in one circumferential direction is formed so as gradually become shallower, inclined groove 15H 1 is toward the deepest portion 15H 2 in the other circumferential direction It is formed so as to become shallower. The ball 15I is incorporated between both the inclined grooves 15G 1 and 15H 1 .
 図11Aに示すように、ワイヤレバー15Dの一端は回動ディスク15Hに連結されており、ワイヤレバー15Dの他端に接続されたワイヤケーブル14が引っ張られたときに、ワイヤレバー15Dと回動ディスク15Hが一体に回動するようになっている。ワイヤレバー15Dには、ワイヤケーブル14の引っ張り操作によるワイヤレバー15Dの回動方向とは反対の方向にワイヤレバー15Dを付勢するリターンスプリング15Eが取り付けられている。 As shown in FIG. 11A, one end of the wire lever 15D is connected to the rotating disk 15H, and when the wire cable 14 connected to the other end of the wire lever 15D is pulled, the wire lever 15D and the rotating disk are connected. 15H rotates together. A return spring 15E that urges the wire lever 15D in a direction opposite to the rotation direction of the wire lever 15D by the pulling operation of the wire cable 14 is attached to the wire lever 15D.
 この押圧機構15は、ワイヤケーブル14を引っ張ると、図11Bに示したように、ワイヤケーブル14に作用する引張力によって回動ディスク15Hが回動し、これに伴いボール15Iが傾斜溝15G、15H内を最深部15G、15Hから浅くなる方向に転がるので、回動ディスク15Hの回動角度に応じて回動ディスク15Hと直動ディスク15Gの軸方向の間隔が拡大する。ここで、回動ディスク15Hは、軸方向後方への移動が規制されているので、直動ディスク15Gが軸方向前方に移動し、この直動ディスク15Gによって回転軸23が軸方向前方に押されて移動する。 When the wire mechanism 14 is pulled, the pressing mechanism 15 rotates the rotating disk 15H by a tensile force acting on the wire cable 14 as shown in FIG. 11B. As a result, the ball 15I has the inclined grooves 15G 1 , since rolls 15H 1 in a direction becomes shallower from the deepest 15G 2, 15H 2, axial spacing of the rotating disk 15H and the linear motion disk 15G is enlarged in accordance with the rotation angle of the rotation disk 15H. Here, since the rotation disc 15H is restricted from moving rearward in the axial direction, the linear motion disc 15G moves forward in the axial direction, and the rotary shaft 23 is pushed forward in the axial direction by the linear motion disc 15G. Move.
 この発明に係る電動ブレーキ装置の第七実施形態(要部)を図22に示す。第四から第六実施形態に係る電動ブレーキ装置(図15、図18、図21参照)においては、キャリパフランジ17B及びカバー27で軸方向の両側から第四ギア26Dを支持し、この第四ギア26Dの軸方向への移動を制限したのに対して、第七実施形態に係る電動ブレーキ装置においては、回転軸23の第四ギア26Dよりも軸方向後方側に第二止め輪38bを設け、この第四ギア26Dの回転軸23からの抜け止めを図りつつ、軸方向への移動を許容する構成としている。 FIG. 22 shows a seventh embodiment (main part) of the electric brake device according to the present invention. In the electric brake device according to the fourth to sixth embodiments (see FIGS. 15, 18, and 21), the caliper flange 17B and the cover 27 support the fourth gear 26D from both sides in the axial direction, and this fourth gear. Whereas the movement in the axial direction of 26D is limited, in the electric brake device according to the seventh embodiment, the second retaining ring 38b is provided on the axially rear side of the fourth gear 26D of the rotating shaft 23, The fourth gear 26D is configured to allow movement in the axial direction while preventing the fourth gear 26D from coming off the rotating shaft 23.
 このようにすれば、軸方向に移動可能な第四ギア26D自体で押輪51(本実施形態では小径押輪51a)を軸方向前方に押圧することができる。この構成においては、第四ギア26Dを軸方向前方から支持するキャリパフランジ17Bが不要となるため、この電動ブレーキ装置の軸方向長さのコンパクト化と軽量化を図ることが可能となる。 In this way, it is possible to press the pusher wheel 51 (small-diameter pusher wheel 51a in this embodiment) forward in the axial direction with the fourth gear 26D itself movable in the axial direction. In this configuration, since the caliper flange 17B that supports the fourth gear 26D from the front in the axial direction is not required, the axial length of the electric brake device can be reduced in size and weight.
