WO2017219564A1 - 家庭控制端 - Google Patents

家庭控制端 Download PDF

Info

Publication number
WO2017219564A1
WO2017219564A1 PCT/CN2016/103101 CN2016103101W WO2017219564A1 WO 2017219564 A1 WO2017219564 A1 WO 2017219564A1 CN 2016103101 W CN2016103101 W CN 2016103101W WO 2017219564 A1 WO2017219564 A1 WO 2017219564A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
home
scene
electronic device
Prior art date
Application number
PCT/CN2016/103101
Other languages
English (en)
French (fr)
Inventor
王晓东
章昭
徐鹤还
Original Assignee
杭州鸿雁电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620632010.1U external-priority patent/CN205880633U/zh
Priority claimed from CN201620678548.6U external-priority patent/CN205883288U/zh
Priority claimed from CN201620678534.4U external-priority patent/CN206042626U/zh
Application filed by 杭州鸿雁电器有限公司 filed Critical 杭州鸿雁电器有限公司
Publication of WO2017219564A1 publication Critical patent/WO2017219564A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]

Definitions

  • the present disclosure relates generally to smart home systems, and more particularly to a home digital switching device.
  • Home digital systems are being researched and promoted more and more widely, most of which are operated together by intelligent digital devices together with software or computer programs.
  • users usually choose to use mobile terminals ( For example, mobile phones or personal computers, etc., to control, but this way is limited by the functionality of the mobile terminal itself, the complicated installation firmware can not simplify and intuitively operate the user, and the function for each home product
  • the control instruction set has a large dependence on the mobile terminal system, and the way of updating the home products is greatly limited.
  • the compact structure realized to solve such defects often has a problem of poor heat dissipation, which greatly affects the use efficiency of various functional electrical components inside the structure.
  • a mobile terminal such as a mobile phone or a personal computer, etc.
  • the mobile terminal will be configured by the user to be digitalized at home.
  • the core unit in the system however, the increasingly prominent problem is that users often forget where the mobile terminal is being disposed of.
  • Messages that are routed or forwarded contain control signaling for home devices as well as multimedia data such as audio and video information or digital encoding.
  • Wi-Fi 802.11 standard for enabling electronic devices to communicate with each other, and is widely known as "Wi-Fi.”
  • 802.11a, 802.11b, 802.11g, and 802.11n define the frequency, modulation, data rate, and message format used to transfer information between electronic devices.
  • 802.11a, 802.11b, 802.11g, and 802.11n define the frequency, modulation, data rate, and message format used to transfer information between electronic devices.
  • AP access point
  • the Wi-Fi network has a network name (generally configurable by a network administrator interacting with the AP).
  • the AP periodically broadcasts the network name or discovers it from the AP's broadcast.
  • the electronic device of the network name can join the network by sending a "join" request to the AP.
  • an AP will only route messages between electronic devices that join the network.
  • Wi-Fi Wired Equivalent Privacy
  • WPA Wi-Fi Protected Access
  • IEEE 802.11i also Known as WPA2
  • an electronic device that joins a secure Wi-Fi network needs to know a specific network password or key that can be used to encrypt/decrypt routing messages.
  • the password or key is typically not transmitted wirelessly between devices, the access point in the secure Wi-Fi network may require any electronic device attempting to join the network to prove that it has obtained the password or key.
  • the user can obtain the password from the network administrator (Admin) and enter it into the computer, for example as a prompt generated by a network configuration program running on the electronic device. response.
  • Admin network administrator
  • Wi-Fi access devices have begun to extend beyond ordinary computers or servers to other devices, such as sockets that communicate using the 802.11 standard. These devices have a limited user interface that makes it impossible for a user to enter a password or key for a Wi-Fi network into the device, typically by first connecting the device to a computer via a wired interface (eg USB) to configure the Wi-Fi Interface, then switch the device to wireless operating mode.
  • a wired interface eg USB
  • sensors can also be used to implement routing messages. For example, information is routed using invisible light (eg, infrared light) or visible light (eg, light).
  • invisible light eg, infrared light
  • visible light eg, light
  • the ability to use sensors-implemented routing is limited (eg, data traffic is limited), in which case routing messages can be implemented using a Wi-Fi network and a wireless network of sensors intermixed.
  • the present disclosure is intended to address or at least ameliorate the deficiencies of the prior art by designing a power and data interaction device suitable for use in a home or office environment, which can reduce cable laying in an indoor environment and cumbersome configuration of, for example, data routing devices.
  • the home control terminal shown in the present disclosure can be installed in the building surface, saving indoor layout space, and the currently shown control terminal is more convenient for the user to operate and use.
  • a vertical heat dissipation structure in order to achieve effective heat dissipation of the home control terminal, a vertical heat dissipation structure can be designed, so that heat energy can be more effectively discharged without changing the internal structure.
  • a heat dissipating device comprising: a plurality of stacked mounting bodies; and a base for carrying and mounting the body in a building surface, the bases having respective connection to the home exterior An input end and an output end of the transmission network and the home internal transmission network, wherein the body package
  • the first body is fixedly mounted on the base; wherein a baffle can be arranged in the bottom cavity of the first body, wherein a plurality of flow guiding members are arranged on the deflector And for extracting gas from the bottom cavity into the accommodating cavity of the first body and diffusing the gas toward the top of the accommodating cavity.
  • the present disclosure proposes a new real-time scene control system for the prior art. According to some embodiments of the present disclosure, it is different from the prior art to make a direct judgment by a single sensor or controller information or to control all devices, for example, by one button (this method requires a digital device in a scene space to be set) In the state that has been preset, the real-time signals detected by the sensors are used to implement real-time control of the scene, for example, according to time, state and environment.
  • a home control terminal can include: a plurality of stacked installation bodies; and a base for carrying and mounting the body within a building surface, the base having a connection to a home external transmission network and a home, respectively The input and output of the internal transmission network.
  • the body includes: a first body; and a second body, the first body stack is mounted on the second body, wherein a bottom end of the first body for stack mounting is provided A joint member that mates with the top end of the second body.
  • the power source includes a main power circuit, a transformer, and a sub power circuit, wherein the main power circuit and the sub power circuit are electromagnetically coupled to each other through a transformer, and the main power circuit obtains an alternating current from the alternating current power source and converts it into a direct current.
  • the transformer steps down the AC from the main power circuit to a DC voltage of multiple voltage drops.
  • the body includes a first body that is fixedly mounted to the base.
  • the present disclosure proposes a completely new real-time scene control system.
  • Embodiments of the present disclosure are different from the prior art in that a single sensor or controller information is directly judged or, for example, one-key control is implemented for all devices (this method requires that a digital device in a scene space needs to be placed in a preset The state of the real-time signal detected by the sensor, for real-time control of the scene, for example, according to time, state and environment.
  • a method of changing an indoor scene includes: detecting, by a first sensor in the indoor scene, a first state sensing parameter that changes in a current indoor scene; identifying the detected first a state sensing parameter to generate a scene sensing association, a second sensor is activated according to the scene sensing association to detect a second state sensing parameter in a current indoor scene; and sensing according to the first and second states
  • the parameter activates an electrical device that is in the current indoor scene to change the content presented by the current indoor scene.
  • the method further includes: detecting, by a third sensor outside the indoor scene, a third state sensing parameter related to the current indoor scene change; and identifying the detected third state sensing parameter by Generating an external scene sensing association; and computing the external scene sensing association in association with the scene sensing.
  • the first, second or third sensor is disposed within a building surface.
  • the first, second or third sensor is disposed in any of the electrical devices, or any one of the first, second or third sensors is disposed in the other.
  • the apparatus for searching for an indoor electronic device based on the home control terminal includes: a signal gating circuit coupled to one or more signal transceivers disposed in the indoor space, for controlling one of the indoor spaces or Transmitting, by the plurality of signal transceivers, the detection signal to the space; and the data processing circuit coupled to the signal gating circuit, configured to determine the signal transceiver and the signal according to the response signal of the electronic device to be searched for An optimal connection configuration between the electronic devices, and prompting the user for the location of the electronic device in accordance with the optimal connection configuration.
  • the signal transceiver includes an electrical accessory that is embedded within the interior building surface.
  • the device further includes: a selection circuit coupled to the signal gating circuit, configured to activate a plurality of stages other than the first signal transceiver according to the response signal to a first signal transceiver
  • the two signal transceivers transmit the detection signal and the response signal of the receiving electronic device thereto;
  • the data processing circuit is further configured to determine, according to an optimal connection configuration between the first and second signal transceivers and the electronic device The coordinate position of the electronic device to be found in the indoor space.
  • the first signal transceiver has a first signal strength
  • the second signal transceiver has a second signal strength
  • the second signal strength is much lower than the first signal strength
  • the prompt includes at least one of: causing the electronic device to emit light, sound or vibrate itself, displaying the position of the electronic device in the room to the user, and causing another device in the vicinity of the electronic device Illuminate, vocalize or vibrate.
  • a technical effect of one aspect is to be able to reduce cable laying of an indoor environment and cumbersome configuration of, for example, a data routing device by implementing embodiments of the present disclosure.
  • the embodiments of the present disclosure can be installed in the building surface to save the indoor layout space; in addition, the control terminal of the present disclosure is more convenient for the user to operate and use.
  • the data interaction structure designed by the present disclosure adopts a plug-in design principle, so that the internal compact space can pass the vertical heat dissipation structure of the present disclosure, and can effectively discharge heat energy without changing the internal structure, thereby achieving effective effect. Cooling.
  • the change of the indoor scene environment desired by the user can be automatically controlled through a combination of various indoorly installed sensors, and the user is prevented from using a plurality of remote controllers or software programs to adjust or switch the indoors.
  • the cumbersome operation of the scene content makes the home scene more automated and intelligent.
  • FIG. 1 is a schematic cross-sectional view showing a current embodiment of a home console of the present disclosure
  • Figure 2 depicts a side view of the current embodiment
  • FIG. 3 is a view showing a state of use of another embodiment of the home control terminal of the present disclosure.
  • FIG. 4 is a schematic block diagram showing the principle structure of a power supply of the current embodiment
  • Figure 5 shows in more detail a partial circuit schematic of such a power supply
  • Figure 6 is a schematic cross-sectional view showing another embodiment of the home control terminal of the present disclosure.
  • Figure 7 shows the port setting mode of the terminal of the current embodiment
  • Figure 8 is a schematic illustration of a heat dissipation configuration of the current embodiment
  • FIG. 9 is a schematic diagram showing a system framework of a home indoor scene in which a user is located.
  • Figure 10 is a schematic block diagram showing the transmission structure of the state sensing parameters of the system of the present disclosure.
  • Figure 11 is a schematic flow diagram showing the logic of generating a changed scene variable
  • Figure 12 is a schematic view showing the arrangement of an indoor scene
  • Figure 13 depicts a flow chart of an embodiment of a method of the present disclosure
  • 15 is a flow chart showing still another embodiment of the method of the present disclosure.
  • Figure 16 is a schematic diagram showing the arrangement of scenes of the signal transceiver of the present disclosure.
  • Figure 17 is a schematic illustration of the three-dimensional spatial connection of the various signal sensors of the present disclosure.
  • Figure 18 is a schematic plan view showing a signal sensor arrangement of a home interior space
  • FIG. 19 is a structural block diagram showing the structure of an apparatus for implementing an electronic device in the present disclosure.
  • Figure 20 is a view schematically showing the communication connection configuration of the signal gating circuit of the present disclosure
  • 21 is a flow chart showing a method of the present disclosure for finding an electronic device.
  • Coupled is used to indicate that two or more elements that are in direct physical or electrical contact with each other or that may not be in direct physical or electrical contact operate or interact with each other.
  • Coupled is used to mean the establishment of communication between two or more elements that are coupled to each other.
  • processing logic including hardware (eg, circuitry, dedicated logic chip unit, etc.), firmware (such as running on a general purpose device or a dedicated machine), or a combination of the two. implemented.
  • hardware eg, circuitry, dedicated logic chip unit, etc.
  • firmware such as running on a general purpose device or a dedicated machine
  • processing is described below in terms of some sequential operations, it should be understood that some of the described operations may be performed in a different order. Moreover, some operations may be performed in parallel rather than sequentially.
  • circuit means all of the following: (1) hardware-only circuit implementations (such as in an embodiment of only analog and/or digital circuit devices), and (2) A combination of circuitry and software (and/or firmware), such as (if applicable): (i) a combination of control circuits or (ii) control circuitry/software (including digital signal control circuitry), software and portions of memory Working together to cause devices such as mobile phones or servers to perform various functions, and (3) circuits such as micro-control circuits or micro-control circuit parts that require software or firmware for operation, even software Or the firmware is not physically rendered.
  • circuitry or “device” applies to all uses of the term in this application, including in any claims.
  • circuitry as another example (as used in this application) may also encompass only one control circuit (or multiple control circuits) or control circuit portions and its (or their) associated software and/or An embodiment of the firmware.
  • device may also encompass (for example and if applicable to particular claim elements) a baseband integrated circuit or application control circuit integrated circuit in a similar integrated circuit, cellular network device, or other network device in a mobile phone or server.
  • the home control terminal can be installed in the building surface through the base 400, which can be installed at any suitable position in the home room and placed against the wall surface, and the base 400 has a separate connection family.
  • the input and output of the external transmission network and the home internal transmission network, and examples of the transmission network may be a power bus mode or a media transmission network mode.
  • the body portion of the base 400 has a square configuration such as that shown in FIG. 1, and may be other shapes, and the base 400 has an extension member 420 for, for example, the base portion of the base 400. It is stretched or received in the T2 direction into the accommodating space 500 provided on the building surface.
  • An input terminal and an output terminal for coupling the home external transmission network and the home internal transmission network are disposed in the extension unit 420.
  • the power cable 410 for coupling the input end and the output end can be co-wrapped and taken out from the central position of the susceptor 400.
  • One such effect is to avoid the complicated lead wire. Wiring interference.
  • the extension member 420 can be provided with a rotating structure for causing the body portion of the base 400 to be The plane in which it is located is rotated relative to the extension member 420.
  • the body 100 or 200 of the home control terminal may be subjected to the slewing operation in order to facilitate, for example, the installation angle. Adjust to the appropriate angular position. It is also possible that the body portion of the base of the base 400 can be rotated around the hole through which the power cable 410 passes.
  • the home control terminal further includes a body fixedly mounted on the base 400, wherein the body may include the first body 100 and the second body 200, and the first body 100 is stackedly mounted with the second body 200.
  • the bottom end of the first body 100 for mounting is provided with an engaging member 102 that cooperates with the top end of the second body 200.
  • plug-in and plug-in type plug-in joint components For example, plug-in and plug-in type plug-in joint components. It should be understood that more bodies may be joined to each other in this stacked manner.
  • the first body 100 is configured to mount a plurality of data signal control boards 101
  • the second body 200 can be configured to mount a plurality of power signal control boards 201
  • the plurality of data signal control boards 101 or the power signal control boards 201 may be inserted into the slots disposed in parallel in the first body 100 or the second body 200 in parallel in the T2' direction, respectively.
  • the data signal control board 101 and the power signal control board 201 may have different circuit configurations and are separately provided due to, for example, different voltage levels used.
  • the power signal control board 201 can be configured to receive an AC power source from the grid power line and control the AC power source (eg, 220 VAC) to be supplied to the electrical equipment in the home.
  • each power signal control board 201 is provided with a drive circuit 158 for energizing and controlling the AC voltage of the electrical function required for the electrical device, such as heating for an indoor floor heating facility. , or a motor for electric curtains.
  • the second body 200 since such a power signal control board 201 is centrally disposed in the second body 200, the second body 200 will be mounted closer to, for example, the power lead L line 411 and the N line 412, thus, the power lead L
  • the line 411 and the N line 412 may be provided to the second body 200, and the second body 200 may be provided with a power source for stepping down the alternating current power source to a plurality of direct current power sources, and the direct current power source may be provided to the first through the joint member 102.
  • a body 100 since such a power signal control board 201 is centrally disposed in the second body 200, the second body 200 will be mounted closer to, for example, the power lead L line 411 and the N line 412, thus, the power lead L
  • the line 411 and the N line 412 may be provided to the second body 200, and the second body 200 may be provided with a power source for stepping down the alternating current power source to a plurality of direct current power sources, and the direct current power source may be
  • the second body 200 is further provided with a power control main board, and the power control board is provided with a power source 159 including a main power circuit, a transformer U1 and a sub power supply. Circuit.
  • the main power circuit and the auxiliary power circuit can be electromagnetically coupled to each other through a transformer U1.
  • the main power circuit obtains an alternating current from, for example, a 220V grid AC power source and converts it into a direct current, for example, and the transformer U1 will come from the main power circuit.
  • the 220V AC is stepped down to 12V
  • the auxiliary power circuit rectifies the 12V AC current after the step-down and can further step down to 5V.
  • each power signal control board includes the above-described drive circuit 158 configured to supply alternating current power of the main power supply circuit of the power supply 159 to an alternating current drive circuit of each type of indoor electrical equipment, such as a motor for an electric curtain or a heater for a bathroom. ,as well as The 12V or 5V DC power of the sub power supply circuit of the power source 159 is supplied to the data signal control board 101 in the first body 200.
  • transformer U1 can use a power frequency transformer, such an effect is that power supply 159 can be subjected to greater voltage fluctuations, such as overvoltage.
  • the transformer U1 steps down the 220V AC from the main power circuit to 12V, and the auxiliary power circuit rectifies the stepped 12V AC current through the rectifier bridge D11 and can pass through, for example, a DC-DC converter and a diagram.
  • the illustrated regulator is further stepped down to 5V.
  • the data signal control board 101 may be configured to connect some electrical devices through a home internal transmission network, and an example of a home internal transmission network may be a ZigBee, RS485, or Wi-Fi-based network.
  • a home internal transmission network may be a ZigBee, RS485, or Wi-Fi-based network.
  • each data signal control board 101 is provided with a processor unit 143 configured to construct the home internal transmission network.
  • the home console can include one or more processor units 143, such as a digital signal processor (DSP) or microprocessor (MCU), in the illustrative illustration of the disclosure, for "processors," References to control circuitry and the like should be understood to include not only computers having different architectures, such as single/multiple logic control structures and serial/parallel structures, but also specific analog/digital integrated circuits, such as field programmable gate arrays. (FPGA), application specific circuits (ASIC), signal processing equipment, and other processing circuit equipment.
  • DSP digital signal processor
  • MCU microprocessor
  • Reference to a computer program, instructions, code, etc. should be understood to include software or firmware for a programmable control circuit, for example, whether the hardware device of the control circuit has instructional programmable content, or a configuration for a fixed function device Fixed gate arrays or programmable logic devices.
  • any of the processor units 143 described above can have a built-in memory for storing a computer program that, in conjunction with the processor unit, performs the transfer function described above.
  • the memory can store multimedia data or forward data content from other user devices, which can be in the form of a data set.
  • the memory stores a computer program comprising computer program instructions/code that controls the operation of the home console when the computer program is loaded into the processor unit.
  • the computer program code provides logic and routines that enable the home console to perform at least a portion of the methods disclosed herein.
  • the processor unit is capable of loading and executing a computer program by reading the memory.
  • the memory is shown as a single component, it can be implemented as one or more separate components, some or all of which can be integrated/removable and/or can provide permanent/semi-permanent/dynamic/cached storage.
  • the processor unit 143 may be responsive to an execution operation of a home user or an application or device driver invoked by the execution of the operation, or an input/output system (BIOS) firmware and instructions of certain firmware modules.
  • BIOS input/output system
  • these The processor unit can work in concert on a serial bus, for example, one of the processor units can act as a "coprocessor" for another processor unit.
  • the processor unit 143 can include a communication circuit 141 electrically coupled thereto, and the communication circuit 141 can be a chipset configured to generate according to control logic instructions of the processor unit. data transmission.
  • the processor unit also includes an integrated circuit or chipset (e.g., a memory array) for coupling to other components of the home console via a processor bus.
  • the chipset may also couple the processor unit to BIOS firmware via one or more system buses, which may be executable during system startup of the home console to facilitate initialization or reset of the processor unit or its chip Component.
  • communication circuit 141 can include a communication interface and a modulation/demodulation circuit configured to connect processor unit 143 via a system bus to modulate data signals in accordance with the control logic instructions. And waveform bearing, and can send the waveform through the communication interface.
  • the communication circuit 141 can receive a data signal from, for example, a home internal transmission network through a communication interface, and is demodulated by a modulation/demodulation circuit and transmitted to the processor unit 143 or the memory through the system bus.
  • the processor unit 143 can also include the processor unit 143 coupled to a plurality of media devices, network interfaces, or other I/O devices via one or more system buses, the media devices can include video or audio input/output devices, and the network interface can Includes LAN controllers, modems, etc.
  • the I/O device can include an attachment device, such as a keyboard.
  • the home control terminal further includes a cover 300 for enclosing the first body 100 and the second body 200, such that the data signal control board 101 or the power signal control board 201 can be insulated and packaged.
  • the cover plate 300 may be made of any insulating material such as resin or plastic.
  • the cover plate 300 is detachable or snap-fitted from the integral part of the first body 100 and the second body 200 in the T2 direction to the periphery of the integral component.
  • FIG. 1 In the side view of the overall configuration of such a home control end shown in FIG.
  • the first body 100 and the second body 200 are combined to form a single pillar-shaped integral component, and then the integral component is Fixedly mounted on the base 400, the cover plate 300 encloses the three side elevations of the integral component and does not enclose the base 400 portion so that the integral component can be rotated relative to the base 400 to adjust left and right. The angle of operation desired by the user.
  • the home console has a user interface 110 that can have a touch panel 120 for visualizing display operations configured to receive and recognize user input.
  • the touch panel 120 can be removed from the user interface 110, for example, can be removed or placed in the T3 direction.
  • the user interface 110 may have an adjustment mechanism for adjusting the tilt angle of the touch panel 120 according to a viewing angle of the user or, for example, a user's height.
  • touch panel 120 is further attached with a bending part 121 and coupled with the bending part 121 along the
  • the fixing member 122 extending from the bending member 121 is used for fixing the touch panel 120 in the user operation interface 110.
  • touch panel 120 can have a processor unit, such as a digital signal processor (DSP) or microprocessor (MCU) or a logic circuit or circuit group of particular computing functions.
  • DSP digital signal processor
  • MCU microprocessor
  • the first body 100 can be wirelessly connected to the first body 100.
  • a touch panel 120 for identifying and communicating with the touch panel 120 is disposed in the first body 100.
  • the data signal control board 101 of the processor unit is configured to be activated after the touch panel 120 is removed.
  • the first body 100 can be detached from the second body 200 and used as a separately operated component, or the second body 200 can be removed from the entirety. Removed from the part.
  • the first body 100 can be used as a mobile device alone, and the effect is to satisfy the function of the home user to control certain electrical devices at any desired position, or to control the power signal board 201 in the second body 200. Take out and place other electrical equipment, such as air quality detection devices or mobile air conditioning fans.
  • the interface corresponding to each control board is uniform and universal, the power supply can be conveniently plugged in when installing, for example, an air quality detecting device, so that the home control terminal can movably implement the functions required by the user. .
  • a power take-off cable 190 for acquiring an alternating current through, for example, the socket panel 500, and at the same time, a roller 140 is mounted on the bottom of the integral component to enable The home console moves.
  • the home control end has only a first body 100
  • the first body 100 may have a length of an integral part of the foregoing embodiment, and the first body 100 is fixedly mounted on the base 400.
  • the first body 100 is configured to install a plurality of data signal control boards 101.
  • the data signal control board 101 can include the foregoing power signal control board 201.
  • multiple data signal control boards 101 may be inserted in parallel into corresponding slots disposed in parallel within the first body 100.
  • each of the data signal control boards 101 may have different circuit configurations and be separately provided due to, for example, different voltage levels used.
  • the home control terminal further includes a cover 300 for enclosing the first body 100, so that the data signal control board 101 can be insulated and packaged.
  • the cover plate 300 may be made of any insulating material such as resin or plastic.
  • each data signal control board 101 can be provided with a power take-off interface 157 and a data access interface 155 (eg, a backplane connector) in an isolated manner, wherein the power take-off interface 157 can be configured to receive an exchange from the grid power line.
  • the power source controls and supplies the AC power source (for example, 220V AC power) to the electrical equipment in the home room.
  • the data access interface 155 is configured to receive multimedia data from a bus (e.g., WLAN fiber optic cable 413) that is laid out within the building, such as shown in FIG.
  • a power take-off slot 154 and a data slot 156 suitable for plugging the power take-off interface 157 and the data access interface 155 are disposed on one side of the content cavity 150 of the first body 100, it should be understood that if power is to be taken Interface 157 and data access interface 155 is disposed on the same circuit board, then the power take-off slot 154 and the data slot 156 are disposed at the same vertical height, and the technician can also set the arrangement position of the above interface according to their familiar methods, provided that the requirement is met. A convenient way to plug in parallel.
  • FIG. 4 schematically illustrates the design principle of the data signal control board 101 of the present disclosure
  • FIG. 5 illustrates an example of such a design on a power supply in more detail.
  • each data signal control board 101 may be provided with a drive circuit 158 for energizing and controlling an alternating voltage of an electrical function required for a household appliance device, such as a heater for an indoor floor heating facility, or Motor for electric curtains.
  • the respective integrated circuits of the power take-off interface 157 and the data access interface 155 can be electrically isolated, or by a total electrical isolation setting at the power take-off slot 154 and the data slot 156 in the first body 100, As such, the respective integrated circuits of the power take-off interface 157 and the data access interface 155 may not require insulation isolation.
  • the first body 100 is further provided with a power control main board, and the power control board is provided with a power source 159 including a main power circuit, a transformer U1 and a sub power circuit.
  • the main power circuit and the auxiliary power circuit can be electromagnetically coupled to each other through a transformer U1.
  • the main power circuit obtains an alternating current from, for example, a 220V grid AC power source and converts it into a direct current, for example, and the transformer U1 will come from the main power circuit.
  • the 220V AC is stepped down to 12V
  • the auxiliary power circuit rectifies the 12V AC current after the step-down and can further step down to 5V.
  • each data signal control board 101 includes the above-described driving circuit 158 configured to supply the alternating current power of the main power supply circuit of the power source 159 to the alternating current driving circuit of each type of indoor electrical equipment, such as the heating of the motor or bathroom of the electric curtain. And supplying 12V or 5V DC power of the sub power supply circuit of the power source 159 to the data signal control board 101 in the first body 200.
  • transformer U1 can use a power frequency transformer, such an effect is that power supply 159 can be subjected to greater voltage fluctuations, such as overvoltage. Switching power transformers can also be used, resulting in a smaller design cost and space.
  • the transformer U1 steps down 220V AC from the main power circuit to 12V, and the auxiliary power circuit rectifies the stepped 12V AC current through, for example, the bridge rectifier circuit D11 and can pass, for example, DC-DC
  • the converter and regulator are further stepped down to 5V.
  • each data signal control board 101 may be provided with an on/off circuit 144, such as a relay.
  • the breaking circuit 144 is disposed across the main power supply circuit and the auxiliary power circuit, and the switching circuit 144 is further coupled to a switch on the main power circuit side. 160, for maintaining power supply to the transformer U1 when disconnecting the alternating current supplied to the household appliance.
  • the relay as the switching circuit 144, is further provided with a protection circuit 153 coupled to the driving circuit 158 for absorbing the generated counter electromotive force during, for example, the opening and closing of the contact c of the relay.
  • An example of the protection circuit 153 may be a transistor cutoff element such as a diode.
  • the contacts a and b of the relay are each connected to the L and N lines of the grid power line, and it should be understood that the household appliances are connected between the contacts a and b.
  • the relay will be controlled by the drive circuit 158 when receiving the on-off pulse of the processor unit 143 to disconnect the contacts a and b, so that the power of the household appliance device is cut off, so that the power can be maintained through the switch 160. 159 AC current acquisition.
  • a plurality of rail slots 151 may be disposed on the sidewall of the accommodating cavity 150 in the first body 100 for receiving the outline configuration of the outer casing 131 of each data signal control board 101.
  • each of the rail slots 151 is provided with a sliding member 152 for facilitating the insertion stroke of the outer casing 131. It should be understood that the rail groove 151 and its sliding member 152 are varied according to the size of the outer casing 131, and the plurality of guide rails The slots 151 will be set in parallel.
  • each of the data signal control boards 101 can be visually presented in accordance with the indication of the direction of the dotted line O-O' in the figure.
  • the design of the circuit board of the data signal control board 101 can be roughly illustrated by the illustration.
  • the circuit board of each data signal control board 101 may include a processor unit 143, a data access interface 155, a power take-off interface 157, and a drive circuit 158, wherein the drive circuit 158 is coupled to the on-off circuit. 144 and protection circuit 153.
  • the outer casing 131 may include a top cover 132 and a bottom plate 134 that are joined together, and may include a front cover 141 that is configured to be sleeved after the top cover 132 and the bottom plate 134 are joined together.
  • the front cover 141 may be provided with an input device 121 (for example, a button) for directly manually controlling the electrical functions of the respective data signal control boards 101, and an indicator light 111 indicating the operational state of each of the data signal control boards 101,
  • the back side of the front cover 141 is provided with a circuit board 142 for providing the input device 121 and the indicator light 111, and the circuit board 142 can be connected through a port 135 provided on a circuit board of each data signal control board 101.
  • the processor unit 143 is described to implement manipulation, such as hot start/shutdown. It should be understood that the specifications of the front cover 141 of the outer casing 131 of each of the data signal control boards 101 may be the same.
