WO2017221356A1 - Microscope - Google Patents

Microscope Download PDF

Info

Publication number
WO2017221356A1
WO2017221356A1 PCT/JP2016/068560 JP2016068560W WO2017221356A1 WO 2017221356 A1 WO2017221356 A1 WO 2017221356A1 JP 2016068560 W JP2016068560 W JP 2016068560W WO 2017221356 A1 WO2017221356 A1 WO 2017221356A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
positional relationship
light
excitation light
sample
Prior art date
Application number
PCT/JP2016/068560
Other languages
French (fr)
Japanese (ja)
Inventor
兼太郎 井元
厚志 土井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018523216A priority Critical patent/JPWO2017221356A1/en
Priority to PCT/JP2016/068560 priority patent/WO2017221356A1/en
Publication of WO2017221356A1 publication Critical patent/WO2017221356A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • the present invention relates to a microscope.
  • the positional relationship between the confocal pinhole and the focal point of the excitation light is optically determined.
  • a microscope is known that detects fluorescence by switching between a conjugate position and a non-conjugated position, and calculates the difference between the obtained fluorescence signals (see, for example, Patent Document 1).
  • a scanner that scans excitation light from a light source, and the excitation light that is scanned by the scanner is collected on a sample, while signal light generated in the sample is collected at each scanning position.
  • An objective optical system, a detector for detecting the signal light collected by the objective optical system, and the signal light arranged between the detector and the objective optical system and condensed by the objective optical system And a positional relationship between the light shielding member and the condensing point of the excitation light in the sample in terms of an optically conjugate positional relationship and an optically non-conjugated positional relationship.
  • a switching unit that automatically switches, a fluorescence distribution acquisition unit that acquires a fluorescence distribution at a position optically conjugate with the condensing point, and the switching unit based on the fluorescence distribution acquired by the fluorescence distribution acquisition unit.
  • a fluorescence distribution acquisition unit that acquires a fluorescence distribution at a position optically conjugate with the condensing point
  • the switching unit based on the fluorescence distribution acquired by the fluorescence distribution acquisition unit.
  • the excitation light from the light source is scanned by the scanner and condensed on the sample by the objective optical system, whereby the fluorescent material is excited at the collection point of the excitation light in the sample to generate fluorescence.
  • the generated fluorescence and the reflected light of the excitation light from the sample are collected by the objective optical system and then detected by the detector, and a fluorescence image is generated by associating the detected fluorescence intensity with the scanning position.
  • the fluorescence distribution acquisition unit acquires a fluorescence distribution at a position optically conjugate with the condensing point, and the setting unit sets a non-conjugated positional relationship in the switching unit based on the acquired fluorescence distribution.
  • the positional relationship between the light blocking member provided in the previous stage of the detector and the condensing point of the excitation light in the sample is switched to a conjugate positional relationship by the operation of the switching unit, the focus fluorescence and the out-of-focus fluorescence are detected. Detected by the instrument.
  • the focused fluorescence cannot pass through the light shielding member, and only the out-of-focus fluorescence is detected by the detector. Then, by calculating the difference between these detected fluorescence signals, it is possible to obtain the focused fluorescence from which the out-of-focus fluorescence has been removed, and to obtain a clear fluorescence image.
  • the operator since an optimal non-conjugated positional relationship can be obtained based on the fluorescence distribution at a position optically conjugate with the condensing point, the operator can perform focusing without performing complicated setting work. It is possible to obtain focused fluorescence from which external fluorescence has been accurately removed. Therefore, the burden on the operator can be reduced.
  • the setting unit separates the fluorescence distribution acquired by the fluorescence distribution acquisition unit into a focus fluorescence and an out-of-focus fluorescence, and the focus fluorescence falls below a predetermined threshold and
  • the positional relationship closest to the optically conjugate position may be set as the non-conjugated positional relationship in the switching unit.
  • the said setting part may apply the said fluorescence distribution acquired by the said fluorescence distribution acquisition part to a predetermined distribution model, and may isolate
  • the said fluorescence distribution acquisition part changes the positional relationship of the said condensing point of the said excitation light in the said sample, and the said light-shielding member
  • the said signal light detected by the said detector The fluorescence distribution may be acquired based on the fluorescence intensity.
  • the fluorescence distribution acquisition unit is configured such that the positional relationship between the light shielding member and the condensing point of the excitation light in the sample is a conjugate positional relationship, and two different non-conjugated conjugates.
  • fluorescence intensity is acquired at least at three points: a conjugate positional relationship, a positional relationship with a high degree of non-conjugation, and a positional relationship with a low degree of non-conjugation that is close to the conjugate positional relationship.
  • a conjugate positional relationship a positional relationship with a high degree of non-conjugation
  • a positional relationship with a low degree of non-conjugation that is close to the conjugate positional relationship.
  • the fluorescence distribution acquisition unit is based on a theoretical size of the spot diameter of the excitation light at the condensing point determined by the objective optical system and the wavelength of the excitation light. You may set the positional relationship of the said light shielding member which acquires the intensity
  • positioned in the position optically conjugate with the said condensing point of the said excitation light in the said sample may be sufficient as the said fluorescence distribution acquisition part.
  • the fluorescence distribution acquisition unit acquires the fluorescence distribution at a plurality of points
  • the setting unit determines the non-conjugated positional relationship in the switching unit based on an average of the plurality of fluorescence distributions. It may be set. In this way, it is possible to easily set a non-conjugated positional relationship in which the focused fluorescence and the out-of-focus fluorescence can be accurately separated by the setting unit without acquiring a fluorescence image, and excitation to the sample. It is possible to reduce the damage of the sample by reducing the light irradiation time.
  • FIG. 2 is a diagram illustrating an example of an irradiation pattern of one of the two types of excitation light set by the setting unit in the imaging mode of the microscope of FIG. 1.
  • FIG. 3 is a diagram illustrating an example of an irradiation pattern of the other of the two types of excitation light set by the setting unit in the imaging mode of the microscope of FIG. It is a block diagram which shows the 1st modification of the microscope of FIG. It is a block diagram which shows the 2nd modification of the microscope of FIG. It is a top view which shows the disk which has the pinhole of the microscope of FIG. 6A. It is a block diagram which shows the 3rd modification of the microscope of FIG. It is a block diagram which shows the 4th modification of the microscope of FIG. It is a block diagram which shows the 5th modification of the microscope of FIG.
  • a microscope 1 according to an embodiment of the present invention will be described below with reference to the drawings.
  • the microscope 1 according to the present embodiment is switched by the switching unit 3 that switches the excitation light from the laser light source 2 to two types of excitation light that are alternately emitted, and the switching unit 3.
  • a microscope body 4 that irradiates the sample A with two types of excitation light and detects the fluorescence generated in the sample A, and a calculation unit 5 that generates an image by calculation using the fluorescence detected in the microscope body 4;
  • a monitor 6 for displaying an image generated by the calculation unit 5.
  • the microscope body 4 condenses the excitation light scanned by the scanner 7 in a two-dimensional manner and the excitation light scanned by the scanner 7 on the sample A, and the fluorescence (signal light) from the sample A.
  • a converging objective lens (objective optical system) 8 a dichroic mirror 9 for diverging fluorescence collected by the objective lens 8 and returning via the scanner 7 from the optical path of the excitation light, and branched by the dichroic mirror 9
  • An imaging lens 10 that condenses the fluorescent light, a pinhole (light-shielding member) 11 that is optically conjugate with the focal position of the objective lens 8, and light that detects the fluorescent light that has passed through the pinhole 11
  • pinhole 11 was illustrated as a light shielding member, it replaces with this, and when it arrange
  • Any light shielding member that blocks the focal fluorescence when the light is emitted may be used.
  • examples of the light shielding member include a micromirror device and a spatial light modulator.
  • the scanner 7 is, for example, a proximity galvanometer mirror in which two galvanometer mirrors that can be swung around a non-parallel axis line are arranged close to each other.
  • the photodetector 12 is, for example, a photomultiplier tube (PMT).
  • the laser light source 2 is a light source that continuously emits excitation light.
  • the switching unit 3 includes a movable mirror (deflection element) 13 that changes the swing angle, and a drive control unit 14 that drives the movable mirror 13.
  • a setting unit 16 is connected to the drive control unit 14, and an input unit 17 and a distribution acquisition unit (fluorescence distribution acquisition unit) 18 are connected to the setting unit 16.
  • the input unit 17 is configured by a keyboard, a mouse, or a GUI that performs input for selecting two operation modes of a setting mode and a shooting mode. Based on the input from the input unit 17, the setting unit 16 sets the drive control unit 14 to operate in one of two operation modes.
  • the setting unit 16 When the setting mode is selected from the input unit 17, the setting unit 16 operates the drive control unit 14 so as to drive the movable mirror 13 and shift the laser beam by a preset shift amount.
  • the drive control unit 14 When the photographing mode is selected, the drive control unit 14 is caused to function as a frequency oscillator that oscillates a predetermined frequency.
  • the preset shift amount x is the first shift amount with zero shift amount in which the condensing point and the pinhole 11 are in an optically conjugate positional relationship.
  • x1 the second shift amount x2 where the condensing point and the pinhole 11 are partially optically non-conjugated, and the positional relationship where the condensing point and the pinhole 11 are sufficiently optically non-conjugated.
  • the third shift amount x3 The third shift amount x3.
  • the setting unit 16 instructs the drive control unit 14 to set the movable mirror 13 at an angle at which three preset shift amounts can be achieved, and the movable mirror 13.
  • the intensity of the fluorescence detected by the photodetector 12 at each angle is stored in the distribution acquisition unit 18.
  • the distribution acquisition unit 18 generates a fluorescence distribution in which the shift amount x that can achieve each of the three angles of the movable mirror 13 is associated with the fluorescence intensity acquired at each angle.
  • the fluorescence detected by the photodetector 12 is shown in FIG.
  • the out-of-focus fluorescence generated at a position other than the focus is also included, while the focused fluorescence generated from the focus is largely dominant.
  • the focal fluorescence decreases, but the out-of-focus fluorescence does not change much.
  • the setting unit 16 can achieve the positional relationship between the condensing point and the pinhole 11 that can detect the fluorescence in which the out-of-focus fluorescence is dominant and hardly includes the focused fluorescence from the fluorescence distribution acquired by the distribution acquisition unit 18.
  • angle of a movable mirror 13 that is, in order to calculate the achievable angle of the shift amount of the code x P in Figure 2B.
  • the method of calculating the shift amount of achievable angle of the code x P is the fluorescence distribution of three points generated by the distribution obtaining unit 18, for example, how to find an optimum position by fitting the distribution model such as a Gaussian function Can be mentioned.
  • the focal fluorescence of the first term and the out-of-focus fluorescence of the second term can be separated.
  • P can be set as an optimal non-conjugated positional relationship by the switching unit 3. Although 0.01 means that the focal fluorescence has decreased to 1%, this value can be set arbitrarily.
  • the angle of the movable mirror 13 to be set is set in the drive control unit 14 as the angle of the movable mirror 13 in the photographing mode.
  • the drive control unit 14 oscillates a predetermined frequency, and in synchronization with the oscillated frequency, the angle of the movable mirror 13 is alternately switched between the two angles set by the setting unit 16. It has become.
  • Reference numeral 15 in the figure denotes a mirror.
  • the movable mirror 13 was illustrated as a deflection
  • the two types of excitation light incident on the microscope body 4 are formed in a rectangular wave shape having inverted timings as shown in FIGS. 4A and 4B.
  • the rectangular wave-like light which has the timing reversed as two types of excitation light was illustrated here, instead of this, it has arbitrary repetitive shapes, such as a sine wave shape, and employ
  • One excitation light shown in FIG. 4A is focused on a position optically conjugate with the pinhole 11 via the scanner 7 and the objective lens 8, and the other excitation light shown in FIG.
  • the focal point is focused on a position optically unconjugated with the pinhole 11 via the lens 8.
