WO2017219977A1 - 金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用 - Google Patents

金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用 Download PDF

Info

Publication number
WO2017219977A1
WO2017219977A1 PCT/CN2017/089332 CN2017089332W WO2017219977A1 WO 2017219977 A1 WO2017219977 A1 WO 2017219977A1 CN 2017089332 W CN2017089332 W CN 2017089332W WO 2017219977 A1 WO2017219977 A1 WO 2017219977A1
Authority
WO
WIPO (PCT)
Prior art keywords
moc
metal
catalyst
carrier
mass
Prior art date
Application number
PCT/CN2017/089332
Other languages
English (en)
French (fr)
Inventor
马丁
林丽利
姚思宇
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to JP2018566830A priority Critical patent/JP6730696B2/ja
Priority to EP17814715.3A priority patent/EP3482826A4/en
Priority to US16/311,160 priority patent/US11141716B2/en
Publication of WO2017219977A1 publication Critical patent/WO2017219977A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/23
    • B01J35/30
    • B01J35/391
    • B01J35/396
    • B01J35/40
    • B01J35/61
    • B01J35/612
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to the field of metal catalysis, and in particular to metal/ ⁇ -MoC 1-x supported monoatomic dispersion catalysts, synthesis methods and applications.
  • hydrogen is stored in a liquid form (liquid, methanol, formic acid, ammonia) in a chemical form, and the stored hydrogen is released in situ for use in a fuel cell by a certain catalytic reaction, the hydrogen storage of the fuel cell can be effectively solved. Difficult problems, thus promoting the development of hydrogen fuel cells.
  • Methanol is the most promising hydrogen storage liquid material.
  • methanol can be industrialized on a large scale. Its output value exceeds fossil energy.
  • methanol has a high H/C ratio and has a strong hydrogen storage capacity.
  • methanol does not contain CC bonds and easily releases hydrogen gas. Less by-products.
  • the method for producing hydrogen from methanol is through reforming, and more research in reforming is steam reforming and aqueous phase reforming of methanol.
  • Cu-based catalysts have a reaction temperature of 250-300 ° C, and the reactivity is high, but the catalyst is easily oxidized by water, and the reaction is stopped. The condensation of the gases (H 2 O and CH 3 OH) in the reforming will cause the catalyst to lose 40% or more of the activity; the noble metal catalyst generally uses oxide as the carrier, but on the oxide-supported noble metal catalyst, methanol is easier.
  • the present application provides a metal/ ⁇ -MoC 1-x supported monoatomic dispersion catalyst, a synthesis method and application thereof.
  • the technical solutions are as follows:
  • the present application firstly provides a metal/ ⁇ -MoC 1-x supported monoatomic dispersion catalyst, wherein ⁇ -MoC 1-x is used as a carrier, a metal is used as an active component, and 1-100% of the metal is The monoatomic form is dispersed on the carrier ⁇ -MoC 1-x .
  • 10-100% of the metal preferably 90-100% of the metal, more preferably 100% of the metal is dispersed in the monoatomic form on the carrier ⁇ -MoC 1-x .
  • the metal loading is 0.01-50% by mass, preferably 0.01-10% by mass, more preferably 0.01-2% by mass, based on the total mass of the carrier, most preferably It is 0.05 to 0.2% by mass.
  • the metal is selected from at least one of platinum, rhodium, palladium, nickel, copper, and cobalt.
  • the present application also provides a method for preparing the above metal/ ⁇ -MoC 1-x supported monoatomic dispersion catalyst, comprising the following steps:
  • Step 1) Synthesis of the carrier ⁇ -MoC 1-x .
  • the synthesis method is prior art, and the present application is not limited herein. Those skilled in the art can realize the synthesis of the carrier ⁇ -MoC 1-x by the existing method, for example, the carrier ⁇ -MoC 1-x Can be synthesized by the following methods:
  • Molybdenum trioxide is programmed to 500-900 ° C in an ammonia gas reaction atmosphere for 0.5-50 hours, and then lowered to room temperature in an ammonia gas reaction atmosphere; wherein, the temperature increase rate is 1-50 ° C / min, each The ammonia flux corresponding to the molybdenum source is 5-800 mL/min.
  • Step 2) Dissolving the metal precursor salt to obtain a metal precursor salt solution.
  • dissolving the metal precursor salt may be by dissolving the metal precursor salt in any volatile solvent, preferably water. It will be understood that the metal precursor salt is a water soluble salt at this time.
  • the metal in the metal precursor salt is preferably selected from the group consisting of metal elements of Group VIII of the periodic table, more preferably at least one selected from the group consisting of platinum, rhodium, palladium, nickel, copper and cobalt.
  • the metal precursor salt is preferably selected from the group consisting of potassium chloroplatinate, sodium chloroplatinate, platinum acetylacetonate, chloroplatinic acid, palladium chloride, palladium acetate, nickel, copper, At least one of cobalt chloride, nitrate, and acetylacetonate.
  • Step 3 mixing and drying the metal precursor salt solution in the step 2) with the carrier ⁇ -MoC 1-x in the step 1), wherein the ratio of the metal precursor salt to the carrier ⁇ -MoC 1-x is proportional
  • the mass of the metal element in the metal precursor salt is from 0.01% to 55% by mass, preferably from 0.01% to 12%, based on the mass of the metal element in the metal precursor salt, more preferably from 0.01% to 12%. From 0.06% to 0.25%, the loading of the product can be adjusted by adjusting the ratio of the amount of the metal precursor salt to the carrier ⁇ -MoC 1-x .
  • the metal precursor salt solution with the support ⁇ -MoC 1-x vector may first mixing ⁇ -MoC 1-x immersed in a solvent, preferably water, and then the metal precursor salt solution is added thereto and stirred After drying, the drying process is carried out to remove the volatile solvent.
  • a solvent preferably water
  • the drying process in this step can be carried out by a drying method commonly used in the art.
  • the present application is not limited herein, and can be realized, for example, by rotary evaporation.
  • Step 4) The solid obtained in the step 3) is freeze-dried to obtain a catalyst precursor.
  • the main purpose of this step is to prevent the catalyst precursor from being deeply oxidized, and the freeze drying can reduce the influence of water evaporation on the distribution of the precursor salt on the catalyst. .
  • the step can be carried out by freeze-drying overnight in a freeze dryer.
  • the freeze dryer is a conventional device, which is not limited herein.
  • Step 5 The obtained catalyst precursor is carbonized in a carbonized gas atmosphere containing both a carbon source and a hydrogen source to obtain a metal/ ⁇ -MoC 1-x supported monoatomic dispersion catalyst.
  • the carbon source is selected from at least one of an alkane, an olefin, and an alcohol, preferably methane or ethane;
  • the hydrogen source is preferably hydrogen; and the volume ratio of the carbon source to the hydrogen source is 0.1:9-9: 1, the rate of carbonization programming is 1-50 ° C / min, preferably 1-30 ° C / min, more preferably 1-10 ° C / min, most preferably 5-10 ° C / min; the highest temperature of carbonization is 490 -900 ° C, preferably 590-700 ° C.
  • the carbonization it is maintained at 200-300 ° C for 0.1-50 hours, preferably 0.1-10 hours, more preferably 0.5-3 hours, most preferably 1-2 hours; maintaining at the highest temperature of carbonization for 0.1-100 hours, It is preferably from 0.1 to 10 hours, preferably from 0.5 to 3 hours, more preferably from 1 to 2 hours.
  • the metal/ ⁇ -MoC 1-x supported monoatomic dispersion catalyst prepared by the present invention uses ⁇ -MoC 1-x as a carrier, a metal as an active component, and a part thereof. Or all of the metal exhibits a monoatomic dispersed form on the support. And as the metal loading decreases, the amount of metal monoatomic dispersion will gradually increase; for example, in the specific embodiment of the present application, when the metal loading is 10%, about 10% of the metal is Dispersed on the carrier in the form of a single atom, as the metal loading decreases, the amount of metal monoatomic dispersion will gradually increase.
  • the metal loading is less than or equal to 0.2%, the metal is completely dispersed in the carrier in the form of a single atom. ⁇ -MoC 1-x .
  • the loading of the metal is controlled to be 0.01% to 10%, preferably 0.01 to 2%, more preferably 0.05 to 0.2%. It is then possible to achieve 10% to 100% of the metal dispersed in the monoatomic form on the carrier ⁇ -MoC 1-x , more preferably the metal is all dispersed in the monoatomic form on the carrier ⁇ -MoC 1-x .
  • the loading of the metal element on the final catalyst can be determined by ICP (Inductively Coupled Plasma Spectrometer).
  • the metal/ ⁇ -MoC 1-x supported monoatomic dispersion catalyst provided by the present application can be applied to the hydrogenation reaction of alcohol aqueous phase reforming.
  • the alcohol may be methanol, ethanol, glycerin or B.
  • the diol is preferably methanol.
  • the reaction temperature is 50 to 280 ° C, preferably 190 ° C.
  • the catalyst provided by the present application has a wide ratio of alcohol/water in the hydrogenation reaction of alcohol aqueous phase reforming, and excellent hydrogen production performance can be obtained in each ratio, and the ratio of alcohol to water can be from 0.1:9 to 10: 1.
  • the term "loading amount” refers to the mass percentage of the metal supported on the carrier as the active component, for example, when the loading amount is 10%, it is understood to be 10% by mass of the carrier.