  • each port of data access interface 155 (e.g., a backplane connector) will be defined by processor unit 143 via an electrically coupled communication circuit 141.
  • the data access interface 155 has eight ports T1 TT3, N1 N N5, wherein the ports T1 T T3 are configured to identify the DC current of the power source 159, and the ports N1 N N5 can be configured to identify the home internal transmission network.
  • An example of a communication protocol type, a home internal transmission network may be using ZigBee, Bluetooth or Wi-Fi protocols.
  • Each port can be connected to external network devices 181-186.
  • taking the electrical interface 157 may include a port P1 ⁇ P3, wherein P1 and P2 are coupled to the AC power line the main power supply circuit L in and L out and the ground E.
  • the respective integrated circuits of the power take-off interface 157 and the data access interface 155 can be electrically isolated, or can be electrically powered by the power source 159 at the power take-off slot 154 and the data slot 156 in the first body 100.
  • the isolation settings, such that the respective integrated circuits of the power take-off interface 157 and the data access interface 155 may not require insulation isolation.
  • the communication circuit 141 is configured to allocate a corresponding number of ports to the interface redundancy occurring in the data access interface 155.
  • the data access interfaces 155 of each data signal control board 101 are connected in a serial bus manner.
  • one port N1 of a data signal control board 101 is a network interface for adapting to the external network device 181, such as a Wi-Fi network, and corresponding ports on other data signal control boards 101.
  • N1 is set to be adapted to the Wi-Fi network, and is set between them by serial bus.
  • another port N2 of the data signal control board 101 is used to adapt to the network interface of the external network device 182, such as a ZigBee network.
  • one of the ports N4 is adapted to be adapted to the network interface of the external network device 184, such as Bluetooth, such that, in the case where the number of ports of each data access interface 155 is sufficient, interface redundancy will not occur, in general
  • each of the ports N1 to N5 for the data transmission protocol can be defined with one port type.
  • the processor unit 143 is configured to acquire the protocol type of the unoccupied port of the other data signal control board 101 and its port; and change the protocol type of the unoccupied port to the protocol type corresponding to the interface redundancy. For example, if the network interface using the external network device 186 is an RS485 bus and other multi-wire bus, if the interface redundancy occurs and the data transmission protocol of the required interface is RS485, a blank port such as that shown in FIG. 7 can be used.
  • the initial protocol type is changed to adapt to RS485 (the port occupied in the figure is indicated by " ⁇ ").
  • the processor unit 143 of each data signal control board 101 can be configured to receive a request for interface redundancy from the communication circuit 141 of the other data signal control board 101 and look up the unoccupied portion of its corresponding data access interface 155. Port and its protocol type.
  • a baffle 171 can be disposed within the bottom cavity 170 of the first body 100, wherein a number of regular arrangements are provided on the baffle 171 (e.g., A flow guiding member 172 (for example, an exhaust fan) for extracting gas 321 from the bottom cavity 170 into the accommodating cavity 150 and diffusing the gas 321 toward the top of the accommodating cavity 150.
  • a flow guiding member 172 for example, an exhaust fan
  • each of the data signal control boards 101 are respectively provided with through holes 133 (the through holes on the bottom plate 134 are blocked at the illustrated positions and are not shown), and thus, After the plurality of data signal control boards 101 are loaded into the accommodating cavity 150, the gas 321 drawn into the accommodating cavity 150 passes through each of the through holes 133 to carry thermal energy on the data signal control board 101.
  • a plurality of flow guiding grooves 130 are opened in parallel on the sidewall of the first body 100 for discharging the gas 322 with thermal energy out of the first body 100 .
  • the cover plate 300 forms a slot 320 with the sidewall of the first body 100 after enclosing the first body 100, and the gas 322 with thermal energy will be carried away from the first body 100 along the slot 320.
  • the side i.e., one side that is not enclosed by the cover 300
  • the heat-bearing gas 322 is discharged from a limited range.
  • the slot 320 is designed to create a larger airflow rate after the gas 322 is discharged into the slot 320, thereby preventing thermal energy from accumulating in the vicinity of the slot 320 or the diversion channel 130 without facilitating effective heat dissipation.
  • the processor unit 143 can also be configured to control the operating rate of the flow guiding component 172, such as changing the flow guiding component when sensing that the temperature within the receiving cavity 150 is above a threshold.
  • a greater amount of gas 321 e.g., air is drawn from the rotational speed of 172 to accelerate the thermal energy carrying process.
  • each data signal control board 101 is further provided with a temperature sensor 173 coupled to the processor unit 143 for sensing the actual temperature of each spatial area in the accommodating cavity 150.
  • the control board 101 may have different thermal energy for different data signals.
  • the heat energy generated on some of the data signal control boards 101 is carried by the external air 321 (for example, air) that is drawn in, and does not need to be completely sent to the receiving.
  • the top of the cavity 150 is finally discharged out of the accommodating cavity 150.
  • the processor unit 143 is configured to control the operating rate of the flow guiding member 172 such that the gas 321 Effectively arrive at the position of the data signal control board 101.
  • a baffle 171 is also disposed on the top of the accommodating cavity 150 for blowing a gas into the bottom of the accommodating cavity 150.
  • the gas 322 carrying the thermal energy will be convected by the air to be in different regions, that is, the accommodating cavity.
  • the flow guiding grooves 130 are discharged at different height stages of 150.
  • processing logic including hardware (eg, circuitry, dedicated logic chip unit, etc.), firmware (such as running on a general purpose device or a dedicated machine), or a combination of the two. of.
  • processing logic including hardware (eg, circuitry, dedicated logic chip unit, etc.), firmware (such as running on a general purpose device or a dedicated machine), or a combination of the two. of.
  • firmware such as running on a general purpose device or a dedicated machine
  • processing is described below in terms of some sequential operations, it should be understood that some of the described operations may be performed in a different order. Moreover, some operations may be performed in parallel rather than sequentially.
  • 9 and 10 in an overview of the present disclosure, a plurality of indoor scenes may be generated in a user's living room, and the scenes may be virtually constructed or changed by changing physical environment effects (eg, air, light). Generated by environment or sound, etc.).
  • the user's living room space may have a plurality of mutually independent indoor scenes 210, 220, 230, and
  • system 1 that changes indoor scene 210 may include a plurality of first sensors and seconds disposed in indoor scene 210 sensor.
  • the first sensor may select a temperature sensor 41 (for example, a pyroelectric infrared sensor).
  • the temperature sensor 41 may include an oscillating circuit and a counter, wherein the oscillating circuit has a temperature-dependent characteristic frequency, and the counter Configuring to count a number of pulses generated by the oscillating circuit during a given time interval or to count the time taken by the oscillating circuit to generate a given number of pulses to give an actual measurement in both cases, wherein the temperature Sensor 41 is configured to estimate the temperature using the difference between these actual measurements and the stored reference values in a linearization algorithm.
  • the second sensor can be a lamp 21, 25 or a security device (eg, camera 52).
  • the temperature sensor 41 may be activated when the user 2 enters the indoor scene 210, thereby starting the second sensor according to the state sensing parameter detected by the temperature sensor 41, or starting the installation by the second sensor.
  • Electrical equipment within the indoor scene 210 eg, air conditioner 31.
  • any "sensor” may not only indicate a single sensor component, but may also be an additional integrated circuit coupled in the electrical device, for example a second sensor (such as a radar sensor) may be coupled to the lamp 21 Within 25, when the user enters the indoor scene 210 and approaches the light 21, the light 21 or 25 can be illuminated by the second sensor.
  • the temperature sensor 41 can be coupled to the electrical device. After the user 2 enters the indoor scene 210, the thermal energy generated by the human body close to the electrical device is detected, and the amount of temperature change can be estimated according to a linear algorithm.
  • the system 1 further includes a control end 200 for connecting and controlling each of the above sensors.
  • the control end 200 can be installed at a suitable position in the room, for example, at the door of the door shown in FIG. 1, or can be placed in other closed spaces. Inside to reduce electromagnetic radiation.
  • the control terminal 200 is configured to identify state sensing parameters detected by each sensor and to initiate other sensors associated with the indoor scene 210 that need to be turned on according to a scene sensing association (eg, an association function) action.
  • the control terminal 200 is configured to control the interaction between the indoor transmission network and the external interaction network 4, such as controlling the start or stop of the interaction of the power supply line or the data bus.
  • control terminal 200 can also include a communication interface that can be implemented as any one or more of a serial and/or parallel bus interface, a wireless interface, any type of network interface, a modem, and any other type of communication interface.
  • a communication interface can be implemented as any one or more of a serial and/or parallel bus interface, a wireless interface, any type of network interface, a modem, and any other type of communication interface.
  • the communication interface is used to provide a connection and/or a communication link between any of the above sensors and an indoor transmission network, and any of the above sensors communicates data with the control terminal 200 through a communication interface.
  • Control terminal 200 also includes a memory, which may include, for example, a computer readable medium having one or more memory devices enabled for persistent and/or non-transitory data storage (ie, only in contrast to signal transmission), examples of such memory including Random access memory (RAM), non-volatile memory, such as any one or more of read only memory (ROM), flash memory (FLASH), EPROM, EEPROM, etc., and disk storage devices.
  • RAM Random access memory
  • non-volatile memory such as any one or more of read only memory (ROM), flash memory (FLASH), EPROM, EEPROM, etc.
  • the disk storage device can be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewritable compact disk (CD), any type of digital versatile disk. (DVD) and so on.
  • the memory can also include a mass storage media device.
  • the memory is used to provide a storage mechanism for interactive data to store interactive data for any sensor or appliance and various electrical device applications and any other types of information and/or data regarding various operational aspects of the digital device.
  • a digital device operating system can be maintained as a computer application and executed on a digital processor.
  • Electrical equipment applications may include equipment managers such as any form of control application, software application, signal processing and control module, native code for a particular digital electrical device, hardware abstraction layer of a particular digital electrical device, and the like.
  • control terminal 200 further includes a sensing associated device 201 coupled to the sensors, and the sensing associated device 201 can be configured to identify the first state sensing detected by the temperature sensor 41.
  • the parameter F( ⁇ ) is used to generate the scene sensing association G( ⁇ ), and then the scene sensing association G( ⁇ ) is calculated to energize the lamp 21.
  • the lamp 21 can incorporate a second sensor for sensing the position of the user 2 within the indoor scene 210, for example by electromagnetic means, to produce a second state sensing parameter K([sigma]).
  • control terminal 200 further includes a processor 202 coupled to the sensing associated device 201, and the processor 202 can be configured to sense the parameter F( ⁇ ) according to the first state, and transmit the second state.
  • the sense parameter K( ⁇ ) initiates an electrical device in the current indoor scene to change the content presented by the current indoor scene 210.
  • the content presented by the indoor scene 210 may include scene elements required from the physical medium (such as air, light and shadow environment) presented to the user 2.
  • the so-called "sensor” may also be disposed outside the indoor scene 210, for example, may be a sensor device worn by the user 2, for example, the first sensor may periodically detect the body surface temperature of the user 2, for example, the effect is The temperature requirement caused by the different metabolism of the human body in different time processes is different, so that the scene sensing correlation G( ⁇ ) can be generated according to the detected temperature, and the temperature output of the air conditioner is adjusted according to the scene sensing correlation G( ⁇ ).
  • the temperature profile within the indoor scene 210 can be automatically recorded and adjusted for the temperature within the indoor scene 210 over a period of time.
  • the sensing associated device may be configured as a plurality, and the plurality of sensing associated devices 201, 201', 201" may be coupled by a data bus, or may be connected to each other by the sensor.
  • the plurality of sensing associated devices 201, 201', 201" may also include a plurality of sensors.
  • the system 1 can further include: a third sensor disposed outside the indoor scene 210, such as the pressure sensor 62 shown in FIG. 9, configured to detect a third state transition related to the current indoor scene change.
  • Sensing parameter J( ⁇ ) wherein the sensing correlation device 201 is further configurable to identify the detected third state sensing parameter J( ⁇ ) to generate an external scene sensing association M( ⁇ )
  • the processor 202 is further configured to calculate the external scene sensing association M([sigma]) in conjunction with the scene sensing association G([sigma]) to derive a changed scene variable.
  • a ground pressure sensor 62 can be provided at the door, the pressure sensor 62 can generate a third state sensing parameter J( ⁇ ), thus, the third state
  • the sensing parameter J( ⁇ ) will cause the presentation content of the original indoor scene 210 to change.
  • the user 2 controls the electrical device in the current indoor scene 210 to play multimedia content (such as movies, music, etc.)
  • multimedia content such as movies, music, etc.
  • the third state sensing parameter J( ⁇ ) is generated, the content presented by the current indoor scene 210 is affected, for example, paused playback.
  • the multimedia content prompts the user 2 to open the door, for example by flashing the light 21 or changing the color temperature.
  • Processor 202 may also include electrically coupling processor 202 to a plurality of network ports or I/O devices over one or more system buses, which may include a LAN controller, a modem, or the like.
  • the I/O device can include an input attachment device that facilitates user 2 input.
  • the system 1 further comprises a timer 203 configured to synchronize the clocks of the first, second, third sensors or the electrical device according to the scene sensing association G( ⁇ ) .
  • the first, second or third sensor is disposed within a building surface.
  • fourth, fifth or sixth sensors may also be included, these sensors being mounted in the building surface, such that scene variables in each indoor scene are conveniently accommodated by these "sensors" Detection.
  • the first and second state sensing parameters are one or a combination of temperature, humidity, and illuminance data detected by the sensor.
  • the third state sensing parameter is one or a combination of clock, geographic location, or weather data.
  • the method for changing an indoor scene based on the system 1 may include the steps of:
  • the sensing association may be The device 201 acquires the current scene variable P( ⁇ ).
  • the first sensor is an infrared sensor. If the user 2 enters the indoor scene 210, the infrared sensor can be disposed, for example, in the light 21, and the user 2 is sensed to enter the indoor space to generate the first a state sensing parameter F([sigma]), the first state sensing parameter F([sigma]) being set to be associated with other devices in the indoor scene 210, including any sensors or electrical devices within the indoor scene 210, such as by
  • the first state sensing parameter F( ⁇ ) triggers the second sensor (eg, the desk lamp 25 or the footlight), and the first state sensing parameter F( ⁇ ) can also be used to trigger the activation of the electrical device (eg, the air conditioner 31). .
  • the sensing association device 201 identifying, by the sensing association device 201, the detected first state sensing parameter F( ⁇ ) to generate a scene sensing association G( ⁇ ), and starting according to the scene sensing association G( ⁇ )
  • the two sensors detect the second state sensing parameter K([sigma] in the current indoor scene 210.
  • the generation of the scene sensing association G( ⁇ ) satisfies the convolution function formula:
  • the second state sensing parameter K( ⁇ ) can be generated according to the following convolution function formula:
  • the associated variable H( ⁇ ) is generated by the processor 202, for example, associating the first state sensing parameter F( ⁇ ) with the identification code of other sensors or electrical devices in the indoor scene 210, which may be included in the indoor scene 210.
  • the processor 202 generates the associated variable H([sigma]) to cause the sensing associated device 201 to control a second sensor activation associated with the first sensing parameter F([sigma]) to detect other in the indoor scene 210 by the second sensor Entity environment variable.
  • the temperature sensor 41 is used to sense that the user 2 enters the indoor scene 210 to activate the lights 21 and 25, and if the temperature sensor 41 senses that the room temperature changes due to the user 2 entering the indoor scene 210,
  • the air conditioner 31 is activated in accordance with the temperature variable.
  • the temperature control of the air conditioner 31 will vary depending on the temperature variable detected by the temperature sensor 41, or the air conditioner 31 can be automatically adjusted by the temperature sensor 41.
  • the air conditioner 31 can be activated based on the state sensing parameters detected by the temperature sensor 41 and the lamp 25 after the temperature sensor 41 and the lamp 25 continue to operate for a period of time.
  • the method further comprises the steps of:
  • the third sensor can be a doorbell 61 or a pressure sensor 62 that generates the third state sensing parameter J([sigma] to encourage the presentation of the indoor scene 210 to change.
  • the user 2 controls the electrical device in the current indoor scene 210 to play multimedia content (such as movies, music, etc.)
  • multimedia content such as movies, music, etc.
  • the third state sensing parameter J( ⁇ ) is generated, the content presented by the current indoor scene 210 is affected, for example, the multimedia content is paused.
  • the user 2 is prompted to open the door, for example, by flashing the lamp 21 or changing the color temperature.
  • the external scene sensing association M( ⁇ ) may include an identification code of the indoor scene 210 for indicating the desired excitation, for example, the temperature sensor 41 as the first sensor senses the user 2, or the user 52 is detected by the camera 52.
  • an excitation signal may be generated to the sensing associated device 201.
  • the sensing associated device 201 will determine the location of the user 2 in real time according to the excitation signal, thus, the external scene sensing association M ( ⁇ ) A small sensor system that will affect the indoor scene 210 in which the user 2 is located, generating an incentive to the small sensor system.
  • the external scene transmission The manner in which the sense association M( ⁇ ) is generated may be performed in accordance with step 304 shown in FIG.
  • the processor 202 will change the generated based on the changed scene variables that have been generated based on step 306.
  • the post scene variable acts as a new current scene variable P'( ⁇ ), so that the external scene sensing association M( ⁇ ) satisfies:
  • the external scene sensing association M( ⁇ ) may not be generated based on step 306, for example, may be generated directly according to the current scene variable P( ⁇ ) in step 302, or may be generated in combination with the first sensor.
  • a state sensing parameter F( ⁇ ) is used to generate an external scene sensing association M( ⁇ ).
  • the method further includes synchronizing the clocks of the first, second, third sensors or the electrical device according to the scene sensing association G( ⁇ ). For example, each sensor can be clocked and the user 2 can preset the clock to turn on a portion of the sensor for a desired period of time.
  • the first and second state sensing parameters are one or a combination of temperature, humidity, and illuminance data detected by the sensor.
  • the third state sensing parameter is one or a combination of clock, geographic location, or weather data.
  • the state sensing parameters, variables described in the above embodiments may also be computer programs or applications stored in the above described memory, and may reach different of the sensors or electrical devices via any suitable delivery mechanism.
  • the delivery mechanism can be, for example, a non-transitory computer readable storage medium such as a compact disk read only memory (CD-ROM) or a digital versatile storage disk (DVD).
  • CD-ROM compact disk read only memory
  • DVD digital versatile storage disk
  • the delivery mechanism can be a signal configured to reliably communicate a computer program.
  • the apparatus shown in the present disclosure may cause a computer program to be propagated or transmitted as a computer data signal.
  • a computer program can be transferred to, for example, a transceiver circuit to a different one of the digital devices, unless the digital device has indicated that the storage space of the required memory is already occupied and must be changed to the disk mode described above.
  • the direction of delivery of the multimedia data content can be controlled by the control circuit to point to a memory having a rich storage space so that the multimedia data can be temporarily stored by the memory having a rich storage space and can be efficiently called at any time.
  • the indoor transmission network may include a power network in the form of a circuit control, which may be an AC power line network that serially connects various sensors or electrical devices in an indoor scene.
  • the AC power line network may include laying in a building.
  • the in-plane AC power lines 110, 112, 114, the above state sensing parameters can be carried and transmitted through the AC waveform of each of the AC power lines.
  • the indoor transmission network may include a wired/wireless data network, such as Home WLAN or Wi-Fi network. In some embodiments, it may also be a combination of the above power network and data network.
  • APIs Application programming interfaces of one or more sensing associated devices or processors may be used in some embodiments and the functions discussed herein may be implemented as APIs or accessed by APIs.
  • An API is an interface implemented by program code components or hardware components that allows another different program code component or hardware component to access and use one or more of the functions, methods, processes, data structures, classes, and/or other service.
  • the API may define one or more state sensing parameters passed between the API call component and the API implementation component.
  • the API allows the developer of the API call component (which can be a third-party developer) to take advantage of the specified features provided by the API implementation component.
  • the API can be a source code interface that is provided by a computer system or library to support requests for services from the application.
  • the indoor transmission network can be connected to the external interaction network 4 through the control terminal 200, and the interaction network 4 can be further connected to the cloud service terminal 5.
  • the example of the interaction network 4 can be a 4G-LTE network or a similar mobile data network.
  • the user 2 A third state sensing parameter J([sigma]) from the sensor worn by the user 2 can be communicated through the interactive network 4.
  • the third state sensing parameter J([sigma]) excites, for example, changes in scene variables of the indoor scene 240, such as adjusting room temperature, humidity, or light environment.
  • the arrangement of sensors and electrical devices of an indoor scene is visually depicted.
  • the user 2 can initiate detection of sensors therein when entering the scene, such as these sensors.
  • the electrical equipment includes a light 25 and an air conditioner 31.
  • the light 25 can also be used as a sensor.
  • the infrared foot light 411 mainly includes:
  • An infrared sensor for detecting that the user 2 approaches or enters a predetermined detection range of the infrared footlight 411 and generates the state sensing parameter
  • a lighting device is configured to illuminate the illumination source according to the state sensing parameter.
  • the illumination device may have an illumination light flux that is smaller than the light 25, and due to the setting requirements of the footlight, it may only illuminate the ground when the user 2 enters the indoor scene, for example, so that the user 2 may recognize that the ground may be placed while walking. Obstacle;
  • the controller is electrically coupled to the infrared sensor and the illumination device, respectively, and controls the illumination device to be activated according to the state sensing parameter.
  • the infrared footlight 411 may further include transmission means for transmitting the state sensing parameter to the control terminal 200 or transmitting the state sensing parameter to other sensors through the indoor transmission network.
  • An example of an indoor transmission network can be an example Such as a low-voltage power line carrier network, it can also be a home WLAN network or a ZigBee network.
  • the location of the user 2 can be located by simultaneously opening the infrared footlights 411 and 412, which can cause the sensor to accurately identify which other sensors or appliances are activated, such as if the user is away from the light 25, The lamp 25 may not be activated by this state sensing parameter or the camera 52 may not be activated.
  • the infrared footlight 411 acts as a first sensor
  • the camera 52 and voiceprint sensor 49 can act as a second sensor or a light 25 as a second sensor.
  • the method for changing the indoor scene may further include:
  • Step 502 detecting, by the infrared footlights 411 or 412 in the indoor scene (or at the same time), a first state sensing parameter F( ⁇ ), such as an infrared photoelectric level signal, changed by the user 2 in the current indoor scene. And acquiring the current scene variable P( ⁇ ) by the sensing association device 201.
  • the first sensor is an infrared sensor. If the user 2 enters the indoor scene 210, the infrared sensor senses that the user 2 enters the indoor space to generate the first state sensing parameter F( ⁇ ).
  • the first state sensing parameter F([sigma]) is set to be associated with other devices in the indoor scene 210, including any sensors or electrical devices within the indoor scene 210, such as by the first state sensing parameter F ( ⁇ ) Triggering the lamp 25 or the infrared footlight 412, the air conditioner 31 can also be triggered by the first state sensing parameter F( ⁇ ).
  • Step 504 Identify the detected first state sensing parameter F( ⁇ ) by the sensing association device 201 to generate a scene sensing association G( ⁇ ), and activate according to the scene sensing association G( ⁇ )
  • the camera 52 generates a second state sensing parameter K([sigma] in the current indoor scene by means of pattern recognition.
  • the associated variable H( ⁇ ) is calculated by the processor 202 and can also be generated by the controller.
  • associating the first state sensing parameter F([sigma]) with the identification code of other sensors or appliances in the indoor scene 210 may include the device code of any sensor or electrical device within the indoor scene 210.
  • the controller generates the associated variable H( ⁇ ) to cause the sensing associated device 201 to control the camera 52 associated with the first state sensing parameter F( ⁇ ) to be activated for detection by the camera 52 Scene variable.
  • the camera 52 is configured to recognize a graphic captured by the user in the indoor scene and to calculate the graphical content based on a graphical algorithm to generate a second state sensing parameter K([sigma]).
  • Step 506 Start an electrical device in the current scene according to the first and second state sensing parameters to change content presented by the current indoor scene.
  • the temperature sensor 41 and the camera 52 can simultaneously sense that the user 2 enters the indoor scene, and can control the start lights 21 and 25, and if the temperature sensor 41 senses the room temperature after the user 2 enters the indoor scene 210
  • the air conditioner 31 can be activated based on the temperature variable.
  • the temperature control of the air conditioner 31 will vary depending on the temperature variable detected by the temperature sensor 41, or the air conditioner 31 can be automatically adjusted by the temperature sensor 41.
  • the air conditioner 31 can continue at the temperature sensor 41 and the light 25 After a period of operation, it is started based on the state sensing parameters detected by the temperature sensor 41 and the lamp 25.
  • the voiceprint sensor 49 can also be activated according to the first and second state sensing parameters generated by the temperature sensor 41 and the camera 52, so that the user 2 can use the voice mode without any physical action.
  • a control signal is generated, wherein the voiceprint sensor 49 is configured to recognize a voiceprint signal from the user 2 to emit a voice, and can generate dynamic control of the electrical device (e.g., the light 25 or the air conditioner 31) based on the voiceprint signal.
  • the method step 504 further includes: creating, by a plurality of the infrared sensors, spatial coordinates of the user 2 in the indoor scene to locate the user 2.
  • the infrared foot lights 411 and 412 can be disposed in different directions of the indoor scene space, such as spatial orthogonal directions, such an effect that the system 1 can more accurately obtain the position of the user 2 to be more accurate. Ground control of the activation of sensors or electrical equipment in an indoor scene.
  • the infrared footlights 411 and 412 can each be mounted in two mutually perpendicular building faces such that the ranges 413 and 414 of infrared light emitted by the two infrared footlights 411 and 412 can be superimposed on one another or Orthogonal to form an orthogonal network, when the user 2 is in the orthogonal network region, the infrared foot lights 411 and 412 can simultaneously obtain the first state sensing parameters, and thus, the sensing associated device 201 transmits according to the first states.
  • the sense parameter calculates the spatial coordinate vector from which the processor 202 will obtain the position of the electrical device within a predetermined range around the spatial coordinate. For example, in the three-dimensional space of the indoor scene shown in FIG. 12, the lamp 25 and the air conditioner 31 are installed, and the sensing associated device 201 can control the lamp 25 and the air conditioner 31 to be activated simultaneously or sequentially, or according to the user 2 Instructions to start.
  • a built-in sensor can be installed in each of the lamp 25 and the air conditioner 31, and these built-in sensors are provided for providing the spatial correlation of the sensing associated device 201 to the sensing associated device 201 under the spatial coordinate vector for calculating the position of the user 2.
  • the coordinate vector as such, the sensing associated device 201 will control whether the lamps 25 and the air conditioner 31 are turned on based on the spatial positioning coordinate vector.
  • the illustrated camera 52 has a rotating component for the shooting lens to be rotated, the rotating component being configured to calculate the scene sensing association G ( ⁇ ) according to the spatial correlation coordinate vector of the sensing associated device 201. ) to generate a swirl amount to adjust the photographic lens to the optimal angle for the desired shot.
  • the location where the user 2 is located may not be within the range of viewing angles that the camera 52 can capture.
  • the camera lens of the camera 52 needs to be rotated according to the instructions contained in the scene sensing association G( ⁇ ).
  • the lens is to the face of the user 2, for example.
  • the operating wind speed or direction of the air conditioner 31 after starting is preset to the general mode, and the user 2 can only achieve the desired setting by manual adjustment.
  • the operation mode in which the air conditioner 31 is turned on can be controlled according to the scene sensing association G( ⁇ ), for example, the wind direction can be automatically adjusted to the accurate position where the user 2 is located.
  • a scene variable for synchronizing individual independent indoor scenes 210/220/230/240 is disclosed to, for example, provide a system and method having multiple state sensing parameter outputs.
  • at least two sensing associated devices 201 and 201' can be utilized to perform at least two scene content to be synchronized.
  • the sensing association device 201 can be configured to synchronize the required scene variables when instructed to execute the respective scene content, the sharing operation being executable from the synchronization component of the sensing associated device 201, such synchronization operation ensuring that the user desires Experience the scene content output from each indoor scene.
  • such a synchronization operation may also enable the scene variable to remain within the range allowed by the indoor transmission network load, and if the scene variable presented without the synchronization operation exceeds the The allowable range of load.
  • the scene variables can be used to drive different electrical devices or sensors, such as temperature sensor 41 or television 45, for example, sensors in some systems can provide user 2
  • the visual or audible output may even be a tactile output, which may include vibrations generated by a sensor worn by the user 2 driven by the first state sensing parameter F([sigma] or the second state sensing parameter K([sigma]) Output.
  • the audible output can include a voice prompt played by the speaker where the voiceprint sensor 49 is located, and synchronization of the two different scene variables ensures that the audible and tactile output are simultaneously experienced by the user 2.
  • the synchronized scene variables described above may be one or more data structures, such as a digital array, which may include data identifying the associated variable H( ⁇ ), the time each state sensing parameter is requested, and the number of frames requested by each state sensing parameter. And/or any other data information related to the presentation of synchronization components and/or scene variables.
  • the sensing associated device 201 can employ the same encoder/decoder under the control of the processor 202, which is a hardware component capable of encoding or decoding the state sensing parameters described above.
  • the scene variables may be retrieved from one or more non-transitory storage media (eg, in some state sensing parameters have been pre-synthesized and stored for frequent Used, accessible through lookup lists and/or other data structures) and/or synthesized when scene content needs to be rendered.
  • the scene variables can have different sample frame rates, sample rates, durations, and/or other characteristics.
  • one or more scene variables may have one or more characteristics in common with one another.
  • the synchronized scene variables can be one or more data structures, such as a digital array, a table, a list, and/or other data structures. Synchronized scene variables may include data identifying all of the sensing associated devices 201, 201', status (such as "ready” status, "waiting” status, "cancellation” status, and/or other such status), and the like.
  • the synchronization method may include:
  • Step 602 Detect a third state sensing parameter J( ⁇ ) that is changed in association with the current indoor scene 210 by a third sensor in another indoor scene 240 outside the indoor scene 210.
  • the third sensor can be a light 24 or an air conditioner
  • the built-in sensor provided by the machine 33 may also be an infrared sensor 44.
  • the third sensor generates the third state sensing parameter J( ⁇ ) to stimulate the presentation content of the indoor scene 210 to change.
  • the third state sensing parameter J( ⁇ ) may be generated by the infrared sensor 42 for influencing the content presented by the current indoor scene 210, and the third The state sensing parameter J([sigma]) is used to communicate one or more synchronization signals to the synchronization component of the sensing associated device 201', such that the sensing associated device 201' is extracted in the current indoor scene 240 in response to the synchronization signal
  • Other state sensing parameters exist and serve as data information needed to be synchronized to the indoor scene 210.
