WO2017221618A1 - Ejector refrigeration cycle - Google Patents

Ejector refrigeration cycle Download PDF

Info

Publication number
WO2017221618A1
WO2017221618A1 PCT/JP2017/019292 JP2017019292W WO2017221618A1 WO 2017221618 A1 WO2017221618 A1 WO 2017221618A1 JP 2017019292 W JP2017019292 W JP 2017019292W WO 2017221618 A1 WO2017221618 A1 WO 2017221618A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
cooling
heating
air
Prior art date
Application number
PCT/JP2017/019292
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 多田
浩也 長谷川
伊藤 誠司
桑原 幹治
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017003076.5T priority Critical patent/DE112017003076T5/en
Priority to CN201780038586.2A priority patent/CN109416203B/en
Publication of WO2017221618A1 publication Critical patent/WO2017221618A1/en
Priority to US16/225,444 priority patent/US20190128569A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/08Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using ejectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements

Definitions

  • the present disclosure relates to an ejector refrigeration cycle including an ejector.
  • Patent Document 1 discloses an ejector refrigeration cycle which is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression device.
  • the ejector refrigeration cycle of this Patent Document 1 is applied to an air conditioner. Furthermore, the ejector refrigeration cycle of Patent Document 1 includes a cooling mode refrigerant circuit that cools air blown into the air-conditioning target space, a heating mode refrigerant circuit that heats air blown into the air-conditioning target space, and cooling and dehumidification The refrigerant circuit or the like in the weak dehumidifying and heating mode that reheats the heated air can be switched.
  • the refrigerant flows through the indoor condenser, which is a heat exchanger for heating, the outdoor heat exchanger, and the outdoor evaporator, which is a heat exchanger for cooling, in the weak dehumidifying heating mode. Is switched to a refrigerant circuit connected in series. And the air is cooled and dehumidified by the indoor evaporator, and the dehumidified air is reheated by the indoor condenser.
  • the air heating capacity in the indoor condenser can be adjusted by adjusting the refrigerant pressure in the outdoor heat exchanger and adjusting the amount of heat released from the refrigerant in the outdoor heat exchanger.
  • the refrigerant circuit that switches the refrigerant flowing out of the outdoor heat exchanger to the cooling side nozzle portion of the cooling side ejector is switched.
  • coolant is supplied to an indoor evaporator by the suction effect
  • the coefficient of performance (COP) of the cycle is improved by sucking the refrigerant whose pressure is increased in the cooling side diffuser into the compressor.
  • the pressure of the refrigerant flowing into the cooling side nozzle portion also decreases, so that the cooling side ejector cannot exhibit a sufficient suction action. And it becomes impossible to supply a refrigerant
  • refrigeration oil for lubricating the compressor is mixed in the refrigerant. For this reason, if the refrigerant cannot be supplied to the indoor evaporator, the refrigerating machine oil flowing into the indoor evaporator cannot be pushed out to the suction side of the compressor, and the refrigerating machine oil may stay in the indoor evaporator. is there.
  • the refrigeration oil stays in the indoor evaporator in this way, the refrigeration oil supplied to the compressor is reduced, causing deterioration in the durability of the compressor. Furthermore, the heat exchange performance of the indoor evaporator is reduced, which causes a reduction in the cooling capacity exhibited by the indoor evaporator when switching to the cooling mode or the like.
  • the present disclosure is applicable to an air conditioner that performs dehumidifying heating, and can expand the temperature adjustment range of air during dehumidifying heating while suppressing refrigerating machine oil from staying in the heat exchanger. It is an object to provide a simple ejector type refrigeration cycle.
  • the ejector refrigeration cycle according to the first aspect of the present disclosure is applied to an air conditioner, and includes a compressor, a heat exchanger for heating, a first pressure reducing device, an outdoor heat exchanger, a second pressure reducing device, a heat exchanger for cooling, A heating side ejector, a heating side gas-liquid separator, and a refrigerant circuit switching device are provided.
  • Compressor compresses refrigerant mixed with refrigeration oil until it becomes high pressure refrigerant, and discharges high pressure refrigerant.
  • the heating heat exchanger heats the air blown into the air-conditioning target space using the high-pressure refrigerant as a heat source.
  • the first decompression device is disposed downstream of the heating heat exchanger and decompresses the refrigerant.
  • the outdoor heat exchanger causes the refrigerant that has flowed out of the first decompression device to exchange heat with the outside air.
  • the second decompression device is disposed on the downstream side of the heating heat exchanger and decompresses the refrigerant.
  • the cooling heat exchanger evaporates the refrigerant flowing out of the second decompression device and cools the air before passing through the heating heat exchanger.
  • the heating side ejector has a heating side nozzle part, a heating side refrigerant suction port, and a heating side pressure raising part.
  • a heating side nozzle part is arrange
  • the heating side refrigerant suction port sucks the refrigerant as the heating side suction refrigerant by the suction action of the heating side injection refrigerant.
  • the heating side pressurizing unit pressurizes the mixed refrigerant of the heating side injection refrigerant and the heating side suction refrigerant.
  • the heating-side gas-liquid separator separates the refrigerant that has flowed out of the heating-side pressure increasing unit into a gas-phase refrigerant and a liquid-phase refrigerant.
  • the refrigerant circuit switching device switches the refrigerant circuit.
  • the refrigerant circuit switching device converts the refrigerant flowing out of the heating heat exchanger to the first pressure reducing device.
  • the refrigerant circuit is switched in the order of the outdoor heat exchanger, the second decompressor, the cooling heat exchanger, and the compressor.
  • the refrigerant circuit switching device converts the refrigerant flowing out of the heating heat exchanger to the second decompression device.
  • the refrigerant circuit is switched in the order of the cooling heat exchanger, the first decompressor, the outdoor heat exchanger, and the compressor.
  • the refrigerant circuit switching device allows the refrigerant that has flowed out of the heating heat exchanger to flow into the heating-side nozzle portion and the gas that has flowed out of the heating-side gas-liquid separator.
  • a refrigerant circuit that sucks phase refrigerant into the compressor causes liquid phase refrigerant flowing out of the heating side gas-liquid separator to flow into the outdoor heat exchanger, and sucks refrigerant flowing out of the outdoor heat exchanger from the heating side refrigerant suction port Switch to.
  • the flow direction of the refrigerant in the outdoor heat exchanger in the first dehumidifying and heating mode is the same as the flow direction of the refrigerant in the outdoor heat exchanger in the second dehumidifying and heating mode.
  • the refrigerant flow direction in the outdoor heat exchanger in the first dehumidifying heating mode is different from the refrigerant flow direction in the outdoor heat exchanger in the heating mode.
  • the refrigerant circuit switching device switches to the refrigerant circuit that sucks the gas-phase refrigerant flowing out from the heating side gas-liquid separator into the compressor. Can be sucked into the compressor. Therefore, the power consumption of the compressor is reduced and the coefficient of performance (COP) of the cycle is improved as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the outdoor heat exchanger and the suction refrigerant pressure of the compressor are equal. Can do.
  • the refrigerant circuit switching device switches to a refrigerant circuit in which the outdoor heat exchanger and the cooling heat exchanger are connected in series with the refrigerant flow. Therefore, regardless of the refrigerant pressure in the outdoor heat exchanger, the refrigerant can be reliably supplied to the cooling heat exchanger by the suction and discharge action of the compressor.
  • the refrigerant circuit switching device converts the refrigerant that has flowed out of the heat exchanger for heating into the first decompression device, the outdoor heat exchanger, the second decompression device, and the cooling. Switch to the refrigerant circuit that flows in the order of the heat exchanger for compressor and the compressor. That is, the outdoor heat exchanger is disposed on the upstream side of the refrigerant flow with respect to the cooling heat exchanger via the second pressure reducing device. As a result, the refrigerant temperature in the outdoor heat exchanger can be set higher than the refrigerant temperature in the cooling heat exchanger. Accordingly, it is possible to adjust the refrigerant heat dissipation amount in the heating heat exchanger by adjusting the refrigerant heat absorption / release heat amount in the outdoor heat exchanger.
  • the refrigerant circuit switching device converts the refrigerant flowing out from the heating heat exchanger into the second decompression device, the cooling heat exchanger, the first decompression device, the outdoor heat exchanger, and the compressor. Switch to the refrigerant circuit to be circulated in order. That is, the outdoor heat exchanger is disposed downstream of the refrigerant flow with respect to the cooling heat exchanger via the first pressure reducing device. As a result, the refrigerant temperature in the outdoor heat exchanger can be set to a temperature range lower than the refrigerant temperature in the cooling heat exchanger. Therefore, the heat absorption amount of the refrigerant in the outdoor heat exchanger can be increased, and the air can be heated with a heating capability higher than that in the first dehumidifying and heating mode in the heating heat exchanger.
  • the temperature of the air can be adjusted in a wide temperature range by switching between the first dehumidifying and heating mode and the second dehumidifying and heating mode.
  • the outdoor in the first and second dehumidifying and heating modes since the flow direction of the refrigerant in the outdoor heat exchanger in the first and second dehumidifying and heating modes is different from the flow direction of the refrigerant in the outdoor heat exchanger in the heating mode, the outdoor in the first and second dehumidifying and heating modes The flow mode of the refrigerant in the heat exchanger and the flow mode of the refrigerant in the outdoor heat exchanger during the heating mode can be changed. Thereby, it can suppress that refrigerating machine oil retains in an outdoor heat exchanger.
  • the refrigerating machine oil is prevented from staying in the outdoor heat exchanger, and the air during dehumidifying heating is suppressed.
  • the temperature adjustment range can be expanded.
  • the ejector refrigeration cycle according to the second aspect of the present disclosure is applied to an air conditioner, and includes a compressor, a heat exchanger for heating, a first pressure reducing device, an outdoor heat exchanger, a second pressure reducing device, a cooling heat exchanger, A cooling side ejector, a cooling side gas-liquid separator, and a refrigerant circuit switching device may be provided.
  • the configurations of the compressor, the heat exchanger for heating, the first pressure reducing device, the outdoor heat exchanger, the second pressure reducing device, and the cooling heat exchanger are the same as those of the first aspect described above.
  • the cooling side ejector has a cooling side nozzle portion, a cooling side refrigerant suction port, and a cooling side pressure increasing portion.
  • a cooling side nozzle part is arrange
  • the cooling side refrigerant suction port sucks the refrigerant as the cooling side suction refrigerant by the suction action of the cooling side injection refrigerant.
  • the cooling side boosting unit boosts the mixed refrigerant of the cooling side injection refrigerant and the cooling side suction refrigerant.
  • the cooling-side gas-liquid separator separates the refrigerant that has flowed out of the cooling-side booster into a gas-phase refrigerant and a liquid-phase refrigerant.
  • the refrigerant circuit switching device switches the refrigerant circuit. Specifically, the refrigerant circuit switching device switches the refrigerant circuit in the first dehumidifying and heating mode and the second dehumidifying and heating mode, similarly to the first aspect described above.
  • the refrigerant circuit switching device causes the refrigerant that has flowed out of the outdoor heat exchanger to flow into the cooling side nozzle portion,
  • the gas-phase refrigerant that has flowed out of the gas-liquid separator is sucked into the compressor, and the liquid-phase refrigerant that has flowed out of the cooling-side gas-liquid separator is flowed into the cooling heat exchanger, and the refrigerant that has flowed out of the cooling heat exchanger is removed.
  • the refrigerant flow direction in the cooling heat exchanger in the first dehumidifying heating mode is the same as the refrigerant flow direction in the cooling heat exchanger in the second dehumidifying heating mode.
  • the refrigerant flow direction in the cooling heat exchanger in the first dehumidifying heating mode is different from the refrigerant flow direction in the cooling heat exchanger in the cooling mode.
  • the refrigerant circuit switching device switches to the refrigerant circuit that sucks the gas-phase refrigerant flowing out from the cooling side gas-liquid separator into the compressor. Can be sucked into the compressor. Therefore, the power consumption of the compressor is reduced and the coefficient of performance (COP) of the cycle is improved as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the heat exchanger for cooling is equal to the suction refrigerant pressure of the compressor. be able to.
  • COP coefficient of performance
  • the refrigerant circuit switching device is switched to a refrigerant circuit in which the outdoor heat exchanger and the cooling heat exchanger are connected in series with the refrigerant flow. Therefore, similarly to the first aspect described above, the refrigerant can be reliably supplied to the cooling heat exchanger by the suction and discharge action of the compressor regardless of the refrigerant pressure in the outdoor heat exchanger.
  • the refrigerant circuit switching device of the second aspect switches the refrigerant circuit in the first dehumidifying and heating mode and the second dehumidifying and heating mode in the same manner as in the first aspect. Therefore, according to the second aspect, the temperature of the blown air can be adjusted in a wide temperature range as in the first aspect.
  • the flow direction of the refrigerant in the cooling heat exchanger in the first and second dehumidifying heating modes is different from the flow direction of the refrigerant in the cooling heat exchanger in the heating mode. Therefore, the flow mode of the refrigerant in the cooling heat exchanger in the first and second dehumidifying heating modes and the flow mode of the refrigerant in the cooling heat exchanger in the heating mode can be changed. Similarly, it is possible to suppress the refrigeration oil from staying in the cooling heat exchanger.
  • the air during dehumidifying heating is suppressed while the refrigerating machine oil is prevented from staying in the cooling heat exchanger.
  • the temperature adjustment range can be expanded.
  • 1 is an overall configuration diagram of a vehicle air conditioner. It is a whole block diagram which shows the refrigerant circuit at the time of the air_conditioning
  • an ejector refrigeration cycle 10 according to the present disclosure is applied to a vehicle air conditioner 1 mounted on an electric vehicle as shown in the overall configuration diagram of FIG.
  • the ejector-type refrigeration cycle 10 functions to heat or cool air (air blown air) blown into the vehicle interior, which is a space to be air-conditioned, in the vehicle air conditioner 1. Therefore, the heat exchange target fluid of the ejector refrigeration cycle 10 is air blown into the vehicle interior.
  • the ejector-type refrigeration cycle 10 includes a cooling mode refrigerant circuit (see FIG. 2), a first dehumidifying and heating mode refrigerant circuit (see FIG. 3), and a second dehumidifying and heating mode.
  • the refrigerant circuit (see FIG. 4), the heating mode refrigerant circuit (see FIG. 5), and the defrost mode refrigerant circuit (see FIG. 6) can be switched.
  • the cooling mode is an operation mode in which air is cooled to cool the passenger compartment.
  • the first dehumidifying and heating mode is an operation mode in which the air that has been cooled and dehumidified is reheated to perform dehumidifying heating in the passenger compartment.
  • the second dehumidifying and heating mode is an operation mode in which the air is reheated with a heating capability higher than that in the first dehumidifying and heating mode to perform dehumidifying heating in the passenger compartment.
  • the heating mode is an operation mode in which air is heated to heat the vehicle interior.
  • the defrosting mode is an operation mode for removing frost formation in the outdoor heat exchanger 17 described later.
  • the arrangement of the components of the ejector refrigeration cycle 10 shown in FIG. 1 is changed in order to clarify the flow direction of the refrigerant in each operation mode.
  • the heating side ejector 16, the outdoor heat exchanger 17 and the like, and the cooling side ejector 22, the indoor evaporator 21 and the like are arranged symmetrically.
  • the ejector refrigeration cycle 10 shown in FIG. 1 is equivalent to the ejector refrigeration cycle 10 shown in FIGS. Moreover, in FIGS. 2-6, the flow of the refrigerant
  • the ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure.
  • refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant.
  • PAG oil polyalkylene glycol oil having compatibility with the liquid phase refrigerant is employed. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is disposed in the vehicle bonnet, and sucks, compresses and discharges the refrigerant in the ejector refrigeration cycle 10.
  • an electric compressor is employed in which a fixed capacity type compression mechanism with a fixed discharge capacity is rotationally driven by an electric motor.
  • the operation (rotation speed) of the compressor 11 is controlled by a control signal output from the air conditioning control device 40 described later.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11.
  • the indoor condenser 12 is arrange
  • the indoor condenser 12 is a heating heat exchanger that heats air using the high-pressure refrigerant as a heat source by causing heat exchange between the high-pressure refrigerant discharged from the compressor 11 and air after passing through an indoor evaporator 21 described later. Details of the indoor air conditioning unit 30 will be described later.
  • the refrigerant outlet of the indoor condenser 12 is connected to one inlet / outlet side of the first four-way valve 13a.
  • the first four-way valve 13a is a refrigerant circuit switching device that switches the refrigerant circuit of the ejector refrigeration cycle 10 together with a second four-way valve 13b, which will be described later.
  • the first four-way valve 13a connects the refrigerant outlet side of the indoor condenser 12 and one inlet / outlet side of the first three-way joint 14a, and at the same time, one inlet / outlet side of the second four-way valve 13b and one of the third three-way joint 14c. It is possible to switch to a refrigerant circuit that connects the inlet / outlet side.
  • the one inlet / outlet side of the first three-way joint 14a is an inlet / outlet side of a heating side ejector 16 or an outdoor heat exchanger 17 described later.
  • the one inlet / outlet side of the third three-way joint 14c is an outlet / inlet side of the cooling side ejector 22 or the indoor evaporator 21 described later.
  • first four-way valve 13a connects the refrigerant outlet side of the indoor condenser 12 and one inlet / outlet side of the third three-way joint 14c, and at the same time, connects one inlet / outlet side of the second four-way valve 13b and the first three-way joint 14a. It can switch to the refrigerant circuit which connects one entrance / exit side.
  • the operations of the first four-way valve 13 a and the second four-way valve 13 b are controlled by a control voltage output from the air conditioning control device 40.
  • the first three-way joint 14a is a pipe joint having three refrigerant outlets. Further, the ejector refrigeration cycle 10 includes second to fourth three-way joints 14b to 14d, as will be described later.
  • the basic configuration of the second to fourth three-way joints 14b to 14d is the same as that of the first three-way joint 14a.
  • the other inlet / outlet of the first three-way joint 14a is connected to the inlet side of the heating side nozzle portion 16a of the heating side ejector 16 via the first flow rate adjusting valve 15a.
  • One inlet / outlet side of the second three-way joint 14b is connected to another inlet / outlet of the first three-way joint 14a via a second flow rate adjusting valve 15b.
  • the first flow rate adjusting valve 15a is an electric type that includes a valve body that changes the opening degree of the refrigerant passage and an electric actuator (specifically, a stepping motor) that changes the opening degree of the valve body. This is a variable aperture mechanism.
  • the first flow rate adjusting valve 15a adjusts the flow rate of the refrigerant flowing into the heating side nozzle portion 16a of the heating side ejector 16 at least in the heating mode.
  • the second flow rate adjustment valve 15 b is a first decompression device that decompresses the refrigerant that flows downstream of the indoor condenser 12 and flows into the outdoor heat exchanger 17.
  • the ejector refrigeration cycle 10 includes second to sixth flow rate adjusting valves 15b to 15f.
  • the basic configuration of the second to sixth flow rate adjustment valves 15b to 15f is the same as that of the first flow rate adjustment valve 15a.
  • the first to sixth flow rate adjusting valves 15a to 15f are fully opened functions that function as simple refrigerant passages without fully exhibiting the flow rate adjusting action and the refrigerant pressure reducing action by fully opening the valve opening degree, and the valve opening degree is fully increased. It has a fully closed function of closing the refrigerant flow path by closing.
  • the first to sixth flow rate adjustment valves 15a to 15f can switch the refrigerant circuit in each operation mode by the fully open function and the fully closed function. Accordingly, the first to sixth flow rate adjusting valves 15a to 15f have a function as a refrigerant circuit switching device together with the first four-way valve 13a and the second four-way valve 13b. The operations of the first to sixth flow rate adjusting valves 15 a to 15 f are controlled by a control signal (control pulse) output from the air conditioning control device 40.
  • One refrigerant inlet / outlet side of the outdoor heat exchanger 17 is connected to another inlet / outlet of the second three-way joint 14b.
  • the heating side refrigerant suction port 16c side of the heating side ejector 16 is connected to the other opening / closing port of the second three-way joint 14b via the first on-off valve 18a.
  • the first on-off valve 18a is an electromagnetic valve that opens and closes a refrigerant passage that connects the second three-way joint 14b and the heating-side refrigerant suction port 16c of the heating-side ejector 16. Further, the ejector refrigeration cycle 10 includes a second on-off valve 18b as will be described later. The basic configuration of the second on-off valve 18b is the same as that of the first on-off valve 18a.
  • the first on-off valve 18a and the second on-off valve 18b can switch the refrigerant circuit in each operation mode described above by opening and closing the refrigerant passage. Therefore, the 1st on-off valve 18a and the 2nd on-off valve 18b comprise a refrigerant circuit switching apparatus with the 1st four-way valve 13a and the 2nd four-way valve 13b. The operations of the first on-off valve 18 a and the second on-off valve 18 b are controlled by a control voltage output from the air conditioning control device 40.
  • the outdoor heat exchanger 17 is a heat exchanger that is disposed in the vehicle bonnet and exchanges heat between the refrigerant flowing through the vehicle hood and the outside air blown from a blower fan (not shown).
  • the outdoor heat exchanger 17 functions as a radiator that radiates high-pressure refrigerant at least in the cooling mode. Further, at least in the second dehumidifying heating mode and the heating mode, it functions as an evaporator that evaporates the refrigerant.
  • the liquid refrigerant inlet / outlet side of the heating side accumulator 19 is connected to the other refrigerant inlet / outlet of the outdoor heat exchanger 17 via a third flow rate adjusting valve 15c.
  • the outdoor heat exchanger 17 employs a refrigerant whose cross-sectional area of the refrigerant passage formed therein changes in the refrigerant flow direction. More specifically, the outdoor heat exchanger 17 of the present embodiment is a so-called tank and tube type heat exchanger. And the passage cross-sectional area of the refrigerant passage formed inside is changed by adjusting the path configuration through which the refrigerant flows.
  • the path in the tank-and-tube heat exchanger is a group of tubes that flow the refrigerant in the same distribution space formed in the tank in the same direction toward the same collective space formed in the tank. It can be defined as a refrigerant passage formed by Therefore, the passage sectional area of the path (refrigerant passage) (total passage sectional area of the tube) can be changed by changing the number of tubes constituting the path.
  • the outdoor heat exchanger 17 of the present embodiment has a path configuration in which the passage cross-sectional area of the refrigerant passage formed therein gradually decreases as it goes from the other refrigerant inlet / outlet side to the one refrigerant inlet / outlet side. Yes.
  • the other refrigerant inlet / outlet in the present embodiment is an inlet / outlet on the side to which the liquid-phase refrigerant inlet / outlet of the heating side accumulator 19 is connected, and the other refrigerant inlet / outlet is connected to another inlet / outlet of the second three-way joint 14b. This is the side entrance.
  • the heating-side ejector 16 functions as a decompression device that decompresses the refrigerant flowing out of the indoor condenser 12 at least in the heating mode. Furthermore, the heating-side ejector 16 functions as a refrigerant transport device that sucks and transports the refrigerant that has flowed out of the outdoor heat exchanger 17 by the suction action of the jetted refrigerant that is injected at a high speed.
  • the heating side ejector 16 has a heating side nozzle portion 16a and a heating side body portion 16b.
  • the heating-side nozzle portion 16a is formed of a substantially cylindrical member made of metal (in this embodiment, made of stainless steel) that gradually tapers in the refrigerant flow direction. And a refrigerant
  • coolant is decompressed isentropically in the refrigerant path formed in the inside.
  • a throat portion (minimum passage area portion) having the smallest passage cross-sectional area is formed, and further toward the refrigerant injection port for injecting refrigerant from the throat portion. Accordingly, a divergent portion in which the refrigerant passage area is enlarged is formed. That is, the heating side nozzle part 16a is configured as a Laval nozzle.
  • the heating-side nozzle portion 16a one that is set so that the flow rate of the heating-side injection refrigerant that is injected from the refrigerant injection port becomes equal to or higher than the sonic speed during normal operation of the ejector refrigeration cycle 10 is adopted.
  • the heating side body portion 16b is formed of a cylindrical member made of metal (in this embodiment, made of an aluminum alloy), functions as a fixing member that supports and fixes the heating side nozzle portion 16a therein, and is also used as a heating side ejector. 16 outer shells are formed. More specifically, the heating-side nozzle portion 16a is fixed by press-fitting so as to be housed inside one end side in the longitudinal direction of the heating-side body portion 16b. Therefore, the refrigerant does not leak from the fixing portion (press-fit portion) between the heating side nozzle portion 16a and the heating side body portion 16b.
  • a portion corresponding to the outer peripheral side of the heating side nozzle portion 16a is provided so as to penetrate the inside and outside and communicate with the refrigerant injection port of the heating side nozzle portion 16a.
  • a heating-side refrigerant suction port 16c is formed.
  • the heating-side refrigerant suction port 16c is a through hole that sucks the refrigerant that has flowed out of the outdoor heat exchanger 17 into the heating-side ejector 16 by the suction action of the heating-side injection refrigerant that is injected from the heating-side nozzle portion 16a.
  • a suction passage that guides the suction refrigerant sucked from the heating side refrigerant suction port 16c to the refrigerant injection port side of the heating side nozzle portion 16a, and the heating side ejector 16 through the suction passage.
  • a heating side diffuser portion 16d which is a heating side pressure increasing portion that increases the pressure by mixing the heating side suction refrigerant and the heating side injection refrigerant that have flowed into the inside, is formed.
  • the heating-side diffuser portion 16d is disposed so as to be continuous with the outlet of the suction passage, and is formed so that the refrigerant passage area gradually increases.
  • the inlet side of the heating side accumulator 19 is connected to the refrigerant outlet of the heating side diffuser portion 16d.
  • the heating-side accumulator 19 is a heating-side gas-liquid separator that separates the refrigerant flowing out from the heating-side diffuser portion 16d of the heating-side ejector 16 into a gas-phase refrigerant and a liquid-phase refrigerant.
  • the heating-side accumulator 19 is provided with a gas phase refrigerant inlet / outlet for allowing the separated gas phase refrigerant to flow out and a liquid phase refrigerant inlet / outlet for allowing the separated liquid phase refrigerant to flow out.
  • a heating-side accumulator 19 having a relatively small internal volume is employed. For this reason, the heating-side accumulator 19 allows the separated liquid-phase refrigerant to flow out from the liquid-phase refrigerant inlet / outlet with little storage. Moreover, the refrigerant
  • coolants may flow out of a gaseous-phase refrigerant
  • the gas phase refrigerant inlet / outlet of the heating side accumulator 19 is connected to another inlet / outlet side of the second four-way valve 13b which is a refrigerant circuit switching device.
  • the second four-way valve 13b connects the gas-phase refrigerant inlet / outlet side of the heating-side accumulator 19 and one inlet / outlet side of the first four-way valve 13a, and at the same time, the gas-phase refrigerant inlet / outlet side of the cooling-side accumulator 23 and the suction-side accumulator 24. It is possible to switch to a refrigerant circuit connecting the inlet side.
  • the second four-way valve 13b connects the gas-phase refrigerant inlet / outlet side of the heating-side accumulator 19 and the inlet side of the suction-side accumulator 24, and at the same time, the gas-phase refrigerant inlet / outlet of the cooling-side accumulator 23 and one of the first four-way valves 13a. It can switch to the refrigerant circuit which connects an entrance / exit side.
  • the inlet side of the cooling side nozzle portion 22a of the cooling side ejector 22 is connected to another outlet / inlet of the third three-way joint 14c to which the first four-way valve 13a is connected via the fourth flow rate adjusting valve 15d.
  • One further inlet / outlet side of the fourth three-way joint 14d is connected to another inlet / outlet of the third three-way joint 14c via a fifth flow rate adjusting valve 15e.
  • the fifth flow rate adjustment valve 15 e is a second decompression device that decompresses the refrigerant that is downstream of the indoor condenser 12 and flows into the indoor evaporator 21.
  • One refrigerant inlet / outlet side of the indoor evaporator 21 is connected to another inlet / outlet of the fourth three-way joint 14d.
  • the heating side gas-liquid separator 22c side of the cooling side ejector 22 is connected to another inlet / outlet of the fourth three-way joint 14d via the second on-off valve 18b.
  • the indoor evaporator 21 is disposed in the casing 31 of the indoor air conditioning unit 30 and on the upstream side of the air flow from the indoor condenser 12 described above.
  • the indoor evaporator 21 heats the low-pressure refrigerant decompressed by the fifth flow rate adjustment valve 15e or the sixth flow rate adjustment valve 15f by exchanging heat with air to evaporate it, thereby cooling the air by exerting an endothermic effect. It is an exchanger.
  • the liquid refrigerant inlet / outlet side of the cooling side accumulator 23 is connected to the other refrigerant inlet / outlet of the indoor evaporator 21 via a sixth flow rate adjusting valve 15f.
  • the indoor evaporator 21 is a so-called tank-and-tube heat exchanger similar to the outdoor heat exchanger 17, and the cross-sectional area of the refrigerant passage formed inside is the refrigerant flow direction. The one that changes toward is adopted.
  • the passage cross-sectional area of the refrigerant passage formed inside decreases stepwise from the other refrigerant inlet / outlet side toward the one refrigerant inlet / outlet side. It has a path configuration.
  • the other refrigerant inlet / outlet in the present embodiment is an inlet / outlet on the side to which the liquid-phase refrigerant inlet / outlet of the cooling side accumulator 23 is connected, and the other refrigerant inlet / outlet is connected to another inlet / outlet of the fourth three-way joint 14d. This is the side entrance.
  • the basic configuration of the cooling side ejector 22 is the same as that of the heating side ejector 16. Therefore, the cooling side ejector 22 has the cooling side nozzle part 22a and the cooling side body 22b.
  • the cooling side body 22b is formed with a cooling side refrigerant suction port 22c and a cooling side diffuser portion 22d which is a cooling side boosting portion.
  • the inlet side of the cooling side accumulator 23 is connected to the refrigerant outlet of the cooling side diffuser part 22d.
  • the cooling side accumulator 23 is a cooling side gas-liquid separator that separates the refrigerant flowing out from the cooling side diffuser portion 22d of the cooling side ejector 22 into a gas phase refrigerant and a liquid phase refrigerant.
  • the cooling side accumulator 23 is provided with a gas phase refrigerant outlet for flowing out the separated gas phase refrigerant and a liquid phase refrigerant outlet for letting out the separated liquid phase refrigerant.
  • cooling side accumulator 23 As the cooling side accumulator 23, a cooling side accumulator 23 having a relatively small internal volume is employed. For this reason, the cooling-side accumulator 23 causes the separated liquid-phase refrigerant to flow out from the liquid-phase refrigerant inlet / outlet with little storage. Moreover, the refrigerant
  • coolants may flow out of a gaseous-phase refrigerant
  • the gas phase refrigerant inlet / outlet port of the cooling side accumulator 23 is connected to another inlet / outlet side of the second four-way valve 13b which is a refrigerant circuit switching device.
  • the suction side accumulator 24 is a gas-liquid separator that separates the refrigerant sucked into the compressor 11 into a gas phase refrigerant and a liquid phase refrigerant.
  • the suction-side accumulator 24 allows the separated gas-phase refrigerant to flow out to the suction port side of the compressor 11 and stores excess refrigerant in the cycle.
  • the indoor air conditioning unit 30 is for blowing out the air whose temperature has been adjusted by the ejector refrigeration cycle 10 into the vehicle interior, and is disposed inside (in the vehicle interior) of the instrument panel (instrument panel) at the foremost interior of the vehicle interior.
  • the indoor air conditioning unit 30 is configured by housing a blower 32, an indoor evaporator 21, an indoor condenser 12, an air mix door 34, and the like in a casing 31 that forms an outer shell thereof.
  • the casing 31 forms an air passage for air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • an inside / outside air switching device 33 is disposed as an inside / outside air switching unit for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31. Yes.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port through which the inside air is introduced into the casing 31 and the outside air introduction port through which the outside air is introduced by the inside / outside air switching door, so that the air volume of the inside air and the air volume of the outside air are adjusted.
  • the air volume ratio is continuously changed.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
  • a blower 32 as a blower that blows air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 40.
  • the indoor evaporator 21 and the indoor condenser 12 are arranged in this order on the downstream side of the air flow of the blower 32. That is, the indoor evaporator 21 is disposed upstream of the indoor condenser 12 in the air flow. Further, on the downstream side of the air flow of the indoor evaporator 21 and the upstream side of the air flow of the indoor condenser 12, the ratio of the amount of air passing through the indoor condenser 12 in the air after passing through the indoor evaporator 21 is set. An air mix door 34 to be adjusted is disposed.
  • a mixing space in which air heated by exchanging heat with the refrigerant in the indoor condenser 12 and air that has not been heated bypassing the indoor condenser 12 are mixed. 35 is provided on the downstream side of the air flow of the indoor condenser 12. Further, an opening hole for blowing the air (air conditioned air) mixed in the mixing space 35 into the vehicle interior, which is the air conditioned space, is provided in the most downstream portion of the air flow of the casing 31.
  • the opening hole a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided.
  • the face opening hole is an opening hole for blowing conditioned air toward the upper body of the passenger in the vehicle interior.
  • the foot opening hole is an opening hole for blowing conditioned air toward the feet of the passenger.
  • the defroster opening hole is an opening hole for blowing out conditioned air toward the inner side surface of the vehicle front window glass.
  • These face opening hole, foot opening hole, and defroster opening hole are respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet (not shown) through a duct that forms an air passage. )It is connected to the.
  • the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that bypasses the indoor condenser 12, thereby adjusting the temperature of the conditioned air mixed in the mixing space. . Thereby, the temperature of the air (air conditioned air) blown out from each outlet to the vehicle interior is adjusted.
  • the air mix door 34 functions as a temperature adjusting unit that adjusts the temperature of the conditioned air blown into the vehicle interior.
  • the air mix door 34 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
  • a face door that adjusts the opening area of the face opening hole, a foot door that adjusts the opening area of the foot opening hole, and a defroster opening hole respectively A defroster door (none of which is shown) for adjusting the opening area is arranged.
  • These face doors, foot doors, and defroster doors constitute an opening hole mode switching device that switches the opening hole mode, and are linked to an electric actuator for driving an outlet mode door via a link mechanism or the like. And rotated.
  • the operation of this electric actuator is also controlled by a control signal output from the air conditioning control device 40.
  • outlet mode switched by the outlet mode switching device include a face mode, a bi-level mode, and a foot mode.
  • the face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passenger in the passenger compartment.
  • the bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode is a blow-out mode in which the foot blow-out opening is fully opened and the defroster blow-out opening is opened by a small opening so that air is mainly blown out from the foot blow-out opening.
  • the defroster mode in which the defroster blowout port is fully opened and air is blown out from the defroster blowout port to the inner surface of the front windshield of the vehicle can be set.
  • the air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
  • the air conditioning control device 40 performs various calculations and processes based on the control program stored in the ROM, and controls the operation of various control target devices connected to the output side.
  • the various devices to be controlled are, for example, the compressor 11, the first four-way valve 13a, the second four-way valve 13b, the flow rate adjusting valves 15a-15f, the first on-off valve 18a, the second on-off valve 18b, the blower 32, and the like.
  • an inside air temperature sensor 41, an outside air temperature sensor 42, a solar radiation sensor 43, an outdoor heat exchanger temperature sensor 44, a discharge temperature sensor 45, an indoor temperature sensor, An evaporator temperature sensor 46, an air-conditioning air temperature sensor 47, and the like are connected. And the detection signal of these sensor groups is input into the air-conditioning control apparatus 40.
  • FIG. 7 shows an inside air temperature sensor 41, an outside air temperature sensor 42, a solar radiation sensor 43, an outdoor heat exchanger temperature sensor 44, a discharge temperature sensor 45, an indoor temperature sensor, An evaporator temperature sensor 46, an air-conditioning air temperature sensor 47, and the like.
  • the inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
  • the outdoor heat exchanger temperature sensor 44 is an outdoor heat exchanger temperature detection unit that detects a refrigerant temperature (outdoor heat exchanger temperature) Tout in the outdoor heat exchanger.
  • the discharge temperature sensor 45 is a discharge temperature detection unit that detects the discharge refrigerant temperature Td of the compressor 11.
  • the indoor evaporator temperature sensor 46 is an evaporator temperature detector that detects a refrigerant evaporation temperature (indoor evaporator temperature) Tefin in the indoor evaporator 21.
  • the conditioned air temperature sensor 47 is an conditioned air temperature detector that detects an air temperature TAV that is blown from the mixed space into the vehicle interior.
  • an operation panel 50 disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the air conditioning control device 40, and various operation switches provided on the operation panel 50 are connected.
  • the operation signal is input.
  • various operation switches provided on the operation panel 50 there are an auto switch, a cooling switch (A / C switch), an air volume setting switch, a temperature setting switch, a blowing mode switching switch, and the like.
  • the auto switch is an input unit that sets or cancels the automatic control operation of the vehicle air conditioner 1.
  • the cooling switch (A / C switch) is an input unit that requests cooling of the passenger compartment.
  • the air volume setting switch is an input unit for manually setting the air volume of the blower 32.
  • the temperature setting switch is an input unit for manually setting the target temperature Tset in the vehicle compartment.
  • the blowing mode changeover switch is an input unit for manually setting the blowing mode.
  • the air-conditioning control device 40 of this embodiment is configured such that a control unit that controls various devices to be controlled connected to the output side is integrally configured.
  • a configuration (hardware and software) that controls the operation of each of the various control target devices constitutes a control unit that controls the operation of each of the various control target devices.
  • the configuration for controlling the refrigerant discharge capability (rotation speed) of the compressor 11 constitutes a discharge capability control unit.