  • the incident angle switching frequency is set to a frequency at which two types of excitation light can be blinked at least once at each pixel position.
  • the calculation unit 5 calculates the difference in the intensity of the fluorescence generated by the two types of excitation light detected by the photodetector 12 at the same pixel position.
  • the computing unit 5 includes, for example, a lock-in amplifier (not shown).
  • the lock-in amplifier calculates the difference between the two types of fluorescence signals output from the photodetector 12 in hardware in synchronization with the frequency generated by the drive control unit 14 for blinking the excitation light. ing. Then, the calculation unit 5 generates an image by storing the difference calculated for each pixel and the scanning position by the scanner 7 in association with each other.
  • the sample A is arranged on the stage (not shown) of the microscope body 4 so that the focal position of the objective lens 8 coincides with the sample A. Then, continuous excitation light is generated from the laser light source 2.
  • the setting unit 16 When the setting mode is selected in the input unit 17, the setting unit 16 is different from the drive control unit 14 in the shift amount x1 in which the condensing point and the pinhole 11 are conjugate and the degree of nonconjugation is different.
  • the angle of the movable mirror 13 is set to three angles corresponding to the two shift amounts x2 and x3, and the fluorescence intensity detected by the photodetector 12 at each angle is associated with the shift amount x by the distribution acquisition unit 18. And a fluorescence distribution is generated.
  • the generated fluorescence distribution is sent to the setting unit 16.
  • the angle of the movable mirror 13 is calculated.
  • the setting unit 16 sets the calculated angle of the movable mirror 13 as the angle of the movable mirror 13 that is switched by the drive control unit 14 when the photographing mode is selected by the input unit 17.
  • the drive control unit 14 alternately changes the angle of the movable mirror 13 to two angles set by the setting unit 16 according to a predetermined frequency oscillated by the drive control unit 14. Two types of excitation light having different incident angles are alternately incident on the main body 4.
  • the focal fluorescence contained in one excitation light is condensed at a position in the sample A conjugate with the pinhole 11, so that the fluorescence generated in the vicinity of the focal position is condensed by the objective lens 8, On the way back through the scanner 7, it is separated by the dichroic mirror 9, condensed by the imaging lens 10, passes through the pinhole 11, and is detected by the photodetector 12.
  • the excitation light excites the fluorescent substance by passing through the sample A even in the middle of the path to the focal position of the objective lens 8. This occurs not only in the focal position of the lens but also in the middle of the path to the focal position.
  • the sample A is made of a scattering material, the fluorescence tends to be generated at a site other than the focal position due to scattering of the excitation light.
  • the fluorescence generated from the focal position of the objective lens 8 easily passes through the pinhole 11 disposed at the optically conjugate position, and thus is detected as signal light by the photodetector 12.
  • the fluorescence generated from the part other than the focal position is scattered by the sample, and a part thereof passes through the pinhole 11 and is detected as noise by the photodetector 12. Therefore, the fluorescence detected by the irradiation of one excitation light includes the focal fluorescence generated at the focal position of the objective lens 8 and to be acquired as a signal, and the out-of-focus that is generated at the other part and should not be acquired as a signal. Fluorescence and are included.
  • the other excitation light is condensed at a position unconjugated with the pinhole 11 in the sample A, and excites the fluorescent substance in the middle of the path to the focal position and the focal position of the objective lens 8. This generates fluorescence.
  • the fluorescence generated at the non-conjugated focal position cannot be passed through the pinhole 11 and is blocked, while a part of the fluorescence generated from the part other than the focal position is scattered by the sample.
  • the light passes through the same pinhole 11 and is detected by the photodetector 12.
  • the focal fluorescence in the fluorescence detected by the photodetector 12 is reduced by 99% and the focal point is reduced.
  • Outer fluorescence is substantially equivalent to out-of-focus fluorescence detected by the photodetector 12 in a conjugate positional relationship. Therefore, the calculation unit 5 calculates the difference between the fluorescence detected by the irradiation of these two types of excitation light, thereby generating a focal point that should not be acquired as a signal, generated in a part other than the focal position of the objective lens 8.
  • the focal fluorescence from which the external fluorescence is removed can be obtained with high accuracy.
  • the range in which fluorescence is generated by irradiating two types of excitation light is not exactly the same, but it is the same in many parts, and detection is performed using the same pinhole 11 Thus, most of the out-of-focus fluorescence can be removed by subtracting as it is. In particular, when high-definition observation is performed by increasing the NA of excitation light, the overlap ratio of the fluorescence generation range increases, so that the out-of-focus fluorescence can be more effectively removed.
  • the fluorescence generated at the focal position of the objective lens 8 can be detected with a high S / N ratio, and a clear image with little noise can be acquired.
  • the effect is high at the time of high-definition observation with a large NA of excitation light and when the sample A is a strong scattering material and easily generates out-of-focus fluorescence. Since the optimum non-conjugate position is automatically set, the operator does not need to perform the troublesome work of manually adjusting the positional relationship between the pinhole 11 and the fluorescent light beam while photographing the sample A. There is an advantage that the burden can be reduced.
  • the pinhole 11 is exemplified as the light shielding member, but instead of this, when the focus hole is arranged at a position optically conjugate with the focus position of the objective lens 8, the focused fluorescence is passed,
  • An arbitrary light shielding member that blocks the focal fluorescence when arranged at a conjugate position may be employed.
  • the other light shielding member include a micromirror device and a spatial light modulator.
  • the signal light from the sample A detected by the photodetector 12 is exemplified using only fluorescence, but in addition to this, reflected light of excitation light from the sample A is used. May be.
  • the refractive index distribution can be imaged.
  • the movable mirror 13 is exemplified as the deflecting element constituting the switching unit 3, as shown in FIG. 5, the acousto-optic deflector (acousto-optic element, beam moving unit) 19 or the electro-optic deflector (electro-optic element, beam).
  • a device such as (moving unit) 20 can also be used.
  • These devices 19 and 20 also switch the voltage input according to a predetermined frequency oscillated by the drive control unit 14, so that the fluorescent light beam enters the imaging lens 10 in synchronization with the input voltage in the same manner as the movable mirror 13. The angle can be changed.
  • the setting unit 16 switches the voltage generated by the drive control unit 14 during the setting mode, causes the distribution acquisition unit 18 to acquire the fluorescence distribution, and inputs the fluorescence distribution to the devices 19 and 20 during the imaging mode based on the acquired fluorescence distribution. Set the voltage. Since these devices 19 and 20 do not include a movable part such as the movable mirror 13, the device can be configured to be compact and have a long life.
  • the incident position of the fluorescent light beam incident on the fixed light shielding member 11 is switched over time.
  • the fluorescent light beam is fixed and the light shielding member 21 is fixed. May be moved in a direction crossing the optical axis S of the fluorescent light beam. That is, as shown in FIG. 6B, a disk-shaped disk having a plurality of pinholes 22 arranged at intervals in the circumferential direction is adopted as the light shielding member 21, and a motor is used as shown in FIG. 6A.
  • the (switching unit) 23 may rotate the disk 21 around the central axis.
  • the fluorescence condensing position by the imaging lens 10 is made coincident with the disk 21, and the disk 21 is rotated by the motor 23 so that the pinhole 22 coincides with the optical axis S of the fluorescence.
  • a state that does not match can be alternately repeated. That is, in a state where any one of the pinholes 22 coincides with the fluorescence optical axis S, the focal point of the excitation light in the sample A and the pinhole 22 are in an optically conjugate positional relationship.
  • the condensing point of the excitation light in the sample A and the pinhole 22 are in an optically non-conjugated positional relationship.
  • the fluorescence distribution is calculated based on the fluorescence intensities acquired at the three positions of the position where the pinhole 22 is aligned with the optical axis S of the fluorescence, the position where the pinhole 22 is partially matched, and the position which is not completely matched.
  • an optically conjugate positional relationship and an optically non-conjugated positional relationship are alternately formed in time, and two types of fluorescence for accurately detecting the focused fluorescence are detected by the same photodetector 12. Can be detected sequentially. Further, there is an advantage that the two positional relationships can be switched at a higher speed by rotating the disk 21 at a higher speed.
  • the case where the fluorescent light beam is moved in the direction intersecting the optical axis S with respect to the pinhole 22 is exemplified, but instead, the pinhole 22 is moved with respect to the fluorescent light beam. It may be.
  • the non-conjugated positional relationship may be achieved by making the incident angle of the excitation light incident on the sample A from the laser light source 2 different. In that case, when the incident angle of the excitation light is changed by the movable mirror 30 arranged between the laser light source 2 and the dichroic mirror 9, the scanner 7 is moved so that the position of the condensing point in the sample A does not shift. It is necessary to operate in conjunction.
  • Reference numeral 31 denotes a mirror for forming an optical path of excitation light from the laser light source 2 to the movable mirror 30.
  • the distribution model for fitting is not limited to a Gaussian function, and a Lorentz function or a Forked function may be used.
  • a fluorescence distribution may be generated by detecting the fluorescence intensity in the quantity. Thereby, the precision of fitting to a distribution model can be improved.
  • the fluorescence distribution may be acquired at one location in the sample A, or the fluorescence distribution may be generated by averaging the fluorescence intensities acquired at two or more locations.
  • x x2 and x3 are set in advance, but as a guide, Airy (AIRY) which is a unit representing the theoretical size of the spot diameter of the excitation light may be used.
  • AIRY Airy
  • the shift amount x2 0.5 air
  • the shift amount x3 5 air You can set it to. In this way, it is possible to calculate the shift amount that optimizes the non-conjugated positional relationship with high accuracy by the three fluorescence distributions.
  • the fluorescence intensity detected using the photodetector 12 provided in the microscope body 4 is also used when setting the shift amount in the setting mode. Thereby, the fluorescence distribution can be generated without adding a new device to the basic configuration of the microscope body 4.
  • a half mirror 24 that branches a part of the fluorescence from the sample A, and a camera that images the branched fluorescence at a position optically conjugate with the pinhole 11 A two-dimensional sensor such as a fluorescence distribution acquisition unit 25 may be provided.
  • reference numeral 26 denotes a condenser lens.
  • the fluorescent light beam and the pinhole 11 are relatively moved in the direction intersecting the optical axis S of the fluorescent light beam. Instead, as shown in FIG.
  • the fluorescent light beam and the pinhole 11 may be relatively moved in the direction along the optical axis S of the fluorescent light beam.
  • an acousto-optic lens 27 is employed instead of the acousto-optic deflector 19 or the electro-optic deflector 20.
  • the acousto-optic lens 27 is a lens that changes the refractive power in accordance with the input voltage.
  • the imaging position of the fluorescence by the imaging lens 10 is changed.
  • the position can be switched between a position matching the pinhole 11 and a position shifted from the pinhole 11 in the optical axis direction. Even in this case, the optimum non-conjugated positional relationship exists, and the out-of-focus fluorescence can be accurately removed by setting the optimal positional relationship.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

For the purpose of automatically setting an optimum point that allows a confocal pinhole and a light collection point of excitation light to be in an optically non-conjugate positional relationship, and alleviating a burden on an operator, a microscope (1) according to the present invention includes: a scanner (7) that irradiates excitation light for scanning from a light source (2); an objective optical system (8) that collects, at a sample (A), excitation light for scanning and collects, in each scanning position, fluorescent light generated at the sample; a detector (12) that detects the collected fluorescent light; a light-shielding member (11) that is provided between the detector and the objective optical system and partly shields the fluorescent light collected by the objective optical system; a switching unit (3) that temporally switches, between an optically conjugate positional relationship and an optically non-conjugate positional relationship, a positional relationship between the light-shielding member and the light collection point of excitation light at the sample; a fluorescent light distribution acquiring unit (18) that acquires a fluorescent light distribution in an optically conjugate position with respect to the light collection point; and a setting unit (16) that sets a non-conjugate positional relationship in the switching unit on the basis of the acquired fluorescent light distribution.

