WO2017219862A1 - 双面显示器、显示装置以及电子设备 - Google Patents

双面显示器、显示装置以及电子设备 Download PDF

Info

Publication number
WO2017219862A1
WO2017219862A1 PCT/CN2017/087412 CN2017087412W WO2017219862A1 WO 2017219862 A1 WO2017219862 A1 WO 2017219862A1 CN 2017087412 W CN2017087412 W CN 2017087412W WO 2017219862 A1 WO2017219862 A1 WO 2017219862A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
common electrode
pixel electrode
crystal polymer
polymer
Prior art date
Application number
PCT/CN2017/087412
Other languages
English (en)
French (fr)
Inventor
程鸿飞
李鑫
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/736,982 priority Critical patent/US20180373075A1/en
Publication of WO2017219862A1 publication Critical patent/WO2017219862A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/3473Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on light coupled out of a light guide, e.g. due to scattering, by contracting the light guide with external means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133342Constructional arrangements; Manufacturing methods for double-sided displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13347Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals working in reverse mode, i.e. clear in the off-state and scattering in the on-state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133773Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers the alignment material or treatment being different for the two opposite substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a double-sided display, a display device, and an electronic device.
  • the liquid crystal display generally includes an upper substrate and a lower substrate, a liquid crystal layer between the upper substrate and the lower substrate, and a pixel electrode and a common electrode for generating an electric field on both sides of the liquid crystal layer, an upper polarizer located outside the upper substrate and located under a lower polarizer on the outside of the substrate, and a backlight.
  • Embodiments of the present invention provide a double-sided display, a display device, and an electronic device for improving transmittance and light efficiency of a display.
  • a double-sided display provided by the embodiment of the present invention includes two liquid crystal display panels which are stacked and disposed opposite to each other on the light-emitting side, and a side-entry backlight for providing a light source for each of the liquid crystal display panels, each of the liquid crystals
  • the display panel includes:
  • liquid crystal polymer between the first substrate and the second substrate, and pixel electrodes and a common electrode insulated from each other; wherein the liquid crystal polymer includes an extension along Long chain of polymer aligned in the direction;
  • a long axis direction of the liquid crystal molecules in the liquid crystal polymer is consistent with an extending direction of the long chain of the polymer;
  • the pixel electrode forms an electric field with the common electrode, and the liquid crystal polymer is in a scattering state under the action of the electric field to make the backlight
  • At least part of the light in the source is emitted from the first substrate side after being scattered by the liquid crystal polymer, wherein the side where the first substrate is located is the light exiting side of the liquid crystal display panel.
  • the pixel electrode and the common electrode are respectively located on two sides of the liquid crystal polymer;
  • the liquid crystal in the liquid crystal polymer is a positive liquid crystal, and a long axis direction of the liquid crystal molecules in the liquid crystal polymer is perpendicular to a cell thickness direction of the liquid crystal display panel when the pixel electrode and the common electrode are in a closed state; or
  • the liquid crystal in the liquid crystal polymer is a negative liquid crystal, and a long axis direction of the liquid crystal molecules in the liquid crystal polymer is parallel to a cell thickness direction of the liquid crystal display panel when the pixel electrode and the common electrode are in a closed state.
  • the pixel electrode and the common electrode are respectively located on two sides of the liquid crystal polymer;
  • the common electrode is located on a side of the first substrate facing the liquid crystal polymer.
  • the pixel electrode and the common electrode are both located on the same side of the liquid crystal polymer;
  • the liquid crystal in the liquid crystal polymer is a positive liquid crystal, and a long axis direction of the liquid crystal molecules in the liquid crystal polymer is parallel to a cell thickness direction of the liquid crystal display panel when the pixel electrode and the common electrode are in a closed state; or
  • the liquid crystal in the liquid crystal polymer is a negative liquid crystal, and a long axis direction of the liquid crystal molecules in the liquid crystal polymer is perpendicular to a cell thickness direction of the liquid crystal display panel when the pixel electrode and the common electrode are in a closed state.
  • the pixel electrode and the common electrode are both located on the same side of the liquid crystal polymer, the pixel electrode And the common electrode is in the same layer and spaced apart.
  • the liquid crystal display panel when the pixel electrode and the common electrode are both located on the same side of the liquid crystal polymer, the pixel electrode And the common electrode is disposed in a different layer, and the liquid crystal display panel further includes an insulating layer between the pixel electrode and the common electrode.
  • the pixel electrode and the common electrode are both located on the second substrate One side of the liquid crystal polymer, or the pixel electrode and the common electrode are located on a side of the first substrate facing the liquid crystal polymer.
  • the liquid crystal display when the pixel electrode and the common electrode are both located on the same side of the liquid crystal polymer in the liquid crystal display panel, the liquid crystal display The panel further includes: an auxiliary electrode between the first substrate and the second substrate, and the auxiliary electrode and the pixel electrode are respectively located on two sides of the liquid crystal polymer.
  • the second substrates of the two liquid crystal display panels are the same substrate.
  • the liquid crystal polymer is formed by a mixture of a liquid crystal, a polymerizable liquid crystal monomer, and a photoinitiator under ultraviolet light irradiation.
  • an embodiment of the present invention further provides a display device, including any of the above-mentioned double-sided displays provided by the embodiments of the present invention.
  • Embodiments of the present invention also provide an electronic device including the above display device.
  • the liquid crystal polymer can be formed by ultraviolet light irradiation from a mixture of liquid crystal, a polymerizable liquid crystal monomer, and a photoinitiator, and the mixture is irradiated with ultraviolet light,
  • the polymerizable liquid crystal monomer is polymerized, and the long-chain direction of the polymer substantially coincides with the long-axis direction of the liquid crystal molecules. Therefore, when the pixel electrode and the common electrode are in an energized state, the pixel electrode forms an electric field with the common electrode, and the liquid crystal molecules in the liquid crystal polymer are deflected by the electric field, but the liquid crystal polymer is scattered due to the action of the polymer network.
  • the scattering state destroys the total reflection condition of the light of the backlight between the two substrates, so that at least part of the light in the backlight is scattered by the liquid crystal polymer and then emitted from the side of the first substrate.
  • the pixel electrode and the common electrode are in a closed state, the long-axis direction of the liquid crystal molecules in the liquid crystal polymer is consistent with the extending direction of the long chain of the polymer, and the liquid crystal polymer is in a transparent state. Therefore, the liquid crystal display panel can be rotated or restored by the electric field on and off states to achieve the function of the liquid crystal display.
  • the transmittance is up to 90%, so the double composed of the two liquid crystal display panels
  • the surface display has higher transparency than the existing double-sided display.
  • FIG. 1 is a schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 2 is a second schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 3 is a third schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 4 is a fourth structural schematic diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 6 is a sixth structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a double-sided display according to an embodiment of the present invention.
  • a two-sided display provided by the embodiment of the present invention includes two liquid crystal display panels 10 which are stacked and disposed opposite each other on the light-emitting side, and are provided for providing the light source side for each liquid crystal display panel 10.
  • each liquid crystal display panel 10 includes:
  • first substrate 11 and a second substrate 12 disposed oppositely, a liquid crystal polymer 13 between the first substrate 11 and the second substrate 12, and a pixel electrode 14 and a common electrode 15 insulated from each other;
  • the liquid crystal polymer 13 includes polymer long chains 132 arranged along the extending direction;