  • the sensing associated device 201' can extract a state sensing parameter of a fourth sensor within the current indoor scene 240, or can be communicatively coupled to another sensing associated device 201 by the fourth sensor.” In this way, the sensing association device 201" can further extract state sensing parameters corresponding to the fifth sensor and the sixth sensor in the current indoor scene 240, for example.
  • any one or more of the above-described sensing associated devices 201, 201', 201" are coupled by the processor 202 to collect data information including these state sensing parameters or scene variables, thereby enabling transmission to the indoor scene 210.
  • the sense association device 201 transmits these data information.
  • Step 604 Identify the detected third state sensing parameter J( ⁇ ) by the sensing associated device 201 in the indoor scene 210 to generate an external scene sensing association M( ⁇ ).
  • the external scene sensing association M( ⁇ ) may include an identification code of the indoor scene 210 for indicating the desired excitation, for example, the temperature sensor 41 as the first sensor senses the user 2, or the user 52 is detected by the camera 52.
  • an excitation signal can be generated to the sensing associated device 201.
  • Step 606 After the sensing associated device 201 receives the excitation signal, the sensing association device 201 starts acquiring the data information for synchronization from the processor 202, wherein the sensing M( ⁇ ) is included according to the external scene.
  • the identification code to replace the status parameters of the same type of sensor or electrical equipment. For example, if the user 2 turns on and controls the air conditioner 33 in the indoor scene 240, after the user leaves the indoor scene 240, the state parameters (such as temperature, wind speed) included in the state sensing parameters of the air conditioner 33 will be synchronized. To the air conditioner 31 in the indoor scene 210.
  • the manner in which the scene sensing association M( ⁇ ) is generated may be performed according to step 304 shown in FIG. 11 described above.
  • the synchronization operation is more convenient in the case of having the same type of electrical device or sensor in different indoor scenes, such as indoor scene 210, indoor scene 220, and indoor scene 240 shown in FIG.
  • the same type of electrical equipment is provided, such as a lamp 21, a lamp 22 and a lamp 24, an air conditioner 31, an air conditioner 32 and an air conditioner 33, and sensors such as temperature sensors 41, 42 and 44, each according to the above embodiment
  • the state sensing parameters of the same type of sensor can be synchronized, and in the indoor scene 230, there may be no air conditioner and the television set 45, then the synchronous operation can only be part Sub-implementation, such as only lamps 23 and 24, and the status parameters of infrared sensors 43 and 44 can be synchronized.
  • such a synchronization operation may also enable the scene variable to remain within the range allowed by the indoor transmission network load, for example, by the synchronization operation between the air conditioners 31/32/33. Maintaining the indoor transmission network load.
  • the external environment variable 6 of the indoor scene 220 may cause the sensor of the indoor scene 220 to generate a third state sensing parameter J([sigma]) such that the scene variables of the indoor scene 220 may be indirectly affected.
  • the third state sensing parameter J([sigma]) can be detected by the window 51 or its window covering component.
  • the external environment variable 6 may include illumination, wind or ultraviolet light, etc., so that the generated third state sensing parameter J( ⁇ ) may be a digital value including light intensity or wind speed, which satisfies the threshold condition set by the processor 202.
  • the sensor-sensing device 201 can then be activated to activate an electrical device, such as a light 22, within the room.
  • the window 51 may have a photosensitive sensor for sensing the illumination intensity of the external environmental variable 6 and a controller coupled to the photosensitive sensor for calculating the third state transmission according to the change of the illumination intensity.
  • the electromagnetic switch includes, for example, a magnetic assembly and an electromagnetic attraction assembly that are respectively mounted on a fixed sash and a movable (eg, push-pull or rotary) window body, wherein the electromagnetic is controlled by a controller
  • the suction assembly is coupled to the magnetic assembly to close the window 51.
  • the open or closed contact edge of the window body may be provided with an infrared sensor that sends a cue signal to the controller upon sensing, for example, that the wind blows foreign matter.
  • the third state sensing parameter J([sigma] stimuli sensing associated device 201 activates the light 22, wherein the method of changing the indoor scene 220 can include:
  • Step 702 Detect, by the built-in sensor of the window 51 in the indoor scene 220, a first state sensing parameter F( ⁇ ), such as an infrared photoelectric level signal, that is changed by the external environment variable 6 in the current indoor scene 220, and pass The sensing association device 201 acquires a current scene variable P( ⁇ ).
  • the first sensor is a photosensitive sensor of the selection window 51, and the photosensitive sensor senses that the light intensity meets a threshold condition to generate a first state sensing parameter F([sigma]), the first state sensing The parameter F([sigma]) is set to be associated with the light 22 in the indoor scene 210.
  • Step 704 Identify the detected first state sensing parameter F( ⁇ ) by the sensing association device 201 to generate a scene sensing association G( ⁇ ), and start according to the scene sensing association G( ⁇ )
  • the lamp 22 senses a second state sensing parameter K([sigma] in the current indoor scene 220 by optical transmission. Further, the lamp 22 includes built-in sensors for further basis The second state sensing parameter K([sigma]) initiates other electrical devices in the indoor scene 220, such as the air conditioner 32 or the outlet 47.
  • the associated variable H( ⁇ ) can be calculated by the processor 202 or generated by the built-in controller of the lamp 22.
  • associating the first state sensing parameter F([sigma]) with the identification code of other sensors or appliances in the indoor scene 210 may include the device code of any sensor or electrical device within the indoor scene 210.
  • the built-in controller of the lamp 22 generates the associated variable H( ⁇ ) to cause the sensing associated device 201 to control the activation of the air conditioner 32 associated with the first state sensing parameter F( ⁇ ), thereby Scene variables such as temperature, humidity or air quality are changed by the air conditioner 32.
  • Control of energy (eg, electrical energy) in an indoor scene can be achieved by the teachings of the present disclosure.
  • the indoor scenes 210, 220, 230, and 240 may serve as a single indoor scene, and the external environment variable 6 may cause the sensor of the overall indoor scene to generate a third state sensing parameter J([sigma]) to affect the scene variables.
  • light energy can be obtained from external environmental variables 6 and converted to alternating current for storage by, for example, a photoelectric conversion device 116 (such as a photovoltaic inverter).
  • the control terminal 200 can acquire the third state sensing parameter J( ⁇ ) from the photoelectric conversion device 116.
  • the external environment variable 6 may include illumination or ultraviolet light or the like, so that the generated third state sensing parameter J( ⁇ ) may be a digital value including the light intensity, which satisfies the threshold set by the processor 202.
  • the condition may then motivate the sensing associated device 201 to change the scene variables of the overall indoor scene, such as in what manner to power the electrical device.
  • the third state sensing parameter J([sigma]) activates the sensing associated device 201 to activate an electrical device of the overall indoor scene.
  • an example of a method for changing the overall indoor scene by the external environment variable 6 may include: detecting, by the third sensor of the photoelectric conversion device 116 outside the entire indoor scene, a third related to the energy-related change of the current overall indoor scene. State sensing parameter J( ⁇ ).
  • the third sensor can be a built-in sensor or metering component that is included with the photoelectric conversion device 116, or the third sensor can be a built-in sensor of the control terminal 200, such as a relay.
  • the third sensor generates the third state sensing parameter J([sigma]) to cause the presentation content of the indoor scene 210 to change.
  • the relay is used to disconnect the power bus 100 when the power bus 100 of the external interactive network 4 is de-energized, thereby passing the AC power lines 110, 112, 114 within the overall indoor scene. The electrical energy is transmitted to the electrical equipment therein.
  • the built-in sensor provided by the photoelectric conversion device 116 can generate a third state sensing parameter J( ⁇ ) upon detecting that the stored electrical energy meets a certain threshold to prompt the processor 202 to partially disconnect from the power bus.
  • the passage of 100 electrical equipment in a portion of the indoor scene can be powered by stored electrical energy.
  • the power supplied can be directly DC current, or can be converted to the AC current required by the AC electrical equipment through the inverter.
  • the metering component can accumulate the electrical energy converted by the photoelectric conversion device 116, so that the third state sensing parameter J( ⁇ ) can be generated according to the accumulation to prompt the processor 202 to use the total energy quantity value of the overall indoor scene.
  • An example of the metering component may be a metering chip integrated in the photoelectric conversion device 116.
  • one or more of the above-mentioned sensing associated devices 201, 201', 201" may be coupled to a plurality of sockets 46, 47, 48 disposed in the building surface to sense parameters J according to the third state. ( ⁇ ) initiating a power path to the sockets, the power path being in the form of an alternating current or direct current.
  • the photoelectric conversion device 116 can be controlled by the processor 202 to provide power to the outlet. The path, as such, the user 2 in the overall indoor scene can obtain limited power through these outlets.
  • Figure 16 graphically depicts a scene of a home interior environment in which several home-like electronic devices are arranged in accordance with the preferences of the home user.
  • the illustrated household electronic devices include fixedly mounted devices such as the illustrated wall sockets 204, 206-210, air conditioner 205, recessed lights 201 and downlights 202, 203, etc., and mobile electrical equipment, For example, lights 211, 213 or wired outlets 212.
  • the mobile electrical device further includes a home control terminal 3, and the home control terminal 3 can have an interface device 31 to facilitate intuitive manipulation by the user.
  • the example of electronic device 1 in Figure 16 can be any form of digital device, and the term "electronic device” as used herein generally refers to a request that can be responsive to a data link or data pairing of a wireless network and subsequently with other Any logic circuit that the electronic device or signal sensor, transceiver establishes data pairing or handshaking.
  • the electronic device 1 may also exchange data information with other digital devices of the user using other input/output channels.
  • other input/output channels include analog signals on audio cable input and output paths (eg, audio interfaces); cameras coupled with image analyzers, two-dimensional code readers, or other camera input devices; A display output device that reads an image; a sensor, such as an accelerometer, gyroscope, or proximity detector (such as by a position sensor) that can use the motion, orientation, or position of the electronic device 1 to input information to the electronic device; Infrared light) detectors and/or transmitters; ultrasonic detectors and/or transmitters, etc.
  • the electronic device 1 may be a mobile phone, a laptop computer or a personal digital assistant (PDA) device held by the user, which is not easily found in case of neglect by the user due to the portability and compact design of the electronic device 1. In this case, the effects achieved using the embodiments of the present disclosure are particularly remarkable.
  • PDA personal digital assistant
  • the electronic device 1 may be a remote controller of any home indoor electrical device.
  • the remote controller may transmit a control signal by means of invisible light (for example, infrared light), or may transmit a control command by other radio frequency (RF) methods.
  • RF radio frequency
  • the remote control can also be used to receive responses from electrical devices, and these responses can be presented to the user in any manner, such as a more compact visual operator interface, audio ringing or vibration.
  • a method for finding an electronic device 1 placed in the home room may include:
  • Step S100 transmitting a detection signal to the space through one or more signal transceivers disposed in the indoor space.
  • the signal transceiver is a plurality of receptacles, such as 206, 207, and 209, that are configured to be embedded within a wall.
  • the outlet 207 can have a transmitter for transmitting, for example, wireless routing information to the home interior space in accordance with a broadcast signal from the home console 3.
  • Step S200 Determine an optimal connection configuration between the signal transceiver and the electronic device according to the response signal of the electronic device 1 to be searched for.
  • An example of the electronic device 1 may be a laptop or a tablet, for example, the user desires to initiate a seek operation through the home console 3 when it is not possible to recall where the laptop was left in the room earlier.
  • Step S300 Prompt the user of the location of the electronic device 1 or wake up the electronic device 1 according to the optimal connection configuration to give the home user a prompt.
  • the manner of prompting can be generated by a buzzer such as a laptop.
  • the search for small electronic devices such as mobile phones can be prompted by the voice prompt or ringing.
  • the optimal connection configuration includes at least:
  • a plurality of signal transceivers 21, 22, 23 and 24 in the home interior space transmit wireless signals, such as Wi-Fi signals, into the space.
  • a detection signal transmitted by a signal transceiver 22 in the space can be received by a plurality of other signal transceivers 21, 23 or 24 other than the electronic device 1 to be sought.
  • the transmitted detection signal may comprise a detection identifier indicating that the signal transceiver 22 broadcasts a response request to the electronic device 1 that may be present to at least obtain a feedback signal of the electronic device 1.
  • the detection identifier may include a two-digit hexadecimal code, and if the electronic device 1 receives and recognizes the detection identifier, in response to the detection identifier, for example, a device name is fed back.
  • the signal transceiver 21 A selection may be made: not responding to the detection identifier; or in response to the detection identifier and feeding back a zero code, such that there is only a response from the electronic device 1 to the broadcast channel of the signal transceiver 22.
  • a “channel” or “channel” is used to refer to a medium channel that transmits information from the transmitting side to the receiving side. It should be noted that since the characteristics of the term “channel” can vary according to different wireless protocols, this article The term “channel” as used may be considered to be used in a manner consistent with the communication standard of the type of device used with reference to the term.
  • the channel width is variable (eg, depending on device computing power, band conditions, etc.).
  • 4G-LTE can support adjustable channel bandwidth from 1.4MHz to 20MHz.
  • the WLAN channel can be 22 MHz bandwidth and the Bluetooth channel can be 1 MHz bandwidth.
  • Other protocols and standards may include different channel definitions.
  • some standards can define and use multiple types of channels. For example, different channels for the uplink or downlink and/or different channels for different uses such as data, control information, and the like.
  • the detection signal may further include, in the above step S200, detecting a spatial distance between a signal transceiver (eg, the signal transceiver 22) that establishes a wireless connection with the electronic device 1 and the electronic device 1.
  • the spatial distance is determined based on the signal transmission strength of the signal transceiver and the data transmission rate of the downlink on the established wireless connection.
  • the established wireless connection is based on the electronic device 1 responding to the detection identifier to feed back, for example, the device name. Further, a signal transceiver that establishes a wireless connection with the electronic device 1 will transmit data to the electronic device 1.
  • the transmitted data content is used to at least change settings within the electronic device 1, and some of the additional functions of the electronic device 1 may be permitted to be obtained without the user having to manually change.
  • the detection signal can be broadcast by a wide range of signal transceivers 24 within the space.
  • the ceiling light 201 can be provided as the above-described signal transceiver 24, such that the signal transceiver 24 can have better wireless signal transmission in the space (e.g., without any obstruction from the ceiling to the surrounding area). Range within which the above detection signals can be effectively broadcast.
  • the detection signal broadcast by one signal transceiver can be received and responded by the electronic device 1, and the signal loss amount S L can be automatically determined at the electronic device 1 side, and can be obtained according to the signal transmission intensity S T of the signal transceiver.
  • the received signal strength S R of the wireless signal generated by any of the signal transmitters obtained at the end of the electronic device 1 satisfies in principle:
  • the received signal strength S R it can be known which signal transceiver is closest to the electronic device 1 or at least in the strongest signal range around the signal transceiver, or calculated according to the received signal strength S R .
  • the actual spatial distance L 1 between the signal transceiver and the electronic device 1 is the actual spatial distance L 1 between the signal transceiver and the electronic device 1 .
  • each of the signal transceivers may be different from each other as a type of wireless AP. And in some instances, when a signal transceiver broadcasts the detection signal, other signal transceivers will abort the transmission of wireless signals or possibly, for example, multimedia data, such that the wireless signals transmitted by each of the signal transceivers are independent of each other and Differently, the detection signals received by the electronic device 1 may be different, so that the manner of identifiably accessing each wireless AP may be irrelevant. In other examples, multiple signal transceivers may also simultaneously broadcast the detection signal, at which point the electronic device 1 will be set to, for example, a promiscuous mode or a dedicated listening mode.
  • the electronic device 1 has accessed a certain signal transceiver as a wireless routing network of the wireless AP before being discarded by the user, after being discarded, after polling each wireless AP device through the home console 3
  • the information about the registration of the electronic device 1 in the wireless routing network can indicate that the signal transceiver (eg, the wired socket 212) where the wireless AP device is located indicates that the electronic device 1 is located.
  • the signal transceiver eg, the wired socket 212
  • the method further comprises: activating a plurality of signal transceivers other than the signal transceiver based on the response signal by a signal transceiver; and configuring according to the optimal connection Determining the coordinate position of the electronic device to be found in the home interior space.
  • step S200 Including step S201: when it is determined that the electronic device 1 is within the signal range of the optimal signal strength of a certain signal transceiver (for example, the lamp 201), the other signal transceivers 21, 22 or 23 are activated to broadcast with the signal transceiver 24. The same detection identifier that was sent before.
  • a certain signal transceiver for example, the lamp 201
  • the broadcast signals of the signal transceivers 21, 22 or 23 are synchronously received on the electronic device 1, so that the electronic device 1 can traverse the broadcast signals and feedback responses one by one, in which case the electronic device 1 will be configured not to Any one of the signal transceivers 21, 22 or 23 establishes a wireless connection, that is to say does not request registration on the wireless routing network of these signal transceivers 21, 22 or 23.
  • the response signal received by the ceiling lamp 201 is transmitted to the home control terminal 3, and the home control terminal 3 can be based on the optimal signal strength.
  • the signal range initiates a signal sensor that is within the signal range, such as sockets 204, 206, 207, and 209 shown in FIG.
  • the spatial region in which the electronic device 1 is located may be framed by at least three signal transceivers 21, 22, 23 within the space in accordance with the principles illustrated in FIG.
  • the sockets 206, 207, and 209 may be provided as the three signal transceivers, or the sockets 204, 206, 207, and 209 may be provided as four signal transceivers 24, 21, 22, and 23, respectively.
  • one spatial plane determined by the at least three signal transceivers 21, 22, 23 can be determined, according to the spatial distance L 2 of the ceiling lamp 201 to the spatial plane and the above The spatial difference between the spatial distances L 1 determines the spatial coordinates of the electronic device 1.
  • the foregoing step S201 may be further modified to include: when determining that the electronic device 1 is within a signal range of the first signal strength of a certain signal transceiver (eg, the lamp 201), starting the other signal transceiver 21, At least one of 22 or 23 transmits (e.g., broadcasts) a detection signal having a second signal strength.
  • the second signal strength can be much lower than the first signal strength, so that when the electronic device 1 cannot effectively receive the detection signal at the second signal strength, the other spatial positions that the electronic device 1 may be excluded are excluded to further determine the electronic More specific location of device 1.
  • a public key can be established and interacted between the electronic device 1 and the signal transceiver or between the signal transceiver and the home control terminal 3.
  • a public key in order to securely transmit signals during the search for electronic device 1, a public key may be used.
  • the public key is exchanged using the detected signals.
  • the public key may be incorporated into a subfield when the aforementioned detection signal is used, and other formats may be used.
  • a dynamic negotiation key can be used, and in other embodiments, the generation of a public key can be implemented based on cryptographic characters associated with any of the signal transceivers.
  • the acknowledgment detection content can be calculated by the signal transceiver, and the electronic device 1 can be confirmed by storing the same acknowledgment detection content between the signal transceivers.
  • the signal transceiver and the electronic device 1 may each store information based on the confirmation detection content. If both have the same information content, the identity of the electronic device 1 can be verified, and the user can be authenticated by the home console 3 to authenticate the electronic device 1.
  • the signal transceivers may each use a random interrogation code to verify that the other party has the same acknowledgment detection content.
  • the signal transceiver can generate an encryption and verification key based on the shared acknowledgment detection content.
  • the signal transceiver can securely communicate with the electronic device 1 using the verification key.
  • the signal transceiver can use the verification key to encrypt a broadcast message (which can also be the aforementioned detection signal) and then transmit the encrypted broadcast message in an information element (or other data item) in the detection signal.
  • the signal transceiver can receive a detection signal containing a broadcast message encrypted from the home console 3 and use the verification key to decrypt and verify the message.
  • the wireless connection established by the above verification key can be circulated indefinitely. It may end when step S300 is completed.
  • an example of the signal transceiver 21, 22, 23 or 24 transmitting a wireless signal into the space may be an infrared light mode.
  • the ceiling light 201 can be used as the signal transceiver 24 to emit infrared light signals into the space.
  • the electronic device 1 having the infrared light interface will receive and reflect the infrared light signal.
  • the signal transceiver 24 can A distance D4 between the electronic device 1 and the electronic device 1 (for example, an infrared remote controller) is measured, and a specific height position at which the electronic device 1 is located can be determined based on the distance D4.
  • the home control terminal 3 may be instructed. Start other signal transceivers.
  • multiple signal transceivers in the same spatial vertical height can be activated, for example, in Figure 16, the wall outlets 206, 207, 208 are at the same vertical height (e.g., 1.5 m), thus, A space plane 4 is defined by the wall sockets 206, 207, 208, and then each socket emits an infrared light detection signal to the electronic device 1, and each socket can measure the infrared light signal reflected back between it and the electronic device.
  • the apparatus for finding a home indoor electronic device may include:
  • a signal gating circuit 1001 coupled to the plurality of signal transceivers disposed in the home indoor space, configured to send the detection signals to the space through a plurality of signal transceivers disposed in the home indoor space;
  • a data processing circuit 1002 coupled to the signal gating circuit for determining an optimal connection configuration between the signal transceiver and the electronic device 1 according to a response signal of the electronic device that is required to be searched for the detection signal;
  • the optimal connection configuration wakes up the electronic device 1 to give a home user a reminder.
  • the device may be the home console 3 described above.
  • signal gating circuit 1001 within home console 3 may include a number of data access interfaces, each port of a data access interface (eg, a backplane connector) being defined by data processing circuit 1002.
  • a data access interface eg, a backplane connector
  • the data access interface has eight ports T1 to T3, N1 to N5, wherein the ports T1 to T3 are configured to identify the DC current of the external power supply of the home control terminal 3, and the data ports N1 to N5.
  • the type of communication protocol that can be configured to identify the home internal transmission network which may be a network using ZigBee, Bluetooth, or Wi-Fi protocols.
  • Each of the ports can be connected to external signal transceivers 181-186.
  • the power take-off interface may include ports P1 - P3 , wherein P1 and P2 are respectively used to couple the AC power lines Lin and Lout and P3 of the power circuit in the home control terminal 3 for the ground E.
  • the respective integrated circuits of the power take-off interface and the data access interface may be electrically isolated, or may be electrically isolated by a power source 159 at a power take-off slot and a data slot in the home control terminal 3 body. In this way, the respective integrated circuits of the power take-off interface and the data access interface do not need to be insulated and insulated.
  • the data processing circuit 1002 is configured to allocate a corresponding number of ports to interface redundancy occurring in the data access interface. For example, in the initial state, each data access interface is connected in a serial bus manner.
  • one data port N1 is a network interface for adapting to the external network device 181, such as a Wi-Fi network, and is set to be adapted to a Wi-Fi network at other corresponding data ports N1. They are set by serial bus.
  • another data port N2 is used to adapt to the network interface of the external network device 182, such as a ZigBee network.
  • one of the ports N4 is used to adapt to the network interface of the external network device 184, such as Bluetooth, so that if the number of ports of each data access interface is sufficient, interface redundancy will not occur, in general, A port type can be defined for each of the ports N1 to N5 for the data transfer protocol.
  • the data processing circuit 1002 is configured to acquire the protocol types of the other unoccupied ports and their ports; and change the protocol type of the unoccupied port to the protocol type corresponding to the interface redundancy. For example, if the network interface using the external network device 186 is an RS485 bus and other multi-wire bus, if the interface redundancy occurs and the data transmission protocol of the required interface is RS485, a blank port such as that shown in FIG. 20 can be used.
  • the initial protocol type is changed to adapt to RS485 (the port occupied in the figure is indicated by " ⁇ ").
  • data processing circuit 1002 can be configured to receive requests from other data processing circuits within home console 3 that represent interface redundancy and to look up the unoccupied ports of their corresponding data access interfaces and their protocol types.
  • the signal transceiver is an electrical accessory that is embedded in the interior of the home interior.
  • the example of the electrical accessory may include the wall socket 206 shown in FIG. 16, or may be an attachment device of the home electrical appliance, such as the desk lamp 211 or the decorative auxiliary lamp 202.
  • the encrypted message content exchanged between the signal transceivers can include digital certificates, such as network names and keys, required to join the secure wireless network of any of the wireless APs.
  • a signal transceiver in a local area network can establish a wireless connection with, for example, a Wi-Fi luminaire, and can be obtained over the wireless connection for joining the current wireless Digital certificate for the network.
  • the signal transceiver can then use these digital certificates to join or generate a new wireless network.
  • the signal transceiver and the home control terminal 3 can communicate with each other or with the electronic device 1 via the wireless network. As such, the wireless connection can be terminated or the wireless connection link can be maintained as other communication paths.
  • any of the devices shown in Figure 16 are exemplary and variations and modifications are possible.
  • electronic device 1 may be other types of devices including, but not limited to, tablet computers, smart phones, mobile communications or computing devices, and the like.
  • the electronic device 1 does not have to have large-scale computing power. Any electronic device capable of performing the operational steps described in this disclosure can be used as the object to be sought.
  • the signal transceiver can have a restricted interface or no interface.
  • a speaker can produce sound but does not need to have any components that can detect user motion (eg, buttons, dials, touch screens, etc.).
  • the home console 3 can present an image of the location of the electronic device 1 in the display interface (eg, in black and white or depending on the color being implemented), and can have a display capable of displaying some features or simple status lights.
  • the user input interface provides only one or more control buttons. This restricted interface or non-existent user interface makes it difficult or impossible for users to enter a network name, password, or other digital certificate needed to join a secure wireless network.
  • Some embodiments of the present disclosure allow a signal transceiver to wirelessly and securely acquire a digital certificate of a wireless network generated by the home console 3 regardless of whether the signal transceiver has an extremely limited or no user interaction interface, so that the simplification will be shown
  • the signal transceiver is connected to the operation of the wireless network.
  • One or more integrated circuits can be used to implement the operations of the data processing circuitry.
  • the data processing circuitry can perform various steps in response to the program code and can maintain a plurality of processing steps that are performed concurrently or multi-threaded. Some or all of the program code executed at any given time may reside in the data processing circuit and/or in an attached storage medium.
  • the term "storage medium” is intended to include: a mounting medium such as a CD-ROM or an optical disk device; a computer system memory or a random access memory such as DRAM, DDR-RAM, SRAM, EDO-RAM, Rambus-RAM, etc.; A memory, such as a flash memory, a magnetic medium (such as a hard disk drive), or an optical memory; a register; or other similar type of storage element or the like.
  • the storage medium may also include other types of non-transitory memory or a combination thereof.
  • the storage medium may be located in a computer system that executes the program, or in another different computer system that is connected to the server system through a wireless network, such as the Internet. In the latter case, another computer system can provide program instructions to the previous computer for execution.
  • the term “storage medium” may include two or more storage media, which may be present in different locations, such as in different computer systems connected through a network.
  • the storage medium can store digital program instructions that are executable by one or more data processing circuits.
  • the device further includes: a selection circuit 1003 coupled to the signal gating circuit 1001, for enabling a plurality of signal transceivers other than the signal transceiver according to the response signal by a signal transceiver
  • the data processing circuit 1002 is further configured to determine, according to the optimal connection configuration, a coordinate position of the electronic device 1 to be found in the home indoor space.
  • the optimal connection configuration is generated during operation of the electronic device by a user.
  • the user can operate through an input interface of the home console 3, which may include, for example, a keyboard, a touch pad, a touch screen, Click on input devices such as scroll wheel, dial, buttons, switches, keyboard, microphone, etc., and output devices such as video screens, indicators, speakers, headset jacks, etc., along with supporting electronics (such as A/D or D) /A converter, signal processor, etc.).
  • the user can operate the input interface to invoke the functions of the data processing circuitry and can view and/or listen to the output from the home console 3 via the output device of the input interface, for example.
  • Figure 18 shows a top plan view of a home interior environment in which the location of certain components or elements may change without affecting the depiction.
  • the home indoor environment may include three spaces 300, 310, and 320.
  • the user 100 is in the space 300 and tries to find the electronic device 1 and can be operated through the home control terminal 3. It should be understood that the operation manner is in accordance with The guidance of the foregoing embodiments is optimal.
  • the home console 3 is a mobile device that the user 100 can place in another space 310 to perform other electrical functions, such as attachable air cleaning devices, wireless routing devices, and the like.
  • the user 100 can directly make a visual input through the interface device 31 that the home control terminal 3 has, or can trigger the home console 3 to perform such input through a signal transceiver (such as the illustrated wall outlet 206).
  • the home control terminal 3 can be used to establish a public key.
  • the public key can be exchanged using the detected signals, and the public key can be incorporated into one subfield when the detection signal is used, and other formats can be used.
  • a dynamic negotiation key can be used, and in other embodiments, the generation of a public key can be implemented based on cryptographic characters associated with any of the signal transceivers.
  • the home console 3 can be configured to randomly select a signal transceiver within a space 320 to transmit a detection signal.
  • the detection signal can be transmitted directly through the outlet 207 or both of the outlets 207, 208, and within the range that the electronic device 1 can receive, the electronic device 1 can be identified as an approximate location.
  • the home control terminal 3 knows the approximate location of the electronic device 1, it can be prompted by the home electrical device.
  • the representation of FIG. 18 can be presented on the interface device 31, or can be prompted in other manners.
  • the user for example, the control light 213 lights up to indicate that the electronic device 1 is at least within the illumination range of the lamp 213.
  • an apparatus for finding an indoor electronic device includes: a processor; a memory coupled to the processor, storing instructions that, when executed by the processor, cause the processor to perform the following processing: Controlling one or more signal transceivers disposed in the indoor space to transmit a detection signal to the space; determining an optimality between the signal transceiver and the electronic device according to a response signal of the electronic device to be sought for the detection signal a connection configuration; and prompting the user for the location of the electronic device in accordance with the optimal connection configuration.
  • the processor can also include electrically coupling the processor to the plurality of network ports or I/O devices via one or more system buses, wherein the network ports can include a LAN controller, a modem, and the like.
  • the I/O device can include an input attachment device that facilitates user input.