 この発明に係る電動ブレーキ装置の第八実施形態(要部)を図23に示す。この電動ブレーキ装置は、第四実施形態に係る電動ブレーキ装置(図15参照)と基本構成は共通し、運転者の操作力によってブレーキ操作を行ったときにその制動力を検知することができる点で同じであるが、押圧機構15と回転軸23との間の押圧力の伝達機構が異なっている。すなわち、第四実施形態に係る電動ブレーキ装置においては、押圧機構15の押圧部材15Bと回転軸23の間に球体52が介在して設けられ、この球体52を介して押圧力が伝達されていたが、第八実施形態に係る電動ブレーキ装置においては、球体52を用いることなく、カバー27に対して回り止めされた押圧部材15Bの軸方向前方の端面と、回転軸23の軸方向後方の端面を直接面接触させることによって前記押圧力を伝達する。 FIG. 23 shows an eighth embodiment (main part) of the electric brake device according to the present invention. This electric brake device has the same basic configuration as the electric brake device according to the fourth embodiment (see FIG. 15), and can detect the braking force when the brake operation is performed by the driver's operation force. However, the transmission mechanism of the pressing force between the pressing mechanism 15 and the rotating shaft 23 is different. That is, in the electric brake device according to the fourth embodiment, the sphere 52 is provided between the pressing member 15 </ b> B of the pressing mechanism 15 and the rotating shaft 23, and the pressing force is transmitted through the sphere 52. However, in the electric brake device according to the eighth embodiment, without using the sphere 52, the axially forward end surface of the pressing member 15 </ b> B that is prevented from rotating with respect to the cover 27 and the axially rearward end surface of the rotary shaft 23. The pressure is transmitted by bringing the surface into direct surface contact.
 このように、両端面を面接触させることにより、カバー27に対して回り止めされた押圧部材15Bとの間の摩擦力によって、回転軸23の軸周りの回転が阻止される。このように、回転軸23の回転を阻止することにより、電動モータ10の失陥等のトラブルによって、フェールセーフ機構が作用した場合において、外輪部材24に設けられた螺旋凸条25Cのリード角と、遊星ローラ25Aに設けられた円周溝25Dとの間の角度が大きい場合であっても、両者の係合部で滑りが発生するのを防止することができ、フェールセーフ機構を確実に機能させることができる。 As described above, when both end surfaces are brought into surface contact, rotation around the axis of the rotary shaft 23 is prevented by the frictional force between the pressing member 15B and the rotation of the cover 27. In this way, by preventing the rotation of the rotating shaft 23, the lead angle of the spiral ridge 25 </ b> C provided on the outer ring member 24 when the fail-safe mechanism is activated due to trouble such as the failure of the electric motor 10. Even when the angle between the circumferential groove 25D provided on the planetary roller 25A is large, it is possible to prevent slippage at the engaging portion between them, and the fail-safe mechanism functions reliably. Can be made.
 この実施形態においては、回転軸23の軸方向後方の端面と、キャリア25Bの軸方向前方の端面をいずれも平坦面状としたが、両端面の間で十分な摩擦力が発揮される限りにおいてこの端面形状は限定されず、例えば、一方の端面を凹曲面とし、他方の端面をこの凹曲面と同じ曲率を有する凸曲面とすることもできる。 In this embodiment, the end surface on the rear side in the axial direction of the rotating shaft 23 and the end surface on the front side in the axial direction of the carrier 25B are both flat surfaces, but as long as sufficient frictional force is exerted between the both end surfaces. The end surface shape is not limited, and for example, one end surface may be a concave curved surface, and the other end surface may be a convex curved surface having the same curvature as the concave curved surface.