  • the metal is supported on a carrier.
  • the percentages used are all mass percentages.
  • the metal/ ⁇ -MoC 1-x supported monoatomic dispersion catalyst provided by the present application uses ⁇ -MoC 1-x as a carrier, a metal as an active component, and 1-100% of the metal is in a single atom form. Dispersed on the carrier ⁇ -MoC 1-x , the catalyst provided by the present application has a wide alcohol/water ratio in the alcohol phase reforming hydrogen production reaction, and excellent hydrogen production performance can be obtained in each ratio. And its catalytic performance is much better than the metal supported by the oxide carrier. Especially when the metal is Pt, the Pt/ ⁇ -MoC 1-x supported monoatomic dispersion catalyst provided by the present application has much better catalytic performance in the hydrogen production from alcohol aqueous phase reforming than the Pt in the prior art.
  • the Pt/ ⁇ -MoC 1-x supported catalyst on the ⁇ -MoC 1-x support; at 190 ° C, the hydrogen production activity of the catalyst provided herein can reach 20,000 h -1 or more.
  • FIG. 1 is an XRD pattern of a catalyst prepared by the carrier ⁇ -MoC 1-x prepared in Example 1 and Examples 2, 5, 6, 7, 8, and 9, wherein (a) of FIG. 1 is prepared in Example 1.
  • XRD pattern of the carrier ⁇ -MoC 1-x XRD pattern of the catalyst prepared in Example 2
  • FIG. 1 XRD pattern of the catalyst prepared in Example 2
  • FIG. 1 is an XRD pattern of the catalyst prepared in Example 5
  • FIG. 1 (d)
  • the XRD pattern of the catalyst prepared in Example 6, (e) in Figure 1 is the XRD pattern of the catalyst prepared in Example 7, and (f) in Figure 1 is the XRD pattern of the catalyst prepared in Example 8, in Figure 1
  • Example 2A is a scanning transmission electron micrograph of the catalyst prepared in Example 2 before the catalytic reaction
  • FIG. 3 is a X-ray absorption fine structure spectrum (XAFS) characterization result of the catalyst prepared in Example 2, wherein (a) in FIG. 3 is an EXAFS fitting diagram of the Pt L3 absorption edge in the catalyst before the catalytic reaction, FIG. (b) is the EXAFS fit of the Pt L3 absorption edge in the catalyst after the catalytic reaction, and (c) in Fig. 3 is the XANES diagram of the Pt L3 absorption edge in the catalyst before and after the reaction, (d) in Fig. 3 a XANES diagram of the absorption side of Mo K in the catalyst before and after the reaction;
  • XAFS X-ray absorption fine structure spectrum
  • Example 4 is a scanning transmission electron micrograph of the catalyst prepared in Example 3.
  • Figure 5 is a scanning transmission electron micrograph of the catalyst prepared in Example 4.
  • Example 6 is a scanning transmission electron micrograph of the catalyst prepared in Example 10, wherein a and b are respectively scanning electron microscope images at different scales;
  • Example 7 is a catalytic effect diagram of the catalyst prepared in Example 2 in a plurality of repeated catalytic reactions
  • Example 8 is a graph showing catalytic activity of catalysts prepared in Example 7 and Comparative Example 3 at different temperatures;
  • Figure 9 is a graph showing the optimization of the molar ratio of methanol to water of the catalyst prepared in Example 2;
  • Figure 10 is a graph showing the optimization of the molar ratio of methanol to water for the catalyst prepared in Example 7.
  • 1 g of molybdenum trioxide was ground to less than 60 mesh, placed in a quartz tube, and programmed to a temperature of 700 ° C in an ammonia gas reaction atmosphere for 1 hour, and then lowered to room temperature in an ammonia gas reaction atmosphere; wherein, the temperature increase rate was 10 °C / minute, the flux of ammonia gas is 20mL / min;
  • the reaction atmosphere was switched to methane and hydrogen, and the temperature was programmed to 700 ° C for 1 hour, and then lowered to room temperature in an atmosphere of methane and hydrogen; wherein, the temperature was increased at 10 ° C / min, and the flux of methane and hydrogen was 20 mL / Minutes, the volume ratio of methane to hydrogen is 3:7;
  • the reaction atmosphere was switched to a passivation atmosphere, and the temperature was programmed to 700 ° C for 1 hour, and then lowered to room temperature in a passivation atmosphere; wherein, the temperature increase rate was 10 ° C / minute, and the passivation atmosphere flux was 20 mL / minute.
  • the passivation atmosphere contains oxygen and argon, and the oxygen volume accounts for 0.5% of the volume of the passivating atmosphere.
  • ⁇ -MoC 1-x was obtained .
  • the prepared carrier ⁇ -MoC 1-x was specifically ⁇ -MoC 0.8 as determined by elemental analysis.
  • the carrier ⁇ -MoC 0.8 (0.2 g) prepared in the same manner as in Example 1 was placed in a flask, and 10 mL of deionized water was added to leave the carrier under the liquid surface.
  • 1 g of platinum precursor salt chloroplatinic acid hexahydrate was dissolved in 10 mL of water to prepare a Pt solution; 25 ⁇ L of Pt solution was added to a flask equipped with a carrier ⁇ -MoC 0.8 , stirred for 2 hours, and the flask was rotated by a rotary evaporator. The water in the water was evaporated and the sample was placed in a freeze dryer and lyophilized overnight.
  • the catalyst precursor is then carbonized in a CH 4 /H 2 atmosphere (methane to hydrogen volume ratio of 3:17), heated to 300 ° C at a rate of 10 ° C / min, held at 300 ° C for one hour, and then The rate was raised to 590 ° C at a rate of 10 ° C / min and held for 120 minutes. Finally, the loading was determined to be about 0.2% by ICP (Inductively Coupled Plasma Spectrometer).
  • the carrier ⁇ -MoC 0.8 (0.2 g) prepared in the same manner as in Example 1 was placed in a flask, and 10 mL of deionized water was added to leave the carrier under the liquid surface.
  • 1 g of platinum precursor salt chloroplatinic acid hexahydrate was dissolved in 10 mL of water to prepare a Pt solution; 5 ⁇ L of Pt solution was added to a flask equipped with a carrier ⁇ -MoC 0.8 , stirred for 2 hours, and the flask was placed in a rotary evaporator. The water was evaporated and the sample was placed in a freeze dryer and lyophilized overnight.
  • the catalyst precursor is then carbonized in a CH 4 /H 2 atmosphere (methane to hydrogen volume ratio of 3:17), heated to 300 ° C at a rate of 10 ° C / min, held at 300 ° C for 1 hour, and then The temperature was raised to 590 ° C at a rate of 10 ° C / minute and held for 120 minutes.
  • the loading was finally determined by ICP to be about 0.05%.
  • the carrier ⁇ -MoC 0.8 (0.2 g) prepared in the same manner as in Example 1 was placed in a flask, and 10 mL of deionized water was added to leave the carrier under the liquid surface.
  • 1 g of platinum precursor salt chloroplatinic acid hexahydrate was dissolved in 10 mL of water to prepare a Pt solution;
  • 150 ⁇ L of Pt solution was added to a flask equipped with a carrier ⁇ -MoC 0.8 , stirred for 2 hours, and the flask was rotated by a rotary evaporator.
  • the water in the water was evaporated and the sample was placed in a freeze dryer and lyophilized overnight.
  • the catalyst precursor is then carbonized in a CH 4 /H 2 atmosphere (methane to hydrogen volume ratio of 1:9), heated to 200 ° C at a rate of 5 ° C / min, held at 200 ° C for 2 hours, and then The temperature was raised to 700 ° C at a rate of 5 ° C / minute and held for 60 minutes.
  • the final load was determined by ICP to be approximately 2%.
  • the carrier ⁇ -MoC 0.8 (0.2 g) prepared in the same manner as in Example 1 was placed in a flask, and 10 mL of deionized water was added to leave the carrier under the liquid surface.
  • 1 g of the precursor salt palladium chloride was dissolved in 10 mL of 2 mol/L hydrochloric acid to prepare a Pd solution; 8 ⁇ L of Pd solution was added to a flask equipped with a carrier ⁇ -MoC 0.8 , stirred for 2 hours, and subjected to rotary evaporation.
  • the water in the flask was evaporated and the sample was placed in a freeze dryer and lyophilized overnight.
  • the catalyst precursor is then carbonized in a CH 4 /H 2 atmosphere (methane to hydrogen volume ratio of 9:1), heated to 300 ° C at a rate of 10 ° C / min, held at 300 ° C for one hour, and then The rate was raised to 590 ° C at a rate of 10 ° C / min and held for 120 minutes.
  • the final load was determined by ICP to be approximately 2%.
  • the carrier ⁇ -MoC 0.8 (0.2 g) prepared in the same manner as in Example 1 was placed in a flask, and 10 mL of deionized water was added to leave the carrier under the liquid surface. 1 g of the precursor salt cesium chloride was dissolved in 10 mL of water to prepare a Ru solution; 10 ⁇ L of Ru solution was added to a flask equipped with a carrier ⁇ -MoC 0.8 , stirred for 2 hours, and the water in the flask was rotated by a rotary evaporator. Evaporate and the sample is placed in a freeze dryer and lyophilized overnight.
  • the catalyst precursor was then carbonized in a C 2 H 6 /H 2 atmosphere (methane to hydrogen volume ratio of 3:17), heated to 300 ° C at a rate of 10 ° C/min, and held at 300 ° C for one hour. It was further raised to 490 ° C at a rate of 10 ° C / minute and held for 10 hours.
  • the final load was determined by ICP to be approximately 2%.
  • the carrier ⁇ -MoC 0.8 (0.2 g) prepared in the same manner as in Example 1 was placed in a flask, and 10 mL of deionized water was added to leave the carrier under the liquid surface. 1 g of nickel nitrate was dissolved in 10 mL of water to prepare a Ni solution; 25 ⁇ L of Ni solution was added to a flask equipped with a carrier ⁇ -MoC 0.8 , stirred for 2 hours, and the water in the flask was evaporated by a rotary evaporator, and then The sample was lyophilized overnight in a freeze dryer.