Abstract

一种家庭控制端,其包括若干个堆叠安装的本体(100;200)以及用于将本体(100;200)承载并安装于建筑面内的基座(400),基座(400)具有分别连接家庭外部传输网络与家庭内部传输网络的输入端和输出端。本体(100;200)包括第一本体(100)以及第二本体(200),第一本体(100)堆叠安装在第二本体(200)上。其中,第一本体(100)的用于堆叠安装的底端设有与第二本体(200)的顶端相配合的接合部件(102)。

Description

家庭控制端 技术领域
本公开主要涉及智能家居系统,具体是关于一种家庭数字交换设备。
背景技术
家庭数字化系统被越来越广泛地研究和推广,这其中多数是以智能化数字设备连同软件或计算机程序来共同操作使用,例如为了实现对家居产品的集中式控制,用户通常选择使用移动终端(例如手机或个人电脑等)来进行操控,但是这种方式受到了移动终端自身功能性的限制,繁杂的安装固件无法使用户的操作方式变得简化和直观,同时针对于每一家居产品的功能控制指令集对移动终端系统的依赖性较大,使家居产品的更新方式受到极大限制。
另外,为了解决这样的缺陷而实现的紧凑式结构往往存在散热性较差的问题,这样将极大影响该结构内部多种功能电气部件的使用效率。
随着无线技术的成熟,用户通过例如Bluetooth、Wi-Fi、ZigBee等无线通讯方式实现对电器、灯具等的控制或者例如雷达灯具等单一传感器控制的场景已经非常普及,但是通过这些方式控制的智能家居只是单纯的增加了操控的方式。这些都没有将现有的传感器的优势和无线技术的优势发挥出来。而且现在的用户也不仅仅满足于单纯的控制方式的多样化。大数据分析技术日趋成熟,对于大量数据利用的手段日趋成熟。
如上所述,例如为了实现对家居产品的集中式控制,用户通常选择使用移动终端(例如手机或个人电脑等)来进行操控,因此在这种使用方式下,移动终端将被用户配置成家居数字化系统中的核心单元,然而日益突出的问题是,用户通常会遗忘移动终端被弃置在何处。
为了实现家居室内环境的简约性,采用无线方式来路由或转发消息。被路由或转发的消息中包含了对家居设备的控制信令以及多媒体数据,例如音视频信息或数字编码。
例如,IEEE协会已经颁布了用于使电子设备能够相互通信的802.11标准,被广泛通称为“Wi-Fi”。这些标准(包括802.11a、802.11b、802.11g和802.11n)定义了用于在电子设备之间传送信息的频率、调制、数据率以及消息格式。一般地说,在兼容802.11的Wi-Fi网络中有一个管理该Wi-Fi网络的指定的“接入点”(AP),其通常需要与因特网有线或无线连接。在其他的操作中,该AP可以在联网的电子设备之间路由消息。该Wi-Fi网络具有网络名称(一般可由与该AP交互的网络管理员配置)。该AP会定期地广播该网络名称,或者从AP的广播中发现 该网络名称的电子设备可以通过向该AP发送“加入”请求来加入该网络。一般来说,AP将只在加入网络的电子设备之间路由消息。
当然,无线信号很容易被拦截,相应地该Wi-Fi标准提供了各种各样的安全协议,例如有线等效保密(WEP),Wi-Fi保护接入(WPA)以及IEEE802.11i(也被称为WPA2)。这些协议提供了在网络上发送的信息加密并指定要使用的特定加密技术。该Wi-Fi网络AP可针对特定的安全协议配置。
通常,加入安全Wi-Fi网络的电子设备需要获知一个可用来加密/解密路由消息的特定网络密码或者密钥。尽管该密码或密钥通常不在设备之间无线传送,但是该安全Wi-Fi网络中的接入点可以要求任何试图加入该网络的电子设备证明它已获得该密码或密钥。为了将计算机连接至安全的Wi-Fi网络,用户可从该网络管理员(Admin)获取该密码并将其输入到计算机,例如作为对由在该电子设备上运行的网络配置程序生成的提示的响应。
然而目前,Wi-Fi接入设备的使用范围已开始超出普通计算机或服务器而已经扩展至其它设备,例如使用802.11标准进行通信的插座。这些设备具有有限的用户接口,使得用户无法将用于Wi-Fi网络的密码或者密钥输入到该设备,通常需要首先通过有线接口(例如USB)将该设备连接至计算机以便配置该Wi-Fi接口,然后将该设备切换至无线操作模式。
除此以外,还可以使用传感器来实现路由消息。例如,使用不可见光(例如红外光)或可见光(例如灯光)的方式路由信息。在某些实现中,使用传感器实现的路由的能力有限(例如数据流量受限),在此情况下,可使用Wi-Fi网络与传感器组成的无线网络相互混合的方式实现路由消息。
发明内容
本公开意图解决或至少改善目前技术的不足,设计一种适于家庭或办公环境下的电力和数据交互设备,这样能够减少室内环境的线缆敷设和例如数据路由设备的繁琐配置。另外,本公开所示的家庭控制端可被装设在建筑面内,节省室内布置空间,并且当前所示的控制端是更方便于用户操作和使用的。
另外,为了实现这种家庭控制端的有效散热,可以设计一种垂直式散热结构,这样在不改动内部构造的同时能够更有效排出热能。为了实现本发明的一个目的,提供一种散热装置,包括:若干个堆叠安装的本体;以及用于将所述本体承载并安装于建筑面内的基座,所述基座具有分别连接家庭外部传输网络与家庭内部传输网络的输入端和输出端,其中所述本体包 括:第一本体,该第一本体固定安装在该基座上;其中在所述第一本体的底部空腔内可布置导流板,其中在该导流板上设置有若干个导流部件,用于从该底部空腔抽取气体至第一本体内的容置腔内并使得该气体向该容置腔顶部扩散。
本公开针对现有的技术,提出一种全新的实时场景控制系统。根据本公开的一些实施例,将不同于以往技术中通过单一传感器或者控制器信息作直接的判断或者例如一键控制所有设备实现控制(这种方式需要一个场景空间内的数字式设备都需要置于已预设的状态),而是通过传感器检测到的实时信号对场景实现例如根据时间、状态和环境进行实时控制。
在一个方面,一种家庭控制端可包括:若干个堆叠安装的本体;以及用于将所述本体承载并安装于建筑面内的基座,所述基座具有分别连接家庭外部传输网络与家庭内部传输网络的输入端和输出端。
在一个实施例中,所述本体包括:第一本体;以及第二本体,所述第一本体堆叠安装在第二本体上,其中,所述第一本体的用于堆叠安装的底端设有与第二本体的顶端相配合的接合部件。
其中,该电源包括主电源电路、变压器和副电源电路,其中所述主电源电路与副电源电路可通过变压器相互电磁耦接,所述主电源电路从所述交流电源获取交流电流并变换成直流电流,所述变压器将来自该主电源电路的交流电降压至多个压降的直流电压。
在另一个实施例中,所述本体包括:第一本体,该第一本体固定安装在该基座上。
在另一个方面,本公开提出一种全新的实时场景控制系统。本公开实施例将不同于以往技术中通过单一传感器或者控制器信息作直接的判断或者例如一键控制所有设备实现控制(这种方式需要一个场景空间内的数字式设备都需要置于已预设的状态),而是通过传感器检测到的实时信号对场景实现例如根据时间、状态和环境进行实时控制。
根据本公开的一个实施例,一种改变室内场景的方法包括:通过所述室内场景中的第一传感器检测在当前室内场景中发生改变的第一状态传感参数;识别检测到的所述第一状态传感参数以产生场景传感关联,根据所述场景传感关联启动第二传感器以检测在当前室内场景中的第二状态传感参数;以及根据所述第一、第二状态传感参数启动处于当前室内场景中的电器设备以改变当前室内场景呈现的内容。
作为一种变型,所述的方法还包括:通过所述室内场景外的第三传感器检测与当前室内场景相关改变的第三状态传感参数;识别检测到的所述第三状态传感参数以产生外部场景传感关联;以及将该外部场景传感关联与所述场景传感关联结合计算。
在一种实现方式中,所述第一、第二或第三传感器是设置于建筑面内。
在另一种实现方式中,所述第一、第二或第三传感器是设置于任一电器设备内,或者所述第一、第二或第三传感器中的任一个设置于另一个中。
在又一个方面,基于上述家庭控制端用于寻找室内电子设备的装置包括:耦接室内空间中设置的一个或多个信号收发器的信号选通电路,用于控制室内空间中设置的一个或多个信号收发器向该空间内发送检测信号;以及耦接上述信号选通电路的数据处理电路,用于根据所需寻找的电子设备对该检测信号的响应信号来确定上述信号收发器与该电子设备之间的最优连接配置,以及根据所述最优连接配置来提示用户该电子设备的位置。
在一个实施例中,所述信号收发器包括嵌装于该室内建筑面内的电器附件。
作为一种变型,所述的装置进一步包括:耦接该信号选通电路的选择电路,用于根据对一个第一信号收发器的所述响应信号启动除第一信号收发器以外的多个第二信号收发器发送检测信号和接收电子设备对其的响应信号;其中所述数据处理电路还用于根据所述第一和第二信号收发器与该电子设备之间的最优连接配置确定所需寻找的电子设备在该室内空间中的坐标位置。
在上述各个方面,所述的第一信号收发器具有第一信号强度,第二信号收发器具有第二信号强度,并且第二信号强度远低于第一信号强度。
在上述实施例中,所述提示包括以下的至少一种:使所述电子设备自身发光、发声或者振动,向用户显示所述电子设备在室内的位置,使所述电子设备附近的另一设备发光、发声或者振动。
根据本公开,一方面的技术效果是能够通过实施本公开实施例来减少室内环境的线缆敷设和例如数据路由设备的繁琐配置。另外,本公开实施例可被装设在建筑面内,节省室内布置空间;另外,本公开的控制端是更方便于用户操作和使用的。另外,本公开设计的这种数据交互结构采用插拔式设计原理,因此内部的紧凑空间可通过本公开这种垂直式散热结构,可在不改动内部构造的同时能够更有效排出热能,实现有效散热。
另外,利用本公开的技术方案,可以通过多种室内安装的传感器之间的结合来自动控制用户所期望的室内场景环境的改变,避免用户使用多种遥控器或软件程序来调节或开关这些室内场景内容的繁琐操作,使家庭场景更趋于自动化和智能化。
附图说明
本公开最佳的实施方式或手段将结合附图来详尽表现,但并非是对本公开技术方案的限制。另外,在每个下文和附图中出现的这些特征、要素和组件是具有多个,并且为了表示方便而标记了不同的符号或数字,但均表示相同或相似构造或功能的部件。
图1示意性绘示出本公开家庭控制端的当前实施例的一种拆解构造视图;
图2绘示出当前实施例的侧视图;
图3绘示出本公开家庭控制端的另一个实施例的一种使用状态图;
图4示意性绘示出当前实施例的电源的原理结构框图;
图5更详尽地绘示出这种电源的部分电路原理图;
图6示意性绘示出本公开家庭控制端的另一个实施例的一种拆解构造视图;
图7表示出当前实施例的接线端的端口设置方式;
图8示意性绘示出当前实施例的一种散热构造;
图9形象绘示出用户所在的家庭室内场景的系统框架示意图;
图10示意性绘示出本公开系统的状态传感参数的传输结构功能框图;
图11示意性绘示出产生改变的场景变量的逻辑时序流程图;
图12形象地绘示出一个室内场景的陈设示意图;
图13绘示出本公开一种方法实施例的流程图;
图14绘示出本公开另一种方法实施例的流程图;
图15绘示出本公开又一种方法实施例的流程图;
图16形象绘示出了本公开信号收发器的场景布置示意图;
图17示意性绘示出本公开各个信号传感器的立体空间连接关系;
图18示意性绘示出一个家居室内空间的信号传感器布置的俯视图;
图19表示出本公开实现寻找电子设备的装置的结构功能框图;
图20示意性表示出本公开信号选通电路的通信连接构成关系;
图21表示出本公开实现寻找电子设备的方法流程图。
具体实施方式
在本公开中引用的“一个实施例”或“实例”意指结合实施例描述的特定特征、结构或特性可被包括在本公开的至少一个实施例中。短语“在一个实施例中”在本公开中的各位置的出现不必都是指同一实施例。
另外,在本公开所附说明书和权利要求书中,可使用术语“耦合”和“耦接”及其衍生词。技术人员应该理解,这些术语不是要作为彼此的同义词。“耦合”用于指示彼此可直接物理接触或电接触或者可不直接物理接触或电接触的两个或更多个元件彼此共同操作或相互作用。“耦接”用于表示彼此耦合的两个或更多元件之间的通信的建立。
在本公开所附的附图中示出的处理步骤是由包括硬件(例如电路、专用逻辑芯片单元等)、固件(诸如在通用装置或专用机器上运行)或这二者的组合的处理逻辑执行的。尽管以下依据一些顺序操作描述了处理,但应该理解,一些描述的操作可按不同次序执行。此外,一些操作可被并行地执行而非顺序地执行。
如在本公开中使用的,术语“电路”、“装置”是指下面各项的全部:(1)仅硬件的电路实施方式(诸如以仅模拟和/或数字电路设备的实施方式),以及(2)电路和软件(和/或固件)的组合,诸如(如适用的):(i)控制电路的组合或(ii)控制电路/软件(包括数字信号控制电路)、软件和存储器的部分,其共同工作以引起诸如移动电话或服务器之类的设备执行各种功能,以及(3)诸如微控制电路或微控制电路部分之类的电路,其需要用于操作的软件或固件,即使软件或固件并没有物理地呈现。
“电路”或“装置”的定义适用于所有在该应用中(包括在任何权利要求中)对该术语的使用。作为另一示例(如在本应用中所使用的)术语“电路”也可以涵盖仅一个控制电路(或多个控制电路)或控制电路部分以及它的(或它们的)附属的软件和/或固件的实施例方式。术语“装置”还可涵盖(例如并如果适用于特定权利要求元素)用于移动电话或服务器中类似的集成电路、蜂窝网络设备或其他网络设备中的基带集成电路或应用控制电路集成电路。
在图1所示的实施例中,家庭控制端可通过基座400装设于建筑面内,其可被装设在家庭室内的任何合适位置并倚靠墙面放置,基座400具有分别连接家庭外部传输网络与家庭内部传输网络的输入端和输出端,这些传输网络的例子可以是电力总线方式,也可以是媒体传输网络方式。在一个实施例中,该基座400的本体部分具有例如图1所示的方形构形,也可以是其他形状,并且,该基座400具有延伸部件420,用于将基座400本体部分例如沿T2方向拉伸出或收容至建筑面上设置的容置空间500内。其中在该延伸部件420中设置用于耦合上述家庭外部传输网络与家庭内部传输网络的输入端和输出端。在另一个实施例中,用于耦接所述输入端和输出端的电力线缆410可从该基座400中央位置处被共同包覆和引出,这样的一个效果是避免引线繁杂所带来的接线干扰。
在一个实施例中,所述延伸部件420可设置旋转结构,用于使得该基座400的本体部分在 其所处平面内相对于该延伸部件420旋动。例如,在图1所示的基座400上沿T3方向固定安装所述家庭控制端的多个本体100或200时,为了便于例如安装角度的需要,本体100或200可根据该旋动操作而被调节至合适角度位置。也可以是,该基座的400本体部分可绕着电力线缆410穿出的孔为圆心来旋动。
在一个实施例中,家庭控制端还包括固定安装在该基座400上的本体,其中本体可包含第一本体100和第二本体200,所述第一本体100与第二本体200堆叠安装。其中,第一本体100用于安装的底端设有与第二本体200的顶端相配合的接合部件102。例如,插头和插座方式的插拔式接合部件。应当理解,更多的本体可按照这种堆叠方式相互接合。
举例来说,作为一种变型,第一本体100被配置为装设多个数据信号控制板101,第二本体200可被配置为装设多个电力信号控制板201,在一种实现中,多个数据信号控制板101或电力信号控制板201可分别并行地沿着T2’方向插入上述第一本体100或第二本体200内并行设置的插槽中。其中,数据信号控制板101与电力信号控制板201由于使用的例如电压水平的不同可具有不同的电路构造并分开设置。举例来说,电力信号控制板201可被配置为接收来自电网电力线的交流电源,并控制将该交流电源(例如220VAC电)供给家庭室内的电器设备。
又参照图4和5,在一个实施例中,每一电力信号控制板201设有驱动电路158,用于激励和控制电器设备所需使用的电气功能的交流电压,例如室内地暖设施用的加热器,或者电动窗帘用的电机。在一种实现中,由于第二本体200中集中设置了这种电力信号控制板201,第二本体200将被更靠近例如电力引线L线411和N线412的方式安装,如此,电力引线L线411和N线412可提供给第二本体200,而第二本体200内可装设电源,用于将该交流电源降压至多种直流电源,所述直流电源可通过接合部件102提供给第一本体100。
在另一个实施例中,除过电力信号控制板外,第二本体200内又设有电力控制主板,该电力控制主板上设置有电源159,该电源159包括主电源电路、变压器U1和副电源电路。其中主电源电路与副电源电路可通过变压器U1相互电磁耦接,所述主电源电路从例如220V电网交流电源获取交流电流并例如翻转变换成直流电流,所述变压器U1将来自该主电源电路的220V交流电降压至12V,所述副电源电路对降压后的12V的交流电流进行整流并可进一步降压至5V。
电源159的主电源电路和副电源电路构成为经由一次侧和二次侧回路为相互绝缘隔离构造的变压器U1供给电力。通过该构造,使得主电源电路与副电源电路相互绝缘隔离。如此,每一电力信号控制板包括上述驱动电路158,被配置为将所述电源159的主电源电路的交流电供给每一种室内电器设备的交流电驱动电路,例如电动窗帘的电机或者浴室的加热器,以及 将所述电源159的副电源电路的12V或5V的直流电供给第一本体200内的数据信号控制板101。
例如,在图5所示的实施例中,给出了这样的电源159的实现例子。其中为了便于更具体地说明这种电源的设置方式,某些包含在电源159中的部件被标记出。举例来说,变压器U1可使用工频变压器,这样的一种效果是能够使得电源159承受更大电压波动,例如过电压。所述变压器U1将来自该主电源电路的220V交流电降压至12V,所述副电源电路对降压后的12V的交流电流经过整流桥堆D11进行整流并可经过例如DC-DC变换器和图示的稳压器进一步降压至5V。
根据本公开的一个实施例,数据信号控制板101可被配置为通过家庭内部传输网络连接一些电器设备,家庭内部传输网络的例子可以是ZigBee、RS485或者Wi-Fi方式构建的网络。为了实现这种配置,每一数据信号控制板101设有处理器单元143,被配置为构建所述家庭内部传输网络。
举例来说,家庭控制端可包括一个或多个处理器单元143,例如数字信号处理器(DSP)或微处理器(MCU),在本公开的例示性说明中,对“处理器”、“控制电路”等的提及应当被理解为不仅包含具有不同架构(诸如单个/多个逻辑控制结构和串行/并行结构)的计算机,而且包含特定模拟/数字集成电路,诸如现场可编程门阵列(FPGA)、专用电路(ASIC)、信号处理设备以及其他处理电路设备。对计算机程序、指令、代码等的参考应当被理解为包含用于可编程控制电路的软件或固件,例如,针对控制电路的硬件设备是否具有指令的可编程内容,或针对固定功能设备的配置设定、门阵列或可编程逻辑设备等。
在一个例子里,上述任何处理器单元143均可具有内置存储器,用于存储计算机程序,计算机程序与所述处理器单元共同执行上述传输功能。
同时,存储器可存储来自其它用户设备的多媒体数据或转发数据内容,这些数据的形式可以是数据集。所述存储器存储包括计算机程序指令/代码的计算机程序,当该计算机程序被加载至处理器单元时控制该家庭控制端的操作。
计算机程序代码提供如下逻辑和例程,其使得该家庭控制端能够执行本公开所示方法的至少一部分。处理器单元通过读取存储器能够加载并执行计算机程序。虽然存储器被示为单个部件,但是其可以被实现为一个或多个单独部件,其中某些或所有部件可以是集成的/可移除的以及/或者可以提供永久/半永久/动态/高速缓存的存储。
另外,所述处理器单元143可以响应家庭用户的执行操作或因该执行操作而调用的应用程序或设备驱动器,或者是输入/输出系统(BIOS)固件和某些固件模块的指令。同时,这些 处理器单元可在串行总线上协同工作,例如其中一个处理器单元可通过该串行总线作为另一个处理器单元的“协处理器”。
又参照图5,在一个例子里,处理器单元143可包括与之电性耦接的通讯电路141,所述通讯电路141可以是芯片组,被配置为根据处理器单元的控制逻辑指令来产生数据传输。在另一个例子里,处理器单元还包括用于通过处理器总线耦合至该家庭控制端的其他组件的集成电路或芯片组(例如,存储阵列)。所述芯片组也可以通过一个或多个系统总线将处理器单元耦合至BIOS固件,所述BIOS固件可以包括在该家庭控制端的系统启动期间可执行以便于初始化或复位该处理器单元或其芯片组件。在另一个例子里,通讯电路141可包括通讯接口和调制/解调电路,所述调制/解调电路被配置为通过系统总线方式连接处理器单元143来根据该控制逻辑指令进行数据信号的调制和波形承载,并可通过通讯接口发送该波形。另外,通讯电路141可通过通讯接口接收来自例如家庭内部传输网络的数据信号,经过调制/解调电路解调后通过该系统总线传输给处理器单元143或者存储器。
处理器单元143还可以包括通过一个或多个系统总线将该处理器单元143耦合至多个媒体设备、网络接口或其他I/O设备,媒体设备可以包括视频或音频输入/输出设备,网络接口可包括LAN控制器、调制解调器等。I/O设备可包括附接设备,例如键盘。
又参照图1,家庭控制端还包括用于封围上述第一本体100和第二本体200的盖板300,从而使得数据信号控制板101或电力信号控制板201可被绝缘封装。盖板300可采用任何绝缘材料制成,例如树脂或塑料。在图1所示实例中,盖板300可沿着T2方向从第一本体100与第二本体200接合后组成的整体部件去除或扣合至组成的该整体部件外围。在图2所示的这样一种家庭控制端整体构造的侧视图中,可以直观地看出,上述第一本体100和第二本体200相互拼合成一个立柱形状的整体部件,然后该整体部件被固定安装在上述基座400上,盖板300封围了该整体部件的三个侧立面,并且未封围基座400部分,以便使得该整体部件可以相对于基座400左右旋动来调节用户期望的操作角度。
在一个实施例中,所述家庭控制端具有用户操作界面110,该用户操作界面110可具有用于可视化显示操作的触控面板120,被配置为接收和识别用户输入。较佳地,该触控面板120可从用户操作界面110中移除,例如可在T3方向上取下或置入。在图1和2所示实施例中,该用户操作界面110可具有调节机构,用于根据用户的观测角度或例如用户身高不同来调节触控面板120的倾置角度。
进一步来说,该触控面板120还附接有弯折部件121和与该弯折部件121耦合并沿着该 弯折部件121延伸的固定部件122,用于将该触控面板120固定于用户操作界面110内。在一个例子里,触控面板120可具有处理器单元,例如数字信号处理器(DSP)或微处理器(MCU)或特定运算功能的逻辑电路或电路组。在该触控面板120从用户操作界面110移除后,可与上述第一本体100进行无线方式的通讯连接,例如,在第一本体100内装设了一个用于识别和通讯该触控面板120的处理器单元的数据信号控制板101,该数据信号控制板101被配置为在移除所述触控面板120后启动。