 この発明に係る電動ブレーキ装置の第九実施形態(要部)を図24に示す。この電動ブレーキ装置は、第八実施形態に係る電動ブレーキ装置(図23参照)と基本構成は共通し、運転者の操作力によってブレーキ操作を行ったときにその制動力を検知することができる点で同じであるが、押圧機構15の構成が異なっている。すなわち、第八実施形態に係る電動ブレーキ装置においては、カム形式の押圧機構15を採用したが、第九実施形態に係る電動ブレーキ装置においては、ボールランプ形式の押圧機構15を採用した。カバー27に対して回り止めされた押圧機構15の直動ディスク15Gの軸方向前方の端面と、回転軸23の軸方向後方の端面はいずれも平坦面となっている。これにより、両端面を面接触させることによって押圧力を伝達するとともに、両者の係合部で滑りが発生して回転軸23が不用意に回転するのを防止し、フェールセーフ機構が確実に機能するようにしている。 FIG. 24 shows a ninth embodiment (main part) of the electric brake device according to the present invention. This electric brake device has the same basic configuration as the electric brake device according to the eighth embodiment (see FIG. 23), and can detect the braking force when the brake operation is performed by the driver's operating force. However, the configuration of the pressing mechanism 15 is different. That is, in the electric brake device according to the eighth embodiment, the cam-type pressing mechanism 15 is adopted, but in the electric brake device according to the ninth embodiment, the ball ramp-type pressing mechanism 15 is adopted. The axially forward end surface of the linear motion disk 15G of the pressing mechanism 15 that is prevented from rotating with respect to the cover 27 and the axially rearward end surface of the rotary shaft 23 are both flat surfaces. Thus, the pressing force is transmitted by bringing both end surfaces into contact with each other, and the sliding of the both engaging portions to prevent the rotating shaft 23 from rotating inadvertently and the fail-safe mechanism functions reliably. Like to do.
 この発明に係る電動ブレーキ装置の第十実施形態(要部)を図25に示す。この電動ブレーキ装置は、ボールランプ形式の押圧機構15を備えた点において第九実施形態に係る電動ブレーキ装置(図24参照)と同じであるが、この押圧機構15の押圧部材15Bとして機能する直動ディスク15Gを、回転軸23ではなく、回転軸23にその径方向外向きに延設された延設部材である第四ギア26Dに面接触させた点において異なっている。この第四ギア26Dは回転軸23の外径よりも大径なので、この第四ギア26Dと直動ディスク15Gを面接触させることにより、回転軸23と直動ディスク15Gを当接させた場合と比較して、回転軸23の回り止め作用を一層向上することができる。 FIG. 25 shows a tenth embodiment (main part) of the electric brake device according to the present invention. This electric brake device is the same as the electric brake device according to the ninth embodiment (see FIG. 24) in that a ball ramp type pressing mechanism 15 is provided. The moving disk 15G is different in that the moving disk 15G is brought into surface contact with the fourth gear 26D which is an extending member extending radially outward of the rotating shaft 23 instead of the rotating shaft 23. Since the fourth gear 26D has a larger diameter than the outer diameter of the rotary shaft 23, the fourth gear 26D and the linear motion disk 15G are brought into surface contact to bring the rotary shaft 23 and the linear motion disc 15G into contact with each other. In comparison, the anti-rotation action of the rotating shaft 23 can be further improved.
 この発明に係る電動ブレーキ装置の第十一実施形態(要部)を図26に示す。この電動ブレーキ装置は、上記の各実施形態に係る電動ブレーキ装置と基本構成は共通し、運転者の操作力によってブレーキ操作を行ったときにその制動力を検知することができる点で同じであるが、上記の各実施形態に係る電動ブレーキ装置と異なり、電動モータ10の回転が入力される回転軸23の回転を、摩擦パッド13を押圧する直動部材24の軸方向移動に変換する運動変換機構25として、送りねじ機構(以下において、運動変換機構25と同じ符号を付する。)を採用している。 FIG. 26 shows an eleventh embodiment (main part) of the electric brake device according to the present invention. This electric brake device has the same basic configuration as the electric brake device according to each of the above embodiments, and is the same in that the braking force can be detected when the brake operation is performed by the driver's operation force. However, unlike the electric brake device according to each of the embodiments described above, the motion conversion that converts the rotation of the rotating shaft 23 to which the rotation of the electric motor 10 is input into the axial movement of the linear motion member 24 that presses the friction pad 13. As the mechanism 25, a feed screw mechanism (hereinafter, the same reference numeral as that of the motion converting mechanism 25 is given) is adopted.