  • the pixel electrode 14 and the common electrode 15 When the pixel electrode 14 and the common electrode 15 are in a closed state, the long-axis direction of the liquid crystal molecules 131 in the liquid crystal polymer 13 coincides with the extending direction of the polymer long chain 132; when the pixel electrode and the common electrode are in an energized state, the pixel The electrode 14 forms an electric field with the common electrode 15 , and the liquid crystal polymer 13 is in a scattering state under the action of the electric field, so that at least part of the light in the backlight 20 is scattered by the liquid crystal polymer 13 and then emitted from the side of the first substrate 11 , wherein The side where the substrate 11 is located is the light exiting side of the liquid crystal display panel 10. In this manner, in the liquid crystal display panel 10, the sub-region corresponding to each of the pixel electrodes 14 can be independently switched between the bright state and the dark state, thereby realizing dynamic/static display.
  • the liquid crystal polymer can be formed by a mixture of a liquid crystal, a polymerizable liquid crystal monomer and a photoinitiator under ultraviolet light irradiation, the mixture is After the ultraviolet light is irradiated, the polymerizable liquid crystal monomer is polymerized, and the long-chain direction of the polymer substantially coincides with the long-axis direction of the liquid crystal molecules.
  • the pixel electrode and the common electrode when the pixel electrode and the common electrode are in an energized state, the pixel electrode forms an electric field with the common electrode, and the liquid crystal molecules in the liquid crystal polymer are deflected by the electric field, but the liquid crystal polymer is scattered due to the action of the polymer network.
  • the scattering state destroys the total reflection condition of the light of the backlight between the two substrates, so that at least part of the light in the backlight is scattered by the liquid crystal polymer and then emitted from the side of the first substrate.
  • the pixel electrode and the common electrode are in a closed state, the long-axis direction of the liquid crystal molecules in the liquid crystal polymer is consistent with the extending direction of the long chain of the polymer, and the liquid crystal polymer is in a transparent state.
  • the liquid crystal display panel can be rotated or restored by the electric field on and off states to achieve the function of the liquid crystal display.
  • the pixel electrode and the common electrode are in a closed state, since the arrangement of the two polarizers is omitted compared with the conventional liquid crystal display panel, the transmittance is up to 90%, so the double composed of the two liquid crystal display panels
  • the surface display has higher transparency than the existing double-sided display.
  • the liquid crystal polymer is formed by a mixture of a liquid crystal, a polymerizable liquid crystal monomer, and a photoinitiator under ultraviolet light irradiation.
  • a photoinitiator also known as a photosensitizer or a photocuring agent, is a type that can be in the ultraviolet region (250-420 nm) or the visible region (400 ⁇ ). 800 nm) absorbs energy of a certain wavelength, generates radicals, cations, etc., thereby initiating a compound in which the monomer is polymerized and crosslinked and solidified.
  • a suitable photoinitiator may be a material such as methyl benzoate (MBF) or 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO), which is not limited herein.
  • the content of the polymerizable liquid crystal monomer is generally controlled to be 1% to 5%.
  • the amount of photoinitiator is generally controlled between 0.5% and 3%.
  • the liquid crystal may be a positive liquid crystal and a negative liquid crystal.
  • the dielectric constant ⁇ ⁇ is greater than 0, and the liquid crystal is positive.
  • the dielectric constant ⁇ ⁇ is less than 0, and the liquid crystal is negative.
  • both the positive liquid crystal and the negative liquid crystal are rotated by the influence of the electric field.
  • the positive liquid crystal molecules are subjected to an electric field
  • the long axis directions of the liquid crystal molecules are aligned in the direction of the electric field.
  • the negative liquid crystal molecules are subjected to an electric field, the short-axis directions of the liquid crystal molecules are aligned in the direction of the electric field.
  • the pixel electrode and the common electrode may be respectively located on two sides of the liquid crystal polymer.
  • the pixel electrode and the common electrode may also be located on the same side of the liquid crystal polymerization, which is not limited herein.
  • the pixel electrode and the common electrode are respectively located on two sides of the liquid crystal polymer; or in the two liquid crystal display panels, the pixel electrode and The common electrode is on the same side of the liquid crystal polymer.
  • the pixel electrode and the common electrode are respectively located on both sides of the liquid crystal polymer, and in the other liquid crystal display panel, the pixel electrode and the common electrode are located on the same side of the liquid crystal polymer.
  • the pixel electrode and the common electrode when the pixel electrode and the common electrode are on the same side of the liquid crystal polymer in the liquid crystal display panel, the pixel electrode and the common electrode may both be located on the first substrate facing the liquid crystal polymer. One side.
  • the pixel electrode and the common electrode may also be located on the side of the second substrate facing the liquid crystal polymer, which is not limited herein.
  • the pixel electrode and the common electrode when the pixel electrode and the common electrode are respectively located on the same side of the liquid crystal polymer in the liquid crystal display panel, the pixel electrode may be located between the common electrode and the liquid crystal polymer, of course.
  • the common electrode may be located between the pixel electrode and the liquid crystal polymer, which is not limited herein.
  • the pixel electrode 14 and the common electrode 15 when the pixel electrode 14 and the common electrode 15 are respectively located on both sides of the liquid crystal polymer 13, when the pixel electrode 14 and the common electrode 15 are in an energized state, the pixel electrode 14 and the common electrode 15 mainly form a vertical electric field (that is, an electric field perpendicular to the liquid crystal display panel).
  • the long axis direction of the liquid crystal molecules in the liquid crystal polymer is perpendicular to the cell thickness direction of the liquid crystal display panel when the pixel electrode and the common electrode are in a closed state; thus, when the pixel electrode and the common electrode When in the energized state, the liquid crystal molecules in the liquid crystal polymer are arranged in a direction perpendicular to the thickness of the cell under the action of a vertical electric field.
  • the liquid crystal in the liquid crystal polymer 13 is a negative liquid crystal, as shown in FIG. 1, at the pixel electrode
  • the long-axis direction of the liquid crystal molecules 131 in the liquid crystal polymer 13 is parallel to the cell thickness direction of the liquid crystal display panel 10; thus, when the pixel electrode 14 and the common electrode 15 are in an energized state, the liquid crystal polymer 13
  • the liquid crystal molecules 131 are arranged in the direction of the thickness of the cell in the direction of the thickness of the substrate under the action of a vertical electric field.
  • the pixel electrode 14 and the common electrode 15 when the pixel electrode 14 and the common electrode 15 are both located on the same side of the liquid crystal polymer 13; when the pixel electrode 14 and the common electrode 15 are in an energized state, The pixel electrode 14 and the common electrode 15 mainly form a horizontal electric field.
  • the long-axis direction of the liquid crystal molecules 131 in the liquid crystal polymer 13 is parallel to the liquid crystal display panel 10 when the pixel electrode 14 and the common electrode 15 are in a closed state.
  • the cell thickness direction is such that when the pixel electrode 14 and the common electrode 15 are in an energized state, the liquid crystal molecules 131 in the liquid crystal polymer 13 are arranged in the longitudinal direction of the cell in the direction of the vertical direction of the cell under the action of the horizontal electric field.
  • the long-axis direction of the liquid crystal molecules in the liquid crystal polymer is perpendicular to the liquid crystal display panel when the pixel electrode 14 and the common electrode 15 are in a closed state.
  • the thickness direction of the cell is such that when the pixel electrode 14 and the common electrode 15 are in an energized state, the liquid crystal molecules in the liquid crystal polymer are arranged in the direction of the cell thickness in the direction of the cell thickness under the action of the horizontal electric field.
  • the long-chain direction of the polymer is perpendicular to the cell thickness direction of the liquid crystal display panel, thereby achieving the same display effect as the foregoing embodiment.
  • the long axis direction of the liquid crystal molecules in the liquid crystal polymer is perpendicular to the cell thickness of the liquid crystal display panel. direction.
  • the long-axis direction of the liquid crystal molecules in the liquid crystal polymer is along the cell thickness direction of the liquid crystal display panel.