Description

顕微鏡microscope
 本発明は、顕微鏡に関するものである。 The present invention relates to a microscope.
 焦点外蛍光の共焦点ピンホール内への漏れ込みにより、試料の深部の観察が困難になるのを防止するために、共焦点ピンホールと励起光の集光点との位置関係を光学的に共役な位置と非共役な位置とに切り替えてそれぞれ蛍光を検出し、取得された蛍光信号の差分を演算する顕微鏡が知られている(例えば、特許文献1参照)。 In order to prevent the observation of the deep part of the sample due to leakage of out-of-focus fluorescence into the confocal pinhole, the positional relationship between the confocal pinhole and the focal point of the excitation light is optically determined. A microscope is known that detects fluorescence by switching between a conjugate position and a non-conjugated position, and calculates the difference between the obtained fluorescence signals (see, for example, Patent Document 1).
WO2015/163261号公報WO2015 / 163261
 しかしながら、特許文献1の顕微鏡では、共焦点ピンホールと励起光の集光点とが光学的に非共役な位置関係となる最適点の設定については、操作者が手動で試料を撮影しながら共焦点ピンホールの位置を調整する必要があり煩雑であった。
 本発明は上述した事情に鑑みてなされたものであって、共焦点ピンホールと励起光の集光点とが光学的に非共役な位置関係となる最適点を自動設定して、操作者にかかる負担を軽減することができる顕微鏡を提供することを目的としている。
However, in the microscope of Patent Document 1, regarding the setting of the optimum point where the confocal pinhole and the condensing point of the excitation light are in an optically non-conjugative positional relationship, the operator manually captures the sample while photographing it. It was complicated because it was necessary to adjust the position of the focal pinhole.
The present invention has been made in view of the above-described circumstances, and automatically sets an optimal point where the confocal pinhole and the condensing point of the excitation light are in an optically non-conjugate positional relationship. It aims at providing the microscope which can reduce this burden.
 本発明の一態様は、光源からの励起光を走査するスキャナと、該スキャナにより走査される前記励起光を試料に集光する一方、各走査位置で前記試料において発生した信号光を集光する対物光学系と、該対物光学系により集光された前記信号光を検出する検出器と、該検出器と前記対物光学系との間に配置され該対物光学系により集光された前記信号光を部分的に遮断する遮光部材と、該遮光部材と前記試料における前記励起光の集光点との位置関係を、光学的に共役な位置関係と、光学的に非共役な位置関係とに時間的に切り替える切替部と、前記集光点と光学的に共役な位置における蛍光分布を取得する蛍光分布取得部と、該蛍光分布取得部により取得された前記蛍光分布に基づいて、前記切替部における前記非共役な位置関係を設定する設定部とを備える顕微鏡である。 In one embodiment of the present invention, a scanner that scans excitation light from a light source, and the excitation light that is scanned by the scanner is collected on a sample, while signal light generated in the sample is collected at each scanning position. An objective optical system, a detector for detecting the signal light collected by the objective optical system, and the signal light arranged between the detector and the objective optical system and condensed by the objective optical system And a positional relationship between the light shielding member and the condensing point of the excitation light in the sample in terms of an optically conjugate positional relationship and an optically non-conjugated positional relationship. A switching unit that automatically switches, a fluorescence distribution acquisition unit that acquires a fluorescence distribution at a position optically conjugate with the condensing point, and the switching unit based on the fluorescence distribution acquired by the fluorescence distribution acquisition unit. Set the non-conjugated positional relationship A microscope and a that setting section.
 本態様によれば、光源からの励起光がスキャナにより走査され、対物光学系によって試料に集光されることにより、試料における励起光の集光点において蛍光物質が励起されて蛍光が発生する。発生した蛍光および試料からの励起光の反射光は対物光学系によって集光された後に検出器により検出され、検出された蛍光の強度と走査位置とを対応づけることにより蛍光画像が生成される。 According to this aspect, the excitation light from the light source is scanned by the scanner and condensed on the sample by the objective optical system, whereby the fluorescent material is excited at the collection point of the excitation light in the sample to generate fluorescence. The generated fluorescence and the reflected light of the excitation light from the sample are collected by the objective optical system and then detected by the detector, and a fluorescence image is generated by associating the detected fluorescence intensity with the scanning position.
 この場合において、蛍光分布取得部により、集光点と光学的に共役な位置における蛍光分布が取得され、取得された蛍光分布に基づいて設定部により、切替部における非共役な位置関係が設定される。そして、切替部の作動により、検出器の前段に設けられた遮光部材と試料における励起光の集光点との位置関係が共役な位置関係に切り替えられると、焦点蛍光および焦点外蛍光とが検出器により検出される。 In this case, the fluorescence distribution acquisition unit acquires a fluorescence distribution at a position optically conjugate with the condensing point, and the setting unit sets a non-conjugated positional relationship in the switching unit based on the acquired fluorescence distribution. The When the positional relationship between the light blocking member provided in the previous stage of the detector and the condensing point of the excitation light in the sample is switched to a conjugate positional relationship by the operation of the switching unit, the focus fluorescence and the out-of-focus fluorescence are detected. Detected by the instrument.
 また、切替部の作動により、設定部により設定された非共役な位置関係に切り替えられると、焦点蛍光は遮光部材を通過できずに焦点外蛍光のみが検出器により検出される。そして、検出されたこれら蛍光信号の差分が演算されることにより、焦点外蛍光が除去された焦点蛍光を得ることができ、鮮明な蛍光画像を取得することができる。
 すなわち、本態様によれば、集光点と光学的に共役な位置における蛍光分布に基づいて、最適な非共役な位置関係を求められるので、操作者が煩雑な設定作業を行うことなく、焦点外蛍光が精度よく除去された焦点蛍光を得ることができる。したがって、操作者にかかる負担を軽減することができる。
When the non-conjugated positional relationship set by the setting unit is switched by the operation of the switching unit, the focused fluorescence cannot pass through the light shielding member, and only the out-of-focus fluorescence is detected by the detector. Then, by calculating the difference between these detected fluorescence signals, it is possible to obtain the focused fluorescence from which the out-of-focus fluorescence has been removed, and to obtain a clear fluorescence image.
In other words, according to this aspect, since an optimal non-conjugated positional relationship can be obtained based on the fluorescence distribution at a position optically conjugate with the condensing point, the operator can perform focusing without performing complicated setting work. It is possible to obtain focused fluorescence from which external fluorescence has been accurately removed. Therefore, the burden on the operator can be reduced.
 上記態様においては、前記設定部が、前記蛍光分布取得部により取得された前記蛍光分布を焦点蛍光と焦点外蛍光とに分離し、前記焦点蛍光が所定の閾値以下になりかつ前記集光点と光学的に共役な位置に最も近い位置関係を、前記切替部における非共役な位置関係として設定してもよい。 In the above aspect, the setting unit separates the fluorescence distribution acquired by the fluorescence distribution acquisition unit into a focus fluorescence and an out-of-focus fluorescence, and the focus fluorescence falls below a predetermined threshold and The positional relationship closest to the optically conjugate position may be set as the non-conjugated positional relationship in the switching unit.
 共役な位置関係からずれればずれるほど、非共役の度合いが強くなって、取得される焦点蛍光はゼロに近づくが、取得される焦点外蛍光は、遮光部材と試料における集光点とが光学的に共役な位置関係である場合に検出器により検出される焦点外蛍光とは相違するものとなる。このようにすることで、遮光部材と試料における集光点とが光学的に共役な位置関係である場合に検出器により検出される焦点外蛍光に等しくかつ焦点蛍光が含まれていない蛍光を検出することができ、差分によって精度よく焦点外蛍光を除去した焦点蛍光を得ることができる。 The greater the deviation from the conjugate positional relationship, the stronger the degree of non-conjugation, and the acquired focused fluorescence approaches zero, but the acquired out-of-focus fluorescence is such that the light-shielding member and the focal point of the sample are optical. This is different from the out-of-focus fluorescence detected by the detector when the positional relationship is conjugate. In this way, the fluorescence that is equal to the out-of-focus fluorescence detected by the detector and does not include the focused fluorescence when the light shielding member and the focal point of the sample are in an optically conjugate positional relationship is detected. Therefore, it is possible to obtain the focused fluorescence from which the out-of-focus fluorescence is accurately removed by the difference.
 また、上記態様においては、前記設定部が、前記蛍光分布取得部により取得された前記蛍光分布を所定の分布モデルに当てはめて、焦点蛍光と焦点外蛍光とを分離してもよい。
 このようにすることで、蛍光分布を所定の分布モデルに当てはめるだけで、焦点蛍光と焦点外蛍光とを簡易に分離することができ、適正な非共役な位置関係を設定することができる。
Moreover, in the said aspect, the said setting part may apply the said fluorescence distribution acquired by the said fluorescence distribution acquisition part to a predetermined distribution model, and may isolate | separate a focus fluorescence and an out-of-focus fluorescence.
In this way, it is possible to easily separate the focused fluorescence and the out-of-focus fluorescence simply by applying the fluorescence distribution to a predetermined distribution model, and an appropriate non-conjugated positional relationship can be set.
 また、上記態様においては、前記蛍光分布取得部が、前記試料における前記励起光の前記集光点と前記遮光部材との位置関係を変化させたときに、前記検出器により検出される前記信号光である蛍光の強度に基づいて前記蛍光分布を取得してもよい。
 このようにすることで、顕微鏡の基本構成によって蛍光分布を取得することができる。
Moreover, in the said aspect, when the said fluorescence distribution acquisition part changes the positional relationship of the said condensing point of the said excitation light in the said sample, and the said light-shielding member, the said signal light detected by the said detector The fluorescence distribution may be acquired based on the fluorescence intensity.
By doing in this way, fluorescence distribution is acquirable with the basic composition of a microscope.
 また、上記態様においては、前記蛍光分布取得部が、前記遮光部材と前記試料における前記励起光の前記集光点との位置関係が共役な位置関係にあるとき、および異なる2点の非共役な位置関係にあるときに取得された蛍光の強度に基づいて前記蛍光分布を取得してもよい。
 このようにすることで、最低限、共役な位置関係、非共役な度合いの高い位置関係および、共役な位置関係に近く非共役な度合いの低い位置関係の3点において、蛍光強度を取得することにより、設定部によって焦点蛍光と焦点外蛍光とを精度よく分離可能な非共役な位置関係を簡易に設定することができる。
Further, in the above aspect, the fluorescence distribution acquisition unit is configured such that the positional relationship between the light shielding member and the condensing point of the excitation light in the sample is a conjugate positional relationship, and two different non-conjugated conjugates. You may acquire the said fluorescence distribution based on the intensity | strength of the fluorescence acquired when it exists in positional relationship.
In this way, fluorescence intensity is acquired at least at three points: a conjugate positional relationship, a positional relationship with a high degree of non-conjugation, and a positional relationship with a low degree of non-conjugation that is close to the conjugate positional relationship. Thus, it is possible to easily set a non-conjugated positional relationship in which the focused fluorescence and the out-of-focus fluorescence can be accurately separated by the setting unit.
 また、上記態様においては、前記蛍光分布取得部が、前記対物光学系と前記励起光の波長とにより決定される前記集光点における前記励起光のスポット径の理論的な大きさに基づいて、前記蛍光の強度を取得する前記遮光部材と前記試料における前記励起光の前記集光点との位置関係を設定してもよい。
 このようにすることで、非共役の度合いについてはスポット径の理論的な大きさによって決定することができ、これにより、設定部によって焦点蛍光と焦点外蛍光とを精度よく分離可能な非共役な位置関係を簡易に設定することができる。
Further, in the above aspect, the fluorescence distribution acquisition unit is based on a theoretical size of the spot diameter of the excitation light at the condensing point determined by the objective optical system and the wavelength of the excitation light. You may set the positional relationship of the said light shielding member which acquires the intensity | strength of the said fluorescence, and the said condensing point of the said excitation light in the said sample.
In this way, the degree of non-conjugation can be determined by the theoretical size of the spot diameter, and thereby, the non-conjugated can be accurately separated from the focused fluorescence and the off-focus fluorescence by the setting unit. The positional relationship can be set easily.
 また、上記態様においては、前記蛍光分布取得部が、前記試料における前記励起光の前記集光点と光学的に共役な位置に配置された2次元センサであってもよい。
 このようにすることで、蛍光分布を一度に取得でき、設定部によって焦点蛍光と焦点外蛍光とを精度よく分離可能な非共役な位置関係を高速に設定することができる。
Moreover, in the said aspect, the two-dimensional sensor arrange | positioned in the position optically conjugate with the said condensing point of the said excitation light in the said sample may be sufficient as the said fluorescence distribution acquisition part.
By doing in this way, fluorescence distribution can be acquired at once, and the non-conjugated positional relationship which can isolate | separate focus fluorescence and out-of-focus fluorescence with a setting part accurately can be set at high speed.
 また、上記態様においては、前記蛍光分布取得部が、複数点において前記蛍光分布を取得し、前記設定部が、複数の前記蛍光分布の平均に基づいて前記切替部における前記非共役な位置関係を設定してもよい。
 このようにすることで、蛍光画像を取得することなく、簡易に、設定部によって焦点蛍光と焦点外蛍光とを精度よく分離可能な非共役な位置関係を設定することができ、試料への励起光の照射時間を低減して試料のダメージを軽減することができる。
In the above aspect, the fluorescence distribution acquisition unit acquires the fluorescence distribution at a plurality of points, and the setting unit determines the non-conjugated positional relationship in the switching unit based on an average of the plurality of fluorescence distributions. It may be set.