  • operation of refrigerant circuit switching apparatuses, such as the 1st on-off valve 18a and the 2nd on-off valve 18b, comprises the refrigerant circuit control part.
  • the operation of the cooling mode, the first dehumidifying heating mode, the second dehumidifying heating mode, the heating mode, and the defrosting mode can be switched.
  • These operation modes are switched by executing an air conditioning control program stored in advance in the storage circuit of the air conditioning control device 40.
  • the air conditioning control program is executed when the auto switch of the operation panel 50 is turned on (ON).
  • the detection signals of the above-mentioned air conditioning control sensor groups and the operation signals from various air conditioning operation switches are read. And based on the value of the read detection signal and operation signal, the target blowing temperature TAO which is the target temperature of the blowing air which blows off into the vehicle interior is calculated based on the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C (F1)
  • Tset is the vehicle interior set temperature set by the temperature setting switch
  • Tr is the vehicle interior temperature (inside air temperature) detected by the inside air sensor
  • Tam is the outside air temperature detected by the outside air sensor
  • As is detected by the solar radiation sensor.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • the cooling switch of the operation panel 50 is turned on and the target blowing temperature TAO is lower than the predetermined cooling reference temperature ⁇ , the operation in the cooling mode is executed.
  • the cooling switch when the cooling switch is not turned on, the operation in the heating mode is executed. Further, when frost formation occurs in the outdoor heat exchanger 17 during the execution of the heating mode or the like, a defrosting operation is performed to remove the frost formation.
  • the operation in the cooling mode is executed mainly when the outside air temperature is relatively high as in summer.
  • the operation in the first and second dehumidifying heating modes is executed mainly in early spring or early winter.
  • the operation in the heating mode is executed. The operation in each operation mode will be described below.
  • the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the first three-way joint 14a side, and simultaneously connects the second four-way valve 13b side and the third three-way joint 14c side.
  • the operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit to be connected. Further, the refrigerant circuit connecting the gas-phase refrigerant inlet / outlet side of the heating-side accumulator 19 and the first four-way valve 13a side is simultaneously switched to the refrigerant circuit connecting the gas-phase refrigerant inlet / outlet side of the cooling-side accumulator 23 and the inlet side of the suction-side accumulator 24.
  • the operation of the second four-way valve 13b is controlled.
  • the air conditioning controller 40 sets the first flow rate adjustment valve 15a to a fully closed state, sets the second flow rate adjustment valve 15b to a fully open state, sets the third flow rate adjustment valve 15c to a fully open state, and sets the fourth flow rate adjustment valve 15d to the refrigerant.
  • the throttle state in which the pressure reducing action is exerted is set, the fifth flow rate adjustment valve 15e is fully closed, and the sixth flow rate adjustment valve 15f is set in the throttle state.
  • the air conditioning control device 40 closes the first on-off valve 18a and opens the second on-off valve 18b.
  • the refrigerant circulates in the order of the heating side accumulator 19, the fourth flow rate adjustment valve 15d, the cooling side ejector 22, the cooling side accumulator 23, the suction side accumulator 24, and the compressor 11, the cooling side accumulator 23, the sixth flow rate adjustment valve 15f,
  • An ejector type refrigeration cycle in which the refrigerant circulates in the order of the indoor evaporator 21 and the cooling side refrigerant suction port 22c of the cooling side ejector 22 is configured.
  • the air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows.
  • the target evaporator outlet temperature TEO of the indoor evaporator 21 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance.
  • This target evaporator outlet temperature TEO is determined to be equal to or higher than a reference frost prevention temperature (for example, 1 ° C.) determined to be able to suppress frost formation in the indoor evaporator 21.
  • the indoor evaporator temperature Tefin is converted into the target evaporator outlet temperature TEO using a feedback control method.
  • the control signal output to the electric motor of the compressor 11 is determined so as to approach
  • the throttle opening degree of the fourth flow rate adjusting valve 15d that is, the control signal (control pulse) output to the fourth flow rate adjusting valve 15d is stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the COP of the ejector refrigeration cycle 10 is determined so as to approach the maximum value.
  • the throttle opening degree of the sixth flow rate adjustment valve 15f that is, the control signal (control pulse) output to the sixth flow rate adjustment valve 15f is determined as the reference opening degree for cooling stored in the air conditioning control device 40 in advance. Is done.
  • the air mix door 34 closes the air passage on the indoor condenser 12 side, and the total flow rate of air after passing through the indoor evaporator 21 is It is determined to flow around the condenser 12.
  • control signals determined as described above are output to various control target devices. Thereafter, until the operation of the vehicle air conditioner 1 is requested to be stopped, the above-described detection signal and operation signal are read, the target blowing temperature TAO is calculated, the operating states of various control target devices are determined, and the control is performed every predetermined control cycle. Control routines such as voltage and control signal output are repeated. Such a control routine is repeated in the other operation modes.
  • the high-pressure refrigerant (point a8 in FIG. 8) discharged from the compressor 11 flows into the indoor condenser 12.
  • the air mix door 34 closes the air passage on the indoor condenser 12 side, the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 with almost no heat exchange with air.
  • the refrigerant flowing out of the indoor condenser 12 flows into one refrigerant inlet / outlet of the outdoor heat exchanger 17 through the first four-way valve 13a, the fully opened second flow rate adjusting valve 15b, and the like.
  • the refrigerant that has flowed into the outdoor heat exchanger 17 dissipates heat to the outside air blown from the blower fan in the outdoor heat exchanger 17 and condenses (point a8 to point e8 in FIG. 8).
  • the refrigerant decompressed by the fourth flow rate adjustment valve 15d flows into the cooling side nozzle portion 22a of the cooling side ejector 22.
  • the refrigerant that has flowed into the cooling-side nozzle portion 22a is isentropically decompressed and injected (from point h8 to point i8 in FIG. 8).
  • coolant which flowed out from one refrigerant inlet / outlet of the indoor evaporator 21 is attracted
  • the cooling-side injection refrigerant injected from the cooling-side nozzle portion 22a and the cooling-side suction refrigerant sucked from the cooling-side refrigerant suction port 22c of the cooling-side ejector 22 flow into the cooling-side diffuser portion 22d (from i8 to j8 in FIG. 8). Point, p8 point to j8 point).
  • the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant of the cooling-side injection refrigerant and the cooling-side suction refrigerant increases (from point j8 to point k8 in FIG. 8).
  • the refrigerant that has flowed out of the cooling side diffuser portion 22d flows into the cooling side accumulator 23 and is separated into a gas phase refrigerant and a liquid phase refrigerant.
  • the air in the vehicle interior can be cooled by blowing the air cooled by the indoor evaporator 21 into the vehicle interior without being reheated by the indoor condenser 12.
  • the refrigerant whose pressure has been increased by the cooling side diffuser portion 22d of the cooling side ejector 22 is sucked into the compressor 11. Therefore, in comparison with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the heat exchanger functioning as an evaporator (in the cooling mode, the indoor evaporator 21) and the pressure of the refrigerant sucked in the compressor 11 are equal. 11 can be reduced, and the coefficient of performance COP of the cycle can be improved.
  • the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the first three-way joint 14a side at the same time as the second four-way valve 13b side and the third.
  • the operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit that connects the three-way joint 14c side.
  • the refrigerant circuit connecting the gas-phase refrigerant inlet / outlet side of the heating-side accumulator 19 and the first four-way valve 13a side is simultaneously switched to the refrigerant circuit connecting the gas-phase refrigerant inlet / outlet side of the cooling-side accumulator 23 and the inlet side of the suction-side accumulator 24.
  • the operation of the second four-way valve 13b is controlled.
  • the air conditioning controller 40 sets the first flow rate adjustment valve 15a to the fully closed state, sets the second flow rate adjustment valve 15b to the throttled state, sets the third flow rate adjustment valve 15c to the fully open state, and sets the fourth flow rate adjustment valve 15d to the fully open state.
  • the closed state is set, the fifth flow rate adjusting valve 15e is throttled, and the sixth flow rate adjusting valve 15f is fully opened.
  • the air conditioning control device 40 closes the first on-off valve 18a and closes the second on-off valve 18b.
  • the compressor 11 the indoor condenser 12, the 2nd flow regulating valve 15b, the outdoor heat exchanger 17, (3rd flow regulating valve 15c, )
  • a refrigeration cycle in which refrigerant circulates in the order of the heating side accumulator 19, the fifth flow rate adjustment valve 15e, the indoor evaporator 21, the (sixth flow rate adjustment valve 15f), the cooling side accumulator 23, the suction side accumulator 24, and the compressor 11 is configured. Is done.
  • the indoor condenser 12 the outdoor heat exchanger 17, and the indoor evaporator 21 are connected in series to the refrigerant flow in this order.
  • the air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
  • the throttle opening of the second flow rate adjustment valve 15b that is, the control signal (control pulse) output to the second flow rate adjustment valve 15b is stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the throttle opening is determined so as to decrease as the target blowing temperature TAO increases. In other words, the throttle opening is determined to decrease as the heating capacity required for the cycle increases.
  • the throttle opening degree of the fifth flow rate adjusting valve 15e that is, the control signal (control pulse) output to the fifth flow rate adjusting valve 15e is previously stored in the air conditioning control device 40 based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the COP of the ejector refrigeration cycle 10 is determined so as to approach the maximum value.
  • the throttle opening degree of the fifth flow rate adjustment valve 15e increases as the throttle opening degree of the second flow rate adjustment valve 15b decreases.
  • the throttle opening degree of the fifth flow rate adjusting valve 15e is determined so as to increase as the heating capacity required for the cycle increases.
  • the air temperature TAV detected by the air conditioning wind temperature sensor 47 approaches the target outlet temperature TAO. It is determined.
  • the operating states of other devices to be controlled are determined in the same manner as in the cooling mode.
  • the state of the refrigerant changes as shown in the Mollier diagram of FIG.
  • the state of the refrigerant in the same place as the Mollier diagram of FIG. 8 described in the cooling mode in the cycle configuration is indicated by the same reference numerals (alphabet) as in FIG. It has changed.
  • alphabet reference numerals
  • the air mix door 34 opens the air passage on the indoor condenser 12 side, so that the high-pressure refrigerant (point a9 in FIG. 9) discharged from the compressor 11 becomes the indoor condenser. 12 and heat is exchanged with a part of the air cooled and dehumidified by the indoor evaporator 21 to dissipate heat (from point a9 to point b9 in FIG. 9). Thereby, a part of air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the second flow rate adjusting valve 15b via the first four-way valve 13a and the like and is depressurized (from point b9 to point c9 in FIG. 9).
  • the refrigerant decompressed by the second flow rate adjustment valve 15 b flows into one refrigerant inlet / outlet of the outdoor heat exchanger 17.
  • the refrigerant flowing into the outdoor heat exchanger 17 is blown by the outdoor heat exchanger 17.
  • the heat is radiated to the outside air blown from (from point c9 to point e9 in FIG. 9).
  • the outdoor heat exchanger temperature Tout is lower than the outdoor temperature Tam, the refrigerant flowing into the outdoor heat exchanger 17 absorbs heat from the outside air blown from the blower fan in the outdoor heat exchanger 17. .
  • the refrigerant flowing out from the other refrigerant inlet / outlet of the outdoor heat exchanger 17 flows into the fifth flow rate adjusting valve 15e via the heating side accumulator 19, the second four-way valve 13b, the first four-way valve 13a, etc., and is depressurized. (From point e9 to point p9 in FIG. 9).
  • the refrigerant decompressed by the fifth flow rate adjusting valve 15e flows into one refrigerant inlet / outlet of the indoor evaporator 21 and evaporates by exchanging heat with the air blown from the blower 32 (from point p9 to n9 in FIG. 9). ). Thereby, air is cooled.
  • the refrigerant flowing out from the other refrigerant inlet / outlet of the indoor evaporator 21 is sucked into the compressor 11 through the cooling side accumulator 23, the second four-way valve 13b, the suction side accumulator 24, etc., and is compressed again (n9 in FIG. 9). A9 points from the point).
  • the air that has been cooled and dehumidified by the indoor evaporator 21 is reheated by the indoor condenser 12 and blown out into the vehicle interior, thereby performing dehumidification heating in the vehicle interior.
  • the temperature of the refrigerant flowing into the outdoor heat exchanger 17 is lowered than in the cooling mode by setting the first flow rate adjusting valve 15a to the throttle state. Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 17 can be reduced more than in the cooling mode, and the heat radiation amount of the refrigerant in the outdoor heat exchanger 17 can be reduced as compared with the first dehumidifying and heating mode. be able to.
  • the indoor condenser is increased without increasing the circulating refrigerant flow rate circulating in the cycle.
  • coolant pressure in 12 can be raised, and the heating capability of the air in the indoor condenser 12 can be improved.
  • the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the third three-way joint 14c side at the same time as the second four-way valve 13b side and the first.
  • the operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit that connects the three-way joint 14a side.
  • the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the heating side accumulator 19 and the inlet side of the suction side accumulator 24 is switched to the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the cooling side accumulator 23 and the first four-way valve 13a side.
  • the operation of the second four-way valve 13b is controlled.
  • the air conditioning controller 40 sets the first flow rate adjustment valve 15a to the fully closed state, sets the second flow rate adjustment valve 15b to the throttled state, sets the third flow rate adjustment valve 15c to the fully open state, and sets the fourth flow rate adjustment valve 15d to the fully open state.
  • the closed state is set, the fifth flow rate adjusting valve 15e is throttled, and the sixth flow rate adjusting valve 15f is fully opened.
  • the air conditioning control device 40 closes the first on-off valve 18a and closes the second on-off valve 18b.
  • the cooling side accumulator 23, the second flow rate adjustment valve 15b, the outdoor heat exchanger 17, the (third flow rate adjustment valve 15c), the heating side accumulator 19, the suction side accumulator 24, and the compressor 11 constitute a refrigeration cycle. Is done.
  • the indoor condenser 12 the indoor evaporator 21, and the outdoor heat exchanger 17 are connected in series to the refrigerant flow in this order.
  • the air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
  • the throttle opening degree of the fifth flow rate adjusting valve 15e that is, the control signal (control pulse) output to the fifth flow rate adjusting valve 15e is stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the throttle opening is determined so as to decrease as the target blowing temperature TAO increases. In other words, the throttle opening is determined to decrease as the heating capacity required for the cycle increases.
  • the throttle opening degree of the second flow rate adjustment valve 15b that is, the control signal (control pulse) output to the second flow rate adjustment valve 15b is stored in the air conditioning control device 40 in advance based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the COP of the ejector refrigeration cycle 10 is determined so as to approach the maximum value.
  • the throttle opening of the second flow rate adjusting valve 15b increases as the throttle opening of the fifth flow rate adjusting valve 15e decreases.
  • the throttle opening is determined so as to increase as the heating capacity required for the cycle increases.
  • the air temperature TAV detected by the air conditioning wind temperature sensor 47 approaches the target outlet temperature TAO. It is determined.
  • the operating states of other devices to be controlled are determined in the same manner as in the cooling mode.
  • the air mix door 34 opens the air passage on the indoor condenser 12 side, so that the high-pressure refrigerant discharged from the compressor 11 (point a10 in FIG. 10) is converted into the indoor condenser. 12, the heat is exchanged with a part of the air cooled and dehumidified by the indoor evaporator 21 to dissipate heat (from point a10 to point b10 in FIG. 10). Thereby, a part of air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the fifth flow rate adjusting valve 15e via the first four-way valve 13a and the like, and is depressurized (from point b10 to point p10 in FIG. 10).
  • the refrigerant decompressed by the fifth flow rate adjustment valve 15e flows into one refrigerant inlet / outlet of the indoor evaporator 21.
  • the refrigerant flowing into the indoor evaporator 21 is evaporated by exchanging heat with the air blown from the blower 32 (from point p10 to point n10 in FIG. 10). Thereby, air is cooled.
  • the refrigerant flowing out from the other refrigerant inlet / outlet of the indoor evaporator 21 flows into the second flow rate adjustment valve 15b through the cooling side accumulator 23, the second four-way valve 13b, the first four-way valve 13a, etc., and is depressurized ( N10 point to c10 point in FIG. 10).
  • the refrigerant depressurized by the second flow rate adjustment valve 15b flows into one refrigerant inlet / outlet of the outdoor heat exchanger 17, and absorbs heat from the outside air blown from the blower fan (from point c10 to point f10 in FIG. 10).
  • the refrigerant that has flowed out from the other refrigerant inlet / outlet of the outdoor heat exchanger 17 is sucked into the compressor 11 through the heating side accumulator 19, the second four-way valve 13b, the suction side accumulator 24, and the like (FIG. 10). f10 point to a10 point).
  • the air that has been cooled and dehumidified by the indoor evaporator 21 is reheated by the indoor condenser 12 and blown out into the vehicle interior, thereby performing dehumidification heating in the vehicle interior.
  • the outdoor heat exchanger 17 is caused to function as an evaporator, and the refrigerant evaporation pressure in the outdoor heat exchanger 17 is made lower than the refrigerant evaporation pressure in the indoor evaporator 21. Therefore, the heat radiation amount of the refrigerant in the indoor condenser 12 can be increased as compared with the first dehumidifying and heating mode.
  • the refrigerant pressure in the indoor condenser 12 can be increased without increasing the circulating refrigerant flow rate circulating in the cycle with respect to the first dehumidifying heating mode.
  • the air heating capability in the indoor condenser 12 can be improved, and the temperature of the air can be raised to a temperature range higher than that in the first dehumidifying and heating mode.
  • the refrigerant flow direction in the outdoor heat exchanger 17 in the first dehumidifying heating mode is the same as the refrigerant flow direction in the outdoor heat exchanger 17 in the second dehumidifying heating mode. It has become. That is, in the outdoor heat exchanger 17 in the first and second dehumidifying and heating modes, the refrigerant flows from one refrigerant inlet / outlet side toward the other refrigerant inlet / outlet side.
  • the flow direction of the refrigerant in the indoor evaporator 21 in the first dehumidifying and heating mode is the same as the flow direction of the refrigerant in the indoor evaporator 21 in the second dehumidifying and heating mode. That is, in the indoor evaporator 21 in the first and second dehumidifying and heating modes, the refrigerant flows from one refrigerant inlet / outlet side toward the other refrigerant inlet / outlet side.
  • the flow direction of the refrigerant in the indoor evaporator 21 in the first and second dehumidifying and heating modes is different from the flow direction of the refrigerant in the indoor evaporator 21 in the cooling mode. That is, in the indoor evaporator 21 in the refrigerant mode, the refrigerant flows from the other refrigerant inlet / outlet side toward the one refrigerant inlet / outlet side.
  • the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the first three-way joint 14a side, and simultaneously connects the second four-way valve 13b side and the third three-way joint 14c side.
  • the operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit to be connected. Further, the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the heating side accumulator 19 and the inlet side of the suction side accumulator 24 is switched to the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the cooling side accumulator 23 and the first four-way valve 13a side. Thus, the operation of the second four-way valve 13b is controlled.
  • the air conditioning control device 40 sets the first flow rate adjustment valve 15a to the throttle state, sets the second flow rate adjustment valve 15b to the fully closed state, sets the third flow rate adjustment valve 15c to the throttle state, and further sets the first on-off valve 18a to open.
  • the compressor 11 the indoor condenser 12, the first flow rate adjustment valve 15 a, the heating side ejector 16, the heating side accumulator 19, the suction side accumulator 24, the compressor
  • the ejector type refrigeration cycle in which the refrigerant circulates in the order of the heating accumulator 19, the third flow rate adjustment valve 15c, the outdoor heat exchanger 17, and the heating side refrigerant suction port 16c of the heating side ejector 16 is configured. Is done.
  • the air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target condenser temperature TCO of the indoor condenser 12 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning control device 40 in advance.
  • the throttle opening of the first flow rate adjusting valve 15a that is, the control signal (control pulse) output to the first flow rate adjusting valve 15a is output to the refrigerant discharge capacity of the compressor 11, for example, the electric motor of the compressor 11. Is determined with reference to a control map stored in advance in the air-conditioning control device 40 based on the control signal.
  • the throttle opening degree of the first flow rate adjusting valve 15a is determined so that the dryness x of the refrigerant flowing into the heating side nozzle portion 16a is 0.5 or more and 0.8 or less.
  • the range of the dryness x is a value obtained experimentally in advance as a value that can bring the heating capacity of air in the indoor condenser 12 close to the maximum value.
  • the throttle opening degree of the third flow rate adjusting valve 15c that is, the control signal (control pulse) output to the third flow rate adjusting valve 15c is determined as the reference opening degree for heating stored in the air conditioning control device 40 in advance. Is done.
  • control signal output to the electric actuator that drives the air mix door 34 is determined so that the total flow rate of air after passing through the indoor evaporator 21 flows through the air passage on the indoor condenser 12 side.
  • the air mix door 34 fully opens the air passage on the indoor condenser 12 side, so that the high-pressure refrigerant (point a11 in FIG. 11) discharged from the compressor 11 is transferred to the indoor condenser 12. Into the air and heat exchange with the air to dissipate heat (from point a11 to point b11 in FIG. 11). Thereby, air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first flow rate adjustment valve 15a via the first four-way valve 13a and is depressurized (from point b11 to point r11 in FIG. 11). Thereby, the dryness x of the refrigerant
  • the refrigerant decompressed by the first flow rate adjusting valve 15a flows into the heating side nozzle portion 16a of the heating side ejector 16.
  • the refrigerant that has flowed into the heating-side nozzle portion 16a is isentropically decompressed and injected (from point r11 to point s11 in FIG. 11).
  • the refrigerant flowing out from one refrigerant inlet / outlet of the outdoor heat exchanger 17 is sucked from the heating-side refrigerant suction port 16c of the heating-side ejector 16 by the suction action of the heating-side injected refrigerant.
  • the heating-side jet refrigerant injected from the heating-side nozzle portion 16a and the heating-side suction refrigerant sucked from the heating-side refrigerant suction port 16c of the heating-side ejector 16 flow into the heating-side diffuser portion 16d (from s11 to t11 in FIG. 11). Point, c11 point to t11 point).
  • the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant of the heating side injection refrigerant and the heating side suction refrigerant rises (from the point t11 to the point u11 in FIG. 11).
  • the refrigerant flowing out of the heating side diffuser portion 16d flows into the heating side accumulator 19 and is separated into a gas phase refrigerant and a liquid phase refrigerant.
  • the vehicle interior can be heated by blowing the air heated by the indoor condenser 12 into the vehicle interior.
  • the refrigerant whose pressure has been increased by the heating side diffuser portion 16d of the heating side ejector 16 is sucked into the compressor 11. Therefore, compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the heat exchanger functioning as an evaporator (outdoor heat exchanger 17 in the heating mode) and the pressure of the refrigerant sucked in the compressor 11 are equal.
  • the power consumption of the machine 11 can be reduced and the COP can be improved.
  • the flow direction of the refrigerant in the outdoor heat exchanger 17 in the first and second dehumidifying heating modes is different from the flow direction of the refrigerant in the outdoor heat exchanger 17 in the heating mode. . That is, in the outdoor heat exchanger 17 in the heating mode, the refrigerant flows from the other refrigerant inlet / outlet side toward the one refrigerant inlet / outlet side.
  • the refrigerant evaporation of the outdoor heat exchanger 17 is performed.
  • frost formation may occur in the outdoor heat exchanger 17.
  • the outside air temperature Tam is 0 ° C. or less
  • a value obtained by subtracting the outdoor heat exchanger temperature Tout from the outside air temperature Tam (Tam ⁇ Tout) is a predetermined reference temperature difference.
  • it determines with the outdoor heat exchanger 17 having formed frost. Then, the operation in the defrosting mode is executed until a predetermined reference time elapses. The operation in the defrosting mode will be described below.
  • (E) Defrost mode In the defrost mode, the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the first three-way joint 14a side, and at the same time the second four-way valve 13b side and the third three-way joint 14c side.
  • the operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit connecting the two. Further, the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the heating side accumulator 19 and the inlet side of the suction side accumulator 24 is switched to the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the cooling side accumulator 23 and the first four-way valve 13a side.
  • the operation of the second four-way valve 13b is controlled.
  • the air conditioning control device 40 sets the first flow rate adjustment valve 15a to a fully closed state, sets the second flow rate adjustment valve 15b to a throttled state, sets the third flow rate adjustment valve 15c to a fully open state, and further sets the first on-off valve 18a to close.
  • compressor 11 in defrost mode, as shown by the solid line arrow of Drawing 6, compressor 11, indoor condenser 12, 2nd flow control valve 15b, outdoor heat exchanger 17, (3rd flow control valve 15c), heating
  • the refrigerant circulates in the order of the side accumulator 19, the suction side accumulator 24, and the compressor 11.
  • the air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11, is determined so that the defrosting refrigerant discharge capacity stored in the air conditioning control device 40 in advance is exhibited.
  • the throttle opening degree of the second flow rate adjustment valve 15b, that is, the control signal (control pulse) output to the second flow rate adjustment valve 15b is the defrosting reference opening degree stored in advance in the air conditioning control device 40. To be determined.
  • the air mix door 34 closes the air passage on the indoor condenser 12 side, and the total flow rate of air after passing through the indoor evaporator 21 is It is determined to flow around the condenser 12.
  • the high-pressure refrigerant (point a12 in FIG. 12) discharged from the compressor 11 flows into the indoor condenser 12.
  • the air mix door 34 closes the air passage on the indoor condenser 12 side, the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 with almost no heat exchange with air.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the second flow rate adjustment valve 15b through the first four-way valve 13a and is depressurized (from point a12 to point c12 in FIG. 12).
  • the refrigerant decompressed by the second flow rate adjusting valve 15b flows into one refrigerant inlet / outlet of the outdoor heat exchanger 17 and dissipates heat to the outdoor heat exchanger 17 (from point c12 to point f12 in FIG. 12). As a result, the outdoor heat exchanger 17 is defrosted.
  • the refrigerant that has flowed out of the outdoor heat exchanger 17 is fully opened through the second flow rate adjusting valve 15b, the heating side accumulator 19, the second four-way valve 13b, and the suction side accumulator 24 that are fully open. And compressed again (from point f12 to point a12 in FIG. 12).
  • the ejector refrigeration cycle 10 of the present embodiment in the vehicle air conditioner 1, by switching to the cooling mode, the first dehumidifying heating mode, the second dehumidifying heating mode, and the heating mode, Appropriate air conditioning in the passenger compartment can be realized. Furthermore, in the ejector type refrigeration cycle 10 of the present embodiment, since it can be switched to the refrigerant circuit in the defrosting mode, this can be removed when frost formation occurs in the outdoor heat exchanger 17.
  • the temperature adjustment range of air during dehumidifying heating in the passenger compartment can be expanded.
  • the outdoor heat exchanger 17 and the indoor evaporator 21 are connected in series to the refrigerant flow. Switch. Therefore, the refrigerant can be reliably supplied to the outdoor heat exchanger 17 and the indoor evaporator 21 by the suction and discharge action of the compressor 11 regardless of the refrigerant pressure in the outdoor heat exchanger 17.
  • the outdoor heat exchanger 17 is arranged on the upstream side of the refrigerant flow with respect to the indoor evaporator 21 via the fifth flow rate adjusting valve 15e, which is the second decompression device.
  • the refrigerant temperature in 17 can be adjusted in a temperature range higher than the refrigerant temperature in the indoor evaporator 21.
  • the refrigerant heat dissipation amount in the indoor condenser 12 can be adjusted by adjusting the throttle opening of the fifth flow rate adjusting valve 15e and adjusting the refrigerant heat absorption / release amount in the outdoor heat exchanger 17.
  • the adjustment range of blowing air temperature can be expanded to the range D of FIG.
  • the outdoor heat exchanger 17 is disposed downstream of the refrigerant flow with respect to the indoor evaporator 21 via the second flow rate adjustment valve 15b that is the first pressure reducing device.
  • the refrigerant temperature in 17 can be set to a temperature range lower than the refrigerant temperature in the indoor evaporator 21.
  • the throttle opening of the second flow rate adjusting valve 15b the heat absorption amount of the refrigerant in the outdoor heat exchanger 17 is increased, and the indoor condenser 12 has a higher heating capability than the first dehumidifying heating mode.
  • the air can be heated.
  • the adjustment range of blowing air temperature can be expanded to the range E of FIG.
  • the first dehumidifying and heating mode and the second dehumidifying and heating mode are switched, so that the temperature of the air can be controlled in a wide temperature range. Can be adjusted.
  • the refrigerant flow direction in the outdoor heat exchanger 17 in the first and second dehumidifying heating modes is different from the refrigerant flow direction in the outdoor heat exchanger 17 in the heating mode. ing. According to this, the flow mode of the refrigerant in the outdoor heat exchanger 17 in the first and second dehumidifying and heating modes and the flow mode of the refrigerant in the outdoor heat exchanger 17 in the heating mode are changed to change the outdoor heat. It is possible to suppress the refrigeration oil from staying in the exchanger 17.
  • the passage cross-sectional area of the refrigerant passage formed inside the outdoor heat exchanger 17 is changed from the refrigerant inlet (the other refrigerant inlet / outlet) side to the refrigerant outlet (one refrigerant inlet / outlet) in the heating mode. ) Reduced toward the side.
  • circulates the outdoor heat exchanger 17 at the time of heating mode can be increased, and it can suppress that refrigerating machine oil retains in the outdoor heat exchanger 17.
  • the outdoor heat exchanger 17 in the heating mode functions as an evaporator. Therefore, in the refrigerant passage in the outdoor heat exchanger 17, the density of the refrigerant decreases as the liquid phase refrigerant evaporates from the refrigerant inlet side toward the refrigerant outlet side. Therefore, by reducing the passage cross-sectional area of the refrigerant passage from the refrigerant inlet side to the refrigerant outlet side of the outdoor heat exchanger 17, the flow rate of the refrigerant flowing through the outdoor heat exchanger 17 is increased, and the outdoor heat exchanger 17 The refrigerating machine oil staying in 17 can be discharged from the outdoor heat exchanger 17.
  • the refrigerant flow direction in the indoor evaporator 21 in the first and second dehumidifying heating modes is different from the refrigerant flow direction in the indoor evaporator 21 in the cooling mode.
  • the flow mode of the refrigerant in the indoor evaporator 21 in the first and second dehumidifying heating modes and the flow mode of the refrigerant in the outdoor heat exchanger 17 in the heating mode are changed to change the indoor evaporator It is possible to suppress the refrigerating machine oil from staying in 21.
  • the indoor evaporator 21 in the cooling mode functions as an evaporator. Accordingly, in the refrigerant passage in the indoor evaporator 21, the density of the refrigerant is reduced by the vaporization of the liquid phase refrigerant from the refrigerant inlet side toward the refrigerant outlet side. Therefore, by reducing the cross-sectional area of the refrigerant passage from the refrigerant inlet side to the refrigerant outlet side of the indoor evaporator 21, the flow velocity of the refrigerant flowing through the indoor evaporator 21 is increased, and the inside of the indoor evaporator 21 is increased.
  • the staying refrigeration oil can be discharged from the outdoor heat exchanger 17.
  • the refrigeration oil is prevented from staying in the outdoor heat exchanger 17 and the indoor evaporator 21 in an ejector refrigeration cycle applied to an air conditioner that performs dehumidifying heating.
  • the temperature adjustment range of the air blown into the air-conditioning target space during dehumidifying heating can be expanded.
  • the ejector refrigeration cycle 10 according to the present disclosure is applied to an air conditioner for an electric vehicle.
  • the application of the ejector refrigeration cycle 10 is not limited thereto.
  • the present invention may be applied to an air conditioner for a normal vehicle that obtains driving force for driving a vehicle from an internal combustion engine (engine) or a hybrid vehicle that obtains driving force for driving a vehicle from both an internal combustion engine and a driving electric motor. Good.
  • the vehicle air conditioner 1 When applied to a vehicle having an internal combustion engine, the vehicle air conditioner 1 may be provided with a heater core that heats air using the cooling water of the internal combustion engine as a heat source as an auxiliary air heater. Furthermore, you may apply to a stationary air conditioner, without being limited to vehicles.
  • the ejector refrigeration cycle 10 that heats the air directly using the refrigerant discharged from the compressor 11 as a heat source by causing the indoor condenser 12 to exchange heat between the refrigerant discharged from the compressor 11 and air.
  • the heating aspect of the air in the indoor condenser 12 is not limited to this.
  • a heat medium circulation circuit that circulates the heat medium
  • the indoor radiator is configured as a water-refrigerant heat exchanger that exchanges heat between the refrigerant discharged from the compressor and the heat medium.
  • a heat exchanger for heating that heats the air by exchanging heat between the heat medium heated in step 1 and air may be arranged. That is, the indoor radiator may indirectly heat the air through the heat medium using the compressor discharge refrigerant (high-pressure side refrigerant of the cycle) as a heat source.
  • the heat medium circulation circuit may be circulated using the cooling water of the internal combustion engine as a heat medium.
  • the example in which the passage cross-sectional area of the refrigerant passage formed in the outdoor heat exchanger 17 and the indoor evaporator 21 is changed stepwise by changing the path configuration has been described.
  • the method of changing the flow mode of the refrigerant in the outdoor heat exchanger 17 and the indoor evaporator 21 in each operation mode is not limited to this.
  • the outdoor heat exchanger 17 and the indoor evaporator 21 may be configured using a plurality of types of tubes having different passage cross-sectional areas.
  • the flow direction of the refrigerant in the outdoor heat exchanger 17 in the first and second dehumidifying and heating modes is different from the flow direction of the refrigerant in the outdoor heat exchanger 17 in the heating mode.
  • the cross-sectional area of the refrigerant passage may be enlarged as it goes from the other refrigerant inlet / outlet side to the one refrigerant inlet / outlet side. That is, the refrigerant passage formed in the outdoor heat exchanger 17 may have a passage cross-sectional area that increases from the refrigerant inlet side to the refrigerant outlet side in the heating mode.
  • the passage cross-sectional area of the refrigerant passage increases from the refrigerant inlet side to the refrigerant outlet side, so that the refrigerant is the outdoor heat exchanger.
  • the pressure loss at the time of circulating 17 can be reduced.
  • the refrigerant passage formed inside the indoor evaporator 21 may have a passage cross-sectional area that increases from the refrigerant inlet side to the refrigerant outlet side in the cooling mode.
  • Each component of the ejector refrigeration cycle 10 is not limited to that disclosed in the above-described embodiment.
  • compressor 11 is not limited to this.
  • an engine-driven variable displacement compressor or the like may be employed as the compressor 11.
  • the refrigerant circuit switching device is not limited to this. As long as at least the above-described refrigerant circuit in the heating mode and the refrigerant circuit in the series dehumidifying heating mode can be switched, for example, a combination of a flow rate adjustment valve that does not have a fully closed function and an on-off valve, a four-way valve, etc. May be.
  • each component device described in the above embodiment may be adopted.
  • the first flow rate adjusting valve 15a, the heating side ejector 16, the heating side accumulator 19, and the like may be integrated (modularized).
  • a needle-like or conical valve body is disposed in the passage of the heating-side nozzle portion 16a of the heating-side ejector 16, and the same function as that of the first flow rate adjusting valve 15a is achieved by displacing the valve body. You may make it show.
  • the fourth flow rate adjusting valve 15d, the cooling side ejector 22, the cooling side accumulator 23, and the like may be integrated (modularized).
  • an evaporation pressure adjusting valve that makes the refrigerant evaporation pressure of the indoor evaporator 21 equal to or higher than a predetermined value may be disposed on the refrigerant outlet side of the indoor evaporator 21 of the ejector refrigeration cycle 10 of each of the above-described embodiments. Good. According to this, frost formation of the indoor evaporator 21 can be more reliably prevented by the mechanical mechanism.
  • R134a is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • valve opening degree of the first flow rate adjusting valve 15a is adjusted based on the refrigerant discharge capability of the compressor 11 during the high heating capability operation in the heating mode of the above embodiment.
  • the adjustment of the valve opening degree of the valve 15a is not limited to this.
  • a dryness sensor that detects the dryness of the refrigerant on the outlet side of the indoor condenser 12 is provided, and the valve of the first flow rate adjustment valve 15a is set so that the detected value of the dryness sensor is 0.5 or more and 0.8 or less.
  • the valve opening degree of the opening degree may be adjusted.
  • each operation mode is switched by executing the air conditioning control program.
  • the switching of each operation mode is not limited to this.
  • an operation mode setting switch for setting each operation mode may be provided on the operation panel 50, and each heating mode may be switched according to an operation signal of the operation mode setting switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An ejector refrigeration cycle comprises a compressor (11), a heat exchanger for heating (12), a first pressure reducing device (15b), an outdoor heat exchanger (17), a second pressure reducing device (15e), a heat exchanger for cooling (21), an ejector (16), a gas-liquid separator (19), and a refrigerant circuit switching device (13a, 13b, 18a, 18b). The refrigerant circuit switching device causes refrigerant flowing from the heat exchanger for heating to flow, in order, to the first pressure reducing device, the outdoor heat exchanger, the second pressure reducing device, the heat exchanger for cooling, and the compressor in a first dehumidification heating mode, and to flow, in order, to the second pressure reducing device, the heat exchanger for cooling, the first pressure reducing device, the outdoor heat exchanger, and the compressor in a second dehumidification heating mode. The direction that the refrigerant flows in the outdoor heat exchanger while in the first dehumidification heating mode is the same direction that the refrigerant flows in the outdoor heat exchanger while in the second dehumidification heating mode. The direction that the refrigerant flows in the outdoor heat exchanger while in the first dehumidification heating mode is opposite to the direction that the refrigerant flows in the outdoor heat exchanger while in a heating mode.

