WO2017219231A1 - 便携式光伏组件测试装置及测试方法 - Google Patents

便携式光伏组件测试装置及测试方法 Download PDF

Info

Publication number
WO2017219231A1
WO2017219231A1 PCT/CN2016/086534 CN2016086534W WO2017219231A1 WO 2017219231 A1 WO2017219231 A1 WO 2017219231A1 CN 2016086534 W CN2016086534 W CN 2016086534W WO 2017219231 A1 WO2017219231 A1 WO 2017219231A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic module
slider
frame
tested
testing device
Prior art date
Application number
PCT/CN2016/086534
Other languages
English (en)
French (fr)
Inventor
郭灵山
Original Assignee
张甘霖
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张甘霖 filed Critical 张甘霖
Priority to PCT/CN2016/086534 priority Critical patent/WO2017219231A1/zh
Publication of WO2017219231A1 publication Critical patent/WO2017219231A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of solar photovoltaic power generation, in particular to a portable photovoltaic component testing device and a testing method.
  • Photovoltaic modules are the basic part of the photovoltaic power generation system, and the core part, using its photovoltaic effect to convert solar energy into electrical energy, and send it to the power grid through the relevant power transmission and transformation equipment, or use energy storage devices to temporarily store the electrical energy.
  • both the arrival and installation quality of PV modules have high standards, but the quality of components is still frequent, especially the cracking of components to the later operation of photovoltaic power generation systems. And reliability brings certain hidden dangers.
  • the crack detection of the photovoltaic component is mainly performed by an EL (electroluminescence) tester, and the EL (electroluminescence) tester is an electroluminescence principle using crystalline silicon, and the near infrared of the component is photographed by using a high resolution CCD camera. Image, obtain and determine the defects of the component, the tester must be in the dark room, the components are energized.
  • the portable EL used for on-site inspection of power stations has to meet darkroom conditions. There are two methods, one is to test at night, but the natural efficiency of the power station is poor, and the test efficiency is low. The other is to set up a simple darkroom during the day. The test is carried out, but the darkroom is bulky and inconvenient to move, which is not convenient for rapid detection of the power station. Therefore, there is an urgent need for an EL test system and test method that can quickly detect cracks in the field during the day.
  • the present invention provides a portable photovoltaic module testing device, which is mainly an EL testing device capable of rapidly detecting the cracking of a photovoltaic component in a daytime photovoltaic power plant site.
  • the testing device has a simple structure and is easy to move, and can improve detection efficiency. .
  • a portable photovoltaic module testing device comprising: a detachably assembled light shielding frame, a camera fixing mechanism is disposed at a top of the light shielding frame; a CCD camera is mounted in the camera fixing mechanism; a flexible hood is disposed on the light shielding frame to form a dark room; and a continuous power source is used for the photovoltaic to be tested
  • the component provides a test voltage; a computer control system is coupled to the CCD camera via a wireless signal for controlling the CCD camera; wherein, during testing, the DC power source supplies a test voltage to the photovoltaic component to be tested, so that The photovoltaic module to be tested is energized, and the computer control system controls the CCD camera to focus and take a picture.
  • the light shielding frame comprises a frame body and a square fixing frame
  • the frame body comprises four columns, and each two adjacent columns are connected to each other by a plurality of connecting rods; four of the fixing frames The corners are respectively provided with a mounting hole, and the top ends of the four columns are respectively inserted into one of the mounting holes; the camera fixing mechanism is coupled to the fixing frame.
  • each of the pillars is sequentially sleeved with a first slider and a second slider from the bottom end to the top end, and the first slider and the second slider are slidable up and down along the column; each two adjacent The two columns are connected to each other by two mutually intersecting first connecting rods and two mutually intersecting second connecting rods; wherein one end of the first connecting rod is hinged to the bottom of a column by a hinge mechanism, and the other end passes The hinge mechanism is hinged to the first slider of the other column, one end of the second connecting rod is hinged to the first slider of one of the columns by the hinge mechanism, and the other end is hinged to the second slide of the other column by the hinge mechanism On the block; the intersection of the two first connecting rods is hinged by a hinge mechanism, and the intersection of the two second connecting rods is hinged by a hinge mechanism.
  • the two mutually intersecting first connecting rods start from the intersection, and the length extending toward one end is smaller than the length extending toward the other end; the two intersecting second connecting rods are crossed Starting from the end, the length extending toward one end is smaller than the length extending toward the other end; the length of the first connecting rod is greater than the length of the second connecting rod, so that the frame body is in the shape of a trapezoidal table in the extended state. structure.
  • first slider and the second slider are respectively provided with a first locking mechanism for fixing the first slider and the second slider to the corresponding pillars.
  • the camera fixing mechanism includes a first beam, a second beam, and two connecting arms; the first beam is fixedly coupled to a center of the fixing frame, and the first beam is disposed to extend along a length thereof a first sliding rail; one end of the connecting arm is provided with a first pulley, and the first sliding rail cooperates with the first sliding rail, the two connecting arms are slidably connected to the first beam; a second sliding rail extending along a longitudinal direction thereof is disposed in each of the two connecting arms, and a second pulley is disposed at each end of the second beam, and the second sliding rail cooperates with the second sliding rail.