又参照图3,根据本公开的一个实施例,在一种实现中,第一本体100可从第二本体200上拆卸并作为单独运行的部件使用,也可以是将第二本体200从该整体部件中拆除。例如,第一本体100可单独作为移动式设备来使用,这样的效果是满足家庭用户在需要的位置随时控制某些电器设备的功能,也可以是将第二本体200内的电力信号控制板201抽出,而在其中放置其他电器设备,例如空气质量检测装置或者移动式空调扇。在一种效果中,由于每种控制板对应的接口是统一和通用的,在装设例如空气质量检测装置时可方便地插接电源,这样家庭控制端可移动地来实现用户所需的功能。在图3所示实现方式中,作为移动式设备来使用时可具有取电线缆190,用于通过例如插座面板500获取交流电流,同时,在所述整体部件的底部装设滚轮140来使该家庭控制端移动。
参照图6,在另一个实施例中,所述家庭控制端仅具有第一本体100,该第一本体100可具有前述实施例的整体部件的长度,该第一本体100固定安装在该基座400上。其中第一本体100被配置为装设多个数据信号控制板101,在本实施例中,数据信号控制板101可包含前述电力信号控制板201,在一种实现中,多个数据信号控制板101可并行地插入第一本体100内并行设置的对应插槽中。其中,每一数据信号控制板101由于使用的例如电压水平的不同可具有不同的电路构造并分开设置。
另外,家庭控制端还包括用于封围上述第一本体100的盖板300,从而使得数据信号控制板101可被绝缘封装。盖板300可采用任何绝缘材料制成,例如树脂或塑料。
举例来说,每一数据信号控制板101上可绝缘隔离地设置取电接口157和数据访问接口155(例如背板连接器),其中,取电接口157可被配置为接收来自电网电力线的交流电源,并控制将该交流电源(例如220V的AC电)供给家庭室内的电器设备。数据访问接口155被配置为从例如图1所示的建筑面内敷设的总线(例如WLAN光缆413)接收多媒体数据。其中,在第一本体100内容置腔150的一个侧部设置了适于该取电接口157和数据访问接口155插接的取电插槽154和数据插槽156,应当理解,如果将取电接口157和数据访问接口 155设置在同一个电路板上,那么取电插槽154和数据插槽156是设置在同一竖直高度上,技术人员也可以按照各自熟习方式来设置上述接口的布置位置,但前提是需要满足并行插接的便利方式。
再结合图4和5,图4简要绘示出本公开的这种数据信号控制板101的设计原理,图5较为详细地绘示出这种设计在电源上的例子。
在一个实施例中,每一数据信号控制板101可设有驱动电路158,用于激励和控制一种家用电器设备所需使用的电气功能的交流电压,例如室内地暖设施用的加热器,或者电动窗帘用的电机。在一种实现中,取电接口157和数据访问接口155各自的集成电路可电气隔离设置,或者通过在第一本体100内的取电插槽154和数据插槽156处进行总电气隔离设置,如此,取电接口157和数据访问接口155各自的集成电路可不需要进行绝缘隔离设置。
例如,除过电力信号控制板外,第一本体100内又设有电力控制主板,该电力控制主板上设置有电源159,该电源159包括主电源电路、变压器U1和副电源电路。其中主电源电路与副电源电路可通过变压器U1相互电磁耦接,所述主电源电路从例如220V电网交流电源获取交流电流并例如翻转变换成直流电流,所述变压器U1将来自该主电源电路的220V交流电降压至12V,所述副电源电路对降压后的12V的交流电流进行整流并可进一步降压至5V。
电源159的主电源电路和副电源电路构成为经由一次侧和二次侧回路为相互绝缘隔离构造的变压器U1供给电力。通过该构造,使得主电源电路与副电源电路相互绝缘隔离。如此,每一数据信号控制板101包括上述驱动电路158,被配置为将所述电源159的主电源电路的交流电供给每一种室内电器设备的交流电驱动电路,例如电动窗帘的电机或者浴室的加热器,以及将所述电源159的副电源电路的12V或5V的直流电供给第一本体200内的数据信号控制板101。
举例来说,变压器U1可使用工频变压器,这样的一种效果是能够使得电源159承受更大电压波动,例如过电压。也可以使用开关电源变压器,使得设计的成本和空间体积更小。所述变压器U1将来自该主电源电路的220V交流电降压至12V,所述副电源电路对降压后的12V的交流电流经过(例如)桥式整流电路D11进行整流并可经过例如DC-DC变换器和稳压器进一步降压至5V。
另外,在一个实施例中,为了有效地激励和控制一种家用电器设备所需使用的电气功能的交流电压,每一数据信号控制板101可设有通断电路144,例如继电器,该通断电路144跨上述主电源电路和副电源电路设置,该通断电路144进一步在主电源电路侧耦接一个开关 160,用于在断开供给该家用电器设备的交流电时保持对变压器U1的供电。在一种实现中,继电器作为通断电路144时还设置有耦接于驱动电路158的保护电路153,用于例如在继电器的触点c通断过程中吸收产生的反电动势。保护电路153的例子可以是二极管等晶体管截止元件。在这种情况下,继电器的触点a和触点b各自连接电网电力线的L线和N线,并且应当懂得,触点a与b之间连接该家用电器设备。所述继电器在接收到处理器单元143的通断脉冲时将被驱动电路158控制以使得触点a和b断开连接,如此,该家用电器设备的电源被切断,从而可通过开关160保持电源159的交流电流获取。
再参照图6,数据信号控制板101的另一个例子是可设置为整体部件,在本文中所描述的“整体部件”是指可独立使用或拆卸后可作为一个独立功能设备的组件或电路的统称,整体部件包含的组件在一般情况下不可被随意分割。为了实现此方式,在所述第一本体100内的容置腔150侧壁上可设置若干个导轨槽151,用于承接每一数据信号控制板101的外壳131轮廓构造。较佳地,每一导轨槽151上设置有便于外壳131插接行程的滑动部件152,应当理解,所述导轨槽151及其滑动部件152是根据外壳131的尺寸不同而变化的,多个导轨槽151将被并行设置。
在图6的绘示中,每一个数据信号控制板101的插拔方式可根据图中的虚线O-O’方向的指示来直观呈现。数据信号控制板101的电路板的设计方式可通过图示来大致体现。在一个实施例中,每一数据信号控制板101的电路板可包括处理器单元143、数据访问接口155、取电接口157和驱动电路158,其中该驱动电路158又耦接有通断电路144和保护电路153。
在另一个实施例中,外壳131可包括相互拼合的顶盖板132和底板134,并可包括套接该顶盖板132和底板134拼合后构造的前盖板141。较佳地,前盖板141上可设有用于直接手动控制各个数据信号控制板101的电气功能的输入装置121(例如按键)以及表示每一数据信号控制板101的工作状态的指示灯111,所述前盖板141背侧设有提供上述输入装置121和指示灯111的电路板142,该电路板142可通过在每一个数据信号控制板101的电路板上设置的端口135来接通所述的处理器单元143以实现操控,例如热启动/关闭。应当理解,每一个数据信号控制板101的外壳131的前盖板141的规格可以相同。
参照图7,在又一个实施例中,数据访问接口155(例如,背板连接器)的每一端口将被处理器单元143通过电性耦接的通讯电路141定义端口类型。在一个实例中,数据访问接口155具有8个端口T1~T3,N1~N5,其中端口T1~T3被配置为识别电源159的直流电流,端口N1~N5可被配置为识别上述家庭内部传输网络的通讯协议类型,家庭内部传输网络的例子 可以是使用ZigBee、Bluetooth或者Wi-Fi协议。其中,每一端口可连接至外部网络设备181~186。另外,取电接口157可包括端口P1~P3,其中P1和P2分别用于耦接上述主电源电路的交流电力线Lin和Lout以及接地E。在一种实现中,取电接口157和数据访问接口155各自的集成电路可电气隔离设置,或者在第一本体100内的取电插槽154和数据插槽156处可通过电源159进行总电气隔离设置,如此,取电接口157和数据访问接口155各自的集成电路可不需要进行绝缘隔离设置。
另外,所述通讯电路141被配置为对所述数据访问接口155中出现的接口冗余分配对应数量的端口。例如,在初始状态下,每一数据信号控制板101的数据访问接口155之间是按照串行总线方式连接。在图7所示例子里,一个数据信号控制板101的一个端口N1是用于适配于外部网络设备181的网络接口,例如Wi-Fi网络,并且在其它数据信号控制板101上的对应端口N1均被设置为适配于Wi-Fi网络,它们之间是通过串行总线方式加以设置。同样的,数据信号控制板101的另一端口N2用于适配于外部网络设备182的网络接口,例如ZigBee网络。又或者,其中一个端口N4用于适配于外部网络设备184的网络接口,例如Bluetooth,如此,在每一数据访问接口155的端口数量足够的情况下,将不会出现接口冗余,一般情况下,可将用于数据传输协议的端口N1~N5的每一个定义一个端口类型。
在某一些情况下,当一种数据传输协议类型需要占用多个端口N1~N5时,一个数据信号控制板101若存在多种传输协议类型,则端口的数量将不足,即所述的“接口冗余”。在此情况下,处理器单元143被配置为获取其它数据信号控制板101的未占用端口及其端口的协议类型;以及改变该未占用端口的协议类型至接口冗余对应的协议类型。例如在使用外部网络设备186的网络接口为RS485总线以及其它多线制总线下,若接口冗余出现并且所需接口的数据传输协议为RS485,则可将例如图7中所示的空白的端口的初始协议类型改变为适配于RS485(图中占用的端口以“╳”表示)。如此,每一数据信号控制板101的处理器单元143可被配置为接收来自其它数据信号控制板101的通讯电路141的表示接口冗余的请求,并查找其对应的数据访问接口155的未占用端口及其协议类型。
又参照图6和8,在又一个实施例中,在所述第一本体100的底部空腔170内可布置导流板171,其中在该导流板171上设置有若干个规则布置(例如并行排列)的导流部件172(例如抽气风扇),用于从该底部空腔170抽取气体321至该容置腔150内并使得气体321向该容置腔150顶部扩散。另外,每一个数据信号控制板101的顶盖板132和底板134上相互对应地开设了通孔133(底板134上的通孔在图示位置被遮挡而未绘示出),如此,在将 多个数据信号控制板101装入该容置腔150后,被抽入该容置腔150的所述气体321贯穿每一通孔133以携带数据信号控制板101上的热能。
进一步参照图8来说,在所述第一本体100的侧壁上并行开设多个导流槽130,用于将带有热能的气体322排出该第一本体100。在一个例子里,所述盖板300在封围第一本体100后与该第一本体100侧壁形成狭槽320,带有热能的气体322将沿着狭槽320从该第一本体100背侧(即未被盖板300封围的一侧面)排出。在一种实现中,由于空气321也会流入该狭槽320中使得带有热能的气体322从一个有限范围内被排出。另外,该狭槽320的设计是用于在所述气体322排入该狭槽320内后形成更大气流流速,从而避免热能在狭槽320或导流槽130附近积聚而不利于有效散热。
在一个实施例中,所述处理器单元143还可被配置为控制上述导流部件172的运转速率,例如在感测到容置腔150内的温度高于临限值时改变该导流部件172的转速而抽取更多量的气体321(例如空气)来加速上述热能携带过程。
进一步来说,每一数据信号控制板101还设有耦接该处理器单元143的温度传感器173,用于感测该容置腔150内各个空间区域的实际温度。例如,对于不同的数据信号控制板101可具有各自不同的热能,某些数据信号控制板101上产生的热能被抽入的外界气体321(例如空气)携带的同时,不需要全部送至容置腔150的顶部而最终排出容置腔150。在一个例子里,如果其中的某一个数据信号控制板101的温度被其中的温度传感器173检测为超过临限值,则处理器单元143被配置为控制导流部件172的运转速率而使得气体321有效地到达该数据信号控制板101位置处。为此,在容置腔150顶部也设置导流板171,用于向容置腔150底部吹入气体,如此,携带热能的气体322将被空气对流作用而在不同区域范围,即容置腔150的不同高度阶段排出导流槽130。
在本说明书所附的附图中示出的处理是由包括硬件(例如电路、专用逻辑芯片单元等)、固件(诸如在通用装置或专用机器上运行)或这二者的组合的处理逻辑执行的。尽管以下依据一些顺序操作描述了处理,但应该理解,一些描述的操作可按不同次序执行。此外,一些操作可被并行地执行而非顺序地执行。参照图9和10,在本公开的一个概观上来说,在一个用户的居室内可生成多种室内场景,这些场景可以是虚拟构建的,也可以是通过改变实体环境效果(例如,空气、光环境或声音等)生成的。例如在图9中,用户2的居室空间内可具有多个相互独立的室内场景210、220、230和240。
例如,改变室内场景210的系统1可包括设于室内场景210中的多个第一传感器和第二 传感器。其中,所述第一传感器可选用温度传感器41(例如,热释电红外传感器),举例来说,温度传感器41可包括振荡电路和计数器,其中振荡电路具有依赖于温度的特征频率,所述计数器被配置为对给定的时间间隔内由振荡电路产生的若干脉冲进行计数或对振荡电路产生给定数目脉冲所用的时间进行计时,以便在这两种情况下给出实际测量值,其中该温度传感器41被配置为在线性化算法中使用这些实际测量值与存储参考值之间的差值来估计温度。第二传感器可选用灯21、25或者安防装置(例如,摄像头52)。
根据本公开的一个实施例,可在用户2进入室内场景210时激励温度传感器41启动,从而根据温度传感器41检测出的状态传感参数来启动第二传感器,或者通过第二传感器来启动安装在室内场景210内的电器设备(例如,空调机31)。在本公开的任何实施例中,任何“传感器”可不单单指示单一的传感器部件,也可以是耦接在电器设备中的附加集成电路,例如第二传感器(诸如雷达传感器)可耦接在灯21、25内,当用户进入室内场景210并走近灯21时,通过第二传感器可使灯21或25被点亮。又例如温度传感器41可耦合于电器设备内,在用户2进入室内场景210后将检测人体靠近电器设备所产生的热能,可根据线性算法估计温度变化量。
所述系统1还包括对上述每一种传感器连接和控制的控制端200,控制端200可安装在室内合适的位置,例如装设在图1所示的家门口,也可以放置在其它封闭空间内以便减少电磁辐射。在一个实施例中,控制端200被配置为识别每一传感器检测到的状态传感参数,并根据场景传感关联(例如,关联函数)来启动其它需要被开启的与室内场景210相关的传感器动作。在另一个实施例中,所述控制端200被配置为控制室内传输网络与外部交互网络4之间的交互通断,例如控制供电线路或数据总线的交互动作的启动或停止。
较佳地,控制端200还可包括通讯接口,其可被实现为串行和/或并行总线接口、无线接口、任何类型的网络接口、调制解调器和任何其他类型的通讯接口中的任一个或多个。所述通讯接口用于提供上述任一传感器和室内传输网络之间的连接和/或通讯链路,上述任一传感器通过通讯接口来与控制端200传递数据。
控制端200还包括存储器,存储器可包括(诸如)一个或多个存储器设备启用持久和/或非暂态数据存储(即仅与信号传输相对比)的计算机可读介质,这种存储器的示例包括随机存取存储器(RAM)、非易失性存储器,例如只读存储器(ROM)、闪存(FLASH)、EPROM、EEPROM等中的任一个或多个以及盘存储设备。盘存储设备可被实现为任何类型的磁性或光学存储设备,例如硬盘驱动器、可记录和/或可重写紧致盘(CD)、任何类型的数字多功能盘 (DVD)等等。存储器还可包括大容量存储介质设备。
存储器用于提供交互数据的存储机制以便存储任一传感器或电器设备的交互数据以及各种电器设备应用和关于该数字设备的各操作方面的任何其他类型的信息和/或数据。例如数字设备操作系统可用存储器作为计算机应用程序来维护并在数字处理器上加以执行。电器设备应用可包括设备管理器,例如任何形式的控制应用、软件应用、信号处理和控制模块、特定数字电器设备的本地代码、特定数字电器设备的硬件抽象层等等。
又结合图10,在一个实施例中,控制端200还包括耦接这些传感器的传感关联装置201,传感关联装置201可被配置为识别所述温度传感器41检测到的第一状态传感参数F(σ)以产生场景传感关联G(σ),然后计算该场景传感关联G(σ)来激励灯21。灯21可内置第二传感器,用于例如通过电磁方式感应用户2处于室内场景210内的位置,从而产生第二状态传感参数K(σ)。
在另一个实施例中,控制端200还包括耦接该传感关联装置201的处理器202,处理器202可被配置为根据所述第一状态传感参数F(σ)、第二状态传感参数K(σ)启动处于当前室内场景中的电器设备以改变当前室内场景210呈现的内容。其中,室内场景210呈现的内容可包括来自于通过物理介质(诸如空气、光影环境)呈现给用户2所需要的场景要素。
另外,所谓“传感器”也可设置在室内场景210外,例如可以是用户2佩戴的传感器装置,举例来说,第一传感器可周期性检测用户2的(例如)体表温度,这样的效果是满足人体在不同时间过程中代谢不同导致的温度需求不同,从而可根据检测到的温度来产生场景传感关联G(σ),根据该场景传感关联G(σ)调节空调机的温度输出,在一种实现中,在该室内场景210内的温度变化曲线可以根据之前一段时间周期里对于该室内场景210内的温度自动记录并进行调节。在上述实施例中,该传感关联装置可设置为多个,多个传感关联装置201,201’,201”之间可通过数据总线的方式进行耦接,也可以是通过所述传感器相互连接。另外,多个传感关联装置201、201’、201”也可包括多个传感器。
此外举例来说,所述的系统1还可包括:设于室内场景210外的第三传感器,例如图9所示的压力传感器62,被配置为检测与当前室内场景相关改变的第三状态传感参数J(σ),其中所述传感关联装置201还可被配置为识别检测到的所述第三状态传感参数J(σ)以产生外部场景传感关联M(σ),所述处理器202还被配置为将该外部场景传感关联M(σ)与所述场景传感关联G(σ)结合计算以得出改变后的场景变量。
举个例子,用户2在处于室内场景210里的时间段内,系统1外出现例如访客3,访客3 在接近房门时需要例如敲门或按响门铃61,则可在房门处设置地面的压力传感器62,该压力传感器62可产生第三状态传感参数J(σ),如此,第三状态传感参数J(σ)将激励原来的室内场景210的呈现内容发生改变。例如,用户2控制当前室内场景210内的电器设备播放多媒体内容(诸如电影、音乐等)时,如果产生第三状态传感参数J(σ)则影响当前室内场景210呈现的内容,例如暂停播放多媒体内容并提示用户2开门,例如通过灯21闪烁或色温变化的方式。
处理器202还可以包括通过一个或多个系统总线将处理器202电性耦接至多个网络端口或I/O设备,网络端口可包括LAN控制器、调制解调器等。I/O设备可包括便于用户2输入的输入附接设备。
作为一种变型,所述的系统1还包括:定时器203,被配置为根据所述场景传感关联G(σ)同步所述第一、第二、第三传感器或者所述电器设备的时钟。
在一个实例中,所述第一、第二或第三传感器是设置于建筑面内。在图2所示的例子里,还可包括第四、第五或第六传感器,这些传感器被装设在建筑面内,如此,每一室内场景中的场景变量可方便地被这些“传感器”检测。在另一个实例中,所述第一、第二状态传感参数是通过传感器检测的温度、湿度、照度数据中的一个或组合。在另一个实例中,所述第三状态传感参数是时钟、地理位置或天气数据中的一个或组合。
参照图11所示的时序流程图,总的来说,基于该系统1改变室内场景的方法可包括步骤:
302:通过所述室内场景210中的第一传感器检测在当前室内场景210中发生改变的第一状态传感参数F(σ),在图3所示实施例中,可通过所述传感关联装置201获取当前场景变量P(σ)。
在图9所示的实例中,第一传感器是选用红外传感器,如果用户2进入室内场景210中,该红外传感器例如可设置在灯21内,感测到用户2进入该室内空间从而产生第一状态传感参数F(σ),该第一状态传感参数F(σ)设置为关联于室内场景210中的其它设备,包含了处于该室内场景210内的任何传感器或电器设备,例如通过该第一状态传感参数F(σ)触发第二传感器(例如,台灯25或地脚灯),也可以通过该第一状态传感参数F(σ)触发启动电器设备(例如,空调机31)。
304:通过所述传感关联装置201识别检测到的所述第一状态传感参数F(σ)以产生场景传感关联G(σ),根据所述场景传感关联G(σ)启动第二传感器以检测在当前室内场景210中的第二状态传感参数K(σ)。在本实施例中,所述场景传感关联G(σ)的产生满足卷积函数公式:
G(σ)=F(σ)*P(σ)    (1)
在一个例子里,第二状态传感参数K(σ)可根据以下卷积函数公式产生:
K(σ)=G(σ)*H(σ)    (2)
其中关联变量H(σ)是由处理器202计算产生,例如将第一状态传感参数F(σ)关联于室内场景210中的其它传感器或电器设备的标识码,可包含处于该室内场景210内的任何传感器或电器设备的设备码。处理器202产生该关联变量H(σ)以使传感关联装置201控制与该第一传感参数F(σ)有关的第二传感器启动,从而通过该第二传感器检测室内场景210中的其它实体环境变量。
306:根据所述第一、第二状态传感参数启动处于当前室内场景210中的电器设备以改变当前室内场景呈现的内容。在一个例子里,使用温度传感器41感测用户2进入室内场景210中以启动灯21和25,同时,若该温度传感器41感测到由于用户2进入该室内场景210后室温产生变化,则可根据该温度变量来启动空调机31。在一个例子里,空调机31的温度控制将根据该温度传感器41所检测的温度变量而变化,或者说空调机31可通过温度传感器41来自动可调控制。在另一个例子里,空调机31可在温度传感器41和灯25持续工作一个时间段后根据温度传感器41和灯25检测的状态传感参数来启动。
作为一种变型,所述的方法还包括步骤:
308:通过所述室内场景210外的第三传感器检测与当前室内场景210相关改变的第三状态传感参数J(σ)。在一个例子里,第三传感器可以是门铃61或压力传感器62,第三传感器产生该第三状态传感参数J(σ)以激励室内场景210的呈现内容发生改变。用户2控制当前室内场景210内的电器设备播放多媒体内容(诸如电影、音乐等)时,如果产生第三状态传感参数J(σ)则影响当前室内场景210呈现的内容,例如暂停播放多媒体内容并提示用户2开门,例如通过灯21闪烁或色温变化的方式。