  • the long-axis direction of the liquid crystal molecules in the liquid crystal polymer known to those skilled in the art is consistent with the extending direction of the long chain of the polymer, which means that the liquid crystal polymer is substantially identical. It also includes exact consistency in the strict sense.
  • the long-axis direction of the liquid crystal molecules is parallel or perpendicular to the cell thickness direction of the liquid crystal display panel, and is also approximately parallel or approximately perpendicular, and also includes absolute parallel or perpendicular.
  • two The liquid crystal display panel is independent, so that any one of the liquid crystal display panels can be independently controlled for single-sided display, and two liquid crystal display panels can be simultaneously controlled for double-sided display, which is not limited herein.
  • the second substrate 12 of the two liquid crystal display panels 10 is the same substrate.
  • the liquid crystal display panel provided by the embodiment of the present invention includes other film layers and structures for realizing liquid crystal display, such as a thin film transistor, a color film layer, a black matrix layer, and a spacer, except that the polarizer is not included. Etc., the arrangement of these layers and structures is the same as in the prior art and will not be described in detail herein.
  • the backlight 20 includes only one light source located on the side of the second substrate 12.
  • the light-in efficiency of such a backlight may not be too good, and the light-in efficiency refers to the ratio of the portion of light that is totally emitted after the light enters the two liquid crystal display panels in the backlight.
  • the backlight 20 includes two light sources, and the two light sources are respectively located in the liquid crystal polymerization of the two liquid crystal display panels 10.
  • the pixel electrode 14 and the common electrode 15 are respectively located on the liquid crystal polymer 13.
  • the pixel electrodes 14 are located on the side of the first substrate 11 facing the liquid crystal polymer 13
  • the common electrodes 15 are located on the side of the second substrate 12 facing the liquid crystal polymer 13.
  • the pixel electrode 14 and the common electrode 15 are respectively located on both sides of the liquid crystal polymer 13;
  • the common electrode 15 is located on the side of the first substrate 11 facing the liquid crystal polymer 13 and the pixel electrode 14 is located on the side of the second substrate 12 facing the liquid crystal polymer 13.
  • the common electrode 15 can shield the interference of external signals, thereby enhancing the ability of the double-sided display to resist external signal interference.
  • the pixel electrode 14 and the common electrode 15 are respectively located on both sides of the liquid crystal polymer 13;
  • the common electrode 15 is located on the side of the liquid crystal polymer 13 facing the first substrate 11, and the pixel electrode 14 is located on the side of the second substrate 12 facing the liquid crystal polymer 13; in the other liquid crystal display panel 10, The pixel electrode 14 is located on the side of the first substrate 11 facing the liquid crystal polymer 13, and the common electrode 15 is located on the side of the liquid crystal polymer 13 facing the second substrate 12.
  • the pixel electrode 14 and the common electrode 15 are both located in the liquid crystal polymerization.
  • the pixel electrode 14 and the common electrode 15 are disposed in the same layer and spaced apart.
  • the pixel electrode 14 and the common electrode 15 may be located on the side of the second substrate 12 facing the liquid crystal polymer 13.
  • the pixel electrode 14 and the common electrode 15 may also be located on the first substrate. 11 faces the liquid crystal polymer 13 side, which is not limited herein.
  • the pixel electrode and the common electrode may both be strip electrodes, which are not limited herein.
  • the pixel electrode 14 and the common electrode 15 are both located in the liquid crystal polymerization.
  • the pixel electrode 14 and the common electrode 15 are disposed in different layers, and the liquid crystal display panel 10 further includes an insulating layer 16 between the pixel electrode 14 and the common electrode 15.
  • the pixel electrode 14 and the common electrode 15 may both be located on a side of the second substrate 12 facing the liquid crystal polymer 13 .
  • the pixel electrode 14 is located between the insulating layer 16 and the second substrate 12, and the common electrode 15 is located at the insulating layer 16 and the liquid crystal is polymerized. Between the objects 13.
  • the common electrode may be a strip electrode or a slit electrode
  • the pixel electrode may be a planar electrode, which is not limited herein.
  • the common electrode 15 is located between the insulating layer 16 and the second substrate 12, and the pixel electrode 14 is located between the insulating layer 16 and the liquid crystal polymer 13.
  • the pixel electrode may be a strip electrode or a slit electrode
  • the common electrode may be a planar electrode, which is not limited herein.
  • the pixel electrode and the common electrode may also be located on a side of the first substrate facing the liquid crystal polymer.
  • the pixel electrode is located between the insulating layer and the first substrate, and the common electrode is located between the insulating layer and the liquid crystal polymer.
  • the common electrode may be a strip electrode or a slit electrode, and the pixel electrode may be a planar electrode, which is not limited herein.
  • the common electrode is located between the insulating layer and the first substrate, and the pixel electrode is located between the insulating layer and the liquid crystal polymer.
  • the pixel electrode may be a strip electrode or a slit electrode, and the common electrode may be a planar electrode, which is not limited herein.
  • the pixel electrode 14 and the common electrode 15 are both located in the liquid crystal polymer 13.
  • the pixel electrode 14 and the common electrode 15 are disposed in different layers, and the liquid crystal display panel 10 further includes an insulating layer 16 between the pixel electrode 14 and the common electrode 15; in the other liquid crystal display panel 10
  • the pixel electrode 14 and the common electrode 15 are disposed in the same layer and spaced apart.
  • the liquid crystal display panel 10 when the pixel electrode 14 and the common electrode 15 are both located on the same side of the liquid crystal polymer 13, the liquid crystal display panel 10 Further, the auxiliary electrode 17 is disposed between the first substrate 11 and the second substrate 12, and the auxiliary electrode 17 and the pixel electrode 14 are respectively located on both sides of the liquid crystal polymer 13.
  • the auxiliary electrode 17 is for adjusting the electric field formed by the pixel electrode 14 and the common electrode 15 so as to have more horizontal components, that is, the auxiliary electrode 17 is for increasing the horizontal component of the electric field formed by the pixel electrode 14 and the common electrode 15.
  • one liquid crystal display panel includes a plurality of pixel units, generally one pixel unit corresponds to one pixel electrode, and one liquid crystal display panel corresponds to one auxiliary electrode.
  • an embodiment of the present invention further provides a display device, including any of the above-mentioned double-sided displays provided by the embodiments of the present invention. Since the principle of solving the problem of the display device is similar to that of the foregoing double-sided display, the implementation of the display device can be referred to the implementation of the aforementioned double-sided display, and the repeated description is omitted.
  • Embodiments of the present invention also provide an electronic device including the above display device.
  • the liquid crystal polymer can be formed by ultraviolet light irradiation from a mixture of liquid crystal, a polymerizable liquid crystal monomer, and a photoinitiator, and the mixture is irradiated with ultraviolet light,
  • the polymerizable liquid crystal monomer is polymerized, and the long-chain direction of the polymer substantially coincides with the long-axis direction of the liquid crystal molecules. Therefore, when the pixel electrode and the common electrode are in an energized state, the pixel electrode forms an electric field with the common electrode, and the liquid crystal molecules in the liquid crystal polymer are deflected by the electric field, but the liquid crystal polymer is scattered due to the action of the polymer network.
  • the scattering state destroys the total reflection condition of the light of the backlight between the two substrates, so that at least part of the light in the backlight is scattered by the liquid crystal polymer and then emitted from the side of the first substrate.
  • the pixel electrode and the common electrode are in a closed state, the long-axis direction of the liquid crystal molecules in the liquid crystal polymer is consistent with the extending direction of the long chain of the polymer, and the liquid crystal polymer is in a transparent state. Therefore, the liquid crystal display panel can be rotated or restored by the electric field on and off states to achieve the function of the liquid crystal display.
  • the transmittance of the two polarizers is omitted compared with the existing liquid crystal display panel, the transmittance is up to 90%, so that the two-sided display composed of the two liquid crystal display panels Compared with the existing double-sided display, it has higher transparency.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