  • Two beams are slidably coupled to the two connecting arms; the second beam is provided with a camera fixing hole, the CCD camera Installed in the camera fixing hole.
  • the connecting arm is provided with a first locking portion for locking the position of the connecting arm on the first beam; the second beam is provided with a second locking portion for locking the first The position of the two beams on the connecting arm.
  • the bottom ends of the four columns are respectively connected with a rubber pad, and the four columns are respectively placed at four corners of the photovoltaic module to be tested.
  • the hood includes an inner light shielding layer and an outer waterproof layer.
  • the method for testing a portable photovoltaic module testing device comprising the steps of: S101, assembling a light shielding frame and mounting the CCD camera in the camera fixing mechanism; S102, covering the light shielding cover on the light shielding frame to form a a dark room; S103, the light-shielding frame is buckled on the photovoltaic module to be tested, so that the photovoltaic component to be tested is located in the dark room; S104, the test voltage is supplied from the DC power source to the photovoltaic component to be tested, so that the photovoltaic component to be tested is Powering on; S105, controlling, by the computer control system, the CCD camera to focus and take a picture.
  • the portable photovoltaic module testing device mainly performs EL testing on the photovoltaic component, and comprises a detachably assembled light shielding frame and a flexible hood covering the light shielding frame, and the photovoltaic power station can be used at any time and any place during the daytime Establish a darkroom on site to provide conditions for EL testing and improve the efficiency of PV module testing.
  • the frame body in the light-shielding frame is a foldable structure that is easy to move and transport, further improving the detection efficiency of the photovoltaic module.
  • the test device has a simple structure and is easy to set up, and is suitable for large-scale industrial production.
  • FIG. 1 is a schematic structural diagram of a portable photovoltaic module testing apparatus according to an embodiment of the present invention.
  • Fig. 2 is a side view of a light shielding frame in an embodiment of the present invention.
  • Figure 3 is an enlarged cross-sectional view of a portion A in Figure 2 .
  • Figure 4 is an enlarged schematic view of a portion B in Figure 2.
  • Figure 5 is an illustration of two mutually intersecting first connecting rods in an embodiment of the invention.
  • Fig. 6 is a schematic structural view of a camera fixing mechanism in an embodiment of the present invention.
  • Fig. 7 is a view showing the connection structure of the first beam and the connecting arm in the embodiment of the present invention.
  • Figure 8 is a block diagram showing the connection structure of the second beam and the connecting arm in the embodiment of the present invention.
  • the embodiment provides a portable photovoltaic module testing device, which is mainly used for performing EL testing on a photovoltaic component at a photovoltaic power plant site.
  • the test test device includes: a light shielding frame 1, a camera fixing mechanism 2, a CCD camera 3, a flexible hood 4 (including an inner layer light shielding layer 41 and an outer layer waterproof layer 42), a direct current power source 5, and a computer.
  • Control system 7 includes: a light shielding frame 1, a camera fixing mechanism 2, a CCD camera 3, a flexible hood 4 (including an inner layer light shielding layer 41 and an outer layer waterproof layer 42), a direct current power source 5, and a computer.
  • Control system 7 includes: a light shielding frame 1, a camera fixing mechanism 2, a CCD camera 3, a flexible hood 4 (including an inner layer light shielding layer 41 and an outer layer waterproof layer 42), a direct current power source 5, and a computer.
  • the light shielding frame 1 is detachably assembled, the camera fixing mechanism 2 is connected to the top of the light shielding frame 1, the CCD camera 3 is mounted in the camera fixing mechanism 2; the flexible hood 4 Covering the light-shielding frame 1 to form a dark room; the DC power source 5 is for supplying a test voltage to the photovoltaic module 6 to be tested; the computer control system 7 (for example, may be a notebook computer) and the CCD camera 3 pass A wireless signal (such as a WIFI signal) is connected for controlling the CCD camera 3.
  • the DC power source 5 supplies a test voltage to the photovoltaic module 6 to be tested to energize the photovoltaic module to be tested, and the computer control system 7 controls the CCD camera 3 to focus and take a picture.
  • the light shielding frame 1 includes a frame main body 11 and a square fixing frame 12, and the frame main body 11 includes four uprights 111, and each of two adjacent columns 111 They are connected to each other by a plurality of connecting rods 112a, 112b.
  • the four corners of the fixing frame 12 are respectively provided with a mounting hole 121, and the top ends of the four columns 111 are respectively inserted into one of the mounting holes 121.
  • the camera fixing mechanism 2 is connected to the fixed frame 12.
  • the frame body 11 has a foldable structure. Specifically, referring to FIG. 2, FIG. 4 and FIG. 5, each of the pillars 111 in the frame body 11 is sequentially provided with a first slider 113 and a second slider 114 from the bottom end to the top end, and the first slider 113 is sequentially disposed. And the second slider 114 is slidable up and down along the column 111; each of the two adjacent columns 111 is connected to each other by two mutually intersecting first connecting rods 112a and two mutually intersecting second connecting rods 112b.
  • first connecting rod 112a is hinged to the bottom of one of the columns 111 by the hinge mechanism 13, and the other end is hinged to the first slider 113 of the other column 111 by the hinge mechanism 13, the second connecting rod 112b