  • the catalyst precursor is then carbonized in a CH 4 /H 2 atmosphere (methane to hydrogen volume ratio of 3:17), heated to 300 ° C at a rate of 10 ° C / min, held at 300 ° C for one hour, and then The rate was raised to 590 ° C at a rate of 10 ° C / min and held for 120 minutes.
  • the final load was determined by ICP to be approximately 2%.
  • Example 8 differs from Example 7 in that 1 g of copper nitrate was dissolved in 10 mL of water to prepare a Cu solution; 25 ⁇ L of a Cu solution was added to a flask equipped with a carrier ⁇ -MoC 0.8 for impregnation. The final load was determined by ICP to be approximately 2%.
  • Example 8 The difference between Example 8 and Example 7 was that 1 g of cobalt nitrate was dissolved in 10 mL of water to prepare a Cu solution; 25 ⁇ L of Co solution was added to a flask equipped with a carrier ⁇ -MoC 0.8 for impregnation. The final load was determined by ICP to be approximately 2%.
  • the carrier ⁇ -MoC 0.8 (0.2 g) prepared in the same manner as in Example 1 was placed in a flask, and 10 mL of deionized water was added to leave the carrier under the liquid surface.
  • 1 g of platinum precursor salt chloroplatinic acid hexahydrate was dissolved in 10 mL of water to prepare a Pt solution; 610 ⁇ L of Pt solution was added to a flask equipped with a carrier ⁇ -MoC 0.8 , stirred for 2 hours, and rotated by a rotary evaporator. The water in the flask was evaporated and the sample was placed in a freeze dryer and lyophilized overnight.
  • the catalyst precursor is then carbonized in a CH 4 /H 2 atmosphere (methane to hydrogen volume ratio of 0.1:9), heated to 200 ° C at a rate of 10 ° C / min, held at 200 ° C for 10 hours, and then The temperature was raised to 900 ° C at a rate of 30 ° C / minute and held for 10 minutes.
  • the final load was determined by ICP to be approximately 10%.
  • the catalyst precursor was then carbonized in an atmosphere of 20% CH 4 /H 2 , heated to 300 ° C at 5 ° C/min, and then raised to 700 ° C at 1 ° C/min for 120 minutes.
  • synthesis method see Ma, Y., et al., International Journal of Hydrogen Energy, 2014. 39(1): p. 258-266.
  • Example 1 of Chinese Patent Application No. 201510053793.8 follow entitled "Pt / ⁇ -MoC 1- x and its supported catalyst synthesis and application” in embodiments, prepared Pt / ⁇ -MoC 1-x Supported A catalyst in which Pt is distributed in a layered form on an ⁇ -MoC 1-x support.
  • the catalyst prepared by the carrier ⁇ -MoC 0.8 prepared in Example 1 and the catalysts prepared in Examples 2, 5, 6, 7, 8, and 9 were subjected to XRD characterization to observe the phase structure thereof; the XRD sample was prepared as follows: 0.5 of the above carbonized catalyst was used. The passivation gas of %O 2 /Ar was passivated for 8 hours and was used for XRD testing after grinding. The results are shown in Fig. 1. It can be seen from Fig. 1 that the carrier ⁇ -MoC 0.8 is an ⁇ phase, and the metals in Examples 2, 5, 6, 7, 8, and 9 are not in the form of dispersed nanoparticles. .
  • the transmission electron microscope sample preparation method is as follows: the catalyst obtained in Example 2 and the catalyst of Example 2 after performing the methanol aqueous phase hydrogenation reaction are respectively placed in a glove box, and after grinding, the solid is introduced into an oxygen-free anhydrous ethanol. Disperse, take a few drops of the dispersed droplets and add them to the ultrathin carbon film for transmission electron microscopy. After air drying, they are sent to a transmission electron microscope for testing.
  • Figures 2A and 2B wherein the catalyst reaction obtained in Example 2 is obtained. As shown in Fig. 2A, the reaction is as shown in Fig. 2B. It can be seen from Fig. 2A and Fig.
  • Example 2B that the Pt atoms are distributed in the form of a single atom on the ⁇ -MoC 0.8 carrier before or after the reaction (the dots in the circle in the figure are Pt atoms), indicating The catalyst prepared in Example 2 has good stability and does not agglomerate after the catalytic reaction.
  • Example 2 In order to further prove that the Pt element in the catalyst prepared in Example 2 was distributed on the ⁇ -MoC 0.8 carrier in a monoatomic form, the catalyst obtained in Example 2 and Example 2 after the hydrogenation reaction in the aqueous methanol phase were respectively carried out.
  • the catalyst was characterized by X-ray absorption fine structure spectrum (XAFS), and its X-ray absorption fine structure spectrum was obtained, and the extended edge was analyzed and fitted (EXAFS).
  • XAFS is a powerful tool for depicting bulk structures, adjusting X-ray energy to be consistent with the elements of the sample under study, and then monitoring the amount of X-rays absorbed as a function of their energy.
  • EXAFS extended edge
  • Example 3 The catalyst prepared in Example 3 was subjected to transmission electron microscopy characterization, and the results are shown in Fig. 4. As can be seen from Fig. 4, Pt atoms were all distributed in the form of a single atom on the ⁇ -MoC 0.8 carrier.
  • the catalyst prepared in Example 4 was subjected to transmission electron microscopy characterization, and the results are shown in Fig. 5 and Table 2.
  • Pt atoms were uniformly present in the form of a single atom on the ⁇ -MoC 0.8 carrier (e.g. As shown in the circle), the presence of Pt particles is barely visible.
  • the amount of Pt monoatoms is about 90% of the total Pt mass supported on the support.
  • the catalyst prepared in Example 10 was characterized by transmission electron microscopy. The results are shown in Fig. 6 and Table 3. As can be seen from the graph a in Fig. 6, when the loading amount reached 10%, more Pt particles appeared on the catalyst. As can be seen from the graph of b in Fig. 6, there is a part of the Pt single atom remaining on the catalyst. Also combined with XAFS fitting data, the coordination number of Pt-Mo is 2.7, which is mainly contributed by the interaction of Pt single atoms with the carrier molybdenum carbide. The coordination number of Pt-Pt is 5.2, which is mainly contributed by Pt particles. of. The amount of Pt monoatoms is about 10% of the mass of the total Pt supported on the support.
  • the supported catalysts prepared in Examples 2-9 and Comparative Examples 1-5 were used in the methanol aqueous phase reforming reaction under the following conditions: a closed system reaction, in which a certain proportion of methanol and water were added to the reaction system. The ratio was reacted), and the reaction was carried out under a protective gas of 2 MPa N 2 (10% Ar as an internal standard). After the temperature was lowered to room temperature, the gas phase product was detected by gas chromatography. The reaction performance of each catalyst is shown in Table 4 below.
  • the catalytic activity of the catalyst prepared in each of the examples of the present application was significantly higher than that of the catalyst prepared in the comparative example.
  • the catalyst of the present application not only has a relatively high hydrogen production rate but also has a low CO selectivity, which is far lower than the CO tolerance of the high temperature hydrogen fuel cell, and overcomes the low catalytic activity of the Pt catalyst supported by the oxide carrier and high CO selectivity.
  • the TOF activity was as high as 22557 h -1 and 23150 h -1 ; in addition, the catalyst of Example 2 was used to repeat the catalytic reaction (reaction conditions are the same as in Table 4), each After the end of the reaction, the composition of the gas in the reaction vessel was detected by gas chromatography, and the amount of each component was determined by the content of the internal standard, and finally the reaction rate was calculated. The result is shown in Fig. 7, which can be seen from Fig. 7.
  • the catalyst prepared for the preparation has good stability and can repeat the catalytic reaction multiple times.
  • the catalytic reaction was carried out at different temperatures under the conditions of a reaction for 3 hours.
  • Fig. 8 it can be seen from Fig. 8 that Ni/ ⁇ -MoC 0.8 prepared in Example 7 was elevated as the temperature was raised.
  • the increase in activity during the reaction was remarkable, and the activity was highest at 240 °C.
  • Each of the catalysts prepared in the present application not only has a remarkable catalytic effect on methanol but also has good catalytic performance on other alcohols.
  • Table 5 in order to utilize the examples of the present application, the hydrogen phase of ethanol, ethylene glycol, and glycerin was reformed to produce hydrogen.
  • the supported catalysts prepared in Example 2 and Example 7 are used in an aqueous alcohol reforming reaction under the following conditions: a closed system reaction, and a certain proportion (ethanol, ethylene glycol, and C) is added to the reaction system.
  • the triol) alcohol and water (reacted in the optimum ratio of the catalyst) were reacted under a protective gas of 2 MPa N 2 (10% Ar as an internal standard), and the gas phase product was detected by gas chromatography after being lowered to room temperature.
  • the reaction performance of each catalyst is shown in Table 5 below.
  • the catalyst provided by the present application has excellent catalytic properties for other alcohols in addition to methanol.
  • the catalyst prepared by the method for preparing a metal/ ⁇ -MoC 1-x supported monoatomic dispersion catalyst provided by the present application the metal is uniformly dispersed in a single atom form on the carrier ⁇ -MoC 1-x ,
  • the "-OH" coverage of the catalyst surface is more effectively improved, and the "-OH” is favorable for the metal to catalyze the "-CH” cleavage to promote the alcohol reforming reaction and inhibit the decomposition reaction.