In this way, it is possible to easily set a non-conjugated positional relationship in which the focused fluorescence and the out-of-focus fluorescence can be accurately separated by the setting unit without acquiring a fluorescence image, and excitation to the sample. It is possible to reduce the damage of the sample by reducing the light irradiation time.
 本発明によれば、共焦点ピンホールと励起光の集光点とが光学的に非共役な位置関係となる最適点を自動設定して、操作者にかかる負担を軽減することができるという効果を奏する。 According to the present invention, it is possible to automatically set the optimum point where the confocal pinhole and the condensing point of the excitation light are in an optically non-conjugated positional relationship, thereby reducing the burden on the operator. Play.
本発明の一実施形態に係る顕微鏡を示すブロック図である。It is a block diagram which shows the microscope which concerns on one Embodiment of this invention. 図1の顕微鏡のピンホールにおける蛍光光束とピンホールとのシフト量を説明する部分的な縦断面図である。It is a partial longitudinal cross-sectional view explaining the shift amount of the fluorescent light beam and the pinhole in the pinhole of the microscope of FIG. 図2のシフト量と焦点蛍光および焦点外蛍光との関係を示すグラフである。It is a graph which shows the relationship between the shift amount of FIG. 2, focus fluorescence, and out-of-focus fluorescence. 図1の顕微鏡により取得される蛍光強度とシフト量との関係および設定モードにおいて検出されるシフト量の一例を示すグラフである。It is a graph which shows an example of the relationship between the fluorescence intensity acquired by the microscope of FIG. 1, and a shift amount, and the shift amount detected in setting mode. 図1の顕微鏡の撮影モードにおいて、設定部により設定された2種類の励起光の内の一方の励起光の照射パターンの一例を示す図である。FIG. 2 is a diagram illustrating an example of an irradiation pattern of one of the two types of excitation light set by the setting unit in the imaging mode of the microscope of FIG. 1. 図1の顕微鏡の撮影モードにおいて、設定部により設定された2種類の励起光の内の他方の励起光の照射パターンの一例を示す図である。FIG. 3 is a diagram illustrating an example of an irradiation pattern of the other of the two types of excitation light set by the setting unit in the imaging mode of the microscope of FIG. 図1の顕微鏡の第1の変形例を示すブロック図である。It is a block diagram which shows the 1st modification of the microscope of FIG. 図1の顕微鏡の第2の変形例を示すブロック図である。It is a block diagram which shows the 2nd modification of the microscope of FIG. 図6Aの顕微鏡のピンホールを有するディスクを示す平面図である。It is a top view which shows the disk which has the pinhole of the microscope of FIG. 6A. 図1の顕微鏡の第3の変形例を示すブロック図である。It is a block diagram which shows the 3rd modification of the microscope of FIG. 図1の顕微鏡の第4の変形例を示すブロック図である。It is a block diagram which shows the 4th modification of the microscope of FIG. 図1の顕微鏡の第5の変形例を示すブロック図である。It is a block diagram which shows the 5th modification of the microscope of FIG.
 本発明の一実施形態に係る顕微鏡1について、図面を参照して以下に説明する。
 本実施形態に係る顕微鏡1は、図1に示されるように、レーザ光源2からの励起光を交互に射出される2種類の励起光に切り替える切替部3と、該切替部3により切り替えられた2種類の励起光を試料Aに照射して、試料Aにおいて発生した蛍光を検出する顕微鏡本体4と、該顕微鏡本体4において検出された蛍光を用いて演算により画像を生成する演算部5と、該演算部5により生成された画像を表示するモニタ6とを備えている。
A microscope 1 according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the microscope 1 according to the present embodiment is switched by the switching unit 3 that switches the excitation light from the laser light source 2 to two types of excitation light that are alternately emitted, and the switching unit 3. A microscope body 4 that irradiates the sample A with two types of excitation light and detects the fluorescence generated in the sample A, and a calculation unit 5 that generates an image by calculation using the fluorescence detected in the microscope body 4; And a monitor 6 for displaying an image generated by the calculation unit 5.
 顕微鏡本体4は、切替部3からの励起光を2次元的に走査するスキャナ7と、該スキャナ7により走査された励起光を試料Aに集光し、試料Aからの蛍光(信号光)を集光する対物レンズ(対物光学系)8と、該対物レンズ8により集光され、スキャナ7を経由して戻る蛍光を励起光の光路から分岐するダイクロイックミラー9と、該ダイクロイックミラー9によって分岐された蛍光を集光する結像レンズ10と、対物レンズ8の焦点位置と光学的に共役な位置に配置されたピンホール(遮光部材)11と、該ピンホール11を通過した蛍光を検出する光検出器(検出器)12とを備えている。 The microscope body 4 condenses the excitation light scanned by the scanner 7 in a two-dimensional manner and the excitation light scanned by the scanner 7 on the sample A, and the fluorescence (signal light) from the sample A. A converging objective lens (objective optical system) 8, a dichroic mirror 9 for diverging fluorescence collected by the objective lens 8 and returning via the scanner 7 from the optical path of the excitation light, and branched by the dichroic mirror 9 An imaging lens 10 that condenses the fluorescent light, a pinhole (light-shielding member) 11 that is optically conjugate with the focal position of the objective lens 8, and light that detects the fluorescent light that has passed through the pinhole 11 And a detector (detector) 12.
 なお、遮光部材としてピンホール11を例示したが、これに代えて、対物レンズ8の焦点位置と光学的に共役な位置に配置されたときに焦点蛍光を通過させ、非共役な位置に配置されたときに焦点蛍光を遮断する任意の遮光部材を採用してもよい。その他、遮光部材としてはマイクロミラーデバイスや空間光変調器が挙げられる。 In addition, although pinhole 11 was illustrated as a light shielding member, it replaces with this, and when it arrange | positions in the position optically conjugate with the focus position of the objective lens 8, it passes a focus fluorescence and arrange | positions in a non-conjugated position. Any light shielding member that blocks the focal fluorescence when the light is emitted may be used. In addition, examples of the light shielding member include a micromirror device and a spatial light modulator.
 スキャナ7は、例えば、非平行な軸線回りに揺動可能な2枚のガルバノミラーを近接配置してなる近接ガルバノミラーである。
 光検出器12は、例えば、光電子増倍管(PMT)である。
The scanner 7 is, for example, a proximity galvanometer mirror in which two galvanometer mirrors that can be swung around a non-parallel axis line are arranged close to each other.
The photodetector 12 is, for example, a photomultiplier tube (PMT).
 レーザ光源2は、励起光を連続的に射出する光源である。
 切替部3は、図1に示されるように、揺動角度を変化させる可動ミラー(偏向素子)13と、該可動ミラー13を駆動する駆動制御部14とを備えている。
The laser light source 2 is a light source that continuously emits excitation light.
As shown in FIG. 1, the switching unit 3 includes a movable mirror (deflection element) 13 that changes the swing angle, and a drive control unit 14 that drives the movable mirror 13.
 駆動制御部14には、設定部16が接続されるとともに、設定部16には入力部17および分布取得部(蛍光分布取得部)18が接続されている。入力部17は、設定モードと撮影モードの2つの動作モードを選択する入力を行うキーボード、マウスあるいはGUIにより構成されている。設定部16は、入力部17からの入力に基づいて、駆動制御部14を2つの動作モードのいずれかによって動作させるように設定するようになっている。 A setting unit 16 is connected to the drive control unit 14, and an input unit 17 and a distribution acquisition unit (fluorescence distribution acquisition unit) 18 are connected to the setting unit 16. The input unit 17 is configured by a keyboard, a mouse, or a GUI that performs input for selecting two operation modes of a setting mode and a shooting mode. Based on the input from the input unit 17, the setting unit 16 sets the drive control unit 14 to operate in one of two operation modes.
 設定部16は、入力部17から設定モードが選択された場合には、予め設定されているシフト量だけ、可動ミラー13を駆動してレーザ光束をシフトさせるように駆動制御部14を動作させる一方、撮影モードが選択された場合には、所定の周波数を発振する周波数発振器として駆動制御部14を機能させるようになっている。
 ここで、予め設定されているシフト量xは、図2Aおよび図3に示されるように、集光点とピンホール11とが光学的に共役な位置関係となるシフト量ゼロの第1シフト量x1、集光点とピンホール11とが部分的に光学的に非共役な位置関係となる第2シフト量x2および集光点とピンホール11とが十分に光学的に非共役な位置関係となる第3シフト量x3である。
When the setting mode is selected from the input unit 17, the setting unit 16 operates the drive control unit 14 so as to drive the movable mirror 13 and shift the laser beam by a preset shift amount. When the photographing mode is selected, the drive control unit 14 is caused to function as a frequency oscillator that oscillates a predetermined frequency.
Here, as shown in FIGS. 2A and 3, the preset shift amount x is the first shift amount with zero shift amount in which the condensing point and the pinhole 11 are in an optically conjugate positional relationship. x1, the second shift amount x2 where the condensing point and the pinhole 11 are partially optically non-conjugated, and the positional relationship where the condensing point and the pinhole 11 are sufficiently optically non-conjugated. The third shift amount x3.
 さらに具体的には、設定モードにおいては、設定部16は、予め設定された3つのシフト量を達成可能な角度に可動ミラー13を設定するように駆動制御部14に指令するとともに、可動ミラー13の各角度において光検出器12により検出された蛍光の強度を分布取得部18に記憶させるようになっている。
 分布取得部18は、可動ミラー13の3つの各角度を達成可能なシフト量xと、各角度において取得された蛍光強度とを対応づけた蛍光分布を生成するようになっている。
More specifically, in the setting mode, the setting unit 16 instructs the drive control unit 14 to set the movable mirror 13 at an angle at which three preset shift amounts can be achieved, and the movable mirror 13. The intensity of the fluorescence detected by the photodetector 12 at each angle is stored in the distribution acquisition unit 18.
The distribution acquisition unit 18 generates a fluorescence distribution in which the shift amount x that can achieve each of the three angles of the movable mirror 13 is associated with the fluorescence intensity acquired at each angle.
 すなわち、対物レンズ8による励起光の集光点とピンホール11の位置関係が光学的に共役な位置に配置されている場合には、光検出器12により検出される蛍光においては、図2Bに示されるように、焦点から発生する焦点蛍光が大きく支配的である一方、焦点以外の位置において発生した焦点外蛍光も含まれている。そして、集光点とピンホール11の位置関係が光学的に共役な位置からずれていくと、焦点蛍光は減少するが、焦点外蛍光はあまり変化しない。 In other words, when the positional relationship between the focal point of the excitation light by the objective lens 8 and the pinhole 11 is arranged at an optically conjugate position, the fluorescence detected by the photodetector 12 is shown in FIG. As shown, the out-of-focus fluorescence generated at a position other than the focus is also included, while the focused fluorescence generated from the focus is largely dominant. When the positional relationship between the focal point and the pinhole 11 deviates from the optically conjugate position, the focal fluorescence decreases, but the out-of-focus fluorescence does not change much.
 設定部16は、分布取得部18により取得された蛍光分布から、焦点蛍光をほとんど含まず焦点外蛍光が支配的である蛍光を検出可能な集光点とピンホール11との位置関係を達成可能な可動ミラー13の角度、すなわち、図2Bにおける符号xのシフト量の達成可能な角度を算出するようになっている。
 符号xのシフト量を達成可能な角度の算出方法は、分布取得部18により生成された3点からなる蛍光分布を、例えば、ガウス関数等の分布モデルにフィッティングして最適位置を探す方法を挙げることができる。
The setting unit 16 can achieve the positional relationship between the condensing point and the pinhole 11 that can detect the fluorescence in which the out-of-focus fluorescence is dominant and hardly includes the focused fluorescence from the fluorescence distribution acquired by the distribution acquisition unit 18. angle of a movable mirror 13, that is, in order to calculate the achievable angle of the shift amount of the code x P in Figure 2B.
The method of calculating the shift amount of achievable angle of the code x P is the fluorescence distribution of three points generated by the distribution obtaining unit 18, for example, how to find an optimum position by fitting the distribution model such as a Gaussian function Can be mentioned.
 すなわち、ガウス関数へのフィッティングを行うと、次式により表すことができる。
 L=Pexp(-x/2w)+Q
 ここで、Pは焦点内蛍光強度、Qは焦点外蛍光の強度である。xは励起光束のシフト量、wは分散である。
That is, when fitting to a Gaussian function, it can be expressed by the following equation.
L = Pexp (−x 2 / 2w 2 ) + Q
Here, P is the in-focus fluorescence intensity, and Q is the out-of-focus fluorescence intensity. x is the shift amount of the excitation light beam, w 2 is the variance.
 これにより、第1項の焦点蛍光と第2項の焦点外蛍光とを分離することができ、第1項の大きさが、例えば、閾値=0.01P以下となる最小のシフト量x=xを切替部3による最適な非共役な位置関係として設定することができる。なお、0.01は焦点蛍光が1%まで減少したことを意味しているが、この値は、任意に設定することができる。 As a result, the focal fluorescence of the first term and the out-of-focus fluorescence of the second term can be separated. P can be set as an optimal non-conjugated positional relationship by the switching unit 3. Although 0.01 means that the focal fluorescence has decreased to 1%, this value can be set arbitrarily.
 そして、設定部16は、算出した最適な非共役な位置関係を達成可能なシフト量x=xに対応する可動ミラー13の角度および共役な位置関係を達成可能なシフト量x=0に対応する可動ミラー13の角度を、撮影モードにおける可動ミラー13の角度として駆動制御部14に設定するようになっている。 The setting unit 16 corresponds to the shift amount x = 0 achievable angle and conjugate positional relationship of the movable mirror 13 corresponding to the calculated optimum nonconjugated positional relationship on the achievable shift amount x = x P The angle of the movable mirror 13 to be set is set in the drive control unit 14 as the angle of the movable mirror 13 in the photographing mode.
 撮影モードにおいては、駆動制御部14は、所定の周波数を発振し、発振された周波数に同期して、可動ミラー13の角度を、設定部16により設定された2つの角度に交互に切り替えるようになっている。図中符号15はミラーである。なお、偏向素子として可動ミラー13を例示したが、音響光学偏向器や電気光学偏向器などのデバイスを使用することもできる。 In the photographing mode, the drive control unit 14 oscillates a predetermined frequency, and in synchronization with the oscillated frequency, the angle of the movable mirror 13 is alternately switched between the two angles set by the setting unit 16. It has become. Reference numeral 15 in the figure denotes a mirror. In addition, although the movable mirror 13 was illustrated as a deflection | deviation element, devices, such as an acousto-optic deflector and an electro-optic deflector, can also be used.