  • One end is hinged to the first slider 113 of a column 111 by the hinge mechanism 13, and the other end is hinged to the second slider 114 of the other column 111 by the hinge mechanism 13; the intersection of the two first connecting rods 112a passes The hinge mechanism 13 is hinged, and the intersection of the two second connecting rods 112b is hinged by the hinge mechanism 13.
  • the first slider 113 is provided with a locking mechanism 115.
  • the locking mechanism 115 may be a screw member mounted on the first slider 113, and the first slider 113 is loosened or locked by rotating the screw member.
  • the second slider 114 is also provided with a locking mechanism 115 (since the similar structure is provided, the drawing is not additionally provided herein).
  • a locking mechanism of another structure may also be used as long as the first slider 113 and the second slider 114 can be loosened or locked.
  • the two mutually intersecting first connecting rods 112a start from the intersection (such as the hinge mechanism 13 in FIG. 5), and the length L1 extending toward one end is smaller than Length L2 extending to the other end.
  • the two mutually intersecting second connecting rods 112b start from the intersection, and the length extending toward one end is also smaller than the length extending to the other end (due to having a similar structure, no additional attachment is provided here. Figure).
  • the length of the first connecting rod 112a is greater than the length of the second connecting rod 112b, so that the frame main body 11 has a trapezoidal-shaped frame structure in an extended state.
  • the intersection may be set to be the middle of the first connecting rod 112a, and similarly, for the two intersecting second connecting rods 112b, The intersection is set to be the middle of the second connecting rod 112b. Further, the first connecting rod 112a and the second connecting rod 112b have the same length, and at this time, the frame main body 11 has a square frame structure in an extended state.
  • the camera fixing mechanism 2 includes a first beam 21, a second beam 22, and two connecting arms 23.
  • the first beam 21 is fixedly connected to the center of the fixing frame 12, and the first beam 21 is provided with a first sliding rail 211 extending along the length thereof; one end of the connecting arm 23 is provided with a first pulley 231 is coupled to the first rail 211 by a first sliding 231 wheel, the two connecting arms 23 are slidably coupled to the first beam 21; and the two connecting arms 23 are respectively disposed
  • a camera fixing hole 222 is disposed on the second beam 22, and the CCD camera 3 is mounted in the camera fixing hole 222.
  • the position of the CCD camera 3 in the lateral direction can be adjusted, and the second beam 22 is slidably coupled to the two connecting arms 23, and the CCD can be adjusted.
  • the position of the camera 3 in the height direction when the CCD camera 3 is mounted, can roughly adjust the distance of the CCD camera 3 from the photovoltaic module to be tested 6 to approximate the focal length of the CCD camera 3.
  • the connecting arm 23 is provided with a first locking portion 233 for locking the position of the connecting arm 23 on the first beam 21.
  • the first locking portion 233 is loosened, the position of the connecting arm 23 on the first beam 21 is adjusted, and when the adjustment is completed, the first locking portion 233 is locked, and the connecting arm 23 is fixed at the On a beam 21.
  • the second beam 22 is provided with a second locking portion 223 for locking the position of the second beam 22 on the connecting arm 23.
  • the second locking portion 223 is released, the position of the second beam 22 on the connecting arm 23 is adjusted, and when the adjustment is completed, the second locking portion 223 is locked, The second beam 22 is fixed to the connecting arm 23.
  • the bottom ends of the four columns 111 are respectively connected with a rubber pad 14.
  • four columns 111 are respectively placed at the four corners of the photovoltaic module 6 to be tested, and the rubber pad 14 can prevent the column 111 from causing damage to the photovoltaic module 6 to be tested.
  • the area surrounded by the four pillars 111 may be slightly larger than the area of the photovoltaic module 6 to be tested. At this time, the photovoltaic module 6 to be tested may be completely accommodated inside the light shielding frame 1.
  • Each of the photovoltaic modules 6 to be tested may include one or more photovoltaic cells, as long as the area of the bottom of the light shielding frame 1 is designed to be an appropriate area.
  • the DC power source 5 can simultaneously supply the test voltage to the plurality of PV modules 6 .
  • the DC power supply 5 is not needed, which saves the detection time and further improves the work efficiency.
  • the testing method of the portable photovoltaic module testing device includes the following steps: Step 1. Assemble a light shielding frame 1 and mount the CCD camera 2 in the camera fixing mechanism 2. Step 2: Covering the hood 4 on the light shielding frame 1 to form a dark room. Step 3: The light shielding frame 1 is fastened on the photovoltaic module 6 to be tested, so that the photovoltaic module 6 to be tested is located in the dark room. Step 4: The DC power source 5 supplies a test voltage to the PV module 6 to be tested, so that the PV module 6 to be tested is powered on. Step 5. The CCD camera 3 is controlled by the computer control system 7 to focus and take a picture.
  • the portable photovoltaic module testing device mainly performs EL testing on the photovoltaic component, and includes a detachably assembled light shielding frame and a flexible hood covering the light shielding frame, which can be used anytime and anywhere.
  • the photovoltaic power plant establishes a darkroom on site to provide conditions for EL testing and improve the detection efficiency of photovoltaic modules.
  • the frame body in the light-shielding frame is a foldable structure that is easy to move and transport, further improving the detection efficiency of the photovoltaic module.
  • the test device has a simple structure and is easy to set up, and is suitable for large-scale industrial production.