310:通过所述传感关联装置201识别检测到的所述第三状态传感参数J(σ)以产生外部场景传感关联M(σ)。
该外部场景传感关联M(σ)可包含用于指示所需激励的室内场景210的标识码,例如作为第一传感器的温度传感器41感测到用户2,或者是通过摄像头52检测到用户2进入室内场景210,则可产生激励信号给传感关联装置201,当访客3到来时,传感关联装置201将根据该激励信号来实时确定用户2所处位置,如此,外部场景传感关联M(σ)将影响用户2所处的室内场景210组成的一个小型传感器系统,对该小型传感器系统产生激励。所述外部场景传 感关联M(σ)产生的方式可按照前述图3所示步骤304来执行,也就是说处理器202将根据已在步骤306基础上产生的改变后场景变量的基础上,将所产生的改变后场景变量作为一个新的当前场景变量P’(σ),如此,外部场景传感关联M(σ)满足:
M(σ)=J(σ)*P’(σ)    (3)
在一个例子里,外部场景传感关联M(σ)也可以不在步骤306基础上产生,例如可直接在步骤302中根据当前场景变量P(σ)产生,也可以是结合第一传感器产生的第一状态传感参数F(σ)来产生外部场景传感关联M(σ)。
312:将该外部场景传感关联M(σ)与所述场景传感关联G(σ)结合计算以得出改变后的场景变量,处理器202根据该改变后的场景变量来开启一部分传感器。
进一步来说,所述的方法还包括:根据所述场景传感关联G(σ)同步所述第一、第二、第三传感器或者所述电器设备的时钟。例如,每一种传感器可被设定时钟,用户2可在需要的时间段预设所述时钟来开启一部分传感器。
在上述变型中,所述第一、第二状态传感参数是通过传感器检测的温度、湿度、照度数据中的一个或组合。在一个实例中,所述第三状态传感参数是时钟、地理位置或天气数据中的一个或组合。
上述实施例中所描述的状态传感参数、变量也可以是上述存储器中存储的计算机程序或应用程序,可经由任何适当的递送机制到达不同的所述传感器或电器设备。递送机制可以(例如)是非瞬态计算机可读存储介质,诸如紧致型磁盘只读存储器(CD-ROM)或数字通用存储盘(DVD)。递送机制可以是被配置为可靠地传递计算机程序的信号。本公开所示的装置可以使得计算机程序作为计算机数据信号进行传播或传输。
在本公开的一个实施例中,计算机程序可被(例如)收发电路传递至不同的所述数字设备,除非该数字设备已显示所需要的存储器的存储空间已被占用而必须改用上述磁盘方式。或者,(例如)多媒体数据内容的递送方向可以被所述控制电路控制以指向具有丰富存储空间的存储器上,从而可通过这个具有丰富存储空间的存储器暂存多媒体数据,并且能够被有效地随时调用。
例如,室内传输网络可包括电路控制形式的电力网络,该电力网络可以是串接室内场景中各个传感器或电器设备的交流电力线网络,在图9所示例子里,交流电力线网络可包括敷设于建筑面内的交流电力线110、112、114,上述状态传感参数可通过每一该交流电力线的交流波形承载并传输。或者在其他例子里,室内传输网络又可包括有线/无线数据网络,例如 家庭WLAN或Wi-Fi网络。在一些实施例中,也可以是上述电力网络和数据网络的结合方式。
一个或多个传感关联装置或处理器的应用编程接口(API)可用在一些实施例中并且本文讨论的功能可实现为API或被API访问。API是由程序代码组件或硬件组件实现的接口,其允许另一不同的程序代码组件或硬件组件访问和使用API实现组件提供的一个或多个功能、方法、过程、数据结构、类和/或其他服务。API可定义在API调用组件和API实现组件之间传递的一个或多个状态传感参数。
API允许了API调用组件的开发者(其可以是第三方开发者)利用由API实现组件提供的指定特征。可以有一个API调用组件或者多于一个这样的组件。API可以是源代码接口,计算机系统或程序库提供该源代码接口以便支持来自应用的对服务的请求。
室内传输网络可通过控制端200连接至外部交互网络4,交互网络4可进一步连接至云服务终端5,交互网络4的例子可以是4G-LTE网络或类似移动数据网络,作为一个例子,用户2可通过该交互网络4传递来自用户2所佩戴的传感器的第三状态传感参数J(σ)。如此,第三状态传感参数J(σ)激励例如室内场景240的场景变量的改变,例如调节室内温度、湿度或光影环境等。
场景应用实施例1:
在图12所示的实施例中形象地绘示出一种室内场景的传感器和电器设备的设置方式,在该实施例中,用户2可以在进入该场景时启动其中传感器的检测,例如这些传感器包括:红外地脚灯411和412、摄像头52和声纹传感器49,电器设备包括灯25和空调机31,在其他实现中,灯25也可以作为传感器使用。
在该室内场景中,红外地脚灯411主要包括:
红外传感器,用于检测用户2靠近或进入该红外地脚灯411的预定检测范围内并产生上述状态传感参数;
照明装置,用于根据该状态传感参数点亮照明光源。例如,照明装置可具有小于灯25的照明光通量,由于地脚灯的设置要求,可在例如夜间用户2进入该室内场景中时仅仅照亮地面,以便于用户2行走时识别地面上可能放置的障碍物;以及
控制器,分别电性耦接该红外传感器和照明装置,根据该状态传感参数控制该照明装置启动。
另外,红外地脚灯411还可包括传输装置,用于将该状态传感参数传输给控制端200,或者将该状态传感参数通过室内传输网络传递给其它传感器。室内传输网络的例子可以是例 如低压电力线载波网络,也可以是家庭WLAN网络或ZigBee网络。在一个实施例中,可通过红外地脚灯411和412同时开启的方式来定位用户2所处位置,这样可以使得传感器准确地识别启动哪些其它传感器或电器设备,例如如果用户远离灯25时,可不通过该状态传感参数启动灯25,或者不启动摄像头52。也可以是启动室内场景内的一部分空间范围内的灯。在一个实施例中,红外地脚灯411作为第一传感器,摄像头52和声纹传感器49可作为第二传感器,也可以是灯25作为第二传感器。
参照图13,具体来说,改变该室内场景的方法还可具体包括:
步骤502:通过所述室内场景中的红外地脚灯411或412(或者同时)检测在当前室内场景中通过用户2改变的第一状态传感参数F(σ),例如红外光电电平信号,并通过所述传感关联装置201获取当前场景变量P(σ)。在图4所示的实例中,第一传感器是选用红外传感器,如果用户2进入室内场景210中,该红外传感器感测到用户2进入该室内空间从而产生第一状态传感参数F(σ),该第一状态传感参数F(σ)设置为关联于室内场景210中的其它设备,包含了处于该室内场景210内的任何传感器或电器设备,例如通过该第一状态传感参数F(σ)触发台灯25或红外地脚灯412,也可以通过该第一状态传感参数F(σ)触发启动空调机31)。
步骤504:通过所述传感关联装置201识别检测到的所述第一状态传感参数F(σ)以产生场景传感关联G(σ),根据所述场景传感关联G(σ)启动摄像头52以通过图形识别方式产生在当前室内场景中的第二状态传感参数K(σ)。
其中,关联变量H(σ)是可由处理器202计算产生,也可由上述控制器产生。例如将第一状态传感参数F(σ)关联于室内场景210中的其它传感器或电器设备的标识码,可包含处于该室内场景210内的任何传感器或电器设备的设备码。在一种实现中,所述控制器产生该关联变量H(σ)以使传感关联装置201控制与该第一状态传感参数F(σ)有关的摄像头52启动,从而通过该摄像头52检测场景变量。摄像头52被配置为识别捕获到该室内场景中用户的图形并可基于图形算法对该图形内容进行计算以产生第二状态传感参数K(σ)。
步骤506:根据所述第一、第二状态传感参数启动处于当前场景中的电器设备以改变当前室内场景呈现的内容。在一个例子里,温度传感器41和摄像头52可同时感测用户2进入室内场景中,可控制启动灯21和25,同时,若该温度传感器41感测到由于用户2进入该室内场景210后室温产生变化,则可根据该温度变量来启动空调机31。在一个例子里,空调机31的温度控制将根据该温度传感器41所检测的温度变量而变化,或者说空调机31可通过温度传感器41来自动可调控制。在另一个例子里,空调机31可在温度传感器41和灯25持续 工作一个时间段后根据温度传感器41和灯25检测的状态传感参数来启动。
或者,在步骤506中还可根据温度传感器41和摄像头52产生的第一、第二状态传感参数启动声纹传感器49,从而可以使用户2在不通过任何实体动作的情况下使用语音方式来产生控制信号,其中声纹传感器49被配置为识别来自用户2发出语音的声纹信号,并可根据该声纹信号产生对电器设备(例如灯25或空调机31)的动态控制。
作为一种变型,在上述方法步骤504中还包括:通过多个所述的红外传感器创建用户2处于该室内场景中的空间坐标以定位该用户2。例如,红外地脚灯411和412可设置在室内场景空间的不同方向上,诸如空间正交方向,这样的一种效果是更准确地使得系统1获取用户2所处的位置,以便更为准确地控制处于室内场景下的传感器或电器设备的启动。
在一个例子里,红外地脚灯411和412可各自装设在两个相互垂直的建筑面内,这样两个红外地脚灯411和412所发射的红外光的范围413和414可彼此叠加或正交以形成正交网络,当用户2处于这个正交网络区域内时,红外地脚灯411和412可同时获得第一状态传感参数,如此,传感关联装置201根据这些第一状态传感参数计算出该空间坐标矢量,根据该空间坐标矢量,处理器202将获得处于该空间坐标周围一个预定范围内的电器设备的位置。例如,在图12所示的该室内场景的立体空间内装设了灯25和空调机31,那么传感关联装置201可控制灯25和空调机31同时或先后启动,也可以是按照用户2的指令来启动。
灯25和空调机31内可各自安装内置传感器,所安装的这些内置传感器用于对传感关联装置201在计算出关于用户2所处位置的空间坐标矢量下提供该传感关联装置201空间定位坐标矢量,如此,传感关联装置201将根据该空间定位坐标矢量来控制这些灯25和空调机31是否开启。
举个例子,图示的摄像头52具有供拍摄镜头旋动的旋转部件,该旋动部件被配置为根据该传感关联装置201就所述空间定位坐标矢量计算出的场景传感关联G(σ)来产生旋动量,以调节所述拍摄镜头对准至所需拍摄的最佳角度。例如,用户2处于的位置处可能不在摄像头52所能拍摄的视角范围内,在此情形下,摄像头52的拍摄镜头就需要根据该场景传感关联G(σ)所包含的指令旋动该拍摄镜头至用户2的(例如)面部。又例如,一般情况下,空调机31在启动后的运行风速或风向是预先设置为通用模式的,用户2仅能通过手动调节的方式来达到期望的设定。在本实施例中,根据场景传感关联G(σ)可控制空调机31开启的运行模式,例如风向可被自动调节至用户2所处的准确位置。
场景应用实施例2:
再次参照图9和10,通过本公开的教示可实现在不同的室内场景之间的关联和同步。在一个实施例中,公开了用于同步各个独立的室内场景210/220/230/240的场景变量以例如提供具有多个状态传感参数输出的系统和方法。例如,可利用至少两个传感关联装置201和201’来执行要同步的至少两个场景内容。传感关联装置201可被配置为在被指示执行各个场景内容时同步所需的场景变量,该共享操作可来自所述传感关联装置201的同步组件执行,这种同步操作可确保用户像期望的那样体验到每一室内场景输出的场景内容。另外在某些实施例中,这种同步操作也可使得所述场景变量能够保持在上述室内传输网络负荷允许的范围内,而如果在没有同步操作的情况下所呈现的场景变量则会超过该负荷允许范围。
在一些实现方式中,所述场景变量(例如当前场景变量P(σ))可用来驱动不同的电器设备或传感器,诸如温度传感器41或电视机45,例如,一些系统中的传感器可提供用户2以视觉或听觉输出,甚至可以是触觉输出,该触觉输出可包括由通过第一状态传感参数F(σ)或第二状态传感参数K(σ)驱动的用户2佩戴的传感器产生的振动输出。该听觉输出可包括由声纹传感器49所在扬声器播放的语音提示,两个不同场景变量的同步可确保听觉和触觉输出被用户2同时体验到。上述的同步场景变量可以是一个或多个数据结构,诸如数字阵列,可包括识别关联变量H(σ)的数据,每一状态传感参数请求的时间,每个状态传感参数请求的帧数和/或与同步组件和/或场景变量的呈现有关的任何其他数据信息。
在一些实现方式中,传感关联装置201可在处理器202的控制下采用相同的编/解码器,所述编/解码器是能够对上述状态传感参数编码或解码的硬件组件。在一个或多个实现方式中,场景变量中的一个或多个数据可以是从一个或多个非暂态存储介质取回(例如在某些状态传感参数已被预合成并存储以供频繁使用、可通过查找列表和/或其他数据结构来访问的情况下)和/或是在需要呈现场景内容时合成的。在各种实现方式中,场景变量可具有不同的样本帧率、采样率、持续时间和/或其他特性。然而,在各种其他实现方式中,一个或多个场景变量可具有彼此共同的一个或多个特性。在一些实现方式中,同步的场景变量可以是一个或多个数据结构,诸如数字阵列、表格、列表和/或其他数据结构。同步的场景变量可包括识别所有传感关联装置201、201’的数据、状态(诸如,“就绪”状态、“等待”状态、“取消”状态和/或其他此类状态)等。
又结合参照图14,在一个实施例中,所述的同步方法可包括:
步骤602:通过室内场景210外的另一个室内场景240内的第三传感器检测与当前室内场景210相关改变的第三状态传感参数J(σ)。在一个例子里,第三传感器可以是灯24或空调 机33自带的内置传感器,也可以是红外传感器44,第三传感器产生该第三状态传感参数J(σ)以激励室内场景210的呈现内容发生改变。
例如,当用户2离开当前室内场景240转而进入另一室内场景210时,通过红外传感器42可产生第三状态传感参数J(σ),用于影响当前室内场景210呈现的内容,第三状态传感参数J(σ)用于向传感关联装置201’的同步组件传递一个或多个同步信号,如此,传感关联装置201’响应于所述同步信号来提取在当前室内场景240中存在的其它状态传感参数,并作为所需同步至室内场景210的数据信息。在一个例子里,所述传感关联装置201’可提取处于当前室内场景240内第四传感器的状态传感参数,或者可通过该第四传感器可通讯地耦合至另一个传感关联装置201”。如此,该传感关联装置201”可进一步提取处于当前室内场景240内的例如第五传感器、第六传感器对应的状态传感参数。
进一步来说,通过处理器202耦接任一个或多个上述传感关联装置201、201’、201”以收集包含这些状态传感参数或场景变量的数据信息,从而可向室内场景210内的传感关联装置201发送这些数据信息。
步骤604:通过所述室内场景210内的传感关联装置201识别检测到的所述第三状态传感参数J(σ)以产生外部场景传感关联M(σ)。
该外部场景传感关联M(σ)可包含用于指示所需激励的室内场景210的标识码,例如作为第一传感器的温度传感器41感测到用户2,或者是通过摄像头52检测到用户2进入室内场景210,则可产生激励信号给传感关联装置201。
步骤606:在传感关联装置201接收了该激励信号后,传感关联装置201启动获取来自处理器202的用于同步的这些数据信息,其中根据所述外部场景传感关联M(σ)包含的标识码来将相同类型的传感器或电器设备的状态参数加以更替。例如,如果用户2在室内场景240中开启并控制了空调机33,则在用户离开该室内场景240后,空调机33的状态传感参数所包含的状态参数(诸如温度、风速)将被同步至室内场景210内的空调机31。其中,所述场景传感关联M(σ)产生的方式可按照前述图11所示步骤304来执行。
在一个实现方式中,在不同的室内场景中具有相同类型的电器设备或传感器的情况下,所述同步操作是更加方便的,例如图1所示的室内场景210、室内场景220和室内场景240中设有相同类型的电器设备,例如灯21、灯22和灯24,空调机31、空调机32和空调机33,以及传感器,例如温度传感器41、42和44,按照上述实施例,每一同类传感器的状态传感参数可被同步化,而在室内场景230内可不具有空调机而具有电视机45,则同步操作仅能部 分实现,例如仅灯23和24,以及红外传感器43和44的状态参数可被同步。
另外,在某些实施例中,这种同步操作也可使得所述场景变量能够保持在上述室内传输网络负荷允许的范围内,例如空调机31/32/33之间均可通过该同步操作来保持所述室内传输网络负荷。
场景应用实施例3:
通过本公开的教示可实现室内场景下灯光的控制。在一个实施例中,室内场景220的外部环境变量6可使得室内场景220的传感器产生第三状态传感参数J(σ),从而可间接地影响该室内场景220的场景变量。例如,可通过窗51或其窗帘部件来检测该第三状态传感参数J(σ)。外部环境变量6可包含光照、风力或紫外线等,从而产生的第三状态传感参数J(σ)可以是包含光强度或风速的数字值,该数字值在满足处理器202设定的阈值条件后可激励传感关联装置201启动室内的电器设备,例如灯22。
在一个实施例中,窗51可具有:感光传感器,用于感测外部环境变量6的光照强度;耦接该感光传感器的控制器,用于根据该光照强度的变化来计算出第三状态传感参数J(σ),并在该第三状态传感参数J(σ)满足设定阈值条件下激励传感关联装置201启动灯22;耦接该控制器的电磁开关,用于根据该第三状态传感参数J(σ)控制窗的打开或关闭。
在一个例子里,所述电磁开关包括例如分别装设在固定的窗框和可活动的(例如推拉或旋转式)窗本体上的磁性组件和电磁吸合组件,其中通过控制器控制所述电磁吸合组件与磁性组件吸合以关闭窗51。在其他例子里,窗本体的打开或关闭的接触边缘可设有红外传感器,可在感应到例如风吹入异物时向所述控制器发送提示信号。
结合图15,在另一个实施例中,该第三状态传感参数J(σ)激励传感关联装置201启动灯22,其中改变该室内场景220的方法可包括:
步骤702:通过所述室内场景220中的窗51的内置传感器检测在当前室内场景220中被外部环境变量6改变的第一状态传感参数F(σ),例如红外光电电平信号,并通过所述传感关联装置201获取当前场景变量P(σ)。在图1所示的实例中,第一传感器是选用窗51的感光传感器,该感光传感器感测到光强度满足阈值条件后产生第一状态传感参数F(σ),该第一状态传感参数F(σ)设置为关联于室内场景210中的灯22。
步骤704:通过所述传感关联装置201识别检测到的所述第一状态传感参数F(σ)以产生场景传感关联G(σ),根据所述场景传感关联G(σ)启动灯22以通过光传输方式产生在当前室内场景220中的第二状态传感参数K(σ)。进一步来说,灯22包含了内置传感器来进一步根据 第二状态传感参数K(σ)启动室内场景220中的其它电器设备,例如空调机32或插座47。
其中,关联变量H(σ)是可由处理器202计算产生,也可由灯22的内置控制器产生。例如将第一状态传感参数F(σ)关联于室内场景210中的其它传感器或电器设备的标识码,可包含处于该室内场景210内的任何传感器或电器设备的设备码。
在一种实现中,所述灯22的内置控制器产生该关联变量H(σ)以使传感关联装置201控制与该第一状态传感参数F(σ)有关的空调机32启动,从而通过该空调机32改变场景变量,例如温度、湿度或空气质量。
场景应用实施例4:
通过本公开的教示可实现室内场景下能量(例如电能)的控制。在一个实施例中,室内场景210、220、230和240可作为一个整体室内场景,外部环境变量6可使得该整体室内场景的传感器产生第三状态传感参数J(σ)以影响场景变量。例如,可通过例如光电转换装置116(诸如光伏逆变器)从外部环境变量6获取光能并转换为交流电以储能。控制端200可获取来自该光电转换装置116的第三状态传感参数J(σ)。
按照前述实施例,外部环境变量6可包含光照或紫外线等,从而产生的第三状态传感参数J(σ)可以是包含光强度的数字值,该数字值在满足处理器202设定的阈值条件后可激励传感关联装置201改变该整体室内场景的场景变量,例如以何种方式对电器设备进行供能。在一个实施例中,该第三状态传感参数J(σ)激励传感关联装置201启动整体室内场景的电器设备。
在此基础上,通过外部环境变量6改变该整体室内场景的方法例子可包括:通过该整体室内场景外的光电转换装置116的第三传感器检测与当前整体室内场景的供能相关改变的第三状态传感参数J(σ)。
在一个例子里,第三传感器可以是光电转换装置116自带的内置传感器或计量部件,或者,第三传感器可以是控制端200的内置传感器,例如继电器。第三传感器产生该第三状态传感参数J(σ)以激励室内场景210的呈现内容发生改变。在本实施例中,继电器用于在外部交互网络4的电力总线100失电情况下断开与该电力总线100的通路,从而在该整体室内场景内通过所述的交流电力线110、112、114向其中的电器设备传输电能。
作为替代方案,光电转换装置116自带的内置传感器可在检测到所存储的电能在满足一定阈值条件下产生第三状态传感参数J(σ)以提示处理器202可部分断开与电力总线100的通路,如此,一部分室内场景中的电器设备可通过存储的电能提供电力。在一些实现方式中, 提供的电力可以直接为直流电流,也可以通过逆变器转换为交流用电电器设备所需的交流电流。
计量部件可对光电转换装置116所转化的电能进行累计,从而可根据该累计产生所述的第三状态传感参数J(σ)以提示处理器202该整体室内场景总的用能数量值。计量部件的例子可以是集成在光电转换装置116的计量芯片。
例如,进一步来说,一个或多个上述传感关联装置201、201’、201”可耦接多个设置于建筑面内的插座46、47、48,以根据上述第三状态传感参数J(σ)启动对这些插座的电力通路,电力通路可以是交流或直流电流的形式。在外部电力总线100失电情况下,可通过上述处理器202控制该光电转换装置116向所述插座提供电力通路,如此,该整体室内场景中的用户2可通过这些插座来获取有限的电能。
图16形象地描绘出一个家居室内环境的场景,在图示的该场景中按照家居用户的期望布置了若干种家居类电子设备。图示的这些家居类电子设备包含了固定安装的设备,例如图示的壁式插座204、206-210,空调机205,嵌入式灯201和筒灯202、203等,以及移动式电气设备,例如灯211、213或有线插座212。特别是,移动式电气设备还包括了家庭控制端3,家庭控制端3可具有界面装置31,便于用户的直观操控。