Abstract

一种金属/α-MoC1-x负载型单原子分散催化剂及其合成方法与应用,该催化剂以α-MoC1-x为载体,且有质量分数1-100%的金属以单原子形式分散于载体α-MoC1-x上。本申请提供的催化剂在醇类水相重整制氢反应中适应的醇/水比例较宽,在各个比例均可取得优异的产氢性能,且其催化性能远优于氧化物载体负载的金属。尤其是当金属为Pt时,本申请提供的Pt/α-MoC1-x负载型单原子分散催化剂在醇类水相重整制氢中催化性能远好于现有技术中Pt以层状分布于α-MoC1-x载体上的Pt/α-MoC1-x负载型催化剂;在190℃时,本申请提供的催化剂的产氢活性能够达到20000h-1以上。

Description

金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用
本申请要求于2016年06月23日提交中国专利局、申请号为201610462928.0发明名称为“金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及金属催化领域,特别涉及金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用。
背景技术
使用化石能源产生的废气和固体颗粒远远地超过了环境的自动净化能力,清洁能源的开发不仅是解决能源问题的根本,也是解决环境问题的关键。氢能源是被大家公认的清洁、高热值的能源。氢能最有效的利用形式是氢能燃料电池,相比于内燃机燃烧反应,氢能燃料电池将化学能高效地转化为电能,利用率提高了40%-50%。但是由于储氢技术的落后,目前无论是以气体的形式储氢还是以液体的形式储氢,都存在压力过高,体积太大,安全系数低的问题。而如果将氢气以化学的形式储存于液体燃料(甲醇、甲酸、氨气)中,再通过一定的催化反应将储存的氢气原位释放出来供燃料电池使用,则能够有效的解决燃料电池储氢困难的问题,从而推动氢能燃料电池的发展。
甲醇是最被看好的储氢液体材料,首先甲醇能够进行大规模工业化,其产值超过化石能源,同时甲醇具有高H/C比,储氢能力强,另外甲醇不含C-C键,易释放氢气并且副产物少。目前甲醇产氢的方法是通过重整,重整中研究较多的是甲醇的水蒸气重整和水相重整。对于水蒸气重整,目前的研究主要集中在Cu基催化剂和贵金属(第VIII族)催化剂:Cu基催化剂反应温度在250-300℃,反应活性较高,但是催化剂易被水氧化,停止反应时,重整中的气体(H2O和CH3OH)冷凝就会使催化剂失去40%甚至更多的活性;贵金属催化剂一般以氧化物作载体,但是在氧化物负载的贵金属催化剂上,甲醇更易发生分解反应,导致C0含量超过50%甚至更高,CO含量远远超过了燃料电池的耐 受力(<100℃为低温氢燃料电池,CO含量需小于50ppm;100-200℃为高温氢燃料电池,CO含量需小于5%)。水蒸气重整不仅要通过气化炉汽化反应物,由于CO含量偏高,还要再通过水蒸气迁移或选择性氧化对氢气进行纯化,整套装置繁琐复杂。水相甲醇重整直接将甲醇和水在溶液中进行反应,不需要对反应物进行汽化,同时在水相中反应能够大大降低CO的含量,这样就可省去对生成的氢气进行纯化,由此使甲醇水相重整与氢燃料电池一体化装置更加紧凑简单。但传统的Cu基催化剂在液相中无法稳定存在,氧化物负载的贵金属催化剂活性极低,不符合使用的要求。
发明内容
为解决传统的水相重整催化剂活性低的问题,本申请提供一种金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用。技术方案如下:
本申请首先提供了一种金属/α-MoC1-x负载型单原子分散催化剂,以α-MoC1-x为载体,以金属为活性组分,且1-100%的所述金属是以单原子形式分散于载体α-MoC1-x上的。
在本申请的一种具体实施方式中,有10-100%的金属,优选90-100%的金属,更优选100%的金属是以单原子形式分散于载体α-MoC1-x上的。
在本申请的一种具体实施方式中,基于所述载体的总质量,所述金属负载量为0.01-50质量%,优选为0.01-10质量%,更优选为0.01-2质量%,最优选为0.05-0.2质量%。
在本申请的一种具体实施方式中,所述金属选自于铂、钌、钯、镍、铜及钴中的至少一种。
本申请还提供了上述金属/α-MoC1-x负载型单原子分散催化剂的制备方法,包括以下步骤:
步骤1)合成载体α-MoC1-x
此步骤中的载体α-MoC1-x为α相碳化钼,面心立方结构,x=0-0.9,优选为0-0.5;载体的尺寸为1nm-30nm,比表面积在5-250m2/g之间。其合成方法为现有技术,本申请在此不进行限定,本领域普通技术人员可以通过现有的 方法来实现载体α-MoC1-x的合成,举例而言,载体α-MoC1-x可以由以下方法合成:
A)将三氧化钼在氨气反应气氛中程序升温至500-900℃,保持0.5-50小时,然后在氨气反应气氛中降至室温;其中,升温速度为1-50℃/分钟,每克钼源对应的氨气通量为5-800mL/分钟。
B)将反应气氛切换成甲烷和氢气,程序升温至500-900℃,保持0.5-50小时,然后在甲烷和氢气的氛围中降至室温;其中,升温速度为1-50℃/分钟,每克钼源对应的甲烷和氢气的通量为5-800mL/分钟,甲烷和氢气的体积比为1∶9-9∶1;
C)将反应气氛切换成钝化气氛,程序升温至500-900℃,保持0.5-50小时,然后在钝化气氛中降至室温;其中,升温速度为1-50℃/分钟,每克钼源对应的钝化气氛的通量为5-400mL/分钟,钝化气氛包含有氧气和氩气,且氧气体积占钝化气氛体积的0.1-1%。
步骤2)将金属前体盐溶解,得到金属前体盐溶液。
在具体实施方式中,将金属前体盐溶解可以为将金属前体盐溶解于任意的可挥发溶剂中,优选为水,可以理解的是,此时金属前体盐为水溶性盐。所说的金属前体盐中的金属优选选自于元素周期表中第VIII族的金属元素,更优选选自于铂、钌、钯、镍、铜及钴中的至少一种。
在本申请的一种具体实施方式中,金属前体盐优选选自于氯亚铂酸钾、氯亚铂酸钠、乙酰丙酮铂、氯铂酸、氯化钯、醋酸钯及镍、铜、钴的氯化物、硝酸盐、乙酰丙酮化合物中的至少一种。
步骤3),将步骤2)中的金属前体盐溶液与步骤1)中的载体α-MoC1-x混合并干燥,其中,金属前体盐和载体α-MoC1-x的用量比例关系为:以金属前体盐中的金属元素质量计,金属前体盐中的金属元素质量为载体α-MoC1-x质量的0.01%-55%,优选为0.01%-12%,更优选为0.06%-0.25%,通过调整金属前体盐和载体α-MoC1-x的用量比例,可以调整产物的负载量。
在具体实施方式中,将金属前体盐溶液与载体α-MoC1-x混合可以先将载体α-MoC1-x浸没于溶剂优选为水中,然后将金属前体盐溶液加至其中,搅拌 均匀后再进行干燥处理,去除挥发性的溶剂,此步骤的干燥处理可以采用本领域常用的干燥方式,本申请在此不进行限定,例如可以采用旋转蒸发的方式来实现。
步骤4)将步骤3)所得的固体进行冷冻干燥,得到催化剂前体,此步骤主要的目的在于防止催化剂前体被深度氧化,并且冷冻干燥能减少水分蒸发对前体盐在催化剂上分布的影响。具体实施方式中,此步骤可以采用冷冻干燥机冻干过夜来实现,冷冻干燥机为现有的常用设备,本申请在此不进行限定。
步骤5)将所得的催化剂前体在同时含有碳源与氢源的碳化气氛围中碳化,即得到金属/α-MoC1-x负载型单原子分散催化剂。
在具体实施过程中,碳源选自于烷烃、烯烃及醇中的至少一种,优选为甲烷或乙烷;氢源优选为氢气;碳源与氢源的体积比为0.1∶9-9∶1,碳化程序升温的速度为1-50℃/分钟,优选为1-30℃/分钟,更优选为1-10℃/分钟,最优选为5-10℃/分钟;碳化的最高温度为490-900℃,优选为590-700℃。碳化过程中,在200-300℃保持0.1-50小时,优选为0.1-10小时,更优选为0.5-3小时,最优选为1-2小时;在碳化的最高温度下保持0.1-100小时,优选为0.1-10小时,优选为0.5-3小时,更优选为1-2小时。
发明人通过实验出人意料地发现,本申请制备出的金属/α-MoC1-x负载型单原子分散催化剂,该催化剂以α-MoC1-x为载体,以金属为活性组分,并且有部分或全部金属在载体上呈现出单原子分散的形式。且随着金属负载量的减小,金属单原子分散的量也会逐渐增大;例如,在本申请的具体实施方式中,当金属的负载量为10%时,约有10%的金属是以单原子形式分散于载体上,随着金属负载量的减小,金属单原子分散的量也会逐渐增大,当金属的负载量小于等于0.2%时,金属全部以单原子形式分散于载体α-MoC1-x上。在本申请中,通过调整金属前体盐和载体α-MoC1-x的用量比例,控制金属的负载量为0.01%-10%,优选为0.01-2%,更优选为0.05-0.2%,则可以实现10%-100%的金属以单原子形式分散于载体α-MoC1-x上,更优选金属全部以单原子形式分散于载体α-MoC1-x上。对于最终催化剂上金属元素的负载量,可以通过ICP(电感耦合等离子体光谱仪)来确定。
本申请提供的金属/α-MoC1-x负载型单原子分散催化剂,可以应用于醇类水相重整制氢反应中,在具体实施方式中,醇类可以为甲醇、乙醇、甘油、乙二醇,优选为甲醇。在应用本申请提供的催化剂进行催化反应时,反应温度为50-280℃,优选为190℃。本申请提供的催化剂在醇类水相重整制氢反应中适应的醇/水比例较宽,在各个比例均可取得优异的产氢性能,醇类与水比例可以从0.1∶9到10∶1。
需要说明的是,在本申请中所说的术语“约”例如在修饰最终的负载量时,其通常是指本领域允许的误差范围内,例如±10%,例如±5%,例如±2%。
在本申请中,所说的“负载量”指的是作为活性组分的金属负载于载体上的质量百分数,例如当提及负载量为10%时,应理解为有占载体质量10%的金属负载于载体上。