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种便携式光伏组件测试装置,其包括:一可拆卸地组装的遮光框架(1),所述遮光框架(1)的顶部设置有一相机固定机构(2);所述相机固定机构(2)中安装有一CCD相机(3);一柔性的遮光罩(4),覆盖于所述遮光框架(1)上,形成一暗室;一直流电源(5),用于向待测光伏组件(6)提供测试电压;一计算机控制系统(7),与所述CCD相机(3)通过无线信号连接,用于控制所述CCD相机(3)。还包括一种如上所述便携式光伏组件测试装置的测试方法。该测试装置可随时随地在白天时光伏电站现场建立暗室,提供进行EL测试的条件,提高光伏组件的检测效率。

Description

便携式光伏组件测试装置及测试方法 技术领域
本发明涉及太阳能光伏发电技术领域,尤其涉及一种便携式光伏组件测试装置及测试方法。
背景技术
随着生存环境污染的加剧,清洁能源发电受到了越来越多的关注与重视,太阳能光伏发电是一种重要的可再生能源。光伏组件是光伏发电系统的基础部分,也是核心部分,利用其光生伏特效应将太阳能转换为电能,并通过相关输变电设备送入电网,或是利用储能装置将电能暂时储存起来。在光伏电站建设规模越来越大的今天,无论是对光伏组件的到货还是安装质量均已有着高标准要求,但组件质量问题依旧频出,特别是组件隐裂对光伏发电系统后期的运行及可靠性带来了一定的隐患。
现有的技术中,光伏组件的隐裂检测主要使用EL(electroluminescence)测试仪完成,EL(electroluminescence)测试仪是应用晶体硅的电致发光原理,利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷,该测试仪必须在暗室、组件通电的条件下才能进行。目前,用于电站现场检测的便携式EL要达到暗室条件,有两种方法,一种是在夜间进行测试,但考虑到电站现场自然条件恶劣,测试效率低;另一种是在白天搭设简易暗室进行测试,但暗室的体积大且移动不便,对于电站现场快速检测来说不够便捷。因此现在亟需一种可以在白天电站现场快速检测隐裂的EL测试系统及测试方法。
发明内容
有鉴于此,本发明提供了一种便携式光伏组件测试装置,主要是一种可以在白天光伏电站现场快速检测光伏组件隐裂的EL测试装置,该测试装置结构简单,便于移动,可以提高检测效率。
为了实现上述目的,本发明采用了如下的技术方案:
一种便携式光伏组件测试装置,其包括:一可拆卸地组装的遮光框架,所 述遮光框架的顶部设置有一相机固定机构;所述相机固定机构中安装有一CCD相机;一柔性的遮光罩,覆盖于所述遮光框架上,形成一暗室;一直流电源,用于向待测光伏组件提供测试电压;一计算机控制系统,与所述CCD相机通过无线信号连接,用于控制所述CCD相机;其中,在测试时,所述直流电源向待测光伏组件提供测试电压,以使所述待测光伏组件通电,所述计算机控制系统控制所述CCD相机对焦并拍摄图片。
具体地,所述遮光框架包括框架主体以及一方形的固定框架,所述框架主体包括四个立柱,每两个相邻的立柱之间通过多个连接杆相互连接;所述固定框架的四个边角分别设置有一安装孔,所述四个立柱的顶端分别插入到一个所述安装孔中;所述相机固定机构连接于所述固定框架上。
更具体地,每一立柱从底端到顶端依次套设有第一滑块和第二滑块,所述第一滑块和第二滑块可沿所述立柱上下滑动;每两个相邻的立柱之间通过两个相互交叉的第一连接杆和两个相互交叉的第二连接杆相互连接;其中,所述第一连接杆的一端通过铰接机构铰接于一立柱的底部,另一端通过铰接机构铰接于另一立柱的第一滑块上,所述第二连接杆的一端通过铰接机构铰接于一立柱的第一滑块上,另一端通过铰接机构铰接于另一立柱的第二滑块上;两个第一连接杆的交叉处通过铰接机构铰接,两个第二连接杆的交叉处通过铰接机构铰接。
更具体地,所述两个相互交叉的第一连接杆,以交叉处为起点,其向一端延伸的长度小于向另一端延伸的长度;所述两个相互交叉的第二连接杆,以交叉处为起点,其向一端延伸的长度小于向另一端延伸的长度;所述第一连接杆的长度大于第二连接杆的长度,以使所述框架主体在伸展状态时呈梯形台形状的框架结构。
更具体地,所述第一滑块和第二滑块上分别设置有一第一锁定机构,用于将所述第一滑块和第二滑块固定于对应的立柱上。
具体地,所述相机固定机构包括第一横梁、第二横梁以及两个连接臂;所述第一横梁固定连接于所述固定框架的中心,所述第一横梁中设置有沿其长度方向延伸的第一滑轨;所述连接臂的一端设置有第一滑轮,通过第一滑轮与所述第一滑轨配合,所述两个连接臂可滑动地连接于所述第一横梁;所述两个连接臂中分别设置有沿其长度方向延伸的第二滑轨,所述第二横梁的两端分别设置有一第二滑轮,通过第二滑轮与所述第二滑轨配合,所述第二横梁可滑动地连接于所述两个连接臂;所述第二横梁上设置有一相机固定孔,所述CCD相机 安装于该相机固定孔中。