 この送りねじ機構25は、回転軸23と一体に形成されたねじ軸25Eと、ねじ軸25Eを囲むように設けられた直動部材24として機能するナット25Fと、ねじ軸25Eの外周に形成されたねじ溝25Gとナット25Fの内周に形成されたねじ溝25Hの間に組み込まれた複数のボール25Iと、ナット25Fのねじ溝25Hの終点から始点にボールを戻すリターンチューブ(図示せず)とを有する。 The feed screw mechanism 25 is formed on the outer periphery of a screw shaft 25E formed integrally with the rotary shaft 23, a nut 25F functioning as a linear motion member 24 provided so as to surround the screw shaft 25E, and the screw shaft 25E. A plurality of balls 25I incorporated between the screw groove 25G and the screw groove 25H formed on the inner periphery of the nut 25F, and a return tube (not shown) for returning the ball from the end point of the screw groove 25H of the nut 25F to the start point And have.
 ナット25Fは、キャリパハウジング17A内に、このキャリパハウジング17Aに対して回り止めされた状態で軸方向に移動可能に設けられている。ねじ軸25Eの軸方向後方端部には、径方向外向きにフランジ25Eが形成されている。このフランジ25Eの軸方向後方には、スラスト軸受49が設けられている。このスラスト軸受49は、磁気式荷重センサ33のフランジ部材33Aと当接し、摩擦パッド13がブレーキディスク11から受けた反力がこのスラスト軸受49を介してフランジ部材33Aに伝達される。 The nut 25F is provided in the caliper housing 17A so as to be movable in the axial direction while being prevented from rotating with respect to the caliper housing 17A. The axially rearward end of the screw shaft 25E, the flange 25E 1 is formed radially outwardly. The axially rearward of the flange 25E 1, the thrust bearing 49 is provided. The thrust bearing 49 is in contact with the flange member 33A of the magnetic load sensor 33, and the reaction force received by the friction pad 13 from the brake disk 11 is transmitted to the flange member 33A via the thrust bearing 49.
 電動モータ10を回転させると、電動モータ10の回転が減速機構26を介して回転軸23に入力され、回転軸23の回転に伴ってナット25Fが軸方向前方に移動し、このナット25Fの軸方向前方に設けられた摩擦パッド13がブレーキディスク11に押し付けられる。その一方で、電動モータ10の失陥等のトラブルが生じ、運転者の操作力によってワイヤケーブル14が引っ張られると、その引張力によって直動ディスク15Gと回動ディスク15Hが軸周りに相対回転するとともに、直動ディスク15Gが軸方向前方に移動し、この直動ディスク15Gの軸方向前方の端面と、第四ギア26Dが面接触する。 When the electric motor 10 is rotated, the rotation of the electric motor 10 is input to the rotary shaft 23 via the speed reduction mechanism 26, and the nut 25F moves forward in the axial direction along with the rotation of the rotary shaft 23. A friction pad 13 provided forward in the direction is pressed against the brake disc 11. On the other hand, when trouble such as a failure of the electric motor 10 occurs and the wire cable 14 is pulled by the driver's operating force, the linear motion disk 15G and the rotating disk 15H are relatively rotated around the axis by the tensile force. At the same time, the linear motion disk 15G moves forward in the axial direction, and the end face of the linear motion disk 15G in the axial direction and the fourth gear 26D come into surface contact.