Description

エジェクタ式冷凍サイクルEjector refrigeration cycle 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年6月21日に出願された日本特許出願2016-122859号を基にしている。 This application is based on Japanese Patent Application No. 2016-122859 filed on June 21, 2016, the disclosure of which is incorporated herein by reference.
 本開示は、エジェクタを備えるエジェクタ式冷凍サイクルに関する。 The present disclosure relates to an ejector refrigeration cycle including an ejector.
 従来、特許文献1に、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクルが開示されている。 Conventionally, Patent Document 1 discloses an ejector refrigeration cycle which is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression device.
 この特許文献1のエジェクタ式冷凍サイクルは、空調装置に適用されている。さらに、特許文献1のエジェクタ式冷凍サイクルは、空調対象空間へ送風される空気を冷却する冷房モードの冷媒回路、空調対象空間へ送風される空気を加熱する暖房モードの冷媒回路、冷却して除湿した空気を再加熱する弱除湿暖房モードの冷媒回路等を切替可能に構成されている。 The ejector refrigeration cycle of this Patent Document 1 is applied to an air conditioner. Furthermore, the ejector refrigeration cycle of Patent Document 1 includes a cooling mode refrigerant circuit that cools air blown into the air-conditioning target space, a heating mode refrigerant circuit that heats air blown into the air-conditioning target space, and cooling and dehumidification The refrigerant circuit or the like in the weak dehumidifying and heating mode that reheats the heated air can be switched.
 より詳細には、特許文献1のエジェクタ式冷凍サイクルでは、弱除湿暖房モード時に、加熱用熱交換器である室内凝縮器、室外熱交換器、冷却用熱交換器である室外蒸発器を冷媒流れに対して直列的に接続する冷媒回路に切り替えている。そして、室内蒸発器にて空気を冷却して除湿し、除湿した空気を室内凝縮器にて再加熱している。 More specifically, in the ejector-type refrigeration cycle of Patent Document 1, the refrigerant flows through the indoor condenser, which is a heat exchanger for heating, the outdoor heat exchanger, and the outdoor evaporator, which is a heat exchanger for cooling, in the weak dehumidifying heating mode. Is switched to a refrigerant circuit connected in series. And the air is cooled and dehumidified by the indoor evaporator, and the dehumidified air is reheated by the indoor condenser.
 この冷媒回路では、室外熱交換器における冷媒圧力を調整し、室外熱交換器における冷媒の放熱量を調整することによって、室内凝縮器における空気の加熱能力を調整することができる。 In this refrigerant circuit, the air heating capacity in the indoor condenser can be adjusted by adjusting the refrigerant pressure in the outdoor heat exchanger and adjusting the amount of heat released from the refrigerant in the outdoor heat exchanger.
 また、弱除湿暖房モードでは、室外熱交換器から流出した冷媒を冷却側エジェクタの冷却側ノズル部へ流入させる冷媒回路に切り替えている。そして、冷却側ノズル部から噴射される噴射冷媒の吸引作用によって、室内蒸発器へ冷媒を供給している。さらに、冷却側ディフューザ部にて昇圧された冷媒を圧縮機へ吸入させることによって、サイクルの成績係数(COP)を向上させようとしている。 In the weak dehumidifying heating mode, the refrigerant circuit that switches the refrigerant flowing out of the outdoor heat exchanger to the cooling side nozzle portion of the cooling side ejector is switched. And the refrigerant | coolant is supplied to an indoor evaporator by the suction effect | action of the injection refrigerant | coolant injected from a cooling side nozzle part. Further, the coefficient of performance (COP) of the cycle is improved by sucking the refrigerant whose pressure is increased in the cooling side diffuser into the compressor.
特開2014-206362号公報JP 2014-206362 A
 ところが、本開示の発明者らの検討によれば、特許文献1のエジェクタ式冷凍サイクルを実際に作動させると、弱除湿暖房モード時に、空気を所望の温度まで昇温させることができないことがあった。そこで、その原因について調査したところ、特許文献1の弱除湿暖房モードでは、室内凝縮器における空気の加熱能力を増大させるために、室外熱交換器における冷媒圧力を低下させることが原因であると判った。 However, according to the study by the inventors of the present disclosure, when the ejector refrigeration cycle of Patent Document 1 is actually operated, it may not be possible to raise the air to a desired temperature in the weak dehumidifying heating mode. It was. Then, when the cause was investigated, in the weak dehumidification heating mode of patent document 1, in order to increase the heating capability of the air in an indoor condenser, it turned out that it is a cause to reduce the refrigerant | coolant pressure in an outdoor heat exchanger. It was.
 具体的には、室外熱交換器における冷媒圧力を低下させると、冷却側ノズル部へ流入する冷媒の圧力も低下するため、冷却側エジェクタが充分な吸引作用を発揮できなくなる。そして、室内蒸発器へ冷媒を供給することができなくなり、エジェクタ式冷凍サイクルを適切に作動させることができなくなる。その結果、空気を所望の温度まで昇温させることができない。 Specifically, when the refrigerant pressure in the outdoor heat exchanger is reduced, the pressure of the refrigerant flowing into the cooling side nozzle portion also decreases, so that the cooling side ejector cannot exhibit a sufficient suction action. And it becomes impossible to supply a refrigerant | coolant to an indoor evaporator, and it becomes impossible to operate an ejector type refrigerating cycle appropriately. As a result, the air cannot be raised to a desired temperature.
 換言すると、特許文献1の弱除湿暖房モードでは、エジェクタ式冷凍サイクルを適切に作動させるためには、室外熱交換器における冷媒圧力を所定の値以上に維持しておかなければならない。このため、特許文献1の弱除湿暖房モードでは、空調対象空間へ送風される空気の温度調整範囲が制限される。 In other words, in the weak dehumidifying heating mode of Patent Document 1, in order to properly operate the ejector refrigeration cycle, the refrigerant pressure in the outdoor heat exchanger must be maintained at a predetermined value or higher. For this reason, in the weak dehumidification heating mode of patent document 1, the temperature adjustment range of the air ventilated to air-conditioning object space is restrict | limited.
 また、一般的な冷凍サイクル装置では、冷媒に圧縮機を潤滑するための冷凍機油が混入されている。このため、室内蒸発器へ冷媒を供給することができなると、室内蒸発器内に流入した冷凍機油を圧縮機の吸入側へ押し出すことができず、冷凍機油が室内蒸発器内に滞留するおそれがある。 Further, in a general refrigeration cycle apparatus, refrigeration oil for lubricating the compressor is mixed in the refrigerant. For this reason, if the refrigerant cannot be supplied to the indoor evaporator, the refrigerating machine oil flowing into the indoor evaporator cannot be pushed out to the suction side of the compressor, and the refrigerating machine oil may stay in the indoor evaporator. is there.
 このように冷凍機油が室内蒸発器内に滞留すると、圧縮機へ供給される冷凍機油が減少して圧縮機の耐久性能を悪化させる原因となる。さらに、室内蒸発器の熱交換性能を低下させて、冷房モード等に切り替えた際に室内蒸発器にて発揮させる冷却能力を低下させる原因となる。 If the refrigeration oil stays in the indoor evaporator in this way, the refrigeration oil supplied to the compressor is reduced, causing deterioration in the durability of the compressor. Furthermore, the heat exchange performance of the indoor evaporator is reduced, which causes a reduction in the cooling capacity exhibited by the indoor evaporator when switching to the cooling mode or the like.
 本開示は、上記点に鑑み、除湿暖房を行う空調装置に適用される、冷凍機油が熱交換器に滞留することを抑制しつつ、除湿暖房時の空気の温度調整範囲を拡大することが可能なエジェクタ式冷凍サイクルを提供することを目的とする。 In view of the above points, the present disclosure is applicable to an air conditioner that performs dehumidifying heating, and can expand the temperature adjustment range of air during dehumidifying heating while suppressing refrigerating machine oil from staying in the heat exchanger. It is an object to provide a simple ejector type refrigeration cycle.
 本開示の第1態様に係るエジェクタ式冷凍サイクルは、空調装置に適用され、圧縮機、加熱用熱交換器、第1減圧装置、室外熱交換器、第2減圧装置、冷却用熱交換器、加熱側エジェクタ、加熱側気液分離器、および冷媒回路切替装置を備える。 The ejector refrigeration cycle according to the first aspect of the present disclosure is applied to an air conditioner, and includes a compressor, a heat exchanger for heating, a first pressure reducing device, an outdoor heat exchanger, a second pressure reducing device, a heat exchanger for cooling, A heating side ejector, a heating side gas-liquid separator, and a refrigerant circuit switching device are provided.
 圧縮機は、冷凍機油が混入された冷媒を高圧冷媒となるまで圧縮して、高圧冷媒を吐出する。加熱用熱交換器は、高圧冷媒を熱源として空調対象空間に送風される空気を加熱する。第1減圧装置は、加熱用熱交換器の下流側に配置されて冷媒を減圧させる。室外熱交換器は、第1減圧装置から流出した冷媒を外気と熱交換させる。第2減圧装置は、加熱用熱交換器の下流側に配置されて冷媒を減圧させる。冷却用熱交換器は、第2減圧装置から流出した冷媒を蒸発させて加熱用熱交換器を通過する前の空気を冷却する。 Compressor compresses refrigerant mixed with refrigeration oil until it becomes high pressure refrigerant, and discharges high pressure refrigerant. The heating heat exchanger heats the air blown into the air-conditioning target space using the high-pressure refrigerant as a heat source. The first decompression device is disposed downstream of the heating heat exchanger and decompresses the refrigerant. The outdoor heat exchanger causes the refrigerant that has flowed out of the first decompression device to exchange heat with the outside air. The second decompression device is disposed on the downstream side of the heating heat exchanger and decompresses the refrigerant. The cooling heat exchanger evaporates the refrigerant flowing out of the second decompression device and cools the air before passing through the heating heat exchanger.
 加熱側エジェクタは、加熱側ノズル部、加熱側冷媒吸引口、および加熱側昇圧部を有する。加熱側ノズル部は、加熱用熱交換器の下流側に配置され、冷媒を減圧させて加熱側噴射冷媒として噴射する。加熱側冷媒吸引口は、加熱側噴射冷媒の吸引作用によって冷媒を加熱側吸引冷媒として吸引する。加熱側昇圧部は、加熱側噴射冷媒と加熱側吸引冷媒との混合冷媒を昇圧させる。加熱側気液分離器は、加熱側昇圧部から流出した冷媒を気相冷媒と液相冷媒とに分離する。 The heating side ejector has a heating side nozzle part, a heating side refrigerant suction port, and a heating side pressure raising part. A heating side nozzle part is arrange | positioned in the downstream of the heat exchanger for a heating, decompresses a refrigerant | coolant, and injects it as a heating side injection refrigerant | coolant. The heating side refrigerant suction port sucks the refrigerant as the heating side suction refrigerant by the suction action of the heating side injection refrigerant. The heating side pressurizing unit pressurizes the mixed refrigerant of the heating side injection refrigerant and the heating side suction refrigerant. The heating-side gas-liquid separator separates the refrigerant that has flowed out of the heating-side pressure increasing unit into a gas-phase refrigerant and a liquid-phase refrigerant.
 冷媒回路切替装置は、冷媒回路を切り替える。冷媒回路切替装置は、冷却用熱交換器にて冷却された空気を加熱用熱交換器にて再加熱する第1除湿暖房モードでは、加熱用熱交換器から流出した冷媒を、第1減圧装置、室外熱交換器、第2減圧装置、冷却用熱交換器、圧縮機の順に流通させる冷媒回路に切り替える。冷媒回路切替装置は、却用熱交換器にて冷却された空気を加熱用熱交換器にて再加熱する第2除湿暖房モードでは、加熱用熱交換器から流出した冷媒を、第2減圧装置、冷却用熱交換器、第1減圧装置、室外熱交換器、圧縮機の順に流通させる冷媒回路に切り替える。冷媒回路切替装置は、空気を加熱用熱交換器にて加熱する暖房モードでは、加熱用熱交換器から流出した冷媒を、加熱側ノズル部へ流入させ、加熱側気液分離器から流出した気相冷媒を圧縮機へ吸入させるとともに、加熱側気液分離器から流出した液相冷媒を室外熱交換器へ流入させ、室外熱交換器から流出した冷媒を加熱側冷媒吸引口から吸引させる冷媒回路に切り替える。 The refrigerant circuit switching device switches the refrigerant circuit. In the first dehumidifying and heating mode in which the air cooled by the cooling heat exchanger is reheated by the heating heat exchanger, the refrigerant circuit switching device converts the refrigerant flowing out of the heating heat exchanger to the first pressure reducing device. The refrigerant circuit is switched in the order of the outdoor heat exchanger, the second decompressor, the cooling heat exchanger, and the compressor. In the second dehumidifying and heating mode in which the air cooled by the rejection heat exchanger is reheated by the heating heat exchanger, the refrigerant circuit switching device converts the refrigerant flowing out of the heating heat exchanger to the second decompression device. The refrigerant circuit is switched in the order of the cooling heat exchanger, the first decompressor, the outdoor heat exchanger, and the compressor. In the heating mode in which air is heated by the heating heat exchanger, the refrigerant circuit switching device allows the refrigerant that has flowed out of the heating heat exchanger to flow into the heating-side nozzle portion and the gas that has flowed out of the heating-side gas-liquid separator. A refrigerant circuit that sucks phase refrigerant into the compressor, causes liquid phase refrigerant flowing out of the heating side gas-liquid separator to flow into the outdoor heat exchanger, and sucks refrigerant flowing out of the outdoor heat exchanger from the heating side refrigerant suction port Switch to.
 第1除湿暖房モード時の室外熱交換器における冷媒の流れ方向は、第2除湿暖房モード時の室外熱交換器における冷媒の流れ方向と同一である。第1除湿暖房モード時の室外熱交換器における冷媒の流れ方向は、暖房モード時の室外熱交換器における冷媒の流れ方向と異なる。 The flow direction of the refrigerant in the outdoor heat exchanger in the first dehumidifying and heating mode is the same as the flow direction of the refrigerant in the outdoor heat exchanger in the second dehumidifying and heating mode. The refrigerant flow direction in the outdoor heat exchanger in the first dehumidifying heating mode is different from the refrigerant flow direction in the outdoor heat exchanger in the heating mode.
 これによれば、暖房モードでは、冷媒回路切替装置が、加熱側気液分離器から流出した気相冷媒を圧縮機へ吸入させる冷媒回路に切り替えるので、加熱側昇圧部にて昇圧された冷媒を圧縮機へ吸入させることができる。従って、室外熱交換器における冷媒蒸発圧力と圧縮機の吸入冷媒圧力が同等となる通常の冷凍サイクル装置よりも、圧縮機の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。 According to this, in the heating mode, the refrigerant circuit switching device switches to the refrigerant circuit that sucks the gas-phase refrigerant flowing out from the heating side gas-liquid separator into the compressor. Can be sucked into the compressor. Therefore, the power consumption of the compressor is reduced and the coefficient of performance (COP) of the cycle is improved as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the outdoor heat exchanger and the suction refrigerant pressure of the compressor are equal. Can do.
 また、第1、第2除湿暖房モードでは、冷媒回路切替装置が、室外熱交換器と冷却用熱交換器が冷媒流れに対して直列に接続される冷媒回路に切り替える。従って、室外熱交換器における冷媒圧力によらず、圧縮機の吸入吐出作用によって、冷媒を冷却用熱交換器へ確実に供給することができる。 In the first and second dehumidifying and heating modes, the refrigerant circuit switching device switches to a refrigerant circuit in which the outdoor heat exchanger and the cooling heat exchanger are connected in series with the refrigerant flow. Therefore, regardless of the refrigerant pressure in the outdoor heat exchanger, the refrigerant can be reliably supplied to the cooling heat exchanger by the suction and discharge action of the compressor.
 本開示の第1態様によれば、冷媒回路切替装置は、第1除湿暖房モードでは、加熱用熱交換器から流出した冷媒を、第1減圧装置、室外熱交換器、第2減圧装置、冷却用熱交換器、圧縮機の順に流通させる冷媒回路に切り替える。つまり、室外熱交換器が第2減圧装置を介して冷却用熱交換器よりも冷媒流れ上流側に配置される。その結果、室外熱交換器における冷媒温度を冷却用熱交換器における冷媒温度よりも高い温度帯とすることができる。従って、室外熱交換器における冷媒の吸放熱量を調整して、加熱用熱交換器における冷媒放熱量を調整することができる。 According to the first aspect of the present disclosure, in the first dehumidifying and heating mode, the refrigerant circuit switching device converts the refrigerant that has flowed out of the heat exchanger for heating into the first decompression device, the outdoor heat exchanger, the second decompression device, and the cooling. Switch to the refrigerant circuit that flows in the order of the heat exchanger for compressor and the compressor. That is, the outdoor heat exchanger is disposed on the upstream side of the refrigerant flow with respect to the cooling heat exchanger via the second pressure reducing device. As a result, the refrigerant temperature in the outdoor heat exchanger can be set higher than the refrigerant temperature in the cooling heat exchanger. Accordingly, it is possible to adjust the refrigerant heat dissipation amount in the heating heat exchanger by adjusting the refrigerant heat absorption / release heat amount in the outdoor heat exchanger.
 さらに、冷媒回路切替装置は、第2除湿暖房モードでは、加熱用熱交換器から流出した冷媒を、第2減圧装置、冷却用熱交換器、第1減圧装置、室外熱交換器、圧縮機の順に流通させる冷媒回路に切り替える。つまり、室外熱交換器が第1減圧装置を介して冷却用熱交換器よりも冷媒流れ下流側に配置される。その結果、室外熱交換器における冷媒温度を冷却用熱交換器における冷媒温度よりも低い温度帯とすることができる。従って、室外熱交換器における冷媒の吸熱量を増加させて、加熱用熱交換器にて第1除湿暖房モードよりも高い加熱能力で空気を加熱することができる。 Further, in the second dehumidifying and heating mode, the refrigerant circuit switching device converts the refrigerant flowing out from the heating heat exchanger into the second decompression device, the cooling heat exchanger, the first decompression device, the outdoor heat exchanger, and the compressor. Switch to the refrigerant circuit to be circulated in order. That is, the outdoor heat exchanger is disposed downstream of the refrigerant flow with respect to the cooling heat exchanger via the first pressure reducing device. As a result, the refrigerant temperature in the outdoor heat exchanger can be set to a temperature range lower than the refrigerant temperature in the cooling heat exchanger. Therefore, the heat absorption amount of the refrigerant in the outdoor heat exchanger can be increased, and the air can be heated with a heating capability higher than that in the first dehumidifying and heating mode in the heating heat exchanger.
 その結果、空調対象空間の除湿暖房を行う際に、第1除湿暖房モードおよび第2除湿暖房モードを切り替えることで、幅広い温度帯で空気の温度を調整することができる。 As a result, when dehumidifying and heating the air-conditioning target space, the temperature of the air can be adjusted in a wide temperature range by switching between the first dehumidifying and heating mode and the second dehumidifying and heating mode.
 また、第1、第2除湿暖房モード時の室外熱交換器における冷媒の流れ方向が暖房モード時の室外熱交換器における冷媒の流れ方向と異なるため、第1、第2除湿暖房モード時の室外熱交換器内の冷媒の流れ態様と暖房モード時の室外熱交換器内の冷媒の流れ態様とを変化させることができる。これにより、室外熱交換器内に冷凍機油が滞留することを抑制することができる。 Moreover, since the flow direction of the refrigerant in the outdoor heat exchanger in the first and second dehumidifying and heating modes is different from the flow direction of the refrigerant in the outdoor heat exchanger in the heating mode, the outdoor in the first and second dehumidifying and heating modes The flow mode of the refrigerant in the heat exchanger and the flow mode of the refrigerant in the outdoor heat exchanger during the heating mode can be changed. Thereby, it can suppress that refrigerating machine oil retains in an outdoor heat exchanger.
 すなわち、本開示の第1態様によれば、除湿暖房を行う空調装置に適用されるエジェクタ式冷凍サイクルにおいて、冷凍機油が室外熱交換器に滞留することを抑制しつつ、除湿暖房時の空気の温度調整範囲を拡大することができる。 That is, according to the first aspect of the present disclosure, in the ejector-type refrigeration cycle applied to the air conditioner that performs dehumidifying heating, the refrigerating machine oil is prevented from staying in the outdoor heat exchanger, and the air during dehumidifying heating is suppressed. The temperature adjustment range can be expanded.
 本開示の第2態様に係るエジェクタ式冷凍サイクルは、空調装置に適用され、圧縮機、加熱用熱交換器、第1減圧装置、室外熱交換器、第2減圧装置、冷却用熱交換器、冷却側エジェクタ、冷却側気液分離器、および冷媒回路切替装置を備えていても良い。圧縮機、加熱用熱交換器、第1減圧装置、室外熱交換器、第2減圧装置、および冷却用熱交換器の構成は、上述した第1態様の構成と同様である。 The ejector refrigeration cycle according to the second aspect of the present disclosure is applied to an air conditioner, and includes a compressor, a heat exchanger for heating, a first pressure reducing device, an outdoor heat exchanger, a second pressure reducing device, a cooling heat exchanger, A cooling side ejector, a cooling side gas-liquid separator, and a refrigerant circuit switching device may be provided. The configurations of the compressor, the heat exchanger for heating, the first pressure reducing device, the outdoor heat exchanger, the second pressure reducing device, and the cooling heat exchanger are the same as those of the first aspect described above.
 冷却側エジェクタは、冷却側ノズル部、冷却側冷媒吸引口、および冷却側昇圧部を有する。冷却側ノズル部は、加熱用熱交換器の下流側に配置されて、冷媒を減圧して冷却側噴射冷媒として噴射する。冷却側冷媒吸引口は、冷却側噴射冷媒の吸引作用によって冷媒を冷却側吸引冷媒として吸引する。冷却側昇圧部は、冷却側噴射冷媒と冷却側吸引冷媒との混合冷媒を昇圧させる。冷却側気液分離器は、冷却側昇圧部から流出した冷媒を気相冷媒と液相冷媒とに分離する。 The cooling side ejector has a cooling side nozzle portion, a cooling side refrigerant suction port, and a cooling side pressure increasing portion. A cooling side nozzle part is arrange | positioned in the downstream of the heat exchanger for a heating, decompresses a refrigerant | coolant, and injects it as a cooling side injection refrigerant | coolant. The cooling side refrigerant suction port sucks the refrigerant as the cooling side suction refrigerant by the suction action of the cooling side injection refrigerant. The cooling side boosting unit boosts the mixed refrigerant of the cooling side injection refrigerant and the cooling side suction refrigerant. The cooling-side gas-liquid separator separates the refrigerant that has flowed out of the cooling-side booster into a gas-phase refrigerant and a liquid-phase refrigerant.
 冷媒回路切替装置は、冷媒回路を切り替える。具体的には、冷媒回路切替装置は、第1除湿暖房モードおよび第2除湿暖房モードでは、上述した第1態様と同様に冷媒回路を切り替える。ただし、第2態様によれば、冷媒回路切替装置は、空気を冷却用熱交換器にて冷却する冷房モードでは、室外熱交換器から流出した冷媒を、冷却側ノズル部へ流入させ、冷却側気液分離器から流出した気相冷媒を圧縮機へ吸入させるとともに、冷却側気液分離器から流出した液相冷媒を冷却用熱交換器へ流入させ、冷却用熱交換器から流出した冷媒を冷却側冷媒吸引口から吸引させる冷媒回路に切り替える。 The refrigerant circuit switching device switches the refrigerant circuit. Specifically, the refrigerant circuit switching device switches the refrigerant circuit in the first dehumidifying and heating mode and the second dehumidifying and heating mode, similarly to the first aspect described above. However, according to the second aspect, in the cooling mode in which the air is cooled by the cooling heat exchanger, the refrigerant circuit switching device causes the refrigerant that has flowed out of the outdoor heat exchanger to flow into the cooling side nozzle portion, The gas-phase refrigerant that has flowed out of the gas-liquid separator is sucked into the compressor, and the liquid-phase refrigerant that has flowed out of the cooling-side gas-liquid separator is flowed into the cooling heat exchanger, and the refrigerant that has flowed out of the cooling heat exchanger is removed. Switch to the refrigerant circuit to be sucked from the cooling side refrigerant suction port.
 第1除湿暖房モード時の冷却用熱交換器における冷媒の流れ方向は、第2除湿暖房モード時の冷却用熱交換器における冷媒の流れ方向と同一である。第1除湿暖房モード時の冷却用熱交換器における冷媒の流れ方向は、冷房モード時の冷却用熱交換器における冷媒の流れ方向と異なる。 The refrigerant flow direction in the cooling heat exchanger in the first dehumidifying heating mode is the same as the refrigerant flow direction in the cooling heat exchanger in the second dehumidifying heating mode. The refrigerant flow direction in the cooling heat exchanger in the first dehumidifying heating mode is different from the refrigerant flow direction in the cooling heat exchanger in the cooling mode.
 これによれば、冷房モードでは、冷媒回路切替装置が、冷却側気液分離器から流出した気相冷媒を圧縮機へ吸入させる冷媒回路に切り替えるので、冷却側昇圧部にて昇圧された冷媒を圧縮機へ吸入させることができる。従って、冷却用熱交換器における冷媒蒸発圧力と圧縮機の吸入冷媒圧力が同等となる通常の冷凍サイクル装置よりも、圧縮機の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。 According to this, in the cooling mode, the refrigerant circuit switching device switches to the refrigerant circuit that sucks the gas-phase refrigerant flowing out from the cooling side gas-liquid separator into the compressor. Can be sucked into the compressor. Therefore, the power consumption of the compressor is reduced and the coefficient of performance (COP) of the cycle is improved as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the heat exchanger for cooling is equal to the suction refrigerant pressure of the compressor. be able to.
 また、第1、第2除湿暖房モードでは、冷媒回路切替装置が、室外熱交換器と冷却用熱交換器が冷媒流れに対して直列に接続される冷媒回路に切り替えられる。従って、上述した第1態様と同様に、室外熱交換器における冷媒圧力によらず、圧縮機の吸入吐出作用によって、冷媒を冷却用熱交換器へ確実に供給することができる。 In the first and second dehumidifying and heating modes, the refrigerant circuit switching device is switched to a refrigerant circuit in which the outdoor heat exchanger and the cooling heat exchanger are connected in series with the refrigerant flow. Therefore, similarly to the first aspect described above, the refrigerant can be reliably supplied to the cooling heat exchanger by the suction and discharge action of the compressor regardless of the refrigerant pressure in the outdoor heat exchanger.
 第2態様の冷媒回路切替装置は、第1除湿暖房モードと第2除湿暖房モード時に第1態様と同様に冷媒回路を切り替える。従って、第2態様によれば、第1態様と同様に幅広い温度帯で送風空気の温度を調整することができる。 The refrigerant circuit switching device of the second aspect switches the refrigerant circuit in the first dehumidifying and heating mode and the second dehumidifying and heating mode in the same manner as in the first aspect. Therefore, according to the second aspect, the temperature of the blown air can be adjusted in a wide temperature range as in the first aspect.
 また、第1、第2除湿暖房モード時の冷却用熱交換器における冷媒の流れ方向は、暖房モード時の冷却用熱交換器における冷媒の流れ方向と異なる。従って、第1、第2除湿暖房モード時の冷却用熱交換器内の冷媒の流れ態様と暖房モード時の冷却用熱交換器内の冷媒の流れ態様とを変化させることができ、第1態様と同様に、冷却用熱交換器内に冷凍機油が滞留することを抑制することができる。 Further, the flow direction of the refrigerant in the cooling heat exchanger in the first and second dehumidifying heating modes is different from the flow direction of the refrigerant in the cooling heat exchanger in the heating mode. Therefore, the flow mode of the refrigerant in the cooling heat exchanger in the first and second dehumidifying heating modes and the flow mode of the refrigerant in the cooling heat exchanger in the heating mode can be changed. Similarly, it is possible to suppress the refrigeration oil from staying in the cooling heat exchanger.
 すなわち、本開示の第2態様によれば、除湿暖房を行う空調装置に適用されるエジェクタ式冷凍サイクルにおいて、冷凍機油が冷却用熱交換器に滞留することを抑制しつつ、除湿暖房時の空気の温度調整範囲を拡大することができる。 That is, according to the second aspect of the present disclosure, in the ejector-type refrigeration cycle applied to an air conditioner that performs dehumidifying heating, the air during dehumidifying heating is suppressed while the refrigerating machine oil is prevented from staying in the cooling heat exchanger. The temperature adjustment range can be expanded.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
車両用空調装置の全体構成図である。 エジェクタ式冷凍サイクルの冷房モード時の冷媒回路を示す全体構成図である。 エジェクタ式冷凍サイクルの第1除湿暖房モード時の冷媒回路を示す全体構成図である。 エジェクタ式冷凍サイクルの第2除湿暖房モード時の冷媒回路を示す全体構成図である。 エジェクタ式冷凍サイクルの暖房モード時の冷媒回路を示す全体構成図である。 エジェクタ式冷凍サイクルの除霜モード時の冷媒回路を示す全体構成図である。 車両用空調装置の電気制御部を示すブロック図である。 エジェクタ式冷凍サイクルの冷房モード時における冷媒の状態を示すモリエル線図である。 エジェクタ式冷凍サイクルの第1除湿暖房モード時の冷媒の状態を示すモリエル線図である。 エジェクタ式冷凍サイクルの第2除湿暖房モード時の冷媒の状態を示すモリエル線図である。 エジェクタ式冷凍サイクルの暖房モード時の冷媒の状態を示すモリエル線図である。 エジェクタ式冷凍サイクルの除霜モード時の冷媒の状態を示すモリエル線図である。 エジェクタ式冷凍サイクルの空気の温度調整可能範囲を説明するための説明図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
1 is an overall configuration diagram of a vehicle air conditioner. It is a whole block diagram which shows the refrigerant circuit at the time of the air_conditioning | cooling mode of an ejector-type refrigerating cycle. It is a whole block diagram which shows the refrigerant circuit at the time of the 1st dehumidification heating mode of an ejector type refrigeration cycle. It is a whole block diagram which shows the refrigerant circuit at the time of the 2nd dehumidification heating mode of an ejector type refrigeration cycle. It is a whole lineblock diagram showing the refrigerant circuit at the time of heating mode of an ejector type refrigerating cycle. It is a whole lineblock diagram showing the refrigerant circuit at the time of defrosting mode of an ejector type freezing cycle. It is a block diagram which shows the electric control part of the vehicle air conditioner. It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the air_conditioning | cooling mode of an ejector-type refrigerating cycle. It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 1st dehumidification heating mode of an ejector type refrigeration cycle. It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 2nd dehumidification heating mode of an ejector-type refrigerating cycle. It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the heating mode of an ejector type refrigeration cycle. It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the defrost mode of an ejector-type refrigerating cycle. It is explanatory drawing for demonstrating the temperature adjustable range of the air of an ejector-type refrigerating cycle.
 図1から図13を参照して、本開示の一実施形態について説明する。本実施形態では、本開示に係るエジェクタ式冷凍サイクル10を、図1の全体構成図に示すように、電気自動車に搭載される車両用空調装置1に適用している。エジェクタ式冷凍サイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される空気(送風空気)を加熱あるいは冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の熱交換対象流体は車室内へ送風される空気である。 An embodiment of the present disclosure will be described with reference to FIGS. In the present embodiment, an ejector refrigeration cycle 10 according to the present disclosure is applied to a vehicle air conditioner 1 mounted on an electric vehicle as shown in the overall configuration diagram of FIG. The ejector-type refrigeration cycle 10 functions to heat or cool air (air blown air) blown into the vehicle interior, which is a space to be air-conditioned, in the vehicle air conditioner 1. Therefore, the heat exchange target fluid of the ejector refrigeration cycle 10 is air blown into the vehicle interior.
 さらに、エジェクタ式冷凍サイクル10は、図2から図6に示すように、冷房モードの冷媒回路(図2参照)、第1除湿暖房モードの冷媒回路(図3参照)、第2除湿暖房モードの冷媒回路(図4参照)、暖房モードの冷媒回路(図5参照)、除霜モードの冷媒回路(図6参照)を切替可能に構成されている。 Further, as shown in FIGS. 2 to 6, the ejector-type refrigeration cycle 10 includes a cooling mode refrigerant circuit (see FIG. 2), a first dehumidifying and heating mode refrigerant circuit (see FIG. 3), and a second dehumidifying and heating mode. The refrigerant circuit (see FIG. 4), the heating mode refrigerant circuit (see FIG. 5), and the defrost mode refrigerant circuit (see FIG. 6) can be switched.
 冷房モードは、空気を冷却して車室内を冷房する運転モードである。第1除湿暖房モードは、冷却して除湿された空気を再加熱して車室内の除湿暖房を行う運転モードである。第2除湿暖房モードは、第1除湿暖房モードよりも高い加熱能力で空気を再加熱して車室内の除湿暖房を行う運転モードである。暖房モードは、空気を加熱して車室内を暖房する運転モードである。除霜モードは、後述する室外熱交換器17に着霜が生じた際にこれを取り除くための運転モードである。 The cooling mode is an operation mode in which air is cooled to cool the passenger compartment. The first dehumidifying and heating mode is an operation mode in which the air that has been cooled and dehumidified is reheated to perform dehumidifying heating in the passenger compartment. The second dehumidifying and heating mode is an operation mode in which the air is reheated with a heating capability higher than that in the first dehumidifying and heating mode to perform dehumidifying heating in the passenger compartment. The heating mode is an operation mode in which air is heated to heat the vehicle interior. The defrosting mode is an operation mode for removing frost formation in the outdoor heat exchanger 17 described later.
 なお、図2から図6では、各運転モードにおける冷媒の流れ方向を明確化するために、図1に示すエジェクタ式冷凍サイクル10の構成機器の配置を変更して図示している。具体的には、加熱側エジェクタ16、室外熱交換器17等と、冷却側エジェクタ22、室内蒸発器21等とを左右対称的に配置して図示している。 2 to 6, the arrangement of the components of the ejector refrigeration cycle 10 shown in FIG. 1 is changed in order to clarify the flow direction of the refrigerant in each operation mode. Specifically, the heating side ejector 16, the outdoor heat exchanger 17 and the like, and the cooling side ejector 22, the indoor evaporator 21 and the like are arranged symmetrically.
 従って、図1に図示されたエジェクタ式冷凍サイクル10と図2から図6に図示されたエジェクタ式冷凍サイクル10は同等である。また、図2から図6では、それぞれの運転モードにおける冷媒の流れを実線矢印で示している。 Accordingly, the ejector refrigeration cycle 10 shown in FIG. 1 is equivalent to the ejector refrigeration cycle 10 shown in FIGS. Moreover, in FIGS. 2-6, the flow of the refrigerant | coolant in each operation mode is shown by the solid line arrow.
 また、エジェクタ式冷凍サイクル10では、冷媒として、HFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。さらに、冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。この冷凍機油としては、液相冷媒に相溶性を有するPAGオイル(ポリアルキレングリコールオイル)が採用されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 Further, the ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure. . Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. As this refrigerating machine oil, PAG oil (polyalkylene glycol oil) having compatibility with the liquid phase refrigerant is employed. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、車両ボンネット内に配置され、エジェクタ式冷凍サイクル10において冷媒を吸入し、圧縮して吐出するものである。本実施形態では、圧縮機11として、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機を採用している。圧縮機11は、後述する空調制御装置40から出力される制御信号によって、その作動(回転数)が制御される。 Among the components of the ejector refrigeration cycle 10, the compressor 11 is disposed in the vehicle bonnet, and sucks, compresses and discharges the refrigerant in the ejector refrigeration cycle 10. In the present embodiment, as the compressor 11, an electric compressor is employed in which a fixed capacity type compression mechanism with a fixed discharge capacity is rotationally driven by an electric motor. The operation (rotation speed) of the compressor 11 is controlled by a control signal output from the air conditioning control device 40 described later.
 圧縮機11の吐出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する室内空調ユニット30において空気の空気通路を形成するケーシング31内に配置されている。室内凝縮器12は、圧縮機11から吐出された高圧冷媒と後述する室内蒸発器21通過後の空気とを熱交換させて、高圧冷媒を熱源として空気を加熱する加熱用熱交換器である。室内空調ユニット30の詳細については後述する。 The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11. The indoor condenser 12 is arrange | positioned in the casing 31 which forms the air path of air in the indoor air conditioning unit 30 mentioned later. The indoor condenser 12 is a heating heat exchanger that heats air using the high-pressure refrigerant as a heat source by causing heat exchange between the high-pressure refrigerant discharged from the compressor 11 and air after passing through an indoor evaporator 21 described later. Details of the indoor air conditioning unit 30 will be described later.
 室内凝縮器12の冷媒出口には、第1四方弁13aの1つの出入口側が接続されている。第1四方弁13aは、後述する第2四方弁13b等とともに、エジェクタ式冷凍サイクル10の冷媒回路を切り替える冷媒回路切替装置である。 The refrigerant outlet of the indoor condenser 12 is connected to one inlet / outlet side of the first four-way valve 13a. The first four-way valve 13a is a refrigerant circuit switching device that switches the refrigerant circuit of the ejector refrigeration cycle 10 together with a second four-way valve 13b, which will be described later.
 第1四方弁13aは、室内凝縮器12の冷媒出口側と第1三方継手14aの1つ出入口側とを接続すると同時に、第2四方弁13bの1つの出入口側と第3三方継手14cの1つ出入口側とを接続する冷媒回路に切り替えることができる。第1三方継手14aの1つ出入口側とは、具体的には、後述する加熱側エジェクタ16あるいは室外熱交換器17の出入口側である。第3三方継手14cの1つ出入口側とは、具体的には、後述する冷却側エジェクタ22あるいは室内蒸発器21の出入口側である。 The first four-way valve 13a connects the refrigerant outlet side of the indoor condenser 12 and one inlet / outlet side of the first three-way joint 14a, and at the same time, one inlet / outlet side of the second four-way valve 13b and one of the third three-way joint 14c. It is possible to switch to a refrigerant circuit that connects the inlet / outlet side. Specifically, the one inlet / outlet side of the first three-way joint 14a is an inlet / outlet side of a heating side ejector 16 or an outdoor heat exchanger 17 described later. Specifically, the one inlet / outlet side of the third three-way joint 14c is an outlet / inlet side of the cooling side ejector 22 or the indoor evaporator 21 described later.
 さらに、第1四方弁13aは、室内凝縮器12の冷媒出口側と第3三方継手14cの1つ出入口側とを接続すると同時に第2四方弁13bの1つの出入口側と第1三方継手14aの1つ出入口側とを接続する冷媒回路に切り替えることができる。第1四方弁13aおよび第2四方弁13bは、空調制御装置40から出力される制御電圧によって、その作動が制御される。 Further, the first four-way valve 13a connects the refrigerant outlet side of the indoor condenser 12 and one inlet / outlet side of the third three-way joint 14c, and at the same time, connects one inlet / outlet side of the second four-way valve 13b and the first three-way joint 14a. It can switch to the refrigerant circuit which connects one entrance / exit side. The operations of the first four-way valve 13 a and the second four-way valve 13 b are controlled by a control voltage output from the air conditioning control device 40.
 第1三方継手14aは、3つの冷媒出入口を有する配管継手である。さらに、エジェクタ式冷凍サイクル10では、後述するように、第2から第4三方継手14bから14dを備えている。第2から第4三方継手14bから14dの基本的構成は、第1三方継手14aと同様である。 The first three-way joint 14a is a pipe joint having three refrigerant outlets. Further, the ejector refrigeration cycle 10 includes second to fourth three-way joints 14b to 14d, as will be described later. The basic configuration of the second to fourth three-way joints 14b to 14d is the same as that of the first three-way joint 14a.
 第1三方継手14aの別の出入口には、第1流量調整弁15aを介して、加熱側エジェクタ16の加熱側ノズル部16aの入口側が接続されている。第1三方継手14aのさらに別の出入口には、第2流量調整弁15bを介して、第2三方継手14bの1つ出入口側が接続されている。 The other inlet / outlet of the first three-way joint 14a is connected to the inlet side of the heating side nozzle portion 16a of the heating side ejector 16 via the first flow rate adjusting valve 15a. One inlet / outlet side of the second three-way joint 14b is connected to another inlet / outlet of the first three-way joint 14a via a second flow rate adjusting valve 15b.
 第1流量調整弁15aは、冷媒通路の開度を変化させる弁体と、この弁体の開度を変化させる電動アクチュエータ(具体的には、ステッピングモータ)とを有して構成される電気式の可変絞り機構である。第1流量調整弁15aは、少なくとも暖房モード時に、加熱側エジェクタ16の加熱側ノズル部16aへ流入する冷媒流量を調整する。第2流量調整弁15bは、室内凝縮器12下流側の冷媒であって、室外熱交換器17へ流入する冷媒を減圧させる第1減圧装置である。 The first flow rate adjusting valve 15a is an electric type that includes a valve body that changes the opening degree of the refrigerant passage and an electric actuator (specifically, a stepping motor) that changes the opening degree of the valve body. This is a variable aperture mechanism. The first flow rate adjusting valve 15a adjusts the flow rate of the refrigerant flowing into the heating side nozzle portion 16a of the heating side ejector 16 at least in the heating mode. The second flow rate adjustment valve 15 b is a first decompression device that decompresses the refrigerant that flows downstream of the indoor condenser 12 and flows into the outdoor heat exchanger 17.
 さらに、エジェクタ式冷凍サイクル10では、第2から第6流量調整弁15bから15fを備えている。第2から第6流量調整弁15bから15fの基本的構成は、第1流量調整弁15aと同様である。第1から第6流量調整弁15aから15fは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒流路を閉塞する全閉機能を有している。 Furthermore, the ejector refrigeration cycle 10 includes second to sixth flow rate adjusting valves 15b to 15f. The basic configuration of the second to sixth flow rate adjustment valves 15b to 15f is the same as that of the first flow rate adjustment valve 15a. The first to sixth flow rate adjusting valves 15a to 15f are fully opened functions that function as simple refrigerant passages without fully exhibiting the flow rate adjusting action and the refrigerant pressure reducing action by fully opening the valve opening degree, and the valve opening degree is fully increased. It has a fully closed function of closing the refrigerant flow path by closing.
 そして、この全開機能および全閉機能により、第1から第6流量調整弁15aから15fは、各運転モードの冷媒回路を切り替えることができる。従って、第1から第6流量調整弁15aから15fは、第1四方弁13aおよび第2四方弁13bとともに、冷媒回路切替装置としての機能も兼ね備えている。第1から第6流量調整弁15aから15fは、空調制御装置40から出力される制御信号(制御パルス)によって、その作動が制御される。 The first to sixth flow rate adjustment valves 15a to 15f can switch the refrigerant circuit in each operation mode by the fully open function and the fully closed function. Accordingly, the first to sixth flow rate adjusting valves 15a to 15f have a function as a refrigerant circuit switching device together with the first four-way valve 13a and the second four-way valve 13b. The operations of the first to sixth flow rate adjusting valves 15 a to 15 f are controlled by a control signal (control pulse) output from the air conditioning control device 40.