在本申请中,在描述金属单原子分散的量时,所用的百分数均为质量百分数。
本申请提供的金属/α-MoC1-x负载型单原子分散催化剂,以α-MoC1-x为载体,以金属为活性组分,且1-100%的所述金属是以单原子形式分散于所述载体α-MoC1-x上的,本申请提供的催化剂在醇类水相重整制氢反应中适应的醇/水比例较宽,在各个比例均可取得优异的产氢性能,且其催化性能远优于氧化物载体负载的金属。尤其是当金属为Pt时,本申请提供的Pt/α-MoC1-x负载型单原子分散催化剂在醇类水相重整制氢中催化性能远好于现有技术中Pt以层状分布于α-MoC1-x载体上的Pt/α-MoC1-x负载型催化剂;在190℃时,本申请提供的催化剂的产氢活性能够达到20000h-1以上。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备的载体α-MoC1-x及实施例2、5、6、7、8、9制备的催化剂的XRD图,其中,图1中(a)为实施例1制备的载体α-MoC1-x的XRD图;图1中(b)为实施例2制备的催化剂的XRD图,图1中(c)为实施例5制备的催化剂的XRD图,图1中(d)为实施例6制备的催化剂的XRD图,图1中(e)为实施例7制备的催化剂的XRD图,图1中(f)为实施例8制备的催化剂的XRD图,图1中(g)为实施例9制备的催化剂的XRD图;
图2A为实施例2制备的催化剂在催化反应前的扫描透射电子显微镜图;
图2B为实施例2制备的催化剂在催化反应后的扫描透射电子显微镜图;
图3为实施例2制备的催化剂的X-射线吸收精细结构谱(XAFS)表征结果,其中,图3中(a)为催化反应前的催化剂中Pt L3吸收边的EXAFS拟合图,图3中(b)为催化反应后的催化剂中Pt L3吸收边的EXAFS拟合图,图3中(c)为反应前、反应后的催化剂中Pt L3吸收边的XANES图,图3中(d)为反应前、反应后的催化剂中Mo K吸收边的XANES图;
图4为实施例3制备的催化剂的扫描透射电子显微镜图;
图5为实施例4制备的催化剂的扫描透射电子显微镜图;
图6为实施例10制备的催化剂的扫描透射电子显微镜图,其中a图和b图分别为不同比例尺下的扫描透射电子显微镜图;
图7为实施例2制备的催化剂在多次重复催化反应中的催化效果图;
图8为实施例7及对比例3制备的催化剂在不同温度下的催化反应活性图;
图9为实施例2制备的催化剂的甲醇与水的摩尔比优化图;
图10为实施例7制备的催化剂的甲醇与水的摩尔比优化图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
制备载体α-MoC1-x
将1g三氧化钼研磨至小于60目,置于石英管中,在氨气反应气氛中程序升温至700℃,保持1小时,然后在氨气反应气氛中降至室温;其中,升温速度为10℃/分钟,氨气的通量为20mL/分钟;
将反应气氛切换成甲烷和氢气,程序升温至700℃,保持1小时,然后在甲烷和氢气的氛围中降至室温;其中,升温速度为10℃/分钟,甲烷和氢气的通量为20mL/分钟,甲烷和氢气的体积比为3∶7;
将反应气氛切换成钝化气氛,程序升温至700℃,保持1小时,然后在钝化气氛中降至室温;其中,升温速度为10℃/分钟,钝化气氛的通量为20mL/分钟,钝化气氛包含有氧气和氩气,且氧气体积占钝化气氛体积的0.5%。最终得到0.7gα-MoC1-x。通过元素分析测定,所制备的载体α-MoC1-x具体为α-MoC0.8
实施例2
Pt/α-MoC0.8负载型单原子分散催化剂的合成(负载量0.2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL去离子水,使载体全部处于液面下。将铂前体盐六水合氯铂酸1g溶解于10mL水中,制得Pt溶液;取25μL的Pt溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为3∶17),以10℃/分钟的速率升温至300℃,在300℃保持一个小时, 再以10℃/分钟的速率升至590℃,并保持120分钟。最终通过ICP(电感耦合等离子体光谱仪)确定负载量约为0.2%。
实施例3
Pt/α-MoC0.8负载型单原子分散催化剂的合成(负载量0.05%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL去离子水,使载体全部处于液面下。将铂前体盐六水合氯铂酸1g溶解于10mL水中,制得Pt溶液;取5μL Pt溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为3∶17),以10℃/分钟的速率升温至300℃,在300℃保持1个小时,再以10℃/分钟的速率升至590℃,并保持120分钟。最终通过ICP确定负载量约为0.05%。
实施例4
Pt/α-MoC0.8负载型单原子分散催化剂的合成(负载量2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL去离子水,使载体全部处于液面下。将铂前体盐六水合氯铂酸1g溶解于10mL水中,制得Pt溶液;取150μL的Pt溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为1∶9),以5℃/分钟的速率升温至200℃,在200℃保持2个小时,再以5℃/分钟的速率升至700℃,并保持60分钟。最终通过ICP确定负载量约为2%。
实施例5
Pd/α-MoC0.8催化剂的合成(负载量2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL去离子水,使载体全部处于液面下。将前体盐氯化钯1g溶解于10mL,2mol/L的盐酸中,制得Pd溶液;取8μL的Pd溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为9∶1),以10℃/分钟的速率升温至300℃,在300℃保持一个小时,再以10℃/分钟的速率升至590℃,并保持120分钟。最终通过ICP确定负载量约为2%。
实施例6
Ru/α-MoC0.8催化剂的合成(负载量2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL去离子水,使载体全部处于液面下。将前体盐氯化钌1g溶解于10mL水中,制得Ru溶液;取10μL的Ru溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在C2H6/H2的气氛中碳化(甲烷与氢气的体积比为3∶17),以10℃/分钟的速率升温至300℃,在300℃保持一个小时,再以10℃/分钟的速率升至490℃,并保持10小时。最终通过ICP确定负载量约为2%。
实施例7
Ni/α-MoC0.8催化剂的合成(负载量2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL去离子水,使载体全部处于液面下。将硝酸镍1g溶解于10mL水中,制得Ni溶液;取25μL的Ni溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为3∶17),以10℃/分钟的速率升温至300℃,在300℃保持一个小时,再以10℃ /分钟的速率升至590℃,并保持120分钟。最终通过ICP确定负载量约为2%。
实施例8
Cu/α-MoC0.8催化剂的合成(负载量2%)
实施例8与实施例7的区别在于将硝酸铜1g溶解于10mL水中,制得Cu溶液;取25μL的Cu溶液加入到装有载体α-MoC0.8的烧瓶中进行浸渍。最终通过ICP确定负载量约为2%。
实施例9
Co/α-MoC0.8催化剂的合成(负载量2%)
实施例8与实施例7的区别在于将硝酸钴1g溶解于10mL水中,制得Cu溶液;取25μL的Co溶液加入到装有载体α-MoC0.8的烧瓶中进行浸渍。最终通过ICP确定负载量约为2%。
实施例10
Pt/α-MoC0.8负载型单原子分散催化剂的合成(负载量10%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL去离子水,使载体全部处于液面下。将铂前体盐六水合氯铂酸1g溶解于10mL水中,,制得Pt溶液;取610μL的Pt溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为0.1∶9),以10℃/分钟的速率升温至200℃,在200℃保持10个小时,再以30℃/分钟的速率升至900℃,并保持10分钟。最终通过ICP确定负载量约为10%。
对比例1
Pt/α-MoC1-x催化剂的合成(七钼酸铵)(负载量2%)
取1g七钼酸铵溶于10mL去离子水中,搅拌至全部溶解,将铂前体盐六水合氯铂酸1g溶解于10mL水中,取氯铂酸水溶液加入钼酸铵溶液中,搅拌2小时至沉淀完全,在100℃油浴中蒸发至干,研磨后置于60℃烘箱中3小时,然后将催化剂前体置于马弗炉中煅烧,程序升温至500℃并保留120分钟。再将该催化剂前体在20%CH4/H2的气氛中碳化,程序升温至700℃并保留120分钟。在此对比例中制得的催化剂中,Pt是以分散的纳米粒子形式存在。
对比例2
Pt/Al2O3催化剂的合成(负载量2%)
将铂前体盐六水合氯铂酸1g溶解于10mL水中,取650μL铂前体盐再加入150μL水混合至800μL后加入至0.8g Al2O3(等体积浸渍体积800μL),搅拌至干再置于60℃烘箱中3小时,然后将催化剂前体置于马弗炉中煅烧,程序升温至500℃并保留120分钟。再将该催化剂前体前体在H2的气氛中还原,程序升温至500℃,在500℃保留120分钟。