图16中的电子设备1的例子可以是任何形式的数字式设备,在本文中使用的术语“电子设备”一般是指可以响应于对无线网络的数据链路或者数据配对的请求并随后与其他电子设备或信号传感器、收发器建立数据配对或握手的任何逻辑电路。
在一种实施方式中,电子设备1还可以使用其它输入/输出通道与用户的其他数字设备交换数据信息。其它输入/输出通道的例子包括在音频线缆输入和输出路径(例如音频接口)上的模拟信号;与图像分析器结合的照相机、二维码读取器或者其他摄像输入设备;可以生成计算机可读图像的显示输出装置;传感器,例如加速度计、陀螺仪或者接近式检测器(诸如通过位置传感器),其可以采用电子设备1的运动、朝向或者位置来向电子设备输入信息;不可见光(例如红外光)检测器以及/或者发射器;超声波检测器以及/或者发射器等。
例如,电子设备1可以是用户所持有的手机、膝上型电脑或个人数字助理(PDA)设备,由于电子设备1的便携性和紧凑式设计而在用户忽视的情况下不容易被找到,在此情况下,使用本公开实施例实现的效果是尤其显著的。
又例如,电子设备1可以是任何家居室内电器设备的遥控器,遥控器可通过不可见光(例如红外光)的方式发射控制信号,也可以通过其它射频(RF)方式来发送控制指令。另外, 遥控器也可以用于接收来自电器设备的响应,同时,这些响应可以任何方式提示给用户,例如,较为紧凑的可视化操作界面,音频铃声或振动等方式。
总的来说,参照图21,用于寻找在该家居室内放置的电子设备1的方法可包括:
步骤S100:通过该室内空间中设置的一个或多个信号收发器向该空间内发送检测信号。在图1所示的一个实施例中,信号收发器是设置为嵌装于墙面内的多个插座,例如206、207和209。例如,插座207可具有发射器,用于根据来自家庭控制端3的广播信号而向该家居室内空间发射例如无线路由信息。
步骤S200:根据所需寻找的电子设备1对该检测信号的响应信号来确定上述信号收发器与该电子设备之间的最优连接配置。电子设备1的例子可以是膝上型电脑或平板电脑,例如,用户期望在无法回忆起早些时间将膝上型电脑弃置在居室内何处时,可以通过家庭控制端3来启动寻找操作。
步骤S300:根据所述最优连接配置来提示用户该电子设备1的位置或唤醒该电子设备1以给予家居用户提示。在一些实施方式中,提示的方式可通过例如膝上型电脑的蜂鸣器来产生提示音。而另外对于移动电话等小型电子设备的寻找则可通过语音提示或响铃的方式给予用户提示。
在一个实施例中,所述最优连接配置至少包括了:
(1)所述信号收发器与该电子设备1之间的最短空间距离。结合图17来看,在该家居室内空间中的多个信号收发器21、22、23和24向该空间内发射无线信号,例如Wi-Fi信号。如此,一个信号收发器22在该空间内发射的一个检测信号可被除需要寻找的电子设备1以外的多个其它信号收发器21、23或24接收。
在一个实施例中,所发射的检测信号可包含检测标识符,该检测标识符表示信号收发器22向可能存在的电子设备1广播响应请求以至少获得该电子设备1的反馈信号。例如,检测标识符可包含两位16进制码,若电子设备1接收并识别出该检测标识符,则响应于该检测标识符以反馈例如设备名。如此,在其它信号收发器21、23或24接收该检测标识符后将不反馈任何响应,例如在信号收发器22在广播信号过程中向信号收发器21发送该检测标识符,信号收发器21可做出选择:不响应该检测标识符;或者响应该检测标识符并反馈零码,如此,对该信号收发器22的广播信道仅存在电子设备1的响应。
在本公开的任一实施例中,“信道”或“通道”被用来表示从发送方向接收方传送信息的介质通道。应当指出,由于术语“信道”的特征可以根据不同的无线协议有所不同,因此本文所 使用的术语“信道”可被认为以与参考该术语所使用的设备类型的通讯标准一致的方式使用。
在对一些标准术语的解释中,信道宽度是可变的(例如依赖于设备运算能力、频带条件等)。例如,4G-LTE可支持从1.4MHz到20MHz的可调节信道带宽。相反,WLAN信道可以是22MHz带宽,而Bluetooth信道可以是1MHz带宽。其它协议和标准可以包括不同的信道定义。此外,一些标准可定义和使用多种类型的信道。例如,用于上行链路或下行链路的不同信道和/或用于诸如数据、控制信息等之类的不同用途的不同信道。
另外,多个信号收发器21、22、23、24可同时向该空间内例如广播上述检测信号,如果以Wi-Fi作为此广播信道发送则电子设备1仅能够响应其中的一个广播信道发送的检测信号,如此,在上述步骤S200中可进一步包括:检测与该电子设备1建立无线连接的信号收发器(例如信号收发器22)和该电子设备1之间的空间距离。其中,该空间距离的测定是根据该信号收发器的信号发射强度和在所建立的无线连接上下行链路的数据传输速率来确定。所建立的无线连接是基于该电子设备1响应该检测标识符以反馈例如设备名后实现,进一步来说,与该电子设备1建立无线连接的信号收发器将向该电子设备1传输数据。
在一个实施例中,传输的数据内容用于至少更改电子设备1内的设定,电子设备1的部分附加功能可在用户不手动更改的情况下被准许获得。例如,开启电子设备1的其它通讯端口,诸如Bluetooth,闪光灯等附件。
在另一个实施例中,可通过该空间内的一个发射范围最广的信号收发器24来广播该检测信号。按照图16的图示,吸顶灯201可设置成上述信号收发器24,如此,信号收发器24在该空间内(例如从天花板向周围范围内没有任何遮挡物)可具有较佳的无线信号发射范围,在该空间内可有效地广播上述检测信号。
(2)所述信号收发器与该电子设备1之间建立的无线连接的最佳信号强度。按照前述实施例,一个信号收发器广播的检测信号可被电子设备1接收和响应,那么可在电子设备1端自动测定信号损失量SL,并且根据信号收发器的信号发射强度ST来获得在电子设备1端所获得的任一个信号发射器产生的无线信号的接收信号强度SR,原理上满足:
SR=ST–SL  (1)
从而可根据接收信号强度SR来获知哪一个信号收发器距离该电子设备1最为接近,或至少处于该信号收发器周围的最强信号范围内,或者,根据上述接收信号强度SR来计算出该信号收发器与电子设备1之间实际的空间距离L1
(3)所述信号收发器与该电子设备1是处于同一个无线数据网络内。
在本公开一些实施方式中,每一个信号收发器作为无线AP的类型可互不相同。并且在一些例子里,在一个信号收发器广播该检测信号时,其它的信号收发器将中止发送无线信号或可能产生的例如多媒体数据,如此,每一个信号收发器发射的无线信号可相互独立并相异,电子设备1接收到的检测信号可相应地不同,从而可识别地接入每一个无线AP的方式可不相关。在另一些例子里,多个信号收发器也可以同步广播该检测信号,此时的电子设备1将被设置为例如混杂模式或专用监听模式。
在一个实施例中,如果电子设备1在被用户弃置之前已接入某一个信号收发器作为无线AP的无线路由网络,而在被弃置后,通过家庭控制端3轮询每一个无线AP设备后能够获得该电子设备1在该无线路由网络内的注册信息,例如设备名、IP、MAC地址,则可指示该无线AP设备所在的信号收发器(例如,有线插座212)指示该电子设备1所在的一个大致范围。
作为前述任一实施例的一种变型,所述的方法进一步包括:通过一个信号收发器根据所述响应信号启动除这个信号收发器以外的多个信号收发器;以及根据所述最优连接配置确定所需寻找的电子设备在该家居室内空间中的坐标位置。
在以上任一实施例中,如果仅确定电子设备1处于该最强信号范围内时仍不能让用户准确地知道电子设备1的具体位置,此时为了实现更佳效果,在上述步骤S200中可包括步骤S201:在确定电子设备1处于某一个信号收发器(例如,灯201)的最佳信号强度的信号范围内时,启动其它信号收发器21、22或23以广播与该信号收发器24之前发送的内容相同的检测标识符。信号收发器21、22或23的广播信号在电子设备1上可同步被接收,如此,电子设备1可遍历这些广播信号而逐一反馈响应,在此情况下,电子设备1将被配置为不与任何一个信号收发器21、22或23建立无线连接,也就是说不请求在这些信号收发器21、22或23的无线路由网络上进行注册。
在图16所示的例子里,如果电子设备1被用户弃置在写字桌上,则可通过吸顶灯201接收的响应信号传输至家庭控制端3,该家庭控制端3可根据该最佳信号强度的信号范围启动处于该信号范围内的信号传感器,例如图16中所示的插座204、206、207和209。
在一个实施例中,按照图17绘示的原理,可通过该空间内的至少三个信号收发器21、22、23来框定该电子设备1所处的空间区域。在图16的例子里,插座206、207和209可被设置成这三个信号收发器,或者插座204、206、207和209可被分别设置成四个信号收发器24、21、22和23,如此,在确认电子设备1所处的大致范围的情况下可判定至少三个信号收发器21、22、23确定的一个空间平面,根据吸顶灯201向该空间平面的空间距离L2和上述空间距离L1之间的 矢量差来确定该电子设备1的空间坐标。
在另一个实施例中,前述步骤S201还可改进为包括:在确定电子设备1处于某一个信号收发器(例如灯201)的第一信号强度的信号范围内时,启动其它信号收发器21、22或23中的至少一个发射(例如广播)具有第二信号强度的检测信号。其中,第二信号强度可远低于第一信号强度,如此,可在电子设备1无法有效接收第二信号强度下的检测信号时,排除该电子设备1可能处于的其它空间位置以进一步确定电子设备1的更具体位置。
作为前述任一实施例的另一种变型,在电子设备1与信号收发器之间或在信号收发器与家庭控制端3之间可建立并交互公共密钥。
在一些实施方式中,为了在寻找电子设备1过程中安全地传输信号,可使用公共密钥。公共密钥是使用所述的检测信号来交换。在使用前述检测信号时公共密钥可被并入为子字段中,也可使用其他格式。例如,可使用动态协商密钥,在其他实施方式中,公共密钥的生成可基于与任一信号收发器关联的密码字符来实现。
在一个实施例中,可通过信号收发器来计算确认检测内容,并且可通过信号收发器之间存储具有相同的确认检测内容来确证该电子设备1。例如,信号收发器和电子设备1可各自都存储基于该确认检测内容的信息。如果二者具有相同的信息内容,则电子设备1的身份可被验证,并且可通过家庭控制端3要求用户来验证该电子设备1。
在此基础上另选地,信号收发器之间可各自使用随机询问码来验证对方具有相同的确认检测内容。所述的信号收发器可基于共享的确认检测内容生成加密和验证密钥。在前述步骤S200中,信号收发器可使用该验证密钥与电子设备1安全地进行通信。例如,信号收发器可使用该验证密钥来加密一个广播消息(也可以是前述检测信号),然后,在检测信号中的信息要素(或其他数据项)中发送该加密的广播消息。类似地,该信号收发器可接收包含来自家庭控制端3加密的广播消息的检测信号,并使用该验证密钥来解密和验证该消息。在步骤S200中,通过上述验证密钥建立的无线连接可无限地循环。当步骤S300完成时可结束。
结合图17,在其他实施例中,信号收发器21、22、23或24向该空间内发射无线信号的例子可以是红外光线方式。在一个实施例中,可通过吸顶灯201作为信号收发器24以向该空间内发射红外光信号,具有红外光接口的电子设备1将接收并反射该红外光信号,如此,信号收发器24可测算其与该电子设备1(例如,红外遥控器)之间的距离D4,根据该距离D4可确定电子设备1所处的具体高度位置。
进一步地,在信号收发器24接收到反射的红外信号作为响应后,可指示该家庭控制端3 启动其它信号收发器。在一个实施例中,可启动处于同一空间竖直高度上的多个信号收发器,例如在图16中,墙壁插座206、207、208是处于同一竖直高度(例如1.5m),如此,可通过该墙壁插座206、207、208确定一个空间平面4,然后每一插座向电子设备1发射红外光检测信号,每一插座可通过反射回的红外光信号来测算它与该电子设备之间的距离D1、D2和D3,同时,根据该距离D1、D2和D3确定该电子设备1的空间坐标。应当理解的是,电子设备1可能处于另一个空间平面6内,在理想状态下,若电子设备1处于或大致上处于空间平面4内则可直接通过平面距离测算公式来准确或大约计算出该电子设备1的实际位置,用以提示用户。在其他实施例中,也可以通过信号收发器24所处的空间平面5和空间平面4所处的高度来测算空间平面6的实际高度,在这种情况下,墙壁插座的高度可能与之前不同,例如图16中插座209或210所处的竖直高度,这样能够将电子设备1的高度位置限定的更加准确。
此外在图19的例子里,作为本公开的前述步骤的实现,用于寻找家居室内电子设备的装置可包括:
耦接家居室内空间中设置的若干个信号收发器的信号选通电路1001,用于通过家居室内空间中设置的若干个信号收发器向该空间内发送检测信号;以及
耦接上述信号选通电路的数据处理电路1002,用于根据所需寻找的电子设备对该检测信号的响应信号来确定上述信号收发器与该电子设备1之间的最优连接配置;以及根据所述最优连接配置来唤醒该电子设备1以给予家居用户提示。
在某些实施例中,该装置可以是上述家庭控制端3。
在一个实施例中,家庭控制端3内的信号选通电路1001可包含若干个数据访问接口,数据访问接口(例如,背板连接器)的每一端口将被数据处理电路1002定义端口类型。
在图20所示的一个实例中,数据访问接口具有8个端口T1~T3、N1~N5,其中端口T1~T3被配置为识别家庭控制端3外部供电电源的直流电流,数据端口N1~N5可被配置为识别家庭内部传输网络的通讯协议类型,家庭内部传输网络的例子可以是使用ZigBee、Bluetooth或者Wi-Fi协议的网络。
其中,每一端口可连接至外部的信号收发器181~186。另外,取电接口可包括端口P1~P3,其中P1和P2分别用于耦接该家庭控制端3内的电源电路的交流电力线Lin和Lout以及P3用于接地E。在一种实现中,取电接口和数据访问接口各自的集成电路可电气隔离设置,或者在家庭控制端3本体内的取电插槽和数据插槽处可通过电源159进行总电气隔离设置,如此,取电接口和数据访问接口各自的集成电路可不需要进行绝缘隔离设置。
另外,所述数据处理电路1002被配置为对所述数据访问接口中出现的接口冗余分配对应数量的端口。例如,在初始状态下,每一数据访问接口之间是按照串行总线方式连接。在图20所示例子里,一个数据端口N1是用于适配于外部网络设备181的网络接口,例如Wi-Fi网络,并且在其它对应数据端口N1均被设置为适配于Wi-Fi网络,它们之间是通过串行总线方式加以设置。同样地,另一数据端口N2用于适配于外部网络设备182的网络接口,例如ZigBee网络。又或者,其中一个端口N4用于适配于外部网络设备184的网络接口,例如Bluetooth,如此,在每一数据访问接口的端口数量足够的情况下,将不会出现接口冗余,一般情况下,可将用于数据传输协议的端口N1~N5的每一个定义一个端口类型。
在某一些情况下,当一种数据传输协议类型需要占用多个端口N1~N5时,若存在多种传输协议类型,则端口的数量将不足,即所述的“接口冗余”。在此情况下,数据处理电路1002被配置为获取其它的未占用端口及其端口的协议类型;以及改变该未占用端口的协议类型至接口冗余对应的协议类型。例如在使用外部网络设备186的网络接口为RS485总线以及其它多线制总线下,若接口冗余出现并且所需接口的数据传输协议为RS485,则可将例如图20中所示的空白的端口的初始协议类型改变为适配于RS485(图中占用的端口以“╳”表示)。如此,数据处理电路1002可被配置为接收来自家庭控制端3内其它数据处理电路的表示接口冗余的请求,并查找其对应的数据访问接口的未占用端口及其协议类型。
在一个实施例中,所述信号收发器是嵌装于该家居室内建筑面内的电器附件。其中,电器附件的例子可以包含图16中所示的墙面式插座206,也可以是家居电器设备的附接设备,例如台灯211或装饰性辅灯202。
在一些实施方式中,在信号收发器之间交换的加密消息内容可包括加入任一个无线AP的安全无线网络所需要的数字证书,例如网络名称和密钥。
例如,在某些局域网络下的用户接口(例如具有Wi-Fi或Bluetooth接口的插座)的信号收发器可与例如Wi-Fi灯具建立无线连接,并可通过该无线连接获得用于加入当前无线网络的数字证书。信号收发器随后可使用这些数字证书来加入或产生新的无线网络。一旦信号收发器加入了无线网络,信号收发器与家庭控制端3就可通过该无线网络互相通信或者与电子设备1通信。如此,该无线连接就可被终止或者该无线连接链路可被保持作为其它通信路径。
应当理解的是,图16中示出的任何设备是示例性的并可以进行变化和修改。例如,尽管电子设备1被描绘为个人计算机,但是电子设备1还可以是其他类型的设备,包括但不限于平板计算机、智能电话、移动通信或计算设备等。另外,电子设备1不必具有大规模运算能力, 任何能够执行在本公开描述的操作步骤的电子设备都可以被用作被寻找的对象。
在一些实施方式中,信号收发器可具有受限接口或者不具有接口。例如,扬声器可产生声音但无需具有任何能够检测用户动作的部件(例如按钮、拨盘、触摸屏幕等等)。类似地,家庭控制端3能够在显示界面呈现电子设备1所处位置的图像(例如采用黑色和白色或者取决于实施的颜色),并可具有能够显示一些特征或者简单状态灯的显示器。用户输入接口可提供仅一个或多个控制按钮。这种受限接口或者不存在的用户接口会使用户难以或无法输入网络名称、密码或其他用于加入安全无线网络所需的数字证书。本公开的一些实施方式允许信号收发器无线地且安全地获取家庭控制端3产生的无线网络的数字证书,而与该信号收发器是否具有极其有限或没有用户交互接口无关,从而简化将所示的信号收发器连接至无线网络的操作。
一个或多个集成电路(例如传统的微处理器或者微控制器)可用于实现数据处理电路的操作。在各种实施方式中,数据处理电路可响应于程序代码执行各种步骤,并可保持多个同时或多线程执行的处理步骤。在任何给定的时间内执行的一些或者全部的程序代码可以驻存于该数据处理电路中以及/或者附接的存储介质中。
术语“存储介质”意在包括:安装介质,例如CD-ROM或者光盘装置;计算机系统存储器或随机访问存储器,诸如DRAM、DDR-RAM、SRAM、EDO-RAM、Rambus-RAM等;非易失性存储器,诸如闪存、磁介质(例如硬盘驱动器)或者光存储器;寄存器;或者其它类似类型的存储元件等。存储介质也可包括其它类型的非暂时存储器或者其组合。此外,存储介质可位于执行程序的计算机系统中,或者可位于通过无线网络(诸如互联网)连接到服务器系统的不同的另一计算机系统中。在后一种情况下,另一计算机系统可将程序指令提供给前一计算机以便执行。术语“存储介质”可包括两个或更多个存储介质,这些存储介质可存在于不同位置,例如存在于通过网络连接的不同计算机系统中。存储介质可存储可由一个或多个数据处理电路执行的数字程序指令。
作为一种变型,所述的装置进一步包括:耦接该信号选通电路1001的选择电路1003,用于通过一个信号收发器根据所述响应信号启动除这个信号收发器以外的多个信号收发器;其中所述数据处理电路1002还用于根据所述最优连接配置确定所需寻找的电子设备1在该家居室内空间中的坐标位置。
进一步来说,所述最优连接配置是在用户操作该电子设备期间生成。根据前述实施例,用户可通过家庭控制端3的输入接口加以操作,该输入接口可包括诸如键盘、触摸板、触摸屏、 点击滚轮、拨盘、按钮、开关、键盘、麦克风等的输入设备以及诸如视频屏幕、指示灯、扬声器、头戴式受话器插孔等的输出设备,并连同支持电子元件(例如A/D或者D/A转换器、信号处理器等)。用户可操作输入接口来调用数据处理电路的功能,并可通过输入接口的输出设备例如观看以及/或者收听来自家庭控制端3的输出。
图18给出了一个家居室内环境的俯视平面图,在该图中某些组件或者要素的位置可能发生了变化但不影响绘示之用。其中,家居室内环境可包含三个空间300、310、320,一般情况下,用户100处于空间300内试图寻找电子设备1,可通过家庭控制端3来进行操作,应当理解,操作的方式是按照前述实施例的指导为最佳。
在一个实施例中,家庭控制端3是一个可移动设备,用户100可将其置于另一个空间310内以实现其它电气功能,例如,可附接的空气净化装置、无线路由装置等。用户100可直接通过家庭控制端3具有的界面装置31来进行可视化输入,也可以通过信号收发器(例如图示的墙壁插座206)来触发家庭控制端3执行这种输入。例如,可使用家庭控制端3建立公共密钥。公共密钥可使用所述的检测信号来交换,在使用该检测信号时公共密钥可被并入为一个子字段中,也可使用其他格式。例如,可使用动态协商密钥,在其他实施方式中,公共密钥的生成可基于与任一信号收发器关联的密码字符来实现。
另选地,家庭控制端3可被配置为随机地选取一个空间320内的信号收发器发射检测信号。例如,可直接通过插座207或者插座207、208两者来发射该检测信号,在电子设备1可接收的范围内,电子设备1可被识别出大致位置。在另一个实施例中,若家庭控制端3已获知该电子设备1的大致位置,可通过家居电器设备加以提示,例如可在其界面装置31上呈现图18的表示,也可以其它方式来提示用户,例如,控制灯213点亮以表示该电子设备1至少处于该灯213的照射范围内。
另外,一种用于寻找室内电子设备的装置包括:处理器;耦接该处理器的存储器,其存储有指令,所述指令在由所述处理器执行时使得所述处理器执行如下处理:控制室内空间中设置的一个或多个信号收发器向该空间内发送检测信号;根据所需寻找的电子设备对该检测信号的响应信号来确定上述信号收发器与该电子设备之间的最优连接配置;以及根据所述最优连接配置来提示用户该电子设备的位置。
所述处理器还可以包括通过一个或多个系统总线将处理器电性耦接至多个网络端口或I/O设备,其中网络端口可包括LAN控制器、调制解调器等。I/O设备可包括便于用户输入的输入附接设备。
之前的详细描述是依据对装置存储器内数据比特进行操作的算法和符号表示来呈现的。这些算法描述和表示是数据处理领域的技术人员用来最有效地向本领域的其它技术人员传达他们的工作的实质的工具。算法在这里通常被视为是导致所需结果的有条理的序列的操作。这些操作是需要对物理量进行物理操纵的那些操作。通常(但不必需)这些物理量采取能够被存储、传送、组合、比较和以其它方式操纵的电信号或磁信号形式。主要出于通用的原因,已证实将这些信号表示为比特、值、元素、符号、字符、项、数字等有时是方便的。
本文呈现的处理和显示不是固有地涉及任何特定的装置或其它设备。各种通用系统可以用于根据本文的教导的程序或者构造更专用的设备以执行所述操作可以被证实是方便的。根据以下的描述,各种这些系统所需的结构将是显然的。另外,本公开不是参照任何特定的编程语言描述的。将理解,可以使用各种编程语言来实现如本文所描述的本公开的教导。