 第2三方継手14bの別の出入口には、室外熱交換器17の一方の冷媒出入口側が接続されている。第2三方継手14bのさらに別の出入口には、第1開閉弁18aを介して、加熱側エジェクタ16の加熱側冷媒吸引口16c側が接続されている。 One refrigerant inlet / outlet side of the outdoor heat exchanger 17 is connected to another inlet / outlet of the second three-way joint 14b. The heating side refrigerant suction port 16c side of the heating side ejector 16 is connected to the other opening / closing port of the second three-way joint 14b via the first on-off valve 18a.
 第1開閉弁18aは、第2三方継手14bと加熱側エジェクタ16の加熱側冷媒吸引口16cとを接続する冷媒通路を開閉する電磁弁である。さらに、エジェクタ式冷凍サイクル10では、後述するように、第2開閉弁18bを備えている。第2開閉弁18bの基本的構成は、第1開閉弁18aと同様である。 The first on-off valve 18a is an electromagnetic valve that opens and closes a refrigerant passage that connects the second three-way joint 14b and the heating-side refrigerant suction port 16c of the heating-side ejector 16. Further, the ejector refrigeration cycle 10 includes a second on-off valve 18b as will be described later. The basic configuration of the second on-off valve 18b is the same as that of the first on-off valve 18a.
 また、第1開閉弁18aおよび第2開閉弁18bは、冷媒通路を開閉することで、上述した各運転モードの冷媒回路を切り替えることができる。従って、第1開閉弁18aおよび第2開閉弁18bは、第1四方弁13aおよび第2四方弁13bとともに、冷媒回路切替装置を構成する。第1開閉弁18aおよび第2開閉弁18bは、空調制御装置40から出力される制御電圧によって、その作動が制御される。 Further, the first on-off valve 18a and the second on-off valve 18b can switch the refrigerant circuit in each operation mode described above by opening and closing the refrigerant passage. Therefore, the 1st on-off valve 18a and the 2nd on-off valve 18b comprise a refrigerant circuit switching apparatus with the 1st four-way valve 13a and the 2nd four-way valve 13b. The operations of the first on-off valve 18 a and the second on-off valve 18 b are controlled by a control voltage output from the air conditioning control device 40.
 室外熱交換器17は、車両ボンネット内に配置されて、その内部を流通する冷媒と図示しない送風ファンから送風された外気とを熱交換させる熱交換器である。室外熱交換器17は、少なくとも冷房モードでは、高圧冷媒を放熱させる放熱器として機能する。また、少なくとも第2除湿暖房モードおよび暖房モードでは、冷媒を蒸発させる蒸発器として機能する。 The outdoor heat exchanger 17 is a heat exchanger that is disposed in the vehicle bonnet and exchanges heat between the refrigerant flowing through the vehicle hood and the outside air blown from a blower fan (not shown). The outdoor heat exchanger 17 functions as a radiator that radiates high-pressure refrigerant at least in the cooling mode. Further, at least in the second dehumidifying heating mode and the heating mode, it functions as an evaporator that evaporates the refrigerant.
 室外熱交換器17の他方の冷媒出入口には、第3流量調整弁15cを介して、加熱側アキュムレータ19の液相冷媒出入口側が接続されている。 The liquid refrigerant inlet / outlet side of the heating side accumulator 19 is connected to the other refrigerant inlet / outlet of the outdoor heat exchanger 17 via a third flow rate adjusting valve 15c.
 また、本実施形態では、室外熱交換器17として、内部に形成された冷媒通路の通路断面積が冷媒流れ方向に向かって変化するものを採用している。より詳細には、本実施形態の室外熱交換器17は、いわゆるタンクアンドチューブ型の熱交換器で構成されている。そして、冷媒を流通させるパス構成を調整することによって、内部に形成された冷媒通路の通路断面積を変化させている。 In the present embodiment, the outdoor heat exchanger 17 employs a refrigerant whose cross-sectional area of the refrigerant passage formed therein changes in the refrigerant flow direction. More specifically, the outdoor heat exchanger 17 of the present embodiment is a so-called tank and tube type heat exchanger. And the passage cross-sectional area of the refrigerant passage formed inside is changed by adjusting the path configuration through which the refrigerant flows.
 ここで、タンクアンドチューブ型の熱交換器におけるパスとは、タンク内に形成された同一の分配空間内の冷媒をタンク内に形成された同一の集合空間へ向けて同一の方向へ流すチューブ群によって形成される冷媒通路と定義することができる。従って、パスを構成するチューブの本数を変化させることによって、パス(冷媒通路)の通路断面積(チューブの合計通路断面積)を変化させることができる。 Here, the path in the tank-and-tube heat exchanger is a group of tubes that flow the refrigerant in the same distribution space formed in the tank in the same direction toward the same collective space formed in the tank. It can be defined as a refrigerant passage formed by Therefore, the passage sectional area of the path (refrigerant passage) (total passage sectional area of the tube) can be changed by changing the number of tubes constituting the path.
 本実施形態の室外熱交換器17では、他方の冷媒出入口側から一方の冷媒出入口側へ向かうに伴って、内部に形成される冷媒通路の通路断面積が段階的に縮小するパス構成になっている。なお、本実施形態における他方の冷媒出入口は、加熱側アキュムレータ19の液相冷媒出入口が接続される側の出入口であり、一方の冷媒出入口は、第2三方継手14bの別の出入口が接続される側の出入口である。 The outdoor heat exchanger 17 of the present embodiment has a path configuration in which the passage cross-sectional area of the refrigerant passage formed therein gradually decreases as it goes from the other refrigerant inlet / outlet side to the one refrigerant inlet / outlet side. Yes. The other refrigerant inlet / outlet in the present embodiment is an inlet / outlet on the side to which the liquid-phase refrigerant inlet / outlet of the heating side accumulator 19 is connected, and the other refrigerant inlet / outlet is connected to another inlet / outlet of the second three-way joint 14b. This is the side entrance.
 次に、加熱側エジェクタ16は、少なくとも暖房モード時に、室内凝縮器12から流出した冷媒を減圧させる減圧装置としての機能を果たす。さらに、加熱側エジェクタ16は、高速度で噴射される噴射冷媒の吸引作用によって、室外熱交換器17から流出した冷媒を吸引して輸送する冷媒輸送装置としての機能を果たす。 Next, the heating-side ejector 16 functions as a decompression device that decompresses the refrigerant flowing out of the indoor condenser 12 at least in the heating mode. Furthermore, the heating-side ejector 16 functions as a refrigerant transport device that sucks and transports the refrigerant that has flowed out of the outdoor heat exchanger 17 by the suction action of the jetted refrigerant that is injected at a high speed.
 より具体的には、加熱側エジェクタ16は、加熱側ノズル部16aおよび加熱側ボデー部16bを有している。加熱側ノズル部16aは、冷媒の流れ方向に向かって徐々に先細る形状の金属製(本実施形態では、ステンレス製)の略円筒状部材で形成されている。そして、内部に形成された冷媒通路にて冷媒を等エントロピ的に減圧させるものである。 More specifically, the heating side ejector 16 has a heating side nozzle portion 16a and a heating side body portion 16b. The heating-side nozzle portion 16a is formed of a substantially cylindrical member made of metal (in this embodiment, made of stainless steel) that gradually tapers in the refrigerant flow direction. And a refrigerant | coolant is decompressed isentropically in the refrigerant path formed in the inside.
 加熱側ノズル部16aの内部に形成された冷媒通路には、通路断面積が最も縮小した喉部(最小通路面積部)が形成され、さらに、この喉部から冷媒を噴射する冷媒噴射口へ向かうに伴って冷媒通路面積が拡大する末広部が形成されている。つまり、加熱側ノズル部16aは、ラバールノズルとして構成されている。 In the refrigerant passage formed inside the heating side nozzle portion 16a, a throat portion (minimum passage area portion) having the smallest passage cross-sectional area is formed, and further toward the refrigerant injection port for injecting refrigerant from the throat portion. Accordingly, a divergent portion in which the refrigerant passage area is enlarged is formed. That is, the heating side nozzle part 16a is configured as a Laval nozzle.
 さらに、本実施形態では、加熱側ノズル部16aとして、エジェクタ式冷凍サイクル10の通常作動時に、冷媒噴射口から噴射される加熱側噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、加熱側ノズル部16aを先細ノズルで構成してもよい。 Further, in the present embodiment, as the heating-side nozzle portion 16a, one that is set so that the flow rate of the heating-side injection refrigerant that is injected from the refrigerant injection port becomes equal to or higher than the sonic speed during normal operation of the ejector refrigeration cycle 10 is adopted. Has been. Of course, you may comprise the heating side nozzle part 16a with a tapered nozzle.
 加熱側ボデー部16bは、金属製(本実施形態では、アルミニウム合金製)の円筒状部材で形成されており、内部に加熱側ノズル部16aを支持固定する固定部材として機能するとともに、加熱側エジェクタ16の外殻を形成するものである。より具体的には、加熱側ノズル部16aは、加熱側ボデー部16bの長手方向一端側の内部に収容されるように圧入にて固定されている。従って、加熱側ノズル部16aと加熱側ボデー部16bとの固定部(圧入部)から冷媒が漏れることはない。 The heating side body portion 16b is formed of a cylindrical member made of metal (in this embodiment, made of an aluminum alloy), functions as a fixing member that supports and fixes the heating side nozzle portion 16a therein, and is also used as a heating side ejector. 16 outer shells are formed. More specifically, the heating-side nozzle portion 16a is fixed by press-fitting so as to be housed inside one end side in the longitudinal direction of the heating-side body portion 16b. Therefore, the refrigerant does not leak from the fixing portion (press-fit portion) between the heating side nozzle portion 16a and the heating side body portion 16b.
 また、加熱側ボデー部16bの外周面のうち、加熱側ノズル部16aの外周側に対応する部位には、その内外を貫通して加熱側ノズル部16aの冷媒噴射口と連通するように設けられた加熱側冷媒吸引口16cが形成されている。この加熱側冷媒吸引口16cは、加熱側ノズル部16aから噴射される加熱側噴射冷媒の吸引作用によって、室外熱交換器17から流出した冷媒を加熱側エジェクタ16の内部へ吸引する貫通穴である。 Further, in the outer peripheral surface of the heating side body portion 16b, a portion corresponding to the outer peripheral side of the heating side nozzle portion 16a is provided so as to penetrate the inside and outside and communicate with the refrigerant injection port of the heating side nozzle portion 16a. A heating-side refrigerant suction port 16c is formed. The heating-side refrigerant suction port 16c is a through hole that sucks the refrigerant that has flowed out of the outdoor heat exchanger 17 into the heating-side ejector 16 by the suction action of the heating-side injection refrigerant that is injected from the heating-side nozzle portion 16a. .
 さらに、加熱側ボデー部16bの内部には、加熱側冷媒吸引口16cから吸引された吸引冷媒を加熱側ノズル部16aの冷媒噴射口側へ導く吸引通路、および吸引通路を介して加熱側エジェクタ16の内部へ流入した加熱側吸引冷媒と加熱側噴射冷媒とを混合させて昇圧させる加熱側昇圧部である加熱側ディフューザ部16dが形成されている。 Further, inside the heating side body portion 16b, a suction passage that guides the suction refrigerant sucked from the heating side refrigerant suction port 16c to the refrigerant injection port side of the heating side nozzle portion 16a, and the heating side ejector 16 through the suction passage. A heating side diffuser portion 16d, which is a heating side pressure increasing portion that increases the pressure by mixing the heating side suction refrigerant and the heating side injection refrigerant that have flowed into the inside, is formed.
 加熱側ディフューザ部16dは、吸引通路の出口に連続するように配置されて、冷媒通路面積が徐々に拡大するように形成されている。これにより、加熱側噴射冷媒と加熱側吸引冷媒とを混合させながら、その流速を減速させて加熱側噴射冷媒と加熱側吸引冷媒との混合冷媒の圧力を上昇させる機能、すなわち、混合冷媒の速度エネルギを圧力エネルギに変換する機能を果たす。 The heating-side diffuser portion 16d is disposed so as to be continuous with the outlet of the suction passage, and is formed so that the refrigerant passage area gradually increases. Thereby, while mixing the heating side injection refrigerant and the heating side suction refrigerant, the function of decelerating the flow rate and increasing the pressure of the mixed refrigerant of the heating side injection refrigerant and the heating side suction refrigerant, that is, the speed of the mixed refrigerant It functions to convert energy into pressure energy.
 加熱側ディフューザ部16dの冷媒出口には、加熱側アキュムレータ19の入口側が接続されている。加熱側アキュムレータ19は、加熱側エジェクタ16の加熱側ディフューザ部16dから流出した冷媒を気相冷媒と液相冷媒とに分離する加熱側気液分離器である。加熱側アキュムレータ19には、分離された気相冷媒を流出させるための気相冷媒出入口と、分離された液相冷媒を流出させるための液相冷媒出入口が設けられている。 The inlet side of the heating side accumulator 19 is connected to the refrigerant outlet of the heating side diffuser portion 16d. The heating-side accumulator 19 is a heating-side gas-liquid separator that separates the refrigerant flowing out from the heating-side diffuser portion 16d of the heating-side ejector 16 into a gas-phase refrigerant and a liquid-phase refrigerant. The heating-side accumulator 19 is provided with a gas phase refrigerant inlet / outlet for allowing the separated gas phase refrigerant to flow out and a liquid phase refrigerant inlet / outlet for allowing the separated liquid phase refrigerant to flow out.
 本実施形態では、加熱側アキュムレータ19として、比較的内容積の小さいものを採用している。このため、加熱側アキュムレータ19では、分離された液相冷媒を殆ど蓄えることなく液相冷媒出入口から流出させる。また、分離された液相冷媒のうち、液相冷媒出入口から流出させることのできない冷媒が、気相冷媒流出口から流出することもある。 In the present embodiment, a heating-side accumulator 19 having a relatively small internal volume is employed. For this reason, the heating-side accumulator 19 allows the separated liquid-phase refrigerant to flow out from the liquid-phase refrigerant inlet / outlet with little storage. Moreover, the refrigerant | coolant which cannot be made to flow out of a liquid phase refrigerant | coolant inlet / outlet among the isolate | separated liquid phase refrigerant | coolants may flow out of a gaseous-phase refrigerant | coolant outflow port.
 加熱側アキュムレータ19の気相冷媒出入口には、冷媒回路切替装置である第2四方弁13bの別の出入口側が接続されている。 The gas phase refrigerant inlet / outlet of the heating side accumulator 19 is connected to another inlet / outlet side of the second four-way valve 13b which is a refrigerant circuit switching device.
 第2四方弁13bは、加熱側アキュムレータ19の気相冷媒出入口側と第1四方弁13aの1つの出入口側とを接続すると同時に後述する冷却側アキュムレータ23の気相冷媒出入口側と吸入側アキュムレータ24の入口側とを接続する冷媒回路に切り替えることができる。 The second four-way valve 13b connects the gas-phase refrigerant inlet / outlet side of the heating-side accumulator 19 and one inlet / outlet side of the first four-way valve 13a, and at the same time, the gas-phase refrigerant inlet / outlet side of the cooling-side accumulator 23 and the suction-side accumulator 24. It is possible to switch to a refrigerant circuit connecting the inlet side.
 さらに、第2四方弁13bは、加熱側アキュムレータ19の気相冷媒出入口側と吸入側アキュムレータ24の入口側とを接続すると同時に冷却側アキュムレータ23の気相冷媒出入口と第1四方弁13aの1つの出入口側とを接続する冷媒回路に切り替えることができる。 Further, the second four-way valve 13b connects the gas-phase refrigerant inlet / outlet side of the heating-side accumulator 19 and the inlet side of the suction-side accumulator 24, and at the same time, the gas-phase refrigerant inlet / outlet of the cooling-side accumulator 23 and one of the first four-way valves 13a. It can switch to the refrigerant circuit which connects an entrance / exit side.
 また、第1四方弁13aが接続された第3三方継手14cの別の出入口には、第4流量調整弁15dを介して、冷却側エジェクタ22の冷却側ノズル部22aの入口側が接続されている。第3三方継手14cのさらに別の出入口には、第5流量調整弁15eを介して、第4三方継手14dの1つ出入口側が接続されている。第5流量調整弁15eは、室内凝縮器12下流側の冷媒であって、室内蒸発器21へ流入する冷媒を減圧させる第2減圧装置である。 Further, the inlet side of the cooling side nozzle portion 22a of the cooling side ejector 22 is connected to another outlet / inlet of the third three-way joint 14c to which the first four-way valve 13a is connected via the fourth flow rate adjusting valve 15d. . One further inlet / outlet side of the fourth three-way joint 14d is connected to another inlet / outlet of the third three-way joint 14c via a fifth flow rate adjusting valve 15e. The fifth flow rate adjustment valve 15 e is a second decompression device that decompresses the refrigerant that is downstream of the indoor condenser 12 and flows into the indoor evaporator 21.
 第4三方継手14dの別の出入口には、室内蒸発器21の一方の冷媒出入口側が接続されている。第4三方継手14dのさらに別の出入口には、第2開閉弁18bを介して、冷却側エジェクタ22の加熱側気液分離器22c側が接続されている。 One refrigerant inlet / outlet side of the indoor evaporator 21 is connected to another inlet / outlet of the fourth three-way joint 14d. The heating side gas-liquid separator 22c side of the cooling side ejector 22 is connected to another inlet / outlet of the fourth three-way joint 14d via the second on-off valve 18b.
 室内蒸発器21は、室内空調ユニット30のケーシング31内であって、前述した室内凝縮器12よりも空気流れ上流側に配置されている。室内蒸発器21は、第5流量調整弁15eあるいは第6流量調整弁15fにて減圧された低圧冷媒を空気と熱交換させて蒸発させ、吸熱作用を発揮させることによって空気を冷却する冷却用熱交換器である。 The indoor evaporator 21 is disposed in the casing 31 of the indoor air conditioning unit 30 and on the upstream side of the air flow from the indoor condenser 12 described above. The indoor evaporator 21 heats the low-pressure refrigerant decompressed by the fifth flow rate adjustment valve 15e or the sixth flow rate adjustment valve 15f by exchanging heat with air to evaporate it, thereby cooling the air by exerting an endothermic effect. It is an exchanger.
 室内蒸発器21の他方の冷媒出入口には、第6流量調整弁15fを介して、冷却側アキュムレータ23の液相冷媒出入口側が接続されている。 The liquid refrigerant inlet / outlet side of the cooling side accumulator 23 is connected to the other refrigerant inlet / outlet of the indoor evaporator 21 via a sixth flow rate adjusting valve 15f.
 また、本実施形態では、室内蒸発器21として、室外熱交換器17と同様に、いわゆるタンクアンドチューブ型の熱交換器であって、内部に形成された冷媒通路の通路断面積が冷媒流れ方向に向かって変化するものを採用している。 In the present embodiment, the indoor evaporator 21 is a so-called tank-and-tube heat exchanger similar to the outdoor heat exchanger 17, and the cross-sectional area of the refrigerant passage formed inside is the refrigerant flow direction. The one that changes toward is adopted.
 より具体的には、本実施形態の室内蒸発器21では、他方の冷媒出入口側から一方の冷媒出入口側へ向かうに伴って、内部に形成される冷媒通路の通路断面積が段階的に縮小するパス構成になっている。なお、本実施形態における他方の冷媒出入口は、冷却側アキュムレータ23の液相冷媒出入口が接続される側の出入口であり、一方の冷媒出入口は、第4三方継手14dの別の出入口が接続される側の出入口である。 More specifically, in the indoor evaporator 21 of the present embodiment, the passage cross-sectional area of the refrigerant passage formed inside decreases stepwise from the other refrigerant inlet / outlet side toward the one refrigerant inlet / outlet side. It has a path configuration. The other refrigerant inlet / outlet in the present embodiment is an inlet / outlet on the side to which the liquid-phase refrigerant inlet / outlet of the cooling side accumulator 23 is connected, and the other refrigerant inlet / outlet is connected to another inlet / outlet of the fourth three-way joint 14d. This is the side entrance.
 冷却側エジェクタ22の基本的構成は、加熱側エジェクタ16と同様である。従って、冷却側エジェクタ22は、冷却側ノズル部22a、冷却側ボデー22bを有している。そして、冷却側ボデー22bには、冷却側冷媒吸引口22c、冷却側昇圧部である冷却側ディフューザ部22dが形成されている。 The basic configuration of the cooling side ejector 22 is the same as that of the heating side ejector 16. Therefore, the cooling side ejector 22 has the cooling side nozzle part 22a and the cooling side body 22b. The cooling side body 22b is formed with a cooling side refrigerant suction port 22c and a cooling side diffuser portion 22d which is a cooling side boosting portion.
 冷却側ディフューザ部22dの冷媒出口には、冷却側アキュムレータ23の入口側が接続されている。冷却側アキュムレータ23は、冷却側エジェクタ22の冷却側ディフューザ部22dから流出した冷媒を気相冷媒と液相冷媒とに分離する冷却側気液分離器である。冷却側アキュムレータ23には、分離された気相冷媒を流出させるための気相冷媒流出口と、分離された液相冷媒を流出させるための液相冷媒流出口が設けられている。 The inlet side of the cooling side accumulator 23 is connected to the refrigerant outlet of the cooling side diffuser part 22d. The cooling side accumulator 23 is a cooling side gas-liquid separator that separates the refrigerant flowing out from the cooling side diffuser portion 22d of the cooling side ejector 22 into a gas phase refrigerant and a liquid phase refrigerant. The cooling side accumulator 23 is provided with a gas phase refrigerant outlet for flowing out the separated gas phase refrigerant and a liquid phase refrigerant outlet for letting out the separated liquid phase refrigerant.
 本実施形態では、冷却側アキュムレータ23として、加熱側アキュムレータ19と同様に、比較的内容積の小さいものを採用している。このため、冷却側アキュムレータ23では、分離された液相冷媒を殆ど蓄えることなく液相冷媒出入口から流出させる。また、分離された液相冷媒のうち、液相冷媒出入口から流出させることのできない冷媒が、気相冷媒流出口から流出することもある。 In the present embodiment, as the cooling side accumulator 23, a cooling side accumulator 23 having a relatively small internal volume is employed. For this reason, the cooling-side accumulator 23 causes the separated liquid-phase refrigerant to flow out from the liquid-phase refrigerant inlet / outlet with little storage. Moreover, the refrigerant | coolant which cannot be made to flow out of a liquid phase refrigerant | coolant inlet / outlet among the isolate | separated liquid phase refrigerant | coolants may flow out of a gaseous-phase refrigerant | coolant outflow port.
 冷却側アキュムレータ23の気相冷媒出入口には、冷媒回路切替装置である第2四方弁13bのさらに別の出入口側が接続されている。吸入側アキュムレータ24は、圧縮機11へ吸入される冷媒を気相冷媒と液相冷媒とに分離する気液分離器である。吸入側アキュムレータ24は、分離された気相冷媒を圧縮機11の吸入口側へ流出させるとともに、サイクルの余剰冷媒を蓄えるものである。 The gas phase refrigerant inlet / outlet port of the cooling side accumulator 23 is connected to another inlet / outlet side of the second four-way valve 13b which is a refrigerant circuit switching device. The suction side accumulator 24 is a gas-liquid separator that separates the refrigerant sucked into the compressor 11 into a gas phase refrigerant and a liquid phase refrigerant. The suction-side accumulator 24 allows the separated gas-phase refrigerant to flow out to the suction port side of the compressor 11 and stores excess refrigerant in the cycle.
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、エジェクタ式冷凍サイクル10によって温度調整された空気を車室内へ吹き出すためのもので、車室内最前部の計器盤(インストルメントパネル)の内側(車室内)に配置されている。室内空調ユニット30は、その外殻を形成するケーシング31内に送風機32、室内蒸発器21、室内凝縮器12、およびエアミックスドア34等を収容して構成されている。 Next, the indoor air conditioning unit 30 will be described. The indoor air conditioning unit 30 is for blowing out the air whose temperature has been adjusted by the ejector refrigeration cycle 10 into the vehicle interior, and is disposed inside (in the vehicle interior) of the instrument panel (instrument panel) at the foremost interior of the vehicle interior. . The indoor air conditioning unit 30 is configured by housing a blower 32, an indoor evaporator 21, an indoor condenser 12, an air mix door 34, and the like in a casing 31 that forms an outer shell thereof.
 ケーシング31は、車室内に送風される空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。このケーシング31内の空気流れ最上流側には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替部としての内外気切替装置33が配置されている。 The casing 31 forms an air passage for air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength. On the most upstream side of the air flow in the casing 31, an inside / outside air switching device 33 is disposed as an inside / outside air switching unit for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31. Yes.
 内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port through which the inside air is introduced into the casing 31 and the outside air introduction port through which the outside air is introduced by the inside / outside air switching door, so that the air volume of the inside air and the air volume of the outside air are adjusted. The air volume ratio is continuously changed. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
 内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風装置としての送風機32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置40から出力される制御電圧によって回転数(送風量)が制御される。 A blower 32 as a blower that blows air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the air flow of the inside / outside air switching device 33. The blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 40.
 送風機32の空気流れ下流側には、室内蒸発器21および室内凝縮器12が、この順に配置されている。つまり、室内蒸発器21は、室内凝縮器12よりも空気流れ上流側に配置されている。さらに、室内蒸発器21の空気流れ下流側であって、かつ、室内凝縮器12の空気流れ上流側には、室内蒸発器21通過後の空気のうち、室内凝縮器12を通過させる風量割合を調整するエアミックスドア34が配置されている。 The indoor evaporator 21 and the indoor condenser 12 are arranged in this order on the downstream side of the air flow of the blower 32. That is, the indoor evaporator 21 is disposed upstream of the indoor condenser 12 in the air flow. Further, on the downstream side of the air flow of the indoor evaporator 21 and the upstream side of the air flow of the indoor condenser 12, the ratio of the amount of air passing through the indoor condenser 12 in the air after passing through the indoor evaporator 21 is set. An air mix door 34 to be adjusted is disposed.
 また、室内凝縮器12の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された空気と室内凝縮器12を迂回して加熱されていない空気とを混合させる混合空間35が設けられている。さらに、ケーシング31の空気流れ最下流部には、混合空間35にて混合された空気(空調風)を、空調対象空間である車室内へ吹き出す開口穴が設けられている。 Further, on the downstream side of the air flow of the indoor condenser 12, a mixing space in which air heated by exchanging heat with the refrigerant in the indoor condenser 12 and air that has not been heated bypassing the indoor condenser 12 are mixed. 35 is provided. Further, an opening hole for blowing the air (air conditioned air) mixed in the mixing space 35 into the vehicle interior, which is the air conditioned space, is provided in the most downstream portion of the air flow of the casing 31.
 具体的には、この開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 Specifically, as the opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided. The face opening hole is an opening hole for blowing conditioned air toward the upper body of the passenger in the vehicle interior. The foot opening hole is an opening hole for blowing conditioned air toward the feet of the passenger. The defroster opening hole is an opening hole for blowing out conditioned air toward the inner side surface of the vehicle front window glass.
 これらのフェイス開口穴、フット開口穴、およびデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 These face opening hole, foot opening hole, and defroster opening hole are respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet (not shown) through a duct that forms an air passage. )It is connected to the.
 従って、エアミックスドア34が、室内凝縮器12を通過させる風量と室内凝縮器12を迂回させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される空気(空調風)の温度が調整されることになる。 Therefore, the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that bypasses the indoor condenser 12, thereby adjusting the temperature of the conditioned air mixed in the mixing space. . Thereby, the temperature of the air (air conditioned air) blown out from each outlet to the vehicle interior is adjusted.
 つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整部としての機能を果たす。なお、エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 That is, the air mix door 34 functions as a temperature adjusting unit that adjusts the temperature of the conditioned air blown into the vehicle interior. The air mix door 34 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
 また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。 In addition, on the upstream side of the air flow of the face opening hole, foot opening hole, and defroster opening hole, a face door that adjusts the opening area of the face opening hole, a foot door that adjusts the opening area of the foot opening hole, and a defroster opening hole, respectively A defroster door (none of which is shown) for adjusting the opening area is arranged.
 これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替装置を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、空調制御装置40から出力される制御信号によって、その作動が制御される。 These face doors, foot doors, and defroster doors constitute an opening hole mode switching device that switches the opening hole mode, and are linked to an electric actuator for driving an outlet mode door via a link mechanism or the like. And rotated. The operation of this electric actuator is also controlled by a control signal output from the air conditioning control device 40.
 吹出口モード切替装置によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 Specific examples of the outlet mode switched by the outlet mode switching device include a face mode, a bi-level mode, and a foot mode.
 フェイスモードは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。 The face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passenger in the passenger compartment. The bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment. The foot mode is a blow-out mode in which the foot blow-out opening is fully opened and the defroster blow-out opening is opened by a small opening so that air is mainly blown out from the foot blow-out opening.
 さらに、乗員が操作パネル50に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。 Furthermore, when the occupant manually operates a blow mode switching switch provided on the operation panel 50, the defroster mode in which the defroster blowout port is fully opened and air is blown out from the defroster blowout port to the inner surface of the front windshield of the vehicle can be set.
 次に、本実施形態の電気制御部(ECU)について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。空調制御装置40は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する。各種制御対象機器とは、例えば、圧縮機11、第1四方弁13a、第2四方弁13b、流量調整弁15a-15f、第1開閉弁18a、第2開閉弁18b、送風機32等である。 Next, the electric control unit (ECU) of this embodiment will be described. The air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. The air conditioning control device 40 performs various calculations and processes based on the control program stored in the ROM, and controls the operation of various control target devices connected to the output side. The various devices to be controlled are, for example, the compressor 11, the first four-way valve 13a, the second four-way valve 13b, the flow rate adjusting valves 15a-15f, the first on-off valve 18a, the second on-off valve 18b, the blower 32, and the like.
 また、空調制御装置40の入力側には、図7のブロック図に示すように、内気温センサ41、外気温センサ42、日射センサ43、室外熱交換器温度センサ44、吐出温度センサ45、室内蒸発器温度センサ46、空調風温度センサ47等が接続されている。そして、空調制御装置40には、これらのセンサ群の検出信号が入力される。 Further, on the input side of the air conditioning control device 40, as shown in the block diagram of FIG. 7, an inside air temperature sensor 41, an outside air temperature sensor 42, a solar radiation sensor 43, an outdoor heat exchanger temperature sensor 44, a discharge temperature sensor 45, an indoor temperature sensor, An evaporator temperature sensor 46, an air-conditioning air temperature sensor 47, and the like are connected. And the detection signal of these sensor groups is input into the air-conditioning control apparatus 40. FIG.
 内気温センサ41は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ42は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ43は、車室内へ照射される日射量Asを検出する日射量検出部である。室外熱交換器温度センサ44は、室外熱交換器における冷媒の温度(室外熱交換器温度)Toutを検出する室外熱交換器温度検出部である。吐出温度センサ45は、圧縮機11の吐出冷媒温度Tdを検出する吐出温度検出部である。室内蒸発器温度センサ46は、室内蒸発器21における冷媒蒸発温度(室内蒸発器温度)Tefinを検出する蒸発器温度検出部である。空調風温度センサ47は、混合空間から車室内へ送風される空気温度TAVを検出する空調風温度検出部である。 The inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr. The outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam. The solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior. The outdoor heat exchanger temperature sensor 44 is an outdoor heat exchanger temperature detection unit that detects a refrigerant temperature (outdoor heat exchanger temperature) Tout in the outdoor heat exchanger. The discharge temperature sensor 45 is a discharge temperature detection unit that detects the discharge refrigerant temperature Td of the compressor 11. The indoor evaporator temperature sensor 46 is an evaporator temperature detector that detects a refrigerant evaporation temperature (indoor evaporator temperature) Tefin in the indoor evaporator 21. The conditioned air temperature sensor 47 is an conditioned air temperature detector that detects an air temperature TAV that is blown from the mixed space into the vehicle interior.
 さらに、空調制御装置40の入力側には、図7に示すように、車室内前部の計器盤付近に配置された操作パネル50が接続され、この操作パネル50に設けられた各種操作スイッチからの操作信号が入力される。操作パネル50に設けられた各種操作スイッチとしては、オートスイッチ、冷房スイッチ(A/Cスイッチ)、風量設定スイッチ、温度設定スイッチ、吹出モード切替スイッチ等がある。 Further, as shown in FIG. 7, an operation panel 50 disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the air conditioning control device 40, and various operation switches provided on the operation panel 50 are connected. The operation signal is input. As various operation switches provided on the operation panel 50, there are an auto switch, a cooling switch (A / C switch), an air volume setting switch, a temperature setting switch, a blowing mode switching switch, and the like.
 オートスイッチは、車両用空調装置1の自動制御運転を設定あるいは解除する入力部である。冷房スイッチ(A/Cスイッチ)は、車室内の冷房を行うことを要求する入力部である。風量設定スイッチは、送風機32の風量をマニュアル設定する入力部である。温度設定スイッチは、車室内の目標温度Tsetをマニュアル設定する入力部である。吹出モード切替スイッチは吹出モードをマニュアル設定する入力部である。 The auto switch is an input unit that sets or cancels the automatic control operation of the vehicle air conditioner 1. The cooling switch (A / C switch) is an input unit that requests cooling of the passenger compartment. The air volume setting switch is an input unit for manually setting the air volume of the blower 32. The temperature setting switch is an input unit for manually setting the target temperature Tset in the vehicle compartment. The blowing mode changeover switch is an input unit for manually setting the blowing mode.
 なお、本実施形態の空調制御装置40は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。各種制御対象機器それぞれの作動を制御する構成(ハードウェアおよびソフトウェア)が、各種制御対象機器それぞれの作動を制御する制御部を構成している。 In addition, the air-conditioning control device 40 of this embodiment is configured such that a control unit that controls various devices to be controlled connected to the output side is integrally configured. A configuration (hardware and software) that controls the operation of each of the various control target devices constitutes a control unit that controls the operation of each of the various control target devices.
 例えば、空調制御装置40のうち、圧縮機11の冷媒吐出能力(回転数)を制御する構成は、吐出能力制御部を構成している。また、第1開閉弁18aおよび第2開閉弁18b等の冷媒回路切替装置の作動を制御する構成は、冷媒回路制御部を構成している。 For example, in the air-conditioning control device 40, the configuration for controlling the refrigerant discharge capability (rotation speed) of the compressor 11 constitutes a discharge capability control unit. Moreover, the structure which controls the action | operation of refrigerant circuit switching apparatuses, such as the 1st on-off valve 18a and the 2nd on-off valve 18b, comprises the refrigerant circuit control part.
 次に、上記構成における本実施形態の作動について説明する。前述の如く、本実施形態のエジェクタ式冷凍サイクル10では、冷房モード、第1除湿暖房モード、第2除湿暖房モード、暖房モード、除霜モードの運転を切り替えることができる。 Next, the operation of this embodiment in the above configuration will be described. As described above, in the ejector type refrigeration cycle 10 of the present embodiment, the operation of the cooling mode, the first dehumidifying heating mode, the second dehumidifying heating mode, the heating mode, and the defrosting mode can be switched.
 これらの運転モードの切り替えは、空調制御装置40の記憶回路に予め記憶された空調制御プログラムが実行されることによって行われる。空調制御プログラムは、操作パネル50のオートスイッチが投入(ON)された際に実行される。 These operation modes are switched by executing an air conditioning control program stored in advance in the storage circuit of the air conditioning control device 40. The air conditioning control program is executed when the auto switch of the operation panel 50 is turned on (ON).
 より具体的には、空調制御プログラムのメインルーチンでは、上述の空調制御用のセンサ群の検出信号および各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、以下数式F1に基づいて算出する。 More specifically, in the main routine of the air conditioning control program, the detection signals of the above-mentioned air conditioning control sensor groups and the operation signals from various air conditioning operation switches are read. And based on the value of the read detection signal and operation signal, the target blowing temperature TAO which is the target temperature of the blowing air which blows off into the vehicle interior is calculated based on the following formula F1.
 TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気センサによって検出された車室内温度(内気温)、Tamは外気センサによって検出された外気温、Asは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C (F1)
Note that Tset is the vehicle interior set temperature set by the temperature setting switch, Tr is the vehicle interior temperature (inside air temperature) detected by the inside air sensor, Tam is the outside air temperature detected by the outside air sensor, and As is detected by the solar radiation sensor. The amount of solar radiation. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
 さらに、操作パネル50の冷房スイッチが投入されており、かつ、目標吹出温度TAOが予め定めた冷房基準温度αよりも低くなっている場合には、冷房モードでの運転を実行する。 Further, when the cooling switch of the operation panel 50 is turned on and the target blowing temperature TAO is lower than the predetermined cooling reference temperature α, the operation in the cooling mode is executed.
 また、冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが予め定めた除湿暖房基準温度βよりも高くなっている場合には、第1除湿暖房モードでの運転を実行する。また、冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが除湿暖房基準温度β以下になっている場合には、第2除湿暖房モードでの運転を実行する。 In the state where the cooling switch is turned on, when the target outlet temperature TAO is equal to or higher than the cooling reference temperature α and the outside air temperature Tam is higher than the predetermined dehumidifying heating reference temperature β, Operation in the first dehumidifying and heating mode is executed. Further, in the state where the cooling switch is turned on, when the target blowing temperature TAO is equal to or higher than the cooling reference temperature α and the outside air temperature Tam is equal to or lower than the dehumidifying heating reference temperature β, the second dehumidifying heating is performed. Run in mode.
 また、冷房スイッチが投入されていない場合には、暖房モードでの運転を実行する。さらに、暖房モードの実行中等に室外熱交換器17に着霜が生じた際には、これを取り除くための除霜運転を行う。 Also, when the cooling switch is not turned on, the operation in the heating mode is executed. Further, when frost formation occurs in the outdoor heat exchanger 17 during the execution of the heating mode or the like, a defrosting operation is performed to remove the frost formation.
 これにより、本実施形態の車両用空調装置1では、主に夏季のように比較的外気温が高い場合に、冷房モードでの運転を実行している。また、主に早春季あるいは初冬季等に、第1、第2除湿暖房モードでの運転を実行している。また、主に冬季のように比較的外気温が低い場合に、暖房モードでの運転を実行している。以下に各運転モードにおける作動を説明する。 Thereby, in the vehicle air conditioner 1 of the present embodiment, the operation in the cooling mode is executed mainly when the outside air temperature is relatively high as in summer. The operation in the first and second dehumidifying heating modes is executed mainly in early spring or early winter. In addition, when the outside air temperature is relatively low, such as in winter, the operation in the heating mode is executed. The operation in each operation mode will be described below.
 (a)冷房モード
 冷房モードでは、空調制御装置40が、室内凝縮器12の冷媒出口側と第1三方継手14a側とを接続すると同時に第2四方弁13b側と第3三方継手14c側とを接続する冷媒回路に切り替えるように第1四方弁13aの作動を制御する。さらに、加熱側アキュムレータ19の気相冷媒出入口側と第1四方弁13a側とを接続すると同時に冷却側アキュムレータ23の気相冷媒出入口側と吸入側アキュムレータ24の入口側とを接続する冷媒回路に切り替えるように第2四方弁13bの作動を制御する。
(A) Cooling mode In the cooling mode, the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the first three-way joint 14a side, and simultaneously connects the second four-way valve 13b side and the third three-way joint 14c side. The operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit to be connected. Further, the refrigerant circuit connecting the gas-phase refrigerant inlet / outlet side of the heating-side accumulator 19 and the first four-way valve 13a side is simultaneously switched to the refrigerant circuit connecting the gas-phase refrigerant inlet / outlet side of the cooling-side accumulator 23 and the inlet side of the suction-side accumulator 24. Thus, the operation of the second four-way valve 13b is controlled.