 これにより、撮影モードにおいては、顕微鏡本体4に対して、入射角度の異なる2種類の励起光が交互に入射させられるようになっている。すなわち、顕微鏡本体4に入射してくる2種類の励起光は、図4Aおよび図4Bに示されるように、反転したタイミングを有する矩形波状に形成されている。なお、ここでは2種類の励起光として反転したタイミングを有する矩形波状の光を例示したが、これに代えて、正弦波状等の任意の繰り返し形状を有し、位相の異なる励起光を採用してもよい。 Thereby, in the imaging mode, two types of excitation light having different incident angles are incident on the microscope body 4 alternately. That is, the two types of excitation light incident on the microscope body 4 are formed in a rectangular wave shape having inverted timings as shown in FIGS. 4A and 4B. In addition, although the rectangular wave-like light which has the timing reversed as two types of excitation light was illustrated here, instead of this, it has arbitrary repetitive shapes, such as a sine wave shape, and employ | adopts the excitation light from which a phase differs Also good.
 図4Aに示される一方の励起光は、スキャナ7および対物レンズ8を介してピンホール11と光学的に共役な位置に焦点を結び、図4Bに示される他方の励起光は、スキャナ7および対物レンズ8を介してピンホール11と光学的に非共役な位置に焦点を結ぶようになっている。入射角度の切替周波数は、各画素位置において2種類の励起光を少なくとも1回明滅させることができる周波数に設定されている。 One excitation light shown in FIG. 4A is focused on a position optically conjugate with the pinhole 11 via the scanner 7 and the objective lens 8, and the other excitation light shown in FIG. The focal point is focused on a position optically unconjugated with the pinhole 11 via the lens 8. The incident angle switching frequency is set to a frequency at which two types of excitation light can be blinked at least once at each pixel position.
 2種類の励起光は交互に試料Aに照射されるので、発生する蛍光も、交互に異なる時刻に光検出器12により検出されるようになっている。
 演算部5は、同一の画素位置において、光検出器12により検出された、2種類の励起光により発生した蛍光の強度の差分を算出するようになっている。演算部5は、例えば、ロックインアンプ(図示略)を備えている。
Since the two types of excitation light are alternately applied to the sample A, the generated fluorescence is also detected by the photodetector 12 at different times.
The calculation unit 5 calculates the difference in the intensity of the fluorescence generated by the two types of excitation light detected by the photodetector 12 at the same pixel position. The computing unit 5 includes, for example, a lock-in amplifier (not shown).
 ロックインアンプは、励起光を明滅させるための駆動制御部14により発生された周波数に同期して光検出器12から出力された2種類の蛍光信号の差分をハードウェア的に算出するようになっている。
 そして、演算部5は、画素毎に算出された差分とスキャナ7による走査位置とを対応づけて記憶することにより、画像を生成するようになっている。
The lock-in amplifier calculates the difference between the two types of fluorescence signals output from the photodetector 12 in hardware in synchronization with the frequency generated by the drive control unit 14 for blinking the excitation light. ing.
Then, the calculation unit 5 generates an image by storing the difference calculated for each pixel and the scanning position by the scanner 7 in association with each other.
 このように構成された本実施形態に係る顕微鏡1の作用について以下に説明する。
 本実施形態に係る顕微鏡1を用いて試料Aの蛍光観察を行うには、顕微鏡本体4のステージ(図示略)に試料Aを配置して、対物レンズ8の焦点位置を試料Aに一致するように調節した状態で、レーザ光源2から連続した励起光を発生させる。
The operation of the microscope 1 according to this embodiment configured as described above will be described below.
In order to perform fluorescence observation of the sample A using the microscope 1 according to the present embodiment, the sample A is arranged on the stage (not shown) of the microscope body 4 so that the focal position of the objective lens 8 coincides with the sample A. Then, continuous excitation light is generated from the laser light source 2.
 そして、入力部17において設定モードが選択されたときには、設定部16が、駆動制御部14に対して、集光点とピンホール11とが共役となるシフト量x1および非共役の度合いの異なる2つのシフト量x2,x3に対応する3つの角度に可動ミラー13の角度を設定し、それぞれの角度において光検出器12により検出された蛍光強度とシフト量xとが、分布取得部18により対応づけられて、蛍光分布が生成される。 When the setting mode is selected in the input unit 17, the setting unit 16 is different from the drive control unit 14 in the shift amount x1 in which the condensing point and the pinhole 11 are conjugate and the degree of nonconjugation is different. The angle of the movable mirror 13 is set to three angles corresponding to the two shift amounts x2 and x3, and the fluorescence intensity detected by the photodetector 12 at each angle is associated with the shift amount x by the distribution acquisition unit 18. And a fluorescence distribution is generated.
 生成された蛍光分布は設定部16に送られる。設定部16においては、送られてきた蛍光分布が、ガウス分布に当てはめられて、共役な位置関係となるシフト量x=0および最適な非共役な位置関係となるシフト量x=xに対応する可動ミラー13の角度が算出される。
 設定部16は、入力部17において撮影モードが選択されると、算出された可動ミラー13の角度を駆動制御部14により切り替えられる可動ミラー13の角度として設定する。
The generated fluorescence distribution is sent to the setting unit 16. In setting unit 16, the fluorescence distribution sent is being fitted to a Gaussian distribution, corresponding to the shift amount x = x P in which the shift amount x = 0 and optimal nonconjugated positional relation of conjugate positional relationship The angle of the movable mirror 13 is calculated.
The setting unit 16 sets the calculated angle of the movable mirror 13 as the angle of the movable mirror 13 that is switched by the drive control unit 14 when the photographing mode is selected by the input unit 17.
 撮影モードにおいては、駆動制御部14は、該駆動制御部14により発振された所定の周波数に従って、設定部16により設定された2つの角度に可動ミラー13の角度を交互に変化させることにより、顕微鏡本体4に、入射角度の異なる2種類の励起光を交互に入射させる。 In the photographing mode, the drive control unit 14 alternately changes the angle of the movable mirror 13 to two angles set by the setting unit 16 according to a predetermined frequency oscillated by the drive control unit 14. Two types of excitation light having different incident angles are alternately incident on the main body 4.
 その結果、一方の励起光に含まれる焦点蛍光は、ピンホール11と共役な試料A内の位置に集光させられるので、その焦点位置近傍において発生した蛍光が、対物レンズ8によって集光され、スキャナ7を経由して戻る途中でダイクロイックミラー9によって分離され、結像レンズ10によって集光されてピンホール11を通過し、光検出器12により検出される。 As a result, the focal fluorescence contained in one excitation light is condensed at a position in the sample A conjugate with the pinhole 11, so that the fluorescence generated in the vicinity of the focal position is condensed by the objective lens 8, On the way back through the scanner 7, it is separated by the dichroic mirror 9, condensed by the imaging lens 10, passes through the pinhole 11, and is detected by the photodetector 12.
 この場合において、試料Aに励起光が照射されると、励起光は対物レンズ8の焦点位置に至る経路の途中においても試料Aを通過することにより蛍光物質を励起するので、蛍光は対物レンズ8の焦点位置のみならず該焦点位置に至る経路の途中においても発生する。特に、試料Aが散乱物質からなる場合には、励起光の散乱により蛍光が焦点位置以外の部位において蛍光が発生し易い。 In this case, when the sample A is irradiated with the excitation light, the excitation light excites the fluorescent substance by passing through the sample A even in the middle of the path to the focal position of the objective lens 8. This occurs not only in the focal position of the lens but also in the middle of the path to the focal position. In particular, when the sample A is made of a scattering material, the fluorescence tends to be generated at a site other than the focal position due to scattering of the excitation light.
 また、特に、高精細な観察を行うために試料Aに入射される励起光のNAを増大させると、焦点位置に至るまでに励起光が通過する領域が増えるため、焦点位置以外の部位で発生する蛍光が増大する。また、同様に深部観察時にも励起光が通過する領域が増加するため焦点外蛍光が増加する。さらに深部観察には散乱の影響を補償するために励起光を強める必要があり焦点外蛍光の影響が特に顕著である。 In particular, if the NA of the excitation light incident on the sample A is increased for high-definition observation, the area through which the excitation light passes until reaching the focal position increases. Fluorescence increases. Similarly, since the region through which excitation light passes increases during deep observation, the out-of-focus fluorescence increases. Further, in deep observation, it is necessary to increase the excitation light in order to compensate for the influence of scattering, and the influence of out-of-focus fluorescence is particularly remarkable.
 試料Aにおいて発生した蛍光の内、対物レンズ8の焦点位置から発生した蛍光は、光学的に共役な位置に配置されているピンホール11を容易に通過するので光検出器12により信号光として検出されるが、焦点位置以外の部位から発生した蛍光はサンプルにより散乱され、その一部がピンホール11を通過して光検出器12によりノイズとして検出されてしまう。したがって、一方の励起光の照射により検出される蛍光には、対物レンズ8の焦点位置において発生した、信号として取得すべき焦点蛍光と、他の部位において発生した、信号として取得すべきでない焦点外蛍光とが含まれている。 Of the fluorescence generated in the sample A, the fluorescence generated from the focal position of the objective lens 8 easily passes through the pinhole 11 disposed at the optically conjugate position, and thus is detected as signal light by the photodetector 12. However, the fluorescence generated from the part other than the focal position is scattered by the sample, and a part thereof passes through the pinhole 11 and is detected as noise by the photodetector 12. Therefore, the fluorescence detected by the irradiation of one excitation light includes the focal fluorescence generated at the focal position of the objective lens 8 and to be acquired as a signal, and the out-of-focus that is generated at the other part and should not be acquired as a signal. Fluorescence and are included.
 また、他方の励起光は、試料A内のピンホール11とは非共役な位置に集光させられて、対物レンズ8の焦点位置および焦点位置に至るまでの経路の途中において蛍光物質を励起することにより蛍光を発生させる。
 この場合において、非共役な焦点位置において発生した蛍光はピンホール11を通過することができずに遮断される一方、焦点位置以外の部位から発生した蛍光の一部はサンプルにより散乱され、先のステップ同様に同じピンホール11を通過して光検出器12により検出される。
The other excitation light is condensed at a position unconjugated with the pinhole 11 in the sample A, and excites the fluorescent substance in the middle of the path to the focal position and the focal position of the objective lens 8. This generates fluorescence.
In this case, the fluorescence generated at the non-conjugated focal position cannot be passed through the pinhole 11 and is blocked, while a part of the fluorescence generated from the part other than the focal position is scattered by the sample. Similarly to the step, the light passes through the same pinhole 11 and is detected by the photodetector 12.
 そして、本実施形態に係る顕微鏡1によれば、非共役な位置が最適に設定されているので、光検出器12により検出される蛍光内の焦点蛍光は99%削減されており、かつ、焦点外蛍光は、共役な位置関係において光検出器12により検出された焦点外蛍光とほぼ同等である。
 したがって、演算部5において、これらの2種類の励起光の照射により検出された蛍光の差分が演算されることにより、対物レンズ8の焦点位置以外の部位において発生した、信号として取得すべきでない焦点外蛍光が除去された焦点蛍光を精度よく取得することができる。
According to the microscope 1 according to the present embodiment, since the non-conjugated position is optimally set, the focal fluorescence in the fluorescence detected by the photodetector 12 is reduced by 99% and the focal point is reduced. Outer fluorescence is substantially equivalent to out-of-focus fluorescence detected by the photodetector 12 in a conjugate positional relationship.
Therefore, the calculation unit 5 calculates the difference between the fluorescence detected by the irradiation of these two types of excitation light, thereby generating a focal point that should not be acquired as a signal, generated in a part other than the focal position of the objective lens 8. The focal fluorescence from which the external fluorescence is removed can be obtained with high accuracy.
 2種類の励起光が照射されることにより蛍光が発生する範囲は厳密には一致していないが、多くの部分において一致しているため、また同じピンホール11を用いて検出を行っていることにより、そのまま減算しても大部分の焦点外蛍光を除去することができる。特に、励起光のNAを大きくして高精細な観察を行う場合には、蛍光発生範囲の重複率が増大するので、さらに効果的に焦点外蛍光を除去することができる。 The range in which fluorescence is generated by irradiating two types of excitation light is not exactly the same, but it is the same in many parts, and detection is performed using the same pinhole 11 Thus, most of the out-of-focus fluorescence can be removed by subtracting as it is. In particular, when high-definition observation is performed by increasing the NA of excitation light, the overlap ratio of the fluorescence generation range increases, so that the out-of-focus fluorescence can be more effectively removed.
 このように本実施形態に係る顕微鏡1によれば、対物レンズ8の焦点位置において発生した蛍光を高いS/N比で検出することができ、ノイズの少ない鮮明な画像を取得することができるという利点がある。特に、励起光のNAが大きな高精細の観察時、および、試料Aが強い散乱物質であって焦点外蛍光が発生し易い場合に効果が高い。そして、最適な非共役位置が自動的に設定されるので、操作者が手動で試料Aを撮影しながらピンホール11と蛍光光束との位置関係を調整する煩わしい作業が必要なく、操作者にかかる負担を軽減することができるという利点がある。 Thus, according to the microscope 1 according to the present embodiment, the fluorescence generated at the focal position of the objective lens 8 can be detected with a high S / N ratio, and a clear image with little noise can be acquired. There are advantages. In particular, the effect is high at the time of high-definition observation with a large NA of excitation light and when the sample A is a strong scattering material and easily generates out-of-focus fluorescence. Since the optimum non-conjugate position is automatically set, the operator does not need to perform the troublesome work of manually adjusting the positional relationship between the pinhole 11 and the fluorescent light beam while photographing the sample A. There is an advantage that the burden can be reduced.
 また、本実施形態においては、画素毎に極めて短い時間差で取得した2種類の蛍光の差分を演算しているので、高速に移動する試料Aであってもブレの少ない蛍光画像を取得することができるという利点がある。 In the present embodiment, since the difference between two types of fluorescence acquired with a very short time difference is calculated for each pixel, a fluorescent image with less blur can be acquired even with the sample A moving at high speed. There is an advantage that you can.