一种双面显示器、显示装置和电子设备。双面显示器包括两个液晶显示面板(10),当像素电极(14)和公共电极(15)处于通电状态时,像素电极(14)与公共电极(15)形成电场,液晶分子(131)在电场作用下发生偏转。由于聚合物网络作用,使液晶聚合物(13)呈散射态破坏了背光源(20)的光线在两基板(11,12)之间的全反射条件,因此背光源(20)中至少有部分光经液晶聚合物(13)散射后从第一基板(11)一侧射出。当像素电极(14)和公共电极(15)处于关闭状态时,液晶聚合物(13)中液晶分子(131)的长轴方向与聚合物长链(132)的延伸方向一致,液晶聚合物(13)呈透明态。

Description

双面显示器、显示装置以及电子设备
相关申请
本申请要求保护在2016年6月24日提交的申请号为201610473477.0的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种双面显示器、显示装置以及电子设备。
背景技术
液晶显示器一般包括上基板和下基板,位于上基板和下基板之间的液晶层和用于在液晶层的两侧产生电场的像素电极和公共电极,位于上基板外侧的上偏光片和位于下基板外侧的下偏光片,以及背光源。
随着显示技术的发展,基于液晶显示器的透明显示器越来越受到人们的关注。但是,现有的透明液晶显示器存在透明度不高的问题,尤其是应用于透明双面显示器中,透明度更低。
发明内容
本发明实施例提供一种双面显示器、显示装置和电子设备,用以提高显示器的透过率和光效率。
本发明实施例提供的一种双面显示器,包括层叠设置且出光侧相背对的两个液晶显示面板,用于为各所述液晶显示面板提供光源的侧入式背光源,各所述液晶显示面板包括:
相对设置的第一基板和第二基板,位于所述第一基板与所述第二基板之间的液晶聚合物,以及相互绝缘的像素电极和公共电极;其中所述液晶聚合物包括沿着延伸方向排列的聚合物长链;
当所述像素电极和公共电极处于关闭状态时,所述液晶聚合物中液晶分子的长轴方向与所述聚合物长链的延伸方向一致;当所述像素电极和公共电极处于通电状态时,所述像素电极与所述公共电极形成电场,所述液晶聚合物在所述电场的作用下呈散射态,以使所述背光 源中至少有部分光经所述液晶聚合物散射后从所述第一基板侧射出,其中所述第一基板所在侧为所述液晶显示面板的出光侧。
可选地,在本发明实施例提供的上述双面显示器中,在至少一个所述液晶显示面板中,所述像素电极和所述公共电极分别位于所述液晶聚合物的两侧;
所述液晶聚合物中的液晶为正性液晶,在所述像素电极和公共电极处于关闭状态时所述液晶聚合物中液晶分子的长轴方向垂直于所述液晶显示面板的盒厚方向;或者,所述液晶聚合物中的液晶为负性液晶,在所述像素电极和公共电极处于关闭状态时所述液晶聚合物中液晶分子的长轴方向平行于所述液晶显示面板的盒厚方向。
可选地,在本发明实施例提供的上述双面显示器中,在各所述液晶显示面板中,所述像素电极和所述公共电极均分别位于所述液晶聚合物的两侧;
且在各所述液晶显示面板中,所述公共电极位于所述第一基板面向所述液晶聚合物的一侧。
可选地,在本发明实施例提供的上述双面显示器中,在至少一个所述液晶显示面板中,所述像素电极和所述公共电极均位于所述液晶聚合物的同一侧;
所述液晶聚合物中的液晶为正性液晶,在所述像素电极和公共电极处于关闭状态时所述液晶聚合物中液晶分子的长轴方向平行于所述液晶显示面板的盒厚方向;或者,所述液晶聚合物中的液晶为负性液晶,在所述像素电极和公共电极处于关闭状态时所述液晶聚合物中液晶分子的长轴方向垂直于所述液晶显示面板的盒厚方向。
可选地,在本发明实施例提供的上述双面显示器中,在所述液晶显示面板中当所述像素电极和所述公共电极均位于所述液晶聚合物的同一侧时,所述像素电极和所述公共电极同层且间隔设置。
可选地,在本发明实施例提供的上述双面显示器中,在所述液晶显示面板中当所述像素电极和所述公共电极均位于所述液晶聚合物的同一侧时,所述像素电极与所述公共电极异层设置,且所述液晶显示面板还包括位于所述像素电极与所述公共电极之间的绝缘层。
可选地,在本发明实施例提供的上述双面显示器中,在所述液晶显示面板中,所述像素电极和所述公共电极均位于所述第二基板面向 所述液晶聚合物的一侧,或所述像素电极和所述公共电极均位于所述第一基板面向所述液晶聚合物的一侧。
可选地,在本发明实施例提供的上述双面显示器中,在所述液晶显示面板中当所述像素电极和所述公共电极均位于所述液晶聚合物的同一侧时,所述液晶显示面板还包括:位于所述第一基板与所述第二基板之间的辅助电极,且所述辅助电极和所述像素电极分别位于所述液晶聚合物的两侧。
可选地,在本发明实施例提供的上述双面显示器中,两个所述液晶显示面板中的第二基板为同一基板。
可选地,所述液晶聚合物由液晶、可聚合液晶单体和光引发剂的混合物在紫外光照射作用下形成。
相应地,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述任一种双面显示器。
本发明实施例还提供了一种电子设备,包括以上所述的显示装置。
根据本发明的实施例,在每个液晶显示面板中,由于液晶聚合物可以由液晶、可聚合液晶单体和光引发剂的混合物在紫外光照射作用下形成,而该混合物在紫外光照射后,可聚合液晶单体会发生聚合,聚合物长链方向与液晶分子的长轴方向基本一致。因此,当上述像素电极和公共电极处于通电状态时,像素电极与公共电极形成电场,液晶聚合物中的液晶分子在电场作用下发生偏转,但是由于聚合物网络作用,使液晶聚合物呈散射态,而散射态破坏了背光源的光线在两基板之间的全反射条件,因此可以使背光源中至少有部分光经液晶聚合物散射后从第一基板一侧射出。当像素电极和公共电极处于关闭状态时,液晶聚合物中液晶分子的长轴方向与聚合物长链的延伸方向一致,液晶聚合物呈透明态。因此上述液晶显示面板,通过电场开态和关闭状态作用,液晶分子可以发生旋转或恢复,从而达到液晶显示的作用。但是当像素电极和公共电极处于关闭状态时,由于与现有的液晶显示面板相比省去两片偏光片的设置,透过率可达90%,因此由两个该液晶显示面板组成的双面显示器,与现有的双面显示器相比,具有较高的透明度。
附图说明
图1为本发明实施例提供的双面显示器的结构示意图之一;
图2为本发明实施例提供的双面显示器的结构示意图之二;
图3为本发明实施例提供的双面显示器的结构示意图之三;
图4为本发明实施例提供的双面显示器的结构示意图之四;
图5为本发明实施例提供的双面显示器的结构示意图之五;
图6为本发明实施例提供的双面显示器的结构示意图之六;
图7为本发明实施例提供的双面显示器的结构示意图之七;