 このように、直動ディスク15Gと第四ギア26Dを面接触させると、カバー27に対し回り止めされた直動ディスク15Gとの間の摩擦力によって、回転軸23の軸周りの回転が阻止される。これにより、電動モータ10の失陥等のトラブルによって、フェールセーフ機構が作用した場合において、摩擦パッド13がブレーキディスク11から受ける反力によって送りねじ機構25が逆作動するのを防止することができ、フェールセーフ機構を確実に機能させることができる。 Thus, when the linear motion disk 15G and the fourth gear 26D are brought into surface contact with each other, the frictional force between the linear motion disk 15G that is prevented from rotating with respect to the cover 27 prevents the rotation of the rotary shaft 23 around the axis. The As a result, when the fail-safe mechanism is activated due to a trouble such as a failure of the electric motor 10, it is possible to prevent the feed screw mechanism 25 from operating in reverse due to the reaction force that the friction pad 13 receives from the brake disk 11. The fail-safe mechanism can function reliably.
 上記の各実施形態に係る電動ブレーキ装置はあくまでも例示であって、電動ブレーキ装置のフェールセーフ機構を確実に機能させる、というこの発明の第一の課題、または、電動ブレーキ装置のフェールセーフ機構の作動時に、その制動力を検知可能とする、というこの発明の第二の課題を解決し得る限りにおいて、運動変換機構25、押圧機構15の構成、各構成部材の形状、配置、素材等を適宜変更することもできる。例えば、上記の各実施形態においては、磁気式荷重センサ33を採用したが、その代わりとして、歪み検出式荷重センサを採用することもできる。 The electric brake device according to each of the above embodiments is merely an example, and the first problem of the present invention that the fail-safe mechanism of the electric brake device functions reliably or the operation of the fail-safe mechanism of the electric brake device As long as the second problem of the present invention that the braking force can be detected sometimes can be solved, the configuration of the motion conversion mechanism 25 and the pressing mechanism 15 and the shape, arrangement, material, and the like of each component are appropriately changed. You can also For example, in each of the embodiments described above, the magnetic load sensor 33 is employed, but a strain detection type load sensor may be employed instead.
10 電動モータ
11 ブレーキディスク
13 摩擦パッド
15 押圧機構
15A カム部材
15B 押圧部材
15C リンク部材
15F 付勢部材(解除スプリング)
15G 直動ディスク
15G 傾斜溝
15H 回動ディスク
15H 傾斜溝
15I 転動体(ボール)
23 回転軸
24 直動部材(外輪部材)
25 運動変換機構(遊星ローラ機構、送りねじ機構)
26D 延設部材
33 荷重センサ(磁気式荷重センサ)
33A フランジ部材
33B 支持部材
33C 磁気ターゲット
33D 磁気センサ
48 延設部材
A 支点部
R 反力部
P 押圧部
DESCRIPTION OF SYMBOLS 10 Electric motor 11 Brake disc 13 Friction pad 15 Press mechanism 15A Cam member 15B Press member 15C Link member 15F Biasing member (release spring)
15G linear motion disk 15G 1 inclined groove 15H rotating disk 15H 1 inclined groove 15I rolling element (ball)
23 Rotating shaft 24 Linear motion member (outer ring member)
25 Motion conversion mechanism (planet roller mechanism, feed screw mechanism)
26D Extension member 33 Load sensor (magnetic load sensor)
33A Flange member 33B Support member 33C Magnetic target 33D Magnetic sensor 48 Extension member A Supporting point R Reaction force part P Pressing part

Claims (12)

  1.  電動モータ(10)と、
     前記電動モータ(10)の回転駆動力によって軸周りに回転する回転軸(23)と、
     前記回転軸(23)の軸方向に移動可能に設けられた直動部材(24)と、
     前記回転軸(23)の回転を前記直動部材(24)の軸方向の移動に変換する運動変換機構(25)と、
     前記直動部材(24)の軸方向の一方側に設けられ、前記直動部材(24)の軸方向への移動とともに軸方向に移動する摩擦パッド(13)と、
     運転者の操作力によって、前記回転軸(23)の軸周りの回転を阻止しつつ、前記回転軸(23)を軸方向の前記一方側に押圧して、前記回転軸(23)と前記直動部材(24)を一体に軸方向の前記一方側に移動させる押圧機構(15)と、
    を有する電動ブレーキ装置。
    An electric motor (10);
    A rotating shaft (23) that rotates about the axis by the rotational driving force of the electric motor (10);
    A linear motion member (24) movably provided in the axial direction of the rotation shaft (23);
    A motion conversion mechanism (25) that converts the rotation of the rotary shaft (23) into an axial movement of the linear motion member (24);
    A friction pad (13) provided on one axial side of the linear motion member (24) and moving in the axial direction along with the axial movement of the linear motion member (24);
    While the rotation of the rotation shaft (23) is prevented by the driver's operating force, the rotation shaft (23) is pressed against the one side in the axial direction so that the rotation shaft (23) and the straight shaft A pressing mechanism (15) for moving the moving member (24) integrally to the one side in the axial direction;
    Electric brake device having
  2.  前記押圧機構(15)が、前記回転軸(23)と面接触してこの回転軸(23)の軸周りの回転を摩擦力によって阻止しつつ、軸方向に移動して前記回転軸(23)を軸方向の前記一方側に押圧する、軸周りに回り止めされた押圧部材(15B)を有する請求項1に記載の電動ブレーキ装置。 The pressing mechanism (15) is in surface contact with the rotating shaft (23) and moves in the axial direction while preventing rotation around the rotating shaft (23) by a frictional force, thereby rotating the rotating shaft (23). 2. The electric brake device according to claim 1, further comprising: a pressing member (15 </ b> B) that is prevented from rotating about an axis and presses the first side toward the one side in the axial direction.