 なお、本実施形態においては、遮光部材としてピンホール11を例示したが、これに代えて、対物レンズ8の焦点位置と光学的に共役な位置に配置されたときに焦点蛍光を通過させ、非共役な位置に配置されたときに焦点蛍光を遮断する任意の遮光部材を採用してもよい。他の遮光部材としてはマイクロミラーデバイスや空間光変調器が挙げられる。 In the present embodiment, the pinhole 11 is exemplified as the light shielding member, but instead of this, when the focus hole is arranged at a position optically conjugate with the focus position of the objective lens 8, the focused fluorescence is passed, An arbitrary light shielding member that blocks the focal fluorescence when arranged at a conjugate position may be employed. Examples of the other light shielding member include a micromirror device and a spatial light modulator.
 また、本実施形態においては、光検出器12が検出する試料Aからの信号光として、蛍光のみを用いたものを例示したが、これに加えて、試料Aからの励起光の反射光を用いてもよい。試料Aからの励起光の反り光をイメージングすることにより、屈折率分布をイメージングすることができる。 In the present embodiment, the signal light from the sample A detected by the photodetector 12 is exemplified using only fluorescence, but in addition to this, reflected light of excitation light from the sample A is used. May be. By imaging the warped light of the excitation light from the sample A, the refractive index distribution can be imaged.
 切替部3を構成する偏向素子として可動ミラー13を例示したが、図5に示されるように、音響光学偏向器(音響光学素子、光束移動部)19や電気光学偏向器(電気光学素子、光束移動部)20などのデバイスを使用することもできる。これらのデバイス19,20も、駆動制御部14によって発振された所定の周波数に従って入力する電圧を切り替えることにより、可動ミラー13と同様に入力電圧に同期して蛍光光束の結像レンズ10への入射角度を変化させることができる。 Although the movable mirror 13 is exemplified as the deflecting element constituting the switching unit 3, as shown in FIG. 5, the acousto-optic deflector (acousto-optic element, beam moving unit) 19 or the electro-optic deflector (electro-optic element, beam). A device such as (moving unit) 20 can also be used. These devices 19 and 20 also switch the voltage input according to a predetermined frequency oscillated by the drive control unit 14, so that the fluorescent light beam enters the imaging lens 10 in synchronization with the input voltage in the same manner as the movable mirror 13. The angle can be changed.
 設定部16は、設定モード時に、駆動制御部14によって発生する電圧を切り替えて分布取得部18により蛍光分布を取得させ、取得された蛍光分布に基づいて、撮影モード時にデバイス19,20に入力する電圧を設定する。これらのデバイス19,20によれば、可動ミラー13のような可動部分を含まないため、コンパクトかつ長寿命に構成することができる。 The setting unit 16 switches the voltage generated by the drive control unit 14 during the setting mode, causes the distribution acquisition unit 18 to acquire the fluorescence distribution, and inputs the fluorescence distribution to the devices 19 and 20 during the imaging mode based on the acquired fluorescence distribution. Set the voltage. Since these devices 19 and 20 do not include a movable part such as the movable mirror 13, the device can be configured to be compact and have a long life.
 また、本実施形態においては、固定された遮光部材11に対して入射する蛍光光束の入射位置を時間的に切り替えることとしたが、これに代えて、蛍光光束を固定しておき、遮光部材21を蛍光光束の光軸Sに交差する方向に移動させることにしてもよい。
 すなわち、遮光部材21として、図6Bに示されるように、周方向に間隔をあけて配列された複数のピンホール22を有する円板状のディスクを採用し、図6Aに示されるように、モータ(切替部)23によってディスク21を中心軸回りに回転させることにしてもよい。
In the present embodiment, the incident position of the fluorescent light beam incident on the fixed light shielding member 11 is switched over time. Instead, the fluorescent light beam is fixed and the light shielding member 21 is fixed. May be moved in a direction crossing the optical axis S of the fluorescent light beam.
That is, as shown in FIG. 6B, a disk-shaped disk having a plurality of pinholes 22 arranged at intervals in the circumferential direction is adopted as the light shielding member 21, and a motor is used as shown in FIG. 6A. The (switching unit) 23 may rotate the disk 21 around the central axis.
 このようにすることで、結像レンズ10による蛍光の集光位置をディスク21に一致させておき、モータ23によってディスク21を回転させることにより、蛍光の光軸Sにピンホール22が一致する状態と一致しない状態とを交互に繰り返すことができる。すなわち、蛍光の光軸Sにいずれかのピンホール22が一致した状態で、試料Aにおける励起光の集光点とピンホール22とが光学的に共役な位置関係となり、蛍光の光軸Sに対していずれのピンホール22も一致していない状態で、試料Aにおける励起光の集光点とピンホール22とが光学的に非共役な位置関係となる。 By doing so, the fluorescence condensing position by the imaging lens 10 is made coincident with the disk 21, and the disk 21 is rotated by the motor 23 so that the pinhole 22 coincides with the optical axis S of the fluorescence. And a state that does not match can be alternately repeated. That is, in a state where any one of the pinholes 22 coincides with the fluorescence optical axis S, the focal point of the excitation light in the sample A and the pinhole 22 are in an optically conjugate positional relationship. On the other hand, in a state where none of the pinholes 22 is coincident, the condensing point of the excitation light in the sample A and the pinhole 22 are in an optically non-conjugated positional relationship.
 本実施形態においては、蛍光の光軸Sにピンホール22が一致した位置、部分的に一致している位置および完全に一致していない位置の3箇所で取得した蛍光強度に基づいて蛍光分布を生成し、生成された蛍光分布に基づいて非共役な位置として設定される最適なディスク21の位置を設定することにより、焦点外蛍光を精度よく除去することができる。 In the present embodiment, the fluorescence distribution is calculated based on the fluorescence intensities acquired at the three positions of the position where the pinhole 22 is aligned with the optical axis S of the fluorescence, the position where the pinhole 22 is partially matched, and the position which is not completely matched. By setting the optimal position of the disk 21 that is generated and set as a non-conjugated position based on the generated fluorescence distribution, the out-of-focus fluorescence can be accurately removed.
 これにより、光学的に共役な位置関係と光学的に非共役な位置関係とを時間的に交互に形成し、焦点蛍光を精度よく検出するための2種類の蛍光を同一の光検出器12によって、順次検出することができる。また、ディスク21を高速に回転させることにより、2つの位置関係をより高速に切り替えることができるという利点がある。 Thereby, an optically conjugate positional relationship and an optically non-conjugated positional relationship are alternately formed in time, and two types of fluorescence for accurately detecting the focused fluorescence are detected by the same photodetector 12. Can be detected sequentially. Further, there is an advantage that the two positional relationships can be switched at a higher speed by rotating the disk 21 at a higher speed.
 また、本実施形態においては、蛍光光束をピンホール22に対して光軸Sに交差する方向に移動させる場合について例示したが、これに代えて、ピンホール22を蛍光光束に対して移動させることにしてもよい。
 また、図7に示されるように、レーザ光源2から試料Aに入射される励起光の入射角度を異ならせることにより、非共役な位置関係を達成してもよい。その場合に、レーザ光源2とダイクロイックミラー9との間に配置された可動ミラー30によって励起光の入射角度を変化させる場合に、試料Aにおける集光点の位置がずれないように、スキャナ7を連動して動作させる必要がある。この場合、駆動制御部14が可動ミラー30を駆動させると、可動ミラー30が揺動してレーザ光束をシフトさせるようになっている。符号31は、レーザ光源2から可動ミラー30への励起光の光路を形成するためのミラーである。
In the present embodiment, the case where the fluorescent light beam is moved in the direction intersecting the optical axis S with respect to the pinhole 22 is exemplified, but instead, the pinhole 22 is moved with respect to the fluorescent light beam. It may be.
Further, as shown in FIG. 7, the non-conjugated positional relationship may be achieved by making the incident angle of the excitation light incident on the sample A from the laser light source 2 different. In that case, when the incident angle of the excitation light is changed by the movable mirror 30 arranged between the laser light source 2 and the dichroic mirror 9, the scanner 7 is moved so that the position of the condensing point in the sample A does not shift. It is necessary to operate in conjunction. In this case, when the drive control unit 14 drives the movable mirror 30, the movable mirror 30 is swung to shift the laser beam. Reference numeral 31 denotes a mirror for forming an optical path of excitation light from the laser light source 2 to the movable mirror 30.
 また、当てはめを行う分布モデルとしては、ガウス関数に限定されるものではなく、ローレンツ関数あるいはフォークト関数を用いてもよい。また、共役な位置関係となるシフト量x1=0、非共役な位置関係となるシフト量x2,x3の3点について蛍光強度を検出することとしたが、これに代えて、4点以上のシフト量において蛍光強度を検出して蛍光分布を生成することにしてもよい。これにより、分布モデルへの当てはめの精度を向上することができる。 Also, the distribution model for fitting is not limited to a Gaussian function, and a Lorentz function or a Forked function may be used. In addition, the fluorescence intensity is detected at three points, ie, the shift amount x1 = 0 which is a conjugate positional relationship and the shift amounts x2 and x3 which are a non-conjugated positional relationship. A fluorescence distribution may be generated by detecting the fluorescence intensity in the quantity. Thereby, the precision of fitting to a distribution model can be improved.
 また、試料Aにおける1箇所において蛍光分布を取得してもよいし、2箇所以上において取得された蛍光強度を平均して蛍光分布を生成してもよい。
 また、x=x2,x3について予め設定しておくこととしたが、その目安として、励起光のスポット径の理論的な大きさを表す単位であるエアリ(AIRY)を用いてもよい。
Further, the fluorescence distribution may be acquired at one location in the sample A, or the fluorescence distribution may be generated by averaging the fluorescence intensities acquired at two or more locations.
In addition, x = x2 and x3 are set in advance, but as a guide, Airy (AIRY) which is a unit representing the theoretical size of the spot diameter of the excitation light may be used.
 すなわち、対物レンズ8のNAおよび波長λによって定まる焦点サイズ(励起光のスポット径)およびピンホールサイズを1エアリとしたときに、シフト量x2=0.5エアリ、シフト量x3=5エアリのように設定しておくことにすればよい。このようにすることで、3点の蛍光分布によって精度よく、非共役な位置関係を最適化したシフト量を算出することができる。 That is, when the focal spot size (spot diameter of excitation light) and the pinhole size determined by the NA of the objective lens 8 and the wavelength λ are 1 air, the shift amount x2 = 0.5 air, the shift amount x3 = 5 air You can set it to. In this way, it is possible to calculate the shift amount that optimizes the non-conjugated positional relationship with high accuracy by the three fluorescence distributions.
 また、本実施形態においては、設定モードにおけるシフト量の設定の際にも、顕微鏡本体4に備えられた光検出器12を用いて検出された蛍光強度を用いることとした。これにより、顕微鏡本体4の基本構成に、新たなデバイスを追加することなく、蛍光分布を生成することができる。 In the present embodiment, the fluorescence intensity detected using the photodetector 12 provided in the microscope body 4 is also used when setting the shift amount in the setting mode. Thereby, the fluorescence distribution can be generated without adding a new device to the basic configuration of the microscope body 4.
 これに代えて、図8に示されるように、試料Aからの蛍光の一部を分岐するハーフミラー24と、分岐された蛍光を、ピンホール11と光学的に共役な位置において撮像するカメラ(蛍光分布取得部)25のような2次元センサとを備えていてもよい。図中、符号26は集光レンズである。
 このようにすることで、カメラ25によって2次元的な蛍光分布を一度に取得でき、設定モードにおける蛍光分布取得時に、蛍光光束あるいはピンホール11のシフトが不要となるので短時間で処理することができるという利点がある。
Instead, as shown in FIG. 8, a half mirror 24 that branches a part of the fluorescence from the sample A, and a camera that images the branched fluorescence at a position optically conjugate with the pinhole 11 ( A two-dimensional sensor such as a fluorescence distribution acquisition unit 25 may be provided. In the figure, reference numeral 26 denotes a condenser lens.
In this way, a two-dimensional fluorescence distribution can be acquired at once by the camera 25, and when the fluorescence distribution is acquired in the setting mode, it is not necessary to shift the fluorescent light flux or the pinhole 11, so that processing can be performed in a short time. There is an advantage that you can.
 また、本実施形態においては、蛍光光束とピンホール11とを蛍光光束の光軸Sに交差する方向に相対的に移動させる場合について説明したが、これに代えて、図9に示されるように、蛍光光束とピンホール11とを蛍光光束の光軸Sに沿う方向に相対的に移動させることにしてもよい。 In the present embodiment, the case where the fluorescent light beam and the pinhole 11 are relatively moved in the direction intersecting the optical axis S of the fluorescent light beam has been described. Instead, as shown in FIG. The fluorescent light beam and the pinhole 11 may be relatively moved in the direction along the optical axis S of the fluorescent light beam.
 すなわち、図9に示す例では、音響光学偏向器19あるいは電気光学偏向器20に代えて、音響光学レンズ27を採用している。音響光学レンズ27は、入力される電圧に応じて、屈折力を変化させるレンズであり、周波数発振器28による周波数に同期して屈折力を切り替えることにより、結像レンズ10による蛍光の結像位置をピンホール11に一致する位置とピンホール11から光軸方向にずれた位置とで切り替えることができる。
 この場合においても、最適な非共役な位置関係が存在し、最適な位置関係に設定することで、焦点外蛍光を精度よく除去することができる。
That is, in the example shown in FIG. 9, an acousto-optic lens 27 is employed instead of the acousto-optic deflector 19 or the electro-optic deflector 20. The acousto-optic lens 27 is a lens that changes the refractive power in accordance with the input voltage. By switching the refractive power in synchronization with the frequency of the frequency oscillator 28, the imaging position of the fluorescence by the imaging lens 10 is changed. The position can be switched between a position matching the pinhole 11 and a position shifted from the pinhole 11 in the optical axis direction.
Even in this case, the optimum non-conjugated positional relationship exists, and the out-of-focus fluorescence can be accurately removed by setting the optimal positional relationship.
 1 顕微鏡
 2 レーザ光源(光源)
 3 切替部
 7 スキャナ
 8 対物レンズ(対物光学系)
 11 ピンホール(遮光部材)
 12 光検出器(検出器)
 16 設定部
 18 分布取得部(蛍光分布取得部)
 23 モータ(切替部)
 25 カメラ(2次元センサ、蛍光分布取得部)
 A 試料
1 microscope 2 laser light source (light source)
3 Switching unit 7 Scanner 8 Objective lens (objective optical system)
11 Pinhole (shading material)
12 Light detector (detector)
16 Setting unit 18 Distribution acquisition unit (fluorescence distribution acquisition unit)
23 Motor (switching part)
25 Camera (two-dimensional sensor, fluorescence distribution acquisition unit)
A Sample