图8为本发明实施例提供的双面显示器的结构示意图之八;
图9为本发明实施例提供的双面显示器的结构示意图之九;
图10为本发明实施例提供的双面显示器的结构示意图之十;
图11为本发明实施例提供的双面显示器的结构示意图之十一;以及
图12为本发明实施例提供的双面显示器的结构示意图之十二。
具体实施方式
为了使本发明的目的,技术方案和优点更加清楚,下面结合附图,对本发明实施例提供的双面显示器及显示装置的具体实施方式进行详细地说明。
附图中各部件的形状和大小不反映双面显示器的真实比例,目的只是示意说明本发明内容。
本发明实施例提供的一种双面显示器,如图1和图2所示,包括层叠设置且出光侧相背对的两个液晶显示面板10,用于为各液晶显示面板10提供光源的侧入式背光源20,各液晶显示面板10包括:
相对设置的第一基板11和第二基板12,位于第一基板11与第二基板12之间的液晶聚合物13,以及相互绝缘的像素电极14和公共电极15;其中,
液晶聚合物13包括沿着延伸方向排列的聚合物长链132;
当像素电极14和公共电极15处于关闭状态时,液晶聚合物13中液晶分子131的长轴方向与所述聚合物长链132的延伸方向一致;当像素电极和公共电极处于通电状态时,像素电极14与公共电极15形成电场,液晶聚合物13在电场的作用下呈散射态,以使背光源20中至少有部分光经液晶聚合物13散射后从第一基板11侧射出,其中第 一基板11所在侧为液晶显示面板10的出光侧。利用这种方式,在液晶显示面板10中,与每个像素电极14对应的子区域能够独立地在亮态和暗态之间切换,由此实现动态/静态显示。
本发明实施例提供的上述双面显示器中,在每个液晶显示面板中,由于液晶聚合物可以由液晶、可聚合液晶单体和光引发剂的混合物在紫外光照射作用下形成,而该混合物在紫外光照射后,可聚合液晶单体会发生聚合,聚合物长链方向与液晶分子的长轴方向基本一致。因此,当上述像素电极和公共电极处于通电状态时,像素电极与公共电极形成电场,液晶聚合物中的液晶分子在电场作用下发生偏转,但是由于聚合物网络作用,使液晶聚合物呈散射态,而散射态破坏了背光源的光线在两基板之间的全反射条件,因此可以使背光源中至少有部分光经液晶聚合物散射后从第一基板一侧射出。当像素电极和公共电极处于关闭状态时,液晶聚合物中液晶分子的长轴方向与聚合物长链的延伸方向一致,液晶聚合物呈透明态。因此上述液晶显示面板,通过电场开态和关闭状态作用,液晶分子可以发生旋转或恢复,从而达到液晶显示的作用。但是当像素电极和公共电极处于关闭状态时,由于与现有的液晶显示面板相比省去两片偏光片的设置,透过率可达90%,因此由两个该液晶显示面板组成的双面显示器,与现有的双面显示器相比,具有较高的透明度。
可选地,所述液晶聚合物由液晶、可聚合液晶单体和光引发剂的混合物在紫外光照射作用下形成。在本公开的上下文中,“光引发剂”(photoinitiator)又称光敏剂(photosensitizer)或光固化剂(photocuring agent),是一类能在紫外光区(250~420nm)或可见光区(400~800nm)吸收一定波长的能量,产生自由基、阳离子等,从而引发单体聚合交联固化的化合物。合适的光引发剂可以是苯甲酰甲酸甲酯(MBF)、2,4,6-三甲基苯甲酰基-二苯基氧化膦(TPO)等材料,本发明在此不做限定。
在具体实施时,在本发明实施例提供的上述双面显示器中,在由液晶、可聚合液晶单体和光引发剂的混合物中,可聚合液晶单体的含量一般控制在1%-5%之间,光引发剂的含量一般控制在0.5%-3%之间。
在具体实施时,液晶可以是正性液晶和负性液晶。当吸电子基团在液晶分子长轴的一端时,介电常数Δε大于0,液晶呈正性。当吸电子基团在液晶分子短轴的一端时,介电常数Δε小于0,液晶呈负性。 在电场的作用下,正性液晶和负性液晶均会受电场的影响发生旋转。正性液晶分子受电场作用时,液晶分子长轴方向沿电场方向排列。负性液晶分子受电场作用时,液晶分子短轴方向沿电场方向排列。
在具体实施时,在本发明实施例提供的上述双面显示器中的液晶显示面板中,像素电极和公共电极可以分别位于液晶聚合物的两侧。当然,像素电极和公共电极也可以位于液晶聚合的同一侧,在此不作限定。
在本发明实施例提供的上述双面显示器中,可以是在两个液晶显示面板中,像素电极和公共电极分别位于液晶聚合物的两侧;也可以在两个液晶显示面板中,像素电极和公共电极位于液晶聚合物的同一侧。当然,也可以是在其中一个液晶显示面板中,像素电极和公共电极分别位于液晶聚合物的两侧,在另一个液晶显示面板中,像素电极和公共电极位于液晶聚合物的同一侧。
进一步地,在本发明实施例提供的上述双面显示器中,在液晶显示面板中当像素电极与公共电极位于液晶聚合物同一侧时,像素电极和公共电极可以均位于第一基板面向液晶聚合物一侧。当然,像素电极和公共电极也可以均位于第二基板面向所述液晶聚合物一侧,在此不作限定。
进一步地,在本发明实施例提供的上述双面显示器中,在液晶显示面板中当像素电极与公共电极分别位于液晶聚合物同一侧时,像素电极可以位于公共电极与液晶聚合物之间,当然,也可以是公共电极位于像素电极与液晶聚合物之间,在此不作限定。
在具体实施时,在液晶显示面板10中,如图1所示,当像素电极14和公共电极15分别位于液晶聚合物13的两侧时,在像素电极14和公共电极15处于通电状态时,像素电极14与公共电极15主要形成垂直电场(即,垂直于所述液晶显示面板的电场)。
当液晶聚合物中的液晶为正性液晶时,在像素电极和公共电极处于关闭状态时液晶聚合物中液晶分子的长轴方向垂直于液晶显示面板的盒厚方向;这样当像素电极和公共电极处于通电状态时,液晶聚合物中的液晶分子在垂直电场作用下其长轴方向沿垂直于盒厚方向布置。
当液晶聚合物13中的液晶为负性液晶,如图1所示,在像素电极 14和公共电极15处于关闭状态时液晶聚合物13中液晶分子131的长轴方向平行于液晶显示面板10的盒厚方向;这样当像素电极14和公共电极15处于通电状态时,液晶聚合物13中的液晶分子131在垂直电场作用下其长轴方向沿盒厚方向布置。
在具体实施时,在液晶显示面板10中,如图2所示,当像素电极14和公共电极15均位于液晶聚合物13的同一侧时;当像素电极14和公共电极15处于通电状态时,像素电极14与公共电极15主要形成水平电场。
当液晶聚合物13中的液晶为正性液晶时,如图2所示,在像素电极14和公共电极15处于关闭状态时液晶聚合物13中液晶分子131的长轴方向平行于液晶显示面板10的盒厚方向;这样当像素电极14和公共电极15处于通电状态时,液晶聚合物13中的液晶分子131在水平电场作用下其长轴方向沿盒垂直厚方向布置。