对比例3
Ni/Mo2C催化剂的合成(负载量2%)
取1g七钼酸铵溶于10mL去离子水中,搅拌至全部溶解,将前体盐六水合硝酸镍1g溶解于10mL水中,取25μL的硝酸镍水溶液加入七钼酸铵溶液中,搅拌2小时至沉淀完全,在100℃油浴中蒸发至干,研磨后置于60℃烘箱中3小时,然后将催化剂前体置于马弗炉中煅烧,升温程序为以10℃/分钟至500℃并保留120分钟。再将该催化剂前体在20%CH4/H2的气氛中碳化,以5℃/分钟升温至300℃,再以1℃/分钟升至700℃并保留120分钟。其合成方法参见文献Ma,Y.,et al.,International Journal of Hydrogen Energy,2014.39(1):p.258-266。
对比例4
Ni/Al2O3催化剂的合成(负载量2%)
将六水合硝酸镍1g溶解于10mL水中,取100μL的硝酸镍加入至0.8g Al2O3中,搅拌至干再置于60℃烘箱中3小时,然后将催化剂前体置于马弗炉中煅烧,升温程序为以10℃/分钟升至500℃并保留120分钟。再将该催化剂前体在H2的气氛中还原,以5℃/分钟升温至500℃,在500℃保留120分钟。
对比例5
按照申请号为201510053793.8,发明名称为“Pt/α-MoC1-x负载型催化剂及其合成与应用”的中国专利申请中实施例1的记载,制备出Pt/α-MoC1-x负载型催化剂,其中,Pt以层状形式分布于α-MoC1-x载体上。
表征与测试
XRD表征
将实施例1制备的载体α-MoC0.8及实施例2、5、6、7、8、9制备的催化剂进行XRD表征以观察其相结构;XRD样品制备方法如下:将上述碳化的催化剂用0.5%O2/Ar的钝化气钝化8小时,研磨后即可用于XRD测试。结果如图1所示,从图1中可以看出载体α-MoC0.8均为α相,而且实施例2、5、6、7、8、9中的金属也不是以分散的纳米粒子形式存在。
实施例2制备的Pt/α-MoC0.8负载型单原子分散催化剂中Pt元素单原子证明
透射电子显微镜表征
透射电子显微镜样品制备方法如下:分别将实施例2所获得的催化剂及进行甲醇水相制氢反应后的实施例2催化剂置于手套箱中,研磨后,将固体导入除氧的无水乙醇中分散,取数滴分散液滴加在透射电子显微镜用超薄碳膜上,待风干后送入透射电子显微镜进行测试,结果如图2A及2B所示,其中,实施例2所获得的催化剂反应前如图2A所示,反应后如图2B所示。从图2A 及图2B中可以看出,无论是反应前还是反应后,Pt原子均以单原子形式分布于α-MoC0.8载体上(图中圆圈里的点状物即为Pt原子),说明实施例2制备的催化剂稳定性好,经过催化反应后也不会团聚。
为了进一步证明实施例2所制备的催化剂中Pt原素均以单原子形式分布于α-MoC0.8载体上,分别将实施例2所获得的催化剂及进行甲醇水相制氢反应后的实施例2催化剂进行X-射线吸收精细结构谱(XAFS)表征,获得其X-射线吸收精细结构谱,并对扩展边进行解析及拟合(EXAFS)。XAFS是用于描绘体相结构强有力的工具,将X射线能量调整至与所研究样品的元素内一致,然后监测吸收的X射线数量与其能量的函数关系。采用足够的精确度,光谱会展现出小的振荡,那是局部环境对目标元素基本吸收概率影响的结果。对扩展边(EXAFS)进行解析和拟合,能得到吸收原子与邻近原子的间距、这些原子的数量和类型以及吸收元素的氧化状态,这些都是确定局部结构的参数。
结果如图3及表1所示,其中,图3中(a)为反应前的催化剂中Pt L3吸收边的EXAFS拟合图,图3中(b)为反应后的催化剂中Pt L3吸收边的EXAFS拟合图,图3中(c)为反应前、反应后的催化剂中Pt L3吸收边的XANS图,图3(d)为反应前、反应后的催化剂中Mo吸收K边的XANS图。
表1.反应前反应后催化剂的Pt L3吸收边EXAFS数据拟合
Figure PCTCN2017089332-appb-000001
从表1中可以看到Pt-Pt的配位数(C.N.Pt-Pt)为0,即在整个催化剂结构中Pt的周围0.3nm的空间范围内没有另一个Pt原子的存在,由此从微观和宏观上证明了实施例2所制备的催化剂中Pt是单原子分散的。
实施例3制备的0.05%Pt/α-MoC0.8负载型单原子分散催化剂中Pt单原子证明
对实施例3制备的催化剂进行透射电子显微镜表征,结果如图4所示;从图4中可以看出,Pt原子均以单原子形式分布于α-MoC0.8载体上。
实施例4制备的2%Pt/α-MoC0.8负载型单原子分散催化剂中Pt单原子证明
对实施例4制备的催化剂进行透射电子显微镜表征,结果如图5及表2所示;从图5中可以看出,Pt原子以单原子的形式均匀地存在于α-MoC0.8载体上(如圆圈内所示),几乎看不到Pt粒子的存在,结合EXAFS拟合分析,Pt单原子的量约负载于载体上的总Pt质量的90%。
表2 2%Pt/α-MoC0.8负载型单原子分散催化剂的Pt L3吸收边EXAFS数据拟合
Figure PCTCN2017089332-appb-000002
实施例10制备的10%Pt/α-MoC0.8负载型单原子分散催化剂中Pt单原子证明
对实施例10制备的催化剂进行透射电子显微镜表征,结果如图6及表3所示;从图6中的a图可以看出,负载量达到10%时,催化剂上出现了较多的Pt颗粒,从图6中的b图可以看出,是催化剂上还存着一部分的Pt单原子。同样结合XAFS拟合数据,Pt-Mo的配位数为2.7,这主要是由Pt单原子与载体碳化钼相互作用贡献的,Pt-Pt的配位数为5.2,这主要是由Pt颗粒贡献的。Pt单原子的量约负载于载体上的总Pt质量的10%。
表3 10%Pt/α-MoC0.8负载型单原子分散催化剂的Pt L3边EXAFS数据拟合
Figure PCTCN2017089332-appb-000003
醇类水相重整制氢中催化性能测试
将实施例2-9及对比例1-5制备的负载型催化剂用于甲醇水相重整反应,反应条件为:封闭体系反应,在反应体系中加入一定比例的甲醇和水(按催化剂最优的比例进行反应),在2MPa N2(10%Ar为内标)保护气下反应,降至室温后用气相色谱对气相产物进行检测。各催化剂的反应性能如下面的表4所示。
其中,实施例2-6,对比例1-2及对比例5活性评价条件:n(甲醇)∶n(水)=1∶1,反应温度190℃,反应1小时,活性用ATOF(Aver TOF;平均转换频率:每小时每摩尔金属上转化的反应物摩尔数)来表示。
实施例7-9,对比例3-4活性评价条件:n(甲醇)∶n(水)=1∶1,反应温度240℃,反应3小时,活性用μmol/g/s来表示。
表4.催化剂的甲醇水相重整产氢反应性能比较
Figure PCTCN2017089332-appb-000004
Figure PCTCN2017089332-appb-000005
从表4中可以看出,本申请各实施例所制备的催化剂的催化活性明显高于对比例中所制备的催化剂。同时,本申请催化剂不仅产氢速率相当高并且CO选择性很低,远远低于高温氢燃料电池对CO的耐受,克服了氧化物载体负载的Pt催化剂催化活性低,CO选择性高的弱点;尤其是实施例2、3制备的催化剂,其TOF活性高达惊人的22557h-1和23150h-1;另外,应用实施例2的催化剂重复进行催化反应(反应条件与表4中相同),每次反应结束后通过气相色谱检测反应釜中气体的组成,通过内标的含量来确定各个组分的物质的量,最后计算得到反应速率,结果如图7所示,从图7中可以看出本申请制备的催化剂具有较好的稳定性,能够重复多次催化反应。
为考察本申请提供的Ni\Cu\Co催化剂的最佳反应温度,具体地,以实施例7及对比例3制备的催化剂为例,在n(甲醇)∶n(水)=1∶1、反应3小时的条件下,在不同温度下进行催化反应,结果如图8所示,从图8中可以看出,随着温度的升高,实施例7制备的Ni/α-MoC0.8在这个反应中活性增加的很显著,在240℃时活性最高。
为考察本申请提供的催化剂的最佳醇水比,以实施例2及实施例7为例进行了醇水比优化试验,具体地,实施例2的反应温度为190℃,反应时间1小时,实施例7的反应温度为240℃,反应3小时。结果如图9及图10所示, 可以看出,实施例2及实施例7的最佳醇水比均为n(甲醇)∶n(水)=1∶1。
本申请所制备的各催化剂,不仅对甲醇的催化效果显著,对其它的醇类也有很好的催化性能。如表5所示,为利用本申请的实施例对乙醇、乙二醇、丙三醇的水相重整制氢结果。
具体地,将实施例2及实施例7制备的负载型催化剂用于水相醇类重整反应,反应条件为:封闭体系反应,在反应体系中加入一定比例的(乙醇、乙二醇、丙三醇)醇和水(按催化剂最优的比例进行反应),在2MPa N2(10%Ar为内标)保护气下反应,降至室温后用气相色谱对气相产物进行检测。各催化剂的反应性能如下面的表5所示。
其中,实施例2的活性评价条件:n(醇)∶n(水)=1∶1,反应温度210℃,反应1小时,活性用ATOF来表示。
实施例7活性评价条件:n(醇)∶n(水)=1∶1,反应温度210℃,反应3小时,活性用μmol/g/s来表示。
表5.实施例2、实施例7的催化剂催化水相醇类重整产氢的反应性能
Figure PCTCN2017089332-appb-000006
从表5可以看出,本申请提供的催化剂除甲醇外,对其它的醇类也有着优异的催化性能。
综上所述,由本申请提供的金属/α-MoC1-x负载型单原子分散催化剂的制备方法制备出的催化剂,金属以单原子形式均匀地分散于载体α-MoC1-x上,能够更有效地提高催化剂表面“-O-H”的覆盖度,“-O-H”有利于金属催化“-C-H”断裂从而促进醇类重整反应发生并抑制分解反应。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (16)