Claims (8)

  1.  光源からの励起光を走査するスキャナと、
     該スキャナにより走査される前記励起光を試料に集光する一方、各走査位置で前記試料において発生した信号光を集光する対物光学系と、
     該対物光学系により集光された前記信号光を検出する検出器と、
     該検出器と前記対物光学系との間に配置され該対物光学系により集光された前記信号光を部分的に遮断する遮光部材と、
     該遮光部材と前記試料における前記励起光の集光点との位置関係を、光学的に共役な位置関係と、光学的に非共役な位置関係とに時間的に切り替える切替部と、
     前記集光点と光学的に共役な位置における蛍光分布を取得する蛍光分布取得部と、
     該蛍光分布取得部により取得された前記蛍光分布に基づいて、前記切替部における前記非共役な位置関係を設定する設定部とを備える顕微鏡。
    A scanner that scans excitation light from a light source;
    An objective optical system that condenses the excitation light scanned by the scanner on the sample, and condenses the signal light generated in the sample at each scanning position;
    A detector for detecting the signal light collected by the objective optical system;
    A light blocking member that is disposed between the detector and the objective optical system and partially blocks the signal light collected by the objective optical system;
    A switching unit that temporally switches the positional relationship between the light shielding member and the condensing point of the excitation light in the sample to an optically conjugate positional relationship and an optically non-conjugated positional relationship;
    A fluorescence distribution acquisition unit for acquiring a fluorescence distribution at a position optically conjugate with the condensing point;
    A microscope comprising: a setting unit that sets the non-conjugated positional relationship in the switching unit based on the fluorescence distribution acquired by the fluorescence distribution acquisition unit.
  2.  前記設定部が、前記蛍光分布取得部により取得された前記蛍光分布を焦点蛍光と焦点外蛍光とに分離し、前記焦点蛍光が所定の閾値以下になりかつ前記集光点と光学的に共役な位置に最も近い位置関係を、前記切替部における非共役な位置関係として設定する請求項1に記載の顕微鏡。 The setting unit separates the fluorescence distribution acquired by the fluorescence distribution acquisition unit into focused fluorescence and out-of-focus fluorescence, and the focused fluorescence is equal to or less than a predetermined threshold and is optically conjugate with the condensing point. The microscope according to claim 1, wherein the positional relationship closest to the position is set as a non-conjugated positional relationship in the switching unit.
  3.  前記設定部が、前記蛍光分布取得部により取得された前記蛍光分布を所定の分布モデルに当てはめて、焦点蛍光と焦点外蛍光とを分離する請求項1に記載の顕微鏡。 The microscope according to claim 1, wherein the setting unit applies the fluorescence distribution acquired by the fluorescence distribution acquisition unit to a predetermined distribution model and separates the focused fluorescence and the out-of-focus fluorescence.
  4.  前記蛍光分布取得部が、前記試料における前記励起光の前記集光点と前記遮光部材との位置関係を変化させたときに、前記検出器により検出される前記信号光である蛍光の強度に基づいて前記蛍光分布を取得する請求項1から請求項3のいずれかに記載の顕微鏡。 Based on the intensity of the fluorescence that is the signal light detected by the detector when the fluorescence distribution acquisition unit changes the positional relationship between the condensing point of the excitation light and the light shielding member in the sample. The microscope according to any one of claims 1 to 3, wherein the fluorescence distribution is acquired.
  5.  前記蛍光分布取得部が、前記遮光部材と前記試料における前記励起光の前記集光点との位置関係が共役な位置関係にあるとき、および異なる2点の非共役な位置関係にあるときに取得された蛍光の強度に基づいて前記蛍光分布を取得する請求項4に記載の顕微鏡。 Acquired when the fluorescence distribution acquisition unit has a conjugate positional relationship between the light-shielding member and the condensing point of the excitation light in the sample, and when it is in a non-conjugate positional relationship between two different points. The microscope according to claim 4, wherein the fluorescence distribution is acquired based on the intensity of the emitted fluorescence.
  6.  前記蛍光分布取得部が、前記対物光学系と前記励起光の波長とにより決定される前記集光点における前記励起光のスポット径の理論的な大きさに基づいて、前記蛍光の強度を取得する前記遮光部材と前記試料における前記励起光の前記集光点との位置関係を設定する請求項4または請求項5に記載の顕微鏡。 The fluorescence distribution acquisition unit acquires the intensity of the fluorescence based on a theoretical size of the spot diameter of the excitation light at the condensing point determined by the objective optical system and the wavelength of the excitation light. The microscope according to claim 4 or 5, wherein a positional relationship between the light shielding member and the condensing point of the excitation light in the sample is set.
  7.  前記蛍光分布取得部が、前記試料における前記励起光の前記集光点と光学的に共役な位置に配置された2次元センサである請求項1から請求項3のいずれかに記載の顕微鏡。 The microscope according to any one of claims 1 to 3, wherein the fluorescence distribution acquisition unit is a two-dimensional sensor disposed at a position optically conjugate with the condensing point of the excitation light in the sample.
  8.  前記蛍光分布取得部が、複数点において前記蛍光分布を取得し、
     前記設定部が、複数の前記蛍光分布の平均に基づいて前記切替部における前記非共役な位置関係を設定する請求項1から請求項7のいずれかに記載の顕微鏡。
    The fluorescence distribution acquisition unit acquires the fluorescence distribution at a plurality of points,
    The microscope according to any one of claims 1 to 7, wherein the setting unit sets the non-conjugated positional relationship in the switching unit based on an average of a plurality of the fluorescence distributions.
PCT/JP2016/068560 2016-06-22 2016-06-22 Microscope WO2017221356A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018523216A JPWO2017221356A1 (en) 2016-06-22 2016-06-22 microscope
PCT/JP2016/068560 WO2017221356A1 (en) 2016-06-22 2016-06-22 Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068560 WO2017221356A1 (en) 2016-06-22 2016-06-22 Microscope