当液晶聚合物中的液晶为负性液晶时,对于图2所示的结构来说,在像素电极14和公共电极15处于关闭状态时液晶聚合物中液晶分子的长轴方向垂直于液晶显示面板的盒厚方向;这样当像素电极14和公共电极15处于通电状态时,液晶聚合物中的液晶分子在水平电场作用下其长轴方向沿盒厚方向布置。在该实施例中,聚合物长链方向垂直于液晶显示面板的盒厚方向,从而实现与前述实施例相同的显示效果。
进一步地,在具体实施时,在本发明实施例提供的上述双面显示器中,在像素电极和公共电极处于关闭状态时,液晶聚合物中液晶分子的长轴方向垂直于液晶显示面板的盒厚方向。对于这样的布置形式,一般需要采用垂直取向材料对基板进行垂直取向处理。
类似地,在像素电极和公共电极处于关闭状态时,液晶聚合物中液晶分子的长轴方向沿液晶显示面板的盒厚方向。对于这样的布置,一般需要采用水平取向材料对基板进行水平取向处理。
需要说明的是,在本发明实施例提供的上述双面显示器中,本领域技术人员公知的液晶聚合物中液晶分子的长轴方向与聚合物长链的延伸方向一致,是指基本上一致,也包括严格意义上的完全一致。同理,液晶分子的长轴方向平行于或垂直于液晶显示面板的盒厚方向,也是指近似平行于或近似垂直于,也包括绝对的平行或垂直。
进一步地,在本发明实施例提供的上述双面显示器中,由于两个 液晶显示面板是独立的,因此可以独立控制任何一个液晶显示面板进行单面显示,也可以同时控制两个液晶显示面板进行双面显示,在此不作限定。
可选地,在本发明实施例提供的上述双面显示器中,为了降价整体厚度,如图3至12图所示,两个液晶显示面板10中的第二基板12为同一基板。
进一步需要说明的是,本发明实施例提供的上述液晶显示面板除了不包括偏光片,还包括有实现液晶显示的其它膜层和结构,例如薄膜晶体管、彩膜层、黑矩阵层、隔垫物等,这些膜层和结构的设置与现有技术中相同,在此不作详述。
进一步地,在本发明实施例提供的上述双面显示器中,如图1至图9所示,背光源20仅包括一个光源,位于第二基板12的侧面。这样的背光源的入光效率可能不是太好,入光效率是指背光源中光进入两个液晶显示面板后发生全发射的那部分光的比率。
因此,可选地,在本发明实施例提供的上述双面显示器中,如图10至图12所示,背光源20包括两个光源,两个光源分别位于两个液晶显示面板10的液晶聚合物13的侧面。
下面通过具体实施例说明本发明实施例提供的双面显示器。
实施例一、
在具体实施时,在本发明实施例提供的上述双面显示器中,如图1和图3所示,在两个液晶显示面板10中,像素电极14和公共电极15分别位于液晶聚合物13的两侧;在两个液晶显示面板10中,像素电极14均位于第一基板11面向液晶聚合物13一侧,公共电极15均位于第二基板12面向液晶聚合物13一侧。
实施例二、
在具体实施时,在本发明实施例提供的上述双面显示器中,如图4所示,在两个液晶显示面板10中,像素电极14和公共电极15分别位于液晶聚合物13的两侧;在两个液晶显示面板10中,公共电极15均位于第一基板11面向液晶聚合物13一侧,像素电极14位于第二基板12面向液晶聚合物13一侧。这样公共电极15可以屏蔽外部信号的干扰,从而加强双面显示器抗外部信号干扰的能力。
实施例三、
在具体实施时,在本发明实施例提供的上述双面显示器中,如图5所示,在两个液晶显示面板10中,像素电极14和公共电极15分别位于液晶聚合物13的两侧;在其中一个液晶显示面板10中,公共电极15位于液晶聚合物13面向第一基板11一侧,像素电极14位于第二基板12面向液晶聚合物13一侧;在另一个液晶显示面板10中,像素电极14位于第一基板11面向液晶聚合物13一侧,公共电极15位于液晶聚合物13面向第二基板12一侧。
实施例四、
在具体实施时,在本发明实施例提供的上述双面显示器中,如图2、图6和图10所示,在两个液晶显示面板10中,像素电极14和公共电极15均位于液晶聚合物13的同一侧时,像素电极14和公共电极15同层且间隔设置。
进一步地,如图2、图6和图10所示,像素电极14和公共电极15可以位于第二基板12面向液晶聚合物13一侧,当然像素电极14和公共电极15也可以位于第一基板11面向液晶聚合物13一侧,在此不作限定。
进一步地,在具体实施时,像素电极和公共电极可以均为条状电极,在此不作限定。
实施例五、
在具体实施时,在本发明实施例提供的上述双面显示器中,如图7、图8和图11所示,在两个液晶显示面板10中,像素电极14和公共电极15均位于液晶聚合物13的同一侧时,像素电极14与公共电极15异层设置,且液晶显示面板10还包括位于像素电极14与公共电极15之间的绝缘层16。
在具体实施时,如图7、图8和图11所示,像素电极14和公共电极15可以均位于第二基板12面向液晶聚合物13的一侧。
进一步地,在本发明实施例提供的上述双面显示器中,如图7和图11所示,像素电极14位于绝缘层16与第二基板12之间,公共电极15位于绝缘层16与液晶聚合物13之间。
在具体实施时,公共电极可以为条状电极或狭缝状电极,像素电极可以为面状电极,在此不作限定。
或者,进一步地,在本发明实施例提供的上述双面显示器中,如 图8所示,公共电极15位于绝缘层16与第二基板12之间,像素电极14位于绝缘层16与液晶聚合物13之间。
在具体实施时,像素电极可以为条状电极或狭缝状电极,公共电极可以为面状电极,在此不作限定。
当然在具体实施时,像素电极和公共电极也可以均位于第一基板面向液晶聚合物的一侧。
进一步地,在本发明实施例提供的上述双面显示器中,像素电极位于绝缘层与第一基板之间,公共电极位于绝缘层与液晶聚合物之间。此时公共电极可以为条状电极或狭缝状电极,像素电极可以为面状电极,在此不作限定。
或者,进一步地,在本发明实施例提供的上述双面显示器中,公共电极位于绝缘层与第一基板之间,像素电极位于绝缘层与液晶聚合物之间。此时,像素电极可以为条状电极或狭缝状电极,公共电极可以为面状电极,在此不作限定。
实施例六、
在具体实施时,在本发明实施例提供的上述双面显示器中,如图9和图12所示,在两个液晶显示面板10中,像素电极14和公共电极15均位于液晶聚合物13的同一侧时。在其中一个液晶显示面板10中,像素电极14与公共电极15异层设置,且液晶显示面板10还包括位于像素电极14与公共电极15之间的绝缘层16;在另一个液晶显示面板10中,像素电极14和公共电极15同层且间隔设置。
实施例七、
在本发明实施例提供的上述双面显示器,如图10至图12所示,在液晶显示面板10中当像素电极14和公共电极15均位于液晶聚合物13的同一侧时,液晶显示面板10还包括:位于第一基板11与第二基板12之间的辅助电极17,且辅助电极17和像素电极14分别位于液晶聚合物13的两侧。辅助电极17用于调整像素电极14与公共电极15形成的电场,以使其具有更多的水平分量,即辅助电极17用于增大像素电极14与公共电极15形成的电场的水平分量。