 また、空調制御装置40は、第1流量調整弁15aを全閉状態とし、第2流量調整弁15bを全開状態とし、第3流量調整弁15cを全開状態とし、第4流量調整弁15dを冷媒減圧作用を発揮する絞り状態とし、第5流量調整弁15eを全閉状態とし、第6流量調整弁15fを絞り状態とする。さらに、空調制御装置40は、第1開閉弁18aを閉じ、第2開閉弁18bを開く。 In addition, the air conditioning controller 40 sets the first flow rate adjustment valve 15a to a fully closed state, sets the second flow rate adjustment valve 15b to a fully open state, sets the third flow rate adjustment valve 15c to a fully open state, and sets the fourth flow rate adjustment valve 15d to the refrigerant. The throttle state in which the pressure reducing action is exerted is set, the fifth flow rate adjustment valve 15e is fully closed, and the sixth flow rate adjustment valve 15f is set in the throttle state. Further, the air conditioning control device 40 closes the first on-off valve 18a and opens the second on-off valve 18b.
 これにより、冷房モードでは、図2の実線矢印に示すように、圧縮機11、室内凝縮器12、(第2流量調整弁15b、)室外熱交換器17、(第3流量調整弁15c、)加熱側アキュムレータ19、第4流量調整弁15d、冷却側エジェクタ22、冷却側アキュムレータ23、吸入側アキュムレータ24、圧縮機11の順に冷媒が循環するとともに、冷却側アキュムレータ23、第6流量調整弁15f、室内蒸発器21、冷却側エジェクタ22の冷却側冷媒吸引口22cの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。 Thereby, in the cooling mode, as shown by the solid line arrow in FIG. 2, the compressor 11, the indoor condenser 12, the (second flow rate adjustment valve 15b), the outdoor heat exchanger 17, and the (third flow rate adjustment valve 15c). The refrigerant circulates in the order of the heating side accumulator 19, the fourth flow rate adjustment valve 15d, the cooling side ejector 22, the cooling side accumulator 23, the suction side accumulator 24, and the compressor 11, the cooling side accumulator 23, the sixth flow rate adjustment valve 15f, An ejector type refrigeration cycle in which the refrigerant circulates in the order of the indoor evaporator 21 and the cooling side refrigerant suction port 22c of the cooling side ejector 22 is configured.
 空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 The air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器21の目標蒸発器吹出温度TEOを決定する。この目標蒸発器吹出温度TEOは、室内蒸発器21の着霜を抑制可能に決定された基準着霜防止温度(例えば、1℃)以上となるように決定される。 For example, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 21 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance. This target evaporator outlet temperature TEO is determined to be equal to or higher than a reference frost prevention temperature (for example, 1 ° C.) determined to be able to suppress frost formation in the indoor evaporator 21.
 そして、この目標蒸発器吹出温度TEOと室内蒸発器温度センサ46によって検出された室内蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法を用いて室内蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。 Then, based on the deviation between the target evaporator outlet temperature TEO and the indoor evaporator temperature Tefin detected by the indoor evaporator temperature sensor 46, the indoor evaporator temperature Tefin is converted into the target evaporator outlet temperature TEO using a feedback control method. The control signal output to the electric motor of the compressor 11 is determined so as to approach
 また、第4流量調整弁15dの絞り開度、すなわち第4流量調整弁15dへ出力される制御信号(制御パルス)については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、エジェクタ式冷凍サイクル10のCOPが極大値に近づくように決定される。 Further, the throttle opening degree of the fourth flow rate adjusting valve 15d, that is, the control signal (control pulse) output to the fourth flow rate adjusting valve 15d is stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the COP of the ejector refrigeration cycle 10 is determined so as to approach the maximum value.
 また、第6流量調整弁15fの絞り開度、すなわち第6流量調整弁15fへ出力される制御信号(制御パルス)については、予め空調制御装置40に記憶された冷房用の基準開度に決定される。 Further, the throttle opening degree of the sixth flow rate adjustment valve 15f, that is, the control signal (control pulse) output to the sixth flow rate adjustment valve 15f is determined as the reference opening degree for cooling stored in the air conditioning control device 40 in advance. Is done.
 また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、エアミックスドア34が室内凝縮器12側の空気通路を閉塞し、室内蒸発器21通過後の空気の全流量が室内凝縮器12を迂回して流れるように決定される。 For the control signal output to the electric actuator that drives the air mix door 34, the air mix door 34 closes the air passage on the indoor condenser 12 side, and the total flow rate of air after passing through the indoor evaporator 21 is It is determined to flow around the condenser 12.
 そして、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置1の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み、目標吹出温度TAOの算出、各種制御対象機器の作動状態決定、制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。 Then, the control signals determined as described above are output to various control target devices. Thereafter, until the operation of the vehicle air conditioner 1 is requested to be stopped, the above-described detection signal and operation signal are read, the target blowing temperature TAO is calculated, the operating states of various control target devices are determined, and the control is performed every predetermined control cycle. Control routines such as voltage and control signal output are repeated. Such a control routine is repeated in the other operation modes.
 従って、冷房モード時のエジェクタ式冷凍サイクル10では、図8のモリエル線図に示すように冷媒の状態が変化する。 Therefore, in the ejector refrigeration cycle 10 in the cooling mode, the state of the refrigerant changes as shown in the Mollier diagram of FIG.
 具体的には、圧縮機11から吐出された高圧冷媒(図8のa8点)が、室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12側の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は、殆ど空気と熱交換することなく室内凝縮器12から流出する。 Specifically, the high-pressure refrigerant (point a8 in FIG. 8) discharged from the compressor 11 flows into the indoor condenser 12. At this time, since the air mix door 34 closes the air passage on the indoor condenser 12 side, the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 with almost no heat exchange with air.
 室内凝縮器12から流出した冷媒は、第1四方弁13a、全開となっている第2流量調整弁15b等を介して、室外熱交換器17の一方の冷媒出入口へ流入する。室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気へ放熱して凝縮する(図8のa8点からe8点)。 The refrigerant flowing out of the indoor condenser 12 flows into one refrigerant inlet / outlet of the outdoor heat exchanger 17 through the first four-way valve 13a, the fully opened second flow rate adjusting valve 15b, and the like. The refrigerant that has flowed into the outdoor heat exchanger 17 dissipates heat to the outside air blown from the blower fan in the outdoor heat exchanger 17 and condenses (point a8 to point e8 in FIG. 8).
 室外熱交換器17の他方の冷媒出入口から流出した冷媒は、全開となっている第3流量調整弁15cを介して、加熱側アキュムレータ19へ流入して気相冷媒と液相冷媒とに分離される。加熱側アキュムレータ19にて分離された液相冷媒は、第2四方弁13b、第1四方弁13a等を介して、第4流量調整弁15dへ流入して減圧される(図8のe8点からh8点)。 The refrigerant that flows out from the other refrigerant inlet / outlet of the outdoor heat exchanger 17 flows into the heating-side accumulator 19 through the third flow rate adjusting valve 15c that is fully open, and is separated into a gas-phase refrigerant and a liquid-phase refrigerant. The The liquid-phase refrigerant separated by the heating-side accumulator 19 flows into the fourth flow rate adjustment valve 15d via the second four-way valve 13b, the first four-way valve 13a, etc., and is depressurized (from point e8 in FIG. 8). h8 points).
 第4流量調整弁15dにて減圧された冷媒は、冷却側エジェクタ22の冷却側ノズル部22aへ流入する。冷却側ノズル部22aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図8のh8点からi8点)。そして、冷却側ノズル部22aから噴射された冷却側噴射冷媒の吸引作用によって、室内蒸発器21の一方の冷媒出入口から流出した冷媒が、冷却側エジェクタ22の冷却側冷媒吸引口22cから吸引される。 The refrigerant decompressed by the fourth flow rate adjustment valve 15d flows into the cooling side nozzle portion 22a of the cooling side ejector 22. The refrigerant that has flowed into the cooling-side nozzle portion 22a is isentropically decompressed and injected (from point h8 to point i8 in FIG. 8). And the refrigerant | coolant which flowed out from one refrigerant inlet / outlet of the indoor evaporator 21 is attracted | sucked from the cooling side refrigerant | coolant suction port 22c of the cooling side ejector 22 by the suction effect | action of the cooling side injection refrigerant | coolant injected from the cooling side nozzle part 22a. .
 冷却側ノズル部22aから噴射された冷却側噴射冷媒および冷却側エジェクタ22の冷却側冷媒吸引口22cから吸引された冷却側吸引冷媒は、冷却側ディフューザ部22dへ流入する(図8のi8からj8点、p8点からj8点)。 The cooling-side injection refrigerant injected from the cooling-side nozzle portion 22a and the cooling-side suction refrigerant sucked from the cooling-side refrigerant suction port 22c of the cooling-side ejector 22 flow into the cooling-side diffuser portion 22d (from i8 to j8 in FIG. 8). Point, p8 point to j8 point).
 冷却側ディフューザ部22dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、冷却側噴射冷媒と冷却側吸引冷媒との混合冷媒の圧力が上昇する(図8のj8点からk8点)。冷却側ディフューザ部22dから流出した冷媒は、冷却側アキュムレータ23へ流入して気相冷媒と液相冷媒とに分離される。 In the cooling side diffuser portion 22d, the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area. As a result, the pressure of the mixed refrigerant of the cooling-side injection refrigerant and the cooling-side suction refrigerant increases (from point j8 to point k8 in FIG. 8). The refrigerant that has flowed out of the cooling side diffuser portion 22d flows into the cooling side accumulator 23 and is separated into a gas phase refrigerant and a liquid phase refrigerant.
 冷却側アキュムレータ23にて分離された液相冷媒(図8のm8点)は、絞り状態となっている第6流量調整弁15fへ流入して減圧される(図8のm8点からo8点)。第6流量調整弁15fにて減圧された冷媒は、室内蒸発器21の他方の冷媒出入口から流入し、送風機32から送風された空気から吸熱して蒸発する(図8のo8点からp8点)。これにより、空気が冷却される。 The liquid refrigerant (m8 point in FIG. 8) separated by the cooling-side accumulator 23 flows into the throttled sixth flow rate adjustment valve 15f and is depressurized (from m8 point to o8 point in FIG. 8). . The refrigerant depressurized by the sixth flow rate adjusting valve 15f flows from the other refrigerant inlet / outlet of the indoor evaporator 21, absorbs heat from the air blown from the blower 32, and evaporates (from point o8 to point p8 in FIG. 8). . Thereby, air is cooled.
 冷却側アキュムレータ23にて分離された気相冷媒(図8のn8点)は、第2四方弁13b、吸入側アキュムレータ24等を介して圧縮機11へ吸入されて再び圧縮される(図8のn8点からa8点)。 The gas-phase refrigerant (point n8 in FIG. 8) separated by the cooling-side accumulator 23 is sucked into the compressor 11 through the second four-way valve 13b, the suction-side accumulator 24, etc. and compressed again (in FIG. 8). n8 points to a8 points).
 従って、冷房モードでは、室内蒸発器21にて冷却された空気を、室内凝縮器12にて再加熱することなく車室内へ吹き出すことによって、車室内の冷房を行うことができる。 Therefore, in the cooling mode, the air in the vehicle interior can be cooled by blowing the air cooled by the indoor evaporator 21 into the vehicle interior without being reheated by the indoor condenser 12.
 さらに、冷房モードでは、冷却側エジェクタ22の冷却側ディフューザ部22dにて昇圧された冷媒を圧縮機11へ吸入させている。従って、蒸発器として機能する熱交換器(冷房モードでは、室内蒸発器21)における冷媒蒸発圧力と圧縮機11の吸入冷媒の圧力とが同等となる通常の冷凍サイクル装置と比較して、圧縮機11の消費動力を低減させて、サイクルの成績係数COPを向上させることができる。 Furthermore, in the cooling mode, the refrigerant whose pressure has been increased by the cooling side diffuser portion 22d of the cooling side ejector 22 is sucked into the compressor 11. Therefore, in comparison with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the heat exchanger functioning as an evaporator (in the cooling mode, the indoor evaporator 21) and the pressure of the refrigerant sucked in the compressor 11 are equal. 11 can be reduced, and the coefficient of performance COP of the cycle can be improved.
 (b)第1除湿暖房モード
 第1除湿暖房モードでは、空調制御装置40が、室内凝縮器12の冷媒出口側と第1三方継手14a側とを接続すると同時に第2四方弁13b側と第3三方継手14c側とを接続する冷媒回路に切り替えるように第1四方弁13aの作動を制御する。さらに、加熱側アキュムレータ19の気相冷媒出入口側と第1四方弁13a側とを接続すると同時に冷却側アキュムレータ23の気相冷媒出入口側と吸入側アキュムレータ24の入口側とを接続する冷媒回路に切り替えるように第2四方弁13bの作動を制御する。
(B) First Dehumidification Heating Mode In the first dehumidification heating mode, the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the first three-way joint 14a side at the same time as the second four-way valve 13b side and the third. The operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit that connects the three-way joint 14c side. Further, the refrigerant circuit connecting the gas-phase refrigerant inlet / outlet side of the heating-side accumulator 19 and the first four-way valve 13a side is simultaneously switched to the refrigerant circuit connecting the gas-phase refrigerant inlet / outlet side of the cooling-side accumulator 23 and the inlet side of the suction-side accumulator 24. Thus, the operation of the second four-way valve 13b is controlled.
 また、空調制御装置40は、第1流量調整弁15aを全閉状態とし、第2流量調整弁15bを絞り状態とし、第3流量調整弁15cを全開状態とし、第4流量調整弁15dを全閉状態とし、第5流量調整弁15e絞り状態とし、第6流量調整弁15fを全開状態とする。さらに、空調制御装置40は、第1開閉弁18aを閉じ、第2開閉弁18bを閉じる。 In addition, the air conditioning controller 40 sets the first flow rate adjustment valve 15a to the fully closed state, sets the second flow rate adjustment valve 15b to the throttled state, sets the third flow rate adjustment valve 15c to the fully open state, and sets the fourth flow rate adjustment valve 15d to the fully open state. The closed state is set, the fifth flow rate adjusting valve 15e is throttled, and the sixth flow rate adjusting valve 15f is fully opened. Further, the air conditioning control device 40 closes the first on-off valve 18a and closes the second on-off valve 18b.
 これにより、第1除湿暖房モードでは、図3の実線矢印に示すように、圧縮機11、室内凝縮器12、第2流量調整弁15b、室外熱交換器17、(第3流量調整弁15c、)加熱側アキュムレータ19、第5流量調整弁15e、室内蒸発器21、(第6流量調整弁15f、)冷却側アキュムレータ23、吸入側アキュムレータ24、圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。 Thereby, in the 1st dehumidification heating mode, as shown to the solid line arrow of FIG. 3, the compressor 11, the indoor condenser 12, the 2nd flow regulating valve 15b, the outdoor heat exchanger 17, (3rd flow regulating valve 15c, ) A refrigeration cycle in which refrigerant circulates in the order of the heating side accumulator 19, the fifth flow rate adjustment valve 15e, the indoor evaporator 21, the (sixth flow rate adjustment valve 15f), the cooling side accumulator 23, the suction side accumulator 24, and the compressor 11 is configured. Is done.
 従って、第1除湿暖房モードでは、室内凝縮器12、室外熱交換器17、および室内蒸発器21が冷媒流れに対してこの順で直列に接続される。 Therefore, in the first dehumidifying and heating mode, the indoor condenser 12, the outdoor heat exchanger 17, and the indoor evaporator 21 are connected in series to the refrigerant flow in this order.
 空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 The air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
 例えば、第2流量調整弁15bの絞り開度、すなわち第2流量調整弁15bへ出力される制御信号(制御パルス)については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、目標吹出温度TAOの上昇に伴って、絞り開度が減少するように決定される。換言すると、サイクルに要求される加熱能力の上昇に伴って、絞り開度が減少するように決定される。 For example, the throttle opening of the second flow rate adjustment valve 15b, that is, the control signal (control pulse) output to the second flow rate adjustment valve 15b is stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the throttle opening is determined so as to decrease as the target blowing temperature TAO increases. In other words, the throttle opening is determined to decrease as the heating capacity required for the cycle increases.
 また、第5流量調整弁15eの絞り開度、すなわち第5流量調整弁15eへ出力される制御信号(制御パルス)については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、エジェクタ式冷凍サイクル10のCOPが極大値に近づくように決定される。 Further, the throttle opening degree of the fifth flow rate adjusting valve 15e, that is, the control signal (control pulse) output to the fifth flow rate adjusting valve 15e is previously stored in the air conditioning control device 40 based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the COP of the ejector refrigeration cycle 10 is determined so as to approach the maximum value.
 このため、第5流量調整弁15eの絞り開度は、第2流量調整弁15bの絞り開度が減少するに伴って増加する。換言すると、第5流量調整弁15eの絞り開度は、サイクルに要求される加熱能力の上昇に伴って、増加するように決定される。 Therefore, the throttle opening degree of the fifth flow rate adjustment valve 15e increases as the throttle opening degree of the second flow rate adjustment valve 15b decreases. In other words, the throttle opening degree of the fifth flow rate adjusting valve 15e is determined so as to increase as the heating capacity required for the cycle increases.
 また、エアミックスドア34の開度、すなわちエアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、空調風温度センサ47によって検出された空気温度TAVが目標吹出温度TAOに近づくように決定される。その他の制御対象機器の作動状態は、冷房モードと同様に決定される。 As for the opening of the air mix door 34, that is, the control signal output to the electric actuator that drives the air mix door 34, the air temperature TAV detected by the air conditioning wind temperature sensor 47 approaches the target outlet temperature TAO. It is determined. The operating states of other devices to be controlled are determined in the same manner as in the cooling mode.
 従って、第1除湿暖房モード時のエジェクタ式冷凍サイクル10では、図9のモリエル線図に示すように冷媒の状態が変化する。図9のモリエル線図では、冷房モードで説明した図8のモリエル線図とサイクル構成上同等の箇所の冷媒の状態を、図8と同一の符号(アルファベット)で示し、添字(数字)のみを変更している。このことは、以下で説明する他のモリエル線図においても同様である。 Therefore, in the ejector refrigeration cycle 10 in the first dehumidifying and heating mode, the state of the refrigerant changes as shown in the Mollier diagram of FIG. In the Mollier diagram of FIG. 9, the state of the refrigerant in the same place as the Mollier diagram of FIG. 8 described in the cooling mode in the cycle configuration is indicated by the same reference numerals (alphabet) as in FIG. It has changed. The same applies to other Mollier diagrams described below.
 具体的には、第1除湿暖房モードでは、エアミックスドア34が室内凝縮器12側の空気通路を開くので、圧縮機11から吐出された高圧冷媒(図9のa9点)が、室内凝縮器12へ流入し、室内蒸発器21にて冷却されて除湿された空気の一部と熱交換して放熱する(図9のa9点からb9点)。これにより、空気の一部が加熱される。 Specifically, in the first dehumidifying and heating mode, the air mix door 34 opens the air passage on the indoor condenser 12 side, so that the high-pressure refrigerant (point a9 in FIG. 9) discharged from the compressor 11 becomes the indoor condenser. 12 and heat is exchanged with a part of the air cooled and dehumidified by the indoor evaporator 21 to dissipate heat (from point a9 to point b9 in FIG. 9). Thereby, a part of air is heated.
 室内凝縮器12から流出した冷媒は、第1四方弁13a等を介して、第2流量調整弁15bへ流入して減圧される(図9のb9点からc9点)。第2流量調整弁15bにて減圧された冷媒は、室外熱交換器17の一方の冷媒出入口へ流入する。 The refrigerant that has flowed out of the indoor condenser 12 flows into the second flow rate adjusting valve 15b via the first four-way valve 13a and the like and is depressurized (from point b9 to point c9 in FIG. 9). The refrigerant decompressed by the second flow rate adjustment valve 15 b flows into one refrigerant inlet / outlet of the outdoor heat exchanger 17.
 ここで、室外熱交換器温度Toutが外気温Tamよりも高くなっている場合には、図9に示すように、室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気へ放熱する(図9のc9点からe9点)。一方、室外熱交換器温度Toutが外気温Tamよりも低くなっている場合には、室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気から吸熱する。 Here, when the outdoor heat exchanger temperature Tout is higher than the outdoor air temperature Tam, as shown in FIG. 9, the refrigerant flowing into the outdoor heat exchanger 17 is blown by the outdoor heat exchanger 17. The heat is radiated to the outside air blown from (from point c9 to point e9 in FIG. 9). On the other hand, when the outdoor heat exchanger temperature Tout is lower than the outdoor temperature Tam, the refrigerant flowing into the outdoor heat exchanger 17 absorbs heat from the outside air blown from the blower fan in the outdoor heat exchanger 17. .
 室外熱交換器17の他方の冷媒出入口から流出した冷媒は、加熱側アキュムレータ19、第2四方弁13b、第1四方弁13a等を介して、第5流量調整弁15eへ流入して減圧される(図9のe9点からp9点)。 The refrigerant flowing out from the other refrigerant inlet / outlet of the outdoor heat exchanger 17 flows into the fifth flow rate adjusting valve 15e via the heating side accumulator 19, the second four-way valve 13b, the first four-way valve 13a, etc., and is depressurized. (From point e9 to point p9 in FIG. 9).
 第5流量調整弁15eにて減圧された冷媒は、室内蒸発器21の一方の冷媒出入口へ流入し、送風機32から送風された空気と熱交換して蒸発する(図9のp9点からn9点)。これにより、空気が冷却される。室内蒸発器21の他方の冷媒出入口から流出した冷媒は、冷却側アキュムレータ23、第2四方弁13b、吸入側アキュムレータ24等を介して圧縮機11へ吸入されて再び圧縮される(図9のn9点からa9点)。 The refrigerant decompressed by the fifth flow rate adjusting valve 15e flows into one refrigerant inlet / outlet of the indoor evaporator 21 and evaporates by exchanging heat with the air blown from the blower 32 (from point p9 to n9 in FIG. 9). ). Thereby, air is cooled. The refrigerant flowing out from the other refrigerant inlet / outlet of the indoor evaporator 21 is sucked into the compressor 11 through the cooling side accumulator 23, the second four-way valve 13b, the suction side accumulator 24, etc., and is compressed again (n9 in FIG. 9). A9 points from the point).
 従って、第1除湿暖房モードでは、室内蒸発器21にて冷却されて除湿された空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 Accordingly, in the first dehumidifying and heating mode, the air that has been cooled and dehumidified by the indoor evaporator 21 is reheated by the indoor condenser 12 and blown out into the vehicle interior, thereby performing dehumidification heating in the vehicle interior. .
 また、第1除湿暖房モードでは、第1流量調整弁15aを絞り状態とすることによって、冷房モードよりも室外熱交換器17へ流入する冷媒の温度を低下させている。従って、冷房モードよりも室外熱交換器17における冷媒の温度と外気温との温度差を縮小することができ、第1除湿暖房モードよりも、室外熱交換器17における冷媒の放熱量を低減させることができる。 Further, in the first dehumidifying and heating mode, the temperature of the refrigerant flowing into the outdoor heat exchanger 17 is lowered than in the cooling mode by setting the first flow rate adjusting valve 15a to the throttle state. Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 17 can be reduced more than in the cooling mode, and the heat radiation amount of the refrigerant in the outdoor heat exchanger 17 can be reduced as compared with the first dehumidifying and heating mode. be able to.
 これにより、単に冷房モード時に空気温度TAVが目標吹出温度TAOに近づくようにエアミックスドア34の作動を制御する場合と比較して、サイクルを循環する循環冷媒流量を増加させることなく、室内凝縮器12における冷媒圧力を上昇させて、室内凝縮器12における空気の加熱能力を向上させることができる。 Thereby, compared with the case where the operation of the air mix door 34 is controlled so that the air temperature TAV approaches the target blowing temperature TAO in the cooling mode, the indoor condenser is increased without increasing the circulating refrigerant flow rate circulating in the cycle. The refrigerant | coolant pressure in 12 can be raised, and the heating capability of the air in the indoor condenser 12 can be improved.
 (c)第2除湿暖房モード
 第2除湿暖房モードでは、空調制御装置40が、室内凝縮器12の冷媒出口側と第3三方継手14c側とを接続すると同時に第2四方弁13b側と第1三方継手14a側とを接続する冷媒回路に切り替えるように第1四方弁13aの作動を制御する。さらに、加熱側アキュムレータ19の気相冷媒出入口側と吸入側アキュムレータ24の入口側とを接続すると同時に冷却側アキュムレータ23の気相冷媒出入口側と第1四方弁13a側とを接続する冷媒回路に切り替えるように第2四方弁13bの作動を制御する。
(C) Second Dehumidification Heating Mode In the second dehumidification heating mode, the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the third three-way joint 14c side at the same time as the second four-way valve 13b side and the first. The operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit that connects the three-way joint 14a side. Further, the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the heating side accumulator 19 and the inlet side of the suction side accumulator 24 is switched to the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the cooling side accumulator 23 and the first four-way valve 13a side. Thus, the operation of the second four-way valve 13b is controlled.
 また、空調制御装置40は、第1流量調整弁15aを全閉状態とし、第2流量調整弁15bを絞り状態とし、第3流量調整弁15cを全開状態とし、第4流量調整弁15dを全閉状態とし、第5流量調整弁15e絞り状態とし、第6流量調整弁15fを全開状態とする。さらに、空調制御装置40は、第1開閉弁18aを閉じ、第2開閉弁18bを閉じる。 In addition, the air conditioning controller 40 sets the first flow rate adjustment valve 15a to the fully closed state, sets the second flow rate adjustment valve 15b to the throttled state, sets the third flow rate adjustment valve 15c to the fully open state, and sets the fourth flow rate adjustment valve 15d to the fully open state. The closed state is set, the fifth flow rate adjusting valve 15e is throttled, and the sixth flow rate adjusting valve 15f is fully opened. Further, the air conditioning control device 40 closes the first on-off valve 18a and closes the second on-off valve 18b.
 これにより、第2除湿暖房モードでは、図4の実線矢印に示すように、圧縮機11、室内凝縮器12、第5流量調整弁15e、室内蒸発器21、(第6流量調整弁15f、)冷却側アキュムレータ23、第2流量調整弁15b、室外熱交換器17、(第3流量調整弁15c、)加熱側アキュムレータ19、吸入側アキュムレータ24、圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。 Thereby, in 2nd dehumidification heating mode, as shown to the solid line arrow of FIG. 4, the compressor 11, the indoor condenser 12, the 5th flow regulating valve 15e, the indoor evaporator 21, (6th flow regulating valve 15f) The cooling side accumulator 23, the second flow rate adjustment valve 15b, the outdoor heat exchanger 17, the (third flow rate adjustment valve 15c), the heating side accumulator 19, the suction side accumulator 24, and the compressor 11 constitute a refrigeration cycle. Is done.
 従って、第2除湿暖房モードでは、室内凝縮器12、室内蒸発器21、および室外熱交換器17が冷媒流れに対してこの順で直列に接続される。 Therefore, in the second dehumidifying and heating mode, the indoor condenser 12, the indoor evaporator 21, and the outdoor heat exchanger 17 are connected in series to the refrigerant flow in this order.
 空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 The air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
 例えば、第5流量調整弁15eの絞り開度、すなわち第5流量調整弁15eへ出力される制御信号(制御パルス)については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、目標吹出温度TAOの上昇に伴って、絞り開度が減少するように決定される。換言すると、サイクルに要求される加熱能力の上昇に伴って、絞り開度が減少するように決定される。 For example, the throttle opening degree of the fifth flow rate adjusting valve 15e, that is, the control signal (control pulse) output to the fifth flow rate adjusting valve 15e is stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the throttle opening is determined so as to decrease as the target blowing temperature TAO increases. In other words, the throttle opening is determined to decrease as the heating capacity required for the cycle increases.
 また、第2流量調整弁15bの絞り開度、すなわち第2流量調整弁15bへ出力される制御信号(制御パルス)については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、エジェクタ式冷凍サイクル10のCOPが極大値に近づくように決定される。 Further, the throttle opening degree of the second flow rate adjustment valve 15b, that is, the control signal (control pulse) output to the second flow rate adjustment valve 15b is stored in the air conditioning control device 40 in advance based on the target blowing temperature TAO. Determined with reference to the control map. Specifically, the COP of the ejector refrigeration cycle 10 is determined so as to approach the maximum value.
 このため、第2流量調整弁15bの絞り開度は、第5流量調整弁15eの絞り開度が減少するに伴って増加する。換言すると、サイクルに要求される加熱能力の上昇に伴って、絞り開度が増加するように決定される。 For this reason, the throttle opening of the second flow rate adjusting valve 15b increases as the throttle opening of the fifth flow rate adjusting valve 15e decreases. In other words, the throttle opening is determined so as to increase as the heating capacity required for the cycle increases.
 また、エアミックスドア34の開度、すなわちエアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、空調風温度センサ47によって検出された空気温度TAVが目標吹出温度TAOに近づくように決定される。その他の制御対象機器の作動状態は、冷房モードと同様に決定される。 As for the opening of the air mix door 34, that is, the control signal output to the electric actuator that drives the air mix door 34, the air temperature TAV detected by the air conditioning wind temperature sensor 47 approaches the target outlet temperature TAO. It is determined. The operating states of other devices to be controlled are determined in the same manner as in the cooling mode.
 従って、第2除湿暖房モード時のエジェクタ式冷凍サイクル10では、図10のモリエル線図に示すように冷媒の状態が変化する。 Therefore, in the ejector refrigeration cycle 10 in the second dehumidifying and heating mode, the state of the refrigerant changes as shown in the Mollier diagram of FIG.
 具体的には、第2除湿暖房モードでは、エアミックスドア34が室内凝縮器12側の空気通路を開くので、圧縮機11から吐出された高圧冷媒(図10のa10点)が、室内凝縮器12へ流入し、室内蒸発器21にて冷却されて除湿された空気の一部と熱交換して放熱する(図10のa10点からb10点)。これにより、空気の一部が加熱される。 Specifically, in the second dehumidifying and heating mode, the air mix door 34 opens the air passage on the indoor condenser 12 side, so that the high-pressure refrigerant discharged from the compressor 11 (point a10 in FIG. 10) is converted into the indoor condenser. 12, the heat is exchanged with a part of the air cooled and dehumidified by the indoor evaporator 21 to dissipate heat (from point a10 to point b10 in FIG. 10). Thereby, a part of air is heated.
 室内凝縮器12から流出した冷媒は、第1四方弁13a等を介して、第5流量調整弁15eへ流入して減圧される(図10のb10点からp10点)。第5流量調整弁15eにて減圧された冷媒は、室内蒸発器21の一方の冷媒出入口へ流入する。室内蒸発器21へ流入した冷媒は、送風機32から送風された空気と熱交換して蒸発する(図10のp10点からn10点)。これにより、空気が冷却される。 The refrigerant that has flowed out of the indoor condenser 12 flows into the fifth flow rate adjusting valve 15e via the first four-way valve 13a and the like, and is depressurized (from point b10 to point p10 in FIG. 10). The refrigerant decompressed by the fifth flow rate adjustment valve 15e flows into one refrigerant inlet / outlet of the indoor evaporator 21. The refrigerant flowing into the indoor evaporator 21 is evaporated by exchanging heat with the air blown from the blower 32 (from point p10 to point n10 in FIG. 10). Thereby, air is cooled.
 室内蒸発器21の他方の冷媒出入口から流出した冷媒は、冷却側アキュムレータ23、第2四方弁13b、第1四方弁13a等を介して、第2流量調整弁15bへ流入して減圧される(図10のn10点からc10点)。 The refrigerant flowing out from the other refrigerant inlet / outlet of the indoor evaporator 21 flows into the second flow rate adjustment valve 15b through the cooling side accumulator 23, the second four-way valve 13b, the first four-way valve 13a, etc., and is depressurized ( N10 point to c10 point in FIG. 10).
 第2流量調整弁15bにて減圧された冷媒は、室外熱交換器17の一方の冷媒出入口へ流入し、送風ファンから送風された外気から吸熱する(図10のc10点からf10点)。室外熱交換器17の他方の冷媒出入口から流出した冷媒は、加熱側アキュムレータ19、第2四方弁13b、吸入側アキュムレータ24等を介して圧縮機11へ吸入されて再び圧縮される(図10のf10点からa10点)。 The refrigerant depressurized by the second flow rate adjustment valve 15b flows into one refrigerant inlet / outlet of the outdoor heat exchanger 17, and absorbs heat from the outside air blown from the blower fan (from point c10 to point f10 in FIG. 10). The refrigerant that has flowed out from the other refrigerant inlet / outlet of the outdoor heat exchanger 17 is sucked into the compressor 11 through the heating side accumulator 19, the second four-way valve 13b, the suction side accumulator 24, and the like (FIG. 10). f10 point to a10 point).
 従って、第2除湿暖房モードでは、室内蒸発器21にて冷却されて除湿された空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 Therefore, in the second dehumidifying and heating mode, the air that has been cooled and dehumidified by the indoor evaporator 21 is reheated by the indoor condenser 12 and blown out into the vehicle interior, thereby performing dehumidification heating in the vehicle interior. .
 また、第2除湿暖房モードでは、室外熱交換器17を蒸発器として機能させるとともに、室外熱交換器17における冷媒蒸発圧力を室内蒸発器21における冷媒蒸発圧力よりも低くしている。従って、第1除湿暖房モードよりも室内凝縮器12における冷媒の放熱量を増加させることができる。 In the second dehumidifying and heating mode, the outdoor heat exchanger 17 is caused to function as an evaporator, and the refrigerant evaporation pressure in the outdoor heat exchanger 17 is made lower than the refrigerant evaporation pressure in the indoor evaporator 21. Therefore, the heat radiation amount of the refrigerant in the indoor condenser 12 can be increased as compared with the first dehumidifying and heating mode.
 これにより、第1除湿暖房モードに対して、サイクルを循環する循環冷媒流量を増加させることなく、室内凝縮器12における冷媒圧力を上昇させることができる。その結果、室内凝縮器12における空気の加熱能力を向上させて、空気を第1除湿暖房モードよりも高い温度帯まで昇温させることができる。 Thereby, the refrigerant pressure in the indoor condenser 12 can be increased without increasing the circulating refrigerant flow rate circulating in the cycle with respect to the first dehumidifying heating mode. As a result, the air heating capability in the indoor condenser 12 can be improved, and the temperature of the air can be raised to a temperature range higher than that in the first dehumidifying and heating mode.
 また、以上の説明から明らかなように、第1除湿暖房モード時の室外熱交換器17における冷媒の流れ方向は、第2除湿暖房モード時の室外熱交換器17における冷媒の流れ方向と同一になっている。すなわち、第1、第2除湿暖房モード時の室外熱交換器17では、一方の冷媒出入口側から他方の冷媒出入口側へ向かって冷媒が流れる。 Further, as is clear from the above description, the refrigerant flow direction in the outdoor heat exchanger 17 in the first dehumidifying heating mode is the same as the refrigerant flow direction in the outdoor heat exchanger 17 in the second dehumidifying heating mode. It has become. That is, in the outdoor heat exchanger 17 in the first and second dehumidifying and heating modes, the refrigerant flows from one refrigerant inlet / outlet side toward the other refrigerant inlet / outlet side.
 さらに、第1除湿暖房モード時の室内蒸発器21における冷媒の流れ方向は、第2除湿暖房モード時の室内蒸発器21における冷媒の流れ方向と同一になっている。すなわち、第1、第2除湿暖房モード時の室内蒸発器21では、一方の冷媒出入口側から他方の冷媒出入口側へ向かって冷媒が流れる。 Furthermore, the flow direction of the refrigerant in the indoor evaporator 21 in the first dehumidifying and heating mode is the same as the flow direction of the refrigerant in the indoor evaporator 21 in the second dehumidifying and heating mode. That is, in the indoor evaporator 21 in the first and second dehumidifying and heating modes, the refrigerant flows from one refrigerant inlet / outlet side toward the other refrigerant inlet / outlet side.
 さらに、第1、第2除湿暖房モード時の室内蒸発器21における冷媒の流れ方向は、冷房モード時の室内蒸発器21における冷媒の流れ方向と異なっている。すなわち、冷媒モード時の室内蒸発器21では、他方の冷媒出入口側から一方の冷媒出入口側へ向かって冷媒が流れる。 Furthermore, the flow direction of the refrigerant in the indoor evaporator 21 in the first and second dehumidifying and heating modes is different from the flow direction of the refrigerant in the indoor evaporator 21 in the cooling mode. That is, in the indoor evaporator 21 in the refrigerant mode, the refrigerant flows from the other refrigerant inlet / outlet side toward the one refrigerant inlet / outlet side.
 (d)暖房モード
 暖房モードでは、空調制御装置40が、室内凝縮器12の冷媒出口側と第1三方継手14a側とを接続すると同時に第2四方弁13b側と第3三方継手14c側とを接続する冷媒回路に切り替えるように第1四方弁13aの作動を制御する。さらに、加熱側アキュムレータ19の気相冷媒出入口側と吸入側アキュムレータ24の入口側とを接続すると同時に冷却側アキュムレータ23の気相冷媒出入口側と第1四方弁13a側とを接続する冷媒回路に切り替えるように第2四方弁13bの作動を制御する。
(D) Heating mode In the heating mode, the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the first three-way joint 14a side, and simultaneously connects the second four-way valve 13b side and the third three-way joint 14c side. The operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit to be connected. Further, the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the heating side accumulator 19 and the inlet side of the suction side accumulator 24 is switched to the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the cooling side accumulator 23 and the first four-way valve 13a side. Thus, the operation of the second four-way valve 13b is controlled.
 また、空調制御装置40は、第1流量調整弁15aを絞り状態とし、第2流量調整弁15bを全閉状態とし、第3流量調整弁15cを絞り状態とし、さらに、第1開閉弁18aを開く。 In addition, the air conditioning control device 40 sets the first flow rate adjustment valve 15a to the throttle state, sets the second flow rate adjustment valve 15b to the fully closed state, sets the third flow rate adjustment valve 15c to the throttle state, and further sets the first on-off valve 18a to open.
 これにより、暖房モードでは、図5の実線矢印に示すように、圧縮機11、室内凝縮器12、第1流量調整弁15a、加熱側エジェクタ16、加熱側アキュムレータ19、吸入側アキュムレータ24、圧縮機11の順に冷媒が循環するとともに、加熱側アキュムレータ19、第3流量調整弁15c、室外熱交換器17、加熱側エジェクタ16の加熱側冷媒吸引口16cの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。 Thereby, in the heating mode, as shown by the solid line arrow in FIG. 5, the compressor 11, the indoor condenser 12, the first flow rate adjustment valve 15 a, the heating side ejector 16, the heating side accumulator 19, the suction side accumulator 24, the compressor The ejector type refrigeration cycle in which the refrigerant circulates in the order of the heating accumulator 19, the third flow rate adjustment valve 15c, the outdoor heat exchanger 17, and the heating side refrigerant suction port 16c of the heating side ejector 16 is configured. Is done.
 空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 The air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
 例えば、圧縮機11の冷媒吐出能力については、すなわち圧縮機11の電動モータに出力される制御信号については、次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内凝縮器12の目標凝縮器温度TCOを決定する。 For example, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target condenser temperature TCO of the indoor condenser 12 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning control device 40 in advance.
 そして、この目標凝縮器温度TCOと吐出温度センサ45によって検出された吐出冷媒温度Tdとの偏差に基づいて、フィードバック制御手法を用いて吐出冷媒温度Tdが目標凝縮器温度TCOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。 Then, based on the deviation between the target condenser temperature TCO and the discharge refrigerant temperature Td detected by the discharge temperature sensor 45, compression is performed so that the discharge refrigerant temperature Td approaches the target condenser temperature TCO using a feedback control method. A control signal output to the electric motor of the machine 11 is determined.
 また、第1流量調整弁15aの絞り開度、すなわち第1流量調整弁15aへ出力される制御信号(制御パルス)については、圧縮機11の冷媒吐出能力、例えば圧縮機11の電動モータに出力される制御信号に基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。 Further, the throttle opening of the first flow rate adjusting valve 15a, that is, the control signal (control pulse) output to the first flow rate adjusting valve 15a is output to the refrigerant discharge capacity of the compressor 11, for example, the electric motor of the compressor 11. Is determined with reference to a control map stored in advance in the air-conditioning control device 40 based on the control signal.
 この制御マップでは、加熱側ノズル部16aへ流入する冷媒の乾き度xが0.5以上かつ0.8以下となるように、第1流量調整弁15aの絞り開度を決定している。この乾き度xの範囲は、室内凝縮器12における空気の加熱能力を極大値に近づけることができる値として、予め実験的に得られた値である。 In this control map, the throttle opening degree of the first flow rate adjusting valve 15a is determined so that the dryness x of the refrigerant flowing into the heating side nozzle portion 16a is 0.5 or more and 0.8 or less. The range of the dryness x is a value obtained experimentally in advance as a value that can bring the heating capacity of air in the indoor condenser 12 close to the maximum value.
 また、第3流量調整弁15cの絞り開度、すなわち第3流量調整弁15cへ出力される制御信号(制御パルス)については、予め空調制御装置40に記憶された暖房用の基準開度に決定される。 Further, the throttle opening degree of the third flow rate adjusting valve 15c, that is, the control signal (control pulse) output to the third flow rate adjusting valve 15c is determined as the reference opening degree for heating stored in the air conditioning control device 40 in advance. Is done.