Claims (26)

  1. 一种家庭控制端,其特征在于包括:
    若干个堆叠安装的本体;以及
    用于将所述本体承载并安装于建筑面内的基座,所述基座具有分别连接家庭外部传输网络与家庭内部传输网络的输入端和输出端。
    所述家庭外部传输网络或家庭内部传输网络是电力总线或媒体传输网络。
  2. 根据权利要求1所述的家庭控制端,其特征在于所述本体包括:
    第一本体;以及
    第二本体,所述第一本体堆叠安装在第二本体上,其中,所述第一本体的用于堆叠安装的底端设有与第二本体的顶端相配合的接合部件。
  3. 根据权利要求2所述的家庭控制端,其特征在于,所述第一本体内装设有多个数据信号控制板,用于通过所述输入端接收来自家庭外部传输网络的媒体数据并选择性传递给所述输出端;所述第二本体内装设有多个电力信号控制板,用于通过所述输入端接收来自家庭外部传输网络的交流电源,并控制将该交流电源供给所述输出端;其中:
    多个数据信号控制板或电力信号控制板可分别并行地插入所述第一本体或第二本体内的插槽中。
  4. 根据权利要求1所述的家庭控制端,其特征在于,所述本体包括:
    第一本体,该第一本体固定安装在该基座上。
  5. 根据权利要求4所述的家庭控制端,其特征在于,所述第一本体被配置为装设多个数据信号控制板,该数据信号控制板包含电力信号控制板,其中所述多个数据信号控制板并行地插入在第一本体内并行设置的对应插槽中。
  6. 根据权利要求5所述的家庭控制端,其特征在于,每一数据信号控制板上绝缘隔离地设置取电接口和数据访问接口,其中:
    取电接口被配置为接收来自电网电力线的交流电源,并控制将该交流电源供给家庭室内的电器设备;数据访问接口被配置为从建筑面内敷设的总线接收多媒体数据。
  7. 一种散热装置,其特征在于包括:
    若干个堆叠安装的本体;以及
    用于将所述本体承载并安装于建筑面内的基座,所述基座具有分别连接家庭外部传输网络与家庭内部传输网络的输入端和输出端,其中所述本体包括:第一本体,该第一本体固定 安装在该基座上;其中
    在所述第一本体的底部空腔内可布置导流板,其中在该导流板上设置有若干个导流部件,用于从该底部空腔抽取气体至第一本体内容置腔内并使得该气体向该容置腔顶部扩散;并且
    所述家庭外部传输网络或家庭内部传输网络是电力总线或媒体传输网络。
  8. 根据权利要求7所述的散热装置,其特征在于,所述第一本体被配置为装设多个数据信号控制板,该数据信号控制板包含电力信号控制板,其中所述多个数据信号控制板并行地插入在第一本体内并行设置的对应插槽中。
  9. 根据权利要求8所述的散热装置,其特征在于,每一数据信号控制板上绝缘隔离地设置取电接口和数据访问接口,其中:
    取电接口被配置为接收来自电网电力线的交流电源,并控制将该交流电源供给家庭室内的电器设备;数据访问接口被配置为从建筑面内敷设的总线接收多媒体数据。
  10. 根据权利要求8所述的散热装置,其特征在于,在第一本体内容置腔的一个侧部设置适于该取电接口和数据访问接口插接的取电插槽和数据插槽,所述取电插槽和数据插槽是设置在同一竖直高度上。
  11. 根据权利要求8所述的散热装置,其特征在于,每一数据信号控制板设有驱动电路,用于激励和控制家庭室内的电器设备所需使用的电气功能的交流电压,其中所述取电接口和数据访问接口各自的集成电路被电气隔离设置,或者通过在第一本体内的取电插槽和数据插槽处进行总电气隔离设置。
  12. 根据权利要求7所述的散热装置,其特征在于,在每一个数据信号控制板的顶盖板和底板上相互对应地开设了通孔,如此,在将多个数据信号控制板装入该容置腔后,被抽入该容置腔的气体贯穿每一通孔以携带数据信号控制板上的热能。
  13. 根据权利要求12所述的散热装置,其特征在于,在所述第一本体的侧壁上并行开设多个导流槽,用于将带有热能的气体排出该第一本体。
  14. 根据权利要求13所述的散热装置,其特征在于,用于封围所述第一本体的盖板在封围第一本体后与该第一本体侧壁形成狭槽,带有热能的气体将沿着所述狭槽从该第一本体背侧排出。
  15. 根据权利要求11所述的散热装置,其特征在于,每一数据信号控制板还设有耦接该处理器单元的温度传感器,用于感测该容置腔内各个空间区域的实际温度。
  16. 一种通过根据权利要求1所述的家庭控制端改变室内场景的方法,其特征在于包括:
    通过所述室内场景中的第一传感器检测在当前室内场景中发生改变的第一状态传感参 数;
    识别检测到的所述第一状态传感参数以产生场景传感关联,根据所述场景传感关联启动第二传感器以检测在当前室内场景中的第二状态传感参数;以及
    根据所述第一、第二状态传感参数启动处于当前室内场景中的电器设备以改变当前室内场景呈现的内容。
  17. 根据权利要求16所述的方法,其特征在于还包括:
    通过所述室内场景外的第三传感器检测与当前室内场景相关改变的第三状态传感参数;
    识别检测到的所述第三状态传感参数以产生外部场景传感关联;以及
    将该外部场景传感关联与所述场景传感关联结合计算。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一、第二状态传感参数是通过传感器检测的温度、湿度、照度数据中的一个或组合。
  19. 根据权利要求18所述的方法,其特征在于,所述第三状态传感参数是时钟、地理位置或天气数据中的一个或组合。
  20. 根据权利要求16或17所述的方法,其特征在于,所述第一、第二或第三传感器是设置于建筑面内。
  21. 一种用于通过根据权利要求1所述的家庭控制端寻找室内电子设备的方法,其特征在于包括:
    通过室内空间中设置的一个或多个信号收发器向该空间内发送检测信号;
    根据所需寻找的电子设备对该检测信号的响应信号来确定上述信号收发器与该电子设备之间的最优连接配置;以及
    根据所述最优连接配置来提示用户该电子设备的位置。
  22. 根据权利要求21所述的方法,其特征在于,所述最优连接配置包括以下中的至少一种:
    所述信号收发器与该电子设备之间的最短空间距离;
    所述信号收发器与该电子设备之间建立的无线连接的最佳信号强度;或者
    所述信号收发器与该电子设备是处于同一个无线数据网络内。
  23. 根据权利要求21所述的方法,其特征在于,进一步包括:
    根据对一个第一信号收发器的所述响应信号启动除第一信号收发器以外的多个第二信号收发器发送检测信号和接收电子设备对其的响应信号;以及
    根据所述第一和第二信号收发器与该电子设备之间的最优连接配置确定所需寻找的电子 设备在该室内空间中的坐标位置。
  24. 根据权利要求21所述的方法,其特征在于,所述响应信号包括所述电子设备的设备名、IP地址、MAC地址、设备ID中的至少一个。
  25. 根据权利要求23所述的方法,其特征在于,第一信号收发器具有第一信号强度,第二信号收发器具有第二信号强度,并且第二信号强度远低于第一信号强度。
  26. 根据权利要求21所述的方法,其特征在于,所述提示包括以下的至少一种:使所述电子设备自身发光、发声或者振动,向用户显示所述电子设备在室内的位置,使所述电子设备附近的另一设备发光、发声或者振动。
PCT/CN2016/103101 2016-06-21 2016-10-24 家庭控制端 WO2017219564A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201620632010.1 2016-06-21
CN201620632010.1U CN205880633U (zh) 2016-06-21 2016-06-21 一种室内场景的控制端
CN201620678534.4 2016-06-27
CN201620678548.6U CN205883288U (zh) 2016-06-27 2016-06-27 一种家庭控制端
CN201620678534.4U CN206042626U (zh) 2016-06-27 2016-06-27 一种散热装置
CN201620678548.6 2016-06-27

Publications (1)

Publication Number Publication Date
WO2017219564A1 true WO2017219564A1 (zh) 2017-12-28

Family

ID=60783178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103101 WO2017219564A1 (zh) 2016-06-21 2016-10-24 家庭控制端

Country Status (1)

Country Link
WO (1) WO2017219564A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427292A (zh) * 2018-01-24 2018-08-21 普天智能照明研究院有限公司 一种家居设备
CN112947317A (zh) * 2021-03-25 2021-06-11 北一(山东)工业科技股份有限公司 一种用于高端智能数控设备的物联网传感装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507379A (zh) * 2005-09-06 2009-08-12 超刀片公司 三维多层模块化计算机体系结构
JP2010245409A (ja) * 2009-04-09 2010-10-28 Nec Infrontia Corp ケーブル固定構造
JP2015195251A (ja) * 2014-03-31 2015-11-05 富士通株式会社 電子機器搭載装置
CN105322764A (zh) * 2014-07-29 2016-02-10 株式会社安川电机 电力转换装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507379A (zh) * 2005-09-06 2009-08-12 超刀片公司 三维多层模块化计算机体系结构
JP2010245409A (ja) * 2009-04-09 2010-10-28 Nec Infrontia Corp ケーブル固定構造
JP2015195251A (ja) * 2014-03-31 2015-11-05 富士通株式会社 電子機器搭載装置
CN105322764A (zh) * 2014-07-29 2016-02-10 株式会社安川电机 电力转换装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427292A (zh) * 2018-01-24 2018-08-21 普天智能照明研究院有限公司 一种家居设备
CN112947317A (zh) * 2021-03-25 2021-06-11 北一(山东)工业科技股份有限公司 一种用于高端智能数控设备的物联网传感装置
CN112947317B (zh) * 2021-03-25 2022-07-01 北一(山东)工业科技股份有限公司 一种用于高端智能数控设备的物联网传感装置

Similar Documents

Publication Publication Date Title
JP6665244B2 (ja) ターゲット装置を制御するためのネットワークシステム、プロトコル及び方法
US11039048B2 (en) Doorbell camera
CN212933505U (zh) 显示助理设备
US10694611B2 (en) Network power switch
US20200288045A1 (en) Doorbell Camera
JP6998971B2 (ja) ビデオカメラアセンブリ
KR102177786B1 (ko) 미디어 출력 디바이스들 사이의 미디어 전달
US20180063485A1 (en) Systems, Methods, and Devices for Managing Coexistence of Multiple Transceiver Devices by Optimizing Component Layout
US20170202039A1 (en) Smart-home device facilitating convenient setup of plural instances thereof in the smart home
CN104483937B (zh) 酒店智能房控系统及方法
CN110678701B (zh) 空调机
WO2014076919A1 (ja) 情報提供方法及び情報提供装置
KR20180105174A (ko) 스마트 디바이스들과 함께 레이더를 활용하기 위한 시스템들, 방법들 및 디바이스들
JP2019506073A (ja) 追加導入されたデバイスの設定と立ち上げ
TW201417539A (zh) 智慧閘道、智慧家居系統及家電設備的智慧控制方法
CN108351623A (zh) 用于控制生活空间特征的系统
KR101272653B1 (ko) 댁내 기기 원격 제어 및 감시 시스템
WO2020133495A1 (zh) 一种智能设备管理方法、移动终端及系统
WO2017219564A1 (zh) 家庭控制端
CN109643478B (zh) 用于无线音频/视频记录和通信装置的无线扬声器装置
JP2017504099A (ja) 無線ドッキングシステム
CN106211325B (zh) 用于寻找室内电子设备的方法和装置
CN208747403U (zh) 一种电梯控制系统
ES2764179T3 (es) Sistema de control de dispositivos
WO2022100298A1 (zh) 终端保护壳、通讯标签、控制方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906104

Country of ref document: EP

Kind code of ref document: A1