需要说明的是,在本发明实施例提供的上述双面显示器中,一个液晶显示面板包括若干个像素单元,一般一个像素单元对应一个像素电极,一个液晶显示面板对应一个辅助电极。
基于同一发明构思,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述任一种双面显示器。由于该显示装置解决问题的原理与前述一种双面显示器相似,因此该显示装置的实施可以参见前述双面显示器的实施,重复之处不再赘述。
本发明实施例还提供了一种电子设备,包括以上所述的显示装置。
根据本发明的实施例,在每个液晶显示面板中,由于液晶聚合物可以由液晶、可聚合液晶单体和光引发剂的混合物在紫外光照射作用下形成,而该混合物在紫外光照射后,可聚合液晶单体会发生聚合,聚合物长链方向与液晶分子的长轴方向基本一致。因此,当上述像素电极和公共电极处于通电状态时,像素电极与公共电极形成电场,液晶聚合物中的液晶分子在电场作用下发生偏转,但是由于聚合物网络作用,使液晶聚合物呈散射态,而散射态破坏了背光源的光线在两基板之间的全反射条件,因此可以使背光源中至少有部分光经液晶聚合物散射后从第一基板一侧射出。当像素电极和公共电极处于关闭状态时,液晶聚合物中液晶分子的长轴方向与聚合物长链的延伸方向一致,液晶聚合物呈透明态。因此上述液晶显示面板,通过电场开态和关闭状态作用,液晶分子可以发生旋转或恢复,从而达到液晶显示的作用。但是当液晶显示面板处于关闭状态时,由于与现有的液晶显示面板相比省去两片偏光片的设置,透过率可达90%,因此由两个该液晶显示面板组成的双面显示器,与现有的双面显示器相比,具有较高的透明度。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种双面显示器,包括层叠设置且出光侧相背对的两个液晶显示面板,用于为各所述液晶显示面板提供光源的侧入式背光源;
    其中各所述液晶显示面板包括:
    相对设置的第一基板和第二基板,位于所述第一基板与所述第二基板之间的液晶聚合物,以及相互绝缘的像素电极和公共电极;其中所述液晶聚合物包括沿着延伸方向排列的聚合物长链;
    当所述像素电极和公共电极处于关闭状态时,所述液晶聚合物中液晶分子的长轴方向与所述聚合物长链的延伸方向一致;当所述像素电极和公共电极处于通电状态时,所述像素电极与所述公共电极形成电场,所述液晶聚合物在所述电场的作用下呈散射态,以使所述背光源中至少有部分光经所述液晶聚合物散射后从所述第一基板侧射出,其中所述第一基板所在侧为所述液晶显示面板的出光侧。
  2. 如权利要求1所述的双面显示器,其中在至少一个所述液晶显示面板中,所述像素电极和所述公共电极分别位于所述液晶聚合物的两侧;
    所述液晶聚合物中的液晶为正性液晶,在所述像素电极和公共电极处于关闭状态时所述液晶聚合物中液晶分子的长轴方向垂直于所述液晶显示面板的盒厚方向;或者,所述液晶聚合物中的液晶为负性液晶,在所述像素电极和公共电极处于关闭状态时所述液晶聚合物中液晶分子的长轴方向平行于所述液晶显示面板的盒厚方向。
  3. 如权利要求2所述的双面显示器,其中在各所述液晶显示面板中,所述像素电极和所述公共电极均分别位于所述液晶聚合物的两侧;
    且在各所述液晶显示面板中,所述公共电极位于所述第一基板面向所述液晶聚合物的一侧。
  4. 如权利要求1所述的双面显示器,其中在至少一个所述液晶显示面板中,所述像素电极和所述公共电极均位于所述液晶聚合物的同一侧;
    所述液晶聚合物中的液晶为正性液晶,在所述像素电极和公共电极处于关闭状态时所述液晶聚合物中液晶分子的长轴方向平行于所述液晶显示面板的盒厚方向;或者,所述液晶聚合物中的液晶为负性液 晶,在所述像素电极和公共电极处于关闭状态时所述液晶聚合物中液晶分子的长轴方向垂直于所述液晶显示面板的盒厚方向。
  5. 如权利要求4所述的双面显示器,其中所述液晶显示面板中当所述像素电极和所述公共电极均位于所述液晶聚合物的同一侧时,所述像素电极和所述公共电极同层且间隔设置。
  6. 如权利要求4所述的双面显示器,其中在所述液晶显示面板中当所述像素电极和所述公共电极均位于所述液晶聚合物的同一侧时,所述像素电极与所述公共电极异层设置,且所述液晶显示面板还包括位于所述像素电极与所述公共电极之间的绝缘层。
  7. 如权利要求6所述的双面显示器,其中在所述液晶显示面板中,所述像素电极和所述公共电极均位于所述第二基板面向所述液晶聚合物的一侧,或所述像素电极和所述公共电极均位于所述第一基板面向所述液晶聚合物的一侧。
  8. 如权利要求4-7任一项所述的双面显示器,其中在所述液晶显示面板中当所述像素电极和所述公共电极均位于所述液晶聚合物的同一侧时,所述液晶显示面板还包括:位于所述第一基板与所述第二基板之间的辅助电极,且所述辅助电极和所述像素电极分别位于所述液晶聚合物的两侧。
  9. 如权利要求1-7任一项所述的双面显示器,其中两个所述液晶显示面板中的第二基板为同一基板。
  10. 如权利要求1-7任一项所述的双面显示器,其中所述液晶聚合物由液晶、可聚合液晶单体和光引发剂的混合物在紫外光照射作用下形成。
  11. 一种显示装置,包括如权利要求1-10任一项所述的双面显示器。
  12. 一种电子设备,包括如权利要求11所述的显示装置。
PCT/CN2017/087412 2016-06-24 2017-06-07 双面显示器、显示装置以及电子设备 WO2017219862A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/736,982 US20180373075A1 (en) 2016-06-24 2017-06-07 Double sided display, display device and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610473477.0A CN105938280A (zh) 2016-06-24 2016-06-24 一种双面显示器及显示装置
CN201610473477.0 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017219862A1 true WO2017219862A1 (zh) 2017-12-28