 また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、室内蒸発器21通過後の空気の全流量が室内凝縮器12側の空気通路を流れるように決定される。 Also, the control signal output to the electric actuator that drives the air mix door 34 is determined so that the total flow rate of air after passing through the indoor evaporator 21 flows through the air passage on the indoor condenser 12 side.
 従って、暖房モード時のエジェクタ式冷凍サイクル10では、図11のモリエル線図に示すように冷媒の状態が変化する。 Therefore, in the ejector refrigeration cycle 10 in the heating mode, the state of the refrigerant changes as shown in the Mollier diagram of FIG.
 具体的には、暖房モードでは、エアミックスドア34が室内凝縮器12側の空気通路を全開とするので、圧縮機11から吐出された高圧冷媒(図11のa11点)が、室内凝縮器12へ流入して空気と熱交換して放熱する(図11のa11点からb11点)。これにより、空気が加熱される。 Specifically, in the heating mode, the air mix door 34 fully opens the air passage on the indoor condenser 12 side, so that the high-pressure refrigerant (point a11 in FIG. 11) discharged from the compressor 11 is transferred to the indoor condenser 12. Into the air and heat exchange with the air to dissipate heat (from point a11 to point b11 in FIG. 11). Thereby, air is heated.
 室内凝縮器12から流出した冷媒は、第1四方弁13aを介して、第1流量調整弁15aへ流入して減圧される(図11のb11点からr11点)。これにより、加熱側ノズル部16aへ流入する冷媒の乾き度xが0.5以上かつ0.8以下に調整される。 The refrigerant that has flowed out of the indoor condenser 12 flows into the first flow rate adjustment valve 15a via the first four-way valve 13a and is depressurized (from point b11 to point r11 in FIG. 11). Thereby, the dryness x of the refrigerant | coolant which flows in into the heating side nozzle part 16a is adjusted to 0.5 or more and 0.8 or less.
 第1流量調整弁15aにて減圧された冷媒は、加熱側エジェクタ16の加熱側ノズル部16aへ流入する。加熱側ノズル部16aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図11のr11点からs11点)。そして、この加熱側噴射冷媒の吸引作用によって、室外熱交換器17の一方の冷媒出入口から流出した冷媒が、加熱側エジェクタ16の加熱側冷媒吸引口16cから吸引される。 The refrigerant decompressed by the first flow rate adjusting valve 15a flows into the heating side nozzle portion 16a of the heating side ejector 16. The refrigerant that has flowed into the heating-side nozzle portion 16a is isentropically decompressed and injected (from point r11 to point s11 in FIG. 11). The refrigerant flowing out from one refrigerant inlet / outlet of the outdoor heat exchanger 17 is sucked from the heating-side refrigerant suction port 16c of the heating-side ejector 16 by the suction action of the heating-side injected refrigerant.
 加熱側ノズル部16aから噴射された加熱側噴射冷媒および加熱側エジェクタ16の加熱側冷媒吸引口16cから吸引された加熱側吸引冷媒は、加熱側ディフューザ部16dへ流入する(図11のs11からt11点、c11点からt11点)。 The heating-side jet refrigerant injected from the heating-side nozzle portion 16a and the heating-side suction refrigerant sucked from the heating-side refrigerant suction port 16c of the heating-side ejector 16 flow into the heating-side diffuser portion 16d (from s11 to t11 in FIG. 11). Point, c11 point to t11 point).
 加熱側ディフューザ部16dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、加熱側噴射冷媒と加熱側吸引冷媒との混合冷媒の圧力が上昇する(図11のt11点からu11点)。加熱側ディフューザ部16dから流出した冷媒は加熱側アキュムレータ19へ流入して気相冷媒と液相冷媒とに分離される。 In the heating side diffuser portion 16d, the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area. Thereby, the pressure of the mixed refrigerant of the heating side injection refrigerant and the heating side suction refrigerant rises (from the point t11 to the point u11 in FIG. 11). The refrigerant flowing out of the heating side diffuser portion 16d flows into the heating side accumulator 19 and is separated into a gas phase refrigerant and a liquid phase refrigerant.
 加熱側アキュムレータ19にて分離された液相冷媒(図11のe11点)は、絞り状態となっている第3流量調整弁15cへ流入して減圧される(図11のe11点からd11点)。第3流量調整弁15cにて減圧された冷媒は、室外熱交換器17の他方の冷媒出入口から流入し、送風ファンから送風された外気から吸熱して蒸発する(図11のd11点からc11点)。 The liquid refrigerant (point e11 in FIG. 11) separated by the heating-side accumulator 19 flows into the throttled third flow rate adjustment valve 15c and is depressurized (points e11 to d11 in FIG. 11). . The refrigerant depressurized by the third flow rate adjusting valve 15c flows from the other refrigerant inlet / outlet of the outdoor heat exchanger 17, absorbs heat from the outside air blown from the blower fan, and evaporates (from point d11 to point c11 in FIG. 11). ).
 加熱側アキュムレータ19にて分離された気相冷媒(図11のf11点)は、第2四方弁13b、吸入側アキュムレータ24等を介して圧縮機11へ吸入されて再び圧縮される(図11のf11点からa11点)。 The gas-phase refrigerant (point f11 in FIG. 11) separated by the heating-side accumulator 19 is sucked into the compressor 11 via the second four-way valve 13b, the suction-side accumulator 24, etc. and compressed again (in FIG. 11). f11 point to a11 point).
 従って、暖房モードでは、室内凝縮器12にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 Accordingly, in the heating mode, the vehicle interior can be heated by blowing the air heated by the indoor condenser 12 into the vehicle interior.
 さらに、暖房モードでは、加熱側エジェクタ16の加熱側ディフューザ部16dにて昇圧された冷媒を圧縮機11へ吸入させている。従って、蒸発器として機能する熱交換器(暖房モードでは、室外熱交換器17)における冷媒蒸発圧力と圧縮機11の吸入冷媒の圧力とが同等となる通常の冷凍サイクル装置と比較して、圧縮機11の消費動力を低減させて、COPを向上させることができる。 Furthermore, in the heating mode, the refrigerant whose pressure has been increased by the heating side diffuser portion 16d of the heating side ejector 16 is sucked into the compressor 11. Therefore, compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the heat exchanger functioning as an evaporator (outdoor heat exchanger 17 in the heating mode) and the pressure of the refrigerant sucked in the compressor 11 are equal. The power consumption of the machine 11 can be reduced and the COP can be improved.
 また、以上の説明から明らかなように、第1、第2除湿暖房モード時の室外熱交換器17における冷媒の流れ方向と暖房モード時の室外熱交換器17における冷媒の流れ方向は異なっている。すなわち、暖房モード時の室外熱交換器17では、他方の冷媒出入口側から一方の冷媒出入口側へ向かって冷媒が流れる。 Further, as is clear from the above description, the flow direction of the refrigerant in the outdoor heat exchanger 17 in the first and second dehumidifying heating modes is different from the flow direction of the refrigerant in the outdoor heat exchanger 17 in the heating mode. . That is, in the outdoor heat exchanger 17 in the heating mode, the refrigerant flows from the other refrigerant inlet / outlet side toward the one refrigerant inlet / outlet side.
 ここで、エジェクタ式冷凍サイクル10の第2除湿暖房モードや暖房モードのように、エジェクタ式冷凍サイクル10の室外熱交換器17を蒸発器として機能させる冷媒回路では、室外熱交換器17の冷媒蒸発温度が氷点下(0℃以下)になると、室外熱交換器17に着霜が生じるおそれがある。 Here, in the refrigerant circuit that causes the outdoor heat exchanger 17 of the ejector refrigeration cycle 10 to function as an evaporator as in the second dehumidifying heating mode or the heating mode of the ejector refrigeration cycle 10, the refrigerant evaporation of the outdoor heat exchanger 17 is performed. When the temperature is below freezing point (0 ° C. or lower), frost formation may occur in the outdoor heat exchanger 17.
 このような着霜が生じると室外熱交換器17の外気通路が霜によって閉塞されるため、室外熱交換器17の熱交換性能が低下する。従って、室外熱交換器17にて冷媒が外気から吸熱する吸熱量が低下して、エジェクタ式冷凍サイクル10が、空気を充分に加熱できなくなる。 When such frost formation occurs, the outdoor air passage of the outdoor heat exchanger 17 is blocked by frost, so that the heat exchange performance of the outdoor heat exchanger 17 is deteriorated. Therefore, the amount of heat absorbed by the refrigerant from the outside air in the outdoor heat exchanger 17 decreases, and the ejector refrigeration cycle 10 cannot sufficiently heat the air.
 これに対して、本実施形態の車両用空調装置1では、エジェクタ式冷凍サイクル10の室外熱交換器17に着霜が生じた際に、これを取り除くための除霜モードの運転を実行することができる。 On the other hand, in the vehicle air conditioner 1 of the present embodiment, when frost formation occurs in the outdoor heat exchanger 17 of the ejector refrigeration cycle 10, an operation in a defrost mode is performed to remove the frost formation. Can do.
 具体的には、本実施形態では、外気温Tamが0℃以下となっており、さらに、外気温Tamから室外熱交換器温度Toutを減算した値(Tam-Tout)が予め定めた基準温度差以上となっている際に、室外熱交換器17に着霜が生じたと判定する。そして、予め定めた基準時間が経過するまで、除霜モードの運転を実行する。以下に除霜モードにおける作動を説明する。 Specifically, in this embodiment, the outside air temperature Tam is 0 ° C. or less, and a value obtained by subtracting the outdoor heat exchanger temperature Tout from the outside air temperature Tam (Tam−Tout) is a predetermined reference temperature difference. When it is above, it determines with the outdoor heat exchanger 17 having formed frost. Then, the operation in the defrosting mode is executed until a predetermined reference time elapses. The operation in the defrosting mode will be described below.
 (e)除霜モード
 除霜モードでは、空調制御装置40が、室内凝縮器12の冷媒出口側と第1三方継手14a側とを接続すると同時に第2四方弁13b側と第3三方継手14c側とを接続する冷媒回路に切り替えるように第1四方弁13aの作動を制御する。さらに、加熱側アキュムレータ19の気相冷媒出入口側と吸入側アキュムレータ24の入口側とを接続すると同時に冷却側アキュムレータ23の気相冷媒出入口側と第1四方弁13a側とを接続する冷媒回路に切り替えるように第2四方弁13bの作動を制御する。
(E) Defrost mode In the defrost mode, the air conditioning control device 40 connects the refrigerant outlet side of the indoor condenser 12 and the first three-way joint 14a side, and at the same time the second four-way valve 13b side and the third three-way joint 14c side. The operation of the first four-way valve 13a is controlled so as to switch to the refrigerant circuit connecting the two. Further, the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the heating side accumulator 19 and the inlet side of the suction side accumulator 24 is switched to the refrigerant circuit connecting the gas phase refrigerant inlet / outlet side of the cooling side accumulator 23 and the first four-way valve 13a side. Thus, the operation of the second four-way valve 13b is controlled.
 また、空調制御装置40は、第1流量調整弁15aを全閉状態とし、第2流量調整弁15bを絞り状態とし、第3流量調整弁15cを全開状態とし、さらに、第1開閉弁18aを閉じる。 Further, the air conditioning control device 40 sets the first flow rate adjustment valve 15a to a fully closed state, sets the second flow rate adjustment valve 15b to a throttled state, sets the third flow rate adjustment valve 15c to a fully open state, and further sets the first on-off valve 18a to close.
 これにより、除霜モードでは、図6の実線矢印に示すように、圧縮機11、室内凝縮器12、第2流量調整弁15b、室外熱交換器17、(第3流量調整弁15c)、加熱側アキュムレータ19、吸入側アキュムレータ24、圧縮機11の順に冷媒が循環する。 Thereby, in defrost mode, as shown by the solid line arrow of Drawing 6, compressor 11, indoor condenser 12, 2nd flow control valve 15b, outdoor heat exchanger 17, (3rd flow control valve 15c), heating The refrigerant circulates in the order of the side accumulator 19, the suction side accumulator 24, and the compressor 11.
 空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 The air-conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like with the configuration of the refrigerant circuit.
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、予め空調制御装置40に記憶された除霜用の冷媒吐出能力が発揮されるように決定される。また、第2流量調整弁15bの絞り開度、すなわち第2流量調整弁15bへ出力される制御信号(制御パルス)については、予め空調制御装置40に記憶された除霜用の基準開度となるように決定される。 For example, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11, is determined so that the defrosting refrigerant discharge capacity stored in the air conditioning control device 40 in advance is exhibited. The Further, the throttle opening degree of the second flow rate adjustment valve 15b, that is, the control signal (control pulse) output to the second flow rate adjustment valve 15b is the defrosting reference opening degree stored in advance in the air conditioning control device 40. To be determined.
 また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、エアミックスドア34が室内凝縮器12側の空気通路を閉塞し、室内蒸発器21通過後の空気の全流量が室内凝縮器12を迂回して流れるように決定される。 For the control signal output to the electric actuator that drives the air mix door 34, the air mix door 34 closes the air passage on the indoor condenser 12 side, and the total flow rate of air after passing through the indoor evaporator 21 is It is determined to flow around the condenser 12.
 従って、除霜モード時のエジェクタ式冷凍サイクル10では、図12のモリエル線図に示すように冷媒の状態が変化する。 Therefore, in the ejector refrigeration cycle 10 in the defrosting mode, the state of the refrigerant changes as shown in the Mollier diagram of FIG.
 具体的には、圧縮機11から吐出された高圧冷媒(図12のa12点)が、室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12側の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は、殆ど空気と熱交換することなく室内凝縮器12から流出する。 Specifically, the high-pressure refrigerant (point a12 in FIG. 12) discharged from the compressor 11 flows into the indoor condenser 12. At this time, since the air mix door 34 closes the air passage on the indoor condenser 12 side, the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 with almost no heat exchange with air.
 室内凝縮器12から流出した冷媒は、第1四方弁13aを介して、第2流量調整弁15bへ流入して減圧される(図12のa12点からc12点)。第2流量調整弁15bにて減圧された冷媒は、室外熱交換器17の一方の冷媒出入口へ流入して、室外熱交換器17へ放熱する(図12のc12点からf12点)。これにより、室外熱交換器17の除霜がなされる。 The refrigerant that has flowed out of the indoor condenser 12 flows into the second flow rate adjustment valve 15b through the first four-way valve 13a and is depressurized (from point a12 to point c12 in FIG. 12). The refrigerant decompressed by the second flow rate adjusting valve 15b flows into one refrigerant inlet / outlet of the outdoor heat exchanger 17 and dissipates heat to the outdoor heat exchanger 17 (from point c12 to point f12 in FIG. 12). As a result, the outdoor heat exchanger 17 is defrosted.
 室外熱交換器17から流出した冷媒は、全開となっている全開となっている第2流量調整弁15b、加熱側アキュムレータ19、第2四方弁13b、吸入側アキュムレータ24を介して、圧縮機11へ吸入されて再び圧縮される(図12のf12点からa12点)。 The refrigerant that has flowed out of the outdoor heat exchanger 17 is fully opened through the second flow rate adjusting valve 15b, the heating side accumulator 19, the second four-way valve 13b, and the suction side accumulator 24 that are fully open. And compressed again (from point f12 to point a12 in FIG. 12).
 以上の如く、本実施形態のエジェクタ式冷凍サイクル10によれば、車両用空調装置1において、冷房モード、第1除湿暖房モード、第2除湿暖房モード、および暖房モードでの運転に切り替えることで、車室内の適切な空調を実現することができる。さらに、本実施形態のエジェクタ式冷凍サイクル10では、除霜モードの冷媒回路に切り替えることができるので、室外熱交換器17に着霜が生じた際にこれを取り除くことができる。 As described above, according to the ejector refrigeration cycle 10 of the present embodiment, in the vehicle air conditioner 1, by switching to the cooling mode, the first dehumidifying heating mode, the second dehumidifying heating mode, and the heating mode, Appropriate air conditioning in the passenger compartment can be realized. Furthermore, in the ejector type refrigeration cycle 10 of the present embodiment, since it can be switched to the refrigerant circuit in the defrosting mode, this can be removed when frost formation occurs in the outdoor heat exchanger 17.
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、車室内の除湿暖房時における空気の温度調整範囲を拡大させることができる。 Furthermore, in the ejector refrigeration cycle 10 of the present embodiment, the temperature adjustment range of air during dehumidifying heating in the passenger compartment can be expanded.
 このことをより詳細に説明すると、従来技術のエジェクタ式冷凍サイクルでは、室外熱交換器と室内蒸発器とを冷媒流れに対して直列的に接続して除湿暖房を行う際には、エジェクタ式冷凍サイクルを適切に作動させるために、室外熱交換器における冷媒圧力を所定の値以上に維持しておく必要があった。このため、除湿暖房時に車室内へ吹き出される空気の温度(吹出空気温度)を調整することのできない範囲が存在していた。 This will be explained in more detail. In the ejector-type refrigeration cycle of the prior art, when performing dehumidification heating by connecting an outdoor heat exchanger and an indoor evaporator in series to the refrigerant flow, the ejector-type refrigeration cycle is performed. In order to operate the cycle appropriately, it was necessary to maintain the refrigerant pressure in the outdoor heat exchanger above a predetermined value. For this reason, there existed a range in which the temperature of the air blown into the vehicle compartment during the dehumidifying heating (the blown air temperature) cannot be adjusted.
 具体的には、従来技術のエジェクタ式冷凍サイクルでは、室外熱交換器と室内蒸発器とを冷媒流れに対して直列的に接続する冷媒回路に切り替えた際には、図13の範囲A内で吹出空気温度を調整することができた。また、室外熱交換器と室内蒸発器とを冷媒流れに対して並列的に接続する冷媒回路に切り替えた際には、図13の範囲C内で吹出空気温度を調整することができた。 Specifically, in the ejector-type refrigeration cycle of the prior art, when the outdoor heat exchanger and the indoor evaporator are switched to the refrigerant circuit connected in series to the refrigerant flow, within the range A of FIG. The blowout air temperature could be adjusted. Further, when the outdoor heat exchanger and the indoor evaporator were switched to the refrigerant circuit connected in parallel to the refrigerant flow, the blown air temperature could be adjusted within the range C in FIG.
 換言すると、従来技術のエジェクタ式冷凍サイクルでは、図13の範囲B内で吹出空気温度を調整することができなかった。 In other words, in the conventional ejector refrigeration cycle, the temperature of the blown air could not be adjusted within the range B in FIG.
 これに対して、本実施形態のエジェクタ式冷凍サイクル10では、第1、第2除湿暖房モード時に、室外熱交換器17と室内蒸発器21が冷媒流れに対して直列に接続される冷媒回路に切り替える。従って、室外熱交換器17における冷媒圧力によらず、圧縮機11の吸入吐出作用によって、冷媒を室外熱交換器17および室内蒸発器21へ確実に供給することができる。 On the other hand, in the ejector refrigeration cycle 10 of the present embodiment, in the first and second dehumidifying heating modes, the outdoor heat exchanger 17 and the indoor evaporator 21 are connected in series to the refrigerant flow. Switch. Therefore, the refrigerant can be reliably supplied to the outdoor heat exchanger 17 and the indoor evaporator 21 by the suction and discharge action of the compressor 11 regardless of the refrigerant pressure in the outdoor heat exchanger 17.
 さらに、第1除湿暖房モード時には、室外熱交換器17が第2減圧装置である第5流量調整弁15eを介して室内蒸発器21よりも冷媒流れ上流側に配置されるので、室外熱交換器17における冷媒温度を室内蒸発器21における冷媒温度よりも高い温度帯で調整することができる。 Further, in the first dehumidifying and heating mode, the outdoor heat exchanger 17 is arranged on the upstream side of the refrigerant flow with respect to the indoor evaporator 21 via the fifth flow rate adjusting valve 15e, which is the second decompression device. The refrigerant temperature in 17 can be adjusted in a temperature range higher than the refrigerant temperature in the indoor evaporator 21.
 従って、第5流量調整弁15eの絞り開度を調整して、室外熱交換器17における冷媒の吸放熱量を調整することで、室内凝縮器12における冷媒放熱量を調整することができる。これにより、第1除湿暖房モードでは、吹出空気温度の調整範囲を図13の範囲Dに拡大することができることが判っている。 Therefore, the refrigerant heat dissipation amount in the indoor condenser 12 can be adjusted by adjusting the throttle opening of the fifth flow rate adjusting valve 15e and adjusting the refrigerant heat absorption / release amount in the outdoor heat exchanger 17. Thereby, in the 1st dehumidification heating mode, it turns out that the adjustment range of blowing air temperature can be expanded to the range D of FIG.
 さらに、第2除湿暖房モード時には、室外熱交換器17が第1減圧装置である第2流量調整弁15bを介して室内蒸発器21よりも冷媒流れ下流側に配置されるので、室外熱交換器17における冷媒温度を室内蒸発器21における冷媒温度よりも低い温度帯とすることができる。 Furthermore, in the second dehumidifying and heating mode, the outdoor heat exchanger 17 is disposed downstream of the refrigerant flow with respect to the indoor evaporator 21 via the second flow rate adjustment valve 15b that is the first pressure reducing device. The refrigerant temperature in 17 can be set to a temperature range lower than the refrigerant temperature in the indoor evaporator 21.
 従って、第2流量調整弁15bの絞り開度を調整することで、室外熱交換器17における冷媒の吸熱量を増加させて、室内凝縮器12にて第1除湿暖房モードよりも高い加熱能力で空気を加熱することができる。これにより、第2除湿暖房モードでは、吹出空気温度の調整範囲を図13の範囲Eに拡大することができることが判っている。 Therefore, by adjusting the throttle opening of the second flow rate adjusting valve 15b, the heat absorption amount of the refrigerant in the outdoor heat exchanger 17 is increased, and the indoor condenser 12 has a higher heating capability than the first dehumidifying heating mode. The air can be heated. Thereby, in the 2nd dehumidification heating mode, it turns out that the adjustment range of blowing air temperature can be expanded to the range E of FIG.
 その結果、本実施形態のエジェクタ式冷凍サイクル10によれば、車室内の除湿暖房を行う際に、第1除湿暖房モードおよび第2除湿暖房モードを切り替えることで、幅広い温度帯で空気の温度を調整することができる。 As a result, according to the ejector refrigeration cycle 10 of the present embodiment, when dehumidifying and heating the vehicle interior, the first dehumidifying and heating mode and the second dehumidifying and heating mode are switched, so that the temperature of the air can be controlled in a wide temperature range. Can be adjusted.
 また、本実施形態のエジェクタ式冷凍サイクル10では、第1、第2除湿暖房モード時の室外熱交換器17における冷媒の流れ方向が暖房モード時の室外熱交換器17における冷媒の流れ方向と異なっている。これによれば、第1、第2除湿暖房モード時の室外熱交換器17内の冷媒の流れ態様と暖房モード時の室外熱交換器17内の冷媒の流れ態様とを変化させて、室外熱交換器17内に冷凍機油が滞留することを抑制することができる。 In the ejector refrigeration cycle 10 of the present embodiment, the refrigerant flow direction in the outdoor heat exchanger 17 in the first and second dehumidifying heating modes is different from the refrigerant flow direction in the outdoor heat exchanger 17 in the heating mode. ing. According to this, the flow mode of the refrigerant in the outdoor heat exchanger 17 in the first and second dehumidifying and heating modes and the flow mode of the refrigerant in the outdoor heat exchanger 17 in the heating mode are changed to change the outdoor heat. It is possible to suppress the refrigeration oil from staying in the exchanger 17.
 具体的には、本実施形態では、室外熱交換器17の内部に形成される冷媒通路の通路断面積を、暖房モード時における冷媒入口(他方の冷媒出入口)側から冷媒出口(一方の冷媒出入口)側へ向かうに伴って縮小させている。これにより、暖房モード時に室外熱交換器17を流通する冷媒の流速を増加させて、室外熱交換器17内に冷凍機油が滞留することを抑制することができる。 Specifically, in this embodiment, the passage cross-sectional area of the refrigerant passage formed inside the outdoor heat exchanger 17 is changed from the refrigerant inlet (the other refrigerant inlet / outlet) side to the refrigerant outlet (one refrigerant inlet / outlet) in the heating mode. ) Reduced toward the side. Thereby, the flow rate of the refrigerant | coolant which distribute | circulates the outdoor heat exchanger 17 at the time of heating mode can be increased, and it can suppress that refrigerating machine oil retains in the outdoor heat exchanger 17. FIG.
 より詳細には、暖房モード時の室外熱交換器17は蒸発器として機能する。従って、室外熱交換器17内の冷媒通路では、冷媒入口側から冷媒出口側へ向かって液相冷媒が気化することによって冷媒の密度が低下する。従って、室外熱交換器17の冷媒入口側から冷媒出口側へ向かって冷媒通路の通路断面積を縮小させることで、室外熱交換器17を流通する冷媒の流速を増加させて、室外熱交換器17内に滞留している冷凍機油を室外熱交換器17から排出することができる。 More specifically, the outdoor heat exchanger 17 in the heating mode functions as an evaporator. Therefore, in the refrigerant passage in the outdoor heat exchanger 17, the density of the refrigerant decreases as the liquid phase refrigerant evaporates from the refrigerant inlet side toward the refrigerant outlet side. Therefore, by reducing the passage cross-sectional area of the refrigerant passage from the refrigerant inlet side to the refrigerant outlet side of the outdoor heat exchanger 17, the flow rate of the refrigerant flowing through the outdoor heat exchanger 17 is increased, and the outdoor heat exchanger 17 The refrigerating machine oil staying in 17 can be discharged from the outdoor heat exchanger 17.
 また、本実施形態のエジェクタ式冷凍サイクル10では、第1、第2除湿暖房モード時の室内蒸発器21における冷媒の流れ方向と冷房モード時の室内蒸発器21における冷媒の流れ方向が異なっている。これによれば、第1、第2除湿暖房モード時の室内蒸発器21内の冷媒の流れ態様と暖房モード時の室外熱交換器17内の冷媒の流れ態様とを変化させて、室内蒸発器21内に冷凍機油が滞留することを抑制することができる。 In the ejector refrigeration cycle 10 of the present embodiment, the refrigerant flow direction in the indoor evaporator 21 in the first and second dehumidifying heating modes is different from the refrigerant flow direction in the indoor evaporator 21 in the cooling mode. . According to this, the flow mode of the refrigerant in the indoor evaporator 21 in the first and second dehumidifying heating modes and the flow mode of the refrigerant in the outdoor heat exchanger 17 in the heating mode are changed to change the indoor evaporator It is possible to suppress the refrigerating machine oil from staying in 21.
 より詳細には、冷房モード時の室内蒸発器21は蒸発器として機能する。従って、室内蒸発器21内の冷媒通路では、冷媒入口側から冷媒出口側へ向かって液相冷媒が気化することによって冷媒の密度が低下する。従って、室内蒸発器21の冷媒入口側から冷媒出口側へ向かって冷媒通路の通路断面積を縮小させることで、室内蒸発器21を流通する冷媒の流速を増加させて、室内蒸発器21内に滞留している冷凍機油を室外熱交換器17から排出することができる。 More specifically, the indoor evaporator 21 in the cooling mode functions as an evaporator. Accordingly, in the refrigerant passage in the indoor evaporator 21, the density of the refrigerant is reduced by the vaporization of the liquid phase refrigerant from the refrigerant inlet side toward the refrigerant outlet side. Therefore, by reducing the cross-sectional area of the refrigerant passage from the refrigerant inlet side to the refrigerant outlet side of the indoor evaporator 21, the flow velocity of the refrigerant flowing through the indoor evaporator 21 is increased, and the inside of the indoor evaporator 21 is increased. The staying refrigeration oil can be discharged from the outdoor heat exchanger 17.
 すなわち、本実施形態のエジェクタ式冷凍サイクル10によれば、除湿暖房を行う空調装置に適用されるエジェクタ式冷凍サイクルにおいて、冷凍機油が室外熱交換器17および室内蒸発器21に滞留することを抑制しつつ、除湿暖房時に空調対象空間へ送風される空気の温度調整範囲を拡大することができる。 In other words, according to the ejector refrigeration cycle 10 of the present embodiment, the refrigeration oil is prevented from staying in the outdoor heat exchanger 17 and the indoor evaporator 21 in an ejector refrigeration cycle applied to an air conditioner that performs dehumidifying heating. However, the temperature adjustment range of the air blown into the air-conditioning target space during dehumidifying heating can be expanded.
 (他の実施形態)
 なお、本開示は上記した実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。
(Other embodiments)
Note that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present disclosure. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In addition, elements constituting each of the above embodiments are not necessarily essential except when clearly indicated as essential and when considered to be clearly essential in principle.
 上記各実施形態において、構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その構成要素の数値は特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等は、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、上述した具体例に限定されるものではない。 In each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the components are mentioned, particularly when it is clearly indicated that it is essential, and when it is clearly limited to a specific number in principle. Except for this, the numerical values of the constituent elements are not limited to a specific number. Further, in each of the above embodiments, the material, shape, positional relationship, etc. of the constituent elements are the above-described specific items unless otherwise specified and in principle limited to a specific material, shape, positional relationship, etc. It is not limited to examples.
 (1)上述の実施形態では、本開示に係るエジェクタ式冷凍サイクル10を電気自動車用の空調装置に適用した例を説明したが、エジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、内燃機関(エンジン)から車両走行用の駆動力を得る通常の車両や、内燃機関と走行用電動モータとの双方から車両走行用の駆動力を得るハイブリッド車両の空調装置に適用してもよい。 (1) In the above-described embodiment, the example in which the ejector refrigeration cycle 10 according to the present disclosure is applied to an air conditioner for an electric vehicle has been described. However, the application of the ejector refrigeration cycle 10 is not limited thereto. For example, the present invention may be applied to an air conditioner for a normal vehicle that obtains driving force for driving a vehicle from an internal combustion engine (engine) or a hybrid vehicle that obtains driving force for driving a vehicle from both an internal combustion engine and a driving electric motor. Good.
 内燃機関を有する車両に適用する場合は、車両用空調装置1に空気の補助加熱器として内燃機関の冷却水を熱源として空気を加熱するヒータコアを設けてもよい。さらに、車両用に限定されることなく定置型空調装置に適用してもよい。 When applied to a vehicle having an internal combustion engine, the vehicle air conditioner 1 may be provided with a heater core that heats air using the cooling water of the internal combustion engine as a heat source as an auxiliary air heater. Furthermore, you may apply to a stationary air conditioner, without being limited to vehicles.
 また、上述の実施形態では、室内凝縮器12にて、圧縮機11吐出冷媒と空気とを熱交換させて、圧縮機11吐出冷媒を熱源として直接的に空気を加熱するエジェクタ式冷凍サイクル10について説明したが、室内凝縮器12における空気の加熱態様はこれに限定されない。 Further, in the above-described embodiment, the ejector refrigeration cycle 10 that heats the air directly using the refrigerant discharged from the compressor 11 as a heat source by causing the indoor condenser 12 to exchange heat between the refrigerant discharged from the compressor 11 and air. Although demonstrated, the heating aspect of the air in the indoor condenser 12 is not limited to this.
 例えば、熱媒体を循環させる熱媒体循環回路を設け、室内放熱器を圧縮機吐出冷媒と熱媒体とを熱交換させる水-冷媒熱交換器として構成し、さらに、熱媒体循環回路に室内放熱器にて加熱された熱媒体と空気とを熱交換させて空気を加熱する加熱用の熱交換器を配置してもよい。つまり、室内放熱器は、圧縮機吐出冷媒(サイクルの高圧側冷媒)を熱源として、熱媒体を介して間接的に空気を加熱するものであってもよい。 For example, a heat medium circulation circuit that circulates the heat medium is provided, and the indoor radiator is configured as a water-refrigerant heat exchanger that exchanges heat between the refrigerant discharged from the compressor and the heat medium. A heat exchanger for heating that heats the air by exchanging heat between the heat medium heated in step 1 and air may be arranged. That is, the indoor radiator may indirectly heat the air through the heat medium using the compressor discharge refrigerant (high-pressure side refrigerant of the cycle) as a heat source.
 さらに、内燃機関を有する車両に適用する場合は、内燃機関の冷却水を熱媒体として、熱媒体循環回路を流通させるようにしてもよい。また、電気自動車においては、バッテリや電気機器を冷却する冷却水を熱媒体として、熱媒体循環回路を流通させるようにしてもよい。 Furthermore, when applied to a vehicle having an internal combustion engine, the heat medium circulation circuit may be circulated using the cooling water of the internal combustion engine as a heat medium. Moreover, in an electric vehicle, you may make it distribute | circulate a heat-medium circulation circuit by using the cooling water which cools a battery and an electric equipment as a heat medium.
 (2)上述の実施形態では、パス構成を変化させることで、室外熱交換器17および室内蒸発器21の内部に形成される冷媒通路の通路断面積を段階的に変化させた例を説明したが、各運転モード時における室外熱交換器17内および室内蒸発器21内の冷媒の流れ態様を変化させる方法はこれに限定されない。例えば、室外熱交換器17および室内蒸発器21を通路断面積の異なる複数種類のチューブを用いて構成してもよい。 (2) In the above-described embodiment, the example in which the passage cross-sectional area of the refrigerant passage formed in the outdoor heat exchanger 17 and the indoor evaporator 21 is changed stepwise by changing the path configuration has been described. However, the method of changing the flow mode of the refrigerant in the outdoor heat exchanger 17 and the indoor evaporator 21 in each operation mode is not limited to this. For example, the outdoor heat exchanger 17 and the indoor evaporator 21 may be configured using a plurality of types of tubes having different passage cross-sectional areas.
 また、上述の実施形態では、室外熱交換器17に形成された冷媒通路の通路断面積が、他方の冷媒出入口側から一方の冷媒出入口側へ向かうに伴って縮小する例を説明したが、通路断面積の変化はこれに限定されない。 In the above-described embodiment, the example in which the passage cross-sectional area of the refrigerant passage formed in the outdoor heat exchanger 17 is reduced from the other refrigerant inlet / outlet side toward the one refrigerant inlet / outlet side has been described. The change in the cross-sectional area is not limited to this.
 例えば、第1、第2除湿暖房モード時の室外熱交換器17における冷媒の流れ方向と暖房モード時の室外熱交換器17における冷媒の流れ方向が異なっていることで、いずれかの運転モードで室外熱交換器17内の冷凍機油を排出可能であれば、他方の冷媒出入口側から一方の冷媒出入口側へ向かうに伴って、冷媒通路の通路断面積を拡大させてもよい。すなわち、室外熱交換器17の内部に形成される冷媒通路は、暖房モード時における冷媒入口側から冷媒出口側へ向かうに伴って通路断面積が拡大していてもよい。 For example, the flow direction of the refrigerant in the outdoor heat exchanger 17 in the first and second dehumidifying and heating modes is different from the flow direction of the refrigerant in the outdoor heat exchanger 17 in the heating mode. If the refrigerating machine oil in the outdoor heat exchanger 17 can be discharged, the cross-sectional area of the refrigerant passage may be enlarged as it goes from the other refrigerant inlet / outlet side to the one refrigerant inlet / outlet side. That is, the refrigerant passage formed in the outdoor heat exchanger 17 may have a passage cross-sectional area that increases from the refrigerant inlet side to the refrigerant outlet side in the heating mode.
 これによれば、室外熱交換器17が蒸発器として機能する暖房モード時に、冷媒入口側から冷媒出口側へ向かって冷媒通路の通路断面積が拡大することになるので、冷媒が室外熱交換器17を流通する際の圧力損失を低下させることができる。このことは、室内蒸発器21についても同様である。すなわち、室内蒸発器21の内部に形成される冷媒通路は、冷房モード時における冷媒入口側から冷媒出口側へ向かうに伴って通路断面積が拡大していてもよい。 According to this, in the heating mode in which the outdoor heat exchanger 17 functions as an evaporator, the passage cross-sectional area of the refrigerant passage increases from the refrigerant inlet side to the refrigerant outlet side, so that the refrigerant is the outdoor heat exchanger. The pressure loss at the time of circulating 17 can be reduced. The same applies to the indoor evaporator 21. In other words, the refrigerant passage formed inside the indoor evaporator 21 may have a passage cross-sectional area that increases from the refrigerant inlet side to the refrigerant outlet side in the cooling mode.
 (3)エジェクタ式冷凍サイクル10の各構成機器は、上述の実施形態に開示されたものに限定されない。 (3) Each component of the ejector refrigeration cycle 10 is not limited to that disclosed in the above-described embodiment.
 例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11はこれに限定されない。例えば、圧縮機11として、エンジン駆動式の可変容量型圧縮機等を採用してもよい。 For example, in the above-described embodiment, an example in which an electric compressor is used as the compressor 11 has been described, but the compressor 11 is not limited to this. For example, an engine-driven variable displacement compressor or the like may be employed as the compressor 11.
 また、上述の実施形態では、室内凝縮器12にて高圧冷媒と空気とを熱交換させることによって空気を加熱する例を説明したが、室内凝縮器12に代えて、例えば、熱媒体を循環させる熱媒体循環回路を設け、この熱媒体循環回路に高圧冷媒と熱媒体とを熱交換させる水-冷媒熱交換器、および水-冷媒熱交換器にて加熱された熱媒体と空気とを熱交換させて空気を加熱する加熱用熱交換器等を配置してもよい。 Moreover, although the above-mentioned embodiment demonstrated the example which heats air by heat-exchanging a high pressure refrigerant | coolant and air in the indoor condenser 12, it replaced with the indoor condenser 12, for example, circulates a thermal medium. A heat medium circulation circuit is provided, and the heat-circulation circuit heat exchanges heat between the high-pressure refrigerant and the heat medium, and heat exchange between the heat medium heated by the water-refrigerant heat exchanger and air. You may arrange | position the heat exchanger for heating etc. which make it heat and heat.
 また、上述の実施形態では、冷媒回路切替装置として、複数の流量調整弁および開閉弁を採用した例を説明したが、冷媒回路切替装置はこれに限定されない。少なくとも上述した暖房モードの冷媒回路と直列除湿暖房モードの冷媒回路を切替可能であれば、例えば、全閉機能を有しない流量調整弁と開閉弁とを組み合わせたものや、四方弁等を採用してもよい。 In the above-described embodiment, the example in which a plurality of flow rate adjustment valves and on-off valves are employed as the refrigerant circuit switching device has been described. However, the refrigerant circuit switching device is not limited to this. As long as at least the above-described refrigerant circuit in the heating mode and the refrigerant circuit in the series dehumidifying heating mode can be switched, for example, a combination of a flow rate adjustment valve that does not have a fully closed function and an on-off valve, a four-way valve, etc. May be.
 また、上述の実施形態で説明した各構成機器を一体化したものを採用してもよい。例えば、第1流量調整弁15a、加熱側エジェクタ16、加熱側アキュムレータ19等を一体化(モジュール化)してもよい。この場合は、加熱側エジェクタ16の加熱側ノズル部16aの通路内にニードル状、あるいは円錐状の弁体を配置し、この弁体を変位させることで、第1流量調整弁15aと同様の機能を発揮させるようにしてもよい。 Further, an integrated configuration of each component device described in the above embodiment may be adopted. For example, the first flow rate adjusting valve 15a, the heating side ejector 16, the heating side accumulator 19, and the like may be integrated (modularized). In this case, a needle-like or conical valve body is disposed in the passage of the heating-side nozzle portion 16a of the heating-side ejector 16, and the same function as that of the first flow rate adjusting valve 15a is achieved by displacing the valve body. You may make it show.
 同様に、第4流量調整弁15d、冷却側エジェクタ22、冷却側アキュムレータ23等を一体化(モジュール化)してもよい。 Similarly, the fourth flow rate adjusting valve 15d, the cooling side ejector 22, the cooling side accumulator 23, and the like may be integrated (modularized).
 また、上述の各実施形態のエジェクタ式冷凍サイクル10の室内蒸発器21の冷媒出口側に、室内蒸発器21の冷媒蒸発圧力を予め定めた所定値以上とする蒸発圧力調整弁を配置してもよい。これによれば、室内蒸発器21の着霜を機械的機構によって、より一層確実に防止することができる。 Further, an evaporation pressure adjusting valve that makes the refrigerant evaporation pressure of the indoor evaporator 21 equal to or higher than a predetermined value may be disposed on the refrigerant outlet side of the indoor evaporator 21 of the ejector refrigeration cycle 10 of each of the above-described embodiments. Good. According to this, frost formation of the indoor evaporator 21 can be more reliably prevented by the mechanical mechanism.
 また、上述の実施形態では、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。 In the above-described embodiment, the example in which R134a is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants.
 (4)上述の実施形態の暖房モードの高加熱能力運転時には、圧縮機11の冷媒吐出能力に基づいて第1流量調整弁15aの弁開度を調整した例を説明したが、第1流量調整弁15aの弁開度の調整はこれに限定されない。 (4) The example in which the valve opening degree of the first flow rate adjusting valve 15a is adjusted based on the refrigerant discharge capability of the compressor 11 during the high heating capability operation in the heating mode of the above embodiment has been described. The adjustment of the valve opening degree of the valve 15a is not limited to this.
 例えば、室内凝縮器12出口側冷媒の乾き度を検出する乾き度センサを設け、この乾き度センサの検出値が0.5以上かつ0.8以下となるように第1流量調整弁15aの弁開度の弁開度を調整してもよい。また、エジェクタ式冷凍サイクル10のCOPが極大値に近づくように第1流量調整弁15aの弁開度を調整してもよい。 For example, a dryness sensor that detects the dryness of the refrigerant on the outlet side of the indoor condenser 12 is provided, and the valve of the first flow rate adjustment valve 15a is set so that the detected value of the dryness sensor is 0.5 or more and 0.8 or less. The valve opening degree of the opening degree may be adjusted. Moreover, you may adjust the valve opening degree of the 1st flow regulating valve 15a so that COP of the ejector-type refrigerating cycle 10 may approach the maximum value.
 (5)上述の実施形態では、空調制御プログラムを実行することによって、各運転モードを切り替えた例を説明したが、各運転モードの切り替えはこれに限定されない。例えば、操作パネル50に各運転モードを設定する運転モード設定スイッチを設け、当該運転モード設定スイッチの操作信号に応じて、各暖房モードを切り替えるようにしてもよい。 (5) In the above-described embodiment, the example in which each operation mode is switched by executing the air conditioning control program has been described. However, the switching of each operation mode is not limited to this. For example, an operation mode setting switch for setting each operation mode may be provided on the operation panel 50, and each heating mode may be switched according to an operation signal of the operation mode setting switch.