更具体地,所述连接臂设置有第一锁定部,用于锁定所述连接臂在所述第一横梁上的位置;所述第二横梁设置有第二锁定部,用于锁定所述第二横梁在所述连接臂上的位置。
具体地,所述四个立柱的底端分别连接有一橡胶垫,所述四个立柱分别放置于待测光伏组件的四个边角。
具体地,所述遮光罩包括内层遮光层和外层防水层。
如上所述的便携式光伏组件测试装置的测试方法,该方法包括步骤:S101、组装形成一遮光框架并将CCD相机安装于相机固定机构中;S102、将遮光罩覆盖于所述遮光框架上形成一暗室;S103、将所述遮光框架扣设在待测光伏组件上,使所述待测光伏组件位于所述暗室中;S104、由直流电源向待测光伏组件提供测试电压,使待测光伏组件通电;S105、由计算机控制系统控制所述CCD相机对焦并拍摄图片。
本发明实施例提供的便携式光伏组件测试装置,主要应用对光伏组件进行EL测试,其包括可拆卸地组装的遮光框架以及覆盖于该遮光框架上的柔性遮光罩,可随时随地在白天时光伏电站现场建立暗室,提供进行EL测试的条件,提高光伏组件的检测效率。在一个具体的实施例中,遮光框架中的框架主体为可折叠的结构,易于移动和运输,进一步提高了光伏组件的检测效率。进一步地,该测试装置结构简单,易于搭建,适于大规模的工业化生产中。
附图说明
图1是本发明实施例提供的便携式光伏组件测试装置的结构示意图。
图2是本发明实施例中的遮光框架的侧视图。
图3是如图2中A部分的放大剖视图。
图4是如图2中B部分的放大示意图。
图5是本发明实施例中的两个相互交叉的第一连接杆的图示。
图6是本发明实施例中的相机固定机构的结构示意图。
图7是本发明实施例中第一横梁与连接臂的连接结构图示。
图8是本发明实施例中第二横梁与连接臂的连接结构图示。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护范围。
本实施例提供了一种便携式光伏组件测试装置,主要应用在光伏电站现场对光伏组件进行EL测试。如图1所示,该测试测试装置包括:遮光框架1、相机固定机构2、CCD相机3、柔性的遮光罩4(包括内层遮光层41和外层防水层42)、直流电源5以及计算机控制系统7。其中,所述遮光框架1为可拆卸地组装结构,所述相机固定机构2连接于所述遮光框架1的顶部,所述CCD相机3安装于相机固定机构2中;所述柔性的遮光罩4覆盖于所述遮光框架1上,形成一暗室;所述直流电源5用于向待测光伏组件6提供测试电压;所述计算机控制系统7(例如可以是笔记本电脑)与所述CCD相机3通过无线信号(例如WIFI信号)连接,用于控制所述CCD相机3。在测试时,所述直流电源5向待测光伏组件6提供测试电压,以使所述待测光伏组件6通电,所述计算机控制系统7控制所述CCD相机3对焦并拍摄图片。
具体地,如图1和图2所示的,所述遮光框架1包括框架主体11以及一方形的固定框架12,所述框架主体11包括四个立柱111,每两个相邻的立柱111之间通过多个连接杆112a、112b相互连接。如图3所示的,所述固定框架12的四个边角分别设置有一安装孔121,所述四个立柱111的顶端分别插入到一个所述安装孔121中。其中,所述相机固定机构2连接于所述固定框架12上。
本实施例中,所述框架主体11具有可折叠的结构。具体地,参阅图2、图4和图5,框架主体11中的每一立柱111从底端到顶端依次套设有第一滑块113和第二滑块114,所述第一滑块113和第二滑块114可沿所述立柱111上下滑动;每两个相邻的立柱111之间通过两个相互交叉的第一连接杆112a和两个相互交叉的第二连接杆112b相互连接。其中,所述第一连接杆112a的一端通过铰接机构13铰接于一立柱111的底部,另一端通过铰接机构13铰接于另一立柱111的第一滑块113上,所述第二连接杆112b的一端通过铰接机构13铰接于一立柱111的第一滑块113上,另一端通过铰接机构13铰接于另一立柱111的第二滑块114上;两个第一连接杆112a的交叉处通过铰接机构13铰接,两个第二连接杆112b的交叉处通过铰接机构13铰接。
进一步地,如图4所示,所述第一滑块113上设置有一锁定机构115,当锁定机构115松开时,第一滑块113可沿立柱111滑动,当锁定机构115锁紧时,第一滑块113固定立柱111上。锁定机构115可以是安装在第一滑块113上的螺纹件,通过旋转该螺纹件实现松开或锁紧第一滑块113。同理,所述第二滑块114上也设置有锁定机构115(由于具有相似的结构,在此不再另外提供附图)。当然,在另外的一些实施例中,也可以采用另外结构的锁定机构,只要能够满足松开或锁紧第一滑块113、第二滑块114即可。