  3.  前記押圧機構(15)が、
     運転者の操作力によって回動するカム部材(15A)と、
     前記カム部材(15A)の回動に応じて軸方向に移動して、前記押圧部材(15B)を軸方向に移動させるリンク部材(15C)と、
    をさらに有する請求項2に記載の電動ブレーキ装置。
    The pressing mechanism (15)
    A cam member (15A) that is rotated by the operating force of the driver;
    A link member (15C) that moves in the axial direction in accordance with the rotation of the cam member (15A) and moves the pressing member (15B) in the axial direction;
    The electric brake device according to claim 2, further comprising:
  4.  前記押圧機構(15)が、
     軸方向の一方の面に、周方向に沿って深さが変化する傾斜溝(15G)が形成された前記押圧部材(15B)として機能する直動ディスク(15G)と、
     前記直動ディスク(15G)に形成された前記傾斜溝(15G)に対向するように、前記直動ディスク(15G)との間に軸方向に間隔をもって配置され、前記直動ディスク(15G)と対向する面に、周方向に沿って深さが変化する傾斜溝(15H)が形成された、運転者の操作力によって回動する回動ディスク(15H)と、
     前記直動ディスク(15G)に形成された前記傾斜溝(15G)と、前記回動ディスク(15H)に形成された前記傾斜溝(15H)と、によって転動可能に保持された転動体(15I)と、
    をさらに有し、前記直動ディスク(15G)と前記回動ディスク(15H)との間の相対回転により、前記転動体(15I)が前記両傾斜溝(15G、15H)内を転動し、前記間隔が広がることで、前記直動ディスク(15G)を軸方向に移動させる請求項2に記載の電動ブレーキ装置。
    The pressing mechanism (15)
    A linear motion disk (15G) functioning as the pressing member (15B) in which an inclined groove (15G 1 ) whose depth varies along the circumferential direction is formed on one surface in the axial direction;
    The linear motion disk (15G) is arranged with an axial interval between the linear motion disk (15G) so as to face the inclined groove (15G 1 ) formed in the linear motion disk (15G). A rotating disk (15H) that is formed with an inclined groove (15H 1 ) whose depth changes along the circumferential direction on the surface facing the surface, and that is rotated by the driver's operating force;
    A rolling element held rotatably by the inclined groove (15G 1 ) formed in the linear motion disk (15G) and the inclined groove (15H 1 ) formed in the rotating disk (15H). (15I)
    The rolling element (15I) rolls in the inclined grooves (15G 1 , 15H 1 ) due to relative rotation between the linear motion disk (15G) and the rotating disk (15H). The electric brake device according to claim 2, wherein the linearly moving disk (15G) is moved in the axial direction by widening the interval.
  5.  前記押圧機構(15)が、前記押圧部材(15B)を軸方向の前記一方側とは逆向きの他方側へ付勢する付勢部材(15F)をさらに有する請求項2から4のいずれか1項に記載の電動ブレーキ装置。 The pressing mechanism (15) further includes a biasing member (15F) that biases the pressing member (15B) to the other side opposite to the one side in the axial direction. The electric brake device according to item.