Claims (5)

  1.  空調装置に適用されるエジェクタ式冷凍サイクルであって、
     冷凍機油が混入された冷媒を高圧冷媒となるまで圧縮して、前記高圧冷媒を吐出する圧縮機(11)と、
     前記高圧冷媒を熱源として空調対象空間に送風される空気を加熱する加熱用熱交換器(12)と、
     前記加熱用熱交換器の下流側に配置されて冷媒を減圧させる第1減圧装置(15b)と、
     前記第1減圧装置から流出した冷媒を外気と熱交換させる室外熱交換器(17)と、
     前記加熱用熱交換器の下流側に配置されて冷媒を減圧させる第2減圧装置(15e)と、
     前記第2減圧装置から流出した冷媒を蒸発させて前記加熱用熱交換器を通過する前の前記空気を冷却する冷却用熱交換器(21)と、
      前記加熱用熱交換器の下流側に配置され、冷媒を減圧させて加熱側噴射冷媒として噴射する加熱側ノズル部(16a)、
      前記加熱側噴射冷媒の吸引作用によって冷媒を加熱側吸引冷媒として吸引する加熱側冷媒吸引口(16c)、および
      前記加熱側噴射冷媒と前記加熱側吸引冷媒との混合冷媒を昇圧させる加熱側昇圧部(16d)を有する加熱側エジェクタ(16)と、
     前記加熱側昇圧部から流出した冷媒を気相冷媒と液相冷媒とに分離する加熱側気液分離器(19)と、
     冷媒回路を切り替える冷媒回路切替装置(13a、13b、18a、18b)と、を備え、
     前記冷媒回路切替装置は、
      前記冷却用熱交換器にて冷却された前記空気を前記加熱用熱交換器にて再加熱する第1除湿暖房モードでは、前記加熱用熱交換器から流出した冷媒を、前記第1減圧装置、前記室外熱交換器、前記第2減圧装置、前記冷却用熱交換器、前記圧縮機の順に流通させる冷媒回路に切り替え、
      前記冷却用熱交換器にて冷却された前記空気を前記加熱用熱交換器にて再加熱する第2除湿暖房モードでは、前記加熱用熱交換器から流出した冷媒を、前記第2減圧装置、前記冷却用熱交換器、前記第1減圧装置、前記室外熱交換器、前記圧縮機の順に流通させる冷媒回路に切り替え、
      前記空気を前記加熱用熱交換器にて加熱する暖房モードでは、前記加熱用熱交換器から流出した冷媒を、前記加熱側ノズル部へ流入させ、前記加熱側気液分離器から流出した前記気相冷媒を前記圧縮機へ吸入させるとともに、前記加熱側気液分離器から流出した前記液相冷媒を前記室外熱交換器へ流入させ、前記室外熱交換器から流出した冷媒を前記加熱側冷媒吸引口から吸引させる冷媒回路に切り替えるものであり、
     前記第1除湿暖房モード時の前記室外熱交換器における冷媒の流れ方向は、前記第2除湿暖房モード時の前記室外熱交換器における冷媒の流れ方向と同一になっており、
     前記第1除湿暖房モード時の前記室外熱交換器における冷媒の流れ方向は、前記暖房モード時の前記室外熱交換器における冷媒の流れ方向と異なっているエジェクタ式冷凍サイクル。
    An ejector refrigeration cycle applied to an air conditioner,
    A compressor (11) for compressing a refrigerant mixed with refrigerating machine oil until it becomes a high-pressure refrigerant, and discharging the high-pressure refrigerant;
    A heating heat exchanger (12) for heating air blown into the air-conditioned space using the high-pressure refrigerant as a heat source;
    A first decompression device (15b) disposed on the downstream side of the heating heat exchanger and decompressing the refrigerant;
    An outdoor heat exchanger (17) for exchanging heat between the refrigerant flowing out of the first decompression device and the outside air;
    A second decompression device (15e) disposed on the downstream side of the heating heat exchanger to decompress the refrigerant;
    A cooling heat exchanger (21) for evaporating the refrigerant flowing out of the second decompression device and cooling the air before passing through the heating heat exchanger;
    A heating-side nozzle portion (16a) that is disposed downstream of the heating heat exchanger and depressurizes the refrigerant and injects it as a heating-side injection refrigerant;
    A heating-side refrigerant suction port (16c) that sucks the refrigerant as the heating-side suction refrigerant by the suction action of the heating-side injection refrigerant, and a heating-side boosting unit that boosts the mixed refrigerant of the heating-side injection refrigerant and the heating-side suction refrigerant A heating side ejector (16) having (16d);
    A heating-side gas-liquid separator (19) for separating the refrigerant flowing out from the heating-side pressurizing unit into a gas-phase refrigerant and a liquid-phase refrigerant;
    A refrigerant circuit switching device (13a, 13b, 18a, 18b) for switching the refrigerant circuit,
    The refrigerant circuit switching device is
    In the first dehumidifying and heating mode in which the air cooled by the cooling heat exchanger is reheated by the heating heat exchanger, the refrigerant flowing out of the heating heat exchanger is changed to the first pressure reducing device, Switch to the refrigerant circuit that circulates in the order of the outdoor heat exchanger, the second pressure reducing device, the cooling heat exchanger, the compressor,
    In the second dehumidifying and heating mode in which the air cooled by the cooling heat exchanger is reheated by the heating heat exchanger, the refrigerant flowing out of the heating heat exchanger is changed to the second decompression device, Switch to the refrigerant circuit for circulating the cooling heat exchanger, the first pressure reducing device, the outdoor heat exchanger, and the compressor in this order,
    In the heating mode in which the air is heated by the heating heat exchanger, the refrigerant that has flowed out of the heating heat exchanger flows into the heating side nozzle portion, and the air that has flowed out of the heating side gas-liquid separator is discharged. Phase refrigerant is sucked into the compressor, the liquid refrigerant flowing out of the heating side gas-liquid separator is allowed to flow into the outdoor heat exchanger, and the refrigerant flowing out of the outdoor heat exchanger is sucked into the heating side refrigerant Switch to a refrigerant circuit to be sucked from the mouth,
    The refrigerant flow direction in the outdoor heat exchanger during the first dehumidifying and heating mode is the same as the refrigerant flow direction in the outdoor heat exchanger during the second dehumidifying and heating mode,
    The ejector-type refrigeration cycle in which a refrigerant flow direction in the outdoor heat exchanger in the first dehumidifying heating mode is different from a refrigerant flow direction in the outdoor heat exchanger in the heating mode.
  2.  前記室外熱交換器の内部には冷媒通路が形成されており、
     前記冷媒通路の通路断面積は、前記暖房モード時における冷媒入口側から冷媒出口側へ向かうに伴って縮小している請求項1に記載のエジェクタ式冷凍サイクル。
    A refrigerant passage is formed inside the outdoor heat exchanger,
    2. The ejector refrigeration cycle according to claim 1, wherein a passage cross-sectional area of the refrigerant passage is reduced from a refrigerant inlet side toward a refrigerant outlet side in the heating mode.
  3.   前記加熱用熱交換器の下流側に配置され、冷媒を減圧させて冷却側噴射冷媒として噴射する冷却側ノズル部(22a)、
      前記冷却側噴射冷媒の吸引作用によって冷却側冷媒吸引口(22c)から冷媒を冷却側吸引冷媒として吸引する冷却側冷媒吸引口(22c)、および
      前記冷却側噴射冷媒と前記冷却側吸引冷媒との混合冷媒を昇圧させる冷却側昇圧部(22d)を有する冷却側エジェクタ(22)と、
     前記冷却側昇圧部から流出した冷媒を気相冷媒と液相冷媒とに分離する冷却側気液分離器(23)と、をさらに備え、
     前記冷媒回路切替装置は、前記空気を前記冷却用熱交換器にて冷却する冷房モードでは、前記室外熱交換器から流出した冷媒を前記冷却側ノズル部へ流入させ、前記冷却側気液分離器から流出した前記気相冷媒を前記圧縮機へ吸入させるとともに、前記冷却側気液分離器から流出した前記液相冷媒を前記冷却用熱交換器へ流入させ、前記冷却用熱交換器から流出した冷媒を前記冷却側冷媒吸引口へ吸入させる冷媒回路に切り替えるものであり、
     前記第1除湿暖房モード時の前記冷却用熱交換器における冷媒の流れ方向と前記第2除湿暖房モード時の前記冷却用熱交換器における冷媒の流れ方向が同一になっており、
     前記第1除湿暖房モード時の前記冷却用熱交換器における冷媒の流れ方向と前記冷房モード時の前記冷却用熱交換器における冷媒の流れ方向が異なっている請求項1または2に記載のエジェクタ式冷凍サイクル。
    A cooling-side nozzle portion (22a) disposed downstream of the heating heat exchanger and depressurizing the refrigerant and injecting the refrigerant as a cooling-side injection refrigerant;
    A cooling-side refrigerant suction port (22c) for sucking refrigerant as a cooling-side suction refrigerant from the cooling-side refrigerant suction port (22c) by the suction action of the cooling-side injection refrigerant, and the cooling-side injection refrigerant and the cooling-side suction refrigerant A cooling-side ejector (22) having a cooling-side boosting part (22d) for boosting the mixed refrigerant;
    A cooling-side gas-liquid separator (23) that separates the refrigerant that has flowed out of the cooling-side pressurization unit into a gas-phase refrigerant and a liquid-phase refrigerant, and
    In the cooling mode in which the air is cooled by the cooling heat exchanger, the refrigerant circuit switching device causes the refrigerant that has flowed out of the outdoor heat exchanger to flow into the cooling-side nozzle portion, and the cooling-side gas-liquid separator The gas-phase refrigerant that has flowed out of the refrigerant is sucked into the compressor, and the liquid-phase refrigerant that has flowed out of the cooling-side gas-liquid separator flows into the cooling heat exchanger and flows out of the cooling heat exchanger. Switching to a refrigerant circuit for sucking refrigerant into the cooling-side refrigerant suction port,
    The flow direction of the refrigerant in the cooling heat exchanger in the first dehumidifying and heating mode is the same as the flow direction of the refrigerant in the cooling heat exchanger in the second dehumidifying and heating mode,
    The ejector type according to claim 1 or 2, wherein a flow direction of the refrigerant in the cooling heat exchanger in the first dehumidifying heating mode is different from a flow direction of the refrigerant in the cooling heat exchanger in the cooling mode. Refrigeration cycle.
  4.  空調装置に適用されるエジェクタ式冷凍サイクルであって、
     冷凍機油が混入された冷媒を高圧冷媒となるまで圧縮して、前記高圧冷媒を吐出する圧縮機(11)と、
     前記高圧冷媒を熱源として空調対象空間に送風される空気を加熱する加熱用熱交換器(12)と、
     前記加熱用熱交換器の下流側に配置されて冷媒を減圧させる第1減圧装置(15b)と、
     前記第1減圧装置から流出した冷媒を外気と熱交換させる室外熱交換器(17)と、
     前記加熱用熱交換器の下流側に配置されて冷媒を減圧させる第2減圧装置(15e)と、
     前記第2減圧装置から流出した冷媒を蒸発させて前記加熱用熱交換器を通過する前の前記空気を冷却する冷却用熱交換器(21)と、
      前記加熱用熱交換器の下流側の冷媒を減圧させて、冷却側噴射冷媒として噴射する冷却側ノズル部(22a)、
      前記冷却側噴射冷媒の吸引作用によって冷却側冷媒吸引口(22c)から冷媒を冷却側吸引冷媒として吸引する冷却側冷媒吸引口(22c)、および
      前記冷却側噴射冷媒と前記冷却側吸引冷媒との混合冷媒を昇圧させる冷却側昇圧部(22d)を有する冷却側エジェクタ(22)と、
     前記冷却側昇圧部から流出した冷媒を気相冷媒と液相冷媒とに分離する冷却側気液分離器(23)と、
     冷媒回路を切り替える冷媒回路切替装置(13a、13b、18a、18b)と、を備え、
     前記冷媒回路切替装置は、
      前記冷却用熱交換器にて冷却された前記空気を前記加熱用熱交換器にて再加熱する第1除湿暖房モードでは、前記加熱用熱交換器から流出した冷媒を、前記第1減圧装置、前記室外熱交換器、前記第2減圧装置、前記冷却用熱交換器、前記圧縮機の順に流通させる冷媒回路に切り替え、
      前記冷却用熱交換器にて冷却された前記空気を前記加熱用熱交換器にて再加熱する第2除湿暖房モードでは、前記加熱用熱交換器から流出した冷媒を、前記第2減圧装置、前記冷却用熱交換器、前記第1減圧装置、前記室外熱交換器、前記圧縮機の順に流通させる冷媒回路に切り替え、
      前記空気を前記冷却用熱交換器にて冷却する冷房モードでは、前記室外熱交換器から流出した冷媒を前記冷却側ノズル部へ流入させ、前記冷却側気液分離器から流出した前記気相冷媒を前記圧縮機へ吸入させるとともに、前記冷却側気液分離器から流出した前記液相冷媒を前記冷却用熱交換器へ流入させ、前記冷却用熱交換器から流出した冷媒を前記冷却側冷媒吸引口から吸引させる冷媒回路に切り替えるものであり、
     前記第1除湿暖房モード時の前記冷却用熱交換器における冷媒の流れ方向と前記第2除湿暖房モード時の前記冷却用熱交換器における冷媒の流れ方向が同一になっており、
     前記第1除湿暖房モード時の前記冷却用熱交換器における冷媒の流れ方向と前記冷房モード時の前記冷却用熱交換器における冷媒の流れ方向が異なっているエジェクタ式冷凍サイクル。
    An ejector refrigeration cycle applied to an air conditioner,
    A compressor (11) for compressing a refrigerant mixed with refrigerating machine oil until it becomes a high-pressure refrigerant, and discharging the high-pressure refrigerant;
    A heating heat exchanger (12) for heating air blown into the air-conditioned space using the high-pressure refrigerant as a heat source;
    A first decompression device (15b) disposed on the downstream side of the heating heat exchanger and decompressing the refrigerant;
    An outdoor heat exchanger (17) for exchanging heat between the refrigerant flowing out of the first decompression device and the outside air;
    A second decompression device (15e) disposed on the downstream side of the heating heat exchanger to decompress the refrigerant;
    A cooling heat exchanger (21) for evaporating the refrigerant flowing out of the second decompression device and cooling the air before passing through the heating heat exchanger;
    A cooling side nozzle part (22a) for depressurizing the refrigerant on the downstream side of the heating heat exchanger and injecting the refrigerant as a cooling side injection refrigerant;
    A cooling-side refrigerant suction port (22c) for sucking refrigerant as a cooling-side suction refrigerant from the cooling-side refrigerant suction port (22c) by the suction action of the cooling-side injection refrigerant, and the cooling-side injection refrigerant and the cooling-side suction refrigerant A cooling-side ejector (22) having a cooling-side boosting part (22d) for boosting the mixed refrigerant;
    A cooling-side gas-liquid separator (23) for separating the refrigerant flowing out from the cooling-side pressurization unit into a gas-phase refrigerant and a liquid-phase refrigerant;
    A refrigerant circuit switching device (13a, 13b, 18a, 18b) for switching the refrigerant circuit,
    The refrigerant circuit switching device is
    In the first dehumidifying and heating mode in which the air cooled by the cooling heat exchanger is reheated by the heating heat exchanger, the refrigerant flowing out of the heating heat exchanger is changed to the first pressure reducing device, Switch to the refrigerant circuit that circulates in the order of the outdoor heat exchanger, the second pressure reducing device, the cooling heat exchanger, the compressor,
    In the second dehumidifying and heating mode in which the air cooled by the cooling heat exchanger is reheated by the heating heat exchanger, the refrigerant flowing out of the heating heat exchanger is changed to the second decompression device, Switch to the refrigerant circuit for circulating the cooling heat exchanger, the first pressure reducing device, the outdoor heat exchanger, and the compressor in this order,
    In the cooling mode in which the air is cooled by the cooling heat exchanger, the refrigerant that has flowed out of the outdoor heat exchanger flows into the cooling-side nozzle portion and flows out of the cooling-side gas-liquid separator. Is sucked into the compressor, the liquid refrigerant flowing out of the cooling side gas-liquid separator is caused to flow into the cooling heat exchanger, and the refrigerant flowing out of the cooling heat exchanger is sucked into the cooling side refrigerant. Switch to a refrigerant circuit to be sucked from the mouth,
    The flow direction of the refrigerant in the cooling heat exchanger in the first dehumidifying and heating mode is the same as the flow direction of the refrigerant in the cooling heat exchanger in the second dehumidifying and heating mode,
    An ejector refrigeration cycle in which a refrigerant flow direction in the cooling heat exchanger in the first dehumidifying heating mode is different from a refrigerant flow direction in the cooling heat exchanger in the cooling mode.
  5.  前記冷却用熱交換器の内部には冷媒通路が形成されており、
     前記冷媒通路の通路断面積は、前記冷房モード時における冷媒入口側から冷媒出口側へ向かうに伴って縮小している請求項3または4に記載のエジェクタ式冷凍サイクル。