  1. 一种金属/α-MoC1-x负载型单原子分散催化剂,其特征在于,以α-MoC1-x为载体,以金属为活性组分,且1-100%的所述金属是以单原子形式分散于所述载体α-MoC1-x上的。
  2. 如权利要求1所述的催化剂,其特征在于,10-100%的金属,优选90-100%的金属是以单原子形式分散于所述载体α-MoC1-x上的。
  3. 如权利要求1所述的催化剂,其特征在于,基于所述载体的总质量,所述金属负载量为0.01-50质量%,优选为0.01-10质量%,更优选为0.01-2质量%,最优选为0.05-0.2质量%。
  4. 如权利要求1所述的催化剂,其特征在于,所述载体α-MoC1-x中,x=0-0.9,优选为0-0.5;优选地,载体α-MoC1-x的尺寸为1nm-30nm,优选地,载体α-MoC1-x的比表面积在5-250m2/g之间。
  5. 如权利要求1-5中任一项所述的催化剂,其特征在于,所述金属为选自于铂、钌、钯、镍、铜及钴中的至少一种。
  6. 如权利要求1所述的金属/α-MoC1-x负载型单原子分散催化剂的制备方法,其特征在于,包括以下步骤:
    1)合成载体α-MoC1-x
    2)将金属前体盐溶解,得到金属前体盐溶液;
    3)将步骤2)中的金属前体盐溶液与步骤1)中的载体α-MoC1-x混合并干燥,其中,金属前体盐和载体α-MoC1-x的用量比例关系为:以金属前体盐中的金属元素质量计,金属前体盐中的金属元素质量为载体α-MoC1-x质量的0.01%-55%;
    4)将步骤3)所得的固体进行冷冻干燥,得到催化剂前体;
    5)将所得的催化剂前体在同时含有碳源与氢源的碳化气氛围中碳化,即得到金属/α-MoC1-x负载型单原子分散催化剂。
  7. 如权利要求6所述的方法,其特征在于,所述金属前体盐中的金属选 自于铂、钌、钯、镍、铜及钴中的至少一种。
  8. 如权利要求6或7所述的方法,其特征在于,所述金属前体盐为水溶性盐。
  9. 如权利要求8所述的方法,其特征在于,所述金属前体盐选自于氯亚铂酸钾、氯亚铂酸钠、乙酰丙酮铂、氯铂酸、氯化钯、醋酸钯及镍、铜、钴的氯化物、硝酸盐、乙酰丙酮化合物中的至少一种。
  10. 如权利要求6所述的方法,其特征在于,金属前体盐中的金属质量为载体α-MoC1-x质量的0.01%-12%,优选为0.06%-0.25%。
  11. 如权利要求6所述的方法,其特征在于,步骤5)中,碳源选自于烷烃、烯烃及醇中的至少一种,优选为甲烷或乙烷;氢源为氢气;碳源与氢源的体积比为0.1∶9-9∶1,碳化程序升温的速度为1-50℃/分钟,优选为1-30℃/分钟,更优选为1-10℃/分钟;碳化的最高温度为490-900℃。
  12. 如权利要求11所述的方法,其特征在于,在步骤5)的碳化过程中,在200-300℃保持0.1-50小时,优选为0.5-3小时,更优选为1-2小时;然后在碳化的最高温度下保持0.1-100小时,优选为0.5-3小时,更优选为1-2小时。
  13. 如权利要求1-5中任一项所述的金属/α-MoC1-x负载型单原子分散催化剂在醇类水相重整制氢反应中的应用。
  14. 如权利要求13所述的应用,其特征在于,所述醇类包括:甲醇、乙醇、甘油及乙二醇,优选为甲醇。
  15. 如权利要求13或14所述的应用,其特征在于,醇类水相重整制氢反应的反应温度为50-280℃,优选为190℃。
  16. 如权利要求13所述的应用,其特征在于,醇类水相重整制氢反应中醇类与水的比例为从0.1∶9到10∶1。
PCT/CN2017/089332 2016-06-23 2017-06-21 金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用 WO2017219977A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018566830A JP6730696B2 (ja) 2016-06-23 2017-06-21 金属/α−MoC1−x担持型単原子分散触媒、その合成方法および使用
EP17814715.3A EP3482826A4 (en) 2016-06-23 2017-06-21 MONOATOMIC DISPERSION CATALYST OF THE CHARGED METAL / A-MOC1-X TYPE, METHOD OF SYNTHESIS, AND APPLICATIONS
US16/311,160 US11141716B2 (en) 2016-06-23 2017-06-21 Metal/alpha-MoC1-X load-type single-atomic dispersion catalyst, synthesis method and applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610462928.0A CN107008479B (zh) 2016-06-23 2016-06-23 金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用
CN201610462928.0 2016-06-23