Publications (1)

Publication Number Publication Date
WO2017221356A1 true WO2017221356A1 (en) 2017-12-28

Family

ID=60783878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068560 WO2017221356A1 (en) 2016-06-22 2016-06-22 Microscope

Country Status (2)

Country Link
JP (1) JPWO2017221356A1 (en)
WO (1) WO2017221356A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510498A (en) * 2005-09-29 2009-03-12 カール ツァイス マイクロイメージング ゲーエムベーハー Microscopic inspection method and microscope
WO2015163261A1 (en) * 2014-04-24 2015-10-29 オリンパス株式会社 Microscope and microscopic observation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510498A (en) * 2005-09-29 2009-03-12 カール ツァイス マイクロイメージング ゲーエムベーハー Microscopic inspection method and microscope
WO2015163261A1 (en) * 2014-04-24 2015-10-29 オリンパス株式会社 Microscope and microscopic observation method

Also Published As

Publication number Publication date
JPWO2017221356A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US10007100B2 (en) Light sheet illumination microscope and light sheet illumination method
US7304790B2 (en) Examination apparatus and focusing method of examination apparatus
JP6408543B2 (en) Imaging a light field using a scanning optical unit
JP6446432B2 (en) Microspectroscope
JP6511041B2 (en) Microscope and microscopic observation method
JP6914241B2 (en) Systems and methods for 3D imaging
JP3233907U (en) Stimulated emission suppression ultra-resolution microscope that enables high-speed focusing of light beams
JP5311195B2 (en) Microscope equipment
JP5589374B2 (en) Microscope equipment
JP2021519451A (en) Improved scanning light microscopy
JP5135066B2 (en) Optical microscope and observation method
CN109073873B (en) Image acquisition device and image acquisition method
JP6701322B2 (en) Point spread function measuring apparatus, measuring method, image acquiring apparatus and image acquiring method
WO2017221356A1 (en) Microscope
JP6594437B2 (en) Microscope and microscope observation method
JP2011118265A (en) Microscope device
JP5311196B2 (en) Microscope equipment
JP2009109628A (en) Depth measuring device
JP5131552B2 (en) Microscope equipment
JP6161424B2 (en) Microscope system
JP2010164635A (en) Confocal microscope
JP2007047754A (en) Laser scanning microscope and image-acquiring method of the laser scanning microscope
JP2015022073A (en) Microscope and aberration correction method
JP6003072B2 (en) Microscope equipment
JP2003015048A (en) Lattice illumination microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018523216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906273

Country of ref document: EP

Kind code of ref document: A1