在本实施例中,如图5所示的,所述两个相互交叉的第一连接杆112a,以交叉处(如图5中的铰接机构13)为起点,其向一端延伸的长度L1小于向另一端延伸的长度L2。同理,所述两个相互交叉的第二连接杆112b,以交叉处为起点,其向一端延伸的长度也小于向另一端延伸的长度(由于具有相似的结构,在此不再另外提供附图)。并且,所述第一连接杆112a的长度大于第二连接杆112b的长度,以使所述框架主体11在伸展状态时呈梯形台形状的框架结构。在另外的实施例中,对于两个相互交叉的第一连接杆112a,可以设定交叉处为第一连接杆112a的正中间,同样的,对于两个相互交叉的第二连接杆112b,可以设定交叉处为第二连接杆112b的正中间。并且,第一连接杆112a与第二连接杆112b具有相同的长度,此时,所述框架主体11在伸展状态时方形的框架结构。
进一步地,参阅图6-图8,本实施例中,所述相机固定机构2包括第一横梁21、第二横梁22以及两个连接臂23。具体地,所述第一横梁21固定连接于所述固定框架12的中心,所述第一横梁21中设置有沿其长度方向延伸的第一滑轨211;所述连接臂23的一端设置有第一滑轮231,通过第一滑231轮与所述第一滑轨211配合,所述两个连接臂23可滑动地连接于所述第一横梁21;所述两个连接臂23中分别设置有沿其长度方向延伸的第二滑轨232,所述第二横梁22的两端分别设置有一第二滑轮221,通过第二滑轮221与所述第二滑轨232配合,所述第二横梁22可滑动地连接于所述两个连接臂23;所述第二横梁22上设置有一相机固定孔222,所述CCD相机3安装于该相机固定孔222中。由于两个连接臂23可滑动地连接于所述第一横梁21,可以调节CCD相机3在横向方向上的位置,第二横梁22可滑动地连接于所述两个连接臂23,可以调节CCD相机3在高度方向上的位置,在安装CCD相机3时,就可以粗略地调节CCD相机3与待测光伏组件6的距离近似于CCD相机3的焦距。
进一步地,如图7所示,所述连接臂23设置有第一锁定部233,用于锁定所述连接臂23在所述第一横梁21上的位置。具体地,当需要调节CCD相机3 的横向位置时,松开第一锁定部233,调整连接臂23在所述第一横梁21上的位置,当调整完成后,锁定第一锁定部233,将连接臂23固定在在所述第一横梁21上。如图8所示,所述第二横梁22设置有第二锁定部223,用于锁定所述第二横梁22在所述连接臂23上的位置。具体地,当需要调节CCD相机3的高度位置时,松开第二锁定部223,调整第二横梁22在所述连接臂23上的位置,当调整完成后,锁定第二锁定部223,将第二横梁22固定在在所述连接臂23上。
进一步地,如图2所示的,所述四个立柱111的底端分别连接有一橡胶垫14。在测试时,将四个立柱111分别放置于待测光伏组件6的四个边角,橡胶垫14可以防止立柱111对待测光伏组件6造成损伤。当然,在另外的一些实施例中,也可以设计将四个立柱111所包围的面积略大于待测光伏组件6的面积,此时待测光伏组件6可以完全地收容于遮光框架1内部。
其中,每一待测光伏组件6可以包括一个或多个光伏电池片,只要将遮光框架1底部的面积设计为相适应的面积即可。
其中,直流电源5可以同时向多个测光伏组件6提供测试电压。现场测试时,在测试完成一个光伏组件后需要测试下一个光伏组件时,只需要移动遮光框架1即可,不需要移动直流电源5,节省检测时间,进一步提高了工作效率。
如上实施例提供的便携式光伏组件测试装置的测试方法,包括如下步骤:步骤一、组装形成一遮光框架1并将CCD相机2安装于相机固定机构2中。步骤二、将遮光罩4覆盖于所述遮光框架1上形成一暗室。步骤三、将所述遮光框架1扣设在待测光伏组件6上,使所述待测光伏组件6位于所述暗室中。步骤四、由直流电源5向待测光伏组件6提供测试电压,使待测光伏组件6通电。步骤五、由计算机控制系统7控制所述CCD相机3对焦并拍摄图片。
综上所述,本发明实施例提供的便携式光伏组件测试装置,主要应用对光伏组件进行EL测试,其包括可拆卸地组装的遮光框架以及覆盖于该遮光框架上的柔性遮光罩,可随时随地在白天时光伏电站现场建立暗室,提供进行EL测试的条件,提高光伏组件的检测效率。在一个具体的实施例中,遮光框架中的框架主体为可折叠的结构,易于移动和运输,进一步提高了光伏组件的检测效率。进一步地,该测试装置结构简单,易于搭建,适于大规模的工业化生产中。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素 的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