Family

ID=56873021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087412 WO2017219862A1 (zh) 2016-06-24 2017-06-07 双面显示器、显示装置以及电子设备

Country Status (3)

Country Link
US (1) US20180373075A1 (zh)
CN (1) CN105938280A (zh)
WO (1) WO2017219862A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954913B (zh) 2016-06-24 2021-02-26 京东方科技集团股份有限公司 一种液晶显示器及显示装置
CN105938280A (zh) * 2016-06-24 2016-09-14 京东方科技集团股份有限公司 一种双面显示器及显示装置
CN106154661B (zh) * 2016-09-21 2019-05-14 京东方科技集团股份有限公司 一种透明显示面板及其制作方法、透明显示装置
KR102431685B1 (ko) * 2017-11-24 2022-08-10 엘지디스플레이 주식회사 액정표시장치
JP2023167048A (ja) * 2022-05-11 2023-11-24 株式会社ジャパンディスプレイ 液晶表示装置及び表示装置
CN117055266B (zh) * 2023-10-12 2024-02-09 惠科股份有限公司 背光模组及其制备方法、液晶显示装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070744A (zh) * 1991-05-02 1993-04-07 肯特州大学 液晶的光调制装置及材料
US6177972B1 (en) * 1999-02-04 2001-01-23 International Business Machines Corporation Polymer stabilized in-plane switched LCD
CN1530708A (zh) * 2003-03-13 2004-09-22 友达光电股份有限公司 背光模块及液晶显示器
CN201069505Y (zh) * 2007-07-13 2008-06-04 比亚迪股份有限公司 双面显示器
CN102466916A (zh) * 2010-11-01 2012-05-23 三星移动显示器株式会社 液晶显示装置及液晶显示装置的制造方法
CN102629013A (zh) * 2011-09-15 2012-08-08 北京京东方光电科技有限公司 一种液晶显示装置及其制作方法
CN102830557A (zh) * 2012-09-05 2012-12-19 京东方科技集团股份有限公司 阵列基板及显示器件
CN102914899A (zh) * 2012-10-12 2013-02-06 京东方科技集团股份有限公司 一种双面显示装置
CN104317093A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 液晶显示装置及其制造方法
CN105652505A (zh) * 2014-12-02 2016-06-08 乐金显示有限公司 光控制装置及其制造方法
CN105700237A (zh) * 2016-04-13 2016-06-22 深圳市华星光电技术有限公司 快速响应液晶显示装置及其制作方法
CN105938280A (zh) * 2016-06-24 2016-09-14 京东方科技集团股份有限公司 一种双面显示器及显示装置
CN105954913A (zh) * 2016-06-24 2016-09-21 京东方科技集团股份有限公司 一种液晶显示器及显示装置
CN205899207U (zh) * 2016-06-24 2017-01-18 京东方科技集团股份有限公司 一种双面显示器及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075285A (ja) * 1998-09-01 2000-03-14 Mitsubishi Electric Corp 反射型液晶表示装置
JP2009229599A (ja) * 2008-03-19 2009-10-08 Toshiba Mobile Display Co Ltd 液晶表示装置
CN202330951U (zh) * 2011-11-14 2012-07-11 京东方科技集团股份有限公司 一种双面pdlc显示装置
KR20130142734A (ko) * 2012-06-20 2013-12-30 삼성디스플레이 주식회사 액정 표시 장치 및 액정 표시 장치의 제조 방법
CN103091898B (zh) * 2013-02-06 2015-12-02 京东方科技集团股份有限公司 液晶显示屏及其制备方法、显示装置
CN103293744B (zh) * 2013-05-16 2015-12-02 京东方科技集团股份有限公司 一种显示装置
US9995967B2 (en) * 2014-07-29 2018-06-12 Sharp Kabushiki Kaisha Liquid crystal display device
EP3029519B1 (en) * 2014-12-02 2018-03-07 LG Display Co., Ltd. Light controlling apparatus and method of fabricating the same
JP2017167214A (ja) * 2016-03-14 2017-09-21 株式会社ジャパンディスプレイ 表示装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070744A (zh) * 1991-05-02 1993-04-07 肯特州大学 液晶的光调制装置及材料
US6177972B1 (en) * 1999-02-04 2001-01-23 International Business Machines Corporation Polymer stabilized in-plane switched LCD
CN1530708A (zh) * 2003-03-13 2004-09-22 友达光电股份有限公司 背光模块及液晶显示器
CN201069505Y (zh) * 2007-07-13 2008-06-04 比亚迪股份有限公司 双面显示器
CN102466916A (zh) * 2010-11-01 2012-05-23 三星移动显示器株式会社 液晶显示装置及液晶显示装置的制造方法
CN102629013A (zh) * 2011-09-15 2012-08-08 北京京东方光电科技有限公司 一种液晶显示装置及其制作方法
CN102830557A (zh) * 2012-09-05 2012-12-19 京东方科技集团股份有限公司 阵列基板及显示器件
CN102914899A (zh) * 2012-10-12 2013-02-06 京东方科技集团股份有限公司 一种双面显示装置
CN104317093A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 液晶显示装置及其制造方法
CN105652505A (zh) * 2014-12-02 2016-06-08 乐金显示有限公司 光控制装置及其制造方法
CN105700237A (zh) * 2016-04-13 2016-06-22 深圳市华星光电技术有限公司 快速响应液晶显示装置及其制作方法
CN105938280A (zh) * 2016-06-24 2016-09-14 京东方科技集团股份有限公司 一种双面显示器及显示装置
CN105954913A (zh) * 2016-06-24 2016-09-21 京东方科技集团股份有限公司 一种液晶显示器及显示装置
CN205899207U (zh) * 2016-06-24 2017-01-18 京东方科技集团股份有限公司 一种双面显示器及显示装置

Also Published As

Publication number Publication date
CN105938280A (zh) 2016-09-14
US20180373075A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2017219862A1 (zh) 双面显示器、显示装置以及电子设备
WO2017219764A1 (zh) 阵列基板及其制作方法、显示面板、显示装置
US20210116730A1 (en) Liquid crystal display panel
JP2016194700A (ja) 液晶ディスプレイおよびその製造方法
US11526038B2 (en) Display device, viewing angle limiting device and manufacturing method thereof
KR101929377B1 (ko) 액정 표시 장치 및 액정 표시 장치의 제조 방법
WO2014183397A1 (zh) 显示装置
KR101474668B1 (ko) 투명 디스플레이
CN106292030A (zh) 一种显示面板、其制作方法及显示装置
WO2018040410A1 (zh) 一种超薄型液晶显示器及其制作方法
TWI501013B (zh) 三態液晶顯示面板
WO2018094865A1 (zh) 液晶面板及其液晶配向方法、液晶显示器
WO2016074253A1 (zh) 液晶显示装置及其液晶显示面板
WO2014019341A1 (zh) 具有染料液晶组合物的透明液晶显示器
CN103293769A (zh) 半透半反液晶显示面板及其制作方法、液晶显示装置
CN106990589B (zh) 液晶面板及液晶显示装置
JP2012027150A (ja) 高分子分散型液晶表示素子の製造方法及びその素子
CN205899207U (zh) 一种双面显示器及显示装置
US9720276B2 (en) Liquid crystal display panel and display apparatus using the same
WO2016090716A1 (zh) 透反式液晶面板以及液晶显示器
TWI510847B (zh) 液晶顯示裝置
CN102998840A (zh) 显示面板以及具有该显示面板的显示装置
WO2015184713A1 (zh) 透反式液晶显示装置及其驱动方法
JP2003287755A5 (zh)
KR20120139496A (ko) 고분자 분산형 액정표시소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814600

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17814600

Country of ref document: EP

Kind code of ref document: A1