Publications (1)

Publication Number Publication Date
WO2017219977A1 true WO2017219977A1 (zh) 2017-12-28

Family

ID=59439432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089332 WO2017219977A1 (zh) 2016-06-23 2017-06-21 金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用

Country Status (5)

Country Link
US (1) US11141716B2 (zh)
EP (1) EP3482826A4 (zh)
JP (1) JP6730696B2 (zh)
CN (1) CN107008479B (zh)
WO (1) WO2017219977A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110420657A (zh) * 2019-09-05 2019-11-08 西南石油大学 一种镍铈/石墨相氮化碳复合型催化剂及其制备方法与应用

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107626294B (zh) * 2017-10-23 2020-04-17 清华大学 一种金属单原子位点催化剂的制备方法
CN108325546A (zh) * 2018-02-07 2018-07-27 广东工业大学 一种双功能电化学催化剂
GB201811606D0 (en) * 2018-07-16 2018-08-29 Univ College Cardiff Consultants Ltd Gold catalyst
CN111036253A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 加氢催化剂及其制备方法以及甘油加氢方法
CN111250121B (zh) * 2018-11-30 2021-07-16 中国科学院大连化学物理研究所 超高分散的高负载量Pd/α-MoC负载型催化剂合成与应用
CN109939710B (zh) * 2019-04-09 2022-02-22 浙江工业大学 一种Pd再分散的Pd/MCx负载型催化剂及其制备方法和应用
CN109954507B (zh) * 2019-04-16 2021-09-10 宁夏大学 Ni-Rh/αβ-MoXC复合催化剂及制备和应用
EP3983124A4 (en) * 2019-06-14 2022-11-23 University of Maryland, College Park SYSTEMS AND METHODS FOR HIGH TEMPERATURE SYNTHESIS OF SINGLE-ATOM AND MULTI-ATOM DISPERSIONS
CN110694616B (zh) * 2019-10-28 2020-08-11 湖南大学 一种普适性制备负载型金属单原子/金属纳米颗粒的方法
CN111048793B (zh) * 2019-12-27 2021-06-22 苏州擎动动力科技有限公司 铂基八面体催化剂的制备方法
CN111389437B (zh) * 2020-04-10 2021-06-11 天津大学 碳化钼负载单原子加氢催化剂、其制备方法及其在炔烃半加氢中的应用
CN113527062B (zh) * 2020-04-14 2023-10-13 中国石油化工股份有限公司 由甘油制备1,3-丙二醇的方法及其系统
CN113527061B (zh) * 2020-04-14 2023-10-10 中国石油化工股份有限公司 甘油加氢系统和方法
CN114522681B (zh) * 2020-11-23 2023-10-13 中国科学院大连化学物理研究所 一种提高贵金属孤原子在氢气气氛中稳定性的方法
CN114534754B (zh) * 2020-11-25 2023-06-27 中国科学院大连化学物理研究所 一种α-MoC1-x负载Pt-Cu双金属水煤气变换催化剂制备方法及其应用
WO2022121574A1 (zh) * 2020-12-11 2022-06-16 北京光合氢能科技有限公司 通过能量辐射产生氢分子的方法
CN114682283B (zh) * 2020-12-31 2023-06-16 北京单原子催化科技有限公司 碳氮包覆负载型金属单原子催化剂、制备方法及其应用
CN114713254B (zh) * 2021-01-04 2023-01-10 北京大学 一种金属/α-MoC负载型催化剂的制备方法、产品和用途
CN113231090B (zh) * 2021-05-08 2022-08-02 广东工业大学 一种Cu-Mo2C催化剂及其制备方法和应用
CN114768818B (zh) * 2022-03-10 2023-08-15 天津大学 水热氧解耦催化剂、制备方法和应用
CN114984973B (zh) * 2022-06-24 2023-06-27 北京化工大学 金属氮/氧化物负载过渡金属单原子催化剂及其制备方法和应用
CN115739143A (zh) * 2022-11-30 2023-03-07 中国科学院大连化学物理研究所 一种Pt/α-MoC-CeO2催化剂及其制备方法和在甲醇水蒸汽制氢中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110053039A1 (en) * 2009-09-01 2011-03-03 Samsung Electronics Co., Ltd. Electrode catalyst, and membrane electrode assembly and fuel cell including the electrode catalyst
CN104707636A (zh) * 2015-02-02 2015-06-17 北京大学 Pt/α-MoC1-x负载型催化剂及其合成与应用
CN104860806A (zh) * 2014-02-21 2015-08-26 中国科学院大连化学物理研究所 碳化钼纳米带在苯甲醇脱氢制苯甲醛反应中的应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576027B2 (en) * 1999-01-12 2009-08-18 Hyperion Catalysis International, Inc. Methods of making carbide and oxycarbide containing catalysts
US20020172641A1 (en) 2001-03-26 2002-11-21 N.V. Union Miniere S.A. Method of using molybdenum carbide catalyst
JP2005138006A (ja) 2003-11-05 2005-06-02 Toyota Motor Corp 触媒物質、それを用いた燃料電池用電極触媒、及び水性ガスシフト触媒
US8350098B2 (en) * 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
CZ2011540A3 (cs) * 2011-08-30 2012-10-31 Vysoká Škola Bánská -Technická Univerzita Ostrava Zpusob prípravy vláknitých a lamelárních mikrostruktur a nanostruktur rízeným vakuovým vymrazováním kapalinové disperze nanocástic
CN102728849B (zh) * 2012-05-08 2013-09-18 清华大学 一种自支撑的、单原子层厚的贵金属纳米片及其制备方法
CN103566935A (zh) * 2013-01-08 2014-02-12 湖南大学 一种具有高催化性能单原子分散催化剂的制备方法
US9694351B1 (en) * 2014-02-26 2017-07-04 Stc.Unm Highly dispersed and durable heterogeneous catalysts
US9579636B1 (en) * 2014-02-26 2017-02-28 Stc.Unm Method for synthesis of functional ceramic materials
CN105540588B (zh) 2015-12-08 2017-10-27 大连理工大学 α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110053039A1 (en) * 2009-09-01 2011-03-03 Samsung Electronics Co., Ltd. Electrode catalyst, and membrane electrode assembly and fuel cell including the electrode catalyst
CN104860806A (zh) * 2014-02-21 2015-08-26 中国科学院大连化学物理研究所 碳化钼纳米带在苯甲醇脱氢制苯甲醛反应中的应用
CN104707636A (zh) * 2015-02-02 2015-06-17 北京大学 Pt/α-MoC1-x负载型催化剂及其合成与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIOR, E. ET AL.: "Electrocatalysis of Oxygen Reduction with Platinum Supported on Molybdenum Carbide-Carbon Composite", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 720 -721, 7 March 2014 (2014-03-07), pages 34 - 40, XP029025805 *
MA, YUFEI ET AL.: "Low-Temperature Steam Reforming of Methanol to Produce Hydrogen over Various Metal-Doped Molybdenum Carbide Catalysts", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 39, no. 1, 6 November 2013 (2013-11-06), pages 258 - 266, XP028800590 *
See also references of EP3482826A4 *
YAN, ZAOXUE ET AL.: "MoC-Graphite Composite as a Pt Electrocatalyst Support for Highly Active Methanol Oxidation and Oxygen Reduction Reaction", JOURNAL OF MATERIALS CHEMISTRY A, vol. 2, no. 11, 17 December 2013 (2013-12-17), pages 4014 - 4022, XP055562481 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110420657A (zh) * 2019-09-05 2019-11-08 西南石油大学 一种镍铈/石墨相氮化碳复合型催化剂及其制备方法与应用

Also Published As

Publication number Publication date
EP3482826A1 (en) 2019-05-15
CN107008479A (zh) 2017-08-04
CN107008479B (zh) 2019-10-18
JP2019518600A (ja) 2019-07-04
US20190193060A1 (en) 2019-06-27
JP6730696B2 (ja) 2020-07-29
US11141716B2 (en) 2021-10-12
EP3482826A4 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2017219977A1 (zh) 金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用
WO2016124161A1 (zh) Pt/α-MoC1-x负载型催化剂及其合成与应用
Liu et al. Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming
Wu et al. Ultrafine Pt nanoparticles and amorphous nickel supported on 3D mesoporous carbon derived from Cu-metal–organic framework for efficient methanol oxidation and nitrophenol reduction
Li et al. Porphyrin framework-derived N-doped porous carbon-confined Ru for NH 3 BH 3 methanolysis: the more pyridinic-N, the better
ES2679398T3 (es) Carbono grafitizado de alta área superficial y procedimientos para obtener el mismo
El Doukkali et al. Deactivation study of the Pt and/or Ni-based γ-Al2O3 catalysts used in the aqueous phase reforming of glycerol for H2 production
Rodrigues et al. Ni supported Ce0. 9Sm0. 1O2-δ nanowires: an efficient catalyst for ethanol steam reforming for hydrogen production
Ruiz-Camacho et al. Pt supported on mesoporous material for methanol and ethanol oxidation in alkaline medium
Pamphile-Adrián et al. Selective hydrogenolysis of glycerol over Ir-Ni bimetallic catalysts
US20240066501A1 (en) Systems and methods for processing ammonia
Zhao et al. Preparation of Pt/CeO2/HCSs anode electrocatalysts for direct methanol fuel cells
CA2883503A1 (en) Catalyst for producing hydrogen and method for producing hydrogen
CN110479280B (zh) 一种CO低温选择性甲烷化Ni-ZrO2/NiAl2O4催化剂及其制备方法和应用
WO2020042526A1 (zh) 复合催化剂及其制备方法、应用
WO2022261488A1 (en) Systems and methods for processing ammonia
Yuan et al. Ultrafine platinum nanoparticles modified on cotton derived carbon fibers as a highly efficient catalyst for hydrogen evolution from ammonia borane
Zhou et al. Structured Ni catalysts on porous anodic alumina membranes for methane dry reforming: NiAl 2 O 4 formation and characterization
Zheng et al. A highly active and hydrothermal-resistant Cu/ZnO@ NC catalyst for aqueous phase reforming of methanol to hydrogen
Akbayrak Decomposition of formic acid using tungsten (VI) oxide supported AgPd nanoparticles
JP5531212B2 (ja) 低温酸化触媒とその製造方法およびその触媒を用いた酸化方法
Li et al. Surface hydroxylation induced by alkaline-earth metal doping in NiO nanocrystals and its application in achieving a wide temperature operation window for preferential CO oxidation
WO2010060736A1 (en) Non-noble metals based catalysts for ammonia decomposition and their preparation
CN109921032A (zh) 一种非贵金属氮掺杂石墨烯电催化剂的制备及应用
CN105944730A (zh) 介孔限域的镍基甲烷重整催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017814715

Country of ref document: EP

Effective date: 20190123