  1. 一种便携式光伏组件测试装置,其中,包括:
    一可拆卸地组装的遮光框架,所述遮光框架的顶部设置有一相机固定机构;所述相机固定机构中安装有一CCD相机;
    一柔性的遮光罩,覆盖于所述遮光框架上,形成一暗室;
    一直流电源,用于向待测光伏组件提供测试电压;
    一计算机控制系统,与所述CCD相机通过无线信号连接,用于控制所述CCD相机;
    其中,在测试时,所述直流电源向待测光伏组件提供测试电压,以使所述待测光伏组件通电,所述计算机控制系统控制所述CCD相机对焦并拍摄图片。
  2. 根据权利要求1所述的便携式光伏组件测试装置,其中,所述遮光框架包括框架主体以及一方形的固定框架,所述框架主体包括四个立柱,每两个相邻的立柱之间通过多个连接杆相互连接;所述固定框架的四个边角分别设置有一安装孔,所述四个立柱的顶端分别插入到一个所述安装孔中;所述相机固定机构连接于所述固定框架上。
  3. 根据权利要求2所述的便携式光伏组件测试装置,其中,每一立柱从底端到顶端依次套设有第一滑块和第二滑块,所述第一滑块和第二滑块可沿所述立柱上下滑动;每两个相邻的立柱之间通过两个相互交叉的第一连接杆和两个相互交叉的第二连接杆相互连接;其中,所述第一连接杆的一端通过铰接机构铰接于一立柱的底部,另一端通过铰接机构铰接于另一立柱的第一滑块上,所述第二连接杆的一端通过铰接机构铰接于一立柱的第一滑块上,另一端通过铰接机构铰接于另一立柱的第二滑块上;两个第一连接杆的交叉处通过铰接机构铰接,两个第二连接杆的交叉处通过铰接机构铰接。
  4. 根据权利要求3所述的便携式光伏组件测试装置,其中,所述两个相互交叉的第一连接杆,以交叉处为起点,其向一端延伸的长度小于向另一端延伸的长度;所述两个相互交叉的第二连接杆,以交叉处为起点,其向一端延伸的长度小于向另一端延伸的长度;所述第一连接杆的长度大于第二连接杆的长度,以使所述框架主体在伸展状态时呈梯形台形状的框架结构。
  5. 根据权利要求3所述的便携式光伏组件测试装置,其中,所述第一滑块和第二滑块上分别设置有一锁定机构,用于将所述第一滑块和第二滑块固定于 对应的立柱上。
  6. 根据权利要求2所述的便携式光伏组件测试装置,其中,所述相机固定机构包括第一横梁、第二横梁以及两个连接臂;所述第一横梁固定连接于所述固定框架的中心,所述第一横梁中设置有沿其长度方向延伸的第一滑轨;所述连接臂的一端设置有第一滑轮,通过第一滑轮与所述第一滑轨配合,所述两个连接臂可滑动地连接于所述第一横梁;所述两个连接臂中分别设置有沿其长度方向延伸的第二滑轨,所述第二横梁的两端分别设置有一第二滑轮,通过第二滑轮与所述第二滑轨配合,所述第二横梁可滑动地连接于所述两个连接臂;所述第二横梁上设置有一相机固定孔,所述CCD相机安装于该相机固定孔中。
  7. 根据权利要求6所述的便携式光伏组件测试装置,其中,所述连接臂设置有第一锁定部,用于锁定所述连接臂在所述第一横梁上的位置;所述第二横梁设置有第二锁定部,用于锁定所述第二横梁在所述连接臂上的位置。
  8. 根据权利要求2所述的便携式光伏组件测试装置,其中,所述四个立柱的底端分别连接有一橡胶垫,所述四个立柱分别放置于待测光伏组件的四个边角。
  9. 根据权利要求1所述的便携式光伏组件测试装置,其中,所述遮光罩包括内层遮光层和外层防水层。
  10. 一种权利要求1所述的便携式光伏组件测试装置的测试方法,其中,包括步骤:
    S101、组装形成一遮光框架并将CCD相机安装于相机固定机构中;
    S102、将遮光罩覆盖于所述遮光框架上形成一暗室;
    S103、将所述遮光框架扣设在待测光伏组件上,使所述待测光伏组件位于所述暗室中;
    S104、由直流电源向待测光伏组件提供测试电压,使待测光伏组件通电;
    S105、由计算机控制系统控制所述CCD相机对焦并拍摄图片。
PCT/CN2016/086534 2016-06-21 2016-06-21 便携式光伏组件测试装置及测试方法 WO2017219231A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086534 WO2017219231A1 (zh) 2016-06-21 2016-06-21 便携式光伏组件测试装置及测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086534 WO2017219231A1 (zh) 2016-06-21 2016-06-21 便携式光伏组件测试装置及测试方法