  6.  前記回転軸(23)にその径方向外向きに延設され、この回転軸(23)と一体に軸周りに回転可能な延設部材(48)を有し、前記押圧部材(15B)が、前記延設部材(48)に当接可能とした請求項2から5のいずれか1項に記載の電動ブレーキ装置。 The rotating shaft (23) has a radially extending outwardly extending member (48) that is rotatable about the shaft integrally with the rotating shaft (23), and the pressing member (15B) The electric brake device according to any one of claims 2 to 5, wherein the electric brake device can be brought into contact with the extending member (48).
  7.  前記押圧機構(15)と前記運動変換機構(25)の間に介在して設けられ、前記押圧機構(15)による押圧力を前記運動変換機構(25)側に伝達する一方で、前記摩擦パッド(13)をブレーキディスク(11)に押し付けたときの軸方向後方への反力を受けて、前記ブレーキディスク(11)に負荷された荷重を検知する荷重センサ(33)
    をさらに有する請求項1から6のいずれか1項に記載の電動ブレーキ装置。
    The friction pad is provided between the pressing mechanism (15) and the motion converting mechanism (25), and transmits the pressing force by the pressing mechanism (15) to the motion converting mechanism (25). A load sensor (33) for detecting a load applied to the brake disk (11) in response to a reaction force axially rearward when the brake disk (13) is pressed against the brake disk (11).
    The electric brake device according to any one of claims 1 to 6, further comprising:
  8.  前記荷重センサ(33)が、
     前記反力を受けるフランジ部材(33A)と、
     前記フランジ部材(33A)に対して屈曲可能に連設されて、前記押圧機構(15)による軸方向前方への押圧力を受ける支持部材(33B)と、
     前記フランジ部材(33A)又は前記支持部材(33B)の一方側に設けられる磁気ターゲット(33C)と、
     前記フランジ部材(33A)又は前記支持部材(33B)のうち前記磁気ターゲット(33C)を設けた側の他方側に、前記磁気ターゲット(33C)と対向するように設けられる磁気センサ(33D)と、
    を有する磁気式荷重センサ(33)であって、前記フランジ部材(33A)と前記支持部材(33B)を連設した支点部(A)が、前記フランジ部材(33A)が前記反力を受ける反力部(R)、及び、前記支持部材(33B)が前記押圧力を受ける押圧部(P)よりも径方向外側に位置する請求項7に記載の電動ブレーキ装置。
    The load sensor (33)
    A flange member (33A) for receiving the reaction force;
    A support member (33B) connected to the flange member (33A) so as to be bendable and receiving a pressing force forward in the axial direction by the pressing mechanism (15);
    A magnetic target (33C) provided on one side of the flange member (33A) or the support member (33B);
    A magnetic sensor (33D) provided on the other side of the flange member (33A) or the support member (33B) on the side where the magnetic target (33C) is provided so as to face the magnetic target (33C);
    The fulcrum part (A) in which the flange member (33A) and the support member (33B) are connected to each other is a reaction force that the flange member (33A) receives the reaction force. The electric brake device according to claim 7, wherein the force portion (R) and the support member (33B) are positioned radially outward from the pressing portion (P) that receives the pressing force.
  9.  前記押圧部(P)が、前記反力部(R)よりも径方向内側に位置する請求項8に記載の電動ブレーキ装置。 The electric brake device according to claim 8, wherein the pressing portion (P) is located radially inside the reaction force portion (R).
  10.  前記押圧機構(15)が、軸周りに回り止めされた押圧部材(15B)を有し、前記回転軸(23)と前記押圧部材(15B)との間の面接触による摩擦力によって、前記回転軸(23)の軸周りの回転を阻止するようにした請求項7から9のいずれか1項に記載の電動ブレーキ装置。 The pressing mechanism (15) includes a pressing member (15B) that is prevented from rotating about an axis, and the rotation is performed by a frictional force caused by surface contact between the rotating shaft (23) and the pressing member (15B). The electric brake device according to any one of claims 7 to 9, wherein rotation of the shaft (23) around the shaft is prevented.