     
    A refrigerant passage is formed inside the cooling heat exchanger,
    5. The ejector refrigeration cycle according to claim 3, wherein a passage cross-sectional area of the refrigerant passage is reduced from a refrigerant inlet side toward a refrigerant outlet side in the cooling mode.

PCT/JP2017/019292 2016-06-21 2017-05-24 Ejector refrigeration cycle WO2017221618A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017003076.5T DE112017003076T5 (en) 2016-06-21 2017-05-24 ejector refrigeration
CN201780038586.2A CN109416203B (en) 2016-06-21 2017-05-24 Ejector type refrigeration cycle
US16/225,444 US20190128569A1 (en) 2016-06-21 2018-12-19 Ejector refrigeration circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016122859A JP6528733B2 (en) 2016-06-21 2016-06-21 Ejector type refrigeration cycle
JP2016-122859 2016-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/225,444 Continuation US20190128569A1 (en) 2016-06-21 2018-12-19 Ejector refrigeration circuit

Publications (1)

Publication Number Publication Date
WO2017221618A1 true WO2017221618A1 (en) 2017-12-28

Family

ID=60784291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019292 WO2017221618A1 (en) 2016-06-21 2017-05-24 Ejector refrigeration cycle

Country Status (5)

Country Link
US (1) US20190128569A1 (en)
JP (1) JP6528733B2 (en)
CN (1) CN109416203B (en)
DE (1) DE112017003076T5 (en)
WO (1) WO2017221618A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6277888B2 (en) * 2014-06-27 2018-02-14 株式会社デンソー Refrigeration cycle equipment
EP3699515B1 (en) * 2019-02-20 2023-01-11 Weiss Technik GmbH Temperature-controlled chamber and method
US11754324B2 (en) * 2020-09-14 2023-09-12 Copeland Lp Refrigerant isolation using a reversing valve
US11709004B2 (en) 2020-12-16 2023-07-25 Lennox Industries Inc. Method and a system for preventing a freeze event using refrigerant temperature
CN113432261A (en) * 2021-06-29 2021-09-24 海信(山东)空调有限公司 Refrigerant circulation system, method for controlling air conditioner to dehumidify and air conditioner
CN113432264A (en) * 2021-06-29 2021-09-24 海信(山东)空调有限公司 Refrigerant circulation system, method for controlling air conditioner to dehumidify and air conditioner
US20230130167A1 (en) * 2021-10-21 2023-04-27 Emerson Climate Technologies, Inc. Climate control systems for use with high glide working fluids and methods for operation thereof
DE102021213208A1 (en) 2021-11-24 2023-05-25 Volkswagen Aktiengesellschaft Air conditioning arrangement with controlled ejector
CN115046328A (en) * 2022-06-01 2022-09-13 嵊州市浙江工业大学创新研究院 Injection compression refrigeration system adopting phase-change material to recycle waste heat of cement plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142506A (en) * 2002-10-22 2004-05-20 Denso Corp Air conditioning device for vehicle
CN1687675A (en) * 2005-06-02 2005-10-26 上海交通大学 Refrigerating unit with mixed cycle of compression/injection in refrigerator car supplying two temperatures
JP2005300067A (en) * 2004-04-14 2005-10-27 Denso Corp Ejector cycle
JP2014016085A (en) * 2012-07-09 2014-01-30 Denso Corp Refrigeration cycle device
JP2014115069A (en) * 2012-11-16 2014-06-26 Denso Corp Ejector

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2320961Y (en) * 1997-10-13 1999-05-26 郑守峰 Jet-type refrigerant cold-storage device
JP2007255771A (en) * 2006-03-22 2007-10-04 Denso Corp Ejector type cycle
JP2008057941A (en) * 2006-09-04 2008-03-13 Fuji Electric Retail Systems Co Ltd Refrigerant cycle device
JP2008116124A (en) * 2006-11-06 2008-05-22 Hitachi Appliances Inc Air conditioner
JP5446694B2 (en) * 2008-12-15 2014-03-19 株式会社デンソー Ejector refrigeration cycle
CN103190209B (en) 2010-10-26 2016-05-18 汉高知识产权控股有限责任公司 For the composite membrane of plate level EMI shielding
JP6102552B2 (en) 2012-11-16 2017-03-29 株式会社デンソー Refrigeration cycle equipment
JP5999050B2 (en) * 2013-08-29 2016-09-28 株式会社デンソー Ejector refrigeration cycle and ejector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142506A (en) * 2002-10-22 2004-05-20 Denso Corp Air conditioning device for vehicle
JP2005300067A (en) * 2004-04-14 2005-10-27 Denso Corp Ejector cycle
CN1687675A (en) * 2005-06-02 2005-10-26 上海交通大学 Refrigerating unit with mixed cycle of compression/injection in refrigerator car supplying two temperatures
JP2014016085A (en) * 2012-07-09 2014-01-30 Denso Corp Refrigeration cycle device
JP2014115069A (en) * 2012-11-16 2014-06-26 Denso Corp Ejector

Also Published As

Publication number Publication date
JP2017227366A (en) 2017-12-28
JP6528733B2 (en) 2019-06-12
DE112017003076T5 (en) 2019-02-28
CN109416203A (en) 2019-03-01
US20190128569A1 (en) 2019-05-02
CN109416203B (en) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2017221618A1 (en) Ejector refrigeration cycle
US10889163B2 (en) Heat pump system
JP6011507B2 (en) Refrigeration cycle equipment
JP6277888B2 (en) Refrigeration cycle equipment
JP5831423B2 (en) Refrigeration cycle equipment
US10538138B2 (en) Air conditioning device for vehicle
CN109642756B (en) Refrigeration cycle device
US20150308462A1 (en) Ejector
CN110799365B (en) Air conditioner
CN109890636B (en) Refrigeration cycle device
WO2014076905A1 (en) Refrigeration cycle apparatus
JP5321647B2 (en) Refrigeration cycle equipment
JP2018118540A (en) Refrigeration cycle device
WO2017212820A1 (en) Ejector refrigeration cycle device
JP6390431B2 (en) Refrigeration cycle equipment
JP6561922B2 (en) Integrated valve
JP6642297B2 (en) Ejector refrigeration cycle
JP6669033B2 (en) Ejector refrigeration cycle
JP6720932B2 (en) Ejector type refrigeration cycle
US10442274B2 (en) Ejector refrigeration cycle device and low outside temperature operation thereof
JP6582843B2 (en) Refrigeration cycle equipment
WO2018003352A1 (en) Refrigeration cycle device
JP2020029983A (en) Refrigeration cycle device
JP6634998B2 (en) Expansion valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815087

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17815087

Country of ref document: EP

Kind code of ref document: A1