Publications (1)

Publication Number Publication Date
WO2017219231A1 true WO2017219231A1 (zh) 2017-12-28

Family

ID=60783725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086534 WO2017219231A1 (zh) 2016-06-21 2016-06-21 便携式光伏组件测试装置及测试方法

Country Status (1)

Country Link
WO (1) WO2017219231A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574456A (zh) * 2018-04-24 2018-09-25 泰州隆基乐叶光伏科技有限公司 一种快速和准确确定光伏组件热斑最严苛遮挡面积的方法
ES2783881A1 (es) * 2019-03-18 2020-09-18 Univ Valladolid Equipo mecanico para la realizacion de medidas de electroluminiscencia en plantas fotovoltaicas y su sistema de guiado
CN114034815A (zh) * 2021-10-28 2022-02-11 利晟(杭州)科技有限公司 一种可移动式应急室外空气质量检测装置及其工作方法
CN117639666A (zh) * 2023-12-14 2024-03-01 苏州潞能能源科技有限公司 一种用于测量光伏组件光电转换效率的测试机及其测试方法
CN117639666B (zh) * 2023-12-14 2024-05-31 苏州潞能能源科技有限公司 一种用于测量光伏组件光电转换效率的测试机及测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546634A1 (en) * 2011-07-14 2013-01-16 Dainippon Screen Mfg., Co., Ltd. Inspection apparatus and inspection method
CN104883128A (zh) * 2015-06-16 2015-09-02 黄河水电光伏产业技术有限公司 便携式光伏组件测试装置及测试方法
CN204721313U (zh) * 2015-06-16 2015-10-21 黄河水电光伏产业技术有限公司 便携式光伏组件测试装置
US20150318822A1 (en) * 2014-04-30 2015-11-05 Xiuwen Tu Reducing unequal biasing in solar cell testing
CN205100650U (zh) * 2015-11-19 2016-03-23 信阳师范学院 便携式el测试帐篷
CN205178988U (zh) * 2015-12-16 2016-04-20 信阳师范学院 户外光伏电站组件iv和el检测一体测试仪装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546634A1 (en) * 2011-07-14 2013-01-16 Dainippon Screen Mfg., Co., Ltd. Inspection apparatus and inspection method
US20150318822A1 (en) * 2014-04-30 2015-11-05 Xiuwen Tu Reducing unequal biasing in solar cell testing
CN104883128A (zh) * 2015-06-16 2015-09-02 黄河水电光伏产业技术有限公司 便携式光伏组件测试装置及测试方法
CN204721313U (zh) * 2015-06-16 2015-10-21 黄河水电光伏产业技术有限公司 便携式光伏组件测试装置
CN205100650U (zh) * 2015-11-19 2016-03-23 信阳师范学院 便携式el测试帐篷
CN205178988U (zh) * 2015-12-16 2016-04-20 信阳师范学院 户外光伏电站组件iv和el检测一体测试仪装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574456A (zh) * 2018-04-24 2018-09-25 泰州隆基乐叶光伏科技有限公司 一种快速和准确确定光伏组件热斑最严苛遮挡面积的方法
ES2783881A1 (es) * 2019-03-18 2020-09-18 Univ Valladolid Equipo mecanico para la realizacion de medidas de electroluminiscencia en plantas fotovoltaicas y su sistema de guiado
WO2020188134A1 (es) * 2019-03-18 2020-09-24 Universidad De Valladolid Equipo mecánico para la realización de medidas de electroluminiscencia en plantas fotovoltaicas y su sistema de guiado
CN114034815A (zh) * 2021-10-28 2022-02-11 利晟(杭州)科技有限公司 一种可移动式应急室外空气质量检测装置及其工作方法
CN114034815B (zh) * 2021-10-28 2023-07-18 利晟(杭州)科技有限公司 一种可移动式应急室外空气质量检测装置及其工作方法
CN117639666A (zh) * 2023-12-14 2024-03-01 苏州潞能能源科技有限公司 一种用于测量光伏组件光电转换效率的测试机及其测试方法
CN117639666B (zh) * 2023-12-14 2024-05-31 苏州潞能能源科技有限公司 一种用于测量光伏组件光电转换效率的测试机及测试方法

Similar Documents

Publication Publication Date Title
CN104883128B (zh) 便携式光伏组件测试装置及测试方法
WO2017219231A1 (zh) 便携式光伏组件测试装置及测试方法
KR101621315B1 (ko) 베란다 설치용 태양광 패널 거치대
US9324893B1 (en) Portable solar power system and method for the same
CN107257230B (zh) 一种光伏电站的el检测系统
CN107276499A (zh) 一种便于移动的可调式光伏电站
KR101942066B1 (ko) 태양광 발전 패널을 구비한 단위 랙
CN109595522A (zh) 一种用于市政工程施工用路灯
CN103872979A (zh) 高效太阳能光伏发电系统
CN206452353U (zh) 一种蔬菜大棚用的可调节太阳能光伏支架
ES2373899A1 (es) Estructura de izado y montaje de heliostatos y carro de desplazamiento de dicho heliostato.
CN107332500A (zh) 一种光伏发电用双轴跟踪装置
CN207339747U (zh) 一种光伏发电铝材型支架
CN105490643B (zh) 光伏组件el检测用暗房装置
CN204721313U (zh) 便携式光伏组件测试装置
CN106764311A (zh) 一种可自由调节支腿宽度的望远镜支架
CN206600585U (zh) 一种可自由调节支腿宽度的望远镜支架
CN205782556U (zh) 一种太阳能应急照明装置
CN212063945U (zh) 一种移动式户外光伏组件电致发光el测试装置
CN205332569U (zh) 一种太阳能聚光器反射镜面调焦装置
CN205265624U (zh) 光伏组件el检测用暗房装置
CN208507911U (zh) 一种用于电子设备的无磁天线
CN209837788U (zh) 一种车况实时监控的公交候车亭
WO2016187825A1 (zh) 一种太阳能发电装置
CN202994966U (zh) 可调式全方位太阳电池室外测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905773

Country of ref document: EP

Kind code of ref document: A1