  11.  前記押圧機構(15)が、軸周りに回り止めされた押圧部材(15B)を有し、前記回転軸(23)と一体に軸周りに回転する、前記回転軸(23)にその径方向外向きに延設された延設部材(26D)と前記押圧部材(15B)との間の面接触による摩擦力によって、前記回転軸(23)の軸周りの回転を阻止するようにした請求項7から9のいずれか1項に記載の電動ブレーキ装置。 The pressing mechanism (15) has a pressing member (15B) that is prevented from rotating about an axis, and rotates about the axis integrally with the rotating shaft (23). The rotation about the axis of the rotary shaft (23) is prevented by a frictional force due to surface contact between the extending member (26D) extending in the direction and the pressing member (15B). The electric brake device according to any one of 1 to 9.
  12.  前記荷重センサ(33)で検知した荷重が予め定めた荷重閾値よりも小さいときに、運転者に対し荷重不足であることを警告する警告装置をさらに有する請求項7から11のいずれか1項に記載の電動ブレーキ装置。 The warning device according to any one of claims 7 to 11, further comprising a warning device that warns the driver that the load is insufficient when a load detected by the load sensor (33) is smaller than a predetermined load threshold. The electric brake device described.
PCT/JP2017/022729 2016-06-21 2017-06-20 Electric brake apparatus WO2017221939A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-122820 2016-06-21
JP2016122820A JP6807666B2 (en) 2016-06-21 2016-06-21 Electric brake device
JP2016138476A JP6862115B2 (en) 2016-07-13 2016-07-13 Electric brake device
JP2016-138476 2016-07-13

Publications (1)

Publication Number Publication Date
WO2017221939A1 true WO2017221939A1 (en) 2017-12-28

Family

ID=60784596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022729 WO2017221939A1 (en) 2016-06-21 2017-06-20 Electric brake apparatus

Country Status (1)

Country Link
WO (1) WO2017221939A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170648A (en) * 2005-12-26 2007-07-05 Nissin Kogyo Co Ltd Vehicular brake device
JP2014016307A (en) * 2012-07-11 2014-01-30 Ntn Corp Magnetic load sensor and electric braking device
JP2015137667A (en) * 2014-01-21 2015-07-30 Ntn株式会社 Electric brake device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170648A (en) * 2005-12-26 2007-07-05 Nissin Kogyo Co Ltd Vehicular brake device
JP2014016307A (en) * 2012-07-11 2014-01-30 Ntn Corp Magnetic load sensor and electric braking device
JP2015137667A (en) * 2014-01-21 2015-07-30 Ntn株式会社 Electric brake device

Similar Documents

Publication Publication Date Title
EP2907709B1 (en) Electric-powered parking brake device
US20140090933A1 (en) Disc brake
EP2345830B1 (en) Electric linear actuator and electric brake device
JP5625527B2 (en) Electric brake device
JP6735931B2 (en) Electric brake device
WO2018037848A1 (en) Electric brake device
EP2447562B1 (en) Electromagnetic clutch
EP2891823A1 (en) Electric direct-acting actuator and electric disc brake device
WO2011142253A1 (en) Electric direct-action actuator and electric brake device
KR20150143935A (en) Electronic parking brake
US20220307562A1 (en) Disk brake
JP6267968B2 (en) Electric brake device
JP6862115B2 (en) Electric brake device
JP2014122648A (en) Ball ramp mechanism, linear motion actuator and electrically-driven disc brake device
JP4288501B2 (en) Electric brake device
JP2019108916A (en) Brake device
WO2017221939A1 (en) Electric brake apparatus
JP2017082834A (en) Brake for vehicle
JP6807666B2 (en) Electric brake device
JP2021004646A (en) Disc brake
JP2008115880A (en) Electric disc-brake
JP2007085387A (en) Electric disk brake device
JP2019116965A (en) Brake device
JP2016109281A (en) Brake device
JP2021049880A (en) Disc brake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815407

Country of ref document: EP

Kind code of